

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）			女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載		差異理由
	2．プラント配置		2. 			

所内常設直流電源設備（ 3 系統目）添付書類八 比較表

灰色（グレーハッチング）： 赤字：設備，運用又は体制の 緑字：記載表現，記載箇所，		

所内常設直流電源設備（3系統目）添付書類八 比較表

崎刈羽 6， 7 号炉（2022．8．23提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	残留熱除去系（燃料プール水の泠却）及び燃料プール泠却浄化系の有する使用済燃料プールの泠却機能啔失又は残留熱除去系ポンプによる使用済燃料プールへの補給機能が喪失し，又は使用済燃料プールに接続する配管の破損等によ り使用済燃料プール水の小規模な漏えいにより使用済燃料 プールの水位が低下した場合に，使用済燃料プール内燃料体等を泠却し，放射線を遮蔽し，及び臨界を防止するための重大事故等対処設備として，燃料プール代替注水系（常設配管）を使用する。 燃料プール代替注水系（常設配管）は，大容量送水ポンプ （タイプ I ），配管・ホース・弁類，計測制御装置等で構成 し，大容量送水ポンプ（タイプI）により，代替淡水源の水 を燃料プール泠却浄化系配管等から使用済燃料プールへ注水することで，使用済燃料プールの水位を維持できる設計 とする。 また，使用済燃料貯蔵ラックの形状を維持することによ り臨界を防止できる設計とする。 燃料プール代替注水系（常設配管）は，代替淡水源が枯渴 した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプI）により海を利用 できる設計とする。また，大容量送水ポンプ（タイプ I ）は，空冷式のディーゼルエンジンにより駆動できる設計とす る。燃料は，燃料補給設備である軽油タンク又はガスタービ ン発電設備軽油タンク及びタンクローリにより補給できる設計とする。 主要な設備は，以下のとおりとする。 - 大容量送水ポンプ（タイプI） - 燃料補給設備（10．2 代替電源設備） 本系統の流路として，燃料プール冷却浄化系の配管及び弁並びにホースを重大事故等対処設備として使用する。 その他，設計基準対象施設である使用済燃料プールを重大事故等対処設備として使用する。 （b）燃料プール代替注水系（可搬型）による使用済燃料プールへの注水 残留熱除去系（燃料プール水の泠却）及び燃料プール泠却浄化系の有する使用済燃料プールの泠却機能喪失又は残留	記載内容に同じ。	

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	

所内常設直流電源設備（3系統目）添付書類八 比較表

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	

所内常設直流電源設備（3系統目）添付書類八 比較表
柏崎刈羽 6,7 号炉 $(2022.8 .23$ 提出）
（

緩和するとともに，燃料損傷時には使用済燃料プール内燃料体等の上部全面にスプレイすることによりできる限り環境への放射性物質の放出を低減するための重大事故等対処設備として，燃料プールスプレイ系（常設配管）を使用する。燃料プールスプレイ系（常設配管）は，大容量送水ポンプ （タイプ I ），スプレイノズル，配管・ホース・弁類，計測制御装置等で構成し，大容量送水ポンプ（タイプI）により，代替淡水源の水を燃料プール泠却浄化系配管等を経由して スプレイノズルから使用済燃料プール内燃料体等に直接ス プレイすることで，燃料損傷を緩和するとともに，環境への放射性物質の放出をできる限り低減できる設計とする。

また，スプレイや蒸気環境下でも臨界にならないよう配慮したラック形状によって，臨界を防止することができる設計とする。

燃料プールスプレイ系（常設配管）は，代替淡水源が枯渴 した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプ I ）により海を利用 できる設計とする。また，大容量送水ポンプ（タイプ I ）は，空冷式のディーゼルエンジンにより駆動できる設計とす る。燃料は，燃料補給設備である軽油タンク又はガスタービ ン発電設備軽油タンク及びタンクローリにより補給できる設計とする。

主要な設備は，以下のとおりとする。
－大容量送水ポンプ（タイプI）
－スプレイノズル
－燃料補給設備（10．2 代替電源設備）
本系統の流路として，燃料プール泠却浄化系の配管及び弁並びにホースを重大事故等対処設備として使用する。

その他，設計基準対象施設である使用済燃料プールを重大事故等対処設備として使用する。
（b）燃料プールスプレイ系（可搬型）による使用済燃料プール へのスプレイ
使用済燃料プールからの大量の水の漏えい等により使用済燃料プールの水位が異常に低下した場合に，燃料損傷を緩和するとともに，燃料損傷時には使用済燃料プール内燃料体等の上部全面にスプレイすることによりできる限り環

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	境への放射性物質の放出を低減するための重大事故等対処設備として，燃料プールスプレイ系（可搬型）を使用する。燃料プールスプレイ系（可搬型）は，大容量送水ポンプ（タ イプ I ），スプレイノズル，ホース，計測制御装置等で構成 し，大容量送水ポンプ（タイプ I ）により，代替淡水源の水 をホース等を経由してスプレイノズルから使用済燃料プー ル内燃料体等に直接スプレイすることで，燃料損傷を緩和 するとともに，環境への放射性物質の放出をできる限り低減できる設計とする。 また，スプレイや蒸気環境下でも臨界にならないよう配慮したラック形状によって，臨界を防止することができる設計とする。 燃料プールスプレイ系（可搬型）は，代替淡水源が枯渇し た場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプ I ）により海を利用で きる設計とする。また，大容量送水ポンプ（タイプI）は，空冷式のディーゼルエンジンにより駆動できる設計とす る。燃料は，燃料補給設備である軽油タンク又はガスタービ ン発電設備軽油タンク及びタンクローリにより補給できる設計とする。 主要な設備は，以下のとおりとする。 －大容量送水ポンプ（タイプI） －スプレイノズル －燃料補給設備（10．2 代替電源設備） 本系統の流路として，ホースを重大事故等対処設備とし て使用する。 その他，設計基準対象施設である使用済燃料プールを重大事故等対処設備として使用する。 b．大気への放射性物質の拡散抑制 （a）放水設備（大気への拡散抑制設備）による大気への放射性物質の拡散抑制 使用済燃料プールからの大量の水の漏えい等により使用済燃料プールの水位の異常な低下により，使用済燃料プー ル内燃料体等の著しい損傷に至った場合において，燃料損傷時にはできる限り環境への放射性物質の放出を低減する ための重大事故等対処設備として，放水設備（大気への拡散		

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	抑制設備）を使用する。 放水設備（大気への拡散抑制設備）は，大容量送水ポンプ （タイプII），放水砲，ホース等で構成し，大容量送水ポン プ（タイプII）により海水をホースを経由して放水砲から原子炉建屋へ放水することで，環境への放射性物質の放出を可能な限り低減できる設計とする。 本系統の詳細については，「9．7 発電所外への放射性物質の拡散を抑制するための設備」に記載する。 （3）重大事故等時の使用済燃料プールの監視に用いる設備 a．使用済燃料プールの監視設備による使用済燃料プールの状態監視 使用済燃料プールの監視設備として，使用済燃料プール水位／温度（ヒートサーモ式），使用済燃料プール水位／温度（ガ イドパルス式），使用済燃料プール上部空間放射線モニタ（高線量，低線量）及び使用済燃料プール監視カメラを使用する。 使用済燃料プール水位／温度（ヒートサーモ式），使用済燃料プール水位／温度（ガイドパルス式）及び使用済燃料プール上部空間放射線モニタ（高線量，低線量）は，想定される重大事故等により変動する可能性のある範囲にわたり測定可能な設計とする。 また，使用済燃料プール監視カメラは，想定される重大事故等時の使用済燃料プールの状態を監視できる設計とする。 使用済燃料プール水位／温度（ヒートサーモ式）及び使用済燃料プール上部空間放射線モニタ（高線量，低線量）は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能であり，使用済燃料プール水位／温度（ガイドパルス式）及び使用済燃料プール監視カメ ラは，常設代替交流電源設備又は可搬型代替交流電源設備か ら給電が可能な設計とする。 主要な設備は以下のとおりとする。 - 使用済燃料プール水位／温度（ヒートサーモ式） - 使用済燃料プール水位／温度（ガイドパルス式） - 使用済燃料プール上部空間放射線モニタ（高線量，低線量） - 使用済燃料プール監視カメラ	（3）重大事故等時の使用済燃料プールの監視に用いる設備 a．使用済燃料プールの監視設備による使用済燃料プールの状態監視 使用済燃料プールの監視設備として，使用済燃料プール水位／温度（ヒートサーモ式），使用済燃料プール水位／温度（ガ イドパルス式），使用済燃料プール上部空間放射線モニタ（高線量，低線量）及び使用済燃料プール監視カメラを使用する。 使用済燃料プール水位／温度（ヒートサーモ式），使用済燃料プール水位／温度（ガイドパルス式）及び使用済燃料プール上部空間放射線モニタ（高線量，低線量）は，想定される重大事故等により変動する可能性のある範囲にわたり測定可能な設計とする。 また，使用済燃料プール監視カメラは，想定される重大事故等時の使用済燃料プールの状態を監視できる設計とする。 使用済燃料プール水位／温度（ヒートサーモ式）及び使用済燃料プール上部空間放射線モニタ（高線量，低線量）は，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目）又は可搬型代替直流電源設備から給電 が可能であり，使用済燃料プール水位／温度（ガイドパルス式）及び使用済燃料プール監視カメラは，常設代替交流電源設備又は可搬型代替交流電源設備から給電が可能な設計とする。 主要な設備は以下のとおりとする。 - 使用済燃料プール水位／温度（ヒートサーモ式） - 使用済燃料プール水位／温度（ガイドパルス式） - 使用済燃料プール上部空間放射線モニタ（高線量，低線量） - 使用済燃料プール監視カメラ	

所内常設直流電源設備（ 3 系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	- 常設代替交流電源設備（10．2 代替電源設備） - 可搬型代替交流電源設備（10．2 代替電源設備） - 所内常設蓄電式直流電源設備（10．2 代替電源設備） - 常設代替直流電源設備（10．2 代替電源設備） - 可搬型代替直流電源設備（10．2 代替電源設備） （4）使用済燃料プールから発生する水蒸気による悪影響を防止す るための設備 a．燃料プール泠却浄化系による使用済燃料プールの除熱使用済燃料プールから発生する水蒸気による悪影響を防止 するための重大事故等対処設備として，燃料プール冷却浄化系を使用する。 燃料プール冷却浄化系は，燃料プール冷却浄化系ポンプ，燃料プール冷却浄化系熱交換器，配管•弁類，計測制御装置等で構成し，使用済燃料プールの水をポンプにより熱交換器等を経由して循環させることで，使用済燃料プールを泠却できる設計とする。 燃料プール冷却浄化系は，非常用交流電源設備及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）が機能喪失し た場合でも，常設代替交流電源設備及び原子炉補機代替冷却水系を用いて，使用済燃料プールを除熱できる設計とする。 燃料プール泠却浄化系で使用する原子炉補機代替冷却水系 は，淡水ポンプ及び熱交換器を搭載した熱交換器ユニット，大容量送水ポンプ（タイプ I ），配管・ホース・弁類，計測制御装置等で構成し，熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプII）により熱交換器ユニッ トに海水を送水することで，燃料プール冷却浄化系熱交換器等で発生した熱を最終的な熱の逃がし場である海へ輸送でき る設計とする。燃料は，燃料補給設備である軽油タンク又はガ スタービン発電設備軽油タンク及びタンクローリにより補給 できる設計とする。 主要な設備は，以下のとおりとする。 - 燃料プール泠却浄化系ポンプ - 燃料プール泠却浄化系熱交換器	- 常設代替交流電源設備（10．2 代替電源設備） - 可搬型代替交流電源設備（10．2 代替電源設備） - 所内常設蓄電式直流電源設備（10．2 代替電源設備） - 常設代替直流電源設備（10．2 代替電源設備） - 所内常設直流電源設備（ 3 系統目）（ 10.2 代替電源設備） - 可搬型代替直流電源設備（10．2 代替電源設備） （4）使用済燃料プールから発生する水蒸気による悪影響を防止す るための設備 女川原子力発電所発電用原子炉設置変更許可申請書（2 号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもって設置変更許可）の添付書類八「4．3．2（4）」の記載内容に同じ。	

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	また，燃料プール代替注水系（常設配管），燃料プール代替注水系 （可搬型），燃料プールスプレイ系（常設配管）及び燃料プールスプ レイ系（可搬型）は，代替淡水源を水源とすることで，使用済燃料プ ールを水源とする残留熱除去系及び燃料プール泠却浄化系に対して異なる水源を有する設計とする。 大容量送水ポンプ（タイプ I）は，原子炉建屋から離れた屋外に分散して保管することで，原子炉建屋内の残留熱除去系ポンプ及び燃料プール冷却浄化系ポンプと共通要因によって同時に機能を喪失し ないよう位置的分散を図る設計とする。 大容量送水ポンプ（タイプI）の接続口は，共通要因によって接続 できなくなることを防止するため，位置的分散を図った複数箇所に設置する設計とする。 使用済燃料プール水位／温度（ヒートサーモ式），使用済燃料プー ル水位／温度（ガイドパルス式），使用済燃料プール上部空間放射線 モニタ（高線量，低線量）及び使用済燃料プール監視カメラは，燃料貯蔵プール水位，燃料貯蔵プール水温度，燃料プール泠却浄化系ポン プ入口温度，燃料交換フロア放射線モニタ，燃料取替エリア放射線モ ニタ及び原子炉建屋原子炉棟排気放射線モニタと共通要因によって同時に機能を損なわないよう，使用済燃料プール水位／温度（ヒート サーモ式）及び使用済燃料プール上部空間放射線モニタ（高線量，低線量）は，非常用交流電源設備に対して，多様性を有する所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とし，使用済燃料プール水位／温度（ガイ ドパルス式）及び使用済燃料プール監視カメラは，非常用交流電源設備に対して多様性を有する常設代替交流電源設備又は可搬型代替交流電源設備から給電が可能な設計とする。 燃料プール冷却浄化系ポンプ及び燃料プール泠却浄化系熱交換器 は，残留熱除去系ポンプ及び残留熱除去系熱交換器と異なる区画に設置することで，残留熱除去系ポンプ及び残留熱除去系熱交換器と共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 燃料プール泠却浄化系で使用する原子炉補機代替冷却水系は，原子炉補機泠却水系（原子炉補機泠却海水系を含む。）と共通要因によ	また，燃料プール代替注水系（常設配管），燃料プール代替注水系 （可搬型），燃料プールスプレイ系（常設配管）及び燃料プールスプ レイ系（可搬型）は，代替淡水源を水源とすることで，使用斎燃料プ ールを水源とする残留熱除去系及び燃料プール椧却浄化系に対して異なる水源を有する設計とする。 大容量送水ポンプ（タイプI）は，原子炬建屋から離れた屋外に分散して保管することで，原子炬建屋内の残留熱除去系ポンプ及び燃料プール椧却浄化系ポンプと共通要因によって同時に機能を喪失し ないよう位置的分散を図る設計とする。 大容量送水ポンプ（タイプI）の接続口は，共通要因によって接続 できなくなることを防止するため，位置的分散を図った複数箇所に設置する設計とする。 使用済燃料プール水位／温度（ヒートサーモ式），使用済燃料プー ル水位／温度（ガイドパルス式），使用済燃料プール上部空間放射線 モニタ（高線量，低線量）及び使用済燃料プール監視カメラは，燃料貯蔵プール水位，燃料貯蔵プール水温度，燃料プール泠却浄化系ポン プ入口温度，然料交換フロア放射線モニタ，燃料取替エリア放射線モ二夕及び原子炉建屋原子炉楝排気放射線モ二夕と共通要因によって同時に機能を損なわないよう，使用消燃料プール水位／温度（ヒート サーモ式）及び使用済燃料プール上部空間放射線モ二夕（高線量，低線量）は，非常用交流電源設備に対して，多樣性を有する所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備 （3系統目）又は可搬型代替直流電源設備から給電が可能な設計と し，使用斎燃料プール水位／温度（ガイドパルス式）及び使用済燃料 プール監視カメラは，非常用交流電源設備に対して多樣性を有する常設代替交流電源設備又は可搬型代替交流電源設備から給電が可能 な設計とする。 燃料プール椧却浄化系ポンプ及び燃料プール泠却浄化系熱交換器 は，残留熱除去系ポンプ及び残留熱除去系熱交換器と異なる区画に設置することで，残留熱除去系ポンプ及び残留熱除去系熱交換器と共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 燃料プール椧却浄化系で使用する原子炉補機代替泠却水系は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によ	

[^0]| 柏崎刈羽 6， 7 号炉（2022．8． 23 提出） | 女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可） | 女川 2 号炉 設置変更許可申請書 ※変更箩所のみ記載 | 差異理由 |
| :---: | :---: | :---: | :---: |
| | って同時に機能を損なわないよう，熱交換器ユニット及び大容量送水ポンプ（タイプ I）を空泠式のディーゼルエンジンにより駆動する ことで，電動機駆動ポンプにより構成される原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して多樣性を有する設計とする。
 原子炉補機代替冷却水系の熱交換器ユニット及び大容量送水ポン プ（タイプI）は，原子炉建屋並びに屋外の海水ポンプ室から䍜れた屋外に分散して保管することで，原子炬建屋内の原子炉補機泠却水 ポンプ及び原子炉補機冷却水系熱交換器並びに屋外の海水ポンプ室 の原子炉補機洽却海水ポンプと共通要因によって同時に機能を損な わないよう位置的分散を図る設計とする。
 熱交換器ユニットの接続口は，共通要因によって接続できなくな ることを防止するため，位置的分散を図った複数䈏所に設置する設計とする。
 電源設備の多樣性，位置的分散については，「10．2 代替電源設備」 に記載する。 | って同時に機能を損なわないよう，熱交換器ユニット及び大容量送水ポンプ（タイプ I ）を空冷式のディーゼルエンジンにより駆動する ことで，電動機駆動ポンプにより構成される原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して多様性を有する設計とする。
 原子炬補機代替泠却水系の熱交換器ユニット及び大容量送水ポン プ（タイプ I ）は，原子炉建屋並びに屋外の海水ポンプ室から離れた屋外に分散して保管することで，原子炉建屋内の原子炉補機冷却水 ポンプ及び原子炉補機冷却水系熱交換器並びに屋外の海水ポンプ室 の原子炉補機泠却海水ポンプと共通要因によって同時に機能を損な わないよう位置的分散を図る設計とする。
 熱交換器ユニットの接続口は，共通要因によって接続できなくな ることを防止するため，位置的分散を図った複数箇所に設置する設計とする。
 電源設備の多樣性，位置的分散については，「10．2 代替電源設備」 に記載する。 | |

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	5．原子炉冷却系統施設 5.4 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉を冷却する ための設備 5．4．2 設計方針 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉を泠却するた めの設備のらち，炉心を泠却するための設備として，高圧代替注水系 を設ける。また，設計基準事故対処設備である高圧炬心スプレイ系及 び原子炉隔離時冷却系が全交流動力電源及び常設直流電源系統の機能喪失により起動できない，かつ，中央制御室からの操作により高圧代替注水系を起動できない場合に，高圧代替注水系及び原子炉隔離時冷却系を現場操作により起動させる。 （1）フロントライン系故障時に用いる設備 a．高圧代替注水系による発電用原子炉の泠却 高圧炉心スプレイ系及び原子炉隔離時冷却系が機能喪失し た場合の重大事故等対処設備として，高圧代替注水系を使用 する。 高圧代替注水系は，蒸気タービン駆動ポンプである高圧代替注水系ポンプ，配管•卉類，計測制御装置等で構成し，蒸気 タービン駆動ポンプにより復水貯蔵タンクの水を高圧灲心ス プレイ系等を経由して，原子炉圧力容器へ注水することで炉心を冷却できる設計とする。 高圧代替注水系は，所内常設蓄電式直流電源設備からの給電が可能な設計とし，所内常設蓄電式直流電源設備が機能喪失した場合でも，常設代替直流電源設備又は可搬型代替直流電源設備からの給電が可能な設計とし，中央制御室からの操作が可能な設計とする。また，高圧代替注水系は，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備の機能喪失により中央制御室からの操作ができな い場合においても，現場での人力による弁の操作により，原子炉冷却材圧力バウンダリの減圧対策及び原子炉冷却材圧力バ ウンダリ低圧時の冷却対策の準備が整うまでの期間にわた り，発電用原子炉の泠却を継続できる設計とする。なお，人力 による措置は容易に行える設計とする。	5．原子炉冷却系統施設 5.4 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉を冷却する ための設備 「5．4．2 設計方針」の記述を以下のとおり変更する。 5．4．2 設計方針 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉を冷却するた めの設備のらち，炉心を泠却するための設備として，高圧代替注水系 を設ける。また，設計基準事故対処設備である高圧炉心スプレイ系及 び原子炉隔離時冷却系が全交流動力電源及び常設直流電源系統の機能喪失により起動できない，かつ，中央制御室からの操作により高圧代替注水系を起動できない場合に，高圧代替注水系及び原子炉隔離時冷却系を現場操作により起動させる。 （1）フロントライン系故障時に用いる設備 a 。高圧代替注水系による発電用原子炉の泠却 高圧炉心スプレイ系及び原子炉隔離時冷却系が機能喪失し た場合の重大事故等対処設備として，高圧代替注水系を使用 する。 高圧代替注水系は，蒸気タービン駆動ポンプである高圧代替注水系ポンプ，配管•弁類，計測制御装置等で構成し，蒸気 タービン駆動ポンプにより復水貯蔵タンクの水を高圧灲心ス プレイ系等を経由して，原子炉圧力容器へ注水することで炉心を冷却できる設計とする。 高圧代替注水系は，所内常設蓄電式直流電源設備からの給電が可能な設計とし，所内常設蓄電式直流電源設備が機能喪失した場合でも，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目）又は可搬型代替直流電源設備からの給電が可能 な設計とし，中央制御室からの操作が可能な設計とする。ま た，高圧代替注水系は，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目）及び可搬型代替直流電源設備の機能喪失により中央制御室からの操作 ができない場合においても，現場での人力による弁の操作に より，原子炉冷却材圧力バウンダリの減圧対策及び原子炉冷却材圧力バウンダリ低圧時の泠却対策の準備が整うまでの期間にわたり，発電用原子炉の泠却を継続できる設計とする。な	表現の差異 －女川は各項や各章図表の変更箇所 を示す前にリード文を入れている。

柏崎刈羽 6， 7 号炉（2022．8． 23 提出）	女川2号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	※変更箇所のみ記載	差異理由
	主要な設備は，以下のとおりとする。 - 高圧代替注水系ポンプ - 復水貯蔵タンク（5．7 重大事故等の収束に必要となる水 の供給設備） - 所内常設蓄電式直流電源設備（ 10.2 代替電源設備） - 常設代替直流電源設備（ 10.2 代替電源設備） - 可搬型代替直流電源設備（10．2 代替電源設備） 本系統の流路として，高圧代替注水系，高圧炉心スプレイ系，原子炉隔離時冷却系及び主蒸気系の配管及び弁，原子炉泠却材浄化系及び補給水系の配管，燃料プール補給水系の弁並 びに復水給水系の配管，弁及びスパージャを重大事故等対処設備として使用する。 その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用する。 （2）サポート系故障時に用いる設備 a．原子炉隔離時冷却系の現場操作による発電用原子炉の泠却全交流動力電源及び常設直流電源系統の機能喪失により，高圧炉心スプレイ系及び原子炉隔離時冷却系での発電用原子炉の泠却ができない場合であって，中央制御室からの操作に より高圧代替注水系が起動できない場合の重大事故等対処設備として，原子炉隔離時冷却系を現場操作により起動させて使用する。 原子炉隔離時冷却系は，全交流動力電源及び常設直流電源系統が機能喪失した場合においても，現場で弁を人力操作す ることにより起動し，蒸気タービン駆動ポンプにより復水貯蔵タンクの水を原子炉圧力容器へ注水することで原子炉冷却材圧力バウンダリの減圧対策及び原子炉冷却材圧力バウンダ リ低圧時の泠却対策の準備が整うまでの期間にわたり，発電用原子炉の冷却を継続できる設計とする。なお，人力による措置は容易に行える設計とする。 その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用し，設計基準事故対処設備である原子炬隔離時冷却系を重大事故等対処設備（設計基準挔張）とし て使用する。	お，人力による措置は容易に行える設計とする。 主要な設備は，以下のとおりとする。 - 高圧代替注水系ポンプ - 復水貯蔵タンク（5．7 重大事故等の収束に必要となる水 の供給設備） - 所内常設蓄電式直流電源設備（ 10.2 代替電源設備） - 常設代替直流電源設備（ 10.2 代替電源設備） - 所内常設直流電源設備（ 3 系統目）（ 10.2 代替電源設備） - 可搬型代替直流電源設備（ 10.2 代替電源設備） 本系統の流路として，高圧代替注水系，高圧炬心スプレイ系，原子炬隔離時冷却系及び主蒸気系の配管及び弁，原子炉冷却材浄化系及び補給水系の配管，燃料プール補給水系の升並 びに復水給水系の配管，弁及びスパージャを重大事故等対処設備として使用する。 その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用する。 （2）サポート系故障時に用いる設備 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもって設置変更許可）の添付書類八「5．4．2（2）」の記載内容に同じ。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	b．代替電源設備による原子炉隔離時冷却系の復旧 全交流動力電源が喪失し，原子炉隔離時冷却系の起動又は運転継続に必要な直流電源を所内常設蓄電式直流電源設備に より給電している場合は，所内常設蓄電式直流電源設備の蓄電池が枯渴する前に常設代替交流電源設備，可搬型代替交流電源設備又は可搬型代替直流電源設備により原子炉隔離時冷却系の運転継続に必要な直流電源を確保する。 原子炉隔離時冷却系は，常設代替交流電源設備，可搬型代替交流電源設備又は可搬型代替直流電源設備からの給電により機能を復旧し，蒸気タービン駆動ポンプにより復水貯蔵タン クの水を原子炉圧力容器へ注水することで炉心を泠却できる設計とする。 主要な設備は，以下のとおりとする。 －復水貯蔵タンク（5．7 重大事故等の収束に必要となる水 の供給設備） - 常設代替交流電源設備（10．2 代替電源設備） - 可搬型代替交流電源設備（10．2 代替電源設備） - 可搬型代替直流電源設備（10．2 代替電源設備） その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用し，設計基準事故対処設備である原子炬隔離時冷却系を重大事故等対処設備（設計基準拡張）とし て使用する。 （3）監視及び制御に用いる設備 原子炉冷却材圧力バウンダリが高圧の状態で発電用原子炉を冷却する場合に監視及び制御に使用する重大事故等対処設備と して，原子炉水位（広帯域），原子炉水位（燃料域），原子炉水位（S A 広帯域），原子炉水位（S A 燃料域），原子炉圧力，原子炉圧力（S A），高圧代替注水系ポンプ出口流量及び復水貯蔵 タンク水位を使用する。 原子炉水位（広帯域），原子炉水位（燃料域），原子炉水位（ S A広帯域）及び原子炉水位（S A 燃料域）は原子炉水位を監視又 は推定でき，原子炬圧力，原子炉圧力（S A），高圧代替注水系 ポンプ出口流量及び復水貯蔵タンク水位は原子炉圧力容器へ注水するための高圧代替注水系の作動状況を確認できる設計とす る。 主要な設備は，以下のとおりとする。	（3）監視及び制御に用いる設備 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもって設置変更許可）の添付書類八「5．4．2（3）」の記載内容に同じ。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	－原子炉水位（広帯域）（6．4 計装設備（重大事故等対処設備）） －原子炉水位（燃料域）（6．4 計装設備（重大事故等対処設備）） －原子炉水位（S A 広帯域）（6．4 計装設備（重大事故等対処設備）） －原子炉水位（S A燃料域）（6．4 計装設備（重大事故等対処設備）） - 原子炉圧力（6．4 計装設備（重大事故等対処設備）） - 原子炉圧力（S A）（6．4 計装設備（重大事故等対処設備）） - 高圧代替注水系ポンプ出口流量（6．4 計装設備（重大事故等対処設備）） －復水貯蔵タンク水位（6．4 計装設備（重大事故等対処設備）） （4）事象進展抑制のために用いる設備 a．ほう酸水注入系による進展抑制 高圧代替注水系及び原子炬隔離時冷却系を用いた発電用原子炉への高圧注水により原子炉水位を維持できない場合を想定した重大事故等対処設備として，ほら酸水注入系を使用す る。 ほら酸水注入系は，ほら酸水注入系ポンプ，ほら酸水注入系貯蔵タンク，配管•弁類，計測制御装置等で構成し，ほら酸水注入系ポンプにより，ほう酸水を原子炉圧力容器へ注入する ことで，重大事故等の進展を抑制できる設計とする。 本系統の詳細については，「6．7 緊急停止失敗時に発電用原子炉を未臨界にするための設備」に記載する。 原子炉圧力容器については，「5．1 原子炉圧力容器及び一次泠却材設備」に記載する。 復水貯蔵タンクについては，「5．7 重大事故等の収束に必要とな る水の供給設備」に記載する。 原子炉隔離時冷却系については，「5．8 原子炉隔離時冷却系」に記載する。 原子炉水位（広帯域），原子炉水位（燃料域），原子炉水位（S A広帯域），原子炉水位（S A 燃料域），原子炉圧力，原子炉圧力（S A），高圧代替注水系ポンプ出口流量及び復水貯蔵タンク水位は，「6．4 計装設備（重大事故等対処設備）」に記載する。 ほら酸水注入系については，「6．7 緊急停止失敗時に発電用原子	（4）事象進展抑制のために用いる設備 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもつて設置変更許可）の添付書類八「5．4．2（4）」の記載内容に同じ。 原子炉圧力容器については，「5．1 原子炉圧力容器及び一次泠却材設備」に記載する。 復水貯蔵タンクについては，「5．7 重大事故等の収束に必要とな る水の供給設備」に記載する。 原子炉隔離時冷却系については，「5．8 原子炉隔離時冷却系」に記載する。 原子炉水位（広帯域），原子炉水位（燃料域），原子炉水位（S A広帯域），原子炉水位（S A 燃料域），原子炉圧力，原子炉圧力（S A），高圧代替注水系ポンプ出口流量及び復水貯蔵タンク水位は，「6．4 計装設備（重大事故等対処設備）」に記載する。 ほう酸水注入系については，「6．7 緊急停止失敗時に発電用原子	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	炉を未臨界にするための設備」に記載する。 常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備 については，「10．2 代替電源設備」に記載する。 5．4．2．1 多様性，位置的分散 基本方針については，「1．1．7．1 多様性，位置的分散，悪影響防止等」に示す。 高圧代替注水系は，高圧炉心スプレイ系と共通要因によって同時 に機能を損なわないよう，高圧代替注水系ポンプをタービン駆動と することで，電動機駆動ポンプを用いた高圧炉心スプレイ系に対し て多様性を有する設計とする。また，高圧代替注水系の起動に必要な電動弁は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電及び現場において人力により， ポンプの起動に必要な弁を操作できることで，非常用交流電源設備 から給電される高圧炉心スプレイ系及び非常用直流電源設備から給電される原子炉隔離時冷却系に対して，多様性を有する設計とする。 高圧代替注水系ポンプは，原子炉建屋原子炉棟内の高圧炉心スプ レイ系ポンプ及び原子炬隔離時泠却系ポンプと異なる区画に設置す ることで，高圧炉心スプレイ系ポンプ及び原子炉隔離時冷却系ポン プと共通要因によって同時に機能を損なわないよう位置的分散を図 る設計とする。 原子炉隔離時冷却系の起動に必要な電動弁は，現場において人力 による手動操作を可能とすることで，非常用直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。 電源設備の多様性，位置的分散については「10．2 代替電源設備」 に記載する。	炉を未臨界にするための設備」に記載する。 常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（3系統目）及び可搬型代替直流電源設備については，「10．2 代替電源設備」に記載する。 「5．4．2．1 多様性，位置的分散」の記述を以下のとおり変更する。 5．4．2．1 多様性，位置的分散 基本方針については，「1．1．7．1 多様性，位置的分散，悪影響防止等」に示す。 高圧代替注水系は，高圧炉心スプレイ系と共通要因によって同時 に機能を損なわないよう，高圧代替注水系ポンプをタービン駆動と することで，電動機駆動ポンプを用いた高圧炉心スプレイ系に対し て多様性を有する設計とする。また，高圧代替注水系の起動に必要な電動弁は，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目）又は可搬型代替直流電源設備からの給電及び現場において人力により，ポンプの起動に必要な弁を操作 できることで，非常用交流電源設備から給電される高圧炉心スプレ イ系及び非常用直流電源設備から給電される原子炉隔離時冷却系に対して，多様性を有する設計とする。 高圧代替注水系ポンプは，原子炉建屋原子炉棟内の高圧炉心スプ レイ系ポンプ及び原子炉隔離時冷却系ポンプと異なる区画に設置す ることで，高圧炉心スプレイ系ポンプ及び原子炉隔離時冷却系ポン プと共通要因によって同時に機能を損なわないよう位置的分散を図 る設計とする。 原子炉隔離時冷却系の起動に必要な電動弁は，現場において人力 による手動操作を可能とすることで，非常用直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。 電源設備の多様性，位置的分散については「10．2 代替電源設備」 に記載する。	表現の差異 －女川は各項や各 章図表の変更箇所 を示す前にリード 文を入れている。

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	5.5 原子炉泠却材圧力バウンダリを減圧するための設備 5．5．2 設計方針 原子炉冷却材圧力バウンダリを減圧するための設備のらち，原子炉冷却材圧力バウンダリが高圧時に炉心の著しい損傷及び原子炉格納容器の破損を防止するための設備として主蒸気逃がし安全弁を設 ける。 （1）フロントライン系故障時に用いる設備 a．原子炉減圧の自動化 主蒸気逃がし安全弁の自動減圧機能が喪失した場合の重大事故等対処設備として，主蒸気逃がし安全弁を代替自動減圧回路（代替自動減圧機能）により作動させ使用する。 主蒸気逃がし安全弁は，代替自動減圧回路（代替自動減圧機能）からの信号により，主蒸気逃がし安全弁自動減圧機能用ア キュムレータに蓄圧された窒素をアクチュエータのピストン に供給することで作動し，蒸気を排気管によりサプレッショ ンチェンバのプール水面下に導き凝縮させることで，原子炉泠却材圧力バウンダリを減圧できる設計とする。 なお，原子炉緊急停止失敗時に自動減圧系が作動すると，高圧炉心スプレイ系からの注水に加え，残留熱除去系（低圧注水 モード）及び低圧炉心スプレイ系から大量の泠水が注水され出力の急激な上昇につながるため，A TW S 緩和設備（自動減圧系作動阻止機能）により自動減圧系及び代替自動減圧回路 （代替自動減圧機能）による自動減圧を阻止する。 主要な設備は，以下のとおりとする。 - 主蒸気逃がし安全弁 - 主蒸気逃がし安全弁自動減圧機能用アキュムレータ - 代替自動減圧回路（代替自動減圧機能）（6．8 原子炉冷却材圧力バウンダリを減圧するための設備） －A TW S緩和設備（自動減圧系作動阻止機能）（6．7 緊急停止失敗時に発電用原子炉を未臨界にするための設備） その他，設計基準事故対処設備である非常用交流電源設備 を重大事故等対処設備（設計基準抎張）として使用する。	5.5 原子炉泠却材圧力バウンダリを減圧するための設備 「5．5．2 設計方針」の記述を以下のとおり変更する。 5．5．2 設計方針 原子炉冷却材圧力バウンダリを減圧するための設備のらち，原子炉冷却材圧力バウンダリが高圧時に炉心の著しい損傷及び原子炉格納容器の破損を防止するための設備として主蒸気逃がし安全弁を設 ける。 （1）フロントライン系故障時に用いる設備 a．原子炉減圧の自動化 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第2206019号をもって設置変更許可）の添付書類八「5．5．2（1） a．」の記載内容に同じ。	表現の差異 －女川は各項や各 章図表の変更箇所 を示す前にリード 文を入れている。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	b．手動による原子炉減圧 主蒸気逃がし安全弁の自動減圧機能が喪失した場合の重大事故等対処設備として，主蒸気逃がし安全弁を手動により作動させて使用する。 主蒸気逃がし安全弁は，中央制御室からの遠隔手動操作に より，主蒸気逃がし安全弁逃がし弁機能用アキュムレータ又 は主蒸気逃がし安全弁自動減圧機能用アキュムレータに蓄圧 された窒素をアクチュエータのピストンに供給することで作動し，蒸気を排気管によりサプレッションチェンバのプール水面下に導き凝縮させることで，原子炉冷却材圧力バウンダ リを減圧できる設計とする。 主要な設備は，以下のとおりとする。 - 主蒸気逃がし安全弁 - 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ - 主蒸気逃がし安全弁自動減圧機能用アキュムレータ - 所内常設蓄電式直流電源設備（10．2 代替電源設備） - 常設代替直流電源設備（ 10.2 代替電源設備） - 可搬型代替直流電源設備（ 10.2 代替電源設備） 本系統の流路として，主蒸気系配管及びクエンチャを重大事故等対処設備として使用する。 （2）サポート系故障時に用いる設備 a．常設直流電源采統喪失時の減圧 原子炉冷却材圧力バウンダリを減圧するための設備のらち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備と して，可搬型代替直流電源設備及び主蒸気逃がし安全弁用可搬型蓄電池を使用する。 （a）可搬型代替直流電源設備による主蒸気逃がし安全弁機能回復 原子炉冷却材圧力バウンダリを減圧するための設備のら ち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，可搬型代替直流電源設備を使用する。 可搬型代替直流電源設備は，主蒸気逃がし安全弁の作動 に必要な常設直流電源系統が喪失した場合においても， 125 V 直流電源切替盤を切り替えることにより，主蒸気逃が	b．手動による原子炬減圧 主蒸気逃がし安全弁の自動減圧機能が喪失した場合の重大事故等対処設備として，主蒸気逃がし安全弁を手動により作動させて使用する。 主蒸気逃がし安全弁は，中央制御室からの遠隔手動操作に より，主蒸気逃がし安全弁逃がし弁機能用アキュムレータ又 は主蒸気逃がし安全弁自動減圧機能用アキュムレータに蓄圧 された窒素をアクチュエータのピストンに供給することで作動し，蒸気を排気管によりサプレッションチェンバのプール水面下に導き凝縮させることで，原子炬冷却材圧力バウンダ リを減圧できる設計とする。 主要な設備は，以下のとおりとする。 - 主蒸気逃がし安全弁 - 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ - 主蒸気逃がし安全弁自動減圧機能用アキュムレータ - 所内常設蓄電式直流電源設備（ 10.2 代替電源設備） - 常設代替直流電源設備（10．2 代替電源設備） - 所内常設直流電源設備（ 3 系統目）（ 10.2 代替電源設備） - 可搬型代替直流電源設備（10．2 代替電源設備） 本系統の流路として，主蒸気系配管及びクエンチャを重大事故等対処設備として使用する。 （2）サポート系故障時に用いる設備 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもつて設置変更許可）の添付書類八「5．5．2（2）」の記載内容に同じ。	

灰色（グレーハッチング）： 赤字：設備，運用又は体制の 緑字：記載表現，記載箇所，		

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	し安全弁（11個）の作動に必要な電源を供給できる設計と する。 主要な設備は，以下のとおりとする。 －可搬型代替直流電源設備（ 10.2 代替電源設備） （b）主蒸気逃がし安全弁用可搬型蓄電池による主蒸気逃がし安全升機能回復 原子炉泠却材圧力バウンダリを減圧するための設備のら ち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，主蒸気逃がし安全弁用可搬型蓄電池を使用 する。 主蒸気逃がし安全弁用可搬型蓄電池は，主蒸気逃がし安全弁の作動に必要な常設直流電源系統が喪失した場合にお いても，主蒸気逃がし安全弁の作動回路に接続することに より，主蒸気逃がし安全弁（2個）を一定期間にわたり連続 して開状態を保持できる設計とする。 主要な設備は，以下のとおりとする。 －主蒸気逃がし安全弁用可搬型蓄電池 b．主蒸気逃がし安全弁の作動に必要な窒素喪失時の減圧 原子炉冷却材圧力バウンダリを減圧するための設備のう ち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，高圧窒素ガス供給系（非常用）及び代替高圧窒素 ガス供給系を使用する。 （a）高圧窒素ガス供給系（非常用）による窒素碓保 原子炉冷却材圧力バウンダリを減圧するための設備のら ち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，高圧窒素ガス供給系（非常用）を使用する。 高圧窒素ガス供給系（非常用）は，主蒸気逃がし安全弁の作動に必要な主蒸気逃がし安全弁逃がし弁機能用アキュム レータ及び主蒸気逃がし安全弁自動減圧機能用アキュムレ ータの充填圧力が喪失した場合において，主蒸気逃がし安全弁の作動に必要な窒素を供給できる設計とする。 なお，高圧窒素ガスボンべの圧力が低下した場合は，現場 で高圧窒素ガスボンベの切替え及び取替えが可能な設計と する。 主要な設備は，以下のとおりとする。 －高圧窒素ガスボンベ（6．8 原子炉冷却材圧力バウンダ		

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	リを減圧するための設備） - 常設代替交流電源設備（10．2 代替電源設備） - 可搬型代替交流電源設備（ 10.2 代替電源設備） 本系統の流路として，高圧窒素ガス供給系（非常用），主蒸気系の配管及び弁並びに主蒸気逃がし安全弁自動減圧機能用アキュムレータを重大事故等対処設備として使用す る。 その他，設計基準事故対処設備である主蒸気逃がし安全弁を重大事故等対処設備として使用し，設計基準事故対処設備である非常用交流電源設備を重大事故等対処設備（設計基準拡張）として使用する。 （b）代替高圧窒素ガス供給系による原子炉減圧 原子炉冷却材圧力バウンダリを減圧するための設備のら ち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，代替高圧窒素ガス供給系を使用する。 代替高圧室素ガス供給系は，主蒸気逃がし安全弁の作動 に必要な主蒸気逃がし安全弁逃がし弁機能用アキュムレー タ及び主蒸気逃がし安全弁自動減圧機能用アキュムレータ の充填圧力が喪失した場合において，主蒸気逃がし安全弁 のアクチュエータに直接窒素を供給することで，主蒸気逃 がし安全弁（4個）を一定期間にわたり連続して開状態を保持できる設計とする。 なお，高圧窒素ガスボンベの圧力が低下した場合は，現場 で高圧窒素ガスボンべの取替えが可能な設計とする。 主要な設備は，以下のとおりとする。 －高圧窒素ガスボンベ（6．8 原子炉冷却材圧力バウンダ リを減圧するための設備） - 常設代替交流電源設備（10．2 代替電源設備） - 可搬型代替交流電源設備（10．2 代替電源設備） - 代替所内電気設備（10．2 代替電源設備） 本系統の流路として，代替高圧窒素ガス供給系の配管，弁及びホースを重大事故等対処設備として使用する。 その他，設計基準事故対処設備である主蒸気逃がし安全弁を重大事故等対処設備として使用する。 c．代替電源設備を用いた主蒸気逃がし安全弁の復旧 （a）代替直流電源設備による復旧		

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	全交流動力電源又は常設直流電源が喪失した場合の重大事故等対処設備として，可搬型代替直流電源設備を使用す る。 主蒸気逃がし安全弁は，可搬型代替直流電源設備により作動に必要な直流電源が供給されることにより機能を復旧 し，原子炉冷却材圧力バウンダリを減圧できる設計とする。 主要な設備は，以下のとおりとする。 －可搬型代替直流電源設備（ 10.2 代替電源設備） （b）代替交流電源設備による復旧 全交流動力電源又は常設直流電源が喪失した場合の重大事故等対処設備として，常設代替交流電源設備又は可搬型代替交流電源設備を使用する。 主蒸気逃がし安全弁は，常設代替交流電源設備又は可搬型代替交流電源設備により所内常設蓄電式直流電源設備を受電し，作動に必要な直流電源が供給されることにより機能を復旧し，原子炉冷却材圧力バウンダリを減圧できる設計とする。 主要な設備は，以下のとおりとする。 - 常設代替交流電源設備（10．2 代替電源設備） - 可搬型代替交流電源設備（ 10.2 代替電源設備） （3）炬心損傷時における高圧溶融物放出／格納容器雰囲気直接加熱の防止 原子炉冷却材圧力バウンダリを減圧するための設備のらち，炉心損傷時に原子炉冷却材圧力バウンダリが高圧状態である場合において，高圧溶融物放出及び格納容器雰囲気直接加熱によ る原子炉格納容器の破損を防止するための重大事故等対処設備 として，主蒸気逃がし安全弁を使用する。 本系統は，「（1）b．手動による原子炉減圧」と同じである。 （4）インターフェイスシステムLOCA発生時に用いる設備 インターフェイスシステムLOCA発生時の重大事故等対処設備として，主蒸気逃がし安全弁，原子炉建屋ブローアウトパネ ル及びH P C S 注入隔離弁を使用する。 主蒸気逃がし安全弁は，中央制御室からの手動操作によって作動させ，原子炉冷却材圧力バウンダリを減圧させることで原子炉冷却材の漏えいを抑制できる設計とする。 原子炉建屋ブローアウトパネルは，高圧の原子炉冷却材が原	（3）炉心損傷時における高圧溶融物放出／格納容器雰囲気直接加熱の防止 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもつて設置変更許可）の添付書類八「5．5．2（3）」の記載内容に同じ。 （4）インターフェイスシステム L O C A 発生時に用いる設備 インターフェイスシステムLOCA発生時の重大事故等対処設備として，主蒸気逃がし安全弁，原子炉建屋ブローアウトパネ ル及びH P C S 注入隔離弁を使用する。 主蒸気逃がし安全弁は，中央制御室からの手動操作によって作動させ，原子炉冷却材圧力バウンダリを減圧させることで原子炉冷却材の漏えいを抑制できる設計とする。 原子炉建屋ブローアウトパネルは，高圧の原子炉冷却材が原	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	子炉建屋原子炉棟内へ漏えいして蒸気となり，原子炉建屋原子炉棟内の圧力が上昇した場合において，外気との差圧により自動的に開放し，原子炉建屋原子炉棟内の圧力及び温度を低下さ せることができる設計とする。 H P C S 注入隔離弁は，現場で弁を操作することにより原子炉冷却材の漏えい箇所を隔離できる設計とする。 主要な設備は，以下のとおりとする。 - 原子炉建屋ブローアウトパネル - 主蒸気逃がし安全弁 - 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ - 主蒸気逃がし安全弁自動減圧機能用アキュムレータ - 所内常設蓄電式直流電源設備（ 10.2 代替電源設備） - 常設代替直流電源設備（10．2 代替電源設備） - 可搬型代替直流電源設備（10．2 代替電源設備） 本系統の流路として，主蒸気系配管及びクエンチャを重大事故等対処設備として使用する。 なお，設計基準事故対処設備であるHPCS注入隔離弁を重大事故等対処設備（設計基準拡張）として使用する。 H P C S 注入隔離弁については，「5．3 非常用炉心冷却系」に記載する。 A TWS 緩和設備（自動減圧系作動阻止機能）については，「6．7緊急停止失敗時に発電用原子炉を未臨界にするための設備」に記載 する。 代替自動減圧回路（代替自動減圧機能）及び高圧窒素ガスボンベに ついては，「6．8 原子炉冷却材圧力バウンダリを減圧するための設備」に記載する。 非常用交流電源設備については，「10．1 非常用電源設備」に記載 する。 所内常設蓄電式直流電源設備，常設代替直流電源設備，可搬型代替直流電源設備，常設代替交流電源設備，可搬型代替交流電源設備及び代替所内電気設備については，「10．2 代替電源設備」に記載する。	子炉建屋原子炉棟内へ漏えいして蒸気となり，原子炉建屋原子炉棟内の圧力が上昇した場合において，外気との差圧により自動的に開放し，原子炉建屋原子炉棟内の圧力及び温度を低下さ せることができる設計とする。 H P C S 注入隔離弁は，現場で弁を操作することにより原子炉冷却材の漏えい箇所を隔離できる設計とする。 主要な設備は，以下のとおりとする。 - 原子炉建屋ブローアウトパネル - 主蒸気逃がし安全弁 - 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ - 主蒸気逃がし安全弁自動減圧機能用アキュムレータ - 所内常設蓄電式直流電源設備（10．2 代替電源設備） - 常設代替直流電源設備（10．2 代替電源設備） - 所内常設直流電源設備（ 3 系統目）（ 10.2 代替電源設備） - 可搬型代替直流電源設備（ 10.2 代替電源設備） 本系統の流路として，主蒸気系配管及びクエンチャを重大事故等対処設備として使用する。 なお，設計基準事故対処設備であるHPCS注入隔離弁を重大事故等対処設備（設計基準拡張）として使用する。 H P C S 注入隔離弁については，「5．3 非常用炉心冷却系」に記載する。 A TWS緩和設備（自動減圧系作動阻止機能）については，「6．7緊急停止失敗時に発電用原子炉を未臨界にするための設備」に記載 する。 代替自動減圧回路（代替自動減圧機能）及び高圧窒素ガスボンべに ついては，「6．8 原子炉冷却材圧力バウンダリを減圧するための設備」に記載する。 非常用交流電源設備については，「10．1 非常用電源設備」に記載 する。 所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目），可搬型代替直流電源設備，常設代替交流電源設備，可搬型代替交流電源設備及び代替所内電気設備については，「10．2 代替電源設備」に記載する。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	5．5．2．1 多様性，位置的分散 基本方針については，「1．1．7．1 多様性，位置的分散，悪影響防止等」に示す。 主蒸気逃がし安全弁，主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ及び主蒸気逃がし安全弁自動減圧機能用アキュムレータ は，設計基準事故対処設備と重大事故等対処設備としての安全機能 を兼ねる設備であるが，想定される重大事故等時に必要となる個数 に対して十分に余裕をもった個数を分散して設置する設計とする。 主蒸気逃がし安全弁は，代替高圧窒素ガス供給系による原子炉減圧として使用する 4 個を，可能な限り異なる主蒸気管に分散して設置する設計とする。 主蒸気逃がし安全弁は，代替高圧窒素ガス供給系による原子炉減圧として使用する 4 個を，電磁弁の排気側から直接窒素を供給して作動させることで，電磁弁を用いた主蒸気逃がし安全弁の作動に対 し，多様性を有する設計とする。 主蒸気逃がし安全弁は，中央制御室からの手動操作又は代替自動減圧回路（代替自動減圧機能）からの信号により作動することで，自動減圧機能による作動に対して多様性を有する設計とする。 また，主蒸気逃がし安全弁は，所内常設蓄電式直流電源設備，常設代替直流電源設備，可搬型代替直流電源設備及び主蒸気逃がし安全弁用可搬型蓄電池からの給電により作動することで，非常用交流電源設備及び非常用直流電源設備からの給電による作動に対して多様性を有する設計とする。 代替自動減圧回路（代替自動減圧機能）の多様性，位置的分散につ いては「6．8 原子炉冷却材圧力バウンダリを減圧するための設備」 に記載し，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備の多様性，位置的分散については「10．2 代替電源設備」に記載する。	「5．5．2．1 多様性，位置的分散」の記述を以下のとおり変更する。 5．5．2．1 多様性，位置的分散 基本方針については，「1．1．7．1 多様性，位置的分散，悪影響防止等」に示す。 主蒸気逃がし安全弁，主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ及び主蒸気逃がし安全弁自動減圧機能用アキュムレータ は，設計基準事故対処設備と重大事故等対処設備としての安全機能 を兼ねる設備であるが，想定される重大事故等時に必要となる個数 に対して十分に余裕をもった個数を分散して設置する設計とする。 主蒸気逃がし安全弁は，代替高圧窒素ガス供給系による原子炬減圧として使用する 4 個を，可能な限り異なる主蒸気管に分散して設置する設計とする。 主蒸気逃がし安全弁は，代替高圧窒素ガス供給系による原子炬減圧として使用する 4 個を，電磁弁の排気側から直接窒素を供給して作動させることで，電磁弁を用いた主蒸気逃がし安全弁の作動に対 し，多様性を有する設計とする。 主蒸気逃がし安全弁は，中央制御室からの手動操作又は代替自動減圧回路（代替自動減圧機能）からの信号により作動することで，自動減圧機能による作動に対して多様性を有する設計とする。 また，主蒸気逃がし安全弁は，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目），可搬型代替直流電源設備及び主蒸気逃がし安全弁用可搬型蓄電池からの給電に より作動することで，非常用交流電源設備及び非常用直流電源設備 からの給電による作動に対して多様性を有する設計とする。 代替自動減圧回路（代替自動減圧機能）の多様性，位置的分散につ いては「6．8 原子炉冷却材圧力バウンダリを減圧するための設備」 に記載し，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目）及び可搬型代替直流電源設備の多様性，位置的分散については「10．2 代替電源設備」に記載する。	表現の差異 －女川は各項や各章図表の変更箇所 を示す前にリード文を入れている。

柏崎刈羽 6， 7 号炉（2022．8．23提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	主蒸気逃がし安全弁用可搬型蓄電池は，所内常設蓄電式直流電源設備及び可搬型代替直流電源設備と制御建屋内の異なる区画に保管 することで，共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 5.6 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却する ための設備 5．6．2 設計方針 原子炉冷却材圧力バウンダリが低圧時に発電用原子炉を冷却する ための設備のうち，発電用原子炉を冷却し，炉心の著しい損傷及び原子炉格納容器の破損を防止するための設備として，低圧代替注水系 （可搬型）を設ける。また，炉心の著しい損傷に至るまでの時間的余裕のない場合に対応するため，低圧代替注水系（常設）を設ける。 （1）原子炉運転中の場合に用いる設備 a．フロントライン系故障時に用いる設備 （a）低圧代替注水系（常設）（復水移送ポンプ）による発電用原子炉の冷却 残留熱除去系（低圧注水モード）及び低圧灲心スプレイ系 の機能が喪失した場合の重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ）を使用する。 低圧代替注水系（常設）（復水移送ポンプ）は，復水移送 ポンプ，配管•弁類，計測制御装置等で構成し，復水移送ポ ンプにより，復水貯蔵タンクの水を残留熱除去系等を経由 して原子炉圧力容器へ注水することで炉心を泠却できる設計とする。 低圧代替注水系（常設）（復水移送ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。また，系統構成に必要な電動弁（直流） は，所内常設蓄電式直流電源設備からの給電が可能な設計 とする。 主要な設備は，以下のとおりとする。 －復水移送ポンプ	主蒸気逃がし安全弁用可搬型蓄電池は，所内常設蓄電式直流電源設備及び可搬型代替直流電源設備と制御建屋内の異なる区画に保管 することで，共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 5.6 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却する ための設備 「5．6．2 設計方針」の記述を以下のとおり変更する。 5．6．2 設計方針 原子炉冷却材圧力バウンダリが低圧時に発電用原子炉を冷却する ための設備のうち，発電用原子炉を冷却し，炉心の著しい損傷及び原子炉格納容器の破損を防止するための設備として，低圧代替注水系 （可搬型）を設ける。また，炉心の著しい損傷に至るまでの時間的余裕のない場合に対応するため，低圧代替注水系（常設）を設ける。 （1）原子炉運転中の場合に用いる設備 a．フロントライン系故障時に用いる設備 （a）低圧代替注水系（常設）（復水移送ポンプ）による発電用原子炉の泠却 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもつて設置変更許可）の添付書類八「5．6．2（1）a．（a）」の記載内容に同じ。	表現の差異 －女川は各項や各 章図表の変更箇所 を示す前にリード 文を入れている。

所内常設直流電源設備（ 3 系統目）添付書類八 比較表

所内常設直流電源設備（ 3 系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	- 所内常設蓄電式直流電源設備（ 10.2 代替電源設備） - 常設代替直流電源設備（10．2 代替電源設備） 本系統の流路として，補給水系の配管，高圧炉心スプレイ系及び直流駆動低圧注水系の配管及び弁並びに燃料プール補給水系の弁を重大事故等対処設備として使用する。 その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用する。 （c）低圧代替注水系（可搬型）による発電用原子炉の冷却残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系 の機能が喪失した場合の重大事故等対処設備として，低圧代替注水系（可搬型）を使用する。 低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプ I），配管・ホース・弁類，計測制御装置等で構成し，大容量送水ポンプ（タイプI）により，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器へ注水することで炉心 を冷却できる設計とする。 低圧代替注水系（可搬型）は，代替淡水源が枯渴した場合 において，重大事故等の収束に必要となる水の供給設備で ある大容量送水ポンプ（タイプ I）により海を利用できる設計とする。 低圧代替注水系（可搬型）は，非常用交流電源設備に加え て，代替所内電気設備を経由した常設代替交流電源設備又 は可搬型代替交流電源設備からの給電が可能な設計とす る。また，大容量送水ポンプ（タイプ I）は，空冷式のディ ーゼルエンジンにより駆動できる設計とする。燃料は，燃料補給設備である軽油タンク又はガスタービン発電設備軽油 タンク及びタンクローリにより補給できる設計とする。 主要な設備は，以下のとおりとする。 - 大容量送水ポンプ（タイプI） - 常設代替交流電源設備（10．2 代替電源設備） - 可搬型代替交流電源設備（10．2 代替電源設備） - 代替所内電気設備（10．2 代替電源設備） - 燃料補給設備（10．2 代替電源設備） 本系統の流路として，補給水系及び残留熱除去系の配管	- 所内常設蓄電式直流電源設備（10．2 代替電源設備） - 常設代替直流電源設備（10．2 代替電源設備） - 所内常設直流電源設備（ 3 系統目）（ 10.2 代替電源設備） 本系統の流路として，補給水系の配管，高圧炉心スプレイ系及び直流駆動低圧注水系の配管及び弁並びに燃料プール補給水系の弁を重大事故等対処設備として使用する。 その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用する。 （c）低圧代替注水系（可搬型）による発電用原子炉の冷却 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもって設置変更許可）の添付書類八「5．6．2（1）a．（c）」の記載内容に同じ。	設計の差異 －所内常設直流電源設備（3系統目） から直流駆動低圧注水系（女川固有設備）へ供給でき る設計としてい る。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	及び弁並びにホースを重大事故等対処設備として使用す る。 その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用し，設計基準事故対処設備であ る非常用交流電源設備を重大事故等対処設備（設計基準拡張）として使用する。 b．サポート系故障時に用いる設備 （a）低圧代替注水系（常設）による発電用原子炉の泠却 全交流動力電源喪失又は原子炬補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障に より，残留熱除去系（低圧注水モード）及び低圧炉心スプレ イ系が起動できない場合の重大事故等対処設備として使用 する低圧代替注水系（常設）は，「（1）a 。（a）低圧代替注水系（常設）（復水移送ポンプ）による発電用原子炉の泠却」及び「（1）a．（b）低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）による発電用原子炉の泠却」と同じである。 （b）低圧代替注水系（可搬型）による発電用原子炉の泠却全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機泠却海水系を含む。）機能喪失によるサポート系の故障に より，残留熱除去系（低圧注水モード）及び低圧灲心スプレ イ系が起動できない場合の重大事故等対処設備として使用 する低圧代替注水系（可搬型）は，「（1）a 。（c）低圧代替注水系（可搬型）による発電用原子炉の泠却」と同じである。 （c）常設代替交流電源設備による残留熱除去系（低圧注水モ ード）の復旧 全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障に より，残留熱除去系（低圧注水モード）が起動できない場合 の重大事故等対処設備として，常設代替交流電源設備を使用し，残留熱除去系（低圧注水モード）を復旧する。 残留熱除去系（低圧注水モード）は，常設代替交流電源設備からの給電により機能を復旧し，残留熱除去系ポンプに よりサプレッションチェンバのプール水を原子炉圧力容器 へ注水することで炉心を泠却できる設計とする。 本系統に使用する冷却水は，原子炉補機冷却水系（原子炉補機泠却海水系を含む。）又は原子炉補機代替冷却水系から	b．サポート系故障時に用いる設備 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炬施設の変更）（令和 4 年 6 月 1 日付け，原規規発第2206019号をもって設置変更許可）の添付書類八「5．6．2（1） b ．」の記載内容に同じ。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	供給できる設計とする。 主要な設備は，以下のとおりとする。 - 常設代替交流電源設備（10．2 代替電源設備） - 原子炉補機代替冷却水系（5．10 最終ヒートシンクへ熱 を輸送するための設備） その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用し，設計基準事故対処設備であ る残留熱除去系（低圧注水モード）及び原子炬補機泠却水系 （原子炉補機椧却海水系を含む。）を重大事故等対処設備 （設計基準拡張）として使用する。 （d）常設代替交流電源設備による低圧炉心スプレイ系の復旧全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障に より，低圧炉心スプレイ系が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，低圧炉心スプレイ系を復旧する。 低圧炉心スプレイ系は，常設代替交流電源設備からの給電により機能を復旧し，低圧炉心スプレイ系ポンプにより サプレッションチェンバのプール水を原子炉圧力容器ヘス プレイすることで师心を泠却できる設計とする。 本系統に使用する泠却水は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計とする。 主要な設備は，以下のとおりとする。 - 常設代替交流電源設備（10．2 代替電源設備） - 原子炉補機代替冷却水系（5．10 最終ヒートシンクへ熱 を輸送するための設備） その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用し，設計基準事故対処設備であ る低圧炉心スプレイ系及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）を重大事故等対処設備（設計基準拡張）として使用する。 c．溶融炉心が原子炉圧力容器内に残存する場合に用いる設備 （a）低圧代替注水系（常設）（復水移送ポンプ）による残留溶融炬心の泠却 炬心の著しい損傷，溶融が発生した場合において，原子炉	c．溶融炉心が原子炉圧力容器内に残存する場合に用いる設備女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第2206019号をもって設置変更許可）の添付書類八「5．6．2（1）	

崎刈羽 6， 7 号炉（2022．8．23提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	圧力容器内に溶融炬心が存在する場合に，溶融炉心を泠却 し，原子炉格納容器の破損を防止するための重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ） を使用する。 低圧代替注水系（常設）（復水移送ポンプ）は，復水移送 ポンプ，配管•弁類，計測制御装置等で構成し，復水移送ポ ンプにより，復水貯蔵タンクの水を残留熱除去系等を経由 して原子炉圧力容器へ注水することで原子炉圧力容器内に存在する溶融炉心を泠却できる設計とする。 低圧代替注水系（常設）（復水移送ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。また，系統構成に必要な電動弁（直流） は，所内常設蓄電式直流電源設備からの給電が可能な設計 とする。 本系統の詳細については，「（1）a 。（a）低圧代替注水系 （常設）（復水移送ポンプ）による発電用原子炉の泠却」に記載する。 （b）低圧代替注水系（可搬型）による残留溶融炉心の泠却炉心の著しい損傷，溶融が発生した場合において，原子炉圧力容器内に溶融炉心が存在する場合に，溶融炉心を泠却 し，原子炉格納容器の破損を防止するための重大事故等対処設備として，低圧代替注水系（可搬型）を使用する。 低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプ I），配管・ホース・弁類，計測制御装置等で構成し，大容量送水ポンプ（タイプI）により，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器へ注水することで原子炉圧力容器内に存在する溶融炉心を泠却できる設計とす る。 低圧代替注水系（可搬型）は，代替淡水源が枯渇した場合 において，重大事故等の収束に必要となる水の供給設備で ある大容量送水ポンプ（タイプ I ）により海を利用できる設計とする。 低圧代替注水系（可搬型）は，非常用交流電源設備に加え て，代替所内電気設備を経由した常設代替交流電源設備又 は可搬型代替交流電源設備からの給電が可能な設計とす	c．」の記載内容に同じ。	

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	る。また，大容量送水ポンプ（タイプ I）は，空冷式のディ ーゼルエンジンにより駆動できる設計とする。燃料は，燃料補給設備である軽油タンク又はガスタービン発電設備軽油 タンク及びタンクローリにより補給できる設計とする。 本系統の詳細については，「（1）a 。（c）低圧代替注水系 （可搬型）による発電用原子炉の泠却」に記載する。 （c）代替循環冷却系による残留溶融炉心の泠却 炉心の著しい損傷，溶融が発生した場合において，原子炉圧力容器内に溶融炉心が存在する場合の重大事故等対処設備として，代替循環冷却系を使用する。 代替循環冷却系は，代替循環冷却ポンプ，残留熱除去系熱交換器，配管•弁類，計測制御装置等で構成し，代替循環冷却ポンプにより，残留熱除去系熱交換器にて泠却された，サ プレッションチェンバのプール水を残留熱除去系を経由し て原子炉圧力容器へ注水することで原子炉圧力容器内に存在する溶融炉心を泠却できる設計とする。 本系統の詳細については，「9．3 原子炉格納容器の過圧破損を防止するための設備」に記載する。 （2）原子炉停止中の場合に用いる設備 a．フロントライン系故障時に用いる設備 （a）低圧代替注水系（常設）による発電用原子炉の泠却発電用原子炉停止中において残留熱除去系（原子炬停止時冷却モード）の機能が喪失した場合の重大事故等対処設備として使用する低圧代替注水系（常設）は，「（1）a 。（a）低圧代替注水系（常設）（復水移送ポンプ）による発電用原子炉の泠却」と同じである。 （b）低圧代替注水系（可搬型）による発電用原子炉の冷却発電用原子炉停止中において残留熱除去系（原子炉停止時冷却モード）の機能が喪失した場合の重大事故等対処設備として使用する低圧代替注水系（可搬型）は，「（1）a 。（c）低圧代替注水系（可搬型）による発電用原子炉の冷却」と同 じである。 b．サポート系故障時に用いる設備 （a）低圧代替注水系（常設）による発電用原子炉の冷却発電用原子炉停止中において全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機泠却海水系を含む。）機能喪	（2）原子炉停止中の場合に用いる設備 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもつて設置変更許可）の添付書類八「5．6．2（2）」の記載内容に同じ。	

柏崎刈羽 6， 7 号炉 $(2022.8 .23$ 提出）
（有

失によるサポート系の故障により，残留熱除去系（原子炉停止時冷却モード）が起動できない場合の重大事故等対処設備として使用する低圧代替注水系（常設）は，「（1）a 。（a）低圧代替注水系（常設）（復水移送ポンプ）による発電用原子炉の泠却」と同じである。
（b）低圧代替注水系（可搬型）による発電用原子炉の泠却
発電用原子炉停止中において全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（原子炉停止時冷却モード）が起動できない場合の重大事故等対処設備として使用する低圧代替注水系（可搬型）は，「（1）a 。（c）低圧代替注水系（可搬型）による発電用原子炉の冷却」と同 じである。
（c）常設代替交流電源設備による残留熱除去系（原子炉停止時冷却モード）の復旧
発電用原子炉停止中において全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（原子炉停止時冷却モード）が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，残留熱除去系 （原子炉停止時冷却モード）を復旧する。
残留熱除去系（原子炉停止時冷却モード）は，常設代替交流電源設備からの給電により機能を復旧し，冷却材を原子炉圧力容器から残留熱除去系ポンプ及び熱交換器を経由し て原子炉圧力容器に戻すことにより炉心を泠却できる設計 とする。
本系統に使用する泠却水は，原子炉補機泠却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計とする。

主要な設備は，以下のとおりとする。

- 常設代替交流電源設備（10．2 代替電源設備）
- 原子炉補機代替泠却水系（5．10 最終ヒートシンクへ熱 を輸送するための設備）
その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用し，設計基準事故対処設備であ る残留熱除去系（原子炉停止時冷却モード）及び原子炬補機

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）は， ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多樣性を有する設計とする。 また，低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流） は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電 する系統に対して独立性を有する設計とする。また，電動弁（直流） は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。 また，低圧代替注水系（常設）（復水移送ポンプ）は，復水貯蔵夕 ンクを水源とすることで，サプレッションチェンバを水源とする残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系に対して異な る水源を有する設計とする。 復水移送ポンプは，原子炉建屋原子炉棟内の残留熱除去系ポンプ及び低圧炉心スプレイ系ポンプと異なる区画に設置することで，共通要因によって同時に機能を損なわないよう位置的分散を図る設計 とする。 復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炉棟内 のサプレッションチェンバと共通要因によって同時に機能を損なわ ないよう位置的分散を図る設計とする。 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系と共通要因によっ て同時に機能を損なわないよう，直流駆動低圧注水系ポンプを常設代替直流電源設備からの給電により駆動することで，非常用交流電源設備からの給電により駆動する残留熱除去系ポンプを用いた残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系ポンプを用いた低圧炬心スプレイ系に対して多様性を有する設計とする。 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）の電動弁（直流）は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備又は常設代替直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。 また，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，復水貯蔵タンクを水源とすることで，サプレッションチェンバを水	低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）は， ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。 また，低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流） は，代替所内電気設備を経由して給電する采統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電 する系統に対して独立性を有する設計とする。また，電動弁（直流） は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。 また，低圧代替注水系（常設）（復水移送ポンプ）は，復水貯蔵夕 ンクを水源とすることで，サプレッションチェンバを水源とする残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系に対して異な る水源を有する設計とする。 復水移送ポンプは，原子炉建屋原子炉棟内の残留熱除去系ポンプ及び低圧炉心スプレイ系ポンプと異なる区画に設置することで，共通要因によって同時に機能を損なわないよう位置的分散を図る設計 とする。 復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炉棟内 のサプレッションチェンバと共通要因によって同時に機能を損なわ ないよう位置的分散を図る設計とする。 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，残留熱除去系（低圧注水モード）及び低圧灲心スプレイ系と共通要因によっ て同時に機能を損なわないよう，直流駆動低圧注水系ポンプを常設代替直流電源設備又は所内常設直流電源設備（ 3 系統目）からの給電 により駆動することで，非常用交流電源設備からの給電により駆動 する残留熱除去系ポンプを用いた残留熱除去系（低圧注水モード）及 び低圧炉心スプレイ系ポンプを用いた低圧炬心スプレイ系に対して多様性を有する設計とする。 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）の電動弁（直流）は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備，常設代替直流電源設備又は所内常設直流電源設備（3系統目）からの給電による遠隔操作に対して多様性を有する設計とする。 また，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，復水貯蔵タンクを水源とすることで，サプレッションチェンバを水	設計の差異 －所内常設直流電源設備（3系統目） から直流駆動低圧注水系（女川固有設備）へ供給でき る設計としてい る。

柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	源とする残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系に対して異なる水源を有する設計とする。 直流駆動低圧注水系ポンプは，原子炉建屋付属棟内に設置するこ とで，原子炬建屋原子炉棟内の残留熱除去系ポンプ及び低圧炉心ス プレイ系ポンプと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 復水貯蔵タンクは，屋外に設置することで，原子炬建屋原子炉棟内 のサプレッションチェンバと共通要因によって同時に機能を損なわ ないよう位置的分散を図る設計とする。 低圧代替注水系（可搬型）は，残留熱除去系（低圧注水モード及び原子炉停止時泠却モード），低圧炬心スプレイ系及び低圧代替注水系 （常設）と共通要因によって同時に機能を損なわないよう，大容量送水ポンプ（タイプI）を空冷式のディーゼルエンジンにより駆動する ことで，電動機駆動ポンプにより構成される残留熱除去系（低圧注水 モード及び原子炬停止時冷却モード），低圧炬心スプレイ系及び低圧代替注水系（常設）に対して多樣性を有する設計とする。 低圧代替注水系（可搬型）の電動弁は，ハンドルを設けて手動操作 を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，低圧代替注水系（可搬型）の電動弁は，代替所内電気設備を経由して給電する系統におい て，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 また，低圧代替注水系（可搬型）は，代替淡水源を水源とすること で，サプレッションチェンバを水源とする残留熱除去系（低圧注水モ ード）及び低圧炬心スプレイ系並びに復水貯蔵タンクを水源とする低圧代替注水系（常設）に対して異なる水源を有する設計とする。 大容量送水ポンプ（タイプI）は，原子炬建屋から離れた屋外に分散して保管することで，原子炉建屋原子炉棟内の残留熱除去系ポン プ，低圧炬心スプレイ系ポンプ及び復水移送ポンプ並びに原子炬建屋付属棟内の直流駆動低圧注水系ポンプと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 大容量送水ポンプ（タイプI）の接続口は，共通要因によって接続 できなくなることを防止するため，位置的分散を図った複数䈏所に設置する設計とする。 低圧代替注水系（常設）（復水移送ポンプ）及び低圧代替注水系（可搬型）は，残留熱除去系及び低圧灯心スプレイ系と共通要因によって	源とする残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系に対して異なる水源を有する設計とする。 直流駆䡃低圧注水系ポンプは，原子炉建屋付属棟内に設置するこ とで，原子炬建屋原子炬棟内の残留熱除去系ポンプ及び低圧炉心ス プレイ系ポンプと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 復水貯蔵タンクは，屋外仁設置することで，原子炉建屋原子炉棟内 のサプレッションチェンバと共通要因によって同時に機能を損なわ ないよう位置的分散を図る設計とする。 低圧代替注水系（可搬型）は，残留熱除去系（低圧注水モード及び原子炉停止時冷却モード），低圧炉心スプレイ采及び低圧代替注水系 （常設）と共通要因によって同時に機能を損なわないよう，大容量送水ポンプ（タイプI）を空冷式のディーゼルエンジンにより駆動する ことで，電動機駆動ポンプにより構成される残留熱除去系（低圧注水 モード及び原子炬停止時椧却モード），低圧炬心スプレイ系及び低圧代替注水系（常設）に対して多栐性を有する設計とする。 低圧代替注水系（可搬型）の電動弁は，ハンドルを設けて手動操作 を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，低圧代替注水系（可搬型）の電動弁は，代替所内電気設備を経由して給電する系統におい て，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 また，低圧代替注水系（可搬型）は，代替淡水源を水源とすること で，サプレッションチェンバを水源とする残留熱除去系（低圧注水モ ード）及び低圧炬心スプレイ系並びに復水的蔵タンクを水源とする低圧代替注水系（常設）に対して異なる水源を有する設計とする。 大容量送水ポンプ（タイプI）は，原子炬建屋から離れた屋外に分散して保管することで，原子炬建屋原子炉棟内の残留熱除去系ポン プ，低圧炬心スプレイ系ポンプ及び復水移送ポンプ並びに原子炬建屋付属棟内の直流駆動低圧注水系ポンプと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 大容量送水ポンプ（タイプI）の接続口は，共通要因によって接続 できなくなることを防止するため，位置的分散を図った複数箇所に設置する設計とする。 低圧代替注水系（常設）（復水移送ポンプ）及び低圧代替注水系（可搬型）は，残留熱除去系及び低圧炉心スプレイ系と共通要因によって	

柏崎刈羽 6，7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	を低減させた後に原子炉建屋屋上に設ける放出口から排出す ることで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，原子炉格納容器内に蓄積した熱を最終的な熱の逃がし場である大気へ輸送できる設計とする。 原子炉格納容器フィルタベント系を使用した場合に放出さ れる放射性物質の放出量に対して，あらかじめ敷地境界での線量評価を行うこととする。 本系統の詳細については，「9．3 原子炬格納容器の過圧破損を防止するための設備」に記載する。 b．耐圧強化ベント系による原子炉格納容器内の減圧及び除熱残留熱除去系の故障等により最終ヒートシンクへ熱を輸送 する機能が喪失した場合に，炉心の著しい損傷及び原子炉格納容器の破損を防止するための重大事故等対処設備として，耐圧強化ベント系を使用する。 耐圧強化ベント系は，配管•弁類，計測制御装置等で構成し，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，排気筒を通して原子炉建屋外に放出することで，原子炉格納容器内に蓄積した熱を最終的な熱の逃がし場である大気へ輸送できる設計とする。 最終ヒートシンクへ熱を輸送するための設備として使用す る場合の耐圧強化ベント系は，炉心損傷前に使用するため，排気中に含まれる放射性物質及び可燃性ガスは微量である。 耐圧強化ベント系は，使用する際に弁により他の系統•機器 と隔離することにより，悪影響を及ぼさない設計とする。 耐圧強化ベント系は，想定される重大事故等時において，原子炉格納容器が負圧とならない設計とする。耐圧強化ベント系の使用に際しては，原子炉格納容器代替スプレイ冷却系等 による原子炉格納容器内へのスプレイは停止する運用として おり，原子炉格納容器が負圧とならない。仮に，原子炉格納容器内にスプレイをする場合においても，原子炉格納容器内圧力が規定の圧力まで減圧した場合には，原子炬格納容器内へ のスプレイを停止する運用とする。 耐圧強化ベント系使用時の排出経路に設置される隔離弁の らち電動弁（直流）は所内常設蓄電式直流電源設備，常設代替	b。耐圧強化ベント系による原子炉格納容器内の減圧及び除熱 残留熱除去系の故障等により最終ヒートシンクへ熱を輸送 する機能が喪失した場合に，炉心の著しい損傷及び原子炉格納容器の破損を防止するための重大事故等対処設備として，耐圧強化ベント系を使用する。 耐圧強化ベント系は，配管•弁類，計測制御装置等で構成し，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，排気筒を通して原子炉建屋外に放出することで，原子炉格納容器内に蓄積した熱を最終的な熱の逃がし場である大気へ輸送できる設計とする。 最終ヒートシンクへ熱を輸送するための設備として使用す る場合の耐圧強化ベント系は，炉心損傷前に使用するため，排気中に含まれる放射性物質及び可燃性ガスは微量である。 耐圧強化ベント系は，使用する際に弁により他の系統•機器 と隔離することにより，悪影響を及ぼさない設計とする。 耐圧強化ベント系は，想定される重大事故等時において，原子炉格納容器が負圧とならない設計とする。耐圧強化ベント系の使用に際しては，原子炉格納容器代替スプレイ冷却系等 による原子炉格納容器内へのスプレイは停止する運用として おり，原子炉格納容器が負圧とならない。仮に，原子炉格納容器内にスプレイをする場合においても，原子炉格納容器内圧力が規定の圧力まで減圧した場合には，原子炉格納容器内へ のスプレイを停止する運用とする。 耐圧強化ベント系使用時の排出経路に設置される隔離弁の うち電動弁（直流）は所内常設蓄電式直流電源設備，常設代替	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	直流電源設備又は可搬型代替直流電源設備からの給電による	直流電源設備，所内常設直流電源設備（ 3 系統目）又は可搬型	設計の差異
	操作が可能な設計とする。また，排出経路に設置される隔離弁	代替直流電源設備からの給電による操作が可能な設計とす	－既許可において
	のらち電動弁（交流）については常設代替交流電源設備又は可	る。また，排出経路に設置される隔離弁のらち電動弁（交流）	常設代替直流電源
	搬型代替交流電源設備からの給電による操作が可能な設計と	については常設代替交流電源設備又は可搬型代替交流電源設	設備（125V 代替蓄
	する。	備からの給電による操作が可能な設計とする。	電池）から給電し
	このうち，電動弁（直流）については，遠隔手動弁操作設備	このうち，電動弁（直流）については，遠隔手動弁操作設備	ている旨明記して
	によって人力による操作が可能な設計とし，隔離弁の操作に	によって人力による操作が可能な設計とし，隔離弁の操作に	いる電動弁は所内
	おける駆動源の多様性を有する設計とする。	おける駆動源の多様性を有する設計とする。	常設直流電源設備
			（3系統目）から
	本系統はサプレッションチェンバ及びドライウェルと接続	本系統はサプレッションチェンバ及びドライウェルと接続	給電可能な設計と
	し，いずれからも排気できる設計とする。サプレッションチェ	し，いずれからも排気できる設計とする。サプレッションチェ	なるため記載。柏
	ンバ側からの排気ではサプレッションチェンバの水面からの	ンバ側からの排気ではサプレッションチェンバの水面からの	崎既許可には直流
	高さを確保し，ドライウェル側からの排気では，ドライウェル	高さを確保し，ドライウェル側からの排気では，ドライウェル	電動弁の記載な
	の床面からの高さを確保するとともに有効燃料棒頂部よりも	の床面からの高さを確保するとともに有効燃料棒頂部よりも	し。
	高い位置に接続箇所を設けることで長期的にも溶融炉心及び	高い位置に接続箇所を設けることで長期的にも溶融炬心及び	
	水没の悪影響を受けない設計とする。	水没の悪影響を受けない設計とする。	
	耐圧強化ベント系を使用した場合に放出される放射性物質	耐圧強化ベント系を使用した場合に放出される放射性物質	
	の放出量に対して，あらかじめ敷地境界での線量評価を行ら	の放出量に対して，あらかじめ敷地境界での線量評価を行う	
	こととする。	こととする。	
	主要な設備は，以下のとおりとする。	主要な設備は，以下のとおりとする。	
	－常設代替交流電源設備（10．2 代替電源設備）	－常設代替交流電源設備（10．2 代替電源設備）	
	－可搬型代替交流電源設備（10．2 代替電源設備）	－可搬型代替交流電源設備（10．2 代替電源設備）	
	－代替所内電気設備（10．2 代替電源設備）	－代替所内電気設備（10．2 代替電源設備）	
	－所内常設蓄電式直流電源設備（10．2 代替電源設備）	－所内常設蓄電式直流電源設備（10．2 代替電源設備）	
	－常設代替直流電源設備（10．2 代替電源設備）	－常設代替直流電源設備（10．2 代替電源設備）	
		－所内常設直流電源設備（ 3 系統目）（10．2 代替電源設備）	
	可搬型代替直流電源設備（10．2 代替電源設備）	－可搬型代替直流電源設備（10．2 代替電源設備）	
	本系統の流路として，原子炉格納容器調気系及び非常用ガ	本系統の流路として，原子炉格納容器調気系及び非常用ガ	
	ス処理系の配管及び弁並びに排気筒を重大事故等対処設備と	ス処理系の配管及び弁並びに排気筒を重大事故等対処設備と	
	して使用する。	して使用する。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	その他，設計基準対象施設である原子炬格納容器を重大事故等対処設備として使用する。 （2）サポート系故障時に用いる設備 a．原子炉補機代替冷却水系による原子炉格納容器内の減圧及 び除熱 原子炉補機泠却水系（原子炉補機冷却海水系を含む。）の故障又は全交流動力電源の喪失により，最終ヒートシンクへ熱 を輸送する機能が喪失した場合の重大事故等対処設備とし て，原子炉補機代替冷却水系を使用する。 原子炉補機代替冷却水系は，淡水ポンプ及び熱交換器を搭載した熱交換器ユニット，大容量送水ポンプ（タイプI），配管・ホース・弁類，計測制御装置等で構成し，サプレッション チェンバへの熱の蓄積により原子炉冷却機能が確保できる一定の期間内に，熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプ I ）により熱交換器ユニット に海水を送水することで，残留熱除去系等の機器で発生した熱を最終的な熱の逃がし場である海へ輸送できる設計とす る。 熱交換器ユニット及び大容量送水ポンプ（タイプI）は，空泠式のディーゼルエンジンにより駆動できる設計とする。燃料は，燃料補給設備である軽油タンク又はガスタービン発電設備軽油タンク及びタンクローリにより補給できる設計とす る。 主要な設備は，以下のとおりとする。 - 熱交換器ユニット - 大容量送水ポンプ（タイプI ） - 常設代替交流電源設備（10．2 代替電源設備） - 燃料補給設備（10．2 代替電源設備） 本系統の流路として，原子炉補機冷却水系の配管，弁及びサ ージタンク，残留熱除去系の熱交換器並びにホースを重大事故等対処設備として使用する。 その他，設計基準事故対処設備である非常用取水設備の貯留堰，取水口，取水路及び海水ポンプ室を重大事故等対処設備 として使用する。	その他，設計基準対象施設である原子灲格納容器を重大事 故等対処設備として使用する。 （2）サポート系故障時に用いる設備 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもって設置変更許可）の添付書類八「5．10．2（2）」 の記載内容に同じ。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	及び原子炉補機椧却水系（原子炉補機冷却海水系を含む。）に対し て，多様性を有する設計とする。 原子炉格納容器フィルタベント系のフィルタ装置及びフィルタ装置出口側圧力開放板並びに耐圧強化ベント系は，原子炉建屋原子炉棟内に設置し，原子炉建屋原子炉棟内の残留熱除去系ポンプ及び熱交換器，原子炉建屋付属棟内の原子炉補機冷却水ポンプ及び熱交換器並びに屋外の海水ポンプ室の原子炉補機冷却海水ポンプと異なる区画に設置することで，共通要因によって同時に機能を損なわない よう位置的分散を図った設計とする。 原子炉格納容器フィルタベント系及び耐圧強化ベント系は，除熱手段の多様性及び機器の位置的分散によって，残留熱除去系及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して独立性 を有する設計とする。 原子炬補機代替冷却水系は，原子炬補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能を損なわないよう，熱交換器ユニット及び大容量送水ポンプ（タイプI）を空冷式のディ ーゼルエンジンにより駆動することで，電動機駆動ポンプにより構成される原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対 して多様性を有する設計とする。また，原子炉補機代替冷却水系は，原子炉格納容器フィルタベント系及び耐圧強化ベント系に対して，除熱手段の多様性を有する設計とする。 原子炬補機代替冷却水系の熱交換器ユニット及び大容量送水ポン プ（タイプI）は，原子炉建屋並びに屋外の海水ポンプ室及び排気筒 から離れた屋外に分散して保管することで，原子炉建屋内の原子炉補機冷却水ポンプ，熱交換器，耐圧強化ベント系及び原子炬格納容器 フィルタベント采並びに屋外の海水ポンプ室の原子炉補機泠却海水 ポンプと共通要因によって同時に機能を損なわないよう位置的分散 を図る設計とする。 熱交換器ユニットの接続口は，共通要因によって接続できなくな ることを防止するため，位置的分散を図った複数箇所に設置する設計とする。 原子炬補機代替冷却水系は，原子炉補機冷却水系（原子炬補機冷却海水系を含む。）と共通要因によって同時に機能を損なわないよう，原子炬補機冷却海水系に対して独立性を有するとともに，熱交換器 ユニットから原子炉補機冷却水系配管との合流点までの系統につい て，原子炉補機冷却水系に対して独立性を有する設計とする。	系（格納容器スプレイ冷却モード）及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して，多様性を有する設計とする。 原子炉格納容器フィルタベント系のフィルタ装置及びフィルタ装置出口側圧力開放板並びに耐圧強化ベント系は，原子炉建屋原子炉棟内に設置し，原子炬建屋原子炉棟内の残留熱除去系ポンプ及び熱交換器，原子炉建屋付属棟内の原子炉補機冷却水ポンプ及び熱交換器並びに屋外の海水ポンプ室の原子炉補機冷却海水ポンプと異なる区画に設置することで，共通要因によって同時に機能を損なわない よう位置的分散を図った設計とする。 原子炉格納容器フィルタベント系及び耐圧強化ベント系は，除熱手段の多樣性及び機器の位置的分散によって，残留熱除去系及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して独立性 を有する設計とする。 原子炉補機代替冷却水系は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能を損なわないよう，熱交換器ユニット及び大容量送水ポンプ（タイプ I ）を空泠式のディ ーゼルエンジンにより駆動することで，電動機駆動ポンプにより構成される原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対 して多様性を有する設計とする。また，原子炉補機代替冷却水系は，原子炉格納容器フィルタベント系及び耐圧強化ベント系に対して，除熱手段の多様性を有する設計とする。 原子炬補機代替冷却水系の熱交換器ユニット及び大容量送水ポン プ（タイプ I ）は，原子炉建屋並びに屋外の海水ポンプ室及び排気筒 から離れた屋外に分散して保管することで，原子炉建屋内の原子炉補機冷却水ポンプ，熱交換器，耐圧強化ベント系及び原子炬格納容器 フィルタベント采並びに屋外の海水ポンプ室の原子炬補機冷却海水 ポンプと共通要因によって同時に機能を損なわないよう位置的分散 を図る設計とする。 熱交換器ユニットの接続口は，共通要因によって接続できなくな ることを防止するため，位置的分散を図った複数箇所に設置する設計とする。 原子炉補機代替冷却水系は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能を損なわないよう，原子炬補機冷却海水系に対して独立性を有するとともに，熱交換器 ユニットから原子炉補機冷却水系配管との合流点までの系統につい て，原子炉補機冷却水系に対して独立性を有する設計とする。	

灰色（グレーハッチング）：前回許可からの変更箇所
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	第5．5－3図 原子炉冷却材圧力バウンダリを減圧するための設備系統概要図（主蒸気逃がし安全弁用可搬型蓄電池による主蒸気逃がし安全弁機能回復）	第5．5－3図 原子炉冷却材圧力バウンダリを減圧するための設備系統概要図（主蒸気逃がし安全弁用可搬型蓄電池による主蒸気逃がし安全弁機能回復）	設計の差異 －既許可において常設代替直流電源設備（ 125 V 代替蓄電池）から給電し ている旨明記して いる負荷は所内常設直流電源設備 （3系統目）から給電可能な設計と なる。

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	又は監視するものとする。 主要な設備は，以下のとおりとする。 －可搬型計測器	又は監視するものとする。 主要な設備は，以下のとおりとする。 －可搬型計測器	
		「6．4．2．4 環境条件等」の記述を以下のとおり変更する。	表現の差異
	6．4．2．4 環境条件等	6．4．2．4 環境条件等	章図表の変更箇所
	基本方針については，「1．1．7．3 環境条件等」に示す。	基本方針については，「1．1．7．3 環境条件等」に示す。	を示す前にリード
	ラメータを計測する設備は，原子炉格納容器内に設置し，想定される	ラメータを計測する設備は，原子炉格納容器内に設置し，想定される	又を人れている。
	重大事故等時における環境条件を考慮した設計とする。	重大事故等時における環境条件を考慮した設計とする。	
	－原子炉圧力容器温度	－原子炉圧力容器温度	
	－ドライウェル温度	－ドライウェル温度	
	－圧力抑制室内空気温度	－圧力抑制室内空気温度	
	－サプレッションプール水温度	－サプレッションプール水温度	
	－原子炬格納容器下部温度	－原子炬格納容器下部温度	
	－原子炉格納容器下部水位	－原子炉格納容器下部水位	
	－ドライウェル水位	－ドライウェル水位	
	－格納容器内水素濃度（D／W）	－格納容器内水素濃度（D／W）	
	－格納容器内水素濃度（S／C）	－格納容器内水素濃度（S／C）	
	－起動領域モニタ	－起動領域モニタ	
	－平均出力領域モニタ	－平均出力領域モニタ	
	なお，起動領域モニタ及び平均出力領域モニタについては，想定さ	なお，起動領域モニタ及び平均出力領域モニタについては，想定さ	
	れる重大事故等時初期における原子炉格納容器内の環境条件を考慮	れる重大事故等時初期における原子炉格納容器内の環境条件を考慮	
	した設計とする。	した設計とする。	
	重要監視パラメータ及び重要代替監視パラメータ並びに重大事故	重要監視パラメータ及び重要代替監視パラメータ並びに重大事故	
	等対処設備の補助パラメータのらち以下のパラメータを計測する設	等対処設備の補助パラメータのうち以下のパラメータを計測する設	
	備は，原子炉建屋原子炉棟内に設置し，想定される重大事故等時にお	備は，原子炉建屋原子炉棟内に設置し，想定される重大事故等時にお	
	ける環境条件を考慮した設計とする。	ける環境条件を考慮した設計とする。	
	－原子炬圧力	－原子炬圧力	
	－原子炉圧力（S A）	－原子炉圧力（S A）	
	－原子炉水位（広帯域）	－原子炉水位（広帯域）	
	－原子炉水位（燃料域）	－原子炉水位（燃料域）	
	－原子炬水位（S A 広帯域）	－原子炬水位（S A 広帯域）	
	－原子炉水位（SA燃料域）	－原子炬水位（SA燃料域）	
	－高圧代替注水系ポンプ出口流量	－高圧代替注水系ポンプ出口流量	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	－残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイラ イン洗浄流量） －残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器泠却 ライン洗浄流量） - 原子炉隔離時冷却系ポンプ出口流量 - 高圧炉心スプレイ系ポンプ出口流量 - 残留熱除去系ポンプ出口流量 - 低圧炉心スプレイ系ポンプ出口流量 - 原子炉格納容器代替スプレイ流量 - 原子炉格納容器下部注水流量 - ドライウェル圧力 - 圧力抑制室圧力 - 圧力抑制室水位 - 格納容器内雰囲気水素濃度 - 格納容器内雰囲気放射線モニタ（D／W） - 格納容器内雰囲気放射線モニタ（S／C） - フィルタ装置水位（広帯域） - フィルタ装置出口圧力（広帯域） - フィルタ装置水温度 - フィルタ装置出口水素濃度 - 残留熱除去系熱交換器入口温度 - 残留熱除去系熱交換器出口温度 - 残留熱除去系熱交換器泠却水入口流量 - 高圧代替注水系ポンプ出口圧力 - 原子炉隔離時冷却系ポンプ出口圧力 - 高圧炉心スプレイ系ポンプ出口圧力 - 残留熱除去系ポンプ出口圧力 - 低圧炉心スプレイ系ポンプ出口圧力 - 復水移送ポンプ出口圧力 - 原子炉建屋内水素濃度 - 静的触媒式水素再結合装置動作監視装置 - 格納容器内雰囲気酸素濃度 - 使用済燃料プール水位／温度（ヒートサーモ式） - 使用済燃料プール水位／温度（ガイドパルス式） - 使用済燃料プール上部空間放射線モニタ（高線量，低線量） - 使用済燃料プール監視カメラ	－残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイラ イン洗浄流量） －残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却 ライン洗浄流量） - 原子炉隔離時冷却系ポンプ出口流量 - 高圧炉心スプレイ系ポンプ出口流量 - 残留熱除去系ポンプ出口流量 - 低圧炉心スプレイ系ポンプ出口流量 - 原子炉格納容器代替スプレイ流量 - 原子炉格納容器下部注水流量 - ドライウェル圧力 - 圧力抑制室圧力 - 圧力抑制室水位 - 格納容器内雰囲気水素濃度 - 格納容器内雰囲気放射線モニタ（D／W） - 格納容器内雰囲気放射線モニタ（S／C） - フィルタ装置水位（広帯域） - フィルタ装置出口圧力（広帯域） - フィルタ装置水温度 - フィルタ装置出口水素濃度 - 残留熱除去系熱交換器入口温度 - 残留熱除去系熱交換器出口温度 - 残留熱除去系熱交換器泠却水入口流量 - 高圧代替注水系ポンプ出口圧力 - 原子炉隔離時冷却系ポンプ出口圧力 - 高圧炉心スプレイ系ポンプ出口圧力 - 残留熱除去系ポンプ出口圧力 - 低圧炉心スプレイ系ポンプ出口圧力 - 復水移送ポンプ出口圧力 - 原子炬建屋内水素濃度 - 静的触媒式水素再結合装置動作監視装置 - 格納容器内雰囲気酸素濃度 - 使用済燃料プール水位／温度（ヒートサーモ式） - 使用済燃料プール水位／温度（ガイドパルス式） - 使用済燃料プール上部空間放射線モニタ（高線量，低線量） - 使用済燃料プール監視カメラ	

柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	－H P C S 125 V 直流主母線電圧 安全パラメータ表示システム（S P D S ）のらちデータ収集装置 は，制御建屋内に設置し，想定される重大事故等時における環境条件 を考慮した設計とする。データ収集装置は，想定される重大事故等時 に操作を行う必要がない設計とする。 安全パラメータ表示システム（SPDS）のうちS P D S 伝送装置 は，緊急時対策建屋緊急時対策所内に設置し，想定される重大事故等時における環境条件を考慮した設計とする。安全パラメータ表示シ ステム（ S P D S ）のらち S P D S 伝送装置は，想定される重大事故等時に操作を行ら必要がない設計とする。 安全パラメータ表示システム（SPDS）のうちS P D S 表示装置 は，緊急時対策建屋緊急時対策所内に設置し，想定される重大事故等時における環境条件を考慮した設計とする。安全パラメータ表示シ ステム（S P D S ）のらち S P D S 表示装置の操作は，想定される重大事故等時において，設置場所で可能な設計とする。 可搬型計測器は，制御建屋内及び緊急時対策建屋緊急時対策所内 に保管し，想定される重大事故等時における環境条件を考慮した設計とする。可搬型計測器の操作は，想定される重大事故等時におい て，設置場所で可能な設計とする。	- 第3直流電源設備用250V 代替充電器盤蓄電池電圧 - H P C S 125 V 直流主母線電圧 安全パラメータ表示システム（S P D S ）のうちデータ収集装置 は，制御建屋内に設置し，想定される重大事故等時における環境条件 を考慮した設計とする。データ収集装置は，想定される重大事故等時 に操作を行う必要がない設計とする。 安全パラメータ表示システム（SPDS）のうちS P D S 伝送装置 は，緊急時対策建屋緊急時対策所内に設置し，想定される重大事故等時における環境条件を考慮した設計とする。安全パラメータ表示シ ステム（S P D S ）のらち S P D S 伝送装置は，想定される重大事故等時に操作を行う必要がない設計とする。 安全パラメータ表示システム（SPDS）のうちS P D S 表示装置 は，緊急時対策建屋緊急時対策所内に設置し，想定される重大事故等時における環境条件を考慮した設計とする。安全パラメータ表示シ ステム（ S P D S ）のうち S P D S 表示装置の操作は，想定される重大事故等時において，設置場所で可能な設計とする。 可搬型計測器は，制御建屋内及び緊急時対策建屋緊急時対策所内 に保管し，想定される重大事故等時における環境条件を考慮した設計とする。可搬型計測器の操作は，想定される重大事故等時におい て，設置場所で可能な設計とする。	表現の差異
	6．4．2．5 操作性の確保 基本方針については，「1．1．7．4 操作性及び試験•検査性」に示 す。 常設の重大事故等対処設備のらち，以下のパラメータを計測する設備は設計基準対象施設として使用する場合と同じ構成で使用でき る設計とする。 - 原子炬圧力 - 原子炉水位（広帯域） - 原子炉水位（燃料域） - 原子炉隔離時冷却系ポンプ出口流量 - 高圧炉心スプレイ系ポンプ出口流量 - 残留熱除去系ポンプ出口流量	「6．4．2．5 操作性の確保」の記述を以下のとおり変更する。 6．4．2．5 操作性の確保 基本方針については，「1．1．7．4 操作性及び試験•検査性」に示 す。 常設の重大事故等対処設備のらち，以下のパラメータを計測する設備は設計基準対象施設として使用する場合と同じ構成で使用でき る設計とする。 - 原子炬圧力 - 原子炉水位（広帯域） - 原子炉水位（燃料域） - 原子炉隔離時冷却系ポンプ出口流量 - 高圧炬心スプレイ系ポンプ出口流量 - 残留熱除去系ポンプ出口流量	表現の差異 －女川は各項や各章図表の変更箇所 を示す前にリード文を入れている。

[^1]| 柏崎刈羽 6， 7 号炬（2022．8．23 提出） | 女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可） | 女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載 | 差異理由 |
| :---: | :---: | :---: | :---: |
| | －低圧炉心スプレイ系ポンプ出口流量 | －低圧炉心スプレイ系ポンプ出口流量 | |
| | －格納容器内雰囲気水素濃度 | －格納容器内雰囲気水素濃度 | |
| | －格納容器内雰囲気放射線モニタ（D／W） | －格納容器内雰囲気放射線モニタ（D／W） | |
| | －格納容器内雰囲気放射線モニタ（S／C） | －格納容器内雰囲気放射線モニタ（S／C） | |
| | －起動領域モニタ | －起動領域モニタ | |
| | －平均出力領域モニタ | －平均出力領域モニタ | |
| | －残留熱除去系熱交換器入口温度 | －残留熱除去系熱交換器入口温度 | |
| | －残留熱除去系熱交換器出口温度 | －残留熱除去系熱交換器出口温度 | |
| | －原子炉補機冷却水系系統流量 | －原子炉補機冷却水系系統流量 | |
| | －残留熱除去系熱交換器冷却水入口流量 | －残留熱除去系熱交換器冷却水入口流量 | |
| | －原子炉隔離時冷却系ポンプ出口圧力 | －原子炉隔離時冷却系ポンプ出口圧力 | |
| | －高圧炉心スプレイ系ポンプ出口圧力 | －高圧炬心スプレイ系ポンプ出口圧力 | |
| | －残留熱除去系ポンプ出口圧力 | －残留熱除去系ポンプ出口圧力 | |
| | －低圧炉心スプレイ系ポンプ出口圧力 | －低圧炉心スプレイ系ポンプ出口圧力 | |
| | －格納容器内雰囲気酸素濃度 | －格納容器内雰囲気酸素濃度 | |
| | －使用済燃料プール水位／温度（ガイドパルス式） | －使用済燃料プール水位／温度（ガイドパルス式） | |
| | －6－2C 母線電圧 | －6－2C 母線電圧 | |
| | －6－2D 母線電圧 | －6－2D 母線電圧 | |
| | －6－2H 母線電圧 | －6－2H 母線電圧 | |
| | －4－2C 母線電圧 | －4－2C 母線電圧 | |
| | －4－2D 母線電圧 | －4－2D 母線電圧 | |
| | － 125 V 直流主母線 2 A 電圧 | － 125 V 直流主母線 2 A 電圧 | |
| | － 125 V 直流主母線 2 B 電圧 | － 125 V 直流主母線 2 B 電圧 | |
| | － 250 V 直流主母線電圧 | － 250 V 直流主母線電圧 | |
| | －H P C S 125 V 直流主母線電圧 | －H P C S 125 V 直流主母線電圧 | |
| | －高圧窒素ガス供給系 ADS人口圧力 | －高圧窒素ガス供給系 A D S 入口圧力 | |
| | 格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素浱度は，設 | 格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素浱度は，設 | |
| | 計基準対象施設として使用する場合と同じ構成で，重大事故等対処 | 計基準対象施設として使用する場合と同じ構成で，重大事故等対処 | |
| | 設備として使用できる設計とする。格納容器内雰囲気水素濃度及び | 設備として使用できる設計とする。格納容器内雰囲気水素濃度及び | |
| | 格納容器内雰囲気酸素浱度を計測するためのサンプリング装置は中 | 格納容器内雰囲気酸素濃度を計測するためのサンプリング装置は中 | |
| | 央制御室の操作スイッチにより操作が可能な設計とする。 | 央制御室の操作スイッチにより操作が可能な設計とする。 | |
| | 常設の重大事故等対処設備のうち，以下のパラメータを計測する | 常設の重大事故等対処設備のらち，以下のパラメータを計測する | |
| | 設備は設計基準対象施設と兼用せず，他の系統と切り替えることな | 設備は設計基準対象施設と兼用せず，他の系統と切り替えることな | |
| | く使用できる設計とする。 | く使用できる設計とする。 | |
| | －原子炉圧力容器温度 | －原子炉圧力容器温度 | |
| | －原子炉圧力（S A） | －原子炉圧力（S A） | |

```
所内常設直流電源設備（3系統目）添付書類八 比較表
```

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	－原子炉水位（ SA 広帯域）	－原子炉水位（ SA 広帯域）	
	－原子炬水位（SA燃料域）	－原子炬水位（SA燃料域）	
	－高圧代替注水系ポンプ出口流量	－高圧代替注水系ポンプ出口流量	
	－残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイラ	－残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイラ	
	イン洗浄流量）	イン洗浄流量）	
	－残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器泠却	－残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却	
	ライン洗浄流量）	ライン洗浄流量）	
	－直流駆動低圧注水系ポンプ出口流量	－直流駆動低圧注水系ポンプ出口流量	
	－代替循環冷却ポンプ出口流量	－代替循環冷却ポンプ出口流量	
	－原子炬格納容器代替スプレイ流量	－原子炬格納容器代替スプレイ流量	
	－原子炬格納容器下部注水流量	－原子炉格納容器下部注水流量	
	－ドライウェル温度	－ドライウェル温度	
	－圧力抑制室内空気温度	－圧力抑制室内空気温度	
	－サプレッションプール水温度	－サプレッションプール水温度	
	－原子炉格納容器下部温度	－原子炉格納容器下部温度	
	－ドライウェル圧力	－ドライウェル圧力	
	－圧力抑制室圧力	－圧力抑制室圧力	
	－圧力抑制室水位	－圧力抑制室水位	
	－原子炉格納容器下部水位	－原子炉格納容器下部水位	
	－ドライウェル水位	－ドライウェル水位	
	－格納容器内水素濃度（D／W）	－格納容器内水素濃度（D／W）	
	－格納容器内水素濃度（S／C）	－格納容器内水素濃度（S／C）	
	－フィルタ装置水位（広帯域）	－フィルタ装置水位（広帯域）	
	－フィルタ装置入口圧力（広帯域）	－フィルタ装置入口圧力（広帯域）	
	－フィルタ装置出口圧力（広帯域）	－フィルタ装置出口圧力（広帯域）	
	－フィルタ装置水温度	－フィルタ装置水温度	
	－フィルタ装置出口放射線モニタ	－フィルタ装置出口放射線モニタ	
	－フィルタ装置出口水素浱度	－フィルタ装置出口水素濃度	
	－耐圧強化ベント系放射線モニタ	－耐圧強化ベント系放射線モニタ	
	－復水貯蔵タンク水位	－復水貯蔵タンク水位	
	－高圧代替注水系ポンプ出口圧力	－高圧代替注水系ポンプ出口圧力	
	－直流駆動低圧注水系ポンプ出口圧力	－直流駆動低圧注水系ポンプ出口圧力	
	－代替循環冷却ポンプ出口圧力	－代替循環冷却ポンプ出口圧力	
	－復水移送ポンプ出口圧力	－復水移送ポンプ出口圧力	
	－原子炬建屋内水素濃度	－原子炬建屋内水素濃度	
	－静的触媒式水素再結合装置動作監視装置	－静的触媒式水素再結合装置動作監視装置	

灰色（グレーハッチング）：前回許可からの変更笽所
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，記載䈯所，設備名称の相違（実質的な相違なし）

```
所内常設直流電源設備(3系統目) 添付書類八 比較表
```


柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	9．原子炉格納施設 9.3 原子炉格納容器の過圧破損を防止するための設備 9．3．2 設計方針 原子炉格納容器の過圧破損を防止するための設備のうち，原子炉格納容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低下させるための設備として，代替循環冷却系を設ける。また，原子炉格納容器内の圧力を大気中に逃がすための設備として，原子炬格納容器フィルタベント系を設ける。 （1）代替循環冷却系による原子炉格納容器内の減圧及び除熱 炉心の著しい損傷が発生した場合に原子炉格納容器の過圧破損を防止するための重大事故等対処設備として，代替循環冷却系を使用する。 代替循環冷却系は，代替循環冷却ポンプ，残留熱除去系熱交換器，配管•弁類，計測制御装置等で構成し，代替循環冷却ポンプ によりサプレッションチェンバのプール水を残留熱除去系熱交換器にて冷却し，残留熱除去系等を経由して原子炉圧力容器へ注水及び原子炉格納容器内ヘスプレイすることで，原子炉格納容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低下できる設計とする。 原子炉圧力容器に注水された水は，原子炉圧力容器又は原子炉格納容器内配管の破断口等から流出し，原子炉格納容器内へ スプレイされた水とともに，ベント管を経てサプレッションチ ェンバに戻ることで循環する。 なお，代替循環冷却系は，原子炉圧力容器へ注水することで，原子炉圧力容器内に存在する溶融炉心を泠却できる設計とす る。 また，代替循環冷却系は，原子炉格納容器内ヘスプレイするこ とで，スプレイした水がドライウェル床面に溜まり，原子炉格納容器下部開口部を経由して原子炉格納容器下部へ流入すること で，溶融炉心が落下するまでに原子炉格納容器下部にあらかじ め十分な水位を確保するとともに，落下した溶融炉心を泠却で きる設計とする。 代替循環冷却系は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備からの給電が可能な設	9．原子炉格納施設 9.3 原子炉格納容器の過圧破損を防止するための設備 「9．3．2 設計方針」の記述を以下のとおり変更する。 9．3．2 設計方針 原子炉格納容器の過圧破損を防止するための設備のうち，原子炉格納容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低下させるための設備として，代替循環冷却系を設ける。また，原子炬格納容器内の圧力を大気中に逃がすための設備として，原子炉格納容器フィルタベント系を設ける。 （1）代替循環冷却系による原子炉格納容器内の減圧及び除熱女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもって設置変更許可）の添付書類八「9．3．2（1）」の記載内容に同じ。	表現の差異 －女川は各項や各章図表の変更箇所 を示す前にリード文を入れている。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	計とする。 残留熱除去系熱交換器は，代替循環冷却系で使用する原子炉補機冷却水系（原子炉補機冷却海水系を含む。）並びに原子炉補機代替泠却水系の熱交換器ユニット及び大容量送水ポンプ（タ イプ I ）により泠却できる設計とする。 原子炉補機代替冷却水系は，淡水ポンプ及び熱交換器を搭載 した熱交換器ユニット，大容量送水ポンプ（タイプ I ），配管• ホース・弁類，計測制御装置等で構成し，熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプI）によ り熱交換器ユニットに海水を送水することで，残留熱除去系熱交換器で発生した熱を最終的な熱の逃がし場である海へ輸送で きる設計とする。 熱交換器ユニット及び大容量送水ポンプ（タイプ I ）の燃料 は，燃料補給設備である軽油タンク又はガスタービン発電設備軽油タンク及びタンクローリにより補給できる設計とする。 主要な設備は，以下のとおりとする。 - 代替循環冷却ポンプ - 残留熱除去系熱交換器 - 熱交換器ユニット - 大容量送水ポンプ（タイプI） - サプレッションチェンバ（5．7 重大事故等の収束に必要と なる水の供給設備） - 常設代替交流電源設備（10．2 代替電源設備） - 代替所内電気設備（10．2 代替電源設備） - 燃料補給設備（10．2 代替電源設備） 代替循環冷却系の流路として，補給水系の配管及び弁，残留熱除去系の配管，弁及びストレーナ並びにスプレイ管を重大事故等対処設備として使用する。 原子炉補機代替冷却水系の流路として，原子炉補機冷却水系 の配管，弁及びサージタンク並びにホースを重大事故等対処設備として使用する。 その他，設計基準対象施設である原子炉圧力容器及び原子炉格納容器を重大事故等対処設備として使用する。 その他，設計基準事故対処設備である非常用取水設備の貯留堰，取水口，取水路及び海水ポンプ室を重大事故等対処設備とし て使用する。		

| 柏崎刈羽 6,7 号炉（2022．8．23 提出） |
| :--- | :--- |

| 女川 2 号炉 |
| :---: | 適合性審査許可後完本

（有毒ガス防謢： 2022 年 6 月 1 日許可）师補機泠却海水系を含む。）及び非常用交流電源設備を重大事故等対処設備（設計基準抎張）として使用する。
（2）原子炉格納容器フィルタベント系による原子炉格納容器内の減圧及び除熱

炉心の著しい損傷が発生した場合において，原子炉格納容器 の過圧破損を防止するための重大事故等対処設備として，原子炉格納容器フィルタベント系を使用する。
原子炉格納容器フィルタベント系は，フィルタ装置（フィルタ容器，スクラバ溶液，金属絏維フィルタ，放射性よう素フィル タ），フィルタ装置出口側圧力開放板，配管•弁類，計測制御装置等で構成し，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，フィルタ装置へ導き，放射性物質を低減さ せた後に原子炉建屋屋上に設ける放出口から排出することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，原子炉格納容器内の圧力及び温度を低下できる設計とする。
フィルタ装置は3台を並列に設置し，排気中に含まれる粒子状放射性物質，ガス状の無機よう素及び有機よう素を除去でき る設計とする。
本系統は，サプレッションチェンバ及びドライウェルと接続 し，いずれからも排気できる設計とする。サプレッションチェン バ側からの排気ではサプレッションチェンバの水面からの高さ を確保し，ドライウェル側からの排気では，ドライウェル床面か らの高さを確保するとともに有効燃料棒頂部よりも高い位置に接続箇所を設けることで長期的にも溶融炬心及び水没の悪影響 を受けない設計とする。
原子炉格納容器フィルタベント系は，排気中に含まれる可燃性ガスによる爆発を防ぐため，系統内を不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器ベント開始後において も不活性ガス（窒素）で置換できる設計とするとともに，系統内 に可燃性ガスが蓄積する可能性のある箇所にはバイパスライン を設け，可燃性ガスを連続して排出できる設計とすることで，系統内で水素濃度及び酸素濃度が可燃領域に達することを防止で きる設計とする。
原子炉格納容器フィルタベント系は，他の発電用原子炉施設 とは共用しない設計とする。また，原子炉格納容器フィルタベン

差異理由
（2）原子炉格納容器フィルタベント系による原子炉格納容器内の減圧及び除熱

炉心の著しい損傷が発生した場合において，原子炉格納容器 の過圧破損を防止するための重大事故等対処設備として，原子炉格納容器フィルタベント系を使用する。
原子炉格納容器フィルタベント系は，フィルタ装置（フィルタ容器，スクラバ溶液，金属繊維フィルタ，放射性よう素フィル タ），フィルタ装置出口側圧力開放板，配管•弁類，計測制御装置等で構成し，原子炉格納容器内雰囲気ガスを原子炬格納容器調気系等を経由して，フィルタ装置へ導き，放射性物質を低減さ せた後に原子炉建屋屋上に設ける放出口から排出することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，原子炉格納容器内の圧力及び温度を低下できる設計とする。
フィルタ装置は3台を並列に設置し，排気中に含まれる粒子状放射性物質，ガス状の無機よう素及び有機よう素を除去でき る設計とする。
本系統は，サプレッションチェンバ及びドライウェルと接続 し，いずれからも排気できる設計とする。サプレッションチェン バ側からの排気ではサプレッションチェンバの水面からの高さ を確保し，ドライウェル側からの排気では，ドライウェル床面か らの高さを確保するとともに有効燃料棒頂部よりも高い位置に接続箇所を設けることで長期的にも溶融灲心及び水没の悪影響 を受けない設計とする。
原子炉格納容器フィルタベント系は，排気中に含まれる可燃性ガスによる爆発を防ぐため，系統内を不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器ベント開始後において も不活性ガス（窒素）で置換できる設計とするとともに，系統内 に可燃性ガスが蓄積する可能性のある箇所にはバイパスライン を設け，可燃性ガスを連続して排出できる設計とすることで，系統内で水素濃度及び酸素濃度が可燃領域に達することを防止で きる設計とする。
原子炉格納容器フィルタベント系は，他の発電用原子炉施設 とは共用しない設計とする。また，原子炉格納容器フィルタベン

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	ト系と他の系統•機器を隔離する弁は直列で 2 個設置し，原子炉格納容器フィルタベント系と他の系統•機器を確実に隔離する ことで，悪影響を及ぼさない設計とする。 原子炉格納容器フィルタベント系の使用に際しては，原子炉格納容器代替スプレイ冷却系等による原子炉格納容器内へのス プレイは停止する運用としており，原子炉格納容器が負圧とな らない。仮に，原子炉格納容器内にスプレイする場合において も，原子炉格納容器内圧力が規定の圧力まで減圧した場合には，原子炉格納容器内へのスプレイを停止する運用とする。また，原子炬格納容器フィルタベント系使用後において，可燃性ガスに よる爆発及び原子炉格納容器の負圧破損を防止するために，可搬型窒素ガス供給装置を用いて原子炉格納容器内に不活性ガス （窒素）の供給が可能な設計とする。 原子炉格納容器フィルタベント系使用時の排出経路に設置さ れる隔離弁は，遠隔手動弁操作設備によって人力による操作が可能な設計とする。 遠隔手動弁操作設備の操作場所は，原子炉建屋付属棟内とし，必要に応じて遮蔽材を設置することで，放射線防護を考慮した設計とする。また，排出経路に設置される隔離弁の電動弁につい ては，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により，中央制御室から操作が可能な設計とする。 系統内に設けるフィルタ装置出口側圧力開放板は，原子炉格納容器フィルタベント系の使用の妨げにならないよう，原子炉格納容器からの排気圧力と比較して十分に低い圧力で破裂する設計とする。 原子炉格納容器フィルタベント系のフィルタ装置等は，原子炉棟内に設置することにより，フィルタ装置等の周囲には遮蔽壁が設置されることから原子炉格納容器フィルタベント系の使用時に本系統内に蓄積される放射性物質から放出される放射線 から作業員を防護する設計とする。	ト系と他の系統•機器を隔離する弁は直列で 2 個設置し，原子炉格納容器フィルタベント系と他の系統•機器を確実に隔離する ことで，悪影響を及ぼさない設計とする。 原子炉格納容器フィルタベント系の使用に際しては，原子炉格納容器代替スプレイ泠却系等による原子炉格納容器内へのス プレイは停止する運用としており，原子炉格納容器が負圧とな らない。仮に，原子炬格納容器内にスプレイする場合において も，原子炉格納容器内圧力が規定の圧力まで減圧した場合には，原子炉格納容器内へのスプレイを停止する運用とする。また，原子炉格納容器フィルタベント系使用後において，可燃性ガスに よる爆発及び原子炉格納容器の負圧破損を防止するために，可搬型窒素ガス供給装置を用いて原子炉格納容器内に不活性ガス （窒素）の供給が可能な設計とする。 原子炉格納容器フィルタベント系使用時の排出経路に設置さ れる隔離弁は，遠隔手動弁操作設備によって人力による操作が可能な設計とする。 遠隔手動弁操作設備の操作場所は，原子炉建屋付属棟内とし，必要に応じて遮蔽材を設置することで，放射線防護を考慮した設計とする。また，排出経路に設置される隔離弁の電動弁につい ては，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目）又は可搬型代替直流電源設備か らの給電により，中央制御室から操作が可能な設計とする。 系統内に設けるフィルタ装置出口側圧力開放板は，原子炉格納容器フィルタベント系の使用の妨げにならないよう，原子炉格納容器からの排気圧力と比較して十分に低い圧力で破裂する設計とする。 原子炉格納容器フィルタベント系のフィルタ装置等は，原子炉棟内に設置することにより，フィルタ装置等の周囲には遮蔽壁が設置されることから原子炉格納容器フィルタベント系の使用時に本系統内に蓄積される放射性物質から放出される放射線 から作業員を防護する設計とする。	設計の差異 －既許可において常設代替直流電源設備（ 125 V 代替蓄電池）から給電し ている旨明記して いる電動弁は所内常設直流電源設備 （3系統目）から給電可能な設計と なる。柏崎既許可 には直流電動弁の記載なし。

柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	主要な設備は，以下のとおりとする。 - フィルタ装置 - フィルタ装置出口側圧力開放板 - 遠隔手動弁操作設備 - 可搬型窒素ガス供給装置（9．5 水素爆発による原子炉格納容器の破損を防止するための設備） - 所内常設蓄電式直流電源設備（10．2 代替電源設備） - 常設代替直流電源設備（ 10.2 代替電源設備） - 可搬型代替直流電源設備（10．2 代替電源設備） - 燃料補給設備（10．2 代替電源設備） 本系統の流路として，原子炉格納容器調気系及び原子炉格納容器フィルタベント系の配管及び弁を重大事故等対処設備とし て使用する。 その他，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用する。 原子炉圧力容器については，「5．1 原子炉圧力容器及び一次冷却材設備」に記載する。 サプレッションチェンバについては，「5．7 重大事故等の収束に必要となる水の供給設備」に記載する。 原子炬補機冷却水系（原子炬補機冷却海水系を含む。）については，「5．9 原子炉補機冷却系」に記載する。 原子炉格納容器については，「9．1 原子炉格納施設」に記載する。可搬型窒素ガス供給装置については，「9．5 水素爆発による原子炉格納容器の破損を防止するための設備」に記載する。 非常用交流電源設備については，「10．1 非常用電源設備」に記載 する。 常設代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備，可搬型代替直流電源設備及び燃料補給設備については，	主要な設備は，以下のとおりとする。 - フィルタ装置 - フィルタ装置出口側圧力開放板 - 遠隔手動弁操作設備 - 可搬型窒素ガス供給装置（9．5 水素爆発による原子炉格納容器の破損を防止するための設備） - 所内常設蓄電式直流電源設備（10．2 代替電源設備） - 常設代替直流電源設備（ 10.2 代替電源設備） - 所内常設直流電源設備（ 3 系統目）（ 10.2 代替電源設備） - 可搬型代替直流電源設備（10．2 代替電源設備） - 燃料補給設備（10．2 代替電源設備） 本系統の流路として，原子炉格納容器調気系及び原子炉格納容器フィルタベント系の配管及び弁を重大事故等対処設備とし て使用する。 その他，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用する。 原子炉圧力容器については，「5．1 原子炉圧力容器及び一次冷却材設備」に記載する。 サプレッションチェンバについては，「5．7 重大事故等の収束に必要となる水の供給設備」に記載する。 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）については，「5．9 原子炉補機泠却系」に記載する。 原子炉格納容器については，「9．1 原子炉格納施設」に記載する。可搬型窒素ガス供給装置については，「9．5 水素爆発による原子炉格納容器の破損を防止するための設備」に記載する。 非常用交流電源設備については，「10．1 非常用電源設備」に記載 する。 常設代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目），可搬型代替直流電	

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8． 23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	可搬型窒素ガス供給装置は，原子炉格納容器内に窒素を供給することで，ジルコニウム一水反応，水の放射線分解等によ り原子炉格納容器内に発生する水素及び酸素の濃度を可燃限界未満にすることが可能な設計とする。 主要な設備は，以下のとおりとする。 - 可搬型窒素ガス供給装置 - 常設代替交流電源設備（10．2 代替電源設備） - 燃料補給設備（10．2 代替電源設備） 本系統の流路として，原子炉格納容器調気系の配管及び弁 を重大事故等対処設備として使用する。 その他，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用する。 b ．原子炉格納容器フィルタベント系による原子炉格納容器内 の水素及び酸素の排出 原子炉格納容器内に滞留する水素及び酸素を大気へ排出す るための重大事故等対処設備として，原子炉格納容器フィル タベント系を使用する。 原子炬格納容器フィルタベント系は，フィルタ装置（フィル夕容器，スクラバ溶液，金属繊維フィルタ，放射性よう素フィ ルタ），フィルタ装置出口側圧力開放板，配管•弁類，計測制御装置等で構成し，炉心の著しい損傷が発生した場合におい て，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等 を経由して，フィルタ装置へ導き，放射性物質を低減させた後 に原子炉建屋屋上に設ける放出口から排出することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，ジ ルコニウム一水反応，水の放射線分解等により発生する原子灲格納容器内の水素及び酸素を大気に排出できる設計とす る。 原子炉格納容器フィルタベント系は，排気中に含まれる可燃性ガスによる爆発を防ぐため，系統内を不活性ガス（窒素） で置換した状態で待機させ，原子炉格納容器ベント開始後に おいても不活性ガス（窒素）で置換できる設計とするととも に，系統内に可燃性ガスが蓄積する可能性のある箇所にはバ イパスラインを設け，可燃性ガスを連続して排出できる設計 とすることで，系統内で水素濃度及び酸素濃度が可燃領域に達することを防止できる設計とする。	第2206019号をもって設置変更許可）の添付書類八「9．5．2（1） a．」の記載内容に同じ。 b．原子炉格納容器フィルタベント系による原子炉格納容器内 の水素及び酸素の排出 原子炉格納容器内に滞留する水素及び酸素を大気へ排出す るための重大事故等対処設備として，原子炉格納容器フィル タベント系を使用する。 原子炬格納容器フィルタベント系は，フィルタ装置（フィル タ容器，スクラバ溶液，金属繊維フィルタ，放射性よう素フィ ルタ），フィルタ装置出口側圧力開放板，配管•弁類，計測制御装置等で構成し，炉心の著しい損傷が発生した場合におい て，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等 を経由して，フィルタ装置へ導き，放射性物質を低減させた後 に原子炉建屋屋上に設ける放出口から排出することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，ジ ルコニウム一水反応，水の放射線分解等により発生する原子灲格納容器内の水素及び酸素を大気に排出できる設計とす る。 原子炉格納容器フィルタベント系は，排気中に含まれる可燃性ガスによる爆発を防ぐため，系統内を不活性ガス（窒素） で置換した状態で待機させ，原子炉格納容器ベント開始後に おいても不活性ガス（窒素）で置換できる設計とするととも に，系統内に可燃性ガスが蓄積する可能性のある箇所にはバ イパスラインを設け，可燃性ガスを連続して排出できる設計 とすることで，系統内で水素濃度及び酸素濃度が可燃領域に達することを防止できる設計とする。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	排出経路における水素濃度を測定し，監視できるよう，フィ ルタ装置出口配管にフィルタ装置出口水素濃度を設ける。ま た，放射線量率を測定し，放射性物質濃度を推定できるよう， フィルタ装置出口配管にフィルタ装置出口放射線モニタを設 ける。フィルタ装置出口水素濃度は，常設代替交流電源設備又 は可搬型代替交流電源設備から給電が可能な設計とする。ま た，フィルタ装置出口放射線モニタは，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備 から給電が可能な設計とする。 主要な設備は，以下のとおりとする。 - フィルタ装置 - フィルタ装置出口側圧力開放板 - 可搬型窒素ガス供給装置 - フィルタ装置出口水素濃度 - フィルタ装置出口放射線モニタ - 常設代替交流電源設備（10．2 代替電源設備） - 可搬型代替交流電源設備（10．2 代替電源設備） - 代替所内電気設備（10．2 代替電源設備） - 所内常設蓄電式直流電源設備（ 10.2 代替電源設備） - 常設代替直流電源設備（10．2 代替電源設備） - 可搬型代替直流電源設備（10．2 代替電源設備） 本系統の流路として，原子炉格納容器調気系及び原子炉格納容器フィルタベント系の配管及び弁を重大事故等対処設備 として使用する。 その他，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用する。 本系統のらちフィルタ装置出口水素濃度及びフィルタ装置	排出経路における水素濃度を測定し，監視できるよう，フィ ルタ装置出口配管にフィルタ装置出口水素濃度を設ける。ま た，放射線量率を測定し，放射性物質濃度を推定できるよう， フィルタ装置出口配管にフィルタ装置出口放射線モニタを設 ける。フィルタ装置出口水素濃度は，常設代替交流電源設備又 は可搬型代替交流電源設備から給電が可能な設計とする。ま た，フィルタ装置出口放射線モニタは，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（3系統目）又は可搬型代替直流電源設備から給電が可能な設計と する。 主要な設備は，以下のとおりとする。 - フィルタ装置 - フィルタ装置出口側圧力開放板 - 可搬型窒素ガス供給装置 - フィルタ装置出口水素濃度 - フィルタ装置出口放射線モニタ - 常設代替交流電源設備（10．2 代替電源設備） - 可搬型代替交流電源設備（10．2 代替電源設備） - 代替所内電気設備（10．2 代替電源設備） - 所内常設蓄電式直流電源設備（ 10.2 代替電源設備） - 常設代替直流電源設備（10．2 代替電源設備） - 所内常設直流電源設備（ 3 系統目）（ 10.2 代替電源設備） - 可搬型代替直流電源設備（ 10.2 代替電源設備） 本系統の流路として，原子炉格納容器調気系及び原子炉格納容器フィルタベント系の配管及び弁を重大事故等対処設備 として使用する。 その他，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用する。 本系統のらちフィルタ装置出口水素濃度及びフィルタ装置	

灰色（グレーハッチング）：前回許可からの変更箇所赤字：設備，運用又は体制の相違（設計方針の相違）緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類		
柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	出口放射線モニ夕の詳細については，「6．4 計装設備（重大事故等対処設備）」に記載し，その他系統の詳細については， 「9．3 原子炬格納容器の過圧破損を防止するための設備」記載する。	出口放射線モニタの詳細については，「6．4 計装設備（重大事故等対処設備）」に記載し，その他系統の詳細については， 「9．3 原子炉格納容器の過圧破損を防止するための設備」に記載する。	

灰色（グレーハッチング）：前回許可からの変更箇所
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	原子炉格納容器内の水素浱度監視を行うための重大事故等対処設備として，格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）を使用する。 格納容器内水素濃度（D／W）及び格納容器内水素濃度（S ／C）は，炬心の著しい損傷が発生した場合に，水素濃度が変動する可能性のある範囲の水素濃度を中央制御室より監視で きる設計とする。格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする。 主要な設備は，以下のとおりとする。 - 格納容器内水素濃度（D／W） - 格納容器内水素濃度（S／C） - 所内常設蓄電式直流電源設備（10．2 代替電源設備） - 常設代替直流電源設備（ 10.2 代替電源設備） - 可搬型代替直流電源設備（ 10.2 代替電源設備） b．原子炉格納容器内雾囲気計装による原子炉格納容器内の水素濃度監視及び酸素濃度監視 原子炉格納容器内の水素濃度監視及び酸素濃度監視を行う ための重大事故等対処設備として，格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度を使用する。 格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度 は，灲心の著しい損傷が発生した場合に，サンプリング装置に より原子炉格納容器内の雰囲気ガスを原子炉棟内へ導き，検出器で測定することで，原子炉格納容器内の水素濃度及び酸素濃度を中央制御室より監視できる設計とする。格納容器内雾囲気水素濃度及び格納容器内雰囲気酸素濃度は，常設代替交流電源設備又は可搬型代替交流電源設備から給電が可能な設計とする。 なお，原子炉補機代替冷却水系から泠却水を供給すること により，サンプリングガスを椧却できる設計とする。 主要な設備は，以下のとおりとする。 - 格納容器内雰囲気水素濃度 - 格納容器内雰囲気酸素濃度 - 常設代替交流電源設備（10．2 代替電源設備）	原子炉格納容器内の水素濃度監視を行らための重大事故等対処設備として，格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）を使用する。 格納容器内水素濃度（D／W）及び格納容器内水素浱度（S ／C）は，炬心の著しい損傷が発生した場合に，水素濃度が変動する可能性のある範囲の水素濃度を中央制御室より監視で きる設計とする。格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）は，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目）又は可搬型代替直流電源設備から給電が可能な設計とする。 主要な設備は，以下のとおりとする。 - 格納容器内水素濃度（D／W） - 格納容器内水素濃度（S／C） - 所内常設蓄電式直流電源設備（10．2 代替電源設備） - 常設代替直流電源設備（ 10.2 代替電源設備） - 所内常設直流電源設備（ 3 系統目）（ 10.2 代替電源設備） - 可搬型代替直流電源設備（ 10.2 代替電源設備） b．原子炉格納容器内雾囲気計装による原子炉格納容器内の水素濃度監視及び酸素濃度監視 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第2206019号をもって設置変更許可）の添付書類八「9．5．2（2） b．」の記載内容に同じ。	

所内常設直流電源設備（ 3 系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	－可搬型代替交流電源設備（10．2 代替電源設備） 原子炉格納容器及び原子炉格納容器調気系については， 「9．1 原子炉格納施設」に記載する。 所内常設蓄電式直流電源設備，常設代替直流電源設備，可搬型代替直流電源設備，常設代替交流電源設備，可搬型代替交流電源設備，代替所内電気設備及び燃料補給設備については， 「10．2 代替電源設備」に記載する。 9．5．2．1 多様性，位置的分散 基本方針については，「1．1．7．1 多様性，位置的分散，悪影響防止等」に示す。 可搬型窒素ガス供給装置は，屋外の保管場所に分散して保管する ことで，位置的分散を図る設計とする。 原子炉格納容器フィルタベント系及びフィルタ装置出口放射線モ ニタは，非常用交流電源設備に対して多様性を有する所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電が可能な設計とする。	原子炉格納容器及び原子炉格納容器調気系については，「9．1 原子炉格納施設」に記載する。 所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目），可搬型代替直流電源設備，常設代替交流電源設備，可搬型代替交流電源設備，代替所内電気設備及び燃料補給設備については，「10．2 代替電源設備」に記載する。 「9．5．2．1 多様性，位置的分散」の記述を以下のとおり変更する。 9．5．2．1 多様性，位置的分散 基本方針については，「1．1．7．1 多様性，位置的分散，悪影響防止等」に示す。 可搬型窒素ガス供給装置は，屋外の保管場所に分散して保管する ことで，位置的分散を図る設計とする。 原子炉格納容器フィルタベント系及びフィルタ装置出口放射線モ ニタは，非常用交流電源設備に対して多様性を有する所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（3系統目）又は可搬型代替直流電源設備からの給電が可能な設計とす る。	表現の差異 －女川は各項や各章図表の変更箇所 を示す前にリード文を入れている。
	フィルタ装置出口水素濃度は，非常用交流電源設備に対して多様性を有する常設代替交流電源設備又は可搬型代替交流電源設備から給電が可能な設計とする。	フィルタ装置出口水素濃度は，非常用交流電源設備に対して多様性を有する常設代替交流電源設備又は可搬型代替交流電源設備から給電が可能な設計とする。	
	格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）は，格納容器内雾囲気水素濃度と共通要因によって同時に機能を損なわ ないよう，異なる計測方式とすることで多様性を有する設計とする。格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）は，格納容器内雰囲気水素濃度と共通要因によって同時に機能を損なわ	格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）は，格納容器内雰囲気水素濃度と共通要因によって同時に機能を損なわ ないよう，異なる計測方式とすることで多様性を有する設計とする。格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）は，格納容器内雰囲気水素濃度と共通要因によって同時に機能を損なわ	

柏崎刈羽 6，7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	静的触媒式水素再結合装置は，運転員の起動操作を必要と せずに，原子炉格納容器から原子炉棟内に漏えいした水素と酸素を触媒反応によって再結合させることで，原子炉棟内の水素濃度の上昇を抑制し，原子炉棟の水素爆発を防止できる設計とする。 静的触媒式水素再結合装置動作監視装置は，静的触媒式水素再結合装置の入口側及び出口側の温度により静的触媒式水素再結合装置の作動状態を中央制御室から監視できる設計と する。静的触媒式水素再結合装置動作監視装置は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする 主要な設備は，以下のとおりとする。 - 静的触媒式水素再結合装置 - 静的触媒式水素再結合装置動作監視装置 - 所内常設蓄電式直流電源設備（10．2 代替電源設備） - 常設代替直流電源設備（10．2 代替電源設備） - 可搬型代替直流電源設備（10．2 代替電源設備） 本系統の流路として，原子炉棟を重大事故等対処設備とし て使用する。 b 。水素濃度監視 （a）原子炉建屋水素濃度監視設備による水素濃度測定水素爆発による原子炉建屋等の損傷を防止するための設備 のらち，炉心の著しい損傷により原子炉格納容器から原子炉棟内に漏えいした水素の濃度を測定するため，炉心の著しい損傷が発生した場合に水素濃度が変動する可能性のある範囲 で測定できる重大事故等対処設備として，原子炉建屋水素濃度監視設備である原子炉建屋内水素濃度を使用する。 原子炉建屋内水素濃度は，中央制御室において連続監視で きる設計とし，原子炉建屋内水素濃度のうち，原子炉建屋地上 3 階及び原子炉建屋地下 2 階に設置するものについては，常設代替交流電源設備又は可搬型代替交流電源設備からの給電及び所内常設蓄電式直流電源設備，常設代替直流電源設備又 は可搬型代替直流電源設備からの給電が可能な設計とする。	静的触媒式水素再結合装置は，運転員の起動操作を必要と せずに，原子炉格納容器から原子炉棟内に漏えいした水素と酸素を触媒反応によって再結合させることで，原子炉棟内の水素濃度の上昇を抑制し，原子炉棟の水素爆発を防止できる設計とする。 静的触媒式水素再結合装置動作監視装置は，静的触媒式水素再結合装置の入口側及び出口側の温度により静的触媒式水素再結合装置の作動状態を中央制御室から監視できる設計と する。静的触媒式水素再結合装置動作監視装置は，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目）又は可搬型代替直流電源設備から給電が可能 な設計とする。 主要な設備は，以下のとおりとする。 - 静的触媒式水素再結合装置 - 静的触媒式水素再結合装置動作監視装置 - 所内常設蓄電式直流電源設備（10．2 代替電源設備） - 常設代替直流電源設備（10．2 代替電源設備） - 所内常設直流電源設備（ 3 系統目）（ 10.2 代替電源設備） - 可搬型代替直流電源設備（ 10.2 代替電源設備） 本系統の流路として，原子炉棟を重大事故等対処設備とし て使用する。 b 。水素濃度監視 （a）原子炉建屋水素濃度監視設備による水素濃度測定水素爆発による原子炉建屋等の損傷を防止するための設備 のらち，灲心の著しい損傷により原子炉格納容器から原子炉棟内に漏えいした水素の濃度を測定するため，炉心の著しい損傷が発生した場合に水素濃度が変動する可能性のある範囲 で測定できる重大事故等対処設備として，原子炉建屋水素濃度監視設備である原子炉建屋内水素濃度を使用する。 原子炉建屋内水素濃度は，中央制御室において連続監視で きる設計とし，原子炉建屋内水素濃度のらち，原子炉建屋地上 3 階及び原子炉建屋地下 2 階に設置するものについては，常設代替交流電源設備又は可搬型代替交流電源設備からの給電及び所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（3系統目）又は可搬型代替直流電源設備	設備の相違 －原子炉建屋水素濃度の電源構成の相違。

所内常設直流電源設備（ 3 系統目）添付書類八 比較表

灰色（グレーハッチング）：前回許可からの変更箇所
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）

所内常設直流電源設備（3系統目）添付書類八 比較表

崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	プ，軽油タンク，タンクローリ，電路，計測制御装置等で構成 し，ガスタービン発電機を外部電源喪失時に自動起動し，緊急用高圧母線 2 F 系を介して非常用高圧母線 $2 C$ 系及び非常用高圧母線 2D 系又は緊急用低圧母線 $2 G$ 系へ接続することで電力 を供給できる設計とする。 ガスタービン発電機の燃料は，ガスタービン発電設備軽油 タンクよりガスタービン発電設備燃料移送ポンプを用いて補給できる設計とする。また，ガスタービン発電設備軽油タンク の燃料は，軽油タンクよりタンクローリを用いて補給できる設計とする。 常設代替交流電源設備は，非常用交流電源設備に対して，独立性を有し，位置的分散を図る設計とする。 主要な設備は，以下のとおりとする。 - ガスタービン発電機 - ガスタービン発電設備軽油タンク - ガスタービン発電設備燃料移送ポンプ - 軽油タンク －タンクローリ b．可搬型代替交流電源設備による給電 設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失）した場合の重大事故等対処設備として，可搬型代替交流電源設備を使用する。 可搬型代替交流電源設備は，電源車，軽油タンク，ガスター ビン発電設備軽油タンク，タンクローリ，電路，計測制御装置等で構成し，電源車は緊急用高圧母線 $2 G$ 系を介して非常用高圧母線 $2 C$ 系及び非常用高圧母線 2 D 系又は緊急用低圧母線 $2 G$系へ接続することで電力を供給できる設計とする。 電源車の燃料は，軽油タンク又はガスタービン発電設備軽油タンクよりタンクローリを用いて補給できる設計とする。 可搬型代替交流電源設備は，非常用交流電源設備に対して，独立性を有し，位置的分散を図る設計とする。 主要な設備は，以下のとおりとする。 - 電源車 - 軽油タンク - ガスタービン発電設備軽油タンク －タンクローリ		

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	（2）代替直流電源設備による給電 a．所内常設蓄電式直流電源設備による給電 設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失）した場合の重大事故等対処設備として，所内常設蓄電式直流電源設備を使用する。 所内常設蓄電式直流電源設備は， 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 $2 \mathrm{~B}, 125 \mathrm{~V}$ 充電器 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$ 充電器 2 B ，電路（ 125 V 直流主母線盤及び 125 V 直流電源切替盤を含む。），計測制御装置等で構成し，全交流動力電源喪失から1時間以内に中央制御室に おいて，全交流動力電源喪失から8時間後に，不要な負荷の切離しを行い，全交流動力電源喪失から 24 時間にわたり， 125 V蓄電池 2 A 及び 125 V 蓄電池 2 B から電力を供給できる設計とす る。また，交流電源復旧後に，交流電源を 125 V 充電器 2 A 及 び 125 V 充電器 2 B を経由し 125 V 直流母線へ接続することで電力を供給できる設計とする。 主要な設備は，以下のとおりとする。 - 125 V 蓄電池 2 A - 125 V 蓄電池 2 B - 125 V 充電器 2 A - 125 V 充電器 2 B b．常設代替直流電源設備による給電 設計基準事故対処設備の交流電源及び直流電源が喪失した場合の重大事故等対処設備として，常設代替直流電源設備の うち 125 V 代替蓄電池を使用する。また，設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失）した場合又は交流電源及び直流電源が喪失した場合の重大事故等対処設備とし て，常設代替直流電源設備のうち 250 V 蓄電池を使用する。 常設代替直流電源設備は， 125 V 代替蓄電池， 250 V 蓄電池，電路（ 125 V 直流主母線盤及び 125 V 直流電源切替盤並びに 250 V直流主母線盤を含む。），計測制御装置等で構成し， 125 V 代替蓄電池は電力の供給開始から 8 時間後に，不要な負荷の切離しを行い， 250 V 蓄電池は電力の供給開始から 1 時間後に中央制御室において，不要な負荷の切離しを行い，電力の供給開始から 24 時間にわたり， 125 V 代替蓄電池及び 250 V 蓄電池か ら電力を供給できる設計とする。 主要な設備は，以下のとおりとする。	（2）代替直流電源設備による給電 a．所内常設蓄電式直流電源設備による給電女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第2206019号をもつて設置変更許可）の添付書類八「10．2．2（2）a．」の記載内容に同じ。 b ．常設代替直流電源設備による給電女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炬施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもつて設置変更許可）の添付書類八「10．2．2（2）b．」の記載内容に同じ。	

柏崎刈羽 6，7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	c．可搬型代替直流電源設備による給電 設計基準事故対処設備の交流電源及び直流電源が喪失した場合の重大事故等対処設備として，可搬型代替直流電源設備 を使用する。 可搬型代替直流電源設備は， 125 V 代替蓄電池， 250 V 蓄電池，電源車， 125 V 代替充電器， 250 V 充電器，軽油タンク，ガスタ ービン発電設備軽油タンク，タンクローリ，電路（ 125 V 直流主母線盤及び 125 V 直流電源切替盤並びに 250 V 直流主母線盤 を含む。），計測制御装置等で構成し， 125 V 代替蓄電池は電力の供給開始から8時間後に，不要な負荷の切離しを行い， 250 V 蓄電池は電力の供給開始から 1 時間後に中央制御室にお いて，不要な負荷の切離しを行い， 125 V 代替蓄電池及び 250 V蓄電池から電力を供給し，その後，電源車を代替所内電気設備， 125 V 代替充電器及び 250 V 充電器を経由し， 125 V 直流主母線盤 2A－1， 125 V 直流主母線盤 $2 \mathrm{~B}-1$ 及び 250 V 直流主母線盤 へ接続することで電力を供給できる設計とする。 電源車の燃料は，軽油タンク又はガスタービン発電設備軽油タンクよりタンクローリを用いて補給できる設計とする。 可搬型代替直流電源設備は，電源車の運転を継続すること で，設計基準事故対処設備の交流電源及び直流電源の喪失か ら 24 時間にわたり必要な負荷に電力の供給を行うことができ る設計とする。 可搬型代替直流電源設備は，非常用直流電源設備に対して，独立性を有し，位置的分散を図る設計とする。 主要な設備は，以下のとおりとする。 - 125 V 代替蓄電池 - 250 V 蓄電池 - 電源車 - 125 V 代替充電器 - 250 V 充電器 - 軽油タンク - ガスタービン発電設備軽油タンク －タンクローリ （3）代替所内電気設備による給電 設計基準事故対処設備の非常用所内電気設備が機能喪失した場合の重大事故等対処設備として，代替所内電気設備を使用す	d．可搬型代替直流電源設備による給電 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもつて設置変更許可）の添付書類八「10．2．2（2）c．」の記載内容に同じ。 （3）代替所内電気設備による給電 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第	

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6，7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	る。 代替所内電気設備は，ガスタービン発電機接続盤，緊急用高圧母線 2 F 系，緊急用高圧母線 2 G 系，緊急用動力変圧器 $2 G$ 采，緊急用低圧母線 $2 G$ 系，緊急用交流電源切替盤 $2 G$ 系，緊急用交流電源切替盤 $2 C$ 系，緊急用交流電源切替盤 2 D 系，非常用高圧母線2C系，非常用高圧母線2D 系，計測制御装置等で構成し，常設代替交流電源設備又は可搬型代替交流電源設備の電路として使用し電力を供給できる設計とする。 代替所内電気設備は，共通要因で設計基準事故対処設備であ る非常用所内電気設備と同時に機能を喪失しない設計とする。 また，代替所内電気設備及び非常用所内電気設備は，少なくとも 1 系統は機能の維持及び人の接近性の確保を図る設計とする。主要な設備は，以下のとおりとする。 - ガスタービン発電機接続盤 - 緊急用高圧母線 2F 系 - 緊急用高圧母線 2 G 系 - 緊急用動力変圧器 $2 G$ 系 - 緊急用低圧母線 2 G 系 - 緊急用交流電源切替盤 2 G 系 - 緊急用交流電源切替盤 $2 C$ 系 - 緊急用交流電源切替盤 2 D 系 - 非常用高圧母線 $2 C$ 系 - 非常用高圧母線 2 D 系 （4）燃料補給設備による給油 重大事故等時に補機駆動用の軽油を補給する設備として，軽油タンク，ガスタービン発電設備軽油タンク，タンクローリ及び ホースを使用する。 大容量送水ポンプ（タイプ I ），熱交換器ユニット，可搬型窒素ガス供給装置及び大容量送水ポンプ（タイプII）は，軽油タン ク又はガスタービン発電設備軽油タンクからタンクローリを用 いて燃料を補給できる設計とする。 軽油タンク又はガスタービン発電設備軽油タンクからタンク ローリへの軽油の補給は，ホースを用いる設計とする。 主要な設備は，以下のとおりとする。 - 軽油タンク - ガスタービン発電設備軽油タンク	2206019 号をもつて設置変更許可）の添付書類八「10．2．2（3）」 の記載内容に同じ。 （4）燃料補給設備による給油 女川原子力発電所発電用原子炉設置変更許可申請書（2 号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもつて設置変更許可）の添付書類八「10．2．2（4）」 の記載内容に同じ。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	－タンクローリ 本系統の流路として，ホースを重大事故等対処設備として使用する。 10．2．2．1 多様性及び独立性，位置的分散 基本方針については，「1．1．7．1 多様性，位置的分散，悪影響防止等」に示す。 常設代替交流電源設備は，非常用交流電源設備と共通要因によっ て同時に機能を損なわないよう，ガスタービン発電機をガスタービ ンにより駆動することで，ディーゼルエンジンにより駆動する非常用ディーゼル発電機及び高圧焾ふスプレイ系ディーゼル発電機を用 いる非常用交流電源設備に対して多様性を有する設計とする。 常設代替交流電源設備のガスタービン発電機，ガスタービン発電設備軽油タンク，ガスタービン発電設備燃料移送ポンプ及びタンク ローリは，原子炬建屋付属棟から離れた屋外に設置又は保管するこ とで，原子炉建屋付属棟内の非常用ディーゼル発電機，高圧炉心スプ レイ系ディーゼル発電機，非常用ディーゼル発電設備燃料デイタン ク及び高圧炉心スプレイ系ディーゼル発電設備燃料デイタンク並び に原子炉建屋付属棟近傍の非常用ディーゼル発電設備燃料移送ポン プ及び高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプと共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 常設代替交流電源設備は，ガスタービン発電機から非常用高圧母線までの系統において，独立した電路で系統構成することにより，非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機か ら非常用高圧母線までの系統に対して，独立性を有する設計とする。 これらの多様性及び位置的分散並びに電路の独立性によって，常設代替交流電源設備は非常用交流電源設備に対して独立性を有する設計とする。 可搬型代替交流電源設備は，非常用交流電源設備と共通要因によ って同時に機能を損なわないよう，電源車の泠却方式を空冷とする ことで，冷却方式が水冷である非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機を用いる非常用交流電源設備に対し	「10．2．2．1 多様性及び独立性，位置的分散」の記述を以下のとお り変更する。 10．2．2．1 多様性及び独立性，位置的分散 基本方針については，「1．1．7．1 多様性，位置的分散，悪影響防止等」に示す。 常設代替交流電源設備は，非常用交流電源設備と共通要因によっ て同時に機能を損なわないよう，ガスタービン発電機をガスタービ ンにより駆動することで，ディーゼルエンジンにより駆動する非常用ディーゼル発電機及び高圧炬心スプレイ系ディーゼル発電機を用 いる非常用交流電源設備に対して多様性を有する設計とする。 常設代替交流電源設備のガスタービン発電機，ガスタービン発電設備軽油タンク，ガスタービン発電設備燃料移送ポンプ及びタンク ローリは，原子炉建屋付属棟から離れた屋外に設置又は保管するこ とで，原子炉建屋付属棟内の非常用ディーゼル発電機，高圧灲心スプ レイ系ディーゼル発電機，非常用ディーゼル発電設備燃料デイタン ク及び高圧灲心スプレイ系ディーゼル発電設備燃料デイタンク並び に原子炉建屋付属棟近傍の非常用ディーゼル発電設備燃料移送ポン プ及び高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプと共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 常設代替交流電源設備は，ガスタービン発電機から非常用高圧母線までの系統において，独立した電路で系統構成することにより，非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機か ら非常用高圧母線までの系統に対して，独立性を有する設計とする。 これらの多様性及び位置的分散並びに電路の独立性によって，常設代替交流電源設備は非常用交流電源設備に対して独立性を有する設計とする。 可搬型代替交流電源設備は，非常用交流電源設備と共通要因によ って同時に機能を損なわないよう，電源車の冷却方式を空冷とする ことで，泠却方式が水泠である非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機を用いる非常用交流電源設備に対し	表現の差異 －女川は各項や各 章図表の変更箇所 を示す前にリード 文を入れている。

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	所内常設蓄電式直流電源設備は，原子炉建屋付属棟内の非常用デ ィーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機と異なる制御建屋内に設置することで，非常用交流電源設備と共通要因によ って同時に機能を損なわないよう，位置的分散を図る設計とする。 所内常設蓄電式直流電源設備は， 125 V 蓄電池 2 A 及び 125 V 蓄電池 2B から 125 V 直流主母線盤 2 A 及び 125 V 直流主母線盤 2 B までの系統 において，独立した電路で系統構成することにより，非常用ディーゼ ル発電機の交流を直流に変換する電路を用いた 125 V 直流主母線盤 2 A 及び 125 V 直流主母線盤 2 B までの系統に対して，独立性を有する設計とする。 これらの位置的分散及び電路の独立性によって，所内常設蓄電式直流電源設備は非常用交流電源設備に対して独立性を有する設計と する。 常設代替直流電源設備は，制御建屋内の非常用直流電源設備と異 なる区画に設置することで，非常用直流電源設備と共通要因によっ て同時に機能を損なわないよう，位置的分散を図る設計とする。 常設代替直流電源設備は， 125 V 代替蓄電池から 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び 125 V 直流主母線盤 $2 \mathrm{~B}-1$ までの采統並びに 250 V 蓄電池か ら 250 V 直流主母線盤までの系統において，独立した電路で系統構成 することにより，非常用直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 2 B 及び 125 V 蓄電池 2 H から 125 V 直流主母線盤 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$ 直流主母線盤 2 B 及び 125 V 直流主母線盤 2 H までの系統に対して，独立性を有 する設計とする。 これらの位置的分散及び電路の独立性によって，常設代替直流電源設備は非常用直流電源設備に対して独立性を有する設計とする。	所内常設蓄電式直流電源設備は，原子炉建屋付属棟内の非常用デ ィーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機と異なる制御建屋内に設置することで，非常用交流電源設備と共通要因によ って同時に機能を損なわないよう，位置的分散を図る設計とする。 所内常設蓄電式直流電源設備は， 125 V 蓄電池 2 A 及び 125 V 蓄電池 2 B から 125 V 直流主母線盤 2 A 及び 125 V 直流主母線盤 2 B までの系統 において，独立した電路で系統構成することにより，非常用ディーゼ ル発電機の交流を直流に変換する電路を用いた 125 V 直流主母線盤 2 A 及び 125 V 直流主母線盤 2 B までの系統に対して，独立性を有する設計とする。 これらの位置的分散及び電路の独立性によって，所内常設蓄電式直流電源設備は非常用交流電源設備に対して独立性を有する設計と する。 常設代替直流電源設備は，制御建屋内の非常用直流電源設備と異 なる区画に設置することで，非常用直流電源設備と共通要因によっ て同時に機能を損なわないよう，位置的分散を図る設計とする。 常設代替直流電源設備は， 125 V 代替蓄電池から 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び 125 V 直流主母線盤 $2 \mathrm{~B}-1$ までの采統並びに 250 V 蓄電池か ら 250 V 直流主母線盤までの系統において，独立した電路で系統構成 することにより，非常用直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$ 蓄電池 2 B 及び 125 V 蓄電池 2 H から 125 V 直流主母線盤 $2 \mathrm{~A}, 125 \mathrm{~V}$ 直流主母線盤 2 B 及び 125 V 直流主母線盤 2 H までの系統に対して，独立性を有 する設計とする。 これらの位置的分散及び電路の独立性によって，常設代替直流電源設備は非常用直流電源設備に対して独立性を有する設計とする。 所内常設直流電源設備（3系統目）の第3直流電源設備用 125 V 代替蓄電池及び第 3 直流電源設備用 250 V 代替蓄電池は，原子炬建屋付属棟内に設置することで，制御建屋内の 125 V 蓄電池 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$ 蓄電池 $2 \mathrm{~B}, 125 \mathrm{~V}$ 代替蓄電池， 250 V 蓄電池， 125 V 充電器 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$ 充電器 $2 B, 125 \mathrm{~V}$ 代替充電器及び 250 V 充電器と共通要因によって同時に機能 を損なわないよう，位置的分散を図る設計とする。また，所内常設直流電源設備（ 3 系統目）の第 3 直流電源設備用 125 V 代替蓄電池及び第 3 直流電源設備用 250 V 代替蓄電池は，原子炉建屋付属棟内の非常用ディーゼル発電機，高圧炬心スプレイ系ディーゼル発電機， 125 V 蓄電池 2 H 及び 125 V 充電器 2 H と異なる区画に設置することで，原子炉	設備名称の差異設計の差異 －設置場所及び電源構成の相違。 記載表現の差異設備名称の差異設計の差異 －設置場所及び電源構成の相違。

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
		建屋付属棟内に設置する非常用ディーゼル発電機，高圧炉心スプレ	
		イ系ディーゼル発電機， 125 V 蓄電池 2 H 及び 125 V 充電器 2 H 並びに屋	
		外の原子炉建屋付属棟から離れた場所に保管する可搬型代替直流電	
		源設備の電源車と共通要因によって同時に機能を損なわないよう，	
		位置的分散を図る設計とする。	
		所内常設直流電源設備（ 3 系統目）は，第 3 直流電源設備用 125 V	設計の差異
		代替蓄電池から 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び 125 V 直流主母線盤 $22 \mathrm{~B}-$	－電源構成の相違。
		1 までの系統並びに第3直流電源設備用 250 V 代替蓄電池から 250 V 直	設計の差異
		流主母線盤までの系統において，独立した電路で系統構成すること，	－電源構成の相違。
		により，非常用直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 萻電池 2 B 及び	
		125 V 蓄電池 2 H から 125 V 直流主母線盤 $2 \mathrm{~A}, 125 \mathrm{~V}$ 直流主母線盤 2 B 及	
		び125V 直流主母線盤 2 H までの系統並びに常設代替直流電源設備の	表現の差異
		125 V 代替蓄電池から 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び125V 直流主母線	設計の差異
		盤2B－1 までの系統並びに 250 V 蓄電池から 250 V 直流主母線盤までの	－電源構成の相違。
		系統に対して，独立性を有する設計とする。また，所内常設直流電源	
		設備（ 3 系統目）は，可搬型代替直流電源設備の 125 V 代替蓄電池及	
		び電源車から 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び 125 V 直流主母線盤2B－1	
		までの系統並びに 250 V 蓄電池及び電源車から 250 V 直流主母線盤ま	
		での系統に対して，独立性を有する設計とする。	
		これらの位置的分散及び電路の独立性によって，所内常設直流電	表現の差異
		源設備（ 3 系統目）は，非常用直流電源設備，常設代替直流電源設備	設備名称の差異
		及び可搬型代替直流電源設備に対して独立性を有する設計とする。	
	可搬型代替直流電源設備は，非常用直流電源設備と共通要因によ	可搬型代替直流電源設備は，非常用直流電源設備と共通要因によ	
	つて同時に機能を損なわないよう，电源車の份却方式を笁得とする	つて同時に機能を損なわないよう，電源車の伶却方式を些彾とする	
	ことで，泠却方式が水泠である非常用ディーゼル発電機及び高圧炉	ことで，冷却方式が水泠である非常用ディーゼル発電機及び高圧炉 ふスプレイ系ディーゼル登電機から給電する非常用直流電源設備に	
	心スプレイ系ディーゼル発電機から給電する非常用直流電源設備に 対して多様性を有する設計とする。また， 125 V 代替充電器及び 250 V	心スプレイ系ディーゼル発電機から給電する非常用直流電源設備に対して多様性を有する設計とする。また， 125 V 代替充電器及び 250 V	
	充電器により交流を直流に変換できることで， 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$	充電器により交流を直流に変換できることで， 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$	
	蓄電池 2 B 及び 125 V 蓄電池 2 H を用いる非常用直流電源設備に対して	蓄電池 2 B 及び 125 V 蓄電池 2 H を用いる非常用直流電源設備に対して	
	多様性を有する設計とする。 可搬刑代替直洁電源設備の 125 V 代替蓄電池 250 V 蓄電池 125 V 代	多様性を有する設計とする。 可搬刑代替直流電源設備の 125 V 代替菨電池 250 V 萻電池 125 V 代	
	可搬型代替直流電源設備の 125 V 代替蓄電池， 250 V 蓄電池， 125 V 代替充電器及び 250 V 充電器は，制御建屋内の 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄	可搬型代替直流電源設備の 125 V 代替蓄電池， 250 V 蓄電池， 125 V 代替充電器及び 250 V 充電器は，制御建屋内の 125 V 莘電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄	
	電池 $2 \mathrm{~B}, 125 \mathrm{~V}$ 充電器 2 A 及び 125 V 充電器 2 B 並びに原子炉建屋付属	電池 $2 \mathrm{~B}, 125 \mathrm{~V}$ 充電器 2 A 及び 125 V 充電器 2 B 並びに原子炉建屋付属	
	棟内の 125 V 蓄電池 2 H 及び 125 V 充電器 2 H と異なる区画又は建屋に	棟内の 125 V 蓄電池 $2 \mathrm{H}, 125 \mathrm{~V}$ 充電器 2 H ，第 3 直流電源設備用 125 V 代	設備名称の差異
	設置することで，非常用直流電源設備と共通要因によって同時に機	替蓄電池及び第 3 直流電源設備用 250 V 代替蓄電池と異なる区画又は	設計の差異
	能を損なわないよう，位置的分散を図る設計とする。	建屋に設置することで，非常用直流電源設備及び所内常設直流電源	－電源構成の相違。

柏崎刈羽 6， 7 号炬（2022．8． 23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	可搬型代替直流電源設備の電源車，ガスタービン発電設備軽油タ ンク及びタンクローリは，屋外の原子炉建屋付属棟から離れた場所 に設置又は保管することで，原子炉建屋付属棟内の非常用ディーゼ ル発電機，高圧灲心スプレイ系ディーゼル発電機，非常用ディーゼル発電設備燃料デイタンク及び高圧炉心スプレイ系ディーゼル発電設備燃料デイタンク並びに原子炉建屋付属棟近傍の非常用ディーゼル発電設備燃料移送ポンプ及び高圧灲心スプレイ系ディーゼル発電設備燃料移送ポンプと共通要因によって同時に機能を損なわないよ ら，位置的分散を図る設計とする。 可搬型代替直流電源設備は， 125 V 代替蓄電池及び電源車から 125 V直流主母線盤 2A－1 及び 125 V 直流主母線盤 2B－1 までの系統並びに 250 V 蓄電池及び電源車から 250 V 直流主母線盤までの系統において，独立した電路で系統構成することにより，非常用直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 2 B 及び 125 V 蓄電池 2 H から 125 V 直流主母線盤 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$ 直流主母線盤 2 B 及び 125 V 直流主母線盤 2 H までの系統に対して，独立性を有する設計とする。 これらの多様性及び位置的分散並びに電路の独立性によって，可搬型代替直流電源設備は非常用直流電源設備に対して独立性を有す る設計とする。 可搬型代替直流電源設備の電源車の接続箇所は，共通要因によっ て接続できなくなることを防止するため，位置的分散を図った複数箇所に設置する設計とする。 代替所内電気設備のガスタービン発電機接続盤及び緊急用高圧母線 2 F 系は，緊急用電気品建屋（地下階）に設置することで，非常用所内電気設備と共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 代替所内電気設備の緊急用高圧母線 $2 G$ 系，緊急用動力変圧器 $2 G$系，緊急用低圧母線 $2 G$ 系，緊急用交流電源切替盤 $2 G$ 系，緊急用交流電源切替盤 $2 C$ 系及び緊急用交流電源切替盤 $2 D$ 采は，非常用所内電気設備と異なる区画に設置することで，非常用所内電気設備と共	設備（3系統目）と共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 可搬型代替直流電源設備の電源車，ガスタービン発電設備軽油夕 ンク及びタンクローリは，屋外の原子炉建屋付属棟から離れた場所 に設置又は保管することで，原子炉建屋付属棟内の非常用ディーゼ ル発電機，高圧灯心スプレイ系ディーゼル発電機，非常用ディーゼル発電設備燃料デイタンク，高圧灲心スプレイ系ディーゼル発電設備燃料デイタンク，第 3 直流電源設備用 125 V 代替蓄電池及び第 3 直流電源設備用 250 V 代替蓄電池並びに原子炉建屋付属棟近傍の非常用デ ィーゼル発電設備燃料移送ポンプ及び高圧炉心スプレイ系ディーゼ ル発電設備燃料移送ポンプと共通要因によって同時に機能を損なわ ないよう，位置的分散を図る設計とする。 可搬型代替直流電源設備は， 125 V 代替蓄電池及び電源車から 125 V直流主母線盤2A－1 及び 125 V 直流主母線盤 2B－1 までの系統並びに 250 V 蓄電池及び電源車から 250 V 直流主母線盤までの系統において，独立した電路で系統構成することにより，非常用直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 2 B 及び 125 V 蓄電池 2 H から 125 V 直流主母線盤 2A， $125 V$ 直流主母線盤 $2 B$ 及び 125 V 直流主母線盤 $2 H$ までの系統並びに所内常設直流電源設備（ 3 系統目）の第 3 直流電源設備用 125 V 代替蓄電池及び第 3 直流電源設備用 250 V 代替蓄電池から 125 V直流主母線盤 2A－1， 125 V 直流主母線盤 $2 \mathrm{~B}-1$ 及び 250 V 直流主母線盤 までの系統に対して，独立性を有する設計とする。 これらの多様性及び位置的分散並びに電路の独立性によって，可搬型代替直流電源設備は非常用直流電源設備及び所内常設直流電源設備（3系統目）に対して独立性を有する設計とする。 可搬型代替直流電源設備の電源車の接続箇所は，共通要因によっ て接続できなくなることを防止するため，位置的分散を図った複数箇所に設置する設計とする。 代替所内電気設備のガスタービン発電機接続盤及び緊急用高圧母線 2 F 系は，緊急用電気品建屋（地下階）に設置することで，非常用所内電気設備と共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 代替所内電気設備の緊急用高圧母線 $2 G$ 系，緊急用動力変圧器 $2 G$系，緊急用低圧母線 $2 G$ 采，緊急用交流電源切替盤 $2 G$ 采，緊急用交流電源切替盤 $2 C$ 系及び緊急用交流電源切替盤 $2 D$ 采は，非常用所内電気設備と異なる区画に設置することで，非常用所内電気設備と共	設備名称の差異 設計の差異 －電源構成の相違。 表現の差異

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 代替所内電気設備は，独立した電路で系統構成することにより，非常用所内電気設備に対して，独立性を有する設計とする。 これらの位置的分散及び電路の独立性によって，代替所内電気設備は非常用所内電気設備に対して独立性を有する設計とする。 燃料補給設備のタンクローリは，原子炉建屋付属棟近傍の非常用 ディーゼル発電設備燃料移送ポンプ及び高圧炉心スプレイ系ディー ゼル発電設備燃料移送ポンプから離れた屋外に分散して保管するこ とで，原子炉建屋付属棟近傍の非常用ディーゼル発電設備燃料移送 ポンプ及び高圧炬心スプレイ系ディーゼル発電設備燃料移送ポンプ と共通要因によって同時に機能を損なわないよう，位置的分散を図 る設計とする。 軽油タンク及びガスタービン発電設備軽油タンクは，屋外に分散 して設置することで，共通要因によって同時に機能を損なわないよ ら，位置的分散を図る設計とする。 10．2．2．2 悪影響防止 基本方針については，「1．1．7．1 多様性，位置的分散，悪影響方止等」に示す。 常設代替交流電源設備のガスタービン発電機，ガスタービン発電設備軽油タンク及びガスタービン発電設備燃料移送ポンプは，通常時は遮断器等により接続先の系統から隔離し，重大事故等時に遮断器操作等により重大事故等対処設備としての系統構成とすること で，他の設備に悪影響を及ぼさない設計とする。 常設代替交流電源設備のタンクローリは，接続先の系統と分離し て保管し，重大事故等時に接続，弁操作等により重大事故等対処設備 としての系統構成とすることで，他の設備に悪影響を及ぼさない設計とする。 常設代替交流電源設備の軽油タンクは，重大事故等時に弁操作等 により重大事故等対処設備としての系統構成とすることで，他の設備に悪影響を及ぼさない設計とする。 ガスタービン発電機及びガスタービン発電設備燃料移送ポンプ は，飛散物となって他の設備に悪影響を及ぼさない設計とする。	通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 代替所内電気設備は，独立した電路で系統構成することにより，非常用所内電気設備に対して，独立性を有する設計とする。 これらの位置的分散及び電路の独立性によって，代替所内電気設備は非常用所内電気設備に対して独立性を有する設計とする。 燃料補給設備のタンクローリは，原子炉建屋付属棟近傍の非常用 ディーゼル発電設備燃料移送ポンプ及び高圧炉心スプレイ系ディー ゼル発電設備燃料移送ポンプから離れた屋外に分散して保管するこ とで，原子炉建屋付属棟近傍の非常用ディーゼル発電設備燃料移送 ポンプ及び高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプ と共通要因によって同時に機能を損なわないよう，位置的分散を図 る設計とする。 軽油タンク及びガスタービン発電設備軽油タンクは，屋外に分散 して設置することで，共通要因によって同時に機能を損なわないよ う，位置的分散を図る設計とする。 「10．2．2．2 悪影響防止」の記述を以下のとおり変更する。 10．2．2．2 悪影響防止 基本方針については，「1．1．7．1 多様性，位置的分散，悪影響方止等」に示す。 常設代替交流電源設備のガスタービン発電機，ガスタービン発電設備軽油タンク及びガスタービン発電設備燃料移送ポンプは，通常時は遮断器等により接続先の系統から隔離し，重大事故等時に遮断器操作等により重大事故等対処設備としての系統構成とすること で，他の設備に悪影響を及ぼさない設計とする。 常設代替交流電源設備のタンクローリは，接続先の系統と分離し て保管し，重大事故等時に接続，弁操作等により重大事故等対処設備 としての系統構成とすることで，他の設備に悪影響を及ぼさない設計とする。 常設代替交流電源設備の軽油タンクは，重大事故等時に弁操作等 により重大事故等対処設備としての系統構成とすることで，他の設備に悪影響を及ぼさない設計とする。 ガスタービン発電機及びガスタービン発電設備燃料移送ポンプ は，飛散物となって他の設備に悪影響を及ぼさない設計とする。	表現の差異 －女川は各項や各章図表の変更箇所 を示す前にリード文を入れている。

柏崎刈羽 6， 7 号炬（2022．8．23提出）	女川 2 号炬 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	タンクローリは輪留めによる固定等をすることで，他の設備に悪影響を及ぼさない設計とする。 可搬型代替交流電源設備の電源車及びタンクローリは，接続先の系統と分離して保管し，重大事故等時に接続，升操作，遮断器操作等 により重大事故等対処設備としての系統構成とすることで，他の設備に悪影響を及ぼさない設計とする。 可搬型代替交流電源設備の軽油タンク及びガスタービン発電設備軽油タンクは，重大事故等時に弃操作等により重大事故等対処設備 としての系統構成とすることで，他の設備に悪影響を及ぼさない設計とする。 電源車及びタンクローリは輪留めによる固定等をすることで，他 の設備に悪影響を及ぼさない設計とする。	タンクローリは輪留めによる固定等をすることで，他の設備に悪影響を及ぼさない設計とする。 可般型代替交流電源設備の電源車及びタンクローリは，接続先の系統と分離して保管し，重大事故等時に接続，升操作，遮断器操作等 により重大事故等対処設備としての系統構成とすることで，他の設備に悪影響を及ぼさない設計とする。 可般型代替交流電源設備の軽油タンク及びガスタービン発電設備軽油タンクは，重大事故等時に弁操作等により重大事故等対処設備 としての系統構成とすることで，他の設備に悪影響を及ぼさない設計とする。 電源車及びタンクローリは輪留めによる固定等をすることで，他 の設備に悪影響を及ぼさない設計とする。	
	所内常設蓄電式直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 2 B ， 125 V 充電器 2 A 及び 125 V 充電器 2 B は，通常時は設計基準事故対処設備として使用する場合と同じ系統構成とし，重大事故等時において も通常時と同じ系統構成で重大事故等対処設備として使用すること で，他の設備に悪影響を及ぼさない設計とする。 常設代替直流電源設備の $125 V$ 代替蕃電池は，通常時は非常用直流電源設備と隔㒀し，重大事故等時に遮断器操作により重大事故等対処設備としての采統構成とすることで，他の設備に悪影響を及ぼさ ない設計とする。 常設代替直流電源設備の 250 V 蓄電池は，通常時は常用直流電源設備として使用する場合と同じ系統構成とし，重大事故等時において も通常時と同じ系統構成で重大事故等対処設備として使用すること で，他の設備に悪影響を及ぼさない設計とする。	所内常設蓄電式直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 2 B ， 125 V 充電器 2 A 及び 125 V 充電器 2 B は，通常時は設計基準事故対処設備として使用する場合と同じ采統構成とし，重大事故等時において も通常時と同じ系統構成で重大事故等対処設備として使用すること で，他の設備に悪影響を及ぼさない設計とする。 常設代替直流電源設備の 125 V 代替蓄電池は，通常時は非常用直流電源設備と隔離し，重大事故等時に遮断器操作により重大事故等対処設備としての系統構成とすることで，他の設備に悪影響を及ぼさ ない設計とする。 常設代替直流電源設備の 250 V 蓄電池は，通常時は常用直流電源設備として使用する場合と同じ系統構成とし，重大事故等時において も通常時と同じ系統構成で重大事故等対処設備として使用すること で，他の設備に悪影響を及ぼさない設計とする。 所内常設直流電源設備（ 3 系䖻目）の第 3 直流電源設備用 125 V 代	表現の差異

所内常設直流電源設備（3 系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	可搬型代替直流電源設備の 125 V 代替蓄電池及び 125 V 代替充電器 は，通常時は非常用直流電源設備と隔離し，重大事故等時に遮断器操作により重大事故等対処設備としての系統構成とすることで，他の設備に悪影響を及ぼさない設計とする。 可搬型代替直流電源設備の 250 V 蓄電池及び 250 V 充電器は，通常時は常用直流電源設備として使用する場合と同じ系統構成とし，重大事故等時においても通常時と同じ系統構成で重大事故等対処設備 として使用することで，他の設備に悪影響を及ぼさない設計とする。 可搬型代替直流電源設備の電源車及びタンクローリは，接続先の系統と分離して保管し，重大事故等時に接続，弁操作，遮断器操作等 により重大事故等対処設備としての系統構成とすることで，他の設備に悪影響を及ぼさない設計とする。 可搬型代替直流電源設備の軽油タンク及びガスタービン発電設備軽油タンクは，重大事故等時に弁操作等により重大事故等対処設備 としての采統構成とすることで，他の設備に悪影響を及ぼさない設計とする。 電源車及びタンクローリは輪留めによる固定等をすることで，他 の設備に悪影響を及ぼさない設計とする。 代替所内電気設備のガスタービン発電機接続盤，緊急用高圧母線 $2 F$ 系，緊急用高圧母線 2 G 系，緊急用動力変圧器 2 G 系及び緊急用低圧母線 2 G 系は，通常時は遮断器により接続先の系統から隔離し，重大事故等時に遮断器操作により重大事故等対処設備としての系統構成とすることで，他の設備に悪影響を及ぼさない設計とする。 代替所内電気設備の緊急用交流電源切替盤 2 G 系，緊急用交流電源切替盤 $2 C$ 系，緊急用交流電源切替盤 2 D 系，非常用高圧母線 $2 C$ 系及 び非常用高圧母線 2 D 系は，重大事故等時に遮断器操作により重大事故等対処設備としての系統構成とすることで，他の設備に悪影響を及ぼさない設計とする。 燃料補給設備のタンクローリは，接続先の系統と分離して保管し，重大事故等時に接続，弁操作等により重大事故等対処設備としての系統構成とすることで，他の設備に悪影響を及ぼさない設計とする。		設計の差異 －女川 2 号の所内常設直流電源設備 （3系統目）の系統構成は遮断器操作のみである。（他 の機器の操作が必要な場合は「等」を入れ区別してい る。）

柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炬 適合性審査許可後完本 （有毒ガス防謢：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	おいて， 1 時間以内に中央制御室において行う簡易な操作での切離 し以外の負荷の切離しを行わず 8 時間，その後必要な負荷以外を切 り離して 16 時間の合計 24 時間にわたり必要な設備に電力を供給で きる容量を有する設計とする。 125 V 代替蓄電池は，想定される重大事故等時において， 8 時間後 に不要な負荷の切離しを行い， 24 時間にわたり必要な設備に電力を供給できる容量を有する設計とする。 250 V 蓄電池は，想定される重大事故等時において， 1 時間後に中央制御室において行う簡易な操作での切離し以外の負荷の切離しを行わず， 24 時間にわたり必要な設備に電力を供給できる容量を有す る設計とする。 $125 V$ 代替充電器は，想定される重大事故等時において，必要な設備に電力を供給できる容量を有する設計とする。 250 V 充電器は，想定される重大事故等時において，必要な設備に電力を供給できる容量を有する設計とする。 ガスタービン発電機接続盤，緊急用高圧母線 2 F 系，緊急用高圧母線 $2 G$ 系，緊急用動力変圧器 $2 G$ 系及び緊急用低圧母線 2 G 系は，想定 される重大事故等時において，必要な設備に電力を供給できる容量 を有する設計とする。 軽油タンクは，設計基準事故対処設備と兼用しており，設計基準事故対処設備としての容量が，想定される重大事故等時において，その機能を発揮することが必要な重大事故等対処設備が，事故後7日間連続運転するために必要となる燃料を供給できる容量を有している ため，設計基準事故対処設備と同仕様で設計する。 タンクローリは，想定される重大事故等時において，その機能を発揮することが必要な重大事故等対処設備に，燃料を補給できる容量 を有するものを 1 セット 2 台使用する。保有数は， 1 セット 2 台に加 えて，故障時及び保守点検による待機除外時のバックアップ用とし て 1 台の合計 3 台を保管する。	おいて，1時間以内に中央制御室において行う簡易な操作での切離 し以外の負荷の切離しを行わず 8 時間，その後必要な負荷以外を切 り離して 16 時間の合計 24 時間にわたり必要な設備に電力を供給で きる容量を有する設計とする。 125 V 代替蓄電池は，想定される重大事故等時において， 8 時間後 に不要な負荷の切離しを行い， 24 時間にわたり必要な設備に電力を供給できる容量を有する設計とする。 250 V 蓄電池は，想定される重大事故等時において， 1 時間後に中央制御室において行う簡易な操作での切離し以外の負荷の切離しを行わず， 24 時間にわたり必要な設備に電力を供給できる容量を有す る設計とする。 第 3 直流電源設備用 125 V 代替蓄電池は，想定される重大事故等時 において， 8 時間後に不要な負荷の切離しを行い， 24 時間にわたり必要な設備に電力を供給できる容量を有する設計とする。 第 3 直流電源設備用 250 V 代替蓄電池は，想定される重大事故等時 において，負荷の切離しを行わず， 24 時間にわたり必要な設備に電力を供給できる容量を有する設計とする。 $125 V$ 代替充電器は，想定される重大事故等時において，必要な設備に電力を供給できる容量を有する設計とする。 250 V 充電器は，想定される重大事故等時において，必要な設備に電力を供給できる容量を有する設計とする。 ガスタービン発電機接続盤，緊急用高圧母線 2F 系，緊急用高圧母線 $2 G$ 系，緊急用動力変圧器 $2 G$ 系及び緊急用低圧母線 2 G 系は，想定 される重大事故等時において，必要な設備に電力を供給できる容量 を有する設計とする。 軽油タンクは，設計基準事故対処設備と兼用しており，設計基準事故対処設備としての容量が，想定される重大事故等時において，その機能を発揮することが必要な重大事故等対処設備が，事故後7日間連続運転するために必要となる燃料を供給できる容量を有している ため，設計基準事故対処設備と同仕様で設計する。 タンクローリは，想定される重大事故等時において，その機能を発揮することが必要な重大事故等対処設備に，燃料を補給できる容量 を有するものを 1 セット 2 台使用する。保有数は， 1 セット 2 台に加 えて，故障時及び保守点検による待機除外時のバックアップ用とし て 1 台の合計 3 台を保管する。	表現の差異設計の差異 －女川 2 号は，不要負荷の切離しを行 い 24 時間にわたり給電できる設計と している。 －所内常設直流電源設備（3系統目） として 125 V 系統と 250 V 系統があり，電源構成の相違。

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6，7 号炬（2022．8．23提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	所内常設蓄電式直流電源設備及び常設代替直流電源設備の 250 V 系統は，想定される重大事故等時において，通常時の系統構成として使用する場合と同じ系統構成で重大事故等対処設備として使用する設計とする。 常設代替直流電源設備の 125 V 系統及び可搬型代替直流電源設備 は，想定される重大事故等時において，通常時の系統構成から遮断器操作等により速やかに切り替えられる設計とする。 代替所内電気設備は，想定される重大事故等時において，通常時の系統構成から遮断器操作により速やかに切り替えられる設計とす る。 緊急用高圧母線 2 F 系は，ガスタービン発電機起動後に自動投入し，中央制御室の操作スイッチ等による操作も可能な設計とする。 緊急用高圧母線 2 G 采，緊急用交流電源切替盤 $2 G$ 系，緊急用交流電源切替盤 2C系，緊急用交流電源切替盤 2D 系，非常用高圧母線 $2 C$系及び非常用高圧母線 2 D 系は，中央制御室の操作スイッチ等により操作が可能な設計とする。 燃料補給設備は，想定される重大事故等時において，通常時の系統構成から弁操作等により速やかに切り替えられる設計とする。 軽油タンク及びガスタービン発電設備軽油タンクは，系統構成に必要な弁を，設置場所での手動操作が可能な設計とする。 タンクローリは，付属の操作スイッチにより，設置場所での操作が可能な設計とし，系統構成に必要な弁は設置場所での手動操作が可能な設計とする。 タンクローリは，車両として屋外のアクセスルートを通行してア クセス可能な設計とするとともに，設置場所にて輪留めによる固定等が可能な設計とする。 タンクローリを接続する接続口については，専用の接続方式とし，接続治具を用いてホースを確実に接続することができる設計とす	所内常設蓄電式直流電源設備及び常設代替直流電源設備の 250 V 系統は，想定される重大事故等時において，通常時の系統構成として使用する場合と同じ系統構成で重大事故等対処設備として使用する設計とする。 常設代替直流電源設備の 125 V 系統及び可搬型代替直流電源設備 は，想定される重大事故等時において，通常時の系統構成から遮断器操作等により速やかに切り替えられる設計とする。 所内常設直流電源設備（ 3 系統目）は，想定される重大事故等時に おいて，通常時の系統構成から遮断器操作により速やかに切り替え られる設計とする。 代替所内電気設備は，想定される重大事故等時において，通常時の系統構成から遮断器操作により速やかに切り替えられる設計とす る。 緊急用高圧母線 2 F 系は，ガスタービン発電機起動後に自動投入し，中央制御室の操作スイッチ等による操作も可能な設計とする。 緊急用高圧母線 $2 G$ 采，緊急用交流電源切替盤 $2 G$ 系，緊急用交流電源切替盤 $2 C$ 系，緊急用交流電源切替盤 $2 D$ 系，非常用高圧母線 $2 C$系及び非常用高圧母線 2 D 系は，中央制御室の操作スイッチ等により操作が可能な設計とする。 燃料補給設備は，想定される重大事故等時において，通常時の系統構成から弁操作等により速やかに切り替えられる設計とする。 軽油タンク及びガスタービン発電設備軽油タンクは，系統構成に必要な弁を，設置場所での手動操作が可能な設計とする。 タンクローリは，付属の操作スイッチにより，設置場所での操作が可能な設計とし，系統構成に必要な弁は設置場所での手動操作が可能な設計とする。 タンクローリは，車両として屋外のアクセスルートを通行してア クセス可能な設計とするとともに，設置場所にて輪留めによる固定等が可能な設計とする。 タンクローリを接続する接続口については，専用の接続方式とし，接続治具を用いてホースを確実に接続することができる設計とす	設計の差異 －女川 2 号の所内常設直流電源設備 （3系統目）の系統構成は遮断器操作のみである。（他 の機器の操作が必要な場合は「等」を入れ区別してい る。）

所内常設直流電源設備（3 系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	る。	る。	
		「10．2．3 主要設備及び仕様」の記述を以下のとおり変更する。	表現の差異 －女川は各項や各
	10．2．3 主要設備及び仕様	10．2．3 主要設備及び仕様	章図表の変更箇所
	代替電源設備の主要機器仕様を第 10．2－1 表に示す。	代替電源設備の主要機器仕様を第 10．2－1 表に示す。	を示す前にリード
		「10．2．4 試験検查のの記述を以下のとおり変更する	文を入れている。表現の差異
			－女川は各項や各
	10．2．4 試験検査	10．2．4 試験検査	章図表の変更箇所
	基本方針については，「1．1．7．4 操作性及び試験•検査性」に示	基本方針については，「1．1．7．4 操作性及び試験•検査性」に示	を示す前にリード
	す。 ガスタービン発電機は，発電用原子炉の運転中又は停止中に機能•	す。 ガスタービン発電機は，発電用原子绾の運転中又は停止中に機能•	文を入れている。
	性能及び外観の確認が可能な設計とするとともに，分解が可能な設	性能及び外観の確認が可能な設計とするとともに，分解が可能な設	
	計とする。	計とする。	
	ガスタービン発電設備軽油タンクは，発電用原子炉の運転中又は	ガスタービン発電設備軽油タンクは，発電用原子炬の運転中又は	
	停止中に漏えいの有無の確認が可能な設計とする。また，発電用原子	停止中に漏えいの有無の確認が可能な設計とする。また，発電用原子	
	炉の停止中に内部の確認が可能な設計とする。	灲の停止中に内部の確認が可能な設計とする。	
	ガスタービン発電設備燃料移送ポンプは，発電用原子炉の運転中	ガスタービン発電設備燃料移送ポンプは，発電用原子炉の運転中	
	又は停止中に機能•性能及び漏えいの有無の碓認が可能な設計とす	又は停止中に機能•性能及び漏えいの有無の確認が可能な設計とす	
	る。	る。	
	また，ガスタービン発電設備燃料移送ポンプは，発電用原子炉の運	また，ガスタービン発電設備燃料移送ポンプは，発電用原子炉の運	
	転中又は停止中に分解及び外観の確認が可能な設計とする。	転中又は停止中に分解及び外観の確認が可能な設計とする。	
	電源車は，発電用原子炉の運転中又は停止中に機能•性能の確認が	電源車は，発電用原子炉の運転中又は停止中に機能•性能の確認が	
	可能な設計とするとともに，分解又は取替えが可能な設計とする。ま	可能な設計とするとともに，分解又は取替えが可能な設計とする。ま	
	た，電源車は，車両として運転状態の確認及び外観の確認が可能な設	た，電源車は，車両として運転状態の確認及び外観の確認が可能な設	
	計とする。	計とする。	
	125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 $2 \mathrm{~B}, 125 \mathrm{~V}$ 代替蓄電池， 250 V 蓄電池，	125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 $2 \mathrm{~B}, 125 \mathrm{~V}$ 代替蓄電池， 250 V 蓄電池，	
	125 V 充電器 $2 \mathrm{~A}, 125 \mathrm{~V}$ 充電器 2 B ， 125 V 代替充電器及び 250 V 充電器	第3直流電源設備用 125 V 代替蓄電池，第3直流電源設備用 250 V 代	設備名称の差異
	は，発電用原子炉の運転中又は停止中に機能•性能及び外観の確認が	替蓄電池， 125 V 充電器 $2 \mathrm{~A}, 125 \mathrm{~V}$ 充電器 $2 \mathrm{~B}, 125 \mathrm{~V}$ 代替充電器及び 250 V	設計の差異
	可能な設計とする。	充電器は，発電用原子炉の運転中又は停止中に機能•性能及び外観の	－電源構成の相違。
		確認が可能な設計とする。	

柏崎刈羽 6， 7 号炉（2022．8．23提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	ガスタービン発電機接続盤，緊急用高圧母線 2 F 系，緊急用高圧母線 $2 G$ 系，緊急用動力変圧器 $2 G$ 系，緊急用低圧母線 $2 G$ 系，緊急用交流電源切替盤 $2 G$ 系，緊急用交流電源切替盤 $2 C$ 系，緊急用交流電源切替盤 $2 D$ 系，非常用高圧母線 $2 C$ 系及び非常用高圧母線 2 D 系は，発電用原子炉の停止中に機能•性能の確認が可能な設計とする。また，発電用原子炉の運転中又は停止中に外観の確認が可能な設計とす る。 軽油タンクは，発電用原子炉の運転中又は停止中に漏えいの有無 の確認が可能な設計とする。また，発電用原子炉の停止中に内部の確認が可能な設計とする。 タンクローリは，発電用原子炉の運転中又は停止中に外観，機能•性能及び漏えいの有無の確認が可能な設計とするとともに，分解又 は取替えが可能な設計とする。また，タンクローリは，車両として運転状態の確認及び外観の碓認が可能な設計とする。	ガスタービン発電機接続盤，緊急用高圧母線 2 F 系，緊急用高圧母線 $2 G$ 系，緊急用動力変圧器 $2 G$ 系，緊急用低圧母線 $2 G$ 系，緊急用交流電源切替盤 $2 G$ 系，緊急用交流電源切替盤 $2 C$ 系，緊急用交流電源切替盤 2 D 系，非常用高圧母線 $2 C$ 系及び非常用高圧母線 2 D 系は，発電用原子炉の停止中に機能•性能の確認が可能な設計とする。また，発電用原子炉の運転中又は停止中に外観の確認が可能な設計とす る。 軽油タンクは，発電用原子炉の運転中又は停止中に漏えいの有無 の確認が可能な設計とする。また，発電用原子炉の停止中に内部の確認が可能な設計とする。 タンクローリは，発電用原子炉の運転中又は停止中に外観，機能•性能及び漏えいの有無の確認が可能な設計とするとともに，分解又 は取替えが可能な設計とする。また，タンクローリは，車両として運転状態の確認及び外観の確認が可能な設計とする。	
		「第 $10.2-1$ 表 代替電源設備の主要機器仕樣」の記載について， $「(5)$ 」を「（6）」とし，「（6）」を「（7）」とし，「（7）」を「（8）」と読 み替えた上で，以下のとおり「（5）」を追加する。	記載䈏所の差異 －柏崎は「第 10.2 -1 表 代替電源設備の主要機器任様」の中に記載。

```
灰色(グレーハッチング):前回許可からの変更箇所
子:設侕,運用又は体制の相違(設計方針の相違
緑字:記載表現,記載箇所,設備名称の相違(実質的な相違なし)
```

所内常設直流電源設備 (3系統目) 添付書類八 比較表

灰色（グレーハッチング）：前回許可からの変更箇所
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）

所内常設直流電源設備（3系統目）添付書類八 比較表

灰色（グレーハッチング）：前回許可からの変更箇所赤字：設備，運用又は体制の相違（設計方針の相違）緑字：記載表現，記載綯所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書	比較表	2024年2月9日 02DS－2－3（改 5）
柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炬 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	c． 125 V 充電器 2 A 第 10．1－3表 直流電源設備の主要機器仕様に記載する。 d． 125 V 充電器 $2 B$ 第 10．1－3表 直流電源設備の主要機器仕様に記載する。 （4）常設代替直流電源設備 a． 125 V 代替蓄電池 組 数 1 電 圧 125 V 容 量 約 $2,000 \mathrm{Ah}$ b． 250 V 蓄電池 組 数 1 電 圧 250V 容 量 約 $6,000 \mathrm{Ah}$ （5）可搬型代替直流電源設備 a ． 125 V 代替蓄電池 第 10．2－1 表 代替電源設備の主要機器仕様「（4）a． 125 V代替蓄電池」に記載する。 b． 250 V 蓄電池 第10．2－1 表 代替電源設備の主要機器仕様「（4）b．250V蓄電池」に記載する。	（5）所内常設直流電源設備（3系䖻目）	設備名称の差異 設計の差異 －電源構成の相違。

灰色（グレーハッチング）：前回許可からの変更箇所
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）

所内常設直流電源設備（3系統目）添付書類八 比較表

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類ノ	比較表	2024年2月9日 02DS－2－3（改 5）
柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炬 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	c．緊急用動力変圧器 個 数 1 容 量 約 750 kVA 定格電圧 6． $75 \mathrm{kV} / 460 \mathrm{~V}$ d．緊急用低圧母線 個 数 3 定格電圧 600 V e．緊急用交流電源切替盤 個 数 3 定格電圧 600 V f．非常用高圧母線 第 10．1－1 表 メタルクラッド開閉装置（高圧母線）の主要機器仕様に記載する。 （7）燃料補給設備 a．軽油タンク 第 10．2－1 表 代替電源設備の主要機器仕様「（1）d．軽油タンク」に記載する。 b．ガスタービン発電設備軽油タンク 第 10．2－1 表 代替電源設備の主要機器仕様「（1）b．ガス タービン発電設備軽油タンク」に記載する。 c．タンクローリ 第 10．2－1 表 代替電源設備の主要機器仕様「（1）e．タンク ローリ」に記載する。		

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6，7 号炉（2022．8．23提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更笽所のみ記載	差異理由
		「第10．2－9図」を「第10．2－11図」とし，「第10．2－10図」を「第10．2－12図」とし，「第10．2－11図」を「第10．2－13図」とし，「第10．2－12図」を「第10．2－14図」とし，「第10．2－13図」を「第 10．2－15 図」とし，「第10．2－14図」を「第10．2－16図」とし，「第 10．2－15 図」を「第10．2－17図」とし，「第10．2－16図」を「第10．2－ 18 図」と読み替えた上で，「第10．1－3図 直流電源単線結線図」，「第 10．2－1 図 代替電源設備系統概要図（常設代替交流電源設備 による給電）（ガスタービン発電機から非常用所内電気設備を経由し て給電）」，「第 10．2－2図 代替電源設備系統概要図（常設代替交流電源設備による給電）（ガスタービン発電機から代替所内電気設備 を経由して給電）」，「第10．2－4図 代替電源設備系統概要図（可搬型代替交流電源設備による給電）（電源車から非常用所内電気設備 を経由して給電）」，「第 $10.2-5$ 図 代替電源設備系統概要図（可搬型代替交流電源設備による給電）（電源車から代替所内電気設備を経由して給電）」，「第 10．2－6図 代替電源設備系統概要図（所内常設蓄電式直流電源設備による給電）」，「第 $10.2-7$ 図 代替電源設備系統概要図（常設代替直流電源設備による給電）（ 125 V 代替蓄電池による給電）」，「第 10．2－8図 代替電源設備系統概要図（常設代替直流電源設借による給電）（ 250 V 蓄電池による給電）」，「第 10．2－11 図 代替電源設備系䖻概要図（可搬型代替直流電源設備に よる給電）（ 125 V 代替蓄電池による給電）」，「第 $10.2-12$ 図 代替電源設備系統概要図（可搬型代替直流電源設備による給電）（250V蓄電池による給電）」，「第 10．2－13図 代替電源設備系統概要図 （可搬型代替直流電源設備による給電）（電源車から代替所内電気設備を経由して給電（ 125 V 系䖻））」，「第 $10.2-14$ 図 代替電源設備系統概要図（可搬型代替直流電源設備による給電）（電源車から代替所内電気設備を経由して給電（ 250 V 系統））」，「第 $10.2-15$ 図 代替電源設備系統概要図（代替所内電気設備による給電）」を以下のとおり変更し，「第10．2－9図 代替電源設備系統概要図（所内常設直流電源設備（ 3 系統目）による給電）（第3直流電源設備用 $125 V$ 代替蓄電池による給電）」，「第 $10.2-10$ 図 代替電源設備系統概要図（所内常設直流電源設備（ 3 系統目）による給電）（第 3 直流電源設備用 250 V 代替蓄電池による給電）」を以下のとおり追加する。	表現の差異 －女川は各項や各章図表の変更箇所 を示す前にリード文を入れている。

柏崎刈羽 6,7 号炬（2022．8．23提出）

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	第 10．2－5 図 代替電源設備系統概要図（可搬型代替交流電源設備に よる給電）（電源車から代替所内電気設備を経由して給電）	第 10．2－5 図 代替電源設備系統概要図（可搬型代替交流電源設備に よる給電）（電源車から代替所内電気設備を経由して給電）	設計の差異 －電源構成の差異。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	第 10．2－6 図 代替電源設備系統概要図（所内常設蓄電式直流電源設備による給電）	第 10．2－6 図 代替電源設備系統概要図（所内常設蓄電式直流電源設備による給電）	設計の差異 －電源構成の差異。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	第 10．2－7 図 代替電源設備系統概要図（常設代替直流電源設備によ る給電）（ 125 V 代替蓄電池による給電）	第 10．2－7 図 代替電源設備系統概要図（常設代替直流電源設備によ る給電）（ 125 V 代替蓄電池による給電）	設計の差異 －電源構成の差異。

灰色（グレーハッチング）：前回許可からの変更箇所赤字：設備，運用又は体制の相違（設計方針の相違）緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）	添付書類八 比較表	2024年2月9日 02DS－2－3（改 5）
柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
			設計の差異 －電源構成の差異。

灰色（グレーハッチング）：前回許可からの変更箇所赤字：設備，運用又は体制の相違（設計方針の相違）緑字：記載表現，記載綯所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）	添付書類八 比較表	$\begin{aligned} & 2024 \text { 年 } 2 \text { 月 } 9 \text { 日 } \\ & \text { 02DS-2-3 (改 5) } \end{aligned}$
柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審查許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
		第 10．2－10 図 代替電源設備系統概要図（所内常設直流電源設備（3系統目）による給電）（第3直流電源設備用 250 V 代替蓄電池による給電）	設計の差異 －申請号炬及び電源構成の差異。

柏崎对羽 6,7 号炬（2022．8．23提出）

[^0]: 所内常設直流電源設備（3系統目）添付書類八 比較表

[^1]: 所内常設直流電源設備（3 系統目）添付書類八 比較表

