柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防謢：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
		五 発電用原子炬及びその附属施設の位置，構造及び設備 2 号炉に関して記述を以下のとおり変更する。 $「$ ニ 核燃料物質の取扱施設及び貯蔵施設の構造及び設備」の記述を以下のとおり変更する。 二 核燃料物質の取扱施設及び貯蔵施設の構造及び設備 「（3）核燃料物質貯蔵用冷却設備の構造及び冷却能力」の 「（ii）使用済燃料プールの泠却等のための設備」の記述を以下 のとおり変更する。	表現の差異 －女川は各項や各章図表の変更箇所を示す前にリード文 を入れている。
	（3）核燃料物質貯蔵用泠却設備の構造及び冷却能力 （ii）使用済燃料プールの泠却等のための設備 使用済燃料プールの泠却機能又は注水機能が喪失し，又は使用済燃料プールからの水の漏えいその他の要因により当該使用済燃料プールの水位が低下した場合において使用済燃料 プール内燃料体等を泠却し，放射線を遮蔽し，及び臨界を防止するために必要な重大事故等対処設備を設置及び保管す る。 使用済燃料プールからの大量の水の漏えいその他の要因に より使用済燃料プールの水位が異常に低下した場合におい て，使用済燃料プール内燃料体等の著しい損傷の進行を緩和 し，及び臨界を防止するために必要な重大事故等対処設備を設置及び保管する。 使用済燃料プールの泠却等のための設備のらち，使用済燃料プールの泠却機能又は注水機能が喪失し，又は使用済燃料 プールからの小規模な水の漏えいその他の要因により使用済燃料プールの水位が低下した場合においても使用済燃料プー ル内燃料体等を泠却し，放射線を遮蔽し，及び臨界を防止で きるよう使用済燃料プールの水位を維持するための設備とし	（3）核燃料物質貯蔵用泠却設備の構造及び冷却能力 （ii）使用済燃料プールの泠却等のための設備 使用済燃料プールの泠却機能又は注水機能が喪失し，又は使用済燃料プールからの水の漏えいその他の要因により当該使用済燃料プールの水位が低下した場合において使用済燃料 プール内燃料体等を泠却し，放射線を遮蔽し，及び臨界を防止するために必要な重大事故等対処設備を設置及び保管す る。 使用済燃料プールからの大量の水の漏えいその他の要因に より使用済燃料プールの水位が異常に低下した場合におい て，使用済燃料プール内燃料体等の著しい損傷の進行を緩和 し，及び臨界を防止するために必要な重大事故等対処設備を設置及び保管する。 使用済燃料プールの泠却等のための設備のらち，使用済燃料プールの泠却機能又は注水機能が喪失し，又は使用済燃料 プールからの小規模な水の漏えいその他の要因により使用済燃料プールの水位が低下した場合においても使用済燃料プー ル内燃料体等を泠却し，放射線を遮蔽し，及び臨界を防止で きるよう使用済燃料プールの水位を維持するための設備とし	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防謢：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	て，燃料プール代替注水系（常設配管）及び燃料プール代替注水系（可搬型）を設ける。 また，使用済燃料プールの泠却等のための設備のらち，使用済燃料プールからの大量の水の漏えいその他の要因により使用済燃料プールの水位が異常に低下した場合においても使用済燃料プール内燃料体等の著しい損傷を緩和し，及び臨界 を防止するための設備として，燃料プールスプレイ系（常設配管）及び燃料プールスプレイ系（可搬型）を設ける。 使用済燃料プールに接続する配管の破損等により，燃料プ ール泠却浄化系配管からサイフォン現象による水の漏えいが発生した場合に，漏えいの継続を防止するため，燃料プール泠却浄化系戻り配管上部にサイフォンブレーク孔を設ける。 使用済燃料プールの泠却等のための設備のらち，使用済燃料プール内燃料体等の著しい損傷に至った場合において大気 への放射性物質の拡散を抑制するための設備として放水設備 （大気への拡散抑制設備）を設ける。 使用済燃料プールの泠却等のための設備のらち，重大事故等時において，使用済燃料プールの状態を監視するための設備として，使用済燃料プールの監視設備を設ける。 a．使用済燃料プールの泠却機能若しくは注水機能の喪失時又は使用済燃料プール水の小規模な漏えい発生時に用いる設備 （a－1）燃料プール代替注水系（常設配管）による使用済燃料プールへの注水 残留熱除去系（燃料プール水の冷却）及び燃料プール冷却浄化系の有する使用済燃料プールの泠却機能喪失又は残留熱除去系ポンプによる使用済燃料プールへの補給機能が喪失し，又は使用済燃料プールに接続する配管の破損等により使用済燃料プール水の小規模な漏 えいにより使用済燃料プールの水位が低下した場合 に，使用済燃料プール内燃料体等を泠却し，放射線を遮蔽し，及び臨界を防止するための重大事故等対処設備 として，燃料プール代替注水系（常設配管）は，大容量送水ポンプ（タイプ I ）により，代替淡水源の水を燃料 プール泠却浄化系配管等から使用済燃料プールへ注水 することで，使用済燃料プールの水位を維持できる設	て，燃料プール代替注水系（常設配管）及び燃料プール代替注水系（可搬型）を設ける。 また，使用済燃料プールの泠却等のための設備のらち，使用済燃料プールからの大量の水の漏えいその他の要因により使用済燃料プールの水位が異常に低下した場合においても使用済燃料プール内燃料体等の著しい損傷を緩和し，及び臨界 を防止するための設備として，燃料プールスプレイ系（常設配管）及び燃料プールスプレイ系（可搬型）を設ける。 使用済燃料プールに接続する配管の破損等により，燃料プ ール泠却浄化系配管からサイフォン現象による水の漏えいが発生した場合に，漏えいの継続を防止するため，燃料プール冷却浄化系戻り配管上部にサイフォンブレーク孔を設ける。 使用済燃料プールの泠却等のための設備のらち，使用済燃料プール内燃料体等の著しい損傷に至った場合において大気 への放射性物質の拡散を抑制するための設備として放水設備 （大気への拡散抑制設備）を設ける。 使用済燃料プールの泠却等のための設備のらち，重大事故等時において，使用済燃料プールの状態を監視するための設備として，使用済燃料プールの監視設備を設ける。 a．使用済燃料プールの泠却機能若しくは注水機能の喪失時又は使用済燃料プール水の小規模な漏えい発生時に用いる設備 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第2206019号をもって設置変更許可）の五，二，（3）， （ii），a．使用済燃料プールの冷却機能若しくは注水機能の喪失時又は使用済燃料プール水の小規模な漏えい発生時に用いる設備の記載内容に同じ。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更笡所のみ記載	差異理由
	計とする。 また，使用済燃料貯蔵ラックの形状を維持すること により臨界を防止できる設計とする。 燃料プール代替注水系（常設配管）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要とな る水の供給設備である大容量送水ポンプ（タイプ I）に より海を利用できる設計とする。また，大容量送水ポン プ（タイプI）は，空冷式のディーゼルエンジンにより駆動できる設計とする。 （a－2）燃料プール代替注水系（可搬型）による使用済燃料 プールへの注水 残留熱除去系（燃料プール水の泠却）及び燃料プー ル泠却浄化系の有する使用済燃料プールの冷却機能喪失又は残留熱除去系ポンプによる使用済燃料プールへ の補給機能が喪失し，又は使用済燃料プールに接続す る配管の破損等により使用済燃料プール水の小規模な漏えいにより使用済燃料プールの水位が低下した場合 に，使用済燃料プール内燃料体等を泠却し，放射線を遮蔽し，及び臨界を防止するための重大事故等対処設備として，燃料プール代替注水系（可搬型）は，大容量送水ポンプ（タイプ I ）により，代替淡水源の水を ホース等を経由して使用済燃料プールへ注水すること で，使用済燃料プールの水位を維持できる設計とする。 また，使用済燃料貯蔵ラックの形状を維持すること により臨界を防止できる設計とする。 燃料プール代替注水系（可搬型）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要とな る水の供給設備である大容量送水ポンプ（タイプ I ） により海を利用できる設計とする。また，大容量送水 ポンプ（タイプ I）は，空冷式のディーゼルエンジン により駆動できる設計とする。 b．使用済燃料プールからの大量の水の漏えい発生時に用い る設備 （a）燃料プールスプレイ （a－1）燃料プールスプレイ系（常設配管）による使用済燃料プールへのスプレイ	b．使用済燃料プールからの大量の水の漏えい発生時に用い る設備 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもつて設置変更許可）の五，二，（3），	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	使用済燃料プールからの大量の水の漏えい等により使用済燃料プールの水位が異常に低下した場合に，燃料損傷を緩和するとともに，燃料損傷時には使用済燃料プール内燃料体等の上部全面にスプレイすることに よりできる限り環境への放射性物質の放出を低減する ための重大事故等対処設備として，燃料プールスプレ イ系（常設配管）は，大容量送水ポンプ（タイプ I ） により，代替淡水源の水を燃料プール泠却浄化系配管等を経由してスプレイノズルから使用済燃料プール内燃料体等に直接スプレイすることで，燃料損傷を緩和 するとともに，環境への放射性物質の放出をできる限 り低減できる設計とする。 また，スプレイや蒸気環境下でも臨界にならないよ ら配慮したラック形状によって，臨界を防止すること ができる設計とする。 燃料プールスプレイ系（常設配管）は，代替淡水源 が枯渴した場合において，重大事故等の収束に必要と なる水の供給設備である大容量送水ポンプ（タイプ I ） により海を利用できる設計とする。また，大容量送水 ポンプ（タイプ I）は，空冷式のディーゼルエンジン により駆動できる設計とする。 （a－2）燃料プールスプレイ系（可搬型）による使用済燃料 プールへのスプレイ 使用済燃料プールからの大量の水の漏えい等により使用済燃料プールの水位が異常に低下した場合に，燃料損傷を緩和するとともに，燃料損傷時には使用済燃料プール内燃料体等の上部全面にスプレイすることに よりできる限り環境への放射性物質の放出を低減する ための重大事故等対処設備として，燃料プールスプレ イ系（可搬型）は，大容量送水ポンプ（タイプ I ）に より，代替淡水源の水をホース等を経由してスプレイ ノズルから使用済燃料プール内燃料体等に直接スプレ イすることで，燃料損傷を緩和するとともに，環境へ の放射性物質の放出をできる限り低減できる設計とす る。 また，スプレイや蒸気環境下でも臨界にならないよ	（ii），b．使用済燃料プールからの大量の水の漏えい発生時に用いる設備の記載内容に同じ。	

柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	ら配慮したラック形状によって，臨界を防止すること ができる設計とする。 燃料プールスプレイ系（可搬型）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要とな る水の供給設備である大容量送水ポンプ（タイプI） により海を利用できる設計とする。また，大容量送水 ポンプ（タイプ I ）は，空泠式のディーゼルエンジン により駆動できる設計とする。 （b）大気への放射性物質の拡散抑制 （b－1）放水設備（大気への拡散抑制設備）による大気への放射性物質の拡散抑制 使用済燃料プールからの大量の水の漏えい等により使用済燃料プールの水位の異常な低下により，使用済燃料プール内燃料体等の著しい損傷に至った場合にお いて，燃料損傷時にはできる限り環境への放射性物質 の放出を低減するための重大事故等対処設備として，放水設備（大気への拡散抑制設備）は，大容量送水ポ ンプ（タイプII）により海水をホースを経由して放水砲から原子炉建屋へ放水することで，環境への放射性物質の放出を可能な限り低減できる設計とする。 本系統の詳細については，「リ（3）（iii）e 。発電所外 への放射性物質の拡散を抑制するための設備」に記載 する。 c．重大事故等時の使用済燃料プールの監視に用いる設備 （a）使用済燃料プールの監視設備による使用済燃料プール の状態監視 使用済燃料プールの監視設備として，使用済燃料プー ル水位／温度（ヒートサーモ式），使用済燃料プール水位 ／温度（ガイドパルス式）及び使用済燃料プール上部空間放射線モニタ（高線量，低線量）は，想定される重大事故等により変動する可能性のある範囲にわたり測定可能 な設計とする。 また，使用済燃料プール監視カメラは，想定される重大事故等時の使用済燃料プールの状態を監視できる設計 とする。 使用済燃料プール水位／温度（ヒートサーモ式）及び使	c ．重大事故等時の使用済燃料プールの監視に用いる設備 （a）使用済燃料プールの監視設備による使用済燃料プール の状態監視 使用済燃料プールの監視設備として，使用済燃料プー ル水位／温度（ヒートサーモ式），使用済燃料プール水位 ／温度（ガイドパルス式）及び使用済燃料プール上部空間放射線モニタ（高線量，低線量）は，想定される重大事故等により変動する可能性のある範囲にわたり測定可能 な設計とする。 また，使用済燃料プール監視カメラは，想定される重大事故等時の使用済燃料プールの状態を監視できる設計 とする。 使用済燃料プール水位／温度（ヒートサーモ式）及び使	

[^0]（有毒ガス防護：2022年6月1日許可）
用済燃料プール上部空間放射線モニタ（高線量，低線量） は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能であり，使用済燃料プール水位／温度（ガイドパルス式）及び使用済燃料プール監視カメラは，常設代替交流電源設備又は可搬型代替交流電源設備から給電が可能な設計とする。
d．使用済燃料プールから発生する水蒸気による悪影響を防止するための設備
（a）燃料プール泠却浄化系による使用済燃料プールの除熱使用済燃料プールから発生する水蒸気による悪影響を防止するための重大事故等対処設備として，燃料プール泠却浄化系は，使用済燃料プールの水をポンプにより熱交換器等を経由して循環させることで，使用済燃料プールを泠却 できる設計とする。
燃料プール冷却浄化系は，非常用交流電源設備及び原子炉補機冷却水系（原子灲補機冷却海水系を含む。）が機能喪失した場合でも，常設代替交流電源設備及び原子炉補機代替冷却水系を用いて，使用済燃料プールを除熱できる設計 とする。
燃料プール冷却浄化系で使用する原子炉補機代替冷却水系は，熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプ I ）により熱交換器ユニットに海水を送水することで，燃料プール泠却浄化系熱交換器等 で発生した熱を最終的な熱の逃がし場である海へ輸送でき る設計とする。
常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備については，「ヌ（2）（iv）代替電源設備」に記載す る。

用済燃料プール上部空間放射線モニタ（高線量，低線量） は，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目）又は可搬型代替直流電源設備から給電が可能であり，使用済燃料プール水位／温度（ガイドパルス式）及び使用済燃料プール監視 カメラは，常設代替交流電源設備又は可搬型代替交流電源設備から給電が可能な設計とする。
d．使用済燃料プールから発生する水蒸気による悪影響を防止するための設備
女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第2206019号をもって設置変更許可）の五，二，（3）， （ii），d．使用済燃料プールから発生する水蒸気による悪影響を防止するための設備の記載内容に同じ。

差異理由

常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（3系統目）及び可搬型代替直流電源設備については，「ヌ（2）（iv）代替電源設備」に記載する。

柏崎刈羽 6， 7 号炉（2022．8． 23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更笡所のみ記載	差異理由
	放水設備（大気への拡散抑制設備） 大容量送水ポンプ（タイプII） （「ホ（4）（vi）重大事故等の収束に必要となる水の供給設備」他と兼用） 放水砲 （「リ（3）（ii）e．発電所外への放射性物質の拡散を抑制す るための設備」と兼用） 原子炬補機代替冷却水系 熱交換器ユニット （「ホ（4）（v）最終ヒートシンクへ熱を輸送するため の設備」他と兼用） 大容量送水ポンプ（タイプ I ） （「ニ（3）（ii）使用済燃料プールの冷却等のための設備」他と兼用）	放水設備（大気への拡散抑制設備） 大容量送水ポンプ（タイプII） （「ホ（4）（vi）重大事故等の収束に必要となる水の供給設備」他と兼用） 放水砲 （「リ（3）（ii）e．発電所外への放射性物質の拡散を抑制す るための設備」と兼用） 原子炉補機代替冷却水系 熱交換器ユニット （「ホ（4）（v）最終ヒートシンクへ熱を輸送するため の設備」他と兼用） 大容量送水ポンプ（タイプ I ） （「ニ（3）（ii）使用済燃料プールの冷却等のための設備」他と兼用）	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	原子炉冷却材圧力バウンダリ高圧時に発電用原子炉を冷却するための設備のらち，炬心を泠却するための設備 として，高圧代替注水系を設ける。また，設計基準事故対処設備である高圧炉心スプレイ系及び原子炉隔離時冷却系が全交流動力電源及び常設直流電源系統の機能喪失 により起動できない，かつ，中央制御室からの操作によ り高圧代替注水系を起動できない場合に，高圧代替注水系及び原子炉隔離時冷却系を現場操作により起動させ る。 （a－1）フロントライン系故障時に用いる設備 （ $\mathrm{a}-1$－1）高圧代替注水系による発電用原子炉の冷却 高圧炉心スプレイ系及び原子炉隔離時冷却系が機能喪失した場合の重大事故等対処設備として，高圧代替注水系は，蒸気タービン駆動ポンプにより復水貯蔵タンクの水を高圧炉心スプレイ系等を経由し て，原子炉圧力容器へ注水することで炉心を泠却で きる設計とする。 高圧代替注水系は，所内常設蓄電式直流電源設備 からの給電が可能な設計とし，所内常設蓄電式直流電源設備が機能喪失した場合でも，常設代替直流電源設備又は可搬型代替直流電源設備からの給電が可能な設計とし，中央制御室からの操作が可能な設計 とする。また，高圧代替注水系は，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備の機能喪失により中央制御室からの操作ができない場合においても，現場での人力によ る弁の操作により，原子炉冷却材圧力バウンダリの減圧対策及び原子炉冷却材圧力バウンダリ低圧時の冷却対策の準備が整うまでの期間にわたり，発電用原子炉の冷却を継続できる設計とする。 なお，人力による措置は容易に行える設計とする。 サポート系故障時に用いる設備 （a－2－1）原子炉隔離時冷却系の現場操作による発電用原子炉の泠却	原子炉冷却材圧力バウンダリ高圧時に発電用原子炉を冷却するための設備のらち，炉心を泠却するための設備 として，高圧代替注水系を設ける。また，設計基準事故対処設備である高圧灲心スプレイ系及び原子炉隔離時冷却系が全交流動力電源及び常設直流電源系統の機能喪失 により起動できない，かつ，中央制御室からの操作によ り高圧代替注水系を起動できない場合に，高圧代替注水系及び原子炉隔離時冷却系を現場操作により起動させ る。 （a－1）フロントライン系故障時に用いる設備 （a－1－1）高圧代替注水系による発電用原子炉の泠却 高圧炉心スプレイ系及び原子炉隔離時冷却系が機能喪失した場合の重大事故等対処設備として，高圧代替注水系は，蒸気タービン駆動ポンプにより復水貯蔵タンクの水を高圧灲心スプレイ系等を経由し て，原子炉圧力容器へ注水することで炉心を泠却で きる設計とする。 高圧代替注水系は，所内常設蓄電式直流電源設備 からの給電が可能な設計とし，所内常設蓄電式直流電源設備が機能喪失した場合でも，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目）又は可搬型代替直流電源設備からの給電が可能な設計と し，中央制御室からの操作が可能な設計とする。ま た，高圧代替注水系は，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備 （3系統目）及び可搬型代替直流電源設備の機能喪失により中央制御室からの操作ができない場合にお いても，現場での人力による弁の操作により，原子炉冷却材圧力バウンダリの減圧対策及び原子炉冷却材圧力バウンダリ低圧時の冷却対策の準備が整うま での期間にわたり，発電用原子炉の冷却を継続でき る設計とする。 なお，人力による措置は容易に行える設計とする。 サポート系故障時に用いる設備 女川原子力発電所発電用原子炉設置変更許可申請書 （ 2 号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付	表現の差異

和崎刈羽 6,7 号炉（2022．8．23 提出）

女川 2 号炬 適合性審查許可後完本
（有毒ガス防護：2022年6月1日許可）
全交流動力電源及び常設直流電源系統の機能喪失 により，高圧炬心スプレイ系及び原子炉隔離時冷却系での発電用原子炉の泠却ができない場合であっ て，中央制御室からの操作により高圧代替注水系が起動できない場合の重大事故等対処設備として，原子炉隔離時冷却系を現場操作により起動させて使用 する。
原子炉隔離時冷却系は，全交流動力電源及び常設直流電源系統が機能喪失した場合においても，現場 で弁を人力操作することにより起動し，蒸気タービ ン駆動ポンプにより復水貯蔵タンクの水を原子炉圧力容器へ注水することで原子炉冷却材圧力バウンダ リの減圧対策及び原子炉冷却材圧力バウンダリ低圧時の冷却対策の準備が整うまでの期間にわたり，発電用原子炉の泠却を継続できる設計とする。
なお，人力による措置は容易に行える設計とする。
（a－2－2）代替電源設備による原子炉隔離時冷却系の復旧
全交流動力電源が喪失し，原子炉隔離時冷却系の起動又は運転継続に必要な直流電源を所内常設蓄電式直流電源設備により給電している場合は，所内常設蓄電式直流電源設備の蓄電池が枯渴する前に常設代替交流電源設備，可搬型代替交流電源設備又は可搬型代替直流電源設備により原子炉隔離時冷却系の運転継続に必要な直流電源を確保する。
原子炉隔離時冷却系は，常設代替交流電源設備，可搬型代替交流電源設備又は可搬型代替直流電源設備からの給電により機能を復旧し，蒸気タービン駆動ポンプにより復水貯蔵タンクの水を原子炉圧力容器へ注水することで炉心を泠却できる設計とする。
（a－3）監視及び制御に用いる設備
原子炉冷却材圧力バウンダリが高圧の状態で発電用原子炉を泠却する場合に監視及び制御に使用する重大事故等対処設備として，原子炉水位（広帯域），原子炉水位（燃料域），原子炉水位（S A 広帯域）及び原子炉水位（S A燃料域）は原子炬水位を監視又は推定でき，原子炉圧力，原子炉圧力（SA），高圧代替注水系ポン

け，原規規発第2206019号をもって設置変更許可）の五，
ホ，（3），（ii），b，（a），（a－2）サポート系故障時に用
いる設備の記載内容に同じ。
（a－3）監視及び制御に用いる設備
女川原子力発電所発電用原子炉設置変更許可申請書
（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付
け，原規規発第2206019号をもって設置変更許可）の五，
ホ，（3），（ii），b，（a），（a－3）監視及び制御に用いる設備の記載内容に同じ。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	プ出口流量及び復水貯蔵タンク水位は原子炉圧力容器 へ注水するための高圧代替注水系の作動状況を確認で きる設計とする。 （a－4）事象進展抑制のために用いる設備 （ $\mathrm{a}-4-1$ ）ほら酸水注入系による進展抑制 高圧代替注水系及び原子炉隔離時冷却系を用いた発電用原子炉への高圧注水により原子炉水位を維持 できない場合を想定した重大事故等対処設備とし て，ほう酸水注入系は，ほら酸水注入系ポンプによ り，ほう酸水を原子炉圧力容器へ注入することで，重大事故等の進展を抑制できる設計とする。 本系統の詳細については，「へ（5）（x ii）緊急停止失敗時に発電用原子炉を未臨界にするための設備」 に記載する。 ［常設重大事故等対処設備］高圧代替注水系 高圧代替注水系ポンプ （「リ（3）（ii）c．原子炉格納容器下部の溶融炉心を泠却 するための設備」と兼用） ほう酸水注入系 ほう酸水注入系ポンプ （「へ（4）非常用制御設備」他と兼用） ほら酸水注入系貯蔵タンク （「へ（4）非常用制御設備」他と兼用） （c）原子炉椧却材圧力バウンダリ低圧時に発電用原子炉を冷却するための設備 原子炉冷却材圧力バウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能 が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するため，発電用原子炉を冷却す るために必要な重大事故等対処設備を設置及び保管す る。	（ $\mathrm{a}-4$ ）事象進展抑制のために用いる設備 女川原子力発電所発電用原子炉設置変更許可申請書 （2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付 け，原規規発第2206019号をもって設置変更許可）の五， ホ，（3），（ii），b，（a），（a－4）事象進展抑制のために用いる設備の記載内容に同じ。 ［常設重大事故等対処設備］高圧代替注水系 高圧代替注水系ポンプ （「リ（3）（ii）c．原子炉格納容器下部の溶融炉心を泠却 するための設備」と兼用） ほう酸水注入系 ほう酸水注入系ポンプ （「へ（4）非常用制御設備」他と兼用） ほう酸水注入系貯蔵タンク （「へ（4）非常用制御設備」他と兼用） （c）原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却するための設備 原子炉冷却材圧力バウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能 が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するため，発電用原子炉を泠却す るために必要な重大事故等対処設備を設置及び保管す る。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防謢：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	式直流電源設備又は常設代替直流電源設備からの給電が可能な設計とする。 なお，系統構成に必要な電動弁（交流）は，交流電源に期待できないことから設置場所にて操作 できる設計とする。 （c－1－1－3）低圧代替注水系（可搬型）による発電用原子炉 の泠却 残留熱除去系（低圧注水モード）及び低圧炉心 スプレイ系の機能が喪失した場合の重大事故等対処設備として，低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプ I ）により，代替淡水源 の水を残留熱除去系等を経由して原子炬圧力容器 へ注水することで炉心を泠却できる設計とする。 低圧代替注水系（可搬型）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要と なる水の供給設備である大容量送水ポンプ（タイ プ I ）により海を利用できる設計とする。 低圧代替注水系（可搬型）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備か らの給電が可能な設計とする。また，大容量送水 ポンプ（タイプI）は，空冷式のディーゼルエン ジンにより駆動できる設計とする。 （ $\mathrm{c}-1-2$ ）サポート系故障時に用いる設備 （c－1－2－1）低圧代替注水系（常設）による発電用原子炉の泠却 全交流動力電源喪失又は原子炉補機冷却水系 （原子炉補機泠却海水系を含む。）機能喪失による サポート系の故障により，残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系が起動できな い場合の重大事故等対処設備として使用する低圧代替注水系（常設）は，「ホ（3）（ii）b 。（c－1－1－1）低圧代替注水系（常設）（復水移送ポンプ）による発電用原子灲の泠却」及び「ホ（3）（ii）b 。（c－1－	必要な電動弁（直流）は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は所内常設直流電源設備（3系統目）からの給電が可能な設計と する。 なお，系統構成に必要な電動弁（交流）は，交流電源に期待できないことから設置場所にて操作 できる設計とする。 （c－1－1－3）低圧代替注水系（可搬型）による発電用原子炉 の泠却 女川原子力発電所発電用原子炉設置変更許可申請書（2 号発電用原子炉施設の変更）（令和 4 年 6月 1 日付け，原規規発第2206019号をもつて設置変更許可）の五，ホ，（3），（ii），b，（c），（c－1）， （ $\mathrm{c}-1-1$ ），（ $\mathrm{c}-1-1-3$ ）低圧代替注水系（可搬型） による発電用原子炉の泠却の記載内容に同じ。 （c－1－2）サポート系故障時に用いる設備 女川原子力発電所発電用原子炉設置変更許可申請書（ 2 号発電用原子炉施設の変更）（令和 4 年 6 月 1日付け，原規規発第2206019号をもって設置変更許可）の五，ホ，（3），（ii），b，（c），（c－1），（c－1－2） サポート系故障時に用いる設備の記載内容に同じ。	設計の差異 －所内常設直流電源設備（3系統目）か ら直流駆動低圧注水系（女川固有設備）へ供給できる設計としている。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	1－2）低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）による発電用原子炉の泠却」と同じで ある。 （c－1－2－2）低圧代替注水系（可搬型）による発電用原子炉 の冷却 全交流動力電源喪失又は原子炉補機冷却水系 （原子炉補機冷却海水系を含む。）機能喪失による サポート系の故障により，残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系が起動できな い場合の重大事故等対処設備として使用する低圧代替注水系（可搬型）は，「ホ（3）（ii）b ．（c－1－1－ 3）低圧代替注水系（可搬型）による発電用原子炉の冷却」と同じである。 （c－1－2－3）常設代替交流電源設備による残留熱除去系（低圧注水モード）の復旧 全交流動力電源喪失又は原子炉補機冷却水系 （原子炉補機冷却海水系を含む。）機能喪失による サポート系の故障により，残留熱除去系（低圧注水モード）が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，残留熱除去系（低圧注水モード）を復旧する。 残留熱除去系（低圧注水モード）は，常設代替交流電源設備からの給電により機能を復旧し，残留熱除去系ポンプによりサプレッションチェンバ のプール水を原子炉圧力容器へ注水することで炉心を泠却できる設計とする。 本系統に使用する冷却水は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炬補機代替冷却水系から供給できる設計とする。 （c－1－2－4）常設代替交流電源設備による低圧炬心スプレイ系の復旧 全交流動力電源喪失又は原子炉補機冷却水系 （原子炉補機冷却海水系を含む。）機能喪失による サポート系の故障により，低圧炉心スプレイ系が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，低圧炉心スプレ		

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	イ系を復旧する。 低圧炉心スプレイ系は，常設代替交流電源設備 からの給電により機能を復旧し，低圧灲心スプレ イ系ポンプによりサプレッションチェンバのプー ル水を原子炉圧力容器ヘスプレイすることで灲心 を冷却できる設計とする。 本系統に使用する泠却水は，原子炬補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計とする。 （ $c-1-3$ ）溶融炉心が原子炉圧力容器内に残存する場合に用 いる設備 （c－1－3－1）低圧代替注水系（常設）（復水移送ポンプ）によ る残留溶融炉心の泠却 炉心の著しい損傷，溶融が発生した場合におい て，原子炉圧力容器内に溶融炉心が存在する場合 に，溶融炬心を泠却し，原子炉格納容器の破損を防止するための重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ）は，復水移送ポンプにより，復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力容器へ注水すること で原子炉圧力容器内に存在する溶融炉心を泠却で きる設計とする。 低圧代替注水系（常設）（復水移送ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備 を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。ま た，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計と する。 本系統の詳細については，「ホ（3）（ii）b ．（c－1－ 1－1）低圧代替注水系（常設）（復水移送ポンプ） による発電用原子炉の冷却」に記載する。 （c－1－3－2）低圧代替注水系（可搬型）による残留溶融炉心 の泠却 炉心の著しい損傷，溶融が発生した場合におい て，原子炉圧力容器内に溶融炉心が存在する場合	（c－1－3）溶融炉心が原子炉圧力容器内に残存する場合に用 いる設備 女川原子力発電所発電用原子炉設置変更許可申請書（ 2 号発電用原子炉施設の変更）（令和 4 年 6 月 1日付け，原規規発第2206019号をもって設置変更許可）の五，ホ，（3），（ii），b，（c），（c－1），（c－1－3）溶融炉心が原子炉圧力容器内に残存する場合に用い る設備の記載内容に同じ。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	に，溶融炬心を泠却し，原子灲格納容器の破損を防止するための重大事故等対処設備として，低圧代替注水系（可搬型）は，大容量送水ポンプ（夕 イプ I ）により，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器へ注水することで原子炉圧力容器内に存在する溶融炉心を泠却できる設計とする。 低圧代替注水系（可搬型）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要と なる水の供給設備である大容量送水ポンプ（タイ プ I ）により海を利用できる設計とする。 低圧代替注水系（可搬型）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備か らの給電が可能な設計とする。また，大容量送水 ポンプ（タイプI）は，空冷式のディーゼルエン ジンにより駆動できる設計とする。 本系統の詳細については，「ホ（3）（ii）b ．（c－1－ 1－3）低圧代替注水系（可搬型）による発電用原子炉の泠却」に記載する。 （c－1－3－3）代替循環冷却系による残留溶融炉心の冷却炉心の著しい損傷，溶融が発生した場合におい て，原子炉圧力容器内に溶融炉心が存在する場合 の重大事故等対処設備として，代替循環冷却系は，代替循環冷却ポンプにより，残留熱除去系熱交換器にて冷却された，サプレッションチェンバのプ ール水を残留熱除去系を経由して原子炉圧力容器 へ注水することで原子炉圧力容器内に存在する溶融炉心を泠却できる設計とする。 本系統の詳細については，「リ（3）（ii）b 。原子炉格納容器の過圧破損を防止するための設備」に記載する。 （c－2）原子炉停止中の場合に用いる設備 （ $\mathrm{c}-2-1$ ）フロントライン系故障時に用いる設備 （ $c-2-1-1$ ）低圧代替注水系（常設）による発電用原子炉の冷却	（c－2）原子炉停止中の場合に用いる設備 女川原子力発電所発電用原子炉設置変更許可申請書 （2号発電用原子炬施設の変更）（令和 4 年 6 月 1 日付 け，原規規発第2206019号をもって設置変更許可）の	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	発電用原子炉停止中において残留熱除去系（原子炉停止時冷却モード）の機能が喪失した場合の重大事故等対処設備として使用する低圧代替注水系（常設）は，「ホ（3）（ii）b 。（c－1－1－1）低圧代替注水系（常設）（復水移送ポンプ）による発電用原子炉の泠却」と同じである。 （c－2－1－2）低圧代替注水系（可搬型）による発電用原子炉 の泠却 発電用原子炉停止中において残留熱除去系（原子炉停止時冷却モード）の機能が喪失した場合の重大事故等対処設備として使用する低圧代替注水系（可搬型）は，「ホ（3）（ii）b 。（ $\mathrm{c}-1-1-3$ ）低圧代替注水系（可搬型）による発電用原子炉の冷却」 と同じである。 （c－2－2）サポート系故障時に用いる設備 （c－2－2－1）低圧代替注水系（常設）による発電用原子炉の冷却 発電用原子炉停止中において全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障によ り，残留熱除去系（原子炬停止時冷却モード）が起動できない場合の重大事故等対処設備として使用する低圧代替注水系（常設）は，「ホ（3）（ii）b 。 （c－1－1－1）低圧代替注水系（常設）（復水移送ポ ンプ）による発電用原子炉の泠却」と同じである。 （c－2－2－2）低圧代替注水系（可搬型）による発電用原子炉 の泠却 発電用原子炉停止中において全交流動力電源喪失又は原子炉補機泠却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障によ り，残留熱除去系（原子炉停止時冷却モード）が起動できない場合の重大事故等対処設備として使用する低圧代替注水系（可搬型）は，「ホ（3）（ ii ） b．（c－1－1－3）低圧代替注水系（可搬型）による発電用原子炉の泠却」と同じである。 （c－2－2－3）常設代替交流電源設備による残留熱除去系（原	五，ホ，（3），（ii），b，（c），（c－2）原子炉停止中の場合に用いる設備の記載内容に同じ。	

柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	子炉停止時冷却モード）の復旧 発電用原子炉停止中において全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障によ り，残留熱除去系（原子炬停止時冷却モード）が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，残留熱除去系（原子炉停止時冷却モード）を復旧する。 残留熱除去系（原子炉停止時冷却モード）は，常設代替交流電源設備からの給電により機能を復旧し，冷却材を原子炉圧力容器から残留熱除去系 ポンプ及び熱交換器を経由して原子炬圧力容器に戻すことにより炝心を泠却できる設計とする。 本系統に使用する冷却水は，原子炉補機冷却水系（原子炬補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計とする。 常設代替交流電源設備，可搬型代替交流電源設備，代替所内電気設備，所内常設蓄電式直流電源設備及び常設代替直流電源設備については，「ヌ（2）（iv）代替電源設備」に記載する。 低圧代替注水系（常設）（復水移送ポンプ）は，残留熱除去系（低圧注水モード及び原子炉停止時冷却モード）及び低圧炉心スプレイ系と共通要因によって同時に機能 を損なわないよう，復水移送ポンプを代替所内電気設備 を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電により駆動することで，非常用所内電気設備を経由した非常用交流電源設備からの給電により駆動する残留熱除去系ポンプを用いた残留熱除去系（低圧注水モード及び原子炉停止時冷却モード）及び低圧炉心スプレイ系ポンプを用いた低圧炉心スプレイ系に対し て多様性を有する設計とする。 低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）は，代替所内電	常設代替交流電源設備，可搬型代替交流電源設備，代替所内電気設備，所内常設蓄電式直流電源設備，常設代替直流電源設備及び所内常設直流電源設備（3 系統目） については，「又（2）（iv）代替電源設備」に記載する。低圧代替注水系（常設）（復水移送ポンプ）は，残留熱除去系（低圧注水モード及び原子炬停止時冷却モード）及び低圧炬心スプレイ系と共通要因によって同時に機能 を損なわないよう，復水移送ポンブを代替所内電気設備 を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電により駆動することで，非常用所内電気設備を経由した非常用交流電源設備からの給電により駆動する残留熱除去系ポンプを用いた残留熱除去系（低圧注水モード及び原子炉停止時冷却モード）及び低圧炉心スプレイ系ポンプを用いた低圧炉心スプレイ系に対し て多様性を有する設計とする。 低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，低圧代替注水系（常設）（復水移送ポンプ）の電動升（交流）は，代替所内電	設計の差異 －所内常設直流電源設備（3系䖻目）加 ら直流駆動低圧注水系（女川固有設備）へ供給できる設計としている。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更笡所のみ記載	差異理由
	また，低圧代替注水系（常設）（直流駆動低圧注水系ポ ンプ）は，復水貯蔵タンクを水源とすることで，サプレ ッションチェンバを水源とする残留熱除去系（低圧注水 モード）及び低圧炬心スプレイ系に対して異なる水源を有する設計とする。 直流駆動低圧注水系ポンプは，原子炉建屋付属棟内に設置することで，原子炉建屋原子炉棟内の残留熱除去系 ポンプ及び低圧炬心スプレイ系ポンプと共通要因によっ て同時に機能を損なわないよう位置的分散を図る設計と する。 復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炉棟内のサプレッションチェンバと共通要因によ って同時に機能を損なわないよう位置的分散を図る設計 とする。 低圧代替注水系（可搬型）は，残留熱除去系（低圧注水モード及び原子炉停止時冷却モード），低圧炉心スプレ イ系及び低圧代替注水系（常設）と共通要因によって同時に機能を損なわないよう，大容量送水ポンプ（タイプ I）を空泠式のディーゼルエンジンにより駆動すること で，電動機駆動ポンプにより構成される残留熱除去系（低圧注水モード及び原子炉停止時冷却モード），低圧炉心ス プレイ系及び低圧代替注水系（常設）に対して多様性を有する設計とする。 低圧代替注水系（可搬型）の電動弁は，ハンドルを設 けて手動操作を可能とすることで，非常用交流電源設備 からの給電による遠隔操作に対して多様性を有する設計 とする。また，低圧代替注水系（可搬型）の電動弁は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 また，低圧代替注水系（可搬型）は，代替淡水源を水源とすることで，サプレッションチェンバを水源とする残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系並びに復水貯蔵タンクを水源とする低圧代替注水系 （常設）に対して異なる水源を有する設計とする。	また，低圧代替注水系（常設）（直流駆動低圧注水系ポ ンプ）は，復水貯蔵タンクを水源とすることで，サプレ ッションチェンバを水源とする残留熱除去系（低圧注水 モード）及び低圧炉心スプレイ系に対して異なる水源を有する設計とする。 直流駆動低圧注水系ポンプは，原子炉建屋付属棟内に設置することで，原子炉建屋原子炉棟内の残留熱除去系 ポンプ及び低圧炉心スプレイ系ポンプと共通要因によっ て同時に機能を損なわないよう位置的分散を図る設計と する。 復水貯蔵タンクは，屋外に設置することで，原子师建屋原子炉棟内のサプレッションチェンバと共通要因によ って同時に機能を損なわないよう位置的分散を図る設計 とする。 低圧代替注水系（可搬型）は，残留熱除去系（低圧注水モード及び原子炉停止時冷却モード），低圧炬心スプレ イ系及び低圧代替注水系（常設）と共通要因によって同時に機能を損なわないよう，大容量送水ポンプ（タイプ I）を空泠式のディーゼルエンジンにより駆動すること で，電動機駆動ポンプにより構成される残留熱除去系（低圧注水モード及び原子炉停止時冷却モード），低圧炉心ス プレイ系及び低圧代替注水系（常設）に対して多様性を有する設計とする。 低圧代替注水系（可搬型）の電動弁は，ハンドルを設 けて手動操作を可能とすることで，非常用交流電源設備 からの給電による遠隔操作に対して多様性を有する設計 とする。また，低圧代替注水系（可搬型）の電動弁は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 また，低圧代替注水系（可搬型）は，代替淡水源を水源とすることで，サプレッションチェンバを水源とする残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系並びに復水貯蔵タンクを水源とする低圧代替注水系 （常設）に対して異なる水源を有する設計とする。	

柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	する。 a．ポンプ 台 数 3 3 容 量 約 $1,140 \mathrm{~m} 3 / \mathrm{h} /$ 台 揚 程 約 100 m b．熱交換器 基 数 （ii）原子炉隔離時冷却系 この系は，原子炬停止後，何らかの原因で給水系が停止し た場合に原子炉水位を維持するための設備であり，原子炉蒸気の一部を用いたタービン駆動ポンプにより，復水貯蔵タン ク水又はサプレッションチェンバ内のプール水を原子炉に注入する。 ポンプ台数 ポンプ容量 ポンプ揚程 1 約 $90 \mathrm{~m} 3 / \mathrm{h}$ 約 $860 \mathrm{~m} \sim$ 約 160 m （iii）原子炉冷却材浄化系 原子炉冷却材浄化系は，泠却材の純度を高く保つために設置するもので，原子炬再循環系配管及び原子炬圧力容器底部 から冷却材を一部取出し，ろ過脱塩した後，給水系へもどす。 a．ポンプ b．万過脱塩装置 （iv）原子炉補機泠却系 原子炉補機泠却系は，原子炉補機の泠却を行らためのもので あり，原子炉補機から発生する熱を最終的な熱の逃がし場であ る海水に伝達できるよう熱交換器，ポンプ等からなる。 また，この系統は，想定される重大事故等時においても使用 する。 （ v ）最終ヒートシンクへ熱を輸送するための設備 設計基準事故対処設備が有する最終ヒートシンクー熱を輸送する機能が喪失した場合において灯心の著しい損傷及び原	（ii）原子炉隔離時泠却系 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもって設置変更許可）の五，ホ，（4），（ii）原子炉隔離時冷却系の記載内容に同じ。 （iii）原子炉冷却材浄化系 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第 2206019 号をもって設置変更許可）の五，ホ，（4），（iii）原子炉冷却材浄化系の記載内容に同じ。 （iv）原子炉補機冷却系 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第2206019号をもって設置変更許可）の五，ホ，（4），（iv）原子炉補機冷却系の記載内容に同じ。 （v）最終ヒートシンクへ熱を輸送するための設備 設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送する機能が喪失した場合において炉心の著しい損傷及び原	

柏崎刈羽 6， 7 号炉（2022．8． 23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	子炉格納容器の破損（炉心の著しい損傷が発生する前に生ず るものに限る。）を防止するため，最終ヒートシンクへ熱を輸送するために必要な重大事故等対処設備を設置及び保管す る。 最終ヒートシンクへ熱を輸送するための設備のらち，設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送する機能が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するための設備として，原子炬格納容器フィルタベント系，耐圧強化ベント系及び原子炉補機代替泠却水系を設ける。 a．フロントライン系故障時に用いる設備 （a）原子炉格納容器フィルタベント系による原子炉格納容器内の減圧及び除熱 残留熱除去系の故障等により最終ヒートシンクへ熱を輸送する機能が喪失した場合に，炉心の著しい損傷及び原子炉格納容器の破損を防止するための重大事故等対処設備として，原子炉格納容器フィルタベント系は，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，フィルタ装置へ導き，放射性物質を低減させた後に原子炉建屋屋上に設ける放出口から排出すること で，排気中に含まれる放射性物質の環境への放出量を低減しつつ，原子炉格納容器内に蓄積した熱を最終的な熱 の逃がし場である大気へ輸送できる設計とする。 原子炬格納容器フィルタベント系を使用した場合に放出される放射性物質の放出量に対して，あらかじめ敷地境界での線量評価を行うこととする。 本系統の詳細については，「リ（3）（ii）b 。原子炬格納容器の過圧破損を防止するための設備」に記載する （b）耐圧強化ベント系による原子炉格納容器内の減圧及び除熱 残留熱除去系の故障等により最終ヒートシンクへ熱を輸送する機能が喪失した場合に，炉心の著しい損傷及び原子炬格納容器の破損を防止するための重大事故等対処設備として，耐圧強化ベント采は，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，排気筒 を通して原子炉建屋外に放出することで，原子炉格納容	子炉格納容器の破損（炉心の著しい損傷が発生する前に生ず るものに限る。）を防止するため，最終ヒートシンクへ熱を輸送するために必要な重大事故等対処設備を設置及び保管す る。 最終ヒートシンクへ熱を輸送するための設備のらち，設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送する機能が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するための設備として，原子炉格納容器フィルタベント系，耐圧強化ベント系及び原子炉補機代替冷却水系を設ける。 a．フロントライン系故障時に用いる設備 （a）原子炉格納容器フィルタベント系による原子炉格納容器内の減圧及び除熱 女川原子力発電所発電用原子炉設置変更許可申請書 （2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付 け，原規規発第2206019号をもって設置変更許可）の五， ホ，（4），（v），a，（a）原子炉格納容器フィルタベン ト系による原子炉格納容器内の減圧及び除熱の記載内容 に同じ。 （b）耐圧強化ベント系による原子炉格納容器内の減圧及び除熱 残留熱除去系の故障等により最終ヒートシンクへ熱を輸送する機能が喪失した場合に，炉心の著しい損傷及び原子炬格納容器の破損を防止するための重大事故等対処設備として，耐圧強化ベント系は，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，排気筒 を通して原子炉建屋外に放出することで，原子炉格納容	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	器内に蓄積した熱を最終的な熱の逃がし場である大気へ輸送できる設計とする。 最終ヒートシンクへ熱を輸送するための設備として使用する場合の耐圧強化ベント系は，炉心損傷前に使用す るため，排気中に含まれる放射性物質及び可燃性ガスは微量である。 耐圧強化ベント采は，使用する際に弁により他の系統•機器と隔離することにより，悪影響を及ぼさない設計と する。 耐圧強化ベント系は，想定される重大事故等時におい て，原子炉格納容器が負圧とならない設計とする。耐圧強化ベント系の使用に際しては，原子炉格納容器代替ス プレイ冷却系等による原子炉格納容器内へのスプレイは停止する運用としており，原子炉格納容器が負圧となら ない。仮に，原子炉格納容器内にスプレイをする場合に おいても，原子炉格納容器内圧力が規定の圧力まで減圧 した場合には，原子炉格納容器内へのスプレイを停止す る運用とする。 耐圧強化ベント系使用時の排出経路に設置される隔離弁のうち電動弁（直流）は所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から の給電による操作が可能な設計とする。また，排出経路 に設置される隔離弁のらち電動弁（交流）については常設代替交流電源設備又は可搬型代替交流電源設備からの給電による操作が可能な設計とする。 このらち，電動弁（直流）については，遠隔手動弁操作設備によって人力による操作が可能な設計とし，隔離弁の操作における駆動源の多様性を有する設計とする。 本系統はサプレッションチェンバ及びドライウェルと接続し，いずれからも排気できる設計とする。サプレッ ションチェンバ側からの排気ではサプレッションチェン バの水面からの高さを確保し，ドライウェル側からの排気では，ドライウェルの床面からの高さを確保するとと もに有効燃料棒頂部よりも高い位置に接続箇所を設ける ことで長期的にも溶融炉心及び水没の悪影響を受けない	器内に蓄積した熱を最終的な熱の逃がし場である大気へ輸送できる設計とする。 最終ヒートシンクへ熱を輸送するための設備として使用する場合の耐圧強化ベント系は，炬心損傷前に使用す るため，排気中に含まれる放射性物質及び可燃性ガスは微量である。 耐圧強化ベント系は，使用する際に弁により他の系統•機器と隔離することにより，悪影響を及ぼさない設計と する。 耐圧強化ベント系は，想定される重大事故等時におい て，原子炉格納容器が負圧とならない設計とする。耐圧強化ベント系の使用に際しては，原子炉格納容器代替ス プレイ冷却系等による原子炉格納容器内へのスプレイは停止する運用としており，原子炉格納容器が負圧となら ない。仮に，原子炉格納容器内にスプレイをする場合に おいても，原子炉格納容器内圧力が規定の圧力まで減圧 した場合には，原子炉格納容器内へのスプレイを停止す る運用とする。 耐圧強化ベント系使用時の排出経路に設置される隔離弁のらち電動弁（直流）は所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目）又は可搬型代替直流電源設備からの給電による操作 が可能な設計とする。また，排出経路に設置される隔離弁のらち電動弁（交流）については常設代替交流電源設備又は可搬型代替交流電源設備からの給電による操作が可能な設計とする。 このらち，電動弁（直流）については，遠隔手動弁操作設備によって人力による操作が可能な設計とし，隔離弁の操作における駆動源の多様性を有する設計とする。 本系統はサプレッションチェンバ及びドライウェルと接続し，いずれからも排気できる設計とする。サプレッ ションチェンバ側からの排気ではサプレッションチェン バの水面からの高さを確保し，ドライウェル側からの排気では，ドライウェルの床面からの高さを確保するとと もに有効燃料棒頂部よりも高い位置に接続箇所を設ける ことで長期的にも溶融炉心及び水没の悪影響を受けない	設計の差異 －既許可において常設代替直流電源設備（125V 代替蓄電池）から給電してい る旨明記している電動弁は所内常設直流電源設備（3系統目）から給電可能 な設計となるため記載。柏崎既許可に は直流電動弁の記載なし。

柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	設計とする。 耐圧強化ベント系を使用した場合に放出される放射性物質の放出量に対して，あらかじめ敷地境界での線量評価を行うこととする。 b．サポート系故障時に用いる設備 （a）原子炬補機代替冷却水系による原子炉格納容器内の減圧及び除熱 原子炉補機冷却水系（原子炉補機泠却海水系を含む。） の故障又は全交流動力電源の喪失により，最終ヒートシ ンクへ熱を輸送する機能が喪失した場合の重大事故等対処設備として，原子炉補機代替冷却水系は，サプレッシ ョンチェンバへの熱の蓄積により原子炉冷却機能が確保 できる一定の期間内に，熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプ I ）によ り熱交換器ユニットに海水を送水することで，残留熱除去系等の機器で発生した熱を最終的な熱の逃がし場であ る海へ輸送できる設計とする。 熱交換器ユニット及び大容量送水ポンプ（タイプ I ） は，空冷式のディーゼルエンジンにより駆動できる設計 とする。	設計とする。 耐圧強化ベント系を使用した場合に放出される放射性物質の放出量に対して，あらかじめ敷地境界での線量評価を行らこととする。 b．サポート系故障時に用いる設備 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第2206019号をもって設置変更許可）の五，ホ，（4）， （ v），b。サポート系故障時に用いる設備の記載内容に同 じ。	
	常設代替交流電源設備，可搬型代替交流電源設備，代替所内電気設備，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備については，「ヌ（2）（iv）代替電源設備」に記載する。	常設代替交流電源設備，可搬型代替交流電源設備，代替所内電気設備，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（3 系統目）及び可搬型代替直流電源設備については，「ヌ（2）（iv）代替電源設備」に記載する。	設計の差異 －既許可において常設代替直流電源設備（ 125 V 代替蓄電池）から給電してい
	原子炉格納容器フィルタベント系及び耐圧強化ベント系	原子炉格納容器フィルタベント系及び耐圧強化ベント系	る旨明記している
	は，残留熱除去系（格納容器スプレイ泠却モード）及び原子	は，残留熱除去系（格納容器スプレイ冷却モード）及び原子	電動弁は所内常設
	炉補機泠却水系（原子炉補機泠却海水系を含む。）と共通要因 によって同時に機能を損なわないよう，ポンプ及び熱交換器	によって同時に機能を損なわないよう，ポンプ及び熱交換器	統目）から給電可能
	を使用せずに最終的な熱の逃がし場である大気へ熱を輸送で	を使用せずに最終的な熱の逃がし場である大気へ熱を輸送で	な設計となるため
	きる設計とすることで，残留熱除去系及び原子炉補機泠却水	きる設計とすることで，残留熱除去系及び原子炉補機冷却水	記載。柏崎既許可に
	系（原子炉補機冷却海水系を含む。）に対して，多様性を有す る設計りする	系（原子炉補機冷却海水系を含む。）に対して，多様性を有す る設計とする	は直流電動弁の記載なし
	る設計とする。 また，原子炉格納容器フィルタベント系は，排出経路に設	る設計とする。 また，原子炉格納容器フィルタベント系は，排出経路に設	載なし。
	置される隔離升の電動弁を所内常設蓄電式直流電源設備，常設代替直流電源設備若しくは可搬型代替直流電源設備からの	置される隔離弁の電動弁を所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（3 系統目）若	設計の差異

柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	給電による遠隔操作を可能とすること又は遠隔手動弁操作設備を用いた人力による遠隔操作を可能とすることで，非常用交流電源設備からの給電により駆動する残留熱除去系（格納容器スプレイ椧却モード）及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して，多様性を有する設計とす る。 耐圧強化ベント系の排出経路に設置される隔離弁のらち電動弁（直流）は，所内常設蓄電式直流電源設備，常設代替直流電源設備若しくは可搬型代替直流電源設備からの給電によ る遠隔操作を可能とすること又は遠隔手動弁操作設備を用い た人力による遠隔操作が可能な設計とし，排出経路に設置さ れる隔離弁のらち電動弁（交流）は，常設代替交流電源設備若しくは可搬型代替交流電源設備からの給電による遠隔操作 を可能とすること又は操作ハンドルを用いた人力による操作 が可能な設計とすることで，非常用交流電源設備からの給電 により駆動する残留熱除去系（格納容器スプレイ冷却モード）及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して，多様性を有する設計とする。 原子炉格納容器フィルタベント系のフィルタ装置及びフィ ルタ装置出口側圧力開放板並びに耐圧強化ベント系は，原子炉建屋原子炉棟内に設置し，原子炉建屋原子炉棟内の残留熱除去系ポンプ及び熱交換器，原子炉建屋付属棟内の原子炉補機冷却水ポンプ及び熱交換器並びに屋外の海水ポンプ室の原子炬補機冷却海水ポンプと異なる区画に設置することで，共通要因によって同時に機能を損なわないよう位置的分散を図 った設計とする。 原子炉格納容器フィルタベント系及び耐圧強化ベント系 は，除熱手段の多様性及び機器の位置的分散によって，残留熱除去系及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して独立性を有する設計とする。 原子炉補機代替冷却水系は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能を損 なわないよう，熱交換器ユニット及び大容量送水ポンプ（タ イプI ）を空冷式のディーゼルエンジンにより駆動すること で，電動機駆動ポンプにより構成される原子炉補機冷却水系	しくは可搬型代替直流電源設備からの給電による遠隔操作を可能とすること又は遠隔手動弁操作設備を用いた人力による遠隔操作を可能とすることで，非常用交流電源設備からの給電により駆動する残留熱除去系（格納容器スプレイ泠却モー ド）及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。） に対して，多様性を有する設計とする。 耐圧強化ベント系の排出経路に設置される隔離弁のうち電動弁（直流）は，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（3系統目）若しくは可搬型代替直流電源設備からの給電による遠隔操作を可能とす ること又は遠隔手動弁操作設備を用いた人力による遠隔操作 が可能な設計とし，排出経路に設置される隔離弁のらち電動弁（交流）は，常設代替交流電源設備若しくは可搬型代替交流電源設備からの給電による遠隔操作を可能とすること又は操作ハンドルを用いた人力による操作が可能な設計とするこ とで，非常用交流電源設備からの給電により駆動する残留熱除去系（格納容器スプレイ冷却モード）及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して，多様性を有 する設計とする。 原子炉格納容器フィルタベント系のフィルタ装置及びフィ ルタ装置出口側圧力開放板並びに耐圧強化ベント系は，原子炉建屋原子炉棟内に設置し，原子炉建屋原子炉棟内の残留熱除去系ポンプ及び熱交換器，原子炉建屋付属棟内の原子炉補機冷却水ポンプ及び熱交換器並びに屋外の海水ポンプ室の原子炉補機冷却海水ポンプと異なる区画に設置することで，共通要因によって同時に機能を損なわないよう位置的分散を図 った設計とする。 原子炉格納容器フィルタベント系及び耐圧強化ベント系 は，除熱手段の多樣性及び機器の位置的分散によって，残留熱除去系及び原子炬補機冷却水系（原子炬補機冷却海水系を含む。）に対して独立性を有する設計とする。 原子炉補機代替冷却水系は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能を損 なわないよう，熱交換器ユニット及び大容量送水ポンプ（タ イプII）を空冷式のディーゼルエンジンにより駆動すること で，電動機駆動ポンプにより構成される原子炉補機冷却水系	－既許可において常設代替直流電源設備（125V 代替蓄電池）から給電してい る旨明記している電動弁は所内常設直流電源設備（ 3 系統目）から給電可能 な設計となるため記載。柏崎既許可に は直流電動弁の記載なし。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	（原子炉補機泠却海水系を含む。）に対して多様性を有する設計とする。また，原子炉補機代替冷却水系は，原子炉格納容器フィルタベント系及び耐圧強化ベント系に対して，除熱手段の多様性を有する設計とする。 原子炉補機代替冷却水系の熱交換器ユニット及び大容量送水ポンプ（タイプ I）は，原子炉建屋並びに屋外の海水ポン プ室及び排気筒から離れた屋外に分散して保管することで，原子炉建屋内の原子炬補機冷却水ポンプ，熱交換器，耐圧強化ベント系及び原子炬格納容器フィルタベント系並びに屋外 の海水ポンプ室の原子炬補機冷却海水ポンプと共通要因によ って同時に機能を損なわないよう位置的分散を図る設計とす る。 熱交換器ユニットの接続口は，共通要因によって接続でき なくなることを防止するため，位置的分散を図った複数箇所 に設置する設計とする。 原子炉補機代替冷却水系は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能を損 なわないよう，原子炉補機冷却海水系に対して独立性を有す るとともに，熱交換器ユニットから原子炉補機冷却水系配管 との合流点までの系統について，原子炉補機冷却水系に対し て独立性を有する設計とする。 これらの多様性及び系統の独立性並びに位置的分散によっ て，原子炉補機代替冷却水系は，設計基準事故対処設備であ る原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対 して重大事故等対処設備としての独立性を有する設計とす る。 電源設備の多様性及び独立性，位置的分散については「ヌ （2）（iv）代替電源設備」にて記載する。 ［常設重大事故等対処設備］ 原子炉格納容器フィルタベント系 フィルタ装置 （「リ（3）（ii）b •原子炉格納容器の過圧破損を防止する ための設備」他と兼用） フィルタ装置出口側圧力開放板 （「リ（3）（ii）b ．原子炉格納容器の過圧破損を防止する ための設備」他と兼用）	（原子炉補機泠却海水系を含む。）に対して多様性を有する設計とする。また，原子炬補機代替冷却水系は，原子炬格納容器フィルタベント系及び耐圧強化ベント系に対して，除熱手段の多様性を有する設計とする。 原子炉補機代替冷却水系の熱交換器ユニット及び大容量送水ポンプ（タイプ I ）は，原子炉建屋並びに屋外の海水ポン プ室及び排気筒から離れた屋外に分散して保管することで，原子炉建屋内の原子炉補機冷却水ポンプ，熱交換器，耐圧強化ベント系及び原子炉格納容器フィルタベント系並びに屋外 の海水ポンプ室の原子炬補機冷却海水ポンプと共通要因によ って同時に機能を損なわないよう位置的分散を図る設計とす る。 熱交換器ユニットの接続口は，共通要因によって接続でき なくなることを防止するため，位置的分散を図った複数箇所 に設置する設計とする。 原子炉補機代替冷却水系は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能を損 なわないよう，原子炉補機冷却海水系に対して独立性を有す るとともに，熱交換器ユニットから原子炉補機冷却水系配管 との合流点までの系統について，原子炉補機冷却水系に対し て独立性を有する設計とする。 これらの多様性及び系統の独立性並びに位置的分散によっ て，原子炉補機代替冷却水系は，設計基準事故対処設備であ る原子炉補機泠却水系（原子炉補機冷却海水系を含む。）に対 して重大事故等対処設備としての独立性を有する設計とす る。 電源設備の多様性及び独立性，位置的分散については「ヌ （2）（iv）代替電源設備」にて記載する。 ［常設重大事故等対処設備］ 原子炉格納容器フィルタベント系 フィルタ装置 （「リ（3）（ii）b •原子炉格納容器の過圧破損を防止する ための設備」他と兼用） フィルタ装置出口側圧力開放板 （「リ（3）（ii）b 。原子炉格納容器の過圧破損を防止する ための設備」他と兼用）	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	遠隔手動弁操作設備 （「リ（3）（ii）b．原子炉格納容器の過圧破損を防止する ための設備」と兼用） 耐圧強化ベント系 系 統 数 系統設計流量 ［可搬型重大事故等対処設備］ 原子炉格納容器フィルタベント系 可搬型窒素ガス供給装置 （「リ（3）（ii）d．水素爆発による原子炉格納容器の破損 を防止するための設備」他と兼用） 原子炉補機代替冷却水系 熱交換器ユニット （「ホ（3）（ii）b 。（c）原子炉冷却材圧力バウンダリ低圧時に原子炉を泠却するための設備」，「リ（3）（ii）b ．原子炉格納容器の過圧破損を防止するための設備」「リ （3）（ii）c．原子炉格納容器下部の溶融炉心を冷却する ための設備」及び「ニ（3）（ii）使用済燃料プールの泠却等のための設備」と兼用） 台 数 2（予備1） 熱交換器 組 数 1 伝 熱 容 量 約 20 MW （1組当たり）（海水温度 $26^{\circ} \mathrm{C}$ において） 淡水ポンプ 台 数 1 容 量 約 $730 \mathrm{~m}^{3} / \mathrm{h}$ 揚 程 約 70 m 大容量送水ポンプ（タイプ I） （「こ（3）（ii）使用済燃料プールの泠却等のための設備」他と兼用） （vi）重大事故等の収束に必要となる水の供給設備 設計基準事故の収束に必要な水源とは別に，重大事故等の収束に必要となる十分な量の水を有する水源を確保すること に加えて，発電用原子炉施設には，設計基準事故対処設備及 び重大事故等対処設備に対して重大事故等の収束に必要とな	遠隔手動弁操作設備 （「リ（3）（ii）b ．原子灲格納容器の過圧破損を防止する ための設備」と兼用） 耐圧強化ベント系 系 統 数 系統設計流量 ［可搬型重大事故等対処設備］ 原子炉格納容器フィルタベント系 可搬型窒素ガス供給装置 （「リ（3）（ii）d．水素爆発による原子炉格納容器の破損 を防止するための設備」他と兼用） 原子炉補機代替冷却水系 熱交換器ユニット （「ホ（3）（ii）b 。（c）原子炉冷却材圧力バウンダリ低圧時に原子炉を泠却するための設備」，「リ（3）（ii）b ．原子炉格納容器の過圧破損を防止するための設備」，「リ （3）（ii）c．原子炉格納容器下部の溶融炉心を冷却する ための設備」及び「ニ（3）（ii）使用済燃料プールの冷却等のための設備」と兼用） 台 数 2（予備1） 熱交換器 組 数 1 伝 熱 容 量 約 20 MW （1組当たり）（海水温度 $26^{\circ} \mathrm{C}$ において） 淡水ポンプ 台 数 1 容 量 約 $730 \mathrm{~m}^{3} / \mathrm{h}$ 揚 程 約 70 m 大容量送水ポンプ（タイプ I ） （「こ（3）（ii）使用済燃料プールの泠却等のための設備」他と兼用） （vi）重大事故等の収束に必要となる水の供給設備 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第2206019号をもって設置変更許可）の五，ホ，（4），（vi）重大事故等の収束に必要となる水の供給設備の記載内容に同	

柏崎刈羽 6， 7 号炉（2022．8． 23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	る十分な量の水を供給するために必要な重大事故等対処設備 を設置及び保管する。 重大事故等の収束に必要となる水の供給設備のらち，重大事故等の収束に必要となる水源として，復水貯蔵タンク，サ プレッションチェンバ及びほう酸水注入系貯蔵タンクを設け る。これら重大事故等の収束に必要となる水源とは別に，代替淡水源として淡水貯水槽（No．1）及び淡水貯水槽（No．2） を設ける。また，淡水が枯渇した場合に，海を水源として利用できる設計とする。 重大事故等の収束に必要となる水の供給設備のらち，設計基準事故対処設備及び重大事故等対処設備に対して，重大事故等の収束に必要となる十分な量の水を供給するために必要 な設備として，大容量送水ポンプ（タイプI）を設ける。ま た，海を利用するために必要な設備として，大容量送水ポン プ（タイプII）及び大容量送水ポンプ（タイプII）を設ける。 代替水源からの移送ルートを確保し，ホース及びポンプに ついては，複数箇所に分散して保管する。 a ．重大事故等の収束に必要となる水源 （a）復水貯蔵タンクを水源とした場合に用いる設備 想定される重大事故等時において，原子炉圧力容器及 び原子炉格納容器への注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である高圧代替注水系，低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），原子炉格納容器代替スプレイ泠却系（常設）及び原子炉格納容器下部注水系（常設）（復水移送ポンプ）並びに重大事故等対処設備（設計基準拡張）である原子炉隔離時冷却系及び高圧炉心スプレイ系の水源として復水貯蔵タンクを使用する。 各系統の詳細については，「ホ（3）（ii）a．非常用炉心泠却系」，「ホ（3）（ii）b。（a）原子炉冷却材圧力バウンダ リ高圧時に発電用原子炉を泠却するための設備」，「ホ （3）（ii）b 。（c）原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却するための設備」，「ホ（4）（ii）原子炉隔離時冷却系」，「リ（3）（ii）a．原子炉格納容器内の冷却等のための設備」及び「リ（3）（ii）c ．原子炉格納容器下	じ。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	部の溶融炉心を泠却するための設備」に記載する。 （b）サプレッションチェンバを水源とした場合に用いる設 備 想定される重大事故等時において，原子炉圧力容器及 び原子炉格納容器への注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である代替循環冷却系及び原子炉格納容器下部注水系（常設）（代替循環冷却 ポンプ）並びに重大事故等対処設備（設計基準拡張）で ある高圧炉心スプレイ系，低圧灲心スプレイ系，残留熱除去系（低圧注水モード），残留熱除去系（格納容器スプ レイ泠却モード）及び残留熱除去系（サプレッションプ ール水冷却モード）の水源として，サプレッションチェ ンバを使用する。 各系統の詳細については，「ホ（4）（i）残留熱除去系」，「ホ（3）（ii）a．非常用炉心冷却系」，「リ（3）（ii）b 。原子炉格納容器の過圧破損を防止するための設備」及び「リ （3）（ii）c．原子炉格納容器下部の溶融炉心を泠却するた めの設備」に記載する。 （c）ほら酸水注入系貯蔵タンクを水源とした場合に用いる設備 想定される重大事故等時において，原子炉圧力容器へ の注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段であるほう酸水注入系の水源として，ほ ら酸水注入系貯蔵タンクを使用する。 本系統の詳細については，「へ（5）（x ii）緊急停止失敗時に発電用原子炉を未臨界にするための設備」に記載す る。 （d）代替淡水源を水源とした場合に用いる設備想定される重大事故等時において，復水貯蔵タンクへ水を供給するための水源であるとともに，原子炬圧力容器及び原子炉格納容器への注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である低圧代替注水系（可搬型），原子炉格納容器代替スプレイ冷却系（可搬型），原子炉格納容器フィルタベント系への水補給及び原子炉格納容器下部注水系（可搬型）の水源として，ま た，使用済燃料プールの泠却又は注水に使用する設計基		

\square

女川 2 号炉 適合性審査許可後完本
準事故対処設備が機能喪失した場合の代替手段である燃料プール代替注水系（常設配管），燃料プール代替注水系 （可搬型），燃料プールスプレイ系（常設配管）及び燃料 プールスプレイ系（可搬型）の水源として，代替淡水源 である淡水貯水槽（No．1）及び淡水貯水槽（No．2）を使用する。

各系統の詳細については，「二（3）（ii）使用済燃料プー ルの冷却等のための設備」，「ホ（3）（ii）b 。（c）原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を泠却するた めの設備」，「リ（3）（ii）a ．原子炉格納容器内の泠却等の ための設備」，「リ（3）（ii）b 。原子炉格納容器の過圧破損 を防止するための設備」及び「リ（3）（ii）c．原子炉格納容器下部の溶融炬心を泠却するための設備」に記載する。
（e）海を水源とした場合に用いる設備
想定される重大事故等時において，淡水が枯渇した場合に，復水貯蔵タンクへ水を供給するための水源である とともに，原子炉圧力容器及び原子炉格納容器への注水 に使用する設計基準事故対処設備が機能喪失した場合の代替手段である低圧代替注水系（可搬型），原子炉格納容器代替スプレイ泠却系（可搬型）及び原子炉格納容器下部注水系（可搬型）の水源として，また，使用済燃料プ ールの冷却又は注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である燃料プール代替注水系（常設配管），燃料プール代替注水系（可搬型），燃料 プールスプレイ系（常設配管）及び燃料プールスプレイ系（可搬型）の水源として海を利用するための重大事故等対処設備として，大容量送水ポンプ（タイプ I ）を使用する。
大容量送水ポンプ（タイプ I ）は，海水を各系統へ供給できる設計とする。

また，原子炉補機代替椧却水系の大容量送水ポンプ（タ イプ I ）並びに放水設備（大気への拡散抑制設備）及び放水設備（泡消火設備）の大容量送水ポンプ（タイプ II） の水源として海を使用する。

各系統の詳細については，「二（3）（ii）使用済燃料プー ルの泠却等のための設備」，「ホ（3）（ii）b ．（c）原子炉冷

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防謢：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	却材圧力バウンダリ低圧時に発電用原子炉を冷却するた めの設備」，「ホ（4）（v）最終ヒートシンクへ熱を輸送す るための設備」，「リ（3）（ii）a ．原子炉格納容器内の泠却等のための設備」，「リ（3）（ii）c．原子炉格納容器下部の溶融炉心を泠却するための設備」及び「リ（3）（ii）e．発電所外への放射性物質の拡散を抑制するための設備」に記載する。 b．水源へ水を供給するための設備 （a）復水貯蔵タンクへ水を供給するための設備 重大事故等の収束に必要な水源である復水貯蔵タンク へ淡水を供給するための重大事故等対処設備として，大容量送水ポンプ（タイプI）は，代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽（No．2）の淡水を補給水系等を経由して復水貯蔵タンクへ供給できる設計とす る。 また，淡水が枯渇した場合に，重大事故等の収束に必要な水源である復水貯蔵タンクへ海水を供給するための重大事故等対処設備として，大容量送水ポンプ（タイプ I）は，海水を補給水系等を経由して復水貯蔵タンクへ供給できる設計とする。 さらに，代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽（No．2）の淡水が枯渇した場合に，海水を供給 するための重大事故等対処設備として，大容量送水ポン プ（タイプII）は，海水を淡水貯水槽（No．1）及び淡水貯水槽（No．2）へ供給できる設計とする。 ［常設重大事故等対処設備］ 復水貯蔵タンク （「ヌ（3）（viii）復水貯蔵タンク」と兼用） サプレッションチェンバ （「リ（1）原子炉格納容器の構造」と兼用） ほう酸水注入系貯蔵タンク （「へ（4）非常用制御設備」と兼用） ［可搬型重大事故等対処設備］ 大容量送水ポンプ（タイプI） （「二（3）（ii）使用済燃料プールの泠却等のための設備」		

```
灰色(グレーハッチング):前回許可からの変更箇所子：設備，運用又は体制の相違（設計方針の相違緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）
```


2024年2月9日 02DS－2－3（改 5）

差異理由

（a）代替循環冷却系による原子炉格納容器内の減圧及び除熱

炉心の著しい損傷が発生した場合に原子炉格納容器の過圧破損を防止するための重大事故等対処設備として，代替循環冷却系は，代替循環冷却ポンプによりサプレッ ションチェンバのプール水を残留熱除去系熱交換器にて冷却し，残留熱除去系等を経由して原子炉圧力容器へ注水及び原子炉格納容器内ヘスプレイすることで，原子炉格納容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低下できる設計とする。
原子炉圧力容器に注水された水は，原子炉圧力容器又 は原子炉格納容器内配管の破断口等から流出し，原子炉格納容器内ヘスプレイされた水とともに，ベント管を経 てサプレッションチェンバに戻ることで循環する。
なお，代替循環冷却系は，原子炉圧力容器へ注水する ことで，原子炉圧力容器内に存在する溶融炉心を冷却で きる設計とする。

また，代替循環冷却系は，原子炉格納容器内ヘスプレ イすることで，スプレイした水がドライウェル床面に溜 まり，原子炉格納容器下部開口部を経由して原子炉格納容器下部へ流入することで，溶融灲心が落下するまでに原子炉格納容器下部にあらかじめ十分な水位を確保する とともに，落下した溶融灯心を椧却できる設計とする。
代替循環冷却系は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備からの給電が可能な設計とする。

残留熱除去系熱交換器は，代替循環冷却系で使用する原子炉補機冷却水系（原子炉補機泠却海水系を含む。）並 びに原子炉補機代替冷却水系の熱交換器ユニット及び大容量送水ポンプ（タイプ I ）により泠却できる設計とす る。

原子炬補機代替冷却水系は，熱交換器ユニットを原子炬補機冷却水系に接続し，大容量送水ポンプ（タイプI） により熱交換器ユニットに海水を送水することで，残留熱除去系熱交換器で発生した熱を最終的な熱の逃がし場 である海へ輸送できる設計とする。

女川 2 号炉 設置変更許可申請書
（a）代替循環冷却系による原子炉格納容器内の減圧及び除熱

女川原子力発電所発電用原子炉設置変更許可申請書 （2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付
け，原規規発第2206019号をもつて設置変更許可）の五， リ，（3），（ii），b，（a）代替循環冷却系による原子炉格納容器内の減圧及び除熱の記載内容に同じ。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更笡所のみ記載	差異理由
	（b）原子炉格納容器フィルタベント系による原子炉格納容器内の減圧及び除熱 炉心の著しい損傷が発生した場合において，原子炉格納容器の過圧破損を防止するための重大事故等対処設備 として，原子炉格納容器フィルタベント系は，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由し て，フィルタ装置へ導き，放射性物質を低減させた後に原子炉建屋屋上に設ける放出口から排出することで，排気中に含まれる放射性物質の環境への放出量を低減しつ つ，原子炉格納容器内の圧力及び温度を低下できる設計 とする。 フィルタ装置は3台を並列に設置し，排気中に含まれ る粒子状放射性物質，ガス状の無機よう素及び有機よう素を除去できる設計とする。 本系統は，サプレッションチェンバ及びドライウェル と接続し，いずれからも排気できる設計とする。サプレ ッションチェンバ側からの排気ではサプレッションチェ ンバの水面からの高さを確保し，ドライウェル側からの排気では，ドライウェル床面からの高さを確保するとと もに有効燃料棒頂部よりも高い位置に接続箇所を設ける ことで長期的にも溶融炬心及び水没の悪影響を受けない設計とする。 原子炉格納容器フィルタベント系は，排気中に含まれ る可燃性ガスによる爆発を防ぐため，系統内を不活性ガ ス（窒素）で置換した状態で待機させ，原子炉格納容器 ベント開始後においても不活性ガス（窒素）で置換でき る設計とするとともに，系統内に可燃性ガスが蓄積する可能性のある箇所にはバイパスラインを設け，可燃性ガ スを連続して排出できる設計とすることで，系統内で水素濃度及び酸素濃度が可燃領域に達することを防止でき る設計とする。 原子炉格納容器フィルタベント系は，他の発電用原子炉施設とは共用しない設計とする。また，原子炉格納容器フィルタベント系と他の系統•機器を隔離する弁は直列で 2 個設置し，原子炉格納容器フィルタベント系と他 の系統•機器を確実に隔離することで，悪影響を及ぼさ	（b）原子炉格納容器フィルタベント系による原子炉格納容器内の減圧及び除熱 炉心の著しい損傷が発生した場合において，原子炉格納容器の過圧破損を防止するための重大事故等対処設備 として，原子炉格納容器フィルタベント系は，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由し て，フィルタ装置へ導き，放射性物質を低減させた後に原子炉建屋屋上に設ける放出口から排出することで，排気中に含まれる放射性物質の環境への放出量を低減しつ つ，原子炉格納容器内の圧力及び温度を低下できる設計 とする。 フィルタ装置は3台を並列に設置し，排気中に含まれ る粒子状放射性物質，ガス状の無機よう素及び有機よう素を除去できる設計とする。 本系統は，サプレッションチェンバ及びドライウェル と接続し，いずれからも排気できる設計とする。サプレ ッションチェンバ側からの排気ではサプレッションチェ ンバの水面からの高さを確保し，ドライウェル側からの排気では，ドライウェル床面からの高さを確保するとと もに有効燃料棒頂部よりも高い位置に接続箇所を設ける ことで長期的にも溶融炬心及び水没の悪影響を受けない設計とする。 原子炉格納容器フィルタベント系は，排気中に含まれ る可燃性ガスによる爆発を防ぐため，系統内を不活性ガ ス（窒素）で置換した状態で待機させ，原子炉格納容器 ベント開始後においても不活性ガス（窒素）で置換でき る設計とするとともに，系統内に可燃性ガスが蓄積する可能性のある箇所にはバイパスラインを設け，可燃性ガ スを連続して排出できる設計とすることで，系統内で水素濃度及び酸素濃度が可燃領域に達することを防止でき る設計とする。 原子炬格納容器フィルタベント系は，他の発電用原子炉施設とは共用しない設計とする。また，原子炉格納容器フィルタベント系と他の系統•機器を隔離する弁は直列で 2 個設置し，原子炉格納容器フィルタベント系と他 の系統•機器を確実に隔離することで，悪影響を及ぼさ	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	ない設計とする。 原子炉格納容器フィルタベント系の使用に際しては，原子炉格納容器代替スプレイ泠却系等による原子炉格納容器内へのスプレイは停止する運用としており，原子炉格納容器が負圧とならない。仮に，原子炉格納容器内に スプレイする場合においても，原子炉格納容器内圧力が規定の圧力まで減圧した場合には，原子炉格納容器内へ のスプレイを停止する運用とする。また，原子炉格納容器フィルタベント系使用後において，可燃性ガスによる爆発及び原子炉格納容器の負圧破損を防止するために，可搬型窒素ガス供給装置を用いて原子炉格納容器内に不活性ガス（窒素）の供給が可能な設計とする。 原子炉格納容器フィルタベント系使用時の排出経路に設置される隔離弁は，遠隔手動弁操作設備によって人力 による操作が可能な設計とする。 遠隔手動弁操作設備の操作場所は，原子炉建屋付属棟内とし，必要に応じて遮蔽材を設置することで，放射線防護を考慮した設計とする。また，排出経路に設置され る隔離弁の電動弁については，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により，中央制御室から操作が可能な設計 とする。 系統内に設けるフィルタ装置出口側圧力開放板は，原子炉格納容器フィルタベント系の使用の妨げにならない よう，原子炉格納容器からの排気圧力と比較して十分に低い圧力で破裂する設計とする。 原子炉格納容器フィルタベント系のフィルタ装置等 は，原子炉建屋原子炉棟内に設置することにより，フィ ルタ装置等の周囲には遮蔽壁が設置されることから原子炉格納容器フィルタベント系の使用時に本系統内に蓄積 される放射性物質から放出される放射線から作業員を防護する設計とする。 代替循環泠却系及び原子炉格納容器フィルタベント系 は，共通要因によって同時に機能を損なわないよう，原理 の異なる泠却及び原子炉格納容器内の減圧手段を用いるこ とで多様性を有する設計とする。	ない設計とする。 原子炉格納容器フィルタベント系の使用に際しては，原子炉格納容器代替スプレイ泠却系等による原子炉格納容器内へのスプレイは停止する運用としており，原子炉格納容器が負圧とならない。仮に，原子炉格納容器内に スプレイする場合においても，原子炉格納容器内圧力が規定の圧力まで減圧した場合には，原子炉格納容器内へ のスプレイを停止する運用とする。また，原子炉格納容器フィルタベント系使用後において，可燃性ガスによる爆発及び原子炉格納容器の負圧破損を防止するために，可搬型窒素ガス供給装置を用いて原子炉格納容器内に不活性ガス（窒素）の供給が可能な設計とする。 原子炉格納容器フィルタベント系使用時の排出経路に設置される隔離弁は，遠隔手動弁操作設備によって人力 による操作が可能な設計とする。 遠隔手動弁操作設備の操作場所は，原子炉建屋付属棟内とし，必要に応じて遮蔽材を設置することで，放射線防護を考慮した設計とする。また，排出経路に設置され る隔離弁の電動弁については，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（3系統目）又は可搬型代替直流電源設備からの給電により，中央制御室から操作が可能な設計とする。 系統内に設けるフィルタ装置出口側圧力開放板は，原子炉格納容器フィルタベント系の使用の妨げにならない よう，原子炬格納容器からの排気圧力と比較して十分に低い圧力で破裂する設計とする。 原子炉格納容器フィルタベント系のフィルタ装置等 は，原子炉建屋原子炉棟内に設置することにより，フィ ルタ装置等の周囲には遮蔽壁が設置されることから原子炉格納容器フィルタベント系の使用時に本系統内に蓄積 される放射性物質から放出される放射線から作業員を防護する設計とする。 代替循環冷却系及び原子炉格納容器フィルタベント系 は，共通要因によって同時に機能を損なわないよう，原理 の異なる泠却及び原子炉格納容器内の減圧手段を用いるこ とで多様性を有する設計とする。	設計の差異 －既許可において常設代替直流電源設備（ 125 V 代替蓄電池）から給電してい る旨明記している電動弁は所内常設直流電源設備（3系統目）から給電可能 な設計となるため記載。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防謢：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	代替循環冷却系は，非常用交流電源設備に対して多様性 を有する常設代替交流電源設備からの給電により駆動でき る設計とする。また，原子炬格納容器フィルタベント系は，非常用交流電源設備に対して多様性を有する所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により駆動できる設計とする。 原子炉格納容器フィルタベント系は，人力により排出経路に設置される隔離弁を操作できる設計とすることで，代替循環冷却系に対して駆動源の多様性を有する設計とす る。 代替循環冷却系に使用する原子炉補機代替冷却水系の熱交換器ユニット及び大容量送水ポンプ（タイプ I ）は，原子炉建屋から離れた屋外に分散して保管することで，原子炉建屋内の原子炉格納容器フィルタベント系と共通要因に よって同時に機能を損なわないよう位置的分散を図る設計 とする。 熱交換器ユニットの接続口は，共通要因によって接続で きなくなることを防止するため，互いに異なる複数箇所に設置し，かつ原子炉格納容器フィルタベント系と異なる区画に設置する設計とする。 代替循環冷却系の代替循環泠却ポンプは原子炉建屋付属棟内に，残留熱除去系熱交換器及びサプレッションチェン バは原子炉建屋原子炉棟内に設置し，原子炉格納容器フィ ルタベント系のフィルタ装置及びフィルタ装置出口側圧力開放板は原子炉建屋原子炉棟内の代替循環冷却系と異なる区画に設置することで共通要因によって同時に機能を損な わないよう位置的分散を図る設計とする。 代替循環冷却系と原子炉格納容器フィルタベント系は，共通要因によって同時に機能を損なわないよう，流路を分離することで独立性を有する設計とする。 これらの多様性及び流路の独立性並びに位置的分散によ って，代替循環泠却系と原子炉格納容器フィルタベント系 は，互いに重大事故等対処設備として，可能な限りの独立性を有する設計とする。 電源設備の多様性，位置的分散については，「又（2）（iv）	代替循環冷却系は，非常用交流電源設備に対して多様性 を有する常設代替交流電源設備からの給電により駆動でき る設計とする。また，原子炉格納容器フィルタベント系は，非常用交流電源設備に対して多様性を有する所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目）又は可搬型代替直流電源設備からの給電により駆動できる設計とする。 原子炉格納容器フィルタベント系は，人力により排出経路に設置される隔離弁を操作できる設計とすることで，代替循環冷却系に対して駆動源の多様性を有する設計とす る。 代替循環冷却系に使用する原子炉補機代替冷却水系の熱交換器ユニット及び大容量送水ポンプ（タイプI）は，原子炉建屋から離れた屋外に分散して保管することで，原子炉建屋内の原子炉格納容器フィルタベント系と共通要因に よって同時に機能を損なわないよう位置的分散を図る設計 とする。 熱交換器ユニットの接続口は，共通要因によって接続で きなくなることを防止するため，互いに異なる複数箇所に設置し，かつ原子炉格納容器フィルタベント系と異なる区画に設置する設計とする。 代替循環冷却系の代替循環冷却ポンプは原子炉建屋付属棟内に，残留熱除去系熱交換器及びサプレッションチェン バは原子炉建屋原子炉棟内に設置し，原子炉格納容器フィ ルタベント系のフィルタ装置及びフィルタ装置出口側圧力開放板は原子炉建屋原子炉棟内の代替循環冷却系と異なる区画に設置することで共通要因によって同時に機能を損な わないよう位置的分散を図る設計とする。 代替循環冷却系と原子炉格納容器フィルタベント系は，共通要因によって同時に機能を損なわないよう，流路を分離することで独立性を有する設計とする。 これらの多様性及び流路の独立性並びに位置的分散によ って，代替循環冷却系と原子炉格納容器フィルタベント系 は，互いに重大事故等対処設備として，可能な限りの独立性を有する設計とする。 電源設備の多様性，位置的分散については，「又（2）（iv）	設計の差異 －既許可において常設代替直流電源設備（ 125 V 代替蓄電池）から給電してい る旨明記している電動弁は所内常設直流電源設備（3系統目）から給電可能 な設計となるため記載。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	代替電源設備」に記載する。	代替電源設備」に記載する。	
	［常設重大事故等対処設備］	［常設重大事故等対処設備］	
	代替循環冷却系	代替循環冷却系	
	代替循環椧却ポンプ	代替循環冷却ポンプ	
	（「木（3）（ii）b ，c ）原子炬冷却材圧力バウンダリ低圧	（「ホ（3）（ii）b ．（c）原子炬冷却材圧力バウンダリ低	
	時に発電用原子炉を泠却するための設備」及び「リ	圧時に発電用原子炉を泠却するための設備」及び「リ	
	（3）（ii）c．原子炉格納容器下部の溶融炉心を泠却する	（3）（ ii）c．原子炉格納容器下部の溶融炉心を泠却する	
	ための設備」と兼用）	ための設備」と兼用）	
	台 数 1	台 数 1	
	容 量 約 $150 \mathrm{~m}^{3} / \mathrm{h}$	容 量 約 $150 \mathrm{~m}^{3} / \mathrm{h}$	
	全 揚 程 約80m	全 揚 程 約80m	
	残留熱除去系熱交換器	残留熱除去系熱交換器	
	（「ホ（4）（i）残留熱除去系」，「ホ（3）（ii）b ，（c）原	（「ホ（4）（i）残留熱除去系」，「ホ（3）（ii）b ，（c）原	
	子炬冷却材圧力バウンダリ低圧時に発電用原子炉を泠	子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷	
	却するための設備」及び「リ（3）（ ii ）c ．原子炉格納容	却するための設備」及び「リ（3）（ ii ）c ．原子炉格納容	
	器下部の溶融炬心を泠却するための設備」と兼用）	器下部の溶融炉心を泠却するための設備」と兼用）	
	基 数 1	基 数 1	
	伝 熱 容 量 約 8.8 MW	伝 熱 容 量 約 8.8 MW	
	原子炉格納容器フィルタベント系	原子炉格納容器フィルタベント系	
	フィルタ装置	フィルタ装置	
	（「ホ（4）（v）最終ヒートシンクへ熱を輸送するため	（「ホ（4）（v）最終ヒートシンクへ熱を輸送するため	
	の設備」及び「リ（3）（ ii ）d ．水素爆発による原子炉格	の設備」及び「リ（3）（ii）d．水素爆発による原子炉格	
	納容器の破損を防止するための設備」と兼用）	納容器の破損を防止するための設備」と兼用）	
	個 数 3	個 数 3	
	系統設計流量 約 $10.0 \mathrm{~kg} / \mathrm{s}$	系統設計流量 約 $10.0 \mathrm{~kg} / \mathrm{s}$	
	放射性物質除去効率 9．9\％以上（粒子状放射性物質	放射性物質除去効率 99．9\％以上（粒子状放射性物質	
	に対して）	に対して）	
	99．8\％以上（無機よう素に対し	99．8\％以上（無機よう素に対し	
	て）	て）	
	98% 以上（有機よう素に対し	98% 以上（有機よう素に対し	
	て）	て）	
	フィルタ装置出口側圧力開放板	フィルタ装置出口側圧力開放板	
	（「ホ（4）（v）最終ヒートシンクへ熱を輸送するため	（「ホ（4）（v）最終ヒートシンクへ熱を輸送するため	
	の設備」及び「リ（3）（ ii ）d ，水素爆発による原子炉格	の設備」及び「リ（3）（ ii ）d ，水素爆発による原子炉格	
	納容器の破損を防止するための設備」と兼用）	納容器の破損を防止するための設備」と兼用）	

柏崎刈羽 6， 7 号炉（2022．8．23提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	個 数 1	個 数 1	
	設定破裂圧力 約 100kPa［gage］	設定破裂圧力 約 100 kPa ［gage］	
	遠隔手動弁操作設備	遠隔手動弁操作設備	
	（「ホ（4）（v）最終ヒートシンクへ熱を輸送するため	（「ホ（4）（v）最終ヒートシンクへ熱を輸送するため	
	の設備」と兼用）	の設備」と兼用）	
	個 数 4	個 数 4	
	［可搬型重大事故等対処設備］	［可搬型重大事故等対処設備］	
	原子炉補機代替冷却水系	原子炉補機代替冷却水系	
	熱交換器ユニット	熱交換器ユニット	
	（「ホ（4）（v）最終ヒートシンクへ熱を輸送するため	（「ホ（4）（v）最終ヒートシンクへ熱を輸送するため	
	の設備」他と兼用）	の設備」他と兼用）	
	大容量送水ポンプ（タイプ I）	大容量送水ポンプ（タイプ I）	
	（「ニ（3）（ ii ）使用済燃料プールの泠却等のための設	（「ニ（3）（ ii ）使用済燃料プールの泠却等のための設	
	備」他と兼用）	備」他と兼用）	
	原子炉格納容器フィルタベント系	原子炉格納容器フィルタベント系	
	可搬型窒素ガス供給装置	可搬型窒素ガス供給装置	
	（「リ（3）（ii）d．水素爆発による原子炉格納容器の破損	（「リ（3）（ii）d．水素爆発による原子炉格納容器の破損	
	を防止するための設備」他と兼用）	を防止するための設備」他と兼用）	
	d．水素爆発による原子炉格納容器の破損を防止するための	d．水素爆発による原子炉格納容器の破損を防止するための	
	設備	設備	
	炬心の著しい損傷が発生した場合において原子炉格納容	炬心の著しい損傷が発生した場合において原子炉格納容	
	器内における水素爆発による破損を防止する必要がある場	器内における水素爆発による破損を防止する必要がある場	
	合には，水素爆発による原子炉格納容器の破損を防止する	合には，水素爆発による原子炉格納容器の破損を防止する	
	ために必要な重大事故等対処設備を設置及び保管する。	ために必要な重大事故等対処設備を設置及び保管する。	
	水素爆発による原子炉格納容器の破損を防止するための	水素爆発による原子炬格納容器の破損を防止するための	
	設備のらち，炉心の著しい損傷が発生した場合において原	設備のらち，炬心の著しい損傷が発生した場合において原	
	子炉格納容器内における水素爆発による破損を防止できる	子炉格納容器内における水素爆発による破損を防止できる	
	よう，原子炉格納容器内を不活性化するための設備として，	よう，原子炉格納容器内を不活性化するための設備として，	
	可搬型窒素ガス供給装置を設ける。	可搬型窒素がス供給装置を設ける。	
	水素爆発による原子炉格納容器の破損を防止するための	水素爆発による原子炉格納容器の破損を防止するための	
	設備のらち，炉心の著しい損傷が発生した場合において原	設備のらち，炉心の著しい損傷が発生した場合において原	
	子炉格納容器内における水素爆発による破損を防止できる	子炉格納容器内における水素爆発による破損を防止できる	
	よう，原子炉格納容器内に滞留する水素及び酸素を大気へ	よう，原子炉格納容器内に滞留する水素及び酸素を大気へ	
	排出するための設備として，原子炉格納容器フィルタベン	排出するための設備として，原子炬格納容器フィルタベン	
	ト系を設ける。	ト系を設ける。	
	水素爆発による原子炉格納容器の破損を防止するための	水素爆発による原子炉格納容器の破損を防止するための	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	設備のらち，灲心の著しい損傷が発生した場合において，原子炉格納容器内の水素濃度を監視する設備として，水素濃度監視設備を設ける。 また，灲心の著しい損傷が発生した場合において原子炉格納容器内における水素爆発による破損を防止できるよ う，発電用原子炉の運転中は，原子炉格納容器内を原子炉格納容器調気系により常時不活性化する設計とする。 （a）灲心の著しい損傷が発生した場合の原子炉格納容器水素爆発防止 （a－1）可搬型窒素ガス供給装置による原子炉格納容器内の不活性化 原子炉格納容器内を不活性化するための重大事故等対処設備として，可搬型窒素ガス供給装置は，原子炉格納容器内に窒素を供給することで，ジルコニウムー水反応，水の放射線分解等により原子炉格納容器内に発生する水素及び酸素の濃度を可燃限界未満にするこ とが可能な設計とする。 （a－2）原子炉格納容器フィルタベント系による原子炉格納容器内の水素及び酸素の排出 原子炉格納容器内に滞留する水素及び酸素を大気へ排出するための重大事故等対処設備として，原子炉格納容器フィルタベント系は，炉心の著しい損傷が発生 した場合において，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，フィルタ装置へ導 き，放射性物質を低減させた後に原子炉建屋屋上に設 ける放出口から排出することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，ジルコニウ ム一水反応，水の放射線分解等により発生する原子炉格納容器内の水素及び酸素を大気に排出できる設計と する。 原子炉格納容器フィルタベント系は，排気中に含ま れる可燃性ガスによる爆発を防ぐため，系統内を不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器ベント開始後においても不活性ガス（窒素）で置換できる設計とするとともに，系統内に可燃性ガス が蓄積する可能性のある箇所にはバイパスラインを設	設備のらち，灲心の著しい損傷が発生した場合において，原子炉格納容器内の水素濃度を監視する設備として，水素濃度監視設備を設ける。 また，灲心の著しい損傷が発生した場合において原子炉格納容器内における水素爆発による破損を防止できるよ う，発電用原子炉の運転中は，原子炉格納容器内を原子炉格納容器調気系により常時不活性化する設計とする。 （a）灲心の著しい損傷が発生した場合の原子炉格納容器水素爆発防止 （a－1）可搬型窒素ガス供給装置による原子炉格納容器内の不活性化 女川原子力発電所発電用原子炉設置変更許可申請書 （2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付 け，原規規発第2206019号をもって設置変更許可）の五，リ，（3），（ ii ），d，（a），（a－1）可搬型窒素ガス供給装置による原子炉格納容器内の不活性化の記載内容 に同じ。 （a－2）原子炉格納容器フィルタベント系による原子炉格納容器内の水素及び酸素の排出 原子炉格納容器内に滞留する水素及び酸素を大気へ排出するための重大事故等対処設備として，原子炉格納容器フィルタベント系は，炉心の著しい損傷が発生 した場合において，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，フィルタ装置へ導 き，放射性物質を低減させた後に原子炉建屋屋上に設 ける放出口から排出することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，ジルコニウ ム一水反応，水の放射線分解等により発生する原子炉格納容器内の水素及び酸素を大気に排出できる設計と する。 原子炉格納容器フィルタベント系は，排気中に含ま れる可燃性ガスによる爆発を防ぐため，系統内を不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器ベント開始後においても不活性ガス（窒素）で置換できる設計とするとともに，系統内に可燃性ガス が蓄積する可能性のある箇所にはバイパスラインを設	

柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	（b）原子炉格納容器内の水素濃度監視及び酸素濃度監視 （b－1）格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）による原子炉格納容器内の水素濃度監視原子炉格納容器内の水素濃度監視を行うための重大事故等対処設備として，格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）は，炉心の著しい損傷が発生した場合に，水素濃度が変動する可能性のあ る範囲の水素濃度を中央制御室より監視できる設計と する。格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする。	（b）原子炉格納容器内の水素濃度監視及び酸素濃度監視 （b－1）格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）による原子炉格納容器内の水素濃度監視原子炉格納容器内の水素濃度監視を行うための重大事故等対処設備として，格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）は，炉心の著しい損傷が発生した場合に，水素濃度が変動する可能性のあ る範囲の水素濃度を中央制御室より監視できる設計と する。格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）は，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目）又は可搬型代替直流電源設備から給電が可能な設計とする。	

柏崎刈羽 6， 7 号炉（2022．8． 23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箩所のみ記載	差異理由
	（b－2）原子炉格納容器内雰囲気計装による原子炉格納容器内の水素濃度監視及び酸素濃度監視 原子炉格納容器内の水素濃度監視及び酸素濃度監視 を行らための重大事故等対処設備として，格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度は，炉心の著しい損傷が発生した場合に，サンプリング装置 により原子炉格納容器内の雰囲気ガスを原子炉建屋原子炉棟内へ導き，検出器で測定することで，原子炉格納容器内の水素濃度及び酸素濃度を中央制御室より監視できる設計とする。格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度は，常設代替交流電源設備又は可搬型代替交流電源設備から給電が可能な設計と する。 なお，原子炉補機代替冷却水系から冷却水を供給す ることにより，サンプリングガスを冷却できる設計と する。 所内常設蓄電式直流電源設備，常設代替直流電源設備，可搬型代替直流電源設備，常設代替交流電源設備及び可搬型代替交流電源設備については，「又（2）（iv）代替電源設備」に記載する。 ［常設重大事故等対処設備］ 原子炉格納容器フィルタベント系 フィルタ装置 （「リ（3）（ii）b ．原子炉格納容器の過圧破損を防止する ための設備」他と兼用） フィルタ装置出口側圧力開放板 （「リ（3）（ii）b •原子炉格納容器の過圧破損を防止する ための設備」他と兼用） フィルタ装置出口水素濃度 （「へ 計測制御系統施設の構造及び設備」と兼用） 個 数 2 フィルタ装置出口放射線モニタ （「チ（1）（iii）放射線監視設備」他と兼用）	（b－2）原子炉格納容器内雰囲気計装による原子炉格納容器内の水素濃度監視及び酸素濃度監視 女川原子力発電所発電用原子炉設置変更許可申請書 （2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付 け，原規規発第2206019号をもって設置変更許可）の五，リ，（3），（ii），d，（b），（b－2）原子炉格納容器内雰囲気計装による原子炉格納容器内の水素濃度監視及 び酸素濃度監視の記載内容に同じ。 所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目），可搬型代替直流電源設備，常設代替交流電源設備及び可搬型代替交流電源設備に ついては，「ヌ（2）（iv）代替電源設備」に記載する。 ［常設重大事故等対処設備］ 原子炉格納容器フィルタベント系 フィルタ装置 （「リ（3）（ii）b ．原子炉格納容器の過圧破損を防止する ための設備」他と兼用） フィルタ装置出口側圧力開放板 （「リ（3）（ii）b •原子炉格納容器の過圧破損を防止する ための設備」他と兼用） フィルタ装置出口水素濃度 （「へ 計測制御系統施設の構造及び設備」と兼用） 個 数 2 フィルタ装置出口放射線モニタ （「チ（1）（iii）放射線監視設備」他と兼用）	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	格納容器内水素濃度（D／W） （「へ 計測制御系統施設の構造及び設備」と兼用） 個 $\text { 数 } \quad 2$ 格納容器内水素濃度（S／C） （「へ 計測制御系統施設の構造及び設備」と兼用） 個 $\text { 数 } \quad 2$ 格納容器内雰囲気水素濃度 （「へ 計測制御系統施設の構造及び設備」と兼用） 個 数 4 格納容器内雰囲気酸素濃度 （「へ 計測制御系統施設の構造及び設備」と兼用） 個 数 2 ［可搬型重大事故等対処設備］ 可搬型窒素ガス供給装置 （「ホ（4）（v）最終ヒートシンクへ熱を輸送するための設備」及び「リ（3）（ii）b 。 原子炉格納容器の過圧破損を防止するための設備」と兼用） 台 数 1（予備1） 容 量 約 $220 \mathrm{Nm}^{3} / \mathrm{h}$ （4）その他の主要な事項 （iii）水素爆発による原子炉建屋等の損傷を防止するための設備水素爆発による原子炉建屋等の損傷を防止するための設備 のらち，原子炬建屋等の損傷を防止するための水素濃度制御設備として，静的触媒式水素再結合装置及び静的触媒式水素	格納容器内水素濃度（D／W） （「へ 計測制御系統施設の構造及び設備」と兼用） 個 数 2 格納容器内水素濃度（S／C） （「へ 計測制御系統施設の構造及び設備」と兼用） 個 数 2 格納容器内雰囲気水素濃度 （「へ 計測制御系統施設の構造及び設備」と兼用） 個 数 4 格納容器内雰囲気酸素濃度 （「へ 計測制御系統施設の構造及び設備」と兼用） 個 数 2 ［可搬型重大事故等対処設備］ 可搬型窒素ガス供給装置 （「ホ（4）（v）最終ヒートシンクへ熱を輸送するための設備」及び「リ（3）（ii）b 。 原子炉格納容器の過圧破損を防止するための設備」と兼用） 台 数 1（予備1） 容 量 約 $220 \mathrm{Nm}^{3} / \mathrm{h}$ 「（4）その他の主要な事項」の「（iii）水素爆発による原子炉建屋等の損傷を防止するための設備」の記述を以下のとおり変更 する。 （4）その他の主要な事項 （iii）水素爆発による原子炉建屋等の損傷を防止するための設備水素爆発による原子炬建屋等の損傷を防止するための設備 のらち，原子炉建屋等の損傷を防止するための水素濃度制御設備として，静的触媒式水素再結合装置及び静的触媒式水素	記載箇所の差異 －柏崎は，「リ 原子炉格納施設の構造及び設備」の冒頭で当該リード文を記載。

相崎刈羽 6，7 号炬（2022．8．23提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	再結合装置動作監視装置を設ける。また，原子炉建屋内の水素濃度が変動する可能性のある範囲にわたり測定するための設備として，原子炉建屋水素濃度監視設備を設ける。 a．水素濃度制御による原子炉建屋等の損傷を防止するため の設備 （a）静的触媒式水素再結合装置による水素濃度の上昇抑制水素爆発による原子炉建屋等の損傷を防止するための設備のらち，炉心の著しい損傷により原子炉格納容器か ら原子炉建屋原子炉棟内に水素が漏えいした場合におい て，原子炉建屋原子炉棟内の水素濃度上昇を抑制し，水素濃度を可燃限界未満に制御するための重大事故等対処設備として，静的触媒式水素再結合装置は，運転員の起動操作を必要とせずに，原子炉格納容器から原子炉建屋原子炬棟内に漏えいした水素と酸素を触媒反応によって再結合させることで，原子炉建屋原子炉棟内の水素濃度 の上昇を抑制し，原子炉建屋原子炉棟の水素爆発を防止 できる設計とする。 静的触媒式水素再結合装置動作監視装置は，静的触媒式水素再結合装置の入口側及び出口側の温度により静的触媒式水素再結合装置の作動状態を中央制御室から監視 できる設計とする。静的触媒式水素再結合装置動作監視装置は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする。 b。水素濃度監視 （a）原子炉建屋水素濃度監視設備による水素濃度測定水素爆発による原子炉建屋等の損傷を防止するための設備のらち，炉心の著しい損傷により原子炉格納容器か ら原子炉建屋原子炉棟内に漏えいした水素の濃度を測定 するため，炉心の著しい損傷が発生した場合に水素濃度 が変動する可能性のある範囲で測定できる重大事故等対処設備として，原子炉建屋内水素濃度は，中央制御室に おいて連続監視できる設計とし，原子炉建屋内水素濃度 のうち，原子炉建屋地上 3 階及び原子炬建屋地下 2 階に設置するものについては，常設代替交流電源設備又は可搬型代替交流電源設備からの給電及び所内常設蓄電式直	再結合装置動作監視装置を設ける。また，原子炉建屋内の水素濃度が変動する可能性のある範囲にわたり測定するための設備として，原子炉建屋水素濃度監視設備を設ける。 a．水素濃度制御による原子炉建屋等の損傷を防止するため の設備 （a）静的触媒式水素再結合装置による水素濃度の上昇抑制水素爆発による原子炉建屋等の損傷を防止するための設備のらち，炉心の著しい損傷により原子炉格納容器か ら原子炉建屋原子炉棟内に水素が漏えいした場合におい て，原子炉建屋原子炉棟内の水素濃度上昇を抑制し，水素濃度を可燃限界未満に制御するための重大事故等対処設備として，静的触媒式水素再結合装置は，運転員の起動操作を必要とせずに，原子炬格納容器から原子炉建屋原子炉棟内に漏えいした水素と酸素を触媒反応によって再結合させることで，原子炉建屋原子炉棟内の水素濃度 の上昇を抑制し，原子炉建屋原子炉棟の水素爆発を防止 できる設計とする。 静的触媒式水素再結合装置動作監視装置は，静的触媒式水素再結合装置の入口側及び出口側の温度により静的触媒式水素再結合装置の作動状態を中央制御室から監視 できる設計とする。静的触媒式水素再結合装置動作監視装置は，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目）又は可搬型代替直流電源設備から給電が可能な設計とする。 b．水素濃度監視 （a）原子炉建屋水素濃度監視設備による水素濃度測定水素爆発による原子炉建屋等の損傷を防止するための設備のうち，炬心の著しい損傷により原子炉格納容器か ら原子炉建屋原子炉棟内に漏えいした水素の濃度を測定 するため，炉心の著しい損傷が発生した場合に水素濃度 が変動する可能性のある範囲で測定できる重大事故等対処設備として，原子炉建屋内水素濃度は，中央制御室に おいて連続監視できる設計とし，原子炬建屋内水素濃度 のらち，原子炉建屋地上 3 階及び原子炉建屋地下 2 階に設置するものについては，常設代替交流電源設備又は可搬型代替交流電源設備からの給電及び所内常設蓄電式直	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	ヌ その他発電用原子炉の附属施設の構造及び設備	「ヌ その他発電用原子炉の附属施設の構造及び設備」の記述を以下のとおり変更する。 ヌ その他発電用原子炉の附属施設の構造及び設備 「（2）非常用電源設備の構造」の「（iv）代替電源設備」の記述を以下のとおり変更する。	表現の差異 －女川は各項や各章図表の変更箇所を示す前にリード文 を入れている。
	（2）非常用電源設備の構造 （iv）代替電源設備 設計基準事故対処設備の電源が喪失したことにより重大事故等が発生した場合において灲心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及 び運転停止中原子炉内燃料体の著しい損傷を防止するため，必要な電力を確保するために必要な重大事故等対処設備を設置及び保管する。 代替電源設備のらち，重大事故等の対応に必要な電力を確保するための設備として，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備，可搬型代替直流電源設備及び代替所内電気設備 を設ける。また，重大事故等時に重大事故等対処設備の補機駆動用の軽油を補給するための設備として，燃料補給設備を設ける。 a ．代替交流電源設備による給電 （a）常設代替交流電源設備による給電 設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失）した場合の重大事故等対処設備として，常設代替交流電源設備を使用する。 常設代替交流電源設備は，ガスタービン発電機，ガス	（2）非常用電源設備の構造 （iv）代替電源設備 設計基準事故対処設備の電源が喪失したことにより重大事故等が発生した場合において灲心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及 び運転停止中原子炉内燃料体の著しい損傷を防止するため，必要な電力を確保するために必要な重大事故等対処設備を設置及び保管する。 代替電源設備のらち，重大事故等の対応に必要な電力を確保するための設備として，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備，所内常設直流電源設備（ 3 系統目），可搬型代替直流電源設備及び代替所内電気設備を設ける。また，重大事故等時に重大事故等対処設備の補機駆動用の軽油を補給する ための設備として，燃料補給設備を設ける。 a ．代替交流電源設備による給電 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第2206019号をもって設置変更許可）の五，ヌ，（2）， （iv），a．代替交流電源設備による給電の記載内容に同じ。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防謢：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	タービン発電設備軽油タンク，ガスタービン発電設備燃料移送ポンプ，軽油タンク，タンクローリ，電路，計測制御装置等で構成し，ガスタービン発電機を外部電源喪失時に自動起動し，緊急用高圧母線 2 F 系を介して非常用高圧母線 $2 C$ 系及び非常用高圧母線 $2 D$ 系又は緊急用低圧母線 $2 G$ 系へ接続することで電力を供給できる設計とす る。 ガスタービン発電機の燃料は，ガスタービン発電設備軽油タンクよりガスタービン発電設備燃料移送ポンプを用いて補給できる設計とする。また，ガスタービン発電設備軽油タンクの燃料は，軽油タンクよりタンクローリ を用いて補給できる設計とする。 常設代替交流電源設備は，非常用交流電源設備に対し て，独立性を有し，位置的分散を図る設計とする。 （b）可搬型代替交流電源設備による給電 設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失）した場合の重大事故等対処設備として，可搬型代替交流電源設備を使用する。 可搬型代替交流電源設備は，電源車，軽油タンク，ガ スタービン発電設備軽油タンク，タンクローリ，電路，計測制御装置等で構成し，電源車は緊急用高圧母線 2 G 采 を介して非常用高圧母線 $2 C$ 系及び非常用高圧母線 2 D 系又は緊急用低圧母線 $2 G$ 系へ接続することで電力を供給 できる設計とする。 電源車の燃料は，軽油タンク又はガスタービン発電設備軽油タンクよりタンクローリを用いて補給できる設計 とする。 可搬型代替交流電源設備は，非常用交流電源設備に対 して，独立性を有し，位置的分散を図る設計とする。 b．代替直流電源設備による給電 （a）所内常設蓄電式直流電源設備による給電 設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失）した場合の重大事故等対処設備として，所内常設蓄電式直流電源設備を使用する。 所内常設蓄電式直流電源設備は， 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$	b ．代替直流電源設備による給電 （a）所内常設蓄電式直流電源設備による給電 女川原子力発電所発電用原子炉設置変更許可申請書 （2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付 け，原規規発第2206019号をもって設置変更許可）の五， ヌ，（2），（iv），b，（a）所内常設蓄電式直流電源設備	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審查許可後完本 （有毒ガス防謢：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	蓄電池 $2 \mathrm{~B}, 125 \mathrm{~V}$ 充電器 $2 \mathrm{~A}, 125 \mathrm{~V}$ 充電器 2 B ，電路，計測制御装置等で構成し，全交流動力電源喪失から 1 時間以内に中央制御室において，全交流動力電源喪失から8時間後に，不要な負荷の切離しを行い，全交流動力電源喪失から 24 時間にわたり， 125 V 蓄電池 2 A 及び 125 V 蓄電池 2 B から電力を供給できる設計とする。また，交流電源復旧後に，交流電源を 125 V 充電器 2 A 及び 125 V 充電器 2Bを経由し 125 V 直流母線へ接続することで電力を供給 できる設計とする。 （b）常設代替直流電源設備による給電 設計基準事故対処設備の交流電源及び直流電源が喪失 した場合の重大事故等対処設備として，常設代替直流電源設備のらち 125 V 代替蓄電池を使用する。また，設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失） した場合又は交流電源及び直流電源が喪失した場合の重大事故等対処設備として，常設代替直流電源設備のらち 250 V 蓄電池を使用する。 常設代替直流電源設備は， 125 V 代替蓄電池， 250 V 蓄電池，電路，計測制御装置等で構成し， 125 V 代替蓄電池は電力の供給開始から8時間後に，不要な負荷の切離しを行い， 250 V 蓄電池は電力の供給開始から 1 時間後に中央制御室において，不要な負荷の切離しを行い，電力の供給開始から 24 時間にわたり， 125 V 代替蓄電池及び 250 V蓄電池から電力を供給できる設計とする。	による給電の記載内容に同じ。 （b）常設代替直流電源設備による給電 女川原子力発電所発電用原子炉設置変更許可申請書 （2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付 け，原規規発第2206019号をもって設置変更許可）の五，又，（2），（iv），b，（b）常設代替直流電源設備による給電の記載内容に同じ。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	（c）可搬型代替直流電源設備による給電 設計基準事故対処設備の交流電源及び直流電源が喪失 した場合の重大事故等対処設備として，可搬型代替直流電源設備を使用する。 可搬型代替直流電源設備は， 125 V 代替蓄電池， 250 V 蓄電池，電源車， 125 V 代替充電器， 250 V 充電器，軽油タン ク，ガスタービン発電設備軽油タンク，タンクローリ，電路，計測制御装置等で構成し， 125 V 代替蓄電池は電力 の供給開始から8時間後に，不要な負荷の切離しを行い， 250 V 蓄電池は電力の供給開始から 1 時間後に中央制御室において，不要な負荷の切離しを行い，125V 代替蓄電池及び 250 V 蓄電池から電力を供給し，その後，電源車を代替所内電気設備， 125 V 代替充電器及び 250 V 充電器を	（c）所内常設直流電源設備（3系統目）による給電 更なる信頼性を向上するため，設計基準事故対処設備 の電源が喪失（全交流動力電源喪失）した場合に，重大事故等の対応に必要な設備に直流電力を供給するため，特に高い信頼性を有する所内常設直流電源設備（ 3 系統目）を使用する。 所内常設直流電源設備（3系統目）は，第3直流電源設備用 125 V 代替蓄電池，第 3 直流電源設備用 250 V 代替蓄電池，電路，計測制御装置等で構成し，第 3 直流電源設備用 125 V 代替蓄電池は電力の供給開始から 8 時間後 に，不要な負荷の切離しを行い，第3直流電源設備用 250 V 代替蓄電池は負荷の切離しを行わず，電力の供給開始から24時間にわたり，第3直流電源設備用 125 V 代替蓄電池及び第 3 直流電源設備用 250 V 代替蓄電池から電力を供給できる設計とする。 また，所内常設直流電源設備（3系統目）は，特に高い信頼性を有する直流電源設備とするため，基準地震動S sによる地震力に対して，重大事故等に対処するために必要な機能が損なわれるおそれがないことに加え，弾性設計用地震動 S d による地震力又は静的地震力のいずれ か大きい方の地震力に対して，おおむね弾性状態にとど まる範囲で耐えられるように設計する。 （d）可搬型代替直流電源設備による給電 女川原子力発電所発電用原子炉設置変更許可申請書 （2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付 け，原規規発第2206019号をもって設置変更許可）の五， ヌ，（2），（iv），b，（c）可搬型代替直流電源設備によ る給電の記載内容に同じ。	項番号の差異 設備名称の差異設計の差異 －女川 2 号は，不要負荷の切離しを行 い 24 時間にわたり給電できる設計と している。（125V系） －所内常設直流電源設備（3系統目）と して 125 V 系統と 250V系統があり，電源構成の相違。表現の差異

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	経由し， 125 V 直流主母線盤 2A－1， 125 V 直流主母線盤 $2 \mathrm{~B}-$ 1 及び 250 V 直流主母線盤へ接続することで電力を供給で きる設計とする。 電源車の燃料は，軽油タンク又はガスタービン発電設備軽油タンクよりタンクローリを用いて補給できる設計 とする。 可搬型代替直流電源設備は，電源車の運転を継続する ことで，設計基準事故対処設備の交流電源及び直流電源 の喪失から 24 時間にわたり必要な負荷に電力の供給を行らことができる設計とする。 可搬型代替直流電源設備は，非常用直流電源設備に対 して，独立性を有し，位置的分散を図る設計とする。 c．代替所内電気設備による給電 設計基準事故対処設備の非常用所内電気設備が機能喪失 した場合の重大事故等対処設備として，代替所内電気設備 を使用する。 代替所内電気設備は，ガスタービン発電機接続盤，緊急用高圧母線 2 F 采，緊急用高圧母線 2 G 系，緊急用動力変圧器 $2 G$ 系，緊急用低圧母線 $2 G$ 系，緊急用交流電源切替盤 $2 G$系，緊急用交流電源切替盤 $2 C$ 系，緊急用交流電源切替盤 $2 D$系，非常用高圧母線 2 C 系，非常用高圧母線 2 D 系，計測制御装置等で構成し，常設代替交流電源設備又は可搬型代替交流電源設備の電路として使用し電力を供給できる設計と する。 代替所内電気設備は，共通要因で設計基準事故対処設備 である非常用所内電気設備と同時に機能を喪失しない設計 とする。また，代替所内電気設備及び非常用所内電気設備 は，少なくとも 1 系統は機能の維持及び人の接近性の確保 を図る設計とする。 d．燃料補給設備による給油 重大事故等時に補機駆動用の軽油を補給する設備とし て，軽油タンク，ガスタービン発電設備軽油タンク，タン クローリ及びホースを使用する。 大容量送水ポンプ（タイプ I ），熱交換器ユニット，可搬型窒素ガス供給装置及び大容量送水ポンプ（タイプII）は，軽油タンク又はガスタービン発電設備軽油タンクからタン	c．代替所内電気設備による給電 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第2206019号をもって設置変更許可）の五，ヌ，（2）， （iv），c．代替所内電気設備による給電の記載内容に同じ。 d．燃料補給設備による給油 女川原子力発電所発電用原子炉設置変更許可申請書（2号発電用原子炉施設の変更）（令和 4 年 6 月 1 日付け，原規規発第2206019号をもって設置変更許可）の五，ヌ，（2）， （iv），d．燃料補給設備による給油の記載内容に同じ。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	クローリを用いて燃料を補給できる設計とする。 軽油タンク又はガスタービン発電設備軽油タンクからタ ンクローリへの軽油の補給は，ホースを用いる設計とする。常設代替交流電源設備は，非常用交流電源設備と共通要因 によって同時に機能を損なわないよう，ガスタービン発電機 をガスタービンにより駆動することで，ディーゼルエンジン により駆動する非常用ディーゼル発電機及び高圧炉心スプレ イ系ディーゼル発電機を用いる非常用交流電源設備に対して多様性を有する設計とする。 常設代替交流電源設備のガスタービン発電機，ガスタービ ン発電設備軽油タンク，ガスタービン発電設備燃料移送ポン プ及びタンクローリは，原子炉建屋付属棟から離れた屋外に設置又は保管することで，原子炉建屋付属棟内の非常用ディ ーゼル発電機，高圧炉心スプレイ系ディーゼル発電機，非常用ディーゼル発電設備燃料デイタンク及び高圧炉心スプレイ系ディーゼル発電設備燃料デイタンク並びに原子炉建屋付属棟近傍の非常用ディーゼル発電設備燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプと共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 常設代替交流電源設備は，ガスタービン発電機から非常用高圧母線までの系統において，独立した電路で系統構成する ことにより，非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機から非常用高圧母線までの系統に対し て，独立性を有する設計とする。 これらの多様性及び位置的分散並びに電路の独立性によっ て，常設代替交流電源設備は非常用交流電源設備に対して独立性を有する設計とする。 可搬型代替交流電源設備は，非常用交流電源設備と共通要因によって同時に機能を損なわないよう，電源車の泠却方式 を空冷とすることで，冷却方式が水冷である非常用ディーゼ ル発電機及び高圧灲心スプレイ系ディーゼル発電機を用いる非常用交流電源設備に対して多様性を有する設計とする。ま た，可搬型代替交流電源設備は，常設代替交流電源設備と共通要因によって同時に機能を損なわないよう，電源車をディ ーゼルエンジンにより駆動することで，ガスタービンにより	常設代替交流電源設備は，非常用交流電源設備と共通要因 によって同時に機能を損なわないよう，ガスタービン発電機 をガスタービンにより駆動することで，ディーゼルエンジン により駆動する非常用ディーゼル発電機及び高圧炬心スプレ イ系ディーゼル発電機を用いる非常用交流電源設備に対して多様性を有する設計とする。 常設代替交流電源設備のガスタービン発電機，ガスタービ ン発電設備軽油タンク，ガスタービン発電設備燃料移送ポン プ及びタンクローリは，原子炉建屋付属棟から離れた屋外に設置又は保管することで，原子炉建屋付属棟内の非常用ディ ーゼル発電機，高圧炉心スプレイ系ディーゼル発電機，非常用ディーゼル発電設備燃料デイタンク及び高圧炉心スプレイ系ディーゼル発電設備燃料デイタンク並びに原子炉建屋付属棟近傍の非常用ディーゼル発電設備燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプと共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 常設代替交流電源設備は，ガスタービン発電機から非常用高圧母線までの系統において，独立した電路で系統構成する ことにより，非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機から非常用高圧母線までの系統に対し て，独立性を有する設計とする。 これらの多様性及び位置的分散並びに電路の独立性によっ て，常設代替交流電源設備は非常用交流電源設備に対して独立性を有する設計とする。 可搬型代替交流電源設備は，非常用交流電源設備と共通要因によって同時に機能を損なわないよう，電源車の泠却方式 を空冷とすることで，冷却方式が水泠である非常用ディーゼ ル発電機及び高圧炉心スプレイ系ディーゼル発電機を用いる非常用交流電源設備に対して多様性を有する設計とする。ま た，可搬型代替交流電源設備は，常設代替交流電源設備と共通要因によって同時に機能を損なわないよう，電源車をディ ーゼルエンジンにより駆動することで，ガスタービンにより	

柏崎刈羽 6， 7 号炉（2022．8． 23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	駆動するガスタービン発電機を用いる常設代替交流電源設備 に対して多様性を有する設計とする。 可搬型代替交流電源設備の電源車，ガスタービン発電設備軽油タンク及びタンクローリは，屋外の原子炉建屋付属棟か ら離れた場所に設置又は保管することで，原子炉建屋付属棟内の非常用ディーゼル発電機，高圧炉心スプレイ系ディーゼ ル発電機，非常用ディーゼル発電設備燃料デイタンク及び高圧炬心スプレイ系ディーゼル発電設備燃料デイタンク並びに原子炉建屋付属棟近傍の非常用ディーゼル発電設備燃料移送 ポンプ及び高圧炉心スプレイ系ディーゼル発電設備燃料移送 ポンプと共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。また，可搬型代替交流電源設備 の電源車及びタンクローリは，屋外のガスタービン発電機， ガスタービン発電設備軽油タンク及びガスタービン発電設備燃料移送ポンプから離れた場所に保管することで，共通要因 によって同時に機能を損なわないよう，位置的分散を図る設計とする。 可搬型代替交流電源設備は，電源車から非常用高圧母線ま での系統において，独立した電路で系統構成することにより，非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機から非常用高圧母線までの系統に対して，独立性を有 する設計とする。 これらの多様性及び位置的分散並びに電路の独立性によっ て，可搬型代替交流電源設備は非常用交流電源設備に対して独立性を有する設計とする。 可搬型代替交流電源設備の電源車の接続箇所は，共通要因 によって接続できなくなることを防止するため，位置的分散 を図った複数箇所に設置する設計とする。	駆動するガスタービン発電機を用いる常設代替交流電源設備 に対して多様性を有する設計とする。 可搬型代替交流電源設備の電源車，ガスタービン発電設備軽油タンク及びタンクローリは，屋外の原子炉建屋付属棟か ら離れた場所に設置又は保管することで，原子炉建屋付属棟内の非常用ディーゼル発電機，高圧炉心スプレイ系ディーゼ ル発電機，非常用ディーゼル発電設備燃料デイタンク及び高圧炉心スプレイ系ディーゼル発電設備燃料デイタンク並びに原子炉建屋付属棟近傍の非常用ディーゼル発電設備燃料移送 ポンプ及び高圧炉心スプレイ系ディーゼル発電設備燃料移送 ポンプと共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。また，可搬型代替交流電源設備 の電源車及びタンクローリは，屋外のガスタービン発電機， ガスタービン発電設備軽油タンク及びガスタービン発電設備燃料移送ポンプから離れた場所に保管することで，共通要因 によって同時に機能を損なわないよう，位置的分散を図る設計とする。 可搬型代替交流電源設備は，電源車から非常用高圧母線ま での系統において，独立した電路で系統構成することにより，非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機から非常用高圧母線までの系統に対して，独立性を有 する設計とする。 これらの多様性及び位置的分散並びに電路の独立性によっ て，可搬型代替交流電源設備は非常用交流電源設備に対して独立性を有する設計とする。 可搬型代替交流電源設備の電源車の接続箇所は，共通要因 によって接続できなくなることを防止するため，位置的分散 を図った複数箇所に設置する設計とする。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更笡所のみ記載	差異理由
	所内常設蓄電式直流電源設備は，原子炬建屋付属棟内の非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機と異なる制御建屋内に設置することで，非常用交流電源設備と共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 所内常設蓄電式直流電源設備は， 125 V 蓄電池 2 A 及び 125 V蓄電池 2 B から 125 V 直流主母線盤 2 A 及び 125 V 直流主母線盤 2B までの系統において，独立した電路で系統構成することに より，非常用ディーゼル発電機の交流を直流に変換する電路 を用いた 125 V 直流主母線盤 2 A 及び 125 V 直流主母線盤 2 B ま での系統に対して，独立性を有する設計とする。 これらの位置的分散及び電路の独立性によって，所内常設蓄電式直流電源設備は非常用交流電源設備に対して独立性を有する設計とする。 常設代替直流電源設備は，制御建屋内の非常用直流電源設備と異なる区画に設置することで，非常用直流電源設備と共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 常設代替直流電源設備は， 125 V 代替蓄電池から 125 V 直流主母線盤 2A－1 及び 125 V 直流主母線盤 $2 \mathrm{~B}-1$ までの系統並び に 250 V 蓄電池から 250 V 直流主母線盤までの系統において，独立した電路で系統構成することにより，非常用直流電源設備の 125 V 蓄電池 2 A ， 125 V 蓄電池 2 B 及び 125 V 蓄電池 2 H か ら 125 V 直流主母線盤 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$ 直流主母線盤 2 B 及び 125 V 直流主母線盤2H までの采統に対して，独立性を有する設計とす る。 これらの位置的分散及び電路の独立性によって，常設代替直流電源設備は非常用直流電源設備に対して独立性を有する設計とする。	所内常設蓄電式直流電源設備は，原子炉建屋付属棟内の非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機と異なる制御建屋内に設置することで，非常用交流電源設備と共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 所内常設蓄電式直流電源設備は， 125 V 蓄電池 2 A 及び 125 V蓄電池 2 B から 125 V 直流主母線盤 2 A 及び 125 V 直流主母線盤 2Bまでの系統において，独立した電路で系統構成することに より，非常用ディーゼル発電機の交流を直流に変換する電路 を用いた 125 V 直流主母線盤 2 A 及び 125 V 直流主母線盤 2 B ま での系統に対して，独立性を有する設計とする。 これらの位置的分散及び電路の独立性によって，所内常設蓄電式直流電源設備は非常用交流電源設備に対して独立性を有する設計とする。 常設代替直流電源設備は，制御建屋内の非常用直流電源設備と異なる区画に設置することで，非常用直流電源設備と共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 常設代替直流電源設備は， 125 V 代替蓄電池から 125 V 直流主母線盤 2A－1 及び 125 V 直流主母線盤 2B－1 までの系統並び に 250 V 蓄電池から 250 V 直流主母線盤までの系統において，独立した電路で系統構成することにより，非常用直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$ 蓄電池 2 B 及び 125 V 蓄電池 2 H か ら 125 V 直流主母線盤 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$ 直流主母線盤 2 B 及び 125 V 直流主母線盤 2 H までの系統に対して，独立性を有する設計とす る。 これらの位置的分散及び電路の独立性によって，常設代替直流電源設備は非常用直流電源設備に対して独立性を有する設計とする。	

柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	可搬型代替直流電源設備は，非常用直流電源設備と共通要因によって同時に機能を損なわないよう，電源車の泠却方式 を空冷とすることで，冷却方式が水冷である非常用ディーゼ ル発電機及び高圧炉心スプレイ系ディーゼル発電機から給電 する非常用直流電源設備に対して多樣性を有する設計とす る。また， 125 V 代替充電器及び 250 V 充電器により交流を直流に変換できることで， 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 2 B 及び 125 V 蓄電池 2 H を用いる非常用直流電源設備に対して多様性 を有する設計とする。 可搬型代替直流電源設備の 125 V 代替蓄電池， 250 V 蓄電池， 125 V 代替充電器及び 250 V 充電器は，制御建屋内の 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 $2 \mathrm{~B}, 125 \mathrm{~V}$ 充電器 2 A 及び 125 V 充電器 2 B 並 びに原子炉建屋付属棟内の 125 V 蓄電池 2 H 及び 125 V 充電器 2 H と異なる区画又は建屋に設置することで，非常用直流電源設備と共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 可搬型代替直流電源設備の電源車，ガスタービン発電設備軽油タンク及びタンクローリは，屋外の原子炉建屋付属棟か ら離れた場所に設置又は保管することで，原子炉建屋付属棟内の非常用ディーゼル発電機，高圧炝心スプレイ系ディーゼ ル発電機，非常用ディーゼル発電設備燃料デイタンク及び高圧炬心スプレイ系ディーゼル発電設備燃料デイタンク並びに原子炉建屋付属棟近傍の非常用ディーゼル発電設備燃料移送 ポンプ及び高圧炉心スプレイ系ディーゼル発電設備燃料移送 ポンプと共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 可搬型代替直流電源設備は， 125 V 代替蓄電池及び電源車か ら 125 V 直流主母線盤 2A－1 及び 125 V 直流主母線盤 2B－1 まで の系統並びに 250 V 蓄電池及び電源車から 250 V 直流主母線盤 までの系統において，独立した電路で系統構成することによ り，非常用直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 2 B 及 び 125 V 蓄電池 2 H から 125 V 直流主母線盤 $2 \mathrm{~A}, 125 \mathrm{~V}$ 直流主母	有する設計とする。 可搬型代替直流電源設備は，非常用直流電源設備と共通要因によって同時に機能を損なわないよう，電源車の泠却方式 を空冷とすることで，泠却方式が水冷である非常用ディーゼ ル発電機及び高圧炉心スプレイ系ディーゼル発電機から給電 する非常用直流電源設備に対して多様性を有する設計とす る。また， 125 V 代替充電器及び 250 V 充電器により交流を直流に変換できることで， 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 2 B 及び 125 V 蓄電池 2 H を用いる非常用直流電源設備に対して多樣性 を有する設計とする。 可搬型代替直流電源設備の 125 V 代替蓄電池， 250 V 蓄電池， 125 V 代替充電器及び 250 V 充電器は，制御建屋内の 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 $2 \mathrm{~B}, 125 \mathrm{~V}$ 充電器 2 A 及び 125 V 充電器 2 B 並 びに原子炬建屋付属棟内の 125 V 蓄電池 $2 \mathrm{H}, 125 \mathrm{~V}$ 充電器 2 H ，第3直流電源設備用 125 V 代替蓄電池及び第 3 直流電源設備用 250 V 代替蓄電池と異なる区画又は建屋に設置することで，非常用直流電源設備及び所内常設直流電源設備（3系統目） と共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 可搬型代替直流電源設備の電源車，ガスタービン発電設備軽油タンク及びタンクローリは，屋外の原子炉建屋付属棟か ら離れた場所に設置又は保管することで，原子炬建屋付属棟内の非常用ディーゼル発電機，高圧炉心スプレイ系ディーゼ ル発電機，非常用ディーゼル発電設備燃料デイタンク，高圧灲心スプレイ系ディーゼル発電設備燃料デイタンク，第3直流電源設備用 125 V 代替蓄電池及び第 3 直流電源設備用 250 V代替蓄電池並びに原子炉建屋付属棟近傍の非常用ディーゼル発電設備燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプと共通要因によって同時に機能を損 なわないよう，位置的分散を図る設計とする。 可搬型代替直流電源設備は， 125 V 代替蓄電池及び電源車か ら 125 V 直流主母線盤 2A－1 及び 125 V 直流主母線盤 2B－1 まで の系統並びに 250 V 蓄電池及び電源車から 250 V 直流主母線盤 までの系統において，独立した電路で系統構成することによ り，非常用直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 2 B 及 び 125 V 蓄電池 2 H から 125 V 直流主母線盤 $2 \mathrm{~A}, 125 \mathrm{~V}$ 直流主母	設備名称の差異設計の差異 －所内常設直流電源設備（3系統目）と して 125 V 系統と 250V 系統があり，電源構成の相違。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防謢：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	線盤2B 及び 125 V 直流主母線盤2H までの系統に対して，独立	線盤 2 C 及び 125 V 直流主母線盤2H までの系統並びに所内常	表現の差異
	性を有する設計とする。	設直流電源設備（ 3 系統目）の第 3 直流電源設備用 125 V 代替	設計の差異
		電池及び第3直流電源設備用 250 V 代替蓄電池から 125 V 直	－所内常設直流電源
		流主母線盤2A－1， 125 V 直流主母線盤2B－1 及び250V直流主母	設備（3系統目）と
		線盤までの系統に対して，独立性を有する設計とする。	して 125 V 系統と
	これらの多様性及び位置的分散並びに電路の独立性によっ	これらの多様性及び位置的分散並びに電路の独立性によっ	250V系統があり，電
	て，可搬型代替直流電源設備は非常用直流電源設備に対して	て，可搬型代替直流電源設備は非常用直流電源設備及び所内	源構成の相違。
	独立性を有する設計とする。	常設直流電源設備（ 3 系統目）に対して独立性を有する設計	表現の差異
		とする。	
	可搬型代替直流電源設備の電源車の接続䈯所は，共通要因	可搬型代替直流電源設備の電源車の接続箇所は，共通要因	
	によって接続できなくなることを防止するため，位置的分散	によって接続できなくなることを防止するため，位置的分散	
	を図った複数箇所に設置する設計とする。	を図った複数箇所に設置する設計とする。	
	代替所内電気設備のガスタービン発電機接続盤及び緊急用	代替所内電気設備のガスタービン発電機接続盤及び緊急用	
	高圧母線 2 F 系は，緊急用電気品建屋（地下階）に設置するこ	高圧母線 2 F 系は，緊急用電気品建屋（地下階）に設置するこ	
	とで，非常用所内電気設備と共通要因によって同時に機能を	とで，非常用所内電気設備と共通要因によって同時に機能を	
	損なわないよう，位置的分散を図る設計とする。 代替所内電気設備の緊急用高圧母線 2 G 系，緊急用動力変圧	損なわないよう，位置的分散を図る設計とする。 代替所内電気設備の緊急用高圧母線 $2 G$ 系，緊急用動力変圧	
	器 $2 G$ 系，緊急用低圧母線 $2 G$ 系，緊急用交流電源切替盤 $2 G$	器 $2 G$ 系，緊急用低圧母線 $2 G$ 系，緊急用交流電源切替盤 $2 G$	
	系，緊急用交流電源切替盤 2 C 系及び緊急用交流電源切替盤	系，緊急用交流電源切替盤 2 C 系及び緊急用交流電源切替盤	
	2D 系は，非常用所内電気設備と異なる区画に設置すること	2D 系は，非常用所内電気設備と異なる区画に設置すること	
	で，非常用所内電気設備と共通要因によって同時に機能を損	で，非常用所内電気設備と共通要因によって同時に機能を損	
	なわないよう，位置的分散を図る設計とする。	なわないよう，位置的分散を図る設計とする。	
	代替所内電気設備は，独立した電路で系統構成することに	代替所内電気設備は，独立した電路で系統構成することに	
	より，非常用所内電気設備に対して，独立性を有する設計と	より，非常用所内電気設備に対して，独立性を有する設計と	
	する。	する。	
	これらの位置的分散及び電路の独立性によって，代替所内	これらの位置的分散及び電路の独立性によって，代替所内	
	電気設備は非常用所内電気設備に対して独立性を有する設計	電気設備は非常用所内電気設備に対して独立性を有する設計	
	もする。	とする。	
	燃料補給設備のタンクローリは，原子炉建屋付属㭪近傍の	燃料補給設備のタンクローリは，原子炉建屋付属棟近傍の	
	非常用ディーゼル発電設備燃料移送ポンプ及び高圧炉心スプ	非常用ディーゼル発電設備燃料移送ポンプ及び高圧炉心スプ	
	レイ系ディーゼル発電設備燃料移送ポンプから離れた屋外に	レイ系ディーゼル発電設備燃料移送ポンプから離れた屋外に	
	分散して保管することで，原子炬建屋付属棟近傍の非常用デ	分散して保管することで，原子炉建屋付属棟近傍の非常用デ	
	イーゼル発電設備燃料移送ポンプ及び高圧炉心スプレイ系デ	イーゼル発電設備燃料移送ポンプ及び高圧炉心スプレイ系デ	
	イーゼル発電設備燃料移送ポンプと共通要因によって同時に	イーゼル発電設備燃料移送ポンプと共通要因によって同時に	
	機能を損なわないよう，位置的分散を図る設計とする。	機能を損なわないよう，位置的分散を図る設計とする。	
	軽油タンク及びガスタービン発電設備軽油タンクは，屋外	軽油タンク及びガスタービン発電設備軽油タンクは，屋外	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箩所のみ記載	差異理由
	に分散して設置することで，共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 ［常設重大事故等対処設備］ ガスタービン発電機 （「ヌ（3）（vi）緊急時対策所」と兼用） 台 数 2 容 量 約4，500kVA（1台当たり） ガスタービン発電設備軽油タンク （「ヌ（3）（vi）緊急時対策所」と兼用） 基 数 3 容 量 約 110kL（1基当たり） ガスタービン発電設備燃料移送ポンプ （「ヌ（3）（vi）緊急時対策所」と兼用） 台 数 2 容 量 約 $3.0 \mathrm{~m}^{3} / \mathrm{h}$（1台当たり）	に分散して設置することで，共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 ［常設重大事故等対処設備］ ガスタービン発電機 （「ヌ（3）（vi）緊急時対策所」と兼用） 台 数 2 容 量 約 $4,500 \mathrm{kVA}$（1台当たり） ガスタービン発電設備軽油タンク （「ヌ（3）（vi）緊急時対策所」と兼用） 基 数 3 容 量 約 110 kL （1基当たり） ガスタービン発電設備燃料移送ポンプ （「ヌ（3）（vi）緊急時対策所」と兼用） 台 数 2 容 量 約 $3.0 \mathrm{~m}^{3} / \mathrm{h}$（1台当たり）	
	軽油タンク （「ヌ（2）（ii）非常用ディーゼル発電機」他と兼用） 125 V 蓄電池 2 A （「ヌ（2）（iii）蓄電池」と兼用） 125 V 蓄電池 2 B （「ヌ（2）（iii）蓄電池」と兼用） 125 V 充電器 2 A 個 数 1 直流出力電流 約 700A 125 V 充電器 $2 B$ 個 数 1 直流出力電流 約 700A 125V 代替蓄電池 250 V 蓄電池 組 数 1 容 量 約 6，000Ah	軽油タンク （「ヌ（2）（ii）非常用ディーゼル発電機」他と兼用） 125 V 蓄電池 2 A （「又（2）（iii）蓄電池」と兼用） 125 V 蓄電池 2 B （「ヌ（2）（iii）蓄電池」と兼用） 125 V 充電器 2 A 個 数 1 直流出力電流 約 700A 125 V 充電器 $2 B$ 個 数 1 直流出力電流 約 700A 125 V 代替蓄電池 250 V 蓄電池 組 数 1 容 量 約 6，000Ah	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審查許可後完本 （有毒ガス防護：2022年6月1日許可）		女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載		差異理由
			第3直流電源設備用 125 V 代替蓄電池		設備名称の差異
			組 数		
			容 量	約 3，000Ah	
			第3直流電源設備	50V 代替蓄電池	設計の差異
			組 数	1	－所内常設直流電源
			容 量	約 4，000Ah	設備（ 3 系統目）と
	125 V 代替充電器		$125 V$ 代替充電器		して 125 V 系統と 250V 系統があり，電源構成の相違。
	個 数	1	個 数	1	
	直流出力電流	約 700A	直流出力電流	約 700A	
	250 V 充電器		250 V 充電器		
	個 数	1	個 数	1	
	直流出力電流	約400A	直流出力電流	約400A	
	ガスタービン発電機接続盤		ガスタービン発電機接続盤		
	（「又（3）（vi）緊急時対策所」と兼用）		（「ヌ（3）（vi）緊急時対策所」と兼用）		
	個 数	2	個 数	2	
	緊急用高圧母線		緊急用高圧母線		
	（「ヌ（3）（vi）緊急時対策所」と兼用）		（「又（3）（vi）緊急時対策所」と兼用）		
	個 数	3	個 数	3	
	緊急用動力変圧器		緊急用動力変圧器		
	個 数	1	個 数	1	
	容 量	約 750 kVA	容 量	約 750 kVA	
	緊急用低圧母線		緊急用低圧母線		
	個 数	3	個 数	3	
	緊急用交流電源切替盤		緊急用交流電源切替盤		
	個 数	3	個 数	3	
	非常用高圧母線		非常用高圧母線		
	個 数	2	個 数		
	［可搬型重大事故等対処設備］		［可搬型重大事故等対処設備］		
	タンクローリ		タンクローリ		
	（「ヌ（3）（vi）緊	緊急時対策所」と兼用）	（「ヌ（3）（vi）緊急時対策所」と兼用）		
	台 数	2 （予備 1）	数 2 （予備 1 ）		
	容 量	約4．0kL（1台当たり）	容 量 約4．0kL（1台当たり）		

所内常設直流電源設備（3系統目）添付書類八 比較表

所内常設直流電源設備（3系統目）添付書類八 比較表

（地震による損傷の防止）

第三十九条 重大事故等対処施設は，次に掲げる施設の区分に応じ， それぞれ次に定める要件を満たすものでなければならない。
一 常設耐震重要重大事故防止設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。）基準地震動による地震力に対して重大事故に至るおそれがある事故に対処するために必要な機能が損なわれるおそれがないものであること。
三 常設重大事故緩和設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。）基準地震動による地震力に対し て重大事故に対処するために必要な機能が損なわれるおそれが ないものであること。
2 重大事故等対処施設は，第四条第三項の地震の発生によって生 ずるおそれがある斜面の崩壊に対して重大事故等に対処するため
に必要な機能が損なわれるおそれがないものでなければならな い。

適合のための設計方針

第1項について
重大事故等対処施設について，施設の各設備が有する重大事故等に対処するために必要な機能及び設置状態を踏まえて「I．設備分類」の とおり分類し，設備分類に応じて「II．設計方針」に示す設計方針に従 って耐震設計を行う。耐震設計において適用する地震動及び当該地震動による地震力等については，設計基準対象施設のものを設備分類に応じて適用する。

第1項の第一号，第二号及び第三号の要求事項に対応するもので ある。
I．設備分類
（1）常設重大事故防止設備
重大事故等対処施設のうち，重大事故に至るおそれがある事故が発生した場合であって，設計基準事故対処設備の安全機能又は使用済燃料プールの泠却機能若しくは注水機能が喪失した場合において，その喪失した機能（重大事故に至るおそれがある事故に対処するために必要な機能に限る。）を代替することによ り重大事故の発生を防止する機能を有する設備であって常設の もの
（地震による損傷の防止）
第三十九条 重大事故等対処施設は，次に掲げる施設の区分に応じ， それぞれ次に定める要件を満たすものでなければならない。
一 常設耐震重要重大事故防止設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。）基準地震動による地震力に対して重大事故に至るおそれがある事故に対処するために必要な機能が損なわれるおそれがないものであること。
三 常設重大事故緩和設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。）基準地震動による地震力に対 して重大事故に対処するために必要な機能が損なわれるおそれ がないものであること。
2 重大事故等対処施設は，第四条第三項の地震の発生によって生 ずるおそれがある斜面の崩壊に対して重大事故等に対処するため に必要な機能が損なわれるおそれがないものでなければならな い。

適合のための設計方針第1項第一号及び第三号について

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	a．常設耐震重要重大事故防止設備 常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能を代替するもの b ．常設耐震重要重大事故防止設備以外の常設重大事故防止設備 常設重大事故防止設備であって，a．以外のもの （2）常設重大事故緩和設備 重大事故等対処設備のらち，重大事故が発生した場合におい て，当該重大事故の拡大を防止し，又はその影響を緩和するため の機能を有する設備であって常設のもの （3）常設重大事故防止設備（設計基準拡張） 設計基準対象施設のうち，重大事故等時に機能を期待する設備であって，重大事故の発生を防止する機能を有する（1）以外の常設のもの （4）常設重大事故緩和設備（設計基準拡張） 設計基準対象施設のらち，重大事故等時に機能を期待する設備であって，重大事故の拡大を防止し，又はその影響を緩和する ための機能を有する（2）以外の常設のもの （5）可搬型重大事故等対処設備 重大事故等対処設備であって，可搬型のもの II．設計方針 （1）常設耐震重要重大事故防止設備が設置される重大事故等対処施設 基準地震動による地震力に対して，重大事故に至るおそれが ある事故に対処するために必要な機能が損なわれるおそれがな いように設計する。 （2）常設耐震重要重大事故防止設備以外の常設重大事故防止設備 が設置される重大事故等対処施設 代替する機能を有する設計基準事故対処設備の耐震重要度分類のクラスに適用される地震力に十分に耐えることができるよ らに設計する。 （3）常設重大事故緩和設備が設置される重大事故等対処施設基準地震動による地震力に対して，重大事故に対処するため に必要な機能が損なわれるおそれがないように設計する。	常設耐震重要重大事故防止設備である所内常設直流電源設備（3系統目）は，基準地震動による地震力に対して，重大事故に至るおそれが ある事故に対処するために必要な機能が損なわれるおそれがないよう に設計する。 常設重大事故緩和設備である所内常設直流電源設備（3系統目）は，基準地震動による地震力に対して，重大事故に対処するために必要な機能が損なわれるおそれがないように設計する。	

崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	（4）常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設 当該設備が属する耐震重要度分類のクラスに適用される地震力に十分に耐えることができるように設計する。 （5）常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設 基準地震動S s による地震力に対して，重大事故に対処する ために必要な機能が損なわれるおそれがないように設計する。 （6）可搬型重大事故等対処設備 地震による周辺斜面の崩壊，溢水，火災等の影響を受けない場所に適切に保管する。 なお，上記設計において適用する動的地震力は，水平 2 方向及 び鉛直方向について適切に組み合わせたものとして算定する。 また，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備 （設計基準拡張）が設置される重大事故等対処施設は，Bクラス及びCクラスの施設，常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張） （当該設備が属する耐震重要度分類が B クラス又はCクラスの もの）が設置される重大事故等対処施設，可搬型重大事故等対処設備，常設重大事故防止設備及び常設重大事故緩和設備並びに常設重大事故防止設備（設計基準拡張）及び常設重大事故緩和設備（設計基漼拡張）のいずれにも属さない常設の重大事故等対処施設の波及的影響によって，重大事故等に対処するために必要 な機能を損なわない設計とする。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備 （設計基準拡張）が設置される重大事故等対処施設については，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内 の地下水位が地表面付近まで上昇するおそれがあることを踏ま え，地下水位を一定の範囲に保持する地下水位低下設備を設置 し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響	なお，上記設計において適用する動的地震力は，水平 2 方向及び鉛直方向について適切に組み合わせたものとして算定する。 また，所内常設直流電源設備（ 3 系統目）は，Bクラス及びCクラス の施設，常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はCクラスのもの）が設置される重大事故等対処施設，可搬型重大事故等対処設備，常設重大事故防止設備及び常設重大事故緩和設備並びに常設重大事故防止設備（設計基準拡張）及び常設重大事故緩和設備（設計基準拡張）のいずれにも属さない常設の重大事故等対処施設の波及的影響によって，重大事故等に対処するた めに必要な機能を損なわないように設計する。	

灰色（グレーハッチング）：前回許可からの変更箇所
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，記載䉯所，設備名称の相違（実質的な相違なし）

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	（重大事故等対処設備） 第四十三条 重大事故等対処設備は，次に掲げるものでなければな らない。 一 想定される重大事故等が発生した場合における温度，放射線，荷重その他の使用条件において，重大事故等に対処するために必要な機能を有効に発揮するものであること。 二 想定される重大事故等が発生した場合において確実に操作で きるものであること。 三 健全性及び能力を確認するため，発電用原子炉の運転中又は停止中に試験又は検查ができるものであること。 四 本来の用途以外の用途として重大事故等に対処するために使用する設備にあっては，通常時に使用する系統から速やかに切 り替えられる機能を備えるものであること。 五 工場等内の他の設備に対して悪影響を及ぼさないものである こと。 六 想定される重大事故等が発生した場合において重大事故等対処設備の操作及び復旧作業を行うことができるよう，放射線量 が高くなるおそれが少ない設置場所の選定，設置場所への遮蔽物の設置その他の適切な措置を講じたものであること。 2 重大事故等対処設備のらち常設のもの（重大事故等対処設備の らち可搬型のもの（以下「可搬型重大事故等対処設備」という。） と接続するものにあっては，当該可搬型重大事故等対処設備と接続するために必要な発電用原子炉施設内の常設の配管，弁，ケー ブルその他の機器を含む。 以下「常設重大事故等対処設備」という。）は，前項に定めるも ののほか，次に掲げるものでなければならない。 一 想定される重大事故等の収束に必要な容量を有するものであ ること。 二 二以上の発電用原子炬施設において共用するものでないこ と。ただし，二以上の発電用原子炉施設と共用することによっ て当該二以上の発電用原子炉施設の安全性が向上する場合であ って，同一の工場等内の他の発電用原子炉施設に対して悪影響 を及ぼさない場合は，この限りでない。 三 常設重大事故防止設備は，共通要因によって設計基準事故対処設備の安全機能と同時にその機能が損なわれるおそれがない	（重大事故等対処設備） 第四十三条 重大事故等対処設備は，次に掲げるものでなければな らない。 一 想定される重大事故等が発生した場合における温度，放射線，荷重その他の使用条件において，重大事故等に対処するために必要な機能を有効に発揮するものであること。 二 想定される重大事故等が発生した場合において確実に操作で きるものであること。 三 健全性及び能力を確認するため，発電用原子炉の運転中又は停止中に試験又は検査ができるものであること。 四 本来の用途以外の用途として重大事故等に対処するために使用する設備にあっては，通常時に使用する系統から速やかに切 り替えられる機能を備えるものであること。 五 工場等内の他の設備に対して悪影響を及ぼさないものである こと。 六 想定される重大事故等が発生した場合において重大事故等対処設備の操作及び復旧作業を行うことができるよう，放射線量 が高くなるおそれが少ない設置場所の選定，設置場所への遮蔽物の設置その他の適切な措置を講じたものであること。 2 重大事故等対処設備のらち常設のもの（重大事故等対処設備の らち可搬型のもの（以下「可搬型重大事故等対処設備」という。） と接続するものにあっては，当該可搬型重大事故等対処設備と接続するために必要な発電用原子炉施設内の常設の配管，弁，ケー ブルその他の機器を含む。以下「常設重大事故等対処設備」とい ら。）は，前項に定めるもののほか，次に掲げるものでなければな らない。 一 想定される重大事故等の収束に必要な容量を有するものであ ること。 二 二以上の発電用原子炉施設において共用するものでないこ と。ただし，二以上の発電用原子炉施設と共用することによっ て当該二以上の発電用原子炉施設の安全性が向上する場合であ って，同一の工場等内の他の発電用原子炉施設に対して悪影響 を及ぼさない場合は，この限りでない。 三 常設重大事故防止設備は，共通要因によって設計基準事故対処設備の安全機能と同時にその機能が損なわれるおそれがない	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	よう，適切な措置を講じたものであること。	よう，適切な措置を講じたものであること。	
	適合のための設計方針	適合のための設計方針	
	（1）多様性，位置的分散，悪影響防止等	（1）多様性，位置的分散，悪影響防止等	
	a．多樣性，位置的分散	a．多樣性，位置的分散	
	共通要因としては，環境条件，自然現象，発電所敷地又はそ の周辺において想定される発電用原子炉施設の安全性を損な	共通要因としては，環境条件，自然現象，発電所敷地又はそ の周辺において想定される発電用原子炬施設の安全性を損な	
	わせる原因となるおそれがある事象であって人為によるもの	わせる原因となるおそれがある事象であって人為によるもの	
	（人為事象），溢水，火災及びサポート系の故障を考慮する。	（人為事象），溢水，火災及びサポート系の故障を考慮する。	
	発電所敷地で想定される自然現象として，地震，津波，洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑り，火山の	発電所敷地で想定される自然現象として，地震，津波，洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑り，火山の	
	影響，生物学的事象，森林火災及び高潮を選定する。自然現象の組合せについては，地震，津波，風（台風），積雪及で小山の影響を考虜する。	影響，生物学的事象，森林火災及び高潮を選定する。 自然現象の組合せについては，地震，津波，風（台風），積雪及び小山の影響を考虜する	
	雪及び火山の影響を考慮する。 発電所敷地又はその周辺において想定される発電用原子炉	雪及び火山の影響を考慮する。 発電所敷地又はその周辺において想定される発電用原子炉	
	施設の安全性を損なわせる原因となるおそれがある事象であ	施設の安全性を損なわせる原因となるおそれがある事象であ	
	つて人為によるものとして，飛来物（航空機落下），ダムの崩	つて人為によるものとして，飛来物（航空機落下），ダムの崩	
	壊，爆発，近隣工場等の火災，有毒がス，船舶の衝突，電磁的	壊，爆発，近隣工場等の火災，有毒がス，船舶の衝突，電磁的	
	障害及び故意による大型航空機の衝突その他のテロリズムを	障害及び故意による大型航空機の衝突その他のテロリズムを	
	選定する。	選定する。	
	故意による大型航空機の衝突その他のテロリズムについて は，可搬型重大事故等対処設備による対策を講じることとす	故意による大型航空機の衝突その他のテロリズムについて は，可搬型重大事故等対処設備による対策を講じることとす	
	る。	る。	
	主要な重大事故等対処施設である原子炬建屋，制御建屋，緊	所内常設直流電源設備（ 3 系統目）を設置する原子炉建屋に	表現の相違
	急用電気品建屋及び緊急時対策建屋（以下「建屋等」という。）	ついては，地震，津波，火災及び外部からの衝撃による損傷を	補足
	については，地震，津波，火災及び外部からの衝撃による損傷	防止できる設計とする。	所内常設直流電源
	を防止できる設計とする。		設備（3系統目）を
	重大事故緩和設備についても，共通要因の特性を踏まえ，可	重大事故緩和設備についても，共通要因の特性を踏まえ，可	設置するのは原子
	能な限り多様性を有し，位置的分散を図ることを考慮する。	能な限り多様性を有し，位置的分散を図ることを考慮する。	炉建屋の一部であ
			る原子炉建屋付属
	（a）常設重大事故等対処設備（第2項 第三号）	（a）常設重大事故等対処設備（第2項 第三号）	棟であり，建屋全
	常設重大事故防止設備は，設計基準事故対処設備等の安	所内常設直流電源設備（ 3 系統目）は，設計基準事故対処	体として外部から
	全機能と共通要因によって同時にその機能が損なわれるお	設備等の安全機能と共通要因によって同時にその機能が損	の衝撃による損傷
	それがないよう，共通要因の特性を踏まえ，可能な限り多様	なわれるおそれがないよう，共通要因の特性を踏まえ，可能	等を防止できる設
	性，独立性，位置的分散を考慮して適切な措置を講じる設計	な限り多様性，独立性，位置的分散を考慮して適切な措置を	計であることを示
		講じる設計とする。	

柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炬 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	ただし，常設重大事故防止設備のらち，計装設備につい て，重要代替監視パラメータ（当該パラメータの他チャンネ ルの計器を除く。）による推定は，重要監視パラメータと異 なる物理量又は測定原理とする等，重要監視パラメータに対して可能な限り多樣性を有する方法により計測できる設計とする。重要代替監視パラメータは重要監視パラメータ と可能な限り位置的分散を図る設計とする。 環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件にお いて，常設重大事故防止設備がその機能を確実に発揮でき る設計とする。重大事故等時の環境条件における健全性に ついては「（3）環境条件等」に記載する。 常設重大事故防止設備は，「第三十八条 重大事故等対処施設の地艦」に基づく地盤に設置するとともに，地震，津波及び火災に対して，「第三十九条 地震による損傷の防止」， 「第四十条 津波による損傷の防止」及び「第四十一条 火災による損傷の防止」に基づく設計とする。 地震，津波，溢水及び火災に対して常設重大事故防止設備 は，設計基準事故対処設備等と同時に機能を損なうおそれ がないように，可能な限り設計基準事故対処設備等と位置的分散を図る。 風（台風），竜巻，涷結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災，爆発，近隣工場等の火災，有毒が ス，船舶の衝突及び電磁的障害に対して，常設重大事故防止設備は，外部からの衝撃による損傷の防止が図られた建屋等内に設置するか，又は設計基準事故対処設備等と同時に機能が損なわれないように，設計基準事故対処設備等と位置的分散を図り，屋外に設置する。 落雷に対して常設代替交流電源設備は，避雷設備等によ り防護する設計とする。 生物学的事象のらちネズミ等の小動物に対して屋外の常設重大事故防止設備は，侵入防止対策により重大事故等に対処するために必要な機能が損なわれるおそれのない設計 とする。	環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件にお いて，所内常設直流電源設備（ 3 系䖻目）がその機能を碓実 に発揮できる設計とする。重大事故等時の環境条件におけ る健全性については「（3）環境条件等」に記載する。 所内常設直流電源設備（3系䖻目）は，「第三十八条 重大事故等対処施設の地盤」に基づく地盤上に設置する建屋内に設置するとともに，地震，津波及び火災に対して，「第三十九条 地震による損傷の防止」，「第四十条 津波によ る損傷の防止」及び「第四十一条 火災による損傷の防止」 に基づく設計とする。 地震，津波，溢水及び火災に対して所内常設直流電源設備 （3系䖻目）は，設計基準事故対処設備等と同時に機能を損 なうおそれがないように，可能な限り設計基準事故対処設備等と位置的分散を図る。 風（台風），竜巻，涷結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災，爆発，近隣工場等の火災，有毒が ス，船舶の㣫突及び電磁的障害に対して，所内常設直流電源設備（3系統目）は，外部からの衝撃による損傷の防止が図 られた建屋内に設置する。	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	高潮に対して常設重大事故防止設備（非常用取水設備を除く。）は，高潮の影響を受けない敷地高さに設置する。 飛来物（航空機落下）に対して常設重大事故防止設備は，設計基準事故対処設備等と同時にその機能が損なわれない ように，設計基準事故対処設備等と位置的分散を図り設置 する。 なお，洪水，地滑り及びダムの崩壊については，立地的要因により設計上考慮する必要はない。 サポート系の故障に対しては，系統又は機器に供給され る電力，空気，油及び冷却水を考慮し，常設重大事故防止設備は設計基準事故対処設備等と異なる駆動源，冷却源を用 いる設計，又は駆動源，冷却源が同じ場合は別の手段が可能 な設計とする。また，常設重大事故防止設備は設計基準事故対処設備等と可能な限り異なる水源をもつ設計とする。 （b）可搬型重大事故等対処設備（第3項 第五号及び第七号） 可搬型重大事故防止設備は，設計基準事故対処設備等又 は常設重大事故防止設備と共通要因によって同時にその機能が損なわれるおそれがないよう，共通要因の特性を踏ま え，可能な限り多様性，独立性，位置的分散を考慮して適切 な措置を講じる設計とする。 また，可搬型重大事故等対処設備は，地震，津波，その他 の自然現象又は故意による大型航空機の衝突その他のテロ リズム，設計基準事故対処設備等及び重大事故等対処設備 の配置その他の条件を考慮した上で常設重大事故等対処設備と異なる保管場所に保管する設計とする。 環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件にお いて，可搬型重大事故等対処設備がその機能を確実に発揮 できる設計とする。重大事故等時の環境条件における健全性については「（3）環境条件等」に記載する。 地震に対して，屋内の可搬型重大事故等対処設備は，「第三十八条 重大事故等対処施設の地盤」に基づく地盤上に設置する建屋等内に保管する。屋外の可搬型重大事故等対処設備は，転倒しないことを確認する，又は必要により固縛等の処置をするとともに，地震により生ずる敷地下斜面の すべり，液状化又は摇すり込みによる不等沈下，傾斜及び浮	高潮に対して所内常設直流電源設備（ 3 系統目）は，高潮 の影響を受けない敷地高さに設置する。 飛来物（航空機落下）に対して所内常設直流電源設備（3系統目）は，設計基準事故対処設備等と同時にその機能が損 なわれないように，設計基準事故対処設備等と位置的分散 を図り設置する。 なお，洪水，地滑り及びダムの崩壊については，立地的要因により設計上考慮する必要はない。	設計の差異 －想定する自然現象の相違。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	き上がり，地盤支持力の不足，地中埋設構造物の損壊等の影響を受けない複数の保管場所に分散して保管する設計とす る。 地震及び津波に対して可搬型重大事故等対処設備は，「第三十九条 地震による損傷の防止」，「第四十条 津波によ る損傷の防止」にて考慮された設計とする。 火災に対して可搬型重大事故等対処設備は，「第四十一条火災による損傷の防止」に基づく火災防護を行う。 地震，津波，溢水及び火災に対して可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備と同時に機能を損ならおそれがないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り複数箇所に分散して保管する設計とす る。 風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災，爆発，近隣工場等の火災，有毒ガ ス，船舶の衝突及び電磁的障害に対して，可搬型重大事故等対処設備は，外部からの衝撃による損傷の防止が図られた建屋等内に保管するか，又は設計基準事故対処設備等及び常設重大事故等対処設備と同時に必要な機能を損ならおそ れがないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り，防火帯の内側の複数箇所に分散して保管する設計とする。クラゲ等の海生生物から影響を受けるおそれのある屋外の可搬型重大事故等対処設備は，予備を有する設計とする。 高潮に対して可搬型重大事故等対処設備は，高潮の影響 を受けない敷地高さに保管する。 飛来物（航空機落下）及び故意による大型航空機の衝突そ の他のテロリズムに対して，屋内の可搬型重大事故等対処設備は，可能な限り設計基準事故対処設備等の配置も含め て常設重大事故等対処設備と位置的分散を図り複数箇所に分散して保管する設計とする。 屋外に保管する可搬型重大事故等対処設備は，原子炉建屋及び制御建屋から 100 m 以上の離隔距離を確保するととも に，当該可搬型重大事故等対処設備がその機能を代替する屋外の設計基準事故対処設備等及び常設重大事故等対処設		

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	備から 100 m 以上の離隔距離を確保した上で，複数箇所に分散して保管する設計とする。 なお，洪水，地滑り及びダムの崩壊については，立地的要因により設計上考慮する必要はない。 サポート系の故障に対しては，系統又は機器に供給され る電力，空気，油及び泠却水を考慮し，可搬型重大事故防止設備は，設計基準事故対処設備等又は常設重大事故防止設備と異なる駆動源，泠却源を用いる設計とするか，駆動源，泠却源が同じ場合は別の手段が可能な設計とする。また，水源についても可能な限り，異なる水源を用いる設計とする。 （c）可搬型重大事故等対処設備と常設重大事故等対処設備の接続口（第3項 第三号） 原子炉建屋の外から水又は電力を供給する可搬型重大事故等対処設備と常設設備との接続口は，共通要因によって接続することができなくなることを防止するため，それぞ れ互いに異なる複数の場所に設置する設計とする。 環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件にお いて，その機能を確実に発揮できる設計とするとともに，接続口は，建屋の異なる面の隣接しない位置又は建屋内及び建屋面の適切に離隔した位置に複数箇所設置する。重大事故等時の環境条件における健全性については「（3）環境条件等」に記載する。風（台風），凍結，降水，積雪及び電磁的障害に対しては，環境条件にて考慮し，機能が損なわれな い設計とする。 地震に対して接続口は，「第三十八条 重大事故等対処施設の地盤」に基づく地盤上の建屋内又は建屋面に複数箇所設置する。地震，津波及び火災に対して接続口は，「第三十九条 地震による損傷の防止」，「第四十条 津波による損傷の防止」及び「第四十一条 火災による損傷の防止」に基 づく設計とする。 溢水に対して接続口は，想定される溢水水位に対して機能を喪失しない位置に設置する。 風（台風），竜巻，落雷，火山の影響，生物学的事象，森林火災，飛来物（航空機落下），爆発，近隣工場等の火災，有毒ガス，船舶の衝突及び故意による大型航空機の衝突そ		

柏崎刈羽 6，7 号炬（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	ての系統設計を行う。重大事故等の収束は，これらの系統の組合せにより達成する。 「容量等」とは，ポンプ流量，タンク容量，伝熱容量，弁吹出量，発電機容量，蓄電池容量，計装設備の計測範囲，作動信号の設定値等とする。 常設重大事故等対処設備のらち設計基準対象施設の系統及 び機器を使用するものについては，設計基準対象施設の容量等の仕様が，系統の目的に応じて必要となる容量等に対して十分であることを確認した上で，設計基準対象施設としての容量等と同仕様の設計とする。 常設重大事故等対処設備のうち設計基準対象施設の系統及 び機器を使用するもので，重大事故等時に設計基準対象施設 の容量等を補う必要があるものについては，その後の事故対応手段と合わせて，系統の目的に応じて必要となる容量等を有する設計とする。 常設重大事故等対処設備のらち重大事故等への対処を本来 の目的として設置する系統及び機器を使用するものについて は，系統の目的に応じて必要な容量等を有する設計とする。 b．可搬型重大事故等対処設備（第3項 第一号） （中略） （3）環境条件等 a．環境条件（第 1 項 第一号） 重大事故等対処設備は，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件におい て，その機能が有効に発揮できるよう，その設置場所（使用場所）又は保管場所に応じた耐環境性を有する設計とするとと もに，操作が可能な設計とする。 重大事故等時の環境条件については，重大事故等時におけ る温度（環境温度，使用温度），放射線，荷重に加えて，その他の使用条件として環境圧力，湿度による影響，重大事故等時 に海水を通水する系統への影響，自然現象による影響，発電所敷地又はその周辺において想定される発電用原子灲施設の安全性を損なわせる原因となるおそれがある事象であって人為 によるものの影響及び周辺機器等からの悪影響を考慮する。 荷重としては，重大事故等が発生した場合における機械的	段としての系統設計を行う。重大事故等の収束は，これらの系統の組合せにより達成する。 所内常設直流電源設備（3系統目）は，常設重大事故等対処設備のらち重大事故等への対処を本来の目的として設置する系統及び機器を使用するものであるため，系統の目的に応じ て必要な蓄電池容量を有する設計とする。 （3）環境条件等 a．環境条件（第1項 第一号） 所内常設直流電源設備（3系統目）は，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件において，その機能が有効に発揮できるよう，その設置場所に応じた耐環境性を有する設計とするとともに，操作が可能な設計とする。 重大事故等時の環境条件については，重大事故等時におけ る温度（環境温度，使用温度），放射線，荷重に加えて，その他の使用条件として環境圧力，湿度による影響，重大事故等時 に海水を通水する系統への影響，自然現象による影響，発電所敷地又はその周辺において想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為 によるものの影響及び周辺機器等からの悪影響を考慮する。 荷重としては，重大事故等が発生した場合における機械的	

柏崎刈羽 6，7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	（4）操作性及び試験•検査性 a．操作性の確保 （a）操作の確実性（第1項 第二号） 重大事故等対処設備は，想定される重大事故等が発生し た場合においても操作を確実なものとするため，重大事故等時の環境条件を考慮し，操作が可能な設計とする。 操作する全ての設備に対し，十分な操作空間を確保する とともに，確実な操作ができるよう，必要に応じて操作足場 を設置する。また，防護具，可搬型照明等は重大事故等時に迅速に使用できる場所に配備する。 現場操作において工具を必要とする場合は，一般的に用 いられる工具又は専用の工具を用いて，確実に作業ができ る設計とする。工具は，作業場所の近傍又はアクセスルート の近傍に保管できる設計とする。可搬型重大事故等対処設備は運搬•設置が確実に行えるように，人力又は車両等によ る運搬，移動ができるとともに，必要により設置場所にてア ウトリガの張り出し，輪留めによる固定等が可能な設計と する。 現場の操作スイッチは運転員等の操作性を考慮した設計 とする。また，電源操作が必要な設備は，感電防止のため露出した充電部への近接防止を考慮した設計とする。現場に おいて人力で操作を行う弁は，手動操作が可能な設計とす る。現場での接続操作は，ボルト・ネジ接続，フランジ接続又はより簡便な接続方式等，接続方式を統一することによ り，確実に接続が可能な設計とする。また，重大事故等に対処するために迅速な操作を必要とする機器は，必要な時間内に操作できるように中央制御室での操作が可能な設計と する。制御盤の操作器は運転員の操作性を考慮した設計と する。 想定される重大事故等において操作する重大事故等対処設備のうち動的機器については，その作動状態の確認が可能な設計とする。	（4）操作性及び試験•検査性 a．操作性の確保 （a）操作の確実性（第 1 項 第二号） 所内常設直流電源設備（3系統目）は，想定される重大事故等が発生した場合においても操作を確実なものとするた め，重大事故等時の環境条件を考慮し，操作が可能な設計と する。 操作する全ての設備に対し，十分な操作空間を確保する とともに，確実な操作ができるよう，必要に応じて操作足場 を設置する。また，防護具，可搬型照明等は重大事故等時に迅速に使用できる場所に配備する。 現場の操作スイッチは運転員等の操作性を考慮した設計 とする。また，電源操作が必要な設備は，感電防止のため露出した充電部への近接防止を考慮した設計とする。また，重大事故等に対処するために迅速な操作を必要とする機器 は，必要な時間内に操作できるように中央制御室での操作 が可能な設計とする。制御盤の操作器は運転員の操作性を考慮した設計とする。	表現の差異

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）

緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）
所内常設直流電源設備（3系統目）添付書類八 比較表

適合のための設計方針

原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故
対処設備が有する発電用原子炉の泠却機能が喪失した場合においても炉心の著しい損傷を防止するために必要な重大事故等対処設備を設置 する。

原子炉冷却材圧力バウンダリ高圧時に発電用原子炬を冷却するため の設備のうち，炉心を泠却するための設備として，高圧代替注水系を設 ける。また，設計基準事故対処設備である高圧炉心スプレイ系及び原子炉隔離時冷却系が全交流動力電源及び常設直流電源系統の機能喪失に より起動できない，かつ，中央制御室からの操作により高圧代替注水系 を起動できない場合に，高圧代替注水系及び原子炬隔離時冷却系を現場操作により起動させる。
（1）フロントライン系故障時に用いる設備
a 。高圧代替注水系による発電用原子炉の泠却
高圧炉心スプレイ系及び原子炉隔離時冷却系が機能喪失し た場合の重大事故等対処設備として，高圧代替注水系は，蒸気 タービン駆動ポンプにより復水貯蔵タンクの水を高圧灲心ス プレイ系等を経由して，原子炉圧力容器へ注水することで炉心を椧却できる設計とする。

高圧代替注水系は，所内常設蓄電式直流電源設備からの給電が可能な設計とし，所内常設蓄電式直流電源設備が機能霛失した場合でも，常設代替直流電源設備又は可搬型代替直流電源設備からの給電が可能な設計とし，中央制御室からの操作が可能な設計とする。また，高圧代替注水系は，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備の機能喪失により中央制御室からの操作ができな い場合においても，現場での人力による弁の操作により，原子

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類		2024年2月9日 02DS－2－3（改 5）
柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	炬冷却材圧力バウンダリの減圧対策及び原子炉冷却材圧力バ ウンダリ低圧時の泠却対策の準備が整うまでの期間にわた り，発電用原子炉の泠却を継続できる設計とする。 なお，人力による措置は容易に行える設計とする。 （2）サポート系故障時に用いる設備 a．原子炉隔離時冷却系の現場操作による発電用原子炉の冷却全交流動力電源及び常設直流電源系統の機能喪失により，高圧炉心スプレイ系及び原子炉隔離時冷却系での発電用原子炉の椧却ができない場合であって，中央制御室からの操作に より高圧代替注水系が起動できない場合の重大事故等対処設備として，原子炉隔離時冷却系を現場操作により起動させて使用する。 原子炬隔離時冷却系は，全交流動力電源及び常設直流電源系統が機能喪失した場合においても，現場で弁を人力操作す ることにより起動し，蒸気タービン駆動ポンプにより復水貯蔵タンクの水を原子炉圧力容器へ注水することで原子炉冷却材圧力バウンダリの減圧対策及び原子炉冷却材圧力バウンダ リ低圧時の泠却対策の準備が整うまでの期間にわたり，発電用原子炉の冷却を継続できる設計とする。 なお，人力による措置は容易に行える設計とする。 b．代替電源設備による原子炉隔離時冷却系の復旧 全交流動力電源が喪失し，原子炬隔離時冷却系の起動又は運転継続に必要な直流電源を所内常設蓄電式直流電源設備に より給電している場合は，所内常設蓄電式直流電源設備の蓄電池が枯渴する前に常設代替交流電源設備，可搬型代替交流電源設備又は可搬型代替直流電源設備により原子炉隔離時冷却系の運転継続に必要な直流電源を確保する。 原子炉隔離時冷却系は，常設代替交流電源設備，可搬型代替交流電源設備又は可搬型代替直流電源設備からの給電により機能を復旧し，蒸気タービン駆動ポンプにより復水貯蔵タン クの水を原子炉圧力容器へ注水することで灲心を泠却できる設計とする。 （3）監視及び制御に用いる設備 原子炉冷却材圧力バウンダリが高圧の状態で発電用原子炉を冷却する場合に監視及び制御に使用する重大事故等対処設備と		

灰色（グレーハッチング）：前回許可からの変更箇所
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）

所内常設直流電源設備（3系統目）添付書類八 比較表

所内常設直流電源設備（3系統目）添付書類八 比較表

有毒ガス防護：2022年6月1日呠
ことができる設計とする。11個の主蒸気逃がし安全弁のうち， 2 個がこの機能を有している。
なお，原子炉緊急停止失敗時に自動減圧系が作動すると，高圧炬心スプレイ系からの注水に加え，残留熱除去系（低圧注水 モード）及び低圧炉心スプレイ系から大量の泠水が注水され出力の急激な上昇につながるため，ATWS緩和設備（自動減圧系作動阻止機能）により自動減圧系及び代替自動減圧回路 （代替自動減圧機能）による自動減圧を阻止する。
b．手動による原子炉減圧
主蒸気逃がし安全弁の自動減圧機能が喪失した場合の重大事故等対処設備として，主蒸気逃がし安全弁は，中央制御室か らの遠隔手動操作により，主蒸気逃がし安全弁逃がし弁機能用アキュムレータ又は主蒸気逃がし安全弁自動減圧機能用ア キュムレータに蓄圧された窒素をアクチュエータのピストン に供給することで作動し，蒸気を排気管によりサプレッショ ンチェンバのプール水面下に導き凝縮させることで，原子炉泠却材圧力バウンダリを減圧できる設計とする。
（2）サポート系故障時に用いる設備
a ．常設直流電源系統喪失時の減圧
原子炉冷却材圧力バウンダリを減圧するための設備のう ち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，可搬型代替直流電源設備及び主蒸気逃がし安全弁用可搬型蓄電池を使用する。
（a）可搬型代替直流電源設備による主蒸気逃がし安全弁機能回榎

原子炉冷却材圧力バウンダリを減圧するための設備のう ち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，可搬型代替直流電源設備は，主蒸気逃がし安全弁の作動に必要な常設直流電源系統が進失した場合にお いても， 125 V 直流電源切替盤を切り替えることにより，主蒸気逃がし安全弁（ 11 個）の作動に必要な電源を供給できる設計とする。
（b）主蒸気逃がし安全弁用可搬型蓄電池による主蒸気逃がし安全弁機能回復

原子炉冷却材圧力バウンダリを減圧するための設備のう ち，主蒸気逃がし安全弁の機能回復のための重大事故等対

所内常設直流電源設備（ 3 系統目）添付書類八 比較表

女川 2 号炬 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
処設備として，主蒸気逃がし安全弃用可搬型蓄電池は，主蒸		
気逃がし安全弁の作動に必要な常設直流電源系統が震失し		
た場合においても，主蒸気逃がし安全弁の作動回路に接続		
することにより，主蒸気逃がし安全弃（ 2 個）を一定期閥に		
わたり連続して開状態を保持できる設計とする。		
b．主蒸気逃がし安全弁の作動に必要な窒素霛失時の滅圧		
原子炉洽却材圧カバウンダリを減圧するための設備のう		
$ち$ ，主蒸気逃がし安全弁の機能回復のための重大事故等対処		
設備として，高圧窒素ガス供給系（非常用）及び代替高圧窒素		
ガス供給系を使用する。		
（a）高圧窒素がス供給系（非常用）による窒素碓保		
原子炉冷却材圧カバウンダリを減圧するための設備のう		
ち，主蒸気逃がし安全弃の機能回復のための重大事故等対		
処設備として，高圧窒素ガス供給系（非常用）は，主蒸気逃		
がし安全弁の作動に必要な主蒸気逃がし安全弁逃がし亣機		
能用アキュムレータ及び主蒸気，逃がし安全弃自動減圧機能		
用アキュムレータの充填圧力が需失した場合において，主		
蒸気逃がし安全弁の作動に必要な窒素を供給できる設計と		
する。		
なお，高圧窒素がスボンバの圧力が低下した場合は，現場		
で高圧窒素ガスボンべの切替え及び取替えが可能な設計と		
する。		
（b）代替高圧窒素がス供給系による原子炉澸圧		
原子炉冷却材圧カバウンダリを減圧するための設備のう		
ち，主蒸気逃がし安全弃の機能回復のための重大事故等対		
処設備として，代替高圧窒素がス供給系は，主蒸気逃がし安		
全弁の作動に必要な主蒸気逃がし安全弃逃がし弁機能用ア		
キュムレータ及び主蒸気逃がし安全弁自動減圧機能用アキ		
ニムレータの充填圧力が䨤失した場合において，主蒸気逃		
がし安全弁のアクチュエータに直接窒素を供給すること		
で，主蒸気逃がし安全弁（4個）を一定期間にわたり連続し		
て開状態を保持できる設計とする。		
なお，高圧窒素がスボンべの圧力が低下した場合は，現場		
で高圧窒素がスボンべの取替えが可能な設計とする。		
c．代替電源設備を用いた主蒸気逃がし安全弁の復旧		

所内常設直流電源設備（3系統目）添付書類八 比較表

女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
（a）代替直流電源設備による復旧		
全交流動力電源又は常設直流電源が喪失した場合の重大		
事故等対処設備として，主蒸気逃がし安全弁は，可搬型代替		
直流電源設備により作動に必要な直流電源が供給されるこ		
とにより機能を復旧し，原子炬冷却材圧力バウンダリを減		
圧できる設計とする。		
（b）代替交流電源設備による復旧		
全交流動力電源又は常設直流電源が喪失した場合の重大		
事故等対処設備として，主蒸気逃がし安全弁は，常設代替交		
流電源設備又は可搬型代替交流電源設備により所内常設蓄		
電式直流電源設備を受電し，作動に必要な直流電源が供給		
されることにより機能を復旧し，原子炉冷却材圧力バウン		
ダリを減圧できる設計とする。		
（3）炉心損傷時における高圧溶融物放出／格納容器雰囲気直接加		
熱の防止		
原子炉冷却材圧力バウンダリを減圧するための設備のらち，		
炬心損傷時に原子炬冷却材圧力バウンダリが高圧状態である場		
合において，高圧溶融物放出及び格納容器雰囲気直接加熱によ		
る原子炉格納容器の破損を防止するための重大事故等対処設備		
として，本系統は，「（1）b ．手動による原子炉減圧」と同じで		
ある。		
（4）インターフェイスシステム L O C A 発生時に用いる設備		
インターフェイスシステム L O C A 発生時の重大事故等対処		
設備として，主蒸気逃がし安全弁は，中央制御室からの手動操作		
によって作動させ，原子炉冷却材圧力バウンダリを減圧させる		
ことで原子炉泠却材の漏えいを抑制できる設計とする。		
原子炉建屋ブローアウトパネルは，高圧の原子炉冷却材が原		
子炉建屋原子炉棟内へ漏えいして蒸気となり，原子炉建屋原子		
炉棟内の圧力が上昇した場合において，外気との差圧により自		
動的に開放し，原子炉建屋原子炉棟内の圧力及び温度を低下さ		
せることができる設計とする。		
H P C S 注入隔離弁は，現場で弁を操作することにより原子		
炉冷却材の漏えい箇所を隔離できる設計とする。		
主蒸気逃がし安全弁は，想定される重大事故等時に確実に作動する		
ように，原子炉格納容器内に設置し，制御用空気が喪失した場合に使用		
する高圧窒素ガス供給系（非常用）及び代替高圧窒素ガス供給系の高圧		

柏崎刈羽 6， 7 号炉（2022．8．23提出）
女川 2 号炉 適合性審査許可後完本
（有毒ガス防護： 2022 年 6 月 1 日許可）
窒素ガスボンべの容量の設定も含めて，想定される重大事故等時におけ る環境条件を考慮した設計とする。操作は，中央制御室で可能な設計とする。

灰色（グレーハッチング）：前回許可からの変更㯺所
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，記載䉯所，設備名称の相違（実質的な相違なし）

緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）
所内常設直流電源設備（3系統目）添付書類八 比較表

適合のための設計方針

原子炉冷却材圧力バウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炉の泠却機能が喪失した場合におい ても炉心の著しい損傷及び原子炉格納容器の破損を防止するため，発電用原子炉を泠却するために必要な重大事故等対処設備を設置及 び保管する。
原子炉冷却材圧力バウンダリが低圧時に発電用原子炉を泠却する ための設備のうち，発電用原子炉を泠却し，炬心の著しい損傷及び原子炉格納容器の破損を防止するための設備として，低圧代替注水系 （可搬型）を設ける。また，炉心の著しい損傷に至るまでの時間的余裕のない場合に対応するため，低圧代替注水系（常設）を設ける。 （1）原子炉運転中の場合に用いる設備
a．フロントライン系故障時に用いる設備
（a）低圧代替注水系（常設）（復水移送ポンプ）による発電用原子炉の泠却

残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系 の機能が喪失した場合の重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ）は，復水移送ポンプ により，復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力容器へ注水することで灲心を泠却できる設計と する。
低圧代替注水系（常設）（復水移送ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。また，系統構成に必要な電動弁（直流） は，所内常設蓄電式直流電源設備からの給電が可能な設計 とする。

所内常設直流電源設備（3系統目）添付書類八 比較表

差異理由
（b）低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）に よる発電用原子炉の泠却
残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系 の機能が露失した場合の重大事故等対処設備として，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，直流駆動低圧注水系ポンプにより，復水貯蔵タンクの水を高圧炬心スプレイ系等を経由して原子炬圧力容器へ注水するこ とで灯心を椧却できる設計とする。
直流駆動低圧注水系ポンプは，常設代替直流電源設備か らの給電が可能な設計とする。また，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備又は常設代替直流電源設備からの給電が可能な設計とする。
なお，系統構成に必要な電動弁（交流）は，交流電源に期待できないことから設置場所にて操作できる設計とする。 （c）低圧代替注水系（可搬型）による発電用原子炉の泠却残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系 の機能が震失した場合の重大事故等対処設備として，低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプI）に より，代替淡水源の水を残留熱除去系等を経由して原子炬圧力容器へ注水することで炉心を椧却できる設計とする。低圧代替注水系（可搬型）は，代替炎水源が枯渴した場合 において，重大事故等の収束に必要となる水の供給設備で ある大容量送水ポンプ（タイプI）により海を利用できる設計とする。
低圧代替注水系（可搬型）は，非常用交流電源設備に加え て，代替所内電気設備を経由した常設代替交流電源設備又 は可搬型代替交流電源設備からの給電が可能な設計とす る。また，大容量送水ポンプ（タイプI）は，空冷式のディ ーゼルエンジンにより駆動できる設計とする。
b．サポート系故障時に用いる設備
（a）低圧代替注水系（常設）による発電用原子炉の冷却
全交流動力電源霛失又は原子炉補機洽却水系（原子炉補機泠却海水系を含む。）機能露失によるサポート系の故障に より，残留熱除去系（低圧注水モード）及び低圧炉心スプレ イ系が起動できない場合の重大事故等対処設備として使用 する低圧代替注水系（常設）は，「（1）a 。（a）低圧代替注

所内常設直流電源設備（3系統目）添付書類八 比較表

女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）
水系（常設）（復水移送ポンプ）による発電用原
及び「 ${ }^{\text {a }}$ ）a ．（b）低圧代替注水系（常設）（直流駆動低圧
注水系ポンプ）による発電用原子炉の泠却」と同じである。
（b）低圧代替注水系（可搬型）による発電用原子炉の泠却
全交流動力電源㖓失又は原子炉補機冷却水系（原子炉袖
却海水系を含む。）機能電失によるサポート系の故障に
より，残留熱除去系（低圧注水モード）及び低圧炬心スプレ
系が起動できない場合の重大事故等対処設備として使用
する低圧代替注水系（可搬型）は，「（1）a．（c）低圧代替注
水系（可搬型）による発電用原子炉の椧却」と同じである。
（c）常設代替交流電源設備による残留熱除去系（低圧注水モ
ド）の復
全交流動力電源震失又は原子炬補機冷却水系（原子炬補
機冷却海水系を含む。）機能䨤失によるサポート系の故障に
より，残留熱除去系（低圧注水モード）が起動できない場合
の重大事故等対処設備として，常設代替交流電源設備を使
用し，残留熱除去系（低圧注水モード）
残留熱除去系（低圧注水モード）は，常設代替交流電源設
備からの給電により機能を復旧し，残留熱除去系ポンプに
よりサプレッションチェンバのプール水を原子炬圧力容器
－注水することで炬心を洨
本系統に使用する椧却水は，
補機浍却海水系を含を。）又
供給
（d）常設代替交流電源設備による低圧炬心スプレイ系の復旧
全交流動力電源䨤失又は原子炉補機冷却水系（原子炬補
機泠却海水系を含を。）機能霛失によるサポート系の故障に
より，低圧炬心スプレイ系が起動できない場合
等対処設備として，常設代替交流電源設備を使用し，低圧原
心スプレイ系を復旧する。
低圧炬心スプレイ系は，常設代替交流電源設備からの給
電により機能を復旧し，低圧炬心スプレイ系ポンプにより
サプレッションチェンバのプール水を原子炉圧力容器へ入
プレイすることで炉心を泠却できる設計とする。
本系統に使用する泠却水は，原子炉補機泠却水系（原子

所内常設直流電源設備（ 3 系統目）添付書類八 比較表

女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
供給できる設計とする。		
c．溶融炉心が原子炉圧力容器内に残存する場合に用いる設備		
（a）低圧代替注水系（常設）（復水移送ポンプ）による残留溶		
融炉心の泠却		
炬心の著しい損傷，溶融が発生した場合において，原子炬		
圧力容器内に溶融炬心が存在する場合に，溶融炉心を泠却		
し，原子炉格納容器の破損を防止するための重大事故等対		
処設備として，低圧代替注水系（常設）（復水移送ポンプ）		
は，復水移送ポンプにより，復水貯蔵タンクの水を残留熱除		
去系等を経由して原子炉圧力容器へ注水することで原子炉		
圧力容器内に存在する溶融炬心を泠却できる設計とする。		
低圧代替注水系（常設）（復水移送ポンプ）は，非常用交		
流電源設備に加えて，代替所内電気設備を経由した常設代		
替交流電源設備又は可搬型代替交流電源設備からの給電が		
可能な設計とする。また，系統構成に必要な電動弁（直流）		
は，所内常設蓄電式直流電源設備からの給電が可能な設計		
とする。		
（b）低圧代替注水系（可搬型）による残留溶融炉心の泠却		
炉心の著しい損傷，溶融が発生した場合において，原子炉		
圧力容器内に溶融炉心が存在する場合に，溶融炉心を泠却		
し，原子炬格納容器の破損を防止するための重大事故等対		
処設備として，低圧代替注水系（可搬型）は，大容量送水ポ		
ンプ（タイプ I）により，代替淡水源の水を残留熱除去系等		
を経由して原子炬圧力容器へ注水することで原子炉圧力容		
器内に存在する溶融炉心を冷却できる設計とする。		
低圧代替注水系（可搬型）は，代替淡水源が枯渇した場合		
において，重大事故等の収束に必要となる水の供給設備で		
ある大容量送水ポンプ（タイプ I）により海を利用できる設		
計とする。		
低圧代替注水系（可搬型）は，非常用交流電源設備に加え		
て，代替所内電気設備を経由した常設代替交流電源設備又		
は可搬型代替交流電源設備からの給電が可能な設計とす		
る。また，大容量送水ポンプ（タイプI）は，空冷式のディ		
ーゼルエンジンにより駆動できる設計とする。		
（c）代替循環泠却系による残留溶融炬心の泠却		
炬心の著しい損傷，溶融が発生した場合において，原子炉		

所内常設直流電源設備（ 3 系統目）添付書類八 比較表

女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
圧力容器内に溶融炉心が存在する場合の重大事故等対処設		
備として，代替循環冷却系は，代替循環冷却ポンプにより，		
残留熱除去系熱交換器にて泠却された，サプレッションチ		
エンバのプール水を残留熱除去系を経由して原子炉圧力容		
器へ注水することで原子炉圧力容器内に存在する溶融炉心		
を冷却できる設計とする。		
（2）原子炉停止中の場合に用いる設備		
a．フロントライン系故障時に用いる設備		
（a）低圧代替注水系（常設）による発電用原子炉の冷却		
発電用原子炬停止中において残留熱除去系（原子炉停止		
時冷却モード）の機能が喪失した場合の重大事故等対処設		
備として使用する低圧代替注水系（常設）は，「（1）a 。（a）		
低圧代替注水系（常設）（復水移送ポンプ）による発電用原		
子炉の泠却」と同じである。		
（b）低圧代替注水系（可搬型）による発電用原子炉の泠却		
発電用原子炉停止中において残留熱除去系（原子炉停止		
時冷却モード）の機能が喪失した場合の重大事故等対処設		
備として使用する低圧代替注水系（可搬型）は，「（1）a ．（c）		
低圧代替注水系（可搬型）による発電用原子炉の泠却」と同		
じである。		
b．サポート系故障時に用いる設備		
（a）低圧代替注水系（常設）による発電用原子炉の冷却		
発電用原子炉停止中において全交流動力電源喪失又は原		
子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪		
失によるサポート系の故障により，残留熱除去系（原子炉停		
止時冷却モード）が起動できない場合の重大事故等対処設		
備として使用する低圧代替注水系（常設）は，「（1）a ．（a）		
低圧代替注水系（常設）（復水移送ポンプ）による発電用原		
子炉の泠却」と同じである。		
（b）低圧代替注水系（可搬型）による発電用原子炉の泠却		
発電用原子炉停止中において全交流動力電源喪失又は原		
子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能霝		
失によるサポート系の故障により，残留熱除去系（原子炉停		
止時冷却モード）が起動できない場合の重大事故等対処設		
備として使用する低圧代替注水系（可搬型）は，「（1）a ．（c）		
低圧代替注水系（可搬型）による発電用原子炉の泠却」と同		

灰色（グレーハッチング）：前回許可からの変更箇所赤字：設備，運用又は体制の相違（設計方針の相違）緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類八		2024年2月9日 02DS－2－3（改 5）
柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炬 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	じである。 （c）常設代替交流電源設備による残留熱除去系（原子炉停止時冷却モード）の復旧 発電用原子炉停止中において全交流動力電源震失又は原子炉補機冷却水系（原子炉補機泠却海水系を含む。）機能霛失によるサポート系の故障により，残留熱除去系（原子炉停止時冷却モード）が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，残留熱除去系 （原子炉停止時冷却モード）を復旧する。 残留熱除去系（原子炉停止時冷却モード）は，常設代替交流電源設備からの給電により機能を復旧し，冷却材を原子炬圧力容器から残留熱除去系ポンプ及び熱交換器を経由し て原子炉圧力容器に戻すことにより炉心を泠却できる設計 とする。 本系統に使用する冷却水は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計とする。 常設代替交流電源設備，可搬型代替交流電源設備，代替所内電気設備，所内常設蓄電式直流電源設備及び常設代替直流電源設備に ついては，「第五十七条 電源設備」に記載する。 低圧代替注水系（常設）（復水移送ポンプ）は，残留熱除去系（低圧注水モード及び原子炉停止時冷却モード）及び低圧炉心スプレ イ系と共通要因によって同時に機能を損なわないよう，復水移送 ポンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電により駆動することで，非常用所内電気設備を経由した非常用交流電源設備からの給電により駆動する残留熱除去系ポンプを用いた残留熱除去系（低圧注水モ ード及び原子炉停止時冷却モード）及び低圧炬心スプレイ系ポン プを用いた低圧炉心スプレイ系に対して多様性を有する設計とす る。 低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）は， ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とす る。また，低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）は，代替所内電気設備を経由して給電する系統において，独立 した電路で系統構成することにより，非常用所内電気設備を経由		

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類八		2024年2月9日 02DS－2－3（改 5）
柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	して給電する系統に対して独立性を有する設計とする。また，電動弁（直流）は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。 また，低圧代替注水系（常設）（復水移送ポンプ）は，復水貯蔵 タンクを水源とすることで，サプレッションチェンバを水源とす る残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系に対し て異なる水源を有する設計とする。 復水移送ポンプは，原子炉建屋原子炉棟内の残留熱除去系ポン プ及び低圧炉心スプレイ系ポンプと異なる区画に設置すること で，共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炉棟内のサプレッションチェンバと共通要因によって同時に機能を損 なわないよう位置的分散を図る設計とする。 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系と共通要因に よって同時に機能を損なわないよう，直流駆動低圧注水系ポンプ を常設代替直流電源設備からの給電により駆動することで，非常用交流電源設備からの給電により駆動する残留熱除去系ポンプを用いた残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系ポ ンプを用いた低圧炉心スプレイ系に対して多様性を有する設計と する。 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）の電動弁 （直流）は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備又は常設代替直流電源設備からの給電に よる遠隔操作に対して多様性を有する設計とする。 また，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，復水貯蔵タンクを水源とすることで，サプレッションチェンバを水源とする残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系に対して異なる水源を有する設計とする。 直流駆動低圧注水系ポンプは，原子炉建屋付属棟内に設置する ことで，原子炉建屋原子炉棟内の残留熱除去系ポンプ及び低圧炉心スプレイ系ポンプと共通要因によって同時に機能を損なわない よう位置的分散を図る設計とする。 復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炉棟		

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類八		$\begin{aligned} & 2024 \text { 年 } 2 \text { 月 } 9 \text { 日 } \\ & \text { 02DS-2-3 (改 5) } \end{aligned}$
柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	内のサプレッションチェンバと共通要因によって同時に機能を損 なわないよう位置的分散を図る設計とする。 低圧代替注水系（可搬型）は，残留熱除去系（低圧注水モード及 び原子炉停止時冷却モード），低圧炉心スプレイ系及び低圧代替注水系（常設）と共通要因によって同時に機能を損なわないよう，大容量送水ポンプ（タイプ I ）を空冷式のディーゼルエンジンにより駆動することで，電動機駆動ポンプにより構成される残留熱除去系（低圧注水モード及び原子炬停止時冷却モード），低圧炉心スプ レイ系及び低圧代替注水系（常設）に対して多様性を有する設計と する。 低圧代替注水系（可搬型）の電動弁は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，低圧代替注水系 （可搬型）の電動弁は，代替所内電気設備を経由して給電する系統 において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とす る。 また，低圧代替注水系（可搬型）は，代替淡水源を水源とするこ とで，サプレッションチェンバを水源とする残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系並びに復水貯蔵タンクを水源 とする低圧代替注水系（常設）に対して異なる水源を有する設計と する。 大容量送水ポンプ（タイプ I ）は，原子炉建屋から離れた屋外に分散して保管することで，原子炉建屋原子炉棟内の残留熱除去系 ポンプ，低圧炉心スプレイ系ポンプ及び復水移送ポンプ並びに原子炉建屋付属棟内の直流駆動低圧注水系ポンプと共通要因によっ て同時に機能を損なわないよう位置的分散を図る設計とする。 大容量送水ポンプ（タイプI）の接続口は，共通要因によって接続できなくなることを防止するため，位置的分散を図った複数箇所に設置する設計とする。 低圧代替注水系（常設）（復水移送ポンプ）及び低圧代替注水系 （可搬型）は，残留熱除去系及び低圧炉心スプレイ系と共通要因に よって同時に機能を損なわないよう，水源から残留熱除去系配管 との合流点までの系統について，残留熱除去系に対して独立性を有する設計とする。 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，残留		

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	（最終ヒートシンクへ熱を輸送するための設備） 第四十八条 発電用原子炉施設には，設計基準事故対処設備が有す る最終ヒートシンクへ熱を輸送する機能が喪失した場合におい て炉心の著しい損傷及び原子炉格納容器の破損（炉心の著しい損傷が発生する前に生ずるものに限る。）を防止するため，最終 ヒートシンクへ熱を輸送するために必要な設備を設けなければ ならない。	（最終ヒートシンクへ熱を輸送するための設備） 第四十八条 発電用原子炉施設には，設計基準事故対処設備が有す る最終ヒートシンクへ熱を輸送する機能が喪失した場合におい て炉心の著しい損傷及び原子炉格納容器の破損（炉心の著しい損傷が発生する前に生ずるものに限る。）を防止するため，最終 ヒートシンクへ熱を輸送するために必要な設備を設けなければ ならない。	
	適合のための設計方針	適合のための設計方針	
	設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送する	最終ヒートシンクへ熱を輸送するための設備のらち，耐圧強化べ	設計の差異
	機能が喪失した場合において炬心の著しい損傷及び原子炉格納容器	ント系使用時の排出経路に設置される隔離异の電動弁（直流）につい	－既許可において
	の破損（炬心の著しい損傷が発生する前に生ずるものに限る。）を防	ては，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬	常設代替直流電源
	止するため，最終ヒートシンクへ熱を輸送するために必要な重大事	型代替直流電源設備に加え，所内常設直流電源設備（ 3 系統目）から	設備（125V 代替蓄
	故等対処設備を設置及び保管する。	の給電が可能な設計とする。	電池）から給電し
	最終ヒートシンクへ熱を輸送するための設備のらち，設計基準事		ている旨明記して
	故対処設備が有する最終ヒートシンクへ熱を輸送する機能が喪失し		いる電動弁は所内
	た場合においても炉心の著しい損傷及び原子炉格納容器の破損を防		常設直流電源設備
	止するための設備として，原子炉格納容器フィルタベント系，耐圧強		（3系統目）から
	化ベント系及び原子炉補機代替冷却水系を設ける。		給電可能な設計と
	（1）フロントライン系故障時に用いる設備		なるため記載。柏
	a ．原子炉格納容器フィルタベント系による原子炉格納容器内		崎既許可には直流
	の減圧及び除熱		電動弁の記載な
	残留熱除去系の故障等により最終ヒートシンクへ熱を輸送		し。
	する機能が喪失した場合に，炉心の著しい損傷及び原子炉格		
	納容器の破損を防止するための重大事故等対処設備として，		
	原子炉格納容器フィルタベント系は，原子炉格納容器内雰囲		
	気ガスを原子炬格納容器調気系等を経由して，フィルタ装置		
	－導き，放射性物質を低減させた後に原子炉建屋屋上に設け		
	る放出口から排出することで，排気中に含まれる放射性物質		
	の環境への放出量を低減しつつ，原子炬格納容器内に蓄積し		
	た熱を最終的な熱の逃がし場である大気へ輸送できる設計と		
	する。		
	れる放射性物質の放出量に対して，あらかじめ敷地境界での		
	線量評価を行うこととする。		

所内常設直流電源設備（3系統目）添付書類八 比較表

女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
本系統の詳細については，「第五十条 原子炉格納容器の過		
圧破損を防止するための設備」に記載する。		
b．耐圧強化ベント系による原子炉格納容器内の減圧及び除熱		
残留熱除去系の故障等により最終ヒートシンクへ熱を輸送		
する機能が喪失した場合に，炉心の著しい損傷及び原子炉格		
納容器の破損を防止するための重大事故等対処設備として，		
耐圧強化ベント系は，原子炉格納容器内雰囲気ガスを原子炉		
格納容器調気系等を経由して，排気筒を通して原子炉建屋外		
に放出することで，原子炉格納容器内に蓄積した熱を最終的		
な熱の逃がし場である大気へ輸送できる設計とする。		
最終ヒートシンクへ熱を輸送するための設備として使用す		
る場合の耐圧強化べント系は，炬心損傷前に使用するため，排		
気中に含まれる放射性物質及び可燃性ガスは微量である。		
耐圧強化ベント系は，使用する際に弁により他の系統•機器		
と隔離することにより，悪影響を及ぼさない設計とする。		
耐圧強化べント系は，想定される重大事故等時において，原		
子炉格納容器が負圧とならない設計とする。耐圧強化ベント		
系の使用に際しては，原子炬格納容器代替スプレイ冷却系等		
による原子炉格納容器内へのスプレイは停止する運用として		
おり，原子炉格納容器が負圧とならない。仮に，原子炉格納容		
器内にスプレイをする場合においても，原子炉格納容器内圧		
力が規定の圧力まで減圧した場合には，原子炉格納容器内へ		
のスプレイを停止する運用とする。		
耐圧強化ベント系使用時の排出経路に設置される隔離弁の		
らち電動弁（直流）は所内常設蓄電式直流電源設備，常設代替		
直流電源設備又は可搬型代替直流電源設備からの給電による		
操作が可能な設計とする。また，排出経路に設置される隔離弁		
のうち電動弁（交流）については常設代替交流電源設備又は可		
搬型代替交流電源設備からの給電による操作が可能な設計と		
する。		
このうち，電動弁（直流）については，遠隔手動弁操作設備		
によって人力による操作が可能な設計とし，隔離弁の操作に		
おける駆動源の多様性を有する設計とする。		
本系統はサプレッションチェンバ及びドライウェルと接続		
し，いずれからも排気できる設計とする。サプレッションチェ		
ンバ側からの排気ではサプレッションチェンバの水面からの		

所内常設直流電源設備（3系統目）添付書類八 比較表

女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
高さを確保し，ドライウェル側からの排気では，ドライウェル		
の床面からの高さを確保するとともに有効燃料棒頂部よりも		
高い位置に接続箇所を設けることで長期的にも溶融炉心及び		
水没の悪影響を受けない設計とする。		
耐圧強化ベント系を使用した場合に放出される放射性物質		
の放出量に対して，あらかじめ敷地境界での線量評価を行う		
こととする。		
（2）サポート系故障時に用いる設備		
a ．原子炉補機代替冷却水系による原子炉格納容器内の減圧及		
び除熱		
原子炉補機冷却水系（原子炬補機冷却海水系を含む。）の故		
障又は全交流動力電源の喪失により，最終ヒートシンクへ熱		
を輸送する機能が喪失した場合の重大事故等対処設備とし		
て，原子炬補機代替冷却水系は，サプレッションチェンバへの		
熱の蓄積により原子炬冷却機能が確保できる一定の期間内		
に，熱交換器ユニットを原子炉補機冷却水系に接続し，大容量		
送水ポンプ（タイプ I）により熱交換器ユニットに海水を送水		
することで，残留熱除去系等の機器で発生した熱を最終的な		
熱の逃がし場である海へ輸送できる設計とする。		
熱交換器ユニット及び大容量送水ポンプ（タイプ I）は，空		
冷式のディーゼルエンジンにより駆動できる設計とする。		
常設代替交流電源設備，可搬型代替交流電源設備，代替所内		
電気設備，所内常設蓄電式直流電源設備，常設代替直流電源設		
備及び可搬型代替直流電源設備については，「第五十七条 電		
源設備」に記載する。		
原子炉格納容器フィルタベント系及び耐圧強化ベント系		
は，残留熱除去系（格納容器スプレイ冷却モード）及び原子炉		
補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因に		
よって同時に機能を損なわないよう，ポンプ及び熱交換器を		
使用せずに最終的な熱の逃がし場である大気へ熱を輸送でき		
る設計とすることで，残留熱除去系及び原子炉補機冷却水系		
（原子炉補機冷却海水系を含む。）に対して，多様性を有する		
設計とする。		
また，原子炬格納容器フィルタベント系は，排出経路に設置		
される隔離弁の電動弁を所内常設蓄電式直流電源設備，常設		
代替直流電源設備若しくは可搬型代替直流電源設備からの給		

所内常設直流電源設備（ 3 系統目）添付書類八 比較表

女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
電による遠隔操作を可能とすること又は遠隔手動弁操作設備		
を用いた人力による遠隔操作を可能とすることで，非常用交		
流電源設備からの給電により駆動する残留熱除去系（格納容		
器スプレイ泠却モード）及び原子炉補機冷却水系（原子炉補機		
泠却海水系を含む。）に対して，多様性を有する設計とする。		
耐圧強化ベント系の排出経路に設置される隔離弁のうち電		
動弁（直流）は，所内常設蓄電式直流電源設備，常設代替直流		
電源設備若しくは可搬型代替直流電源設備からの給電による		
遠隔操作を可能とすること又は遠隔手動弁操作設備を用いた		
人力による遠隔操作が可能な設計とし，排出経路に設置され		
る隔離弁のうち電動弁（交流）は，常設代替交流電源設備若し		
くは可搬型代替交流電源設備からの給電による遠隔操作を可		
能とすること又は操作ハンドルを用いた人力による操作が可		
能な設計とすることで，非常用交流電源設備からの給電によ		
り駆動する残留熱除去系（格納容器スプレイ泠却モード）及び		
原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対し		
て，多様性を有する設計とする。		
原子炉格納容器フィルタベント系のフィルタ装置及びフィ		
ルタ装置出口側圧力開放板並びに耐圧強化ベント系は，原子		
炉建屋原子炉棟内に設置し，原子炉建屋原子炉棟内の残留熱		
除去系ポンプ及び熱交換器，原子炉建屋付属棟内の原子炉補		
機冷却水ポンプ及び熱交換器並びに屋外の海水ポンプ室の原		
子炉補機冷却海水ポンプと異なる区画に設置することで，共		
通要因によって同時に機能を損なわないよう位置的分散を図		
った設計とする。		
原子炉格納容器フィルタベント系及び耐圧強化ベント系		
は，除熱手段の多様性及び機器の位置的分散によって，残留熱		
除去系及び原子炉補機冷却水系（原子炉補機冷却海水系を含		
む。）に対して独立性を有する設計とする。		
原子炉補機代替冷却水系は，原子炉補機冷却水系（原子炉補		
機冷却海水系を含む。）と共通要因によって同時に機能を損な		
わないよう，熱交換器ユニット及び大容量送水ポンプ（タイブ		
I）を空冷式のディーゼルエンジンにより駆動することで，電		
動機駆動ポンプにより構成される原子炉補機冷却水系（原子		
炬補機泠却海水系を含む。）に対して多様性を有する設計とす		
る。また，原子炉補機代替冷却水系は，原子炉格納容器フィル		

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表琴，記載綯所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類八		2024年2月9日 02DS－2－3（改 5）
柏崎刈羽 6， 7 号炬（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	（原子炉格納容器の過圧破損を防止するための設備）第五十条 発電用原子炉施設には，炉心の著しい損傷が発生した場合において原子炉格納容器の過圧による破損を防止するため，原子炉格納容器バウンダリを維持しながら原子炬格納容器内の圧力及び温度を低下させるために必要な設備を設けなければならな い。 2 発電用原子炉施設（原子炉格納容器の構造上，炉心の著しい損傷が発生した場合において短時間のらちに原子炉格納容器の過圧 による破損が発生するおそれがあるものに限る。）には，前項の設備に加えて，原子炉格納容器内の圧力を大気中に逃がすために必要な設備を設けなければならない。 3 前項の設備は，共通要因によって第一項の設備の過圧破損防止機能（炉心の著しい損傷が発生した場合において原子炉格納容器の過圧による破損を防止するために必要な機能をいう。）と同時にその機能が損なわれるおそれがないよう，適切な措置を講じたものでなければならない。	（原子炉格納容器の過圧破損を防止するための設備） 第五十条 発電用原子炉施設には，炉心の著しい損傷が発生した場合において原子炉格納容器の過圧による破損を防止するため，原子炉格納容器バウンダリを維持しながら原子炬格納容器内の圧力及び温度を低下させるために必要な設備を設けなければならな い。 2 発電用原子炉施設（原子炉格納容器の構造上，炬心の著しい損傷が発生した場合において短時間のうちに原子炉格納容器の過圧 による破損が発生するおそれがあるものに限る。）には，前項の設備に加えて，原子炉格納容器内の圧力を大気中に逃がすために必要な設備を設けなければならない。 3 前項の設備は，共通要因によって第一項の設備の過圧破損防止機能（炉心の著しい損傷が発生した場合において原子炉格納容器の過圧による破損を防止するために必要な機能をいう。）と同時にその機能が損なわれるおそれがないよう，適切な措置を講じたものでなければならない。	
	適合のための設計方針 灲心の著しい損傷が発生した場合において原子炉格納容器の過圧 による破損を防止するため，原子炉格納容器内の圧力及び温度を低下させるために必要な重大事故等対処設備を設置及び保管する。 原子炉格納容器の過圧破損を防止するための設備のうち，原子炉格納容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低下させるための設備として，代替循環冷却系を設ける。また，原子炉格納容器内の圧力を大気中に逃がすための設備として，原子炉格納容器フィルタベント系を設ける。 （1）代替循環冷却系による原子炉格納容器内の減圧及び除熱炉心の著しい損傷が発生した場合に原子炉格納容器の過圧破損を防止するための重大事故等対処設備として，代替循環冷却系は，代替循環冷却ポンプによりサプレッションチェンバのプ ール水を残留熱除去系熱交換器にて冷却し，残留熱除去系等を経由して原子炉圧力容器へ注水及び原子炉格納容器内ヘスプレ イすることで，原子炬格納容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低下できる設計とする。	適合のための設計方針 原子炉格納容器の過圧破損を防止するための設備のうち，原子炉格納容器フィルタベント系使用時の排出経路に設置される隔離弁の電動弁については，所内常設蓄電式直流電源設備，常設代替直流電源設備及 び可搬型代替直流電源設備に加え，所内常設直流電源設備（ 3 系統目） からの給電が可能な設計とする。	設計の差異 －既許可において常設代替直流電源設備（125V 代替蓄電池）から給電し ている旨明記して いる電動弁は所内常設直流電源設備 （3系統目）から給電可能な設計と なるため記載。柏崎既許可には直流電動弁の記載な し。

灰色（グレーハッチング）：前回許可からの変更箇所赤字：設備，運用又は体制の相違（設計方針の相違）緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類		$\begin{aligned} & 2024 \text { 年 } 2 \text { 月 } 9 \text { 日 } \\ & \text { 02DS-2-3 (改 5) } \end{aligned}$
柏崎刈羽 6， 7 号炉（2022．8． 23 提出）	女川 2 号炬 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䉪所のみ記載	差異理由
	原子炉圧力容器に注水された水は，原子炉圧力容器又は原子炉格納容器内配管の破断口等から流出し，原子炉格納容器内へ スプレイされた水とともに，ベント管を経てサプレッションチ エンバに戻ることで循環する。 なお，代替循環冷却系は，原子炉圧力容器へ注水することで，原子炉圧力容器内に存在する溶融炬心を冷却できる設計とす る。 また，代替循睘冷却系は，原子炉格納容器内ヘスプレイするこ とで，スプレイした水がドライウェル床面に溜まり，原子炉格納容器下部開口部を経由して原子炉格納容器下部へ流入すること で，溶融炬心が落下するまでに原子炉格納容器下部にあらかじ め十分な水位を確保するとともに，落下した溶融炬心を椧却で きる設計とする。 代替循環冷却系は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備からの給電が可能な設計とする。 残留熱除去系熱交換器は，代替循環冷却系で使用する原子炉補機冷却水系（原子炬補機冷却海水系を含む。）並びに原子炉補機代替冷却水系の熱交換器ユニット及び大容量送水ポンプ（タ イプ I ）により泠却できる設計とする。 原子炉補機代替冷却水系は，熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプI）により熱交換器ユニットに海水を送水することで，残留熱除去系熱交換器で発生した熱を最終的な熱の逃がし場である海へ輸送できる設計 とする。 （2）原子炉格納容器フィルタベント系による原子炉格納容器内の減圧及び除熱 炉心の著しい損傷が発生した場合において，原子炉格納容器 の過圧破損を防止するための重大事故等対処設備として，原子炉格納容器フィルタベント系は，原子炉格納容器内雰囲気ガス を原子炉格納容器調気系等を経由して，フィルタ装置へ導き，放射性物質を低減させた後に原子灯建屋屋上に設ける放出口から排出することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，原子炉格納容器内の圧力及び温度を低下でき る設計とする。 フィルタ装置は3台を並列に設置し，排気中に含まれる粒子		

所内常設直流電源設備（3系統目）添付書類八 比較表

女川 2 号炬 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䉪所のみ記載	差異理由
状放射性物質，ガス状の無機よう素及び有機よう素を除去でき		
る設計とする。		
本系統は，サプレッションチェンバ及びドライウェルと接続		
し，いずれからも排気できる設計とする。サプレッションチェン		
バ側からの排気ではサプレッションチェンバの水面からの高さ		
を確保し，ドライウェル側からの排気では，ドライウェル床面か		
らの高さを碓保するとともに有効燃料棒頂部よりも高い位置に		
接続綯所を設けることで長期的にも溶融灲心及び水没の悪影響		
を受けない設計とする。		
原子炉格納容器フィルタバント系は，排気中に含まれる可燃		
性ガスによる爆発を防ぐため，系統内を不活性ガス（窒素）で置		
換した状態で待機させ，原子炬格納容器ベント開始後において		
も不活性ガス（窒素）で置換できる設計とするとともに，系統内		
に可燃性がスが蓄積する可能性のある箇所にはバイパスライン		
を設け，可燃性がスを連続して排出できる設計とすることで，系		
統内で水素湩度及び酸素浱度が可燃領域に達することを防止で		
きる設計とする。		
原子炉格納容器フィルタバント系は，他の発電用原子炬施設		
とは共用しない設計とする。また，原子炉格納容器フィルタベン		
卜系と他の系統•機器を隔離する弁は直列で2個設置し，原子炬		
格納容器フィルタバント系と他の系統•機器を碓実に隔離する		
ことで，悪影響を及ぼさない設計とする。		
原子炉格納容器フィルタベント系の使用に際しては，原子炉		
格納容器代替スプレイ椧却系等による原子炉格納容器内へのス		
プレイは停止する運用としており，原子炉格納容器が負圧とな		
らない。仮に，原子炉格納容器内にスプレイする場合において		
も，原子炉格納容器内圧力が規定の圧力まで減圧した場合には，		
原子炬格納容器内へのスプレイを停止する運用とする。また，原		
子炬格納容器フィルター゙ント系使用後において，可燃性ガスに		
よる爆発及び原子炉格納容器の負圧破損を防止するために，可		
搬型空素ガス供給装置を用いて原子炉格納容器内に不活性ガス		
（窒素）の供給が可能な設計とする。		
原子炉格納容器フィルタバント系使用時の排出経路に設置さ		
$れ る$ 隔㒀弁は，遠隔手動弁操作設備によって人力による操作が		
可能な設計とする。		
遠隔手動弁操作設備の操作場所は，原子炬建屋付属棟内とし，		

所内常設直流電源設備（3系統目）添付書類八 比較表
女川 2 号炉 \quad 適合性審査許可後完本
（有毒ガス防護： 2022 年 6 月 1 日許可） ては，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により，中央制御室から操作が可能な設計とする。
系統内に設けるフィルタ装置出口側圧力開放板は，原子炉格納容器フィルタバント系の使用の妨げにならないよう，原子炬格納容器からの排気圧力と比較して十分に低い圧力で破裂する設計とする。
原子炬格納容器フィルタベント系のフィルタ装置等は，原子炉建屋原子炬棟内に設置することにより，フィルタ装置等の周囲には遮蔽壁が設置されることから原子炉格納容器フィルタバ ント系の使用時に本系統内に蓄積される放射性物質から放出さ れる放射線から作業員を防護する設計とする。
代替循環洽却系及び原子炉格納容器フィルタベント系は，共通要因によって同時に機能を損なわないよう，原理の異なる泠却及 び原子炉格納容器内の減圧手段を用いることで多様性を有する設計とする。
代替循睘洽却系は，非常用交流電源設備に対して多様性を有す る常設代替交流電源設備からの給電により駆動できる設計とす る。また，原子炉格納容器フィルタベント系は，非常用交流電源設備に対して多様性を有する所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により駆動できる設計とする。
原子炉格納容器フィルタベント系は，人力により排出経路に設置される隔離弁を操作できる設計とすることで，代替循睘冷却系 に対して駆動源の多様性を有する設計とする。
代替循嘸椧却系に使用する原子炉補機代替洽却水系の熱交換器 コニット及び大容量送水ポンプ（タイプI）は，原子炬建屋から離 れた屋外に分散して保管することで，原子炉建屋内の原子炉格納容器フィルタベント系と共通要因によって同時に機能を損なわな いよう位置的分散を図る設計とする。
熱交換器ユニットの接続口は，共通要因によって接続できなく なることを防止するため，互いに異なる複数箇所に設置し，かつ原子炉格納容器フィルタバント系と異なる区画に設置する設計とす る。

$$
\begin{aligned}
& \text { 灰色 (グレーハッチング): 前回許可からの変更箇所 } \\
& \text { 赤字: 設備, 運用又は体制の相違 (設計方針の相違) } \\
& \text { 緑字: 記載表現, 記載箇所, 設備名称の相違 (実質的な相違なし) }
\end{aligned}
$$

所内常設直流電源設備（3系統目）添付書類八 比較表

灰色（グレーハッチング）：前回許可からの変更㯺所
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，記載䉯所，設備名称の相違（実質的な相違なし）

緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）
所内常設直流電源設備（3系統目）添付書類八 比較表

適合のための設計方針

灲心の著しい損傷が発生した場合において原子炉格納容器内におけ る水素による爆発（以下「水素爆発」という。）による破損を防止する必要がある場合には，水素爆発による原子炉格納容器の破損を防止す るために必要な重大事故等対処設備を設置及び保管する。
水素爆発による原子炉格納容器の破損を防止するための設備のう ち，炉心の著しい損傷が発生した場合において原子炉格納容器内にお ける水素爆発による破損を防止できるよう，原子炉格納容器内を不活性化するための設備として，可搬型窒素ガス供給装置を設ける。
水素爆発による原子炉格納容器の破損を防止するための設備のう ち，炉心の著しい損傷が発生した場合において原子炉格納容器内にお ける水素爆発による破損を防止できるよう，原子炬格納容器内に滞留 する水素及び酸素を大気へ排出するための設備として，原子炉格納容器フィルタベント系を設ける。
水素爆発による原子炉格納容器の破損を防止するための設備のう ち，炉心の著しい損傷が発生した場合において，原子炉格納容器内の水素濃度を監視する設備として，水素濃度監視設備を設ける。
また，灯心の著しい損傷が発生した場合において原子炉格納容器内 における水素爆発による破損を防止できるよう，発電用原子炉の運転中は，原子炉格納容器内を原子炉格納容器調気系により常時不活性化 する設計とする。
（1）炉心の著しい損傷が発生した場合の原子炉格納容器水素爆発防止
a ．可搬型窒素ガス供給装置による原子炬格納容器内の不活性化

原子炉格納容器内を不活性化するための重大事故等対処設備として，可搬型窒素ガス供給装置は，原子炉格納容器内に窒素を供給することで，ジルコニウムー水反応，水の放射線分解

2024年2月9日 02DS－2－3（改 5）

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類		$\begin{aligned} & 2024 \text { 年 } 2 \text { 月 } 9 \text { 日 } \\ & \text { 02DS-2-3 (改 5) } \end{aligned}$
柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	等により原子炬格納容器内に発生する水素及び酸素の濃度を可燃限界未満にすることが可能な設計とする。 b ．原子炉格納容器フィルタベント系による原子炉格納容器内 の水素及び酸素の排出 原子炉格納容器内に滞留する水素及び酸素を大気へ排出す るための重大事故等対処設備として，原子炉格納容器フィル タベント系は，炉心の著しい損傷が発生した場合において，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由 して，フィルタ装置へ導き，放射性物質を低減させた後に原子炬建屋屋上に設ける放出口から排出することで，排気中に含 まれる放射性物質の環境への放出量を低減しつつ，ジルコニ ウムー水反応，水の放射線分解等により発生する原子炉格納容器内の水素及び酸素を大気に排出できる設計とする。 原子炉格納容器フィルタベント系は，排気中に含まれる可燃性ガスによる爆発を防ぐため，系統内を不活性ガス（窒素） で置換した状態で待機させ，原子炉格納容器ベント開始後に おいても不活性ガス（窒素）で置換できる設計とするととも に，系統内に可燃性ガスが蓄積する可能性のある箇所にはバ イパスラインを設け，可燃性ガスを連続して排出できる設計 とすることで，系統内で水素濃度及び酸素濃度が可燃領域に達することを防止できる設計とする。 排出経路における水素濃度を測定し，監視できるよう，フィ ルタ装置出口配管にフィルタ装置出口水素濃度を設ける。ま た，放射線量率を測定し，放射性物質濃度を推定できるよう， フィルタ装置出口配管にフィルタ装置出口放射線モニタを設 ける。フィルタ装置出口水素濃度は，常設代替交流電源設備又 は可搬型代替交流電源設備から給電が可能な設計とする。ま た，フィルタ装置出口放射線モニタは，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備 から給電が可能な設計とする。 （2）原子炉格納容器内の水素濃度監視及び酸素濃度監視 a．格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／ C）による原子炉格納容器内の水素濃度監視原子炉格納容器内の水素濃度監視を行うための重大事故等対処設備として，格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）は，炉心の著しい損傷が発生した場合に，水		

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載䈯所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類八		2024年2月9日 02DS－2－3（改 5）
柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炬 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䉪所のみ記載	差異理由
	素濃度が変動する可能性のある範囲の水素濃度を中央制御室 より監視できる設計とする。格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする。 b．原子炉格納容器内雰囲気計装による原子炉格納容器内の水素濃度監視及び酸素濃度監視 原子炉格納容器内の水素濃度監視及び酸素濃度監視を行う ための重大事故等対処設備として，格納容器内雾囲気水素濃度及び格納容器内雾囲気酸素濃度は，炉心の著しい損傷が発生した場合に，サンプリング装置により原子炉格納容器内の雾囲気ガスを原子炉建屋原子炉棟内へ導き，検出器で測定す ることで，原子炉格納容器内の水素濃度及び酸素濃度を中央制御室より監視できる設計とする。格納容器内雰囲気水素濃度及び格納容器内雾囲気酸素濃度は，常設代替交流電源設備又は可搬型代替交流電源設備から給電が可能な設計とする。 なお，原子炬補機代替冷却水系から泠却水を供給すること により，サンプリングガスを泠却できる設計とする。 所内常設蓄電式直流電源設備，常設代替直流電源設備，可搬型代替直流電源設備，常設代替交流電源設備及び可搬型代替交流電源設備については，「第五十七条 電源設備」に記載する。		

所内常設直流電源設備 (3系統目) 添付書類八 比較表

灰色（グレーハッチング）：前回許可からの変更箇所赤字：設備，運用又は体制の相違（設計方針の相違）緑字：記載表現，記載笽所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類八		2024年2月9日 02DS－2－3（改5）
柏崎刈羽 6， 7 号炬（2022．8． 23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈏所のみ記載	差異理由
	流電源設備から給電が可能な設計とする。 b．水素濃度監視 （a）原子炬建屋水素濃度監視設備による水素濃度測定 水素爆発による原子炉建屋等の損傷を防止するための設 備のうち，炉心の著しい損傷により原子炉格納容器から原子炉建屋原子炉棟内に漏えいした水素の濃度を測定するた め，炉心の著しい損傷が発生した場合に水素濃度が変動す る可能性のある範囲で測定できる重大事故等対処設備とし て，原子炉建屋内水素濃度は，中央制御室において連続監視 できる設計とし，原子炉建屋内水素濃度のうち，原子炉建屋地上 3 階及び原子炉建屋地下 2 階に設置するものについて は，常設代替交流電源設備又は可搬型代替交流電源設備か らの給電及び所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電が可能な設計とする。また，原子炉建屋内水素濃度のうち，原子炉建屋地上1階及び原子炉建屋地下 1 階に設置するものについ ては，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電が可能な設計とす る。 常設代替交流電源設備，可搬型代替交流電源設備，代替所内電気設備，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備については，「第五十七条 電源設備」に記載する。		

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類		2024年2月9日 02DS－2－3（改 5）
柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	使用済燃料プールに接続する配管の破損等により，燃料プール冷却浄化系配管からサイフォン現象による水の漏えいが発生した場合に，漏えいの継続を防止するため，燃料プール冷却浄化系戻り配管上部に サイフォンブレーク孔を設ける。 使用済燃料プールの泠却等のための設備のうち，使用済燃料プール内燃料体等の著しい損傷に至った場合において大気への放射性物質の抆散を抑制するための設備として放水設備（大気への㹡散抑制設備）を設ける。 使用済燃料プールの泠却等のための設備のうち，重大事故等時にお いて，使用済然料プールの状態を監視するための設備として，使用済燃料プールの監視設備を設ける。 （1）使用斎燃料プールの泠却機能若しくは注水機能の䨖失時又は使用済燃料プール水の小規模な漏えい発生時に用いる設備 a．燃料プール代替注水 （a）燃料プール代替注水系（常設配管）による使用済燃料プー ルへの注水 残留熱除去系（燃料プール水の洽却）及び燃料プール泠却浄化系の有する使用済然料プールの泠却機能震失又は残留熱除去系ポンプによる使用済燃料プールへの補給機能が霛失し，又は使用済然料プールに接続する配管の破損等によ り使用済燃料プール水の小規模な漏えいにより使用済燃料 プールの水位が低下した場合に，使用済然料プール内燃料体等を椧却し，放射線を遮蔽し，及び臨界を防止するための重大事故等対処設備として，燃料プール代替注水系（常設配管）は，大容量送水ポンプ（タイプI）により，代替淡水源 の水を燃料プール泠却浄化系配管等から使用済燃料プール －注水することで，使用済然料プールの水位を維持できる設計とする。 また，使用済燃料貯蔵ラックの形状を維持することによ り臨界を防止できる設計とする。 弥料プール代替注水系（常設配管）は，代替淡水源が枯渴 した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプI）により海を利用 できる設計とする。また，大容量送水ポンプ（タイプI）は，空泠式のディーゼルエンジンにより駆動できる設計とす る。		

所内常設直流電源設備（3系統目）添付書類八 比較表

差異理由
（b）燃料プール代替注水系（可搬型）による使用済燃料プール への注水

残留熱除去系（燃料プール水の泠却）及び燃料プール冷却浄化系の有する使用済燃料プールの泠却機能喪失又は残留熱除去系ポンプによる使用済燃料プールへの補給機能が䨤失し，又は使用済燃料プールに接続する配管の破損等によ り使用済燃料プール水の小規模な漏えいにより使用済燃料 プールの水位が低下した場合に，使用済燃料プール内燃料体等を泠却し，放射線を遮蔽し，及び臨界を防止するための重大事故等対処設備として，燃料プール代替注水系（可搬型）は，大容量送水ポンプ（タイプ I ）により，代替淡水源 の水をホース等を経由して使用済燃料プールへ注水するこ とで，使用済燃料プールの水位を維持できる設計とする。 また，使用済燃料貯蔵ラックの形状を維持することによ り臨界を防止できる設計とする。

燃料プール代替注水系（可搬型）は，代替淡水源が枯渇し た場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプI ）により海を利用で きる設計とする。また，大容量送水ポンプ（タイプI）は，空冷式のディーゼルエンジンにより駆動できる設計とす る。
（2）使用済燃料プールからの大量の水の漏えい発生時に用いる設備
a．燃料プールスプレイ
（a）燃料プールスプレイ系（常設配管）による使用済燃料プー ルへのスプレイ

使用済燃料プールからの大量の水の漏えい等により使用済燃料プールの水位が異常に低下した場合に，燃料損傷を緩和するとともに，燃料損傷時には使用済燃料プール内燃料体等の上部全面にスプレイすることによりできる限り環境への放射性物質の放出を低減するための重大事故等対処設備として，燃料プールスプレイ系（常設配管）は，大容量送水ポンプ（タイプ I ）により，代替淡水源の水を燃料プー ル泠却浄化系配管等を経由してスプレイノズルから使用済燃料プール内燃料体等に直接スプレイすることで，燃料損傷を緩和するとともに，環境への放射性物質の放出をでき

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類		$\begin{aligned} & 2024 \text { 年 } 2 \text { 月 } 9 \text { 日 } \\ & \text { 02DS-2-3 (改 5) } \end{aligned}$
柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	る限り低減できる設計とする。 また，スプレイや蒸気環境下でも臨界にならないよう配慮したラック形状によって，臨界を防止することができる設計とする。 燃料プールスプレイ系（常設配管）は，代替淡水源が枯渴 した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプ I）により海を利用 できる設計とする。また，大容量送水ポンプ（タイプ I ）は，空冷式のディーゼルエンジンにより駆動できる設計とす る。 （b）燃料プールスプレイ系（可搬型）による使用済燃料プール へのスプレイ 使用済燃料プールからの大量の水の漏えい等により使用済燃料プールの水位が異常に低下した場合に，燃料損傷を緩和するとともに，燃料損傷時には使用済燃料プール内燃料体等の上部全面にスプレイすることによりできる限り環境への放射性物質の放出を低減するための重大事故等対処設備として，燃料プールスプレイ系（可搬型）は，大容量送水ポンプ（タイプI）により，代替淡水源の水をホース等を経由してスプレイノズルから使用済燃料プール内燃料体等 に直接スプレイすることで，燃料損傷を緩和するとともに，環境への放射性物質の放出をできる限り低減できる設計と する。 また，スプレイや蒸気環境下でも臨界にならないよう配慮したラック形状によって，臨界を防止することができる設計とする。 然料プールスプレイ系（可搬型）は，代替淡水源が枯渴し た場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプ I）により海を利用で きる設計とする。また，大容量送水ポンプ（タイプ I）は，空泠式のディーゼルエンジンにより駆動できる設計とす る。 b．大気への放射性物質の拡散抑制 （a）放水設備（大気への拡散抑制設備）による大気への放射性物質の拡散抑制使用済燃料プールからの大量の水の漏えい等により使用		

所内常設直流電源設備（3系統目）添付書類八 比較表

灰色（グレーハッチング）：前回許可からの変更箇所赤字：設備，運用又は体制の相違（設計方針の相違）緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類		$\begin{aligned} & 2024 \text { 年 } 2 \text { 月 } 9 \text { 日 } \\ & \text { 02DS-2-3 (改 5) } \end{aligned}$
柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炬 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	済燃料プールの水位の異常な低下により，使用済燃料プー ル内燃料体等の著しい損傷に至った場合において，燃料損傷時にはできる限り嘸境への放射性物質の放出を低減する ための重大事故等対处設備として，放水設備（大気への挔散抑制設備）は，大容量送水ポンプ（タイプII）により海水を ホースを経由して放水砲から原子炉建屋へ放水すること で，環境への放射性物質の放出を可能な限り低減できる設計とする。 本系統の詳細については，「第五十五条 発電所外への放射性物質の抎散を抑制するための設備」に記載する。 （3）重大事故等時の使用済然料プールの監視に用いる設備 a．使用済然料プールの監視設備による使用済燃料プールの状態監視 使用済燃料プールの監視設備として，使用済燃料プール水位／温度（ヒートサーモ式），使用済燃料プール水位／温度（ガ イドパルス式）及び使用済然料プール上部空間放射線モ二タ （高線量，低線量）は，想定される重大事故等により変動する可能性のある範囲にわたり測定可能な設計とする。 また，使用済燃料プール監視カメラは，想定される重大事故等時の使用済燃料プールの状態を監視できる設計とする。 使用斎燃料プール水位／温度（ヒートサーモ式）及び使用済撚料プール上部空間放射線モニタ（高線量，低線量）は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能であり，使用済燃料プール水位／温度（ガイドパルス式）及び使用済燃料プール監視カメ ラは，常設代替交流電源設備又は可搬型代替交流電源設備か ら給電が可能な設計とする。 （4）使用済燃料プールから発生する水蒸気による悪影響を防止す るための設備 a．燃料プール椧却浄化系による使用済然料プールの除熱使用済然料プールから発生する水蒸気による悪影響を防止 するための重大事故等対処設備として，燃料プール泠却浄化系は，使用済然料プールの水をポンプにより熱交换器等を経由して循睘させることで，使用済燃料プールを洽却できる設計とする。 然料プール椧却浄化系は，非常用交流電源設備及び原子炉		

灰色（グレーハッチング）：前回許可からの変更箇所
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	（電源設備） 第五十七条 発電用原子炉施設には，設計基準事故対処設備の電源 が喪失したことにより重大事故等が発生した場合において炉心の著しい損傷，原子炉格納容器の破損，貯蔵槽内燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するため に必要な電力を確保するために必要な設備を設けなければならな い。 2 発電用原子炉施設には，第三十三条第二項の規定により設置 される非常用電源設備及び前項の規定により設置される電源設備のほか，設計基準事故対処設備の電源が喪失したことにより重大事故等が発生した場合において炉心の著しい損傷，原子炉格納容器の破損，貯蔵槽内燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するための常設の直流電源設備を設けなければならない。	（電源設備） 第五十七条 2 発電用原子炉施設には，第三十三条第二項の規定により設置 される非常用電源設備及び前項の規定により設置される電源設備のほか，設計基準事故対処設備の電源が喪失したことにより重大事故等が発生した場合において炉心の著しい損傷，原子炉格納容器の破損，貯蔵槽内燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するための常設の直流電源設備を設けなければならない。	
	適合のための設計方針	適合のための設計方針 第 2 項について	表現の差異
	設計基準事故対処設備の電源が喪失したことにより重大事故等が発生した場合において灲心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中原子炉内燃料体 の著しい損傷を防止するため，必要な電力を確保するために必要な重	設計基準事故対処設備の電源が喪失したことにより重大事故等が発生した場合において炉心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中原子炉内燃料体 の著しい損傷を防止するための常設の直流電源設備として，以下の所	
	大事故等対処設備を設置及び保管する。 代替電源設備のらち，重大事故等の対応に必要な電力を確保するた めの設備として，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備，可搬型代替直流電源設備及び代替所内電気設備を設ける。また，重大事故等時に重大事故等対処設備の補機駆動用の軽油を補給するための設備として，燃料補給設備を設ける。	内常設直流電源設備（3系統目）を設置する。	
	（1）代替交流電源設備による給電 a ．常設代替交流電源設備による給電 設計基準事故対処設備の交流電源が喪失（外部電源喪失並 びに非常用ディーゼル発電機及び高圧炉心スプレイ系ディー ゼル発電機の故障）した場合の重大事故等対処設備として，常設代替交流電源設備を使用する。	（1）所内常設直流電源設備（ 3 系統目）による給電 更なる信頼性を向上するため，設計基準事故対処設備の電源 が喪失（全交流動力電源喪失）した場合に，重大事故等の対応に必要な設備に直流電力を供給するため，特に高い信頼性を有す る所内常設直流電源設備（ 3 系統目）を使用する。 所内常設直流電源設備（ 3 系統目）は，第 3 直流電源設備用	設備名称の差異

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	おいて，全交流動力電源喪失から8時間後に，不要な負荷の切	池は，原子炬建屋付属棟内の非常用ディーゼル発電機，高圧炬心	設計の差異
	離しを行い，全交流動力電源喪失から 24 時間にわたり，125V	スプレイ系ディーゼル発電機， 125 V 蓄電池 2 H 及び 125 V 充電器	－電源構成の差異
	蓄電池 2 A 及び 125 V 蓄電池 2 B から電力を供給できる設計とす	2H と異なる区画に設置することで，原子炉建屋付属棟内に設置	であるが設置場所
	る。また，交流電源復旧後に，交流電源を 125 V 充電器 2 A 及	する非常用ディーゼル発電機，高圧炬心スプレイ系ディーゼル	に応じた位置的分
	び 125 V 充電器 2 B を経由し 125 V 直流母線へ接続することで電	発電機， 125 V 蓄電池 2 H 及び 125 V 充電器 2 H 並びに屋外の原子炉	散の考え方は柏崎
	力を供給できる設計とする。	建屋付属棟から離れた場所に保管する可搬型代替直流電源設備	と同じ。
	b．常設代替直流電源設備による給電	の電源車と共通要因によって同時に機能を損なわないよう，位	設備名称の差異
	設計基準事故対処設備の交流電源及び直流電源が喪失した	置的分散を図る設計とする。	表現の差異
	場合の重大事故等対処設備として，常設代替直流電源設備を		
	使用する。	所内常設直流電源設備（ 3 系統目）は，第 3 直流電源設備用	設計の差異
	常設代替直流電源設備は， 125 V 代替蓄電池， 250 V 蓄電池，	125 V 代替蓄電池から 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び 125 V 直流主	－電源構成の差異
	電路（125V 直流主母線盤及び125V 直流電源切替盤並びに 250 V	母線盤 2B－1 までの系統並びに第3直流電源設備用 250 V 代替蓄	であるが設置場所
	直流主母線盤を含む。），計測制御装置等で構成し， 125 V 代	電池から 250 V 直流主母線盤までの系統において，独立した電路	に応じた位置的分
	替蓄電池は電力の供給開始から 8 時間後に，不要な負荷の切	で系統構成することにより，非常用直流電源設備の 125 V 蓄電池	散の考え方は柏崎
	離しを行い， 250 V 蓄電池は電力の供給開始から 1 時間後に中	$2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 2 B 及び 125 V 蓄電池 2 H から 125 V 直流主母線盤	と同じ。
	央制御室において，不要な負荷の切離しを行い，電力の供給開	$2 \mathrm{~A}, 125 \mathrm{~V}$ 直流主母線盤2B 及び 125 V 直流主母線盤 2 H までの系統	表現の差異
	始から 24 時間にわたり， 125 V 代替蓄電池及び 250 V 蓄電池か	並びに常設代替直流電源設備の 125 V 代替蓄電池から 125 V 直流	
	ら電力を供給できる設計とする。	主母線盤 2A－1 及び 125 V 直流主母線盤 2B－1 までの系統並びに	
	c．可搬型代替直流電源設備による給電	250 V 蓄電池から 250 V 直流主母線盤までの系統に対して，独立性	
	設計基準事故対処設備の交流電源及び直流電源が喪失した	を有する設計とする。また，所内常設直流電源設備（ 3 系統目）	
	場合の重大事故等対処設備として，可搬型代替直流電源設備	は，可搬型代替直流電源設備の 125 V 代替蓄電池及び電源車から	設備名称の差異
	を使用する。	125 V 直流主母線盤 2A－1 及び 125 V 直流主母線盤 $2 \mathrm{~B}-1$ までの系	
	可搬型代替直流電源設備は， 125 V 代替蓄電池， 250 V 蓄電池，	統並びに 250 V 蓄電池及び電源車から 250 V 直流主母線盤までの	
	電源車， 125 V 代替充電器， 250 V 充電器，軽油タンク，ガスタ	系統に対して，独立性を有する設計とする。	
	ービン発電設備軽油タンク，タンクローリ，電路（125V 直流	これらの位置的分散及び電路の独立性によって，所内常設直	
	主母線盤及び 125 V 直流電源切替盤並びに 250 V 直流主母線盤	流電源設備（ 3 系統目）は，非常用直流電源設備，常設代替直流	
	を含む。），計測制御装置等で構成し，125V 代替蓄電池は電	電源設備及び可搬型代替直流電源設備に対して独立性を有する	設備名称の差異
	力の供給開始から8時間後に，不要な負荷の切離しを行い，	設計とする。	
	250 V 蓄電池は電力の供給開始から 1 時間後に中央制御室にお		
	いて，不要な負荷の切離しを行い，125V代替蓄電池及び250V		
	蓄電池から電力を供給し，その後，電源車を代替所内電気設		
	備， 125 V 代替充電器及び 250 V 充電器を経由し， 125 V 直流主		
	母線盤 2A－1， 125 V 直流主母線盤2B－1 及び250V 直流主母線盤		
	へ接続することで電力を供給できる設計とする。		
	電源車の燃料は，軽油タンク又はガスタービン発電設備軽		
	油タンクよりタンクローリを用いて補給できる設計とする。		

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	可搬型代替直流電源設備は，電源車の運転を継続すること で，設計基準事故対処設備の交流電源及び直流電源の喪失か ら 24 時間にわたり必要な負荷に電力の供給を行うことができ る設計とする。 可搬型代替直流電源設備は，非常用直流電源設備に対して，独立性を有し，位置的分散を図る設計とする。 （3）代替所内電気設備による給電 設計基準事故対処設備の非常用所内電気設備が機能喪失した場合の重大事故等対処設備として，代替所内電気設備を使用す る。 代替所内電気設備は，ガスタービン発電機接続盤，緊急用高圧母線 2 F 系，緊急用高圧母線 $2 G$ 系，緊急用動力変圧器 $2 G$ 系，緊急用低圧母線 $2 G$ 采，緊急用交流電源切替盤 $2 G$ 系，緊急用交流電源切替盤 $2 C$ 系，緊急用交流電源切替盤 $2 D$ 系，非常用高圧母線2C系，非常用高圧母線2D 系，計測制御装置等で構成し，常設代替交流電源設備又は可搬型代替交流電源設備の電路として使用し電力を供給できる設計とする。 代替所内電気設備は，共通要因で設計基準事故対処設備であ る非常用所内電気設備と同時に機能を喪失しない設計とする。 また，代替所内電気設備及び非常用所内電気設備は，少なくとも 1 系統は機能の維持及び人の接近性の確保を図る設計とする。 （4）燃料補給設備による給油 重大事故等時に補機駆動用の軽油を補給する設備として，軽油タンク，ガスタービン発電設備軽油タンク，タンクローリ及び ホースを使用する。 大容量送水ポンプ（タイプ I ），熱交換器ユニット，可搬型窒素ガス供給装置及び大容量送水ポンプ（タイプII）は，軽油タン ク又はガスタービン発電設備軽油タンクからタンクローリを用 いて燃料を補給できる設計とする。 軽油タンク又はガスタービン発電設備軽油タンクからタンク ローリへの軽油の補給は，ホースを用いる設計とする。 常設代替交流電源設備は，非常用交流電源設備と共通要因によって同時に機能を損なわないよう，ガスタービン発電機をガスタービンに より駆動することで，ディーゼルエンジンにより駆動する非常用ディ ーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機を用いる非常用交流電源設備に対して多様性を有する設計とする。		

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	常設代替交流電源設備のガスタービン発電機，ガスタービン発電設備軽油タンク，ガスタービン発電設備燃料移送ポンプ及びタンクロー リは，原子炉建屋付属棟から離れた屋外に設置又は保管することで，原子炉建屋付属棟内の非常用ディーゼル発電機，高圧灲心スプレイ系デ ィーゼル発電機，非常用ディーゼル発電設備燃料デイタンク及び高圧炉心スプレイ系ディーゼル発電設備燃料デイタンク並びに原子炉建屋付属棟近傍の非常用ディーゼル発電設備燃料移送ポンプ及び高圧炉心 スプレイ系ディーゼル発電設備燃料移送ポンプと共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 常設代替交流電源設備は，ガスタービン発電機から非常用高圧母線 までの系統において，独立した電路で系統構成することにより，非常用 ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機から非常用高圧母線までの采統に対して，独立性を有する設計とする。 これらの多様性及び位置的分散並びに電路の独立性によって，常設代替交流電源設備は非常用交流電源設備に対して独立性を有する設計 とする。 可搬型代替交流電源設備は，非常用交流電源設備と共通要因によっ て同時に機能を損なわないよう，電源車の泠却方式を空冷とすること で，泠却方式が水冷である非常用ディーゼル発電機及び高圧炉心スプ レイ系ディーゼル発電機を用いる非常用交流電源設備に対して多様性 を有する設計とする。また，可搬型代替交流電源設備は，常設代替交流電源設備と共通要因によって同時に機能を損なわないよう，電源車を ディーゼルエンジンにより駆動することで，ガスタービンにより駆動 するガスタービン発電機を用いる常設代替交流電源設備に対して多様性を有する設計とする。 可搬型代替交流電源設備の電源車，ガスタービン発電設備軽油タン ク及びタンクローリは，屋外の原子炉建屋付属棟から離れた場所に設置又は保管することで，原子炉建屋付属棟内の非常用ディーゼル発電機，高圧炉心スプレイ系ディーゼル発電機，非常用ディーゼル発電設備燃料デイタンク及び高圧炬心スプレイ系ディーゼル発電設備燃料デイ タンク並びに原子炉建屋付属棟近傍の非常用ディーゼル発電設備燃料移送ポンプ及び高圧炬心スプレイ系ディーゼル発電設備燃料移送ポン プと共通要因によって同時に機能を損なわないよう，位置的分散を図 る設計とする。また，可搬型代替交流電源設備の電源車及びタンクロー リは，屋外のガスタービン発電機，ガスタービン発電設備軽油タンク及 びガスタービン発電設備燃料移送ポンプから離れた場所に保管するこ		

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	とで，共通要因によって同時に機能を損なわないよう，位置的分散を図 る設計とする。 可搬型代替交流電源設備は，電源車から非常用高圧母線までの系統 において，独立した電路で系統構成することにより，非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機から非常用高圧母線 までの系統に対して，独立性を有する設計とする。 これらの多様性及び位置的分散並びに電路の独立性によって，可搬型代替交流電源設備は非常用交流電源設備に対して独立性を有する設計とする。 可搬型代替交流電源設備の電源車の接続箇所は，共通要因によって接続できなくなることを防止するため，位置的分散を図った複数箇所 に設置する設計とする。 所内常設蓄電式直流電源設備は，原子炉建屋付属棟内の非常用ディ ーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機と異なる制御建屋内に設置することで，非常用交流電源設備と共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 所内常設蓄電式直流電源設備は， 125 V 蓄電池 2 A 及び 125 V 蓄電池 2 B から 125 V 直流主母線盤 2 A 及び 125 V 直流主母線盤 2 B までの系統にお いて，独立した電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路を用いた 125 V 直流主母線盤 2 A 及び 125 V 直流主母線盤 2 B までの系統に対して，独立性を有する設計とす る。 これらの位置的分散及び電路の独立性によって，所内常設蓄電式直流電源設備は非常用交流電源設備に対して独立性を有する設計とす る。 常設代替直流電源設備は，制御建屋内の非常用直流電源設備と異な る区画に設置することで，非常用直流電源設備と共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 常設代替直流電源設備は， 125 V 代替蓄電池から 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び 125 V 直流主母線盤 $2 \mathrm{~B}-1$ までの系統並びに 250 V 蓄電池から 250 V 直流主母線盤までの系統において，独立した電路で系統構成する ことにより，非常用直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 2 B 及 び 125 V 蓄電池 2 H から 125 V 直流主母線盤 $2 \mathrm{~A}, 125 \mathrm{~V}$ 直流主母線盤 2 B 及 び 125 V 直流主母線盤 2 H までの系統に対して，独立性を有する設計と する。 これらの位置的分散及び電路の独立性によって，常設代替直流電源		

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載	差異理由
	設備は非常用直流電源設備に対して独立性を有する設計とする。 可搬型代替直流電源設備は，非常用直流電源設備と共通要因によっ て同時に機能を損なわないよう，電源車の泠却方式を空泠とすること で，冷却方式が水冷である非常用ディーゼル発電機及び高圧炉心スプ レイ系ディーゼル発電機から給電する非常用直流電源設備に対して多様性を有する設計とする。また， 125 V 代替充電器及び 250 V 充電器によ り交流を直流に変換できることで， 125 V 蓄電池 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$ 蓄電池 2 B 及 び 125 V 蓄電池 2 H を用いる非常用直流電源設備に対して多様性を有す る設計とする。 可搬型代替直流電源設備の 125 V 代替蓄電池， 250 V 蓄電池， 125 V 代替充電器及び 250 V 充電器は，制御建屋内の 125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 2 B ， 125 V 充電器 2 A 及び 125 V 充電器 2 B 並びに原子炉建屋付属棟内 の 125 V 蓄電池 2 H 及び 125 V 充電器 2 H と異なる区画又は建屋に設置す ることで，非常用直流電源設備と共通要因によって同時に機能を損な わないよう，位置的分散を図る設計とする。 可搬型代替直流電源設備の電源車，ガスタービン発電設備軽油タン ク及びタンクローリは，屋外の原子炉建屋付属棟から離れた場所に設置又は保管することで，原子炉建屋付属棟内の非常用ディーゼル発電機，高圧炉心スプレイ系ディーゼル発電機，非常用ディーゼル発電設備燃料デイタンク及び高圧炉心スプレイ系ディーゼル発電設備燃料デイ タンク並びに原子炉建屋付属棟近傍の非常用ディーゼル発電設備燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備燃料移送ポン プと共通要因によって同時に機能を損なわないよう，位置的分散を図 る設計とする。 可搬型代替直流電源設備は， 125 V 代替蓄電池及び電源車から 125 V 直流主母線盤2A－1 及び 125 V 直流主母線盤 2B－1 までの系統並びに 250 V蓄電池及び電源車から 250 V 直流主母線盤までの系統において，独立し た電路で系統構成することにより，非常用直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$ 蓄電池 2 B 及び 125 V 蓄電池 2 H から 125 V 直流主母線盤 2 A ， 125 V 直流主母線盤 2 B 及び 125 V 直流主母線盤 2 H までの系統に対して，独立性を有する設計とする。 これらの多様性及び位置的分散並びに電路の独立性によって，可搬型代替直流電源設備は非常用直流電源設備に対して独立性を有する設計とする。 可搬型代替直流電源設備の電源車の接続箇所は，共通要因によって接続できなくなることを防止するため，位置的分散を図った複数箇所		

灰色（グレーハッチング）：前回許可からの変更箇所
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）

緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）
所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載	差異理由
	（計装設備） 第五十八条 発電用原子炉施設には，重大事故等が発生し，計測機器（非常用のものを含む。）の故障により当該重大事故等に対処 するために監視することが必要なパラメータを計測することが困難となった場合において当該パラメータを推定するために有効な情報を把握できる設備を設けなければならない。 適合のための設計方針 重大事故等が発生し，計測機器（非常用のものを含む。）の故障によ り，当該重大事故等に対処するために監視することが必要なパラメー夕を計測することが困難となった場合において，当該パラメータを推定するために必要なパラメータを計測する設備を設置又は保管する。 当該重大事故等に対処するために監視することが必要なパラメータ （炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握するためのパラメータ）は，添付書類十の「第5．1－1表 重大事故等対策における手順書の概要」のう ち，「1．15 事故時の計装に関する手順等」のパラメータの選定で分類 された主要パラメータ（重要監視パラメータ及び有効監視パラメータ） とする。 当該パラメータを推定するために必要なパラメータは，添付書類十 の「第 5．1－1 表 重大事故等対策における手順書の概要」のらち，「1．15 事故時の計装に関する手順等」のパラメータの選定で分類さ れた代替パラメータ（重要代替監視パラメータ及び有効監視パラメー夕）とする。 重要監視パラメータ及び重要代替監視パラメータを計測する設備 （重大事故等対処設備）について，設計基準を超える状態における発電用原子炉施設の状態を把握するための能力（最高計測可能温度等（設計基準最大値等））を明確にする。 （1）監視機能喪失時に使用する設備 発電用原子炉施設の状態の把握能力を超えた場合に発電用原子炉施設の状態を推定する手段を有する設計とする。 重要監視パラメータ又は有効監視パラメータ（原子炉圧力容器内の温度，圧力及び水位並びに原子炉圧力容器及び原子炉格納容器への注水量等）の計測が困難となった場合又は計測範囲 を超えた場合は，添付書類十の「第5．1－1表 重大事故等対策	（計装設備） 第五十八条 発電用原子炉施設には，重大事故等が発生し，計測機器（非常用のものを含む。）の故障により当該重大事故等に対処 するために監視することが必要なパラメータを計測することが困難となった場合において当該パラメータを推定するために有効な情報を把握できる設備を設けなければならない。 適合のための設計方針 非常用交流電源設備又は非常用直流電源設備の喪失等により計器電源が喪失した場合における計装設備への代替電源設備として，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備に加え，所内常設直流電源設備（ 3 系統目）を使用できる設計とする。	設計の差異 －電源構成の相違。設備名称の差異

灰色（グレーハッチング）：前回許可からの変更箇所赤字：設備，運用又は体制の相違（設計方針の相違）緑字：記載表現，記載綯所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類		$\begin{aligned} & 2024 \text { 年 } 2 \text { 月 } 9 \text { 日 } \\ & \text { 02DS-2-3 (改 5) } \end{aligned}$
柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炬 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）	女川 2 号炉 設置変更許可申請書 ※変更䉪所のみ記載	差異理由
	における手順書の概要」のうち，「1．15 事故時の計装に関する手順等」の計器故障時の代替パラメータによる推定又は計器の計測範囲を超えた場合の代替パラメータによる推定の対応手段等により推定ができる設計とする。 計器故障時に，当該パラメータの他チャンネルの計器がある場合，他チャンネルの計器により計測するとともに，重要代替監視パラメータが複数ある場合は，推定する重要監視パラメータ との関係性がより直接的なパラメータ，検出器の種類及び使用嘸境条件を踏まえた計測される值の碓からしさを考慮し，優先順位を定める。 （2）計器電源霛失時に使用する設備 非常用交流電源設備又は非常用直流電源設備の䨖失等により計器電源が震失した場合において，計装設備への代替電源設備 として常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備を使用する。 また，代替電源設備が喪失し計測に必要な計器電源が㕹失し た場合，特に重要なパラメータとして，重要監視パラメータ及び重要代替監視パラメータを計測する設備については，温度，圧力，水位及び流量に係るものについて，乾電池等を電源とした可搬型計測器により計測できる設計とする。 なわ，可搬型計測器による計測においては，計測対象の選定を行う際の考え方として，同一パラメータにチャンネルが複数あ る場合は，いずれか 1 つの適切なチャンネルを選定し計測又は監視するものとする。同一の物理量について，複数のパラメータ がある場合は，いずれか 1 つの適切なパラメータを選定し計測又は監視するものとする。 （3）パラメータ記録時に使用する設備 原子炉格納容器内の温度，圧力，水位，水素濃度，放射線量率等想定される重大事故等の対応に必要となる重要監視パラメ一夕及び重要代替監視パラメー夕は計測又は監視及び記録がで きる設計とする。		

```
灰色(グレーハッチング):前回許可からの変更箇所子：設俑，運用又は体制の相違（設計方針の相違緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）
```

所内常設直流電源設備（3系統目）添付書類八 比較表

柏崎刈羽 6,7 号炉 $(2022.8 .23$ 提出）


```
所内常設直流電源設備( 3 系統目) 添付書類八 比較表
```


灰色（グレーハッチング）：前回許可からの変更箇所
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）

所内常設直流電源設備（3系統目）添付書類八 比較表

灰色（グレーハッチング）：前回許可からの変更箇所
赤字：設備，運用又は体制の相違（設計方針の 相違）
緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）

所内常設直流電源設備（ 3 系統目）添付書類八 比較表

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）			女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載			差異理由
	設㒇分教	定䈅		設偏分㭠	定義		
	2．索設都震重要重大事故防止設优		 - 原子炬格納容器代冓スブレイ流量 - 圧力抑制室内空気諰度［S］ - サフレレッションフール水渭度［S］ - 压力抑制察压力 - 压力抑相室水位 - 平均出力䧸成モ二外［ S ］ - 戓留照除志采熟交換器出口温度［C］ - フィルタ装楼人口圧力（広買城） －フィルタ装做水位（広带域） - 高压代清注水采ボンブ出口圧力 - 復水移送ホンブ田口压力 - 高圧蜜素カス供給采ADS人口圧力［S］ 力 - $6-2 \mathrm{C}$ 的總電压［ S ］ - 6－2D 每線電压［S］ - 6－2F－1 时綵電压 - 6－2F－2 的緗電圧 - 4－2C 日綵電压［S］ - 4－2D 每緗電圧［S］ - 125 V 直流主相祲 2 A 電圧（ S ） - 125V直旅主每䋦2日電圧［ S ］ - 125 V 㐬流主甠緗 $2 A-1$ 電圧 - 125 V 流流主是線2B－1 電圧 - 250 V 直流主国緗電圧［S］ （5）放时䊾管理施設 －使用济恶料フール上語空間放时線モ二名（高絙量，低線量） －格納容器内票囲気放射缐モニタ（D／W）［S］			－南流楽動仱注水系ボンブ出口圧力 - サブレッションフーール水相度［S］ - 压力排制家压力 - 压力排制宣水位 - 起動镇城モ二多［S］ - 平均山力何域モ二多［S］ - フィル夕装固入口压力（14带城） - フィル夕装固山口庄力（仏带域） - フイルタ装固水伦（玧帯域） - フィル夕装固水諰度 - フィル夕满固山口水素裉度 - 萑水眝蔵多ンク水位 - 高压代算注水柔ボンブ出口压力 - 復林柊送ボンブ出口压力 力 - 6－2f－1母袙電圧 - 6．2F－2 日裸電圧 - 125 K 直流立杸福 2 A 電圧［ S ］ - 125V直流主梅袙2B 菓压［S］ - 125V南流土母䌐2A－1电圧 - 125V直流立を線2B－1 棵圧 －250V 直流主梅線電圧［S］ （5）放时線管理施設 	資料構成の差異 －女川 2 号は本表 を1つの表として 表現しているが， 柏崎はページごと に表を分割してい る。 電源構成の差異

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）			女川 2 号炉 設置変更許可申請書 ※変更䈯所のみ記載			差異理由
		定䉝		設偏分䫅	是義		資料構成の差異 －女川 2 号は本表 を 1 つの表として表現しているが，柏崎はページごと に表を分割してい る。 設備名称の差異 電源構成の差異
			- 格納容器内苦拥気放时裸き二夕（S／C）［S］ - フィル夕装篧出口放射線モ二夕 - 耐压強化ベント柔放射緗モ二夕 - 中央耕砸宗遮蔽［S］ - 中央筒拥室造風機［S］ - 中央䊀部室排風機［S］ - 中央制御宣再語渨送風機［S］ （6）原子佢格納施設 - 原子犯格納容器［ S ］ - 原子柜建冨プローフウトバネル［－］ - フィル夕装園 - 連陽于動亣㩰作設備 - スフレレイ管（旅路）［S］ （7）非常用電嫄設備 - カスタービン発電機 - ガスタービン犯電設偏軽油タンク 路） －軽油タンク［S］ 科旅路）［S］ 无管•亣（媒料旅路）［S］ - 125 V 诸電池 2 A ［S］ - 125 V 鮊電池 $2 \mathrm{~B}[\mathrm{~S}]$ - 125 V 无蕅器 $2 \mathrm{~A}[\mathrm{~S}]$ - 125V 元電器 2B［S］ 	2．綮設相需重要重大事故防止歌侕		低繅星） －フィル夕敕固出口放射裉も二夕 - 中央制调家適蔽［S］ - 中央制到室逐䖝楼［S］ - 中央制酎定排風䌸［S］ （6）原子妸格絊施設 - 尓子如格动察器［ S ］ - 風子妇建屋フローフウトハネル - フィルタタ装固 －スブレイ管（流路）［S］ （7）非亭用車醇設犕 - カスタービン铯車機 - ガスタービン発東設偏軽䄂タンク 路） －軽油タンク！［S］ 科流路）［S］ 配管•弁（蚛料流路）［S］ - 125 V 蓄電池 2 B ［ S ］ - 125V 元蕅器 2 A ［S］	

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）			女川 2 号炉 設置変更許可申請書※変更箇所のみ記載			差異理由
		定䈅		没佂分新	定號		
	3．甞役重大事故㖟和敬㒀		- 格消察器内小素㴗度（ S / C ） - 格納容器内家囲気水素港度［S］ - 原子灯建庫内水素港度 - 原子加压力容器温度 - 原子知压力［S］ - 原子妸压力（SA） - 原子炻水位（広带成）［S］ - 原子如水位（復枓城）［S］ - 原子奶水伦（SA広带城） - 原子如水位（ SA 烍料城） - 高圧代棈注水赫ボンブ出口流星 スブレイライン洗浄流量） 客器泫赫ライン洗浄流知） - 代禁福襄治却ボンフ出口压力 - 原子如格緛客器下詞注水流量 - 原子炬格神容器代棈スブレイ流量 - ドライウェル㮛度 - サフレレッションフール水楒度［S］ - ドライウェル圧力 - 圧力扣梀家圧力 - 圧力抑制宣水位 - 原子如格湍容器下肂水位 - 原子如格緛嶉器下渵温度 - トライウェル水位 - フィルタ夕装裣人口臣力（広带域） - フィルタ装政出口压力（広帯城） - フィルタ装権水位（広带城） 	3．管改重大丰故柀和极侁		 －格訪容器内察囲気盒素流度［S］ - 原子炉建呞内水素漂度 - 原子的压力容器温度 - 原子护压力［ S ］ - 原子楮五力（SA） - 原子炬水位（出带城）［S］ - 原子妒水位（呚枓城）［S］ - 原子刘水位（SA広带城） - 原子所水位（SA供料城） - 高圧代棈注水系ボンブ出口流量 スブレイライン洗浄汤量） 客器冾忶ライン洗浄流量） - 原子的格满察器下誠注水流量 - 原子炬格絃察器代澘スプレイ流量 - トラライウェル溪度 - 圧力抑加盖内空気維度［S］ - サフレレッションプール水温度［ S ］ - ドライウェル压力 - 压力覑相定压力 - 圧力抑制室水位 - 原子炣格神察器下梁水位 －ドライウェル水位 - フィル夕裚直人口圧力（広带城） - フィルタ数筑出口压力（広黄城） －フィルタ㬵置水福度 	資料構成の差異 －女川 2 号は本表 を1つの表として表現しているが，柏崎はページごと に表を分割してい る。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）			女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載			差異理由
	設䯋分标	定䈅		砍㒀分相	它妾	主要潡洪 	
	3．雲設程大特故復和馀偏		- 集水眝蔵タンク水位 - 商圧代敕注水蓀ボンブ出口圧力 - 俻水栘送ボンブ出口圧力 - 安全バラメータ表示ンステム（SPDS） - 6－2C 标緗花圧［S］ - 6－2D 相線菓圧［S］ - 6－2F－1 甠線電圧 - 6－2F－2 时裸電压 - 125 V 克流主国線 2 A 電圧［S］ - 125 V 直流主母綵2B電圧［ S ］ - 125V直流主持線2A－1電圧 - 125 V 直流主国線2B－1 電圧 - 無維連絡設偏（固定型） - 衡星電話設偏（固定型） - 無緮速絡設偳（犀外アンテナ） - 衡星電話設偳（屏外アンテナ） - 無䙎通信装置 - 在裸（建愓内）（無缐速路設偏（固定型），堧星電詰設備（固定製）に保るちの） －有镍（建屋内）（安全パラメータ表示システム（ S PDS）に保るもの） （5）放时䌐管理施設 低袙量） - 格納容器内荂囲気放时緗モ二夕（D／W）［S］ - 格納容器内絭囲気放射尊モ二夕（S／C）［S］ - 中央制裉察送里機［S］ - 中央制湖宗排風機［S］ 	3．敫数但大非故㖟和放简		- 価水眝蔵夕ンク水位 - 高压代冓注水蓀ボンブ出口压力 - 你水移造ボンブ出口压力 - 安全バラメータ表示システム（SPDS） - 6－2C 日缐電圧［S］ - 6－20 母線草圧［ s ］ - 6－2F－1 耳線電压 - 6－2F－2 脌緗電压 - 125V直流主日綵28電压［ S ］ - 125 V 直流主国綵 $2 \mathrm{~A}-1$ 電圧 - 125 V 应流主时䙎2B－1電圧 - 無裸連絡設備（固定型） - 鰴星電話設偏（園定型） - 無線連絡放備（属外アンテナ） - 㑲星電話䭛備（姩外アンテナ） - 無裸通信装踾 設傦（瞏定制）に保るもの） DS）に保るもの） （5）放射䙎管理笔設 低棌最） - フィルタ裚路出口放时褾モ二夕 - 中央制拥室潶荷［ S ］ - 中央制墑室待避所適场 - 中央制淍室逆厘機［S］ - 中央制謂室排風機［S］ 	資料構成の差異 －女川 2 号は本表 を 1 つの表として表現しているが，柏崎はページごと に表を分割してい る。

柏崎刈羽 6， 7 号炉（2022．8．23 提出）	女川 2 号炉 適合性審査許可後完本 （有毒ガス防護：2022年6月1日許可）			女川 2 号炉 設置変更許可申請書 ※変更箇所のみ記載			差異理由
	設偯分面	定掙	主要設鲡 	没偏分页	定軓		
	3．常設重大事故极和設備		－中央制避室換気空調系タクト・タンバ（旅路）［S］ - 祭急畸対策所䢞蔽 - 緊急時対策开非常用运風练 - 緊急畸対第所非常用フィルタ装皘 - 緊急時対策所非虽用給排気而管•并（旅路） （6）原子炀格涔虘設 －原子施格紡容器［S］ －サフレッションチェンパ［S］ - スフレレイ管（旅路）［S］ - 代黄詴睘治却ホンフ - 原子加格納容器䛬気系百管•并（流路）［S］ - 色的艂媒式水素再結合素枚 - 非常用力ス処理系排風機［S］ - 非常用力ス処㥜系フィルタ装漫（流路）［S］ - 非常用力ス处理系而管•弁（流路）［S］ - 排気荿（流路）［S］ －原子如建单原子炣轓［S］ （7）韭常用電諒設偳 - カスタービン焱電機 - ガスタービン発電設㒇軽油多ンク - カスタービン発雨設偏㷊枓柊送ボンフ 路） －怪䄂夕ンク［S］ 	3．常設重大事故桹和設僙		 －祭急時対第所非䆤用适風相 （6）原子妒格納施設 －原子杨格緛容器［ S ］ －サフレッシシンチェンパ［S］ －スブレイ管（流路）［S］ －フィルタ装置 －非常用力又処理系排凪機〔S〕 - 非常用力及処理亲配管•并（流路）［S］ - 披気简（流路）［S］ －カスタービン㤪雨機 路） －柽油多ンク［S］	資料構成の差異 －女川 2 号は本表 を1つの表として表現しているが，柏崎はページごと に表を分割してい る。 設備名称の差異

灰色（グレーハッチング）：前回許可からの変更箇所
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）

所内常設直流電源設備（3系統目）添付書類八 比較表

灰色（グレーハッチング）：前回許可からの変更箇所 赤字：設備，運用又は体制の相違（設計方針の相違） 緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）	所内常設直流電源設備（ 3 系統目）添付書類从			比較表			2024年2月9日 02DS－2－3（改 5） 差異理由
柏崎刈羽 6， 7 号炉（2022．8． 23 提出）				女川 2 号炬 設置変更許可申請書 ※変更箇所のみ記載			
		定或	主要敋佣 （［］内は設々計基微対象兓設を 兼える設偏の耐莀東要度分缉）		定縕	 	資料構成の差異 －女川 2 号は本表 を1 つの表として表現しているが，柏崎はページごと に表を分割してい る。
			（2）計懒制御系旋施設 - 高压姖心スフレイ采ボンブ出口流量［S］ - 隹压施心スフレイ菜ボンブ出口流徨［ S ］ - 我侕䮧除去系ボンブ出口流量［s］ - 或留賏除末㙂鵙交換器人口縕度［C］ - 商压洰心スプレイ柔ボンブ出口压力［ S ］ - 低压功心スフレレイ票ボンブ出口圧力［C］ - 我留照除志采ホンブ出口压力［C］ - 6－211 母線電圧［s］ - HPC S 125 V直流主目䙉电压［S］ （3）原子炉格納施設 －スプレイ管（㴰路）［S］ （4）非常用電栭設備 －非常用ディーせル発電機［S］ ンブ［s］ －高压驴心スフレレイ素ディーセル発電設㒀嵝料デイタ ンク［s］ - 125 V 萻電池 2 H ［ S ］ - 125 V 无電器 2 H ［S］			 - 高压施心スフレイ票ボンフ出口娍量［S］ - 低圧如心スフレレイ票ボング出口流量［s］ - 戓間照除去采ボンフ出口娍量［S］ －低压姮むステレレイ亲ボング出口圧力［C］ - 原子妒脯機洽却水菜采就流量［S］ - 6－21 每線蓒压［s］ - HPC S 125 V 直娍主日總鼋压［S］ －スブレイ管（效路）［s］ （4）非甞用電諒設供 －非裳用ティーせル觉雨睞［S］ ンフ［s］ ンク［s］ - 125V 蕃電池2川［S］ - 125V 充電器2｜1［S］	

灰色（グレーハッチング）：前回許可からの変更箇所
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，記載箇所，設備名称の相違（実質的な相違なし）

所内常設直流電源設備（3系統目）添付書類八 比較表

[^0]: 本文 比較表

