管支持板との接触による摩耗減肉の評価(1/7)

伝熱管は図 1 に示すとおり管支持板によって水平方向を支持しており、四ツ葉型の穴に よって 1 穴あたり 4 箇所が伝熱管と接触する構造となっている。二次冷却水によって伝熱 管に振動が生じた場合、伝熱管は水平全方向にランダムに振動するため、管支持板との接触 による摩耗減肉が顕著化する場合は 4 箇所の接触部(ランド部*1)に減肉が生じることとなる。

今回、減肉指示が確認された位置の目視点検を行った結果、図 2~図 13 に示すとおり、 減肉は管支持板下端位置にしか発生していない、かつ、ランド部の位置に発生していない、 またはランド部の位置に発生していても接触部4箇所のうち1箇所しか発生していないこ とから、前述の傾向とは異なり、減肉が管支持板との接触・摩耗によって発生した可能性は ないと考える。

*1 管支持板に加工されている四ツ葉型管穴のうち凸面部。

図 1 管支持板四ツ葉穴(BEC 穴)による伝熱管の支持状況

管支持板との接触による摩耗減肉の評価(2/7)

図3 減肉とランド部の位置関係(A-SG X24, Y1)

管支持板との接触による摩耗減肉の評価(3/7)

図 4 減肉とランド部の位置関係(A-SG X26, Y9)

図5 減肉とランド部の位置関係(A-SG X26, Y10)

管支持板との接触による摩耗減肉の評価(4/7)

図 6 減肉とランド部の位置関係(A-SG X87, Y2)

管支持板との接触による摩耗減肉の評価(5/7)

図8 減肉とランド部の位置関係(B-SG X69, Y3)

図9 減肉とランド部の位置関係(C-SG X37, Y22)

図 11 減肉とランド部の位置関係(C-SG X39, Y5)

図 12 減肉とランド部の位置関係(C-SG X86, Y8)

図 13 減肉とランド部の位置関係(C-SG X71, Y5)

実物混入対策について(1/2) 実物混入対策について(1/2) 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
--

その他	・保温材の切れ端等の清掃・片づけ は一作業一片づけを徹底し、作 業服、靴の異物付着確認を行う。 ・機器を開放した時点でうず巻きガ スケット等の金属製の消耗品に損 傷を確認した場合は、当社工事 担当者に報告することに加え、工 事報告書に必要事項を記載する ことを調達要求文書に定める。 ・S G水張ポンプ入口仮設ストレー ナを設置した。	・保温材の切れ端等の清掃・片づけ は一作業一片づけを徹底し、作 業服、靴の異物付着確認を行う。	I	美浜3号機での異物混入事象 (2000年、2007年)を踏まえた 対策についても実施 ・機器開口部周辺の管理徹底する。 ・異物確認者の作業服や作業靴な どの清掃等。	动であったと判断する。今後も 	用原子炉施設政障等報告書
垂直配管取付弁	 ・弁点検時は、弁箱内部に使用する機材(ウエス含む)に異物の付着がないことを確実に事前確認する。 ・最終異物確認時に直接目視で異物確認できない ・節囲は、小型カメラで確認する。 ・ウエスは、新ウエスを使用する。 ・新ウエスは再使用ウエスと区別して管理する。 	 ・弁点検時は、弁箱内部に使用する機材(ウエス含む)に異物の付着がないことを確実に事前確認する。 ・最終異物確認時に直接目視で異物確認できない範囲は、小型カメラで確認する。 ・ウエスは、新ウエスを使用する。 ・新ウエスは再使用ウエスと区別して管理する。 	・弁点検時は、弁箱内部に使用する機材(ウエス含む)に異物の付着がないことを確実に事前確認する。 ・最終異物確認時に直接目視で異物確認できない ・範囲は、小型カメラで確認する。【自主対応】	・最終異物確認は直接目視にて実施 (手鏡等を使用)	認できなかったことから異物混入対策は有刻	
機器立入	・機器内部に立ち入る前に、器内作業用 の作業服に着替え、靴力バーを着用する。 ・機器内部に立ち入る作業前に、作業服、 靴等に異物の付着がないことを本人以 外が確認する。 ・開口部に周辺作業と隔離したエリアを設 ける。	・機器内部に立ち入る前に、器内作業用 の作業服に着替え、靴力バーを着用する。 ・機器内部に立ち入る作業前に、作業服、 戦等に異物の付着がないことを本人以 外が確認する。 ・開口部に周辺作業と隔離したエリアを設 ける。	・機器内部に立ち入る作業前に、作業服、 靴等に異物の付着がないことを本人以 外が確認する。	・機器内部に立ち入る作業前に、作業服、 靴等に異物の付着がないことを確認する (本人でも可)。	よび器外点検の結果、異物は確認 ま入対策を実施する。	
	高浜発電所3号機 第24回定期検査以降 および 高浜発電所4号機 第23回定期検査以降	高浜発電所 4 号機 第2 2 回定期検査	高浜発電所3号機 第23回定期検査	高浜発電所3号機 第23回定期検査以前 高浜発電所4号機 第21回定期検査以前	今回、SG器内お 引き続き同様の異物派	

異物混入対策について(2/2)

添付資料-15(2/2)

(2022年5月25日) より引用

SGブローダウン系統点検結果(1/8)

-84-

SGブローダウン系統点検結果(2/8)

SGブローダウン系統点検結果(3/8)

SGブローダウン系統点検結果(4/8)

SGブローダウン系統点検結果(5/8)

SGブローダウン系統点検結果(6/8)

添付資料-16(7/8)

配管内部

SGブローダウン系統点検結果(7/8)

⑩-1 水位制御弁 弁内部

外観

添付資料-16(8/8)

SGブローダウン系統点検結果(8/8)

① SGブローダウンサンプル系統

フラッシング結果

3/8インチ配管(約50m×3ループ)について、空気でのフラッシングによる 確認を実施した結果、異物は確認できなかった。

(フラッシングの様子) (フラッシング後のフィルタ)

スケールの分布状況(第三管支持板)

スケールの分布状況(第二管支持板)

スケールの分布状況(第一管支持板)

スケールの分布状況(管板)

スケールの分布状況(第三管支持板)

スケールの分布状況(第二管支持板)

スケールの分布状況(第一管支持板)

スケールの分布状況(管板)

スケールの分布状況(第三管支持板)

スケールの分布状況(第二管支持板)

スケールの分布状況(第一管支持板)

スケールの分布状況(管板)

—107—

-108-

スラッジの分布状況(第一管支持板)

スラッジの分布状況(管板)

スラッジの分布状況(第三管支持板)

スラッジの分布状況(第二管支持板)

スラッジの分布状況(第一管支持板)

スラッジの分布状況(管板)

スラッジの分布状況(第三管支持板)

スラッジの分布状況(第二管支持板)

スラッジの分布状況(第一管支持板)

スラッジの分布状況(管板)

	с С Г Г	て離方			添付資料-18
	A、Bおよび り、局所的(こ	支持板間(上 ○: スケールの [■]	C – S G	第三管支持板側 第二管支持板側	手板側 市内
結果	うを用いて、 (覆われてお	· 向)、 (向			第 二 管 力 指 一 管 力
1の観察;	、小型カメ スケールに	(水平方			
熱管表面	雪に合わせ 、 全 画的に	則と低温側 ^こ 。	B – S G	第四管支持板側 第三管支持板側	又則
暑内の伝	況等の調査 Fった結果 った。	には、 高温(られなかっ)			第二管支持
S G ₩	レの残存状 観観察を行 らが認められ	く況について 3.差は認め		5二首支持板側 一管支持板側	
	ちのスケーノ 京熱管の外 自した痕跡	りこれらのり いて有意な	A – S G	世	持板側
	・SG器 SGの行 ルが剥離	、伝熱管(向) (cř			第 回 信 行 支
		А		/////////////////////////////////////	低温魚

▶ 回収したスケールについて、X線回折※を用いた表面の化学成分分析を実施した結果、主成分はマグネタイトであり、SG器内で発生するスラッジと同成分であることを確認した。

^{※:}対象物にX線を照射し、X線回折パターンを解析することで、構成成分の同定をする分析方法

- A、BおよびC-SGの管板、第一~第三管支持板上面に残存しているスケールのうち、比較的大きなものを選定し取り出したスケールは、主に多角型、長尺型に分類され、長さが最大のものは、前者が長さ約25mm、幅約13mm、後者が長さ約29mm、幅約6mmであり、これらのスケールは管支持板の流路穴よりも大きく、運転中に管支持板下面に留まる可能性のある形状であった。
- ▶ また、これらのスケールについては、目視確認の結果、やや湾曲した形状をしており、そのうち各SGから取り出した15個のスケールについて3次元測定器により計測した結果、直径約22.3~22.5mmの円筒状に沿った形状であり、伝熱管(円筒)の外径(直径22.2mm)に近いことを確認した。

回収したスケールの化学分析および形状確認結果(2/8)

<u>A-SG管板上面(高温側)から回収したスケール</u>

A-SG 第二管支持板上面(高温側)から回収したスケール

回収したスケールの化学分析および形状確認結果(4/8)

<u>B-SG管板上面(高温側)から回収したスケール</u>

<u>B-SG 管板上面(高温側)から回収したスケール</u>

<u>B-SG第一管支持板上面(高温側)から回収したスケール</u>

B-SG 第三管支持板上面(低温側)から回収したスケール

<u>C-SG管板上面(高温側)から回収したスケール</u>

C-SG 第一管支持板上面(高温側)から回収したスケール

回収したスケールの化学分析および形状確認結果(8/8)

C-SG 第三管支持板上面(低温側)から回収したスケール

伝熱管とスケールの摩耗試験方法について

以下のとおり伝熱管とスケールの摩耗試験を実施し、スケールで有意な減肉が生じる可 能性を検証した。

1. 試験概要

加振装置(図1参照)により、伝熱管をスケールに接触させた状態で加振し、スケー ルの摺動による伝熱管の減肉発生状況を確認する。

図1 加振装置概念図

2. 試験条件

実機条件を模擬した流動振動解析結果から摩耗試験条件を表1のとおり設定した。

表1 摩耗試験条件

項	目	条件	備考
仁劫竺	押付力	約1N	熱流動解析結果より設定
(G)然官 初 新 冬 伊	振動数	約8Hz	振動応答解析結果より設定
拍動禾件	振幅	約0.4mm	BEC穴ランド部寸法より設定

3. 摩耗試験結果の整理方法

試験後の伝熱管の減肉量とスケールの摩滅量を測定した後、体積比をとって結果を整 理した。スケールおよび伝熱管の試験前後の外観を図2および図3に示す。

図2 摩耗試験前後のスケール試験片外観(一例)

図3 摩耗試験前後の伝熱管試験片外観(一例)

以 上

回収したスケールの断面観察結果および摩耗試験結果(1/13)

				_			
	C-SG 管板上 (低温側)	● (1) ● (1)	約0.2	0.08	0.0	C-SG 第二管支持板上 (低温側)	阃蘌鈟
	A-SG 第二管支持板上 (高温側)	●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	約0.2	90'0	0.0	C-SG 第二管支持板上 (高温側)	া护处赛
诘果(2/12)>	C-SG 第二管支持板上 (低温側)	10.10mm 一 10mm 一 10mm 一 10mm	約0.2	0.10	0.0	C-SG 第二管支持板上 (高温側)	●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
<断面観察	C-SG 第二管支持板上 (高温側)	● 供表 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	約0.2	0.08	0.0	B-SG 管板上 (高温側)	●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
	B-SG 管板上 (高温側)	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	約0.2	0'04	0.0	B-SG 第二管支持板上 (低温側)	↓ ●
	スケール回収位置	断面ミクロ画像	スケール厚さ(mm)	稠密層厚さ(mm)	摩耗体積比 (伝熱管/スケール)	スケール回収位置	

回収したスケールの断面観察結果および摩耗試験結果(2/13)

添付資料-21(2/13)

伝熱 約0.2 0.08 0.0 ₩₩80.0 伝熱管(約0.2 0.04 0.0 ₩₩₽0.0 約0.2 0.06 伝義 0.0 n90.0 伝熱管 約0.2 0.12 0.0 -<u>112m</u> 伝熱管側 約0.2 0.12 0.0 <u>mms1.0</u> 摩耗体積比 (伝熱管/スケール) スケール厚さ (mm) 稠密層厚さ(mm) 断面ミクロ画像

-131-

	C-SG 管板上 (低温側)	接液側 	約0.2	0.10	0.0	C-SG 管板上 (高温側)	剛处赛
	A-SG 管板上 (高温側)	接液側 (伝熱管側	約0.2	0.10	0.0	C-SG 管板上 (高温側)	剛建築
結果(3/12)>	A-SG 管板上 (高温側)	順急端辺 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	乙.00涂	0.08	0.0	C-SG 管板上 (高温側)	া谢处赛
<断面観察#	A-SG 管板上 (高温側)	接液側 (10000000) (伝熱管側	乙.00涂	0.08	0.0	C-SG 管板上 (高温側)	间坐赛
	A-SG 管板上 (高温側)	接液側 0.08mm 一 伝熱管側	約0.2	0.08	0.0	C-SG	間外對
	スケール回収位置	断面ミクロ画像	スケール厚さ(mm)	稠密層厚さ(mm)	摩耗体積比 (伝熱管/スケール)	スケール回収位置	

回収したスケールの断面観察結果および摩耗試験結果(3/13)

添付資料−21(3/13)

割 約0.2 0.12 0.8 <<u>mmst.0</u> 約0.2 区製 0.10 0.0<u>0.10</u>mm 約0.2 0.10 0.0 mm01.0 玉 約0.2 0.06 0.0 ₩₩90^{.0} 約0.2 0.10 0.0 ωω_{01.0} 摩耗体積比 (伝熱管/スケール) スケール厚さ(mm) 稠密層厚さ(mm) 断面ミクロ画像

-132-

第三管支持板上 (低温側) 第二管支持板上 (高温側) 約0.3 約0.3 0.12 0.14 0.4 0.9 C-SG A-SG mm21.0 第二管支持板上 (高温側) 贵液(B-SG 管板上 (高温側) 約0.3 0.10 約0.2 0.10 0.4 0.0 A-SG mm01.0 .10mm B-SG 管板上 (高温側) 伝数 (4/12)約0.3 約0.2 0.06 0.12 0.0 0.0 <断面観察結果 mm∂0.0 mm21.0 接液俱 B-SG 管板上 (高温側) 約0.3 約0.2 0.00 ĽĨ 0.02 0.0 0.0 ₩ ₩₩Z0'0 **亲液**側 伝熱管側 A-SG 管板上 (低温側) B-SG 管板上 (高温側) 約0.3 約0.2 0.08 0.14 0.0 2.0 云敷 ₩₩80.0 mm^1.0 摩耗体積比 伝熱管/スケール) 摩耗体積比 (伝熱管/スケール) スケール厚さ(mm) スケール厚さ(mm) 稠恋層厚さ(mm) 周密層厚さ(mm) スケール回収位置 スケール回収位置 断面ミクロ画像 断面ミクロ画像

回収したスケールの断面観察結果および摩耗試験結果(4/13)

添付資料−21(4/13)

	A-SG 第三管支持板上 (低温側)	接液侧 石熱管側	約0.3	0.14	0.0	A-SG 第一管支持板上 (低温側)	接夜側 11100-0 1100-0 1100-0 1100-0 1100-0 100-00	約0.3	0.08	0.0
	A-SG 第二管支持板上 (高温側)	● ● ● ● ● ● ● ● ● ● ● ● ● ●	約0.3	0.08	0.0	A-SG 第一管支持板上 (低温側)	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	約0.2	0.06	0.0
結果(5/12)>	C-SG 第三管支持板上 (低温側)	接返 通 近熱管側	約0.2	0.10	0.0	A-SG 第一管支持板上 (低温側)	唐液侧 (mmable) (mmable	約0.2	0.06	0.0
<断面観察	A-SG 第三管支持板上 (低温側)	接液側 □.04mm □.04mm	約0.2	0.04	0.0	B-SG 第三管支持板上 (低温側)	● mmS1.0 ● Ca熟管側	約0.3	0.12	0.0
	A-SG 第三管支持板上 (低温側)	● 【 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	彩00.3	0.00	0.0	B-SG 第二管支持板上 (低温側)	· · · · · · · · · · · · · · · · · · ·	約0.2	0.10	0.0
	スケール回収位置	断面ミクロ画像	スケール厚さ(mm)	稠密層厚さ(mm)	摩耗体積比 (伝熱管/スケール)	スケール回収位置	断面ミクロ画像	スケール厚さ(mm)	稠密層厚さ(mm)	摩耗体積比 (伝熱管/スケール)

回収したスケールの断面観察結果および摩耗試験結果(5 /13)

添付資料−21(5/13)

回収したスケールの断面観察結果および摩耗試験結果(6 /13) ノヨロ開始の第二日

B-SG	●	約0.3	0.02	I	A-SG	接夜側 ● (石熱管側	約0.2	0.08	I
B-SG	接液则 ————————————————————————————————————	約0.3	0.08	I	C-SG 第二管支持板上 (高温側)	接夜側 石熱管側	約0.2	0.08	I
C-SG 第一管支持板上 (高温側)	接夜側 Contraction 在熱管側	約0.3	0.02	I	B-SG 管板上 (高温側)	● ● ● ● ● ● ● ● ● ● ● ● ● ●	約0.3	0.02	I
B-SG 第一管支持板上 (高温側)	接液側 0.10mm 后 后 后	約0.3	0.10	I	B-SG 管板上 (高温側)	接液側 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	約0.2	0.08	Ι
A-SG 第二管支持板上 (高温側)	·····································	2.00%	80'0	I	B-SG	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	約0.2	0.04	Γ
スケール回収位置	断面ミクロ画像	スケール厚さ(mm)	稠密層厚さ(mm)	摩耗体積比 (伝熱管/スケール)	スケール回収位置	断面ミクロ画像	スケール厚さ(mm)	稠密層厚さ(mm)	摩耗体積比 (伝熱管/スケール)
	スケール回収位置 A-SG 第二管支持板上 B-SG 第一管支持板上 C-SG 第一管支持板上 C-SG 第一管支持板L B-SG 管板L B-SG 管ML B-SG @SG @SG @SG @SG @SG @SG @SG @SG @SG @	スナール回収位置 A-SG 第二管支持板上 B-SG 第一售支持板上 B-SG 第板上 B-SG 管板上 B-SG 管板上 B-SG 管板上 高温側) (高温側) (高温) (G) (G)	$\lambda - \ln \ln \chi_{LE}$ $h - \text{GG}$ $\pi - \text{GG}$	$\lambda - \lambda_{\text{L}}$ $-SG$ % = $e E \chi + KL$ $B-SG$ % = $e \chi + KL$ $B-SG$ % % % % % % % % % % % % % % % % % % %	大-儿回收位置 -S-5 第二管支持板上 B-S6 第二管支持板上 B-S6 第二管支持板上 B-S6 第二管支持板上 B-S6 管板上 B-S6 E Φ B-S6	スケール回収位置 A-SG 第二管支持板上 (流通明) B-SG 第一世支持板上 (流通明) C-SG 第一世支持板上 (流通明) B-SG 管板上 (流通明) B-SG 管板上 (元通明) B-SG 管板L (元通明) B-SG 管板L (元通明) B-SG 管板L (元通M) B-SG 管板L (元通M) B-SG 管板L (元通M) B-SG 管板L (元M) B-SG 管板L (TC) B-SG E f TC) B-SG E f TC)	ステール回的広価 A-SG 第二階 式特殊上 B-SG 第二個 式特殊上 C-SG 第二個 式特殊上 B-SG 電機上 B-SG 電機L B-SG 電ML B-SG	スペールDelicitie A-SG 電圧電子時低上 B-SG 電一電子時低上 C-SG 電一電子時低上 B-SG 電信 B-SG 電信	大子一块回时CAIE A-SG 電工電TYNeL B-SG 電工電TYNeL B-SG 電工電TYNeL B-SG 電工電TYNeL B-SG 電工電TYNeL B-SG 電工電TYNeL B-SG 電工 電TYNeL B-SG 電工 電TYNeL B-SG 電工 B-SG 電T B-SG 電工 B-SG 電T B-SG = T B-SG = T<

添付資料-21(6/13)

(7 / 1 3)
面観察結果および摩耗試験結果
回収したスケールの断

	A-SG 管板上 (高温側)	·mm80.0 ● · · · · · · · · · · · · · · · · · · ·	約0.2	0.08	Ι	A-SG 管板上 (低温側)	mm20.0 任熱管側	約0.2	0.02
	A-SG	amp400 ● 1000 ● 1000 ● 1000	約0.2	0.04	I	A-SG 管板上 (高温側)	接液側 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	約0.2	0.08
結果(7/12)>	A-SG 管板上 (高温側)	·U.14mm ·E.10 ·E.14mm	約0.2	0.14	I	A-SG	● mm80.0 ● 示約	約0.2	0.08
<断面観察	A-SG	接夜侧 (mm80.0 (石熱管側	約0.2	0.08	I	A-SG	● mmS1.0 一 而 而 一 一 一 一 一 一 一 一 一 一 一 一 一	約0.2	0.12
	A-SG 第二管支持板上 (高温側)	● ● ● ● ● ● ● ● ● ● ● ● ● ●	約0.2	0.08	I	A-SG 管板上 (高温側)	海液侧 (100000) (100000) (10000)	2.00涂	0.10
	スケール回収位置	断面ミクロ画像	スケール厚さ(mm)	稠密層厚さ(mm)	摩耗体積比 (伝熱管/スケール)	スケール回収位置	断面ミクロ画像	スケール厚さ(mm)	
			_						_

添付資料-21(7/13)

I

I

I

I

I

摩耗体積比 (伝熱管/スケール) 回収したスケールの断面観察結果および摩耗試験結果(8 /13)

								• -	•	,
	C-SG 第二管支持板上 (高温側)	mm80.0 石熱管側	約0.2	0.08	I	C-SG 管板上 (低温側)	mm80.0 任熟管制	約0.2	0.08	Ι
	C-SG 第二管支持板上 (高温側)	mm01.0 「 「 「 「 「 「 「 「 「 「 「 し 」 「 「 し 」 「 し 」 」 一 一 一 一 一 一 一 一 一 一 一 一 一	約0.2	0.10	I	C-SG 管板上 (低温側)	●	約0.2	0.08	I
<断面観察結果(8/12)>	C-SG 第二管支持板上 (高温側)	0.10mm 接演通	約0.2	0.10	I	C-SG 管板上 (低温側)	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	約0.2	0.06	I
	B-SG 第二管支持板上 (低温側)	mmð0.0 ● ● ●	約0.2	0.06	I	A-SG 管板上 (低温側)	0.10mm 6.10mm	約0.2	0.10	I
	A-SG 管板上 (低温側)	接液側 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	乙.00涂	0.08	L	A-SG 管板上 (高温側)	mm01.0 ● 同語	約0.2	0.10	-
·	スケール回収位置	断面ミクロ画像	スケール厚さ(mm)	稠密層厚さ(mm)	摩耗体積比 (伝熱管/スケール)	スケール回収位置	断面ミクロ画像	スケール厚さ(mm)	稠密層厚さ(mm)	摩耗体積比 (伝熱管/スケール)

添付資料-21(8/13)

小面観察結果 (9/12) > -csc 職板 ((4.5.8)) -csc 職板 ((4.5.8)) (45.8)(1) ((45.8)(1)) (45.8)(1) ((45.8)(1)) (45.8)(1) ((45.8)(1)) (45.8)(1) ((45.8)(1)) (45.8)(1) ((45.8)(1)) (45.8)(1) ((45.8)(1)) (45.8)(1) ((45.8)(1)) (10.0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0		· · · · · · · · · · · · · · · · · · ·	約10.2	0.08	I	C-SG 第二管支持板上 (高温側)	接液侧 0.10mm a (C熱管側	約0.2	0.10	-
小田田銀祭結果 (9/12) > 「佐島創) 「小田観祭結果 (9/12) > 「佐島創) 「佐島創) 「佐島創) 「佐島創) 「佐島創) 「佐島創) 「竹島創) 「竹島創) 「白鳥 「竹島別 「白鳥 「低島別) 「竹島別 「白鳥 「低島別 「竹島 「白鳥 「白鳥 「白鳥 「白鳥 「白鳥 「「白鳥 「白鳥 「白鳥 「「白鳥 「白鳥 「白鳥 「「白鳥 「白鳥 「白鳥 「「白鳥 「白鳥 「「白鳥 「「白鳥 「「白鳥 「「「白鳥 「「白鳥 「「白鳥 「「白鳥 「「白鳥 「「白鳥 「「「白鳥 「「白鳥 「「「白鳥 「「「「白鳥 「「「白鳥 「「「白鳥 「「「「白鳥 「「「「「白鳥 「「「「白鳥 「「「「「「」」」」」 「」」」 「」」」<		umc20.0	—————————————————————————————————————	0.02	I	C-SG 第二管支持板上 (高温側)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	約0.2	0.06	I
C-SG 管板上 (供温彻) (供温彻) (供温伽) (代温伽) (代加) ((代温伽) (代加) ((////////////////////////////////	結果(9/12)>	●	約0.2	0.02	1	C-SG	● ● ● ● ● ● ● ● ●	約0.2	0.08	I
C-SG 管板上 (低温側) (低温側) 約0.2 約0.2 	<断面観察	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	約0.2	0.08	I	C-SG 管板上 (低温側)	接夜侧 0.00	約0.2	0.06	Ι
		接液側 伝熱管側	約0.2	0.00	1	C-SG 第二管支持板上 (高温側)	接液側 0.08mm 一 石熱管側	約0.2	0.08	I
スケール回収位置 断面ミクロ画線 周空層厚さ(mm) 周空層厚さ(mm) 「伝熱管/スケール) 成本目しの位置 スケール回収位置		断面ミクロ画像	スケール厚さ(mm)	、 稠密層厚さ(mm)	摩耗体積比 (伝熱管/スケール)	スケール回収位置	断面ミクロ画像	スケール厚さ(mm)	稠密層厚さ(mm)	摩耗体積比 (((気熱管/スケール)

回収したスケールの断面観察結果および摩耗試験結果(9 /13)

添付資料−21(9/13)

-138-

回収したスケールの断面観察結果および摩耗試験結果(10/13)

							添付資料-21(¹	1 0	/	13)
	C-SG 管板上 (低温側)	接液侧 ————————————————————————————————————	約0.2	0.06	I	A-SG 第三管支持板上 (低温側)	● USE CONTRACT NOT CONTRACT NOT CONTRACT NOT CONT NOT CONTRACT NOT CONT NOT CONTRACT NOT CONTRACT NOT CONTRACT NOT CO	約0.2	0.08	I
	C-SG 管板上 (低温側)	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	約0.2	0.08	I	A-SG 第三管支持板上 (低温側)	·····································	約0.2	0.10	I
<断面観察結果(10/12)>	C-SG 第二管支持板上 (高温側)	接夜侧 (0.10mm) (石熱管側	約0.2	0.10	I	A-SG 第三管支持板上 (低温側)	·····································	約0.2	0.10	I
	C-SG 管板上 (低温側)	唐液側 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	約0.2	0.08	I	A-SG 第三管支持板上 (低温側)	接液側	約0.2	0.00	I
	C-SG 管板上 (低温側)	● ● ● ● ● ● ● ● ● ● ● ●	約0.2	0.08	I	C-SG 管板上 (低温側)	使液通 CC熱管创	約0.2	0.02	I
	スケール回収位置	断面ミクロ画像	スケール厚さ(mm)	稠密層厚さ(mm)	摩耗体積比 (伝熱管/スケール)	スケール回収位置	断面ミクロ画線	スケール厚さ(mm)	稠密層厚さ(mm)	摩耗体積比 (伝熱管/スケール)

接液側 伝熱管側 A-SG 管板上 (高温側) A-SG 管板上 (高温側) 伝熱 約0.2 約0.2 0.12 0.10 I L mm21.0 接液 A-SG 管板上 (高温側) A-SG 管板上 (低温側) 気気 約0.2 約0.2 0.08 0.04 T L ₩₩₽0.0 <断面観察結果(11/12)> A-SG 管板上 (高温側) A-SG 管板上 (高温側) 約0.2 0.12 約0.2 0.10 I I \leq mm01.0 mm21.0 A-SG 管板上 (低温側) 伝熱管 約0.2 約0.2 0.06 0.10 I L ₩₩90^{.0} 第三管支持板上 (低温側) 伝熱管側 伝熱管 A-SG 管板上 (低温側) 約0.2 約0.2 0.10 0.10 I L A-SG \leq . mm01.0 摩耗体積比 (伝熱管/スケール) 摩耗体積比 (伝熱管/スケール) スケール厚さ(mm) 稠密層厚さ(mm) スケール厚さ(mm) スケール回収位置 稠密層厚さ(mm) スケール回収位置 断面ミクロ画像 断面ミクロ画像

回収したスケールの断面観察結果および摩耗試験結果(11/13)

-140-

添付資料-21(11/13)

	A-SG 管板上 (低温側)	接液则 0.0 10前前	約0.2	0:10	I	A-SG 管板上 (高温側)	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	約0.2	0.06	1
	A-SG 管板上 (低温側)	他们 他们 他们 他们 他们	約0.2	0.14	I	A-SG 管板上 (高温側)	接液側 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	約0.2	0.08	1
<断面観察結果(12/12)>	A-SG 管板上 (高温側)	接夜側 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	約0.2	0.10	I	A-SG 管板上 (高温側)	● 通過 通過 通過 一 一 一 一 一 一 一 一 一 一 一 一 一	約0.2	0.10	1
	A-SG 管板上 (高温側)	●●易续空/	約0.2	0'04	I	A-SG	● 員橫空 · ■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	約0.2	0.10	1
	A-SG 管板上 (高温側)	●●易碟习 = ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	約0.2	0.10	I	A-SG	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	約0.2	0.06	I
	スケール回収位置	断面ミクロ画像	スケール厚さ(mm)	稠密層厚さ(mm)	摩耗体積比 (伝熱管/スケール)	スケール回収位置	断面ミクロ画像	スケール厚さ(mm)	稠密層厚さ(mm)	摩耗体積比 (伝熱管/スケール)

ז ר

回収したスケールの断面観察結果および摩耗試験結果(12/13)

添付資料-21(12/13)

回収したスケールの断面観察結果および摩耗試験結果(13/13)

比較的大きなスケール50個を対象に摩耗試験を行い、 伝熱管とスケールの摩耗体積比を調査した結果、 伝熱管の減肉量がスケール摩滅量以上のスケールを2 個確認した。

 減肉が認められた X 26, Y 9の第三管支持板部の下方、X 26-27, Y 80第二管支持板 上面で回収したA回収物を分析した結果は、次のとおりである。 (L面) ① 外観観察結果 ① 外観観察結果 ① か観観察結果 ① か観観察結果 ① た。 ① 形状(R形状)を計測した結果、直径約 2 2.6mmの円筒状に沿った形状であるこれた。 PE状(R形状)を計測した結果、直径約 2 2.5mmに近い形状である。 -52 とを確認したが、これは伝熱管の外径 2 2.2mmに近い形状である。 -54 -54 ・ 	質量:約0.099	
---	-----------	--

回収物分析結果(A-SG回収物)(1/3)

伝熱管との接触想定部を拡大観察した結果、筋状痕を確認した。

- E D S ^{× 2}) 成分分析(X線回折※1、
- 表面の化学成分分析を実施した結果、中央部の<mark>主成分はマグネタイト</mark>であったことから、 スケールであると推定した。
 - 伝熱管との接触想定部の表面化学成分を分析した結果、伝熱管(インコネルTT の主成分であるニッケルおよびクロムの成分を検出した。 0 0 9

添付資料-22(3/6)

回収物分析結果(A-SG回収物)(3/3)

- ④ 減肉箇所との関係
- A回収物の形状や筋状痕の位置は、以下のとおりX26,Y9の減肉箇所の位置 フロースロット側 と一致することを確認した。

回収物分析結果(B-SG回収物)(1/3)	減肉が認められた X 69, Y 3の第三管支持板部の下方、X 68-69, Y 2の第二管支持板 上面で回収した B 回収物を分析した結果は、次のとおりである。 ① 外観観察結果	 伝熱管減内部とB回収物の接触想定部には、<u>接触痕のような痕があり、光沢</u>が認められた。 伝熱にの子を確認したが、これは<u>伝熱管の外径22、3mmの円筒状に治った形状であるこ</u> たを確認したが、これは<u>伝熱管の外径22、2mmに近い形状</u>である。 水丸・ たを確認したが、これは<u>伝熱管の外径22、2mmに近い形状</u>である。 たたのか たたのか たたのか たたのか たたのか たたのか たたのか たたのか たたのか たたるかのか たたのか たたの たたの
-----------------------	--	--

添付資料-22(4/6)
(2/3)
(G回収物)
(B – S
回収物分析結果

- 接触想定部のSEM観察
- 伝熱管との接触想定部を拡大観察した結果、筋状痕を確認した。

- 成分分析(X線回折※1、 E D S ※2) € −147−
- 表面の化学成分分析を実施した結果、中央部の<mark>主成分はマグネタイト</mark>であったことから、 スケールであると推定した。
 - 伝熱管との接触想定部の表面化学成分を分析した結果、 伝熱管 (インコネルTT した。 。 の主成分であるニッケルおよびクロムの成分を検出し 6 0 0

回収物分析結果(B-SG回収物)(3/3)

- ④ 減肉箇所との関係
- B回収物の形状や筋状痕の位置は、以下のとおりX69,Y3の減肉箇所の位置 と一致することを確認した。 フロースロット側

1. 概要

減肉信号とスケール付着信号は、周波数間の振幅・位相の相関関係が異なるため、スケール付着箇所の 信号は MIX フィルタを適用することで消去されるが、減肉信号は消去されない。そこで、実機で検出さ れた信号と、スケール付着・剥離(EDMスリット有り)およびスケール付着・剥離(EDMスリット無 し)の信号を比較し、スケール付着箇所の信号と減肉信号の違いを実験的に示した。また、局所的なスケ ール剥離について、ECTでの信号検出性を確認した。

2. 試験方法

2.1 スケール付着・剥離(EDMスリット有り)の試験片データ

深さ59%、長さ5mm、幅0.4mmの外面周方向矩形EDMスリットが付与された伝熱管外面に 四三酸化鉄を薄く延ばした厚さ1.0mm程度の模擬スケールを貼り付け、スリット直上に当たる部分 に、スリット同様の切れ目を入れた。この伝熱管でECTデータを取得した。

2.2 スケール付着・剥離(EDMスリット無し)の試験片データ 伝熱管外面に四三酸化鉄を薄く延ばした厚さ1.0mm程度の模擬スケールを貼り付け、模擬スケー ルに長さ約4mm(周方向)、幅約0.5mm(軸方向)の切れ目を入れ、局所的なスケール剥離を模擬 した。この伝熱管でECTデータを取得した。

3. 結果

取得したデータを下の表に示す。

表:実機波形とスケール付着・剥離(EDMスリット有り)、スケール付着・剥離(EDMスリット無し)比較

- 4. まとめ
 - ・スケール付着・剥離(EDMスリット有り)の試験片を用いた検証結果より、スケール付着箇所の信号は MIX フィルタにより消去されるが、EDMスリットの信号は消去されず、有意な信号として検出される。
 - ・スケール付着・剥離(EDMスリット無し)の試験片を用いた検証結果より、局所的なスケール剥離箇 所では信号が検出されない。
 - ⇒実機波形は MIX フィルタを適用しても有意な信号が検出されていることから、スケール付着や局所的な スケール剥離の信号ではなく、減肉信号と考えられる。

-150-

添付資料-24

○高浜発電所3号機平成8年調査時

○高浜発電所4号機におけるスケール調査実績

伝熱管の上部のスケールは粗密で厚く、伝熱管の下部のスケールは稠密で薄いことを確認した。

プラント 196	3 1970 1971 1972 1973 1974 1975 1975 1976 1977 1978 - S44 S45 S46 S47 S48 S49 S50 S51 S52 S53	1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 195 S54 S55 S56 S57 S58 S59 S60 S61 S62 S63 H1 H2 H	91 1922 1933 1994 1995 1996 1997 1998 1999 2000 2001 2002 21 13 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H	2003 2004 2005 2006 2007 2008 2009 2010 2011 H15 H16 H17 H18 H19 H20 H21 H22 H23	2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 H24 H25 H26 H27 H28 H29 H30 R1 R2 R3
美浜発電所1号機	▲S45.11.28		0		上秋道
				··· ·· ··· ·· ··· ·· ··· ··	
美浜発電所2号機			機需導致 · · · · · · · · · · · · · · · · · · ·		
 高浜発電所1号機	▼ 249.11.14				
言浜発電所2号機	▼S50.11.14		© 1		
美浜発電所3号機	AS51.12.1			◆ 2次系配管破損事故	
大飯発電所1号機		S54.3.27 ©			·····································
大飯発電所2号機		▼ 254.12.5 ©			
悥浜発電所3号機		© S60(1,17			
悥浜発電 所4号機		● S60.6.5			
大飯発電所3号機	「お話」である。)▲H3.12.18		
大飯発電所4号機	 リン酸塩処理 AVT処理(ビドラジンーアンモニア) AVT処理(ビドラジンーアンモニア)+I 微量ビドA(エタノールアミン)注入(0.) 	ほう酸注入 1~0. 2ppm)	●▲H5.2.2 ▼		
	 ETA(エタノールアミン)注入(3ppm) 高ETA(エタノールアミン)注入(pH9. 高アンモニア注入(pH9. 8) 福島第一衆電所事故以降のプラント 1 福島第一衆電所事故以降のプラント 1 全国ンデミ設置 本 SG取著(SGR) ETA(エタノールアミン)処理装置設置 	(8)		発電用原子/ (高浜発電所3号機 蒸 (2022年	何施設故障等報告書 系発生器伝熱管の損傷について) 5月25日)より引用

2次系水処理と水化学管理の変遷

添付資料-26(1/2)

高浜発電所4号機 鉄の持込み量の推移

送の持込み量(サイカルごと)[kg as Fe₃O₄/SG]

プラント性能指標の推移

スケール剥離メカニズムイメージ

(2022年5月25日)より引用

長期停止影響に係る考察

・スケールの粒径増大化を実験で検証すべく、実機(ヒドラジン水による満水保管)と同条件にて、スラッジ(粒の 観察を容易にするため粉末状スラッジを使用)をヒドラジン水に浸漬させた試験を1か月間実施した。

(2) 粒径分布計測(プロット:3回繰り返し計測平均値,エラーバー:3回計測の最大値,最小値)

・浸漬試験後に粒径の分布計測を行った結果、有意な粒径増加が認められたことから、長期停止により、<u>粒径が</u> <u>大きくなることを推定</u>した。

・電子線後方散乱回折法(EBSD)*により長期停止前後のスケール断面を観察した結果は以下のとおりである。

※:結晶粒サイズ等の情報を取得できる分析手法であり、結晶面が向いている方向によって、異なる色で示すことで、同色の一塊が結晶粒であると識別することができる。

スケールのSG2次側器内挙動の推定および流況モックアップ試験による接触状態の再現

熱流動解析によりSG2次側器内で管支持板下面に到達するまでのスケール挙動を推定 するとともに、SG2次側器内の流況モックアップ試験により、推定したスケールの接触状 態が実機二相流相当条件においても再現するか検討を行った。

1. SG器内でのスケール挙動の推定

(1) フロースロット部近傍の第三および第四管支持板下面に到達するまでのスケール挙 動の推定

図1にSG2次側下部の器内流況および想定されるスケールの挙動を示す。

運転中のSG2次側器内の流況下では、流体抗力がスケールの落下力を上回ることか ら、管板直上で発生したスケールの場合、管群内の上昇流に乗って流量分配板および各管 支持板フロースロット部を通過し、減肉箇所へ到達したことが考えられる。第一管支持板 より上方では、管群の高温側と低温側の圧力損失差から、高温側から低温側への水平方向 流があることから、第一管支持板および第二管支持板フロースロット部を通過したもの が第三管支持板の低温側下面に至ったものと推定される。

なお、第一管支持板上方または第二管支持板上方で発生したスケールを想定した場合 においても、発生したアドレスによっては、同様に管群内の上昇流および高温側から低温 側への水平方向流に乗り、フロースロット部を通過し、第三および第四管支持板の低温側 下面に至る可能性はあると考えられる。

: 枠組みの範囲は機密に係る事項ですので公開することはできません。

(2)管群中央領域の第四管支持板低温側下面に到達するまでのスケール挙動の推定図2に第四管支持板下面に到達するスケールの推定される挙動を示す。

運転中のSG2次側器内の鉛直方向の流体抗力はスケールの重力による落下力より大 きいため、当該部直下近傍の第三管支持板上面に到達していたスケールが運転中の上昇 流に乗って当該部の管支持板下面に到達したと考えられる。

図2 SG2次側下部の器内流況およびスケール挙動

2. 流況モックアップ試験結果を踏まえた検討

高浜発電所4号機前回(第23回)定期検査で実施した流況モックアップ試験の試験 流速は実機条件と同等の流体力が発生する流速として設定した。

今回(第24回)定期検査で確認された減肉箇所における、熱流動解析により求めた 流速はいずれも流況モックアップ試験流速と比較して大きいため、スケールはそれぞ れの管支持板下面に到達し、伝熱管との接触状態が実機二層流においても維持された 可能性があるものと推定した。 <参考>

高浜発電所4号機前回(第23回)定期検査における流況モックアップ試験による接触状 態の再現

(1) 試験方法

3次元熱流動解析で得られるSG2次側流況を再現する水空気試験装置を用いて、 C2、C3およびC4スケールの各模擬スケール片について、推定した接触状態が実機 二相流相当条件下において管支持板下面で維持されるか確認を行った(図1参照)。

・試験流速:
・模擬スケール片形状:約18mm×約10mm×約0.3mm (C2スケールと同一形状、凹面側で管支持板下面に拘束)
・模擬スケール片形状:約23mm×約11mm×約0.3mm (C3スケールと同一形状、凸面側で管支持板下面に拘束)
・模擬スケール片形状:約21mm×約10mm×約0.3mm

(C4スケールの破損前想定形状と同一形状、凹面側で管支持板下面に拘束)

図1 水空気試験装置概要

(2) 試験結果

試験装置内の水-空気二相流中で、模擬スケール片はいずれも管支持板下面で推定 した接触状態が維持されたことから、スケール片は凹面・凸面のいずれであっても管支 持板下面で保持されうることを確認した(図2参照)。

> 発電用原子炉施設故障等報告書 (高浜発電所4号機 蒸気発生器伝熱管の損傷について) (2021年2月19日)より引用

—159—

:枠組みの範囲は機密に係る事項ですので公開することはできません。

<C2スケールと伝熱管X55, Y8との接触状態を想定>

<C3スケールと伝熱管X21,Y8との接触状態を想定>

<C4スケールと伝熱管X55,Y3との接触状態を想定>

図2 水空気試験結果

以上の結果から、今回の原因と考えられるスケールは、SG器内で伝熱管から剥離後に管 群内の上昇流および高温側から低温側への水平方向流に乗って第三管支持板低温側下面に 到達し、伝熱管との接触状態が実機二相流中においても維持された可能性があるものと推 定した。

以 上

