

浜岡原子力発電所 基準津波の策定のうち地震による津波について (コメント回答)

資料1-1

2023年12月1日

本資料の説明内容

■ 本資料の主な説明内容は以下に示すとおり。

・それぞれの津波発生要因の津波評価等の下には、津波の大きさの程度を示すため、敷地前面の津波高(現時点の評価結果)等を記載している。なお、津波発生要因の組合せの津波高は、検討中のため記載していない。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

地震による津波評価について コメントー覧表

項目	No.	コメント内容	コメント回	備考
海洋プレート内地震 の津波評価 (組合せの評価方針)	1	【プレート間地震と海洋プレート内地震の組合せに関する考え方】 ・プレート間地震と海洋プレート内地震の組合せ要否について、審査ガイドに照らし、敷地の地学的 背景、津波発生要因の関連性に関する既往知見と事実関係を十分に検討し、プレート間地震と 海洋プレート内地震を組合せる必要がないという論理構成を再整理すること。	第1178回 (2023年8月4日)	今回説明
海域の活断層 による地殻内地震	2	【 阿部(1989)による津波予測式に用いる地震モーメント 】 ・検討対象とする地震の選定について、敷地に大きな影響を及ぼす可能性のある地震を漏れなく選 定する観点から、阿部(1989)による津波予測式が簡易的なものであることに留意し、断層が海域 から陸域に連続して分布しているA-17断層等について、海域部分の地震モーメントだけでなく、陸 域部分も含めた全体の地震モーメントから大きめに地震規模を算定し、津波予測式による評価に 用いること。	第1178回 (2023年8月4日)	今回説明
の津波評価	3	【A-5・A-18断層等の断層パラメータ】 ・地質調査によって断層変位が確認できないA-5・A-18断層の傾斜角のパラメータスタディ範囲は、 南海トラフの敷地周辺における逆断層タイプの断層の傾斜角に係る既往知見を整理した上で、津 波評価上、十分な保守性を有する根拠を説明すること。 ・また、断層上端深さのパラメータスタディ範囲は、津波評価上0kmまで考慮すること。	第1178回 (2023年8月4日)	今回説明
プレート間地震 の津波評価	4	 【プレート間地震の津波評価の方針、論理構成、評価結果の再点検】 ・プレート間地震の津波評価の方針、論理構成を再点検し、痕跡再現モデルあるいは検討波源モデルの位置づけ、パラメータスタディやパラメータスタディの幅など含め、一連の体系的な内容として整理されているかを確認して説明すること。 ・検討波源モデルのパラメータスタディを再点検し、評価に漏れがなく、評価結果が変わらないかを確認して説明すること。 	第1109回 (2023年1月27日)	今後説明

本日の説明内容

- 第1178回審査会合(2023年8月4日)では海洋プレート内地震の津波評価および海域の活断層による地殻内地震の 津波評価について説明し、以下の項目についてコメントをいただいた。
 - ・No.1コメント: プレート間地震と海洋プレート内地震の組合せに関する考え方
 - ・No.2コメント: 阿部(1989)による津波予測式に用いる地震モーメント
 - ・No.3コメント: A-5・A-18断層等の断層パラメータ
- 本日は、コメント回答資料にて、地震による津波の全体概要を説明のうえ、海洋プレート内地震の津波評価および海域の 活断層による地殻内地震の津波評価に関するNo.1~3コメント回答を個別に説明する。
- なお、プレート間地震の津波評価に関するコメント回答については、今後説明する。

目次

地震による津波の全体概要

コメント回答	19
No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考えア	5) 23
No.2コメント回答(阿部(1989)による津波予測式に用いる地震モーメント)	46
No.3コメント回答(A-5・A-18断層等の断層パラメータ)	51

地震による津波の評価結果まとめ

73

6

目次

地震による津波の全体概要

コメント回答	19
No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方)	23
No.2コメント回答(阿部(1989)による津波予測式に用いる地震モーメント)	46
No.3コメント回答(A-5・A-18断層等の断層パラメータ)	51

地震による津波の評価結果まとめ

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

6

73

地震による津波の全体概要 基準津波の策定の評価方針 (全体方針(1/2))

第1152回資料1-2 p.5再揭

<u>全体方針</u>

■ 基準津波は、歴史記録及び津波堆積物に関する調査を行ったうえで、敷地に影響を及ぼす可能性のある津波発生要因として、地震による津波(プレート間地震、海 洋プレート内地震、海域の活断層による地殻内地震の津波)及び地震以外の要因による津波(地すべり(斜面崩壊含む)、火山現象の津波)について、最新の 科学的・技術的知見に基づき不確かさを考慮した津波評価を行うとともに、津波発生要因の組合せも考慮して、水位上昇側および水位下降側のそれぞれについて、敷 地に及ぼす影響が最も大きい津波を基準津波として策定する。

地震による津波の全体概要 基準津波の策定の評価方針 (全体方針(2/2))

- 基準津波の策定に当たっては、地震規模が大きく浜岡敷地への津波影響が支配的と考えられるプレート間地震を中心とし、プレート間地震およびそれと組合せるその他の 津波発生要因について網羅的な検討を実施する。
- ここで、その他の津波発生要因のうち、地すべりおよび海域の活断層による地殻内地震について、地すべりはプレート間地震の地震動により発生し津波が重なる可能性があること、海域の活断層はプレート境界の上盤に位置しプレート間地震の破壊に伴い活動し津波が重なる可能性を否定できないことを慎重に考慮し、それぞれプレート間地震の組合せを検討する。
- 一方、海洋プレート内地震および火山現象について、海洋プレート内地震は、海域の活断層とは異なり、プレート境界の下盤にその断層が位置しプレート間地震の破壊が 伝播することは考えにくく、プレート間地震の津波と海洋プレート内地震の津波とが同時発生したことが確認された事例もないこと、火山現象は、プレート間地震から離れた地 域にその波源が位置しており、またプレート間地震の津波と火山現象の津波とが同時発生することは考えにくく、それが確認された事例もないことから、いずれもプレート間地 震との組合せは検討せず、敷地への津波影響がプレート間地震の津波と比べて小さいことを確認する。

地震による津波の全体概要 基準津波の策定の評価方針

(各津波発生要因の津波の評価方針)

<u>地震による津波</u>(評価方針)

■ 敷地に影響を及ぼす可能性のある地震による津波として、プレート間地震、海洋プレート内地震、海域の活断層による地殻内地震の津波評価を行う。

- プレート間地震の津波は、地震規模が大きく敷地への影響が支配的と考えられることから、敷地への影響の観点から特に網羅的な検討を行うこととし、敷地に近い南海 トラフのMw9クラスのプレート間地震を検討対象とする地震として選定し、南海トラフおよび国内外の巨大地震の最新知見に基づき、南海トラフの特徴と東北沖地震の 知見とを反映した検討波源モデルを複数設定したうえで、津波評価に影響を与える主要な因子を考慮してパラメータスタディを網羅的に実施する。プレート間地震の津波 の評価に当たっては、付加体が発達し分岐断層が確認されている南海トラフの特徴を踏まえて、プレート間地震に伴う分岐断層への破壊伝播を考慮する。 (今後説明)
- 海域の活断層による地殻内地震の津波は、海域の活断層がプレート境界の上盤に位置しプレート間地震の破壊に伴い活動し発生する津波が重なる可能性を否定できないことを慎重に考慮して、敷地への影響の観点から網羅的な検討を行うこととし、最新の科学的・技術的知見に基づき敷地に影響を及ぼす可能性のある海域の活断層による地殻内地震を想定したうえで、阿部(1989)の予測式により敷地への影響が相対的に大きいものを検討対象とする地震として選定し、津波評価に影響を与える主要な因子を考慮してパラメータスタディを網羅的に実施する。
- 海洋プレート内地震の津波は、海域の活断層とは異なり、プレート境界の下盤にその断層が位置しプレート間地震の破壊が伝播することは考えにくいことから、敷地への 影響がプレート間地震の津波と比べて小さいことを確認することとし、最新の科学的・技術的知見に基づき敷地に影響を及ぼす可能性のある海洋プレート内地震を想定 したうえで、阿部(1989)の予測式により敷地への影響が相対的に大きいものを検討対象とする地震として選定し、波源モデルを設定して数値シミュレーションによる津波 評価を行う。

地震以外の要因による津波(評価方針)

- 敷地に影響を及ぼす可能性のある地震以外の要因による津波として、地すべり(斜面崩壊含む)、火山現象の津波評価を行う。
- ■地すべりの津波は、プレート間地震による地震動により発生し津波が重なる可能性があることから、敷地への影響の観点から網羅的な検討を行うこととし、最新の科学的・技術的知見に基づき敷地に影響を及ぼす可能性のある敷地周辺の地すべり地形を抽出したうえで、地すべり体の体積及び敷地からの距離等に基づき敷地に影響が大きいものを検討対象とする地すべりとして複数選定し、地すべり前の地形を復元して波源モデルを設定し複数の地すべり評価手法で津波評価を行う。
- 火山現象の津波は、プレート間地震から離れた地域にその波源が位置しており、またプレート間地震の津波と火山現象の津波とが同時発生することは考えにくいことから、 敷地への津波影響がプレート間地震の津波と比べて小さいことを確認することとし、敷地の地理的領域の火山及び敷地南方の伊豆小笠原弧の火山について、最新の科 学的・技術的知見に基づき津波を発生させる火山現象の有無とその規模を調査・評価して、それぞれの火山現象に応じた津波予測式による津波評価を行うとともに、 敷地への影響が相対的に大きい火山現象については、波源モデルを設定して数値シミュレーションによる津波評価を行う。

津波発生要因の組合せ(評価方針)

- 津波発生要因に係る敷地の地学的背景、津波発生要因の関連性を踏まえ、敷地への津波影響が支配的と考えられるプレート間地震とその他の津波発生要因との組合せを検討することとし、その他の津波発生要因のうち、地すべりはプレート間地震の地震動により発生し津波が重なる可能性があることから、プレート間地震と地すべりの 組合せを検討する。また、海域の活断層による地殻内地震は、海域の活断層がプレート境界の上盤に位置しプレート間地震の破壊に伴い活動し発生する津波が重なる 可能性を否定できないことを慎重に考慮して、プレート間地震と海域の活断層による地殻内地震の組合せを検討する。

地震による津波の全体概要 プレート間地震の津波評価の全体概要 (第1109回審査会合資料再揭、構成再確認中)

フレート間地震の津波評価の方針

■プレート間地震の津波評価は、敷地に近い南海トラフのMw9クラスのプレート間地震を対象とし、南海トラフおよび国内外の巨大地震の最新知見に基づき、南海トラフの特 徴と東北沖地震の知見とを反映した複数の検討波源モデルを設定したうえで、津波評価に影響を与える主要な因子に関するパラメータスタディを、内閣府の最大クラスモデ ルのパラメータを含めて網羅的に実施することにより、敷地への影響の観点から不確かさを考慮した津波評価を行い、内閣府の最大クラスモデルとの比較による確認も行った うえで、水位上昇側および水位下降側のそれぞれについて、敷地に及ぼす影響が最も大きいケースを津波評価結果とした。

<u>検討波源モデルの設定</u>

- ■検討波源モデルの設定に当たっては、まず、南海トラフの特徴が反映されている南海トラフの津波痕跡の再現モデル(痕跡再現モデル: Mw8クラス)を検討するとともに、 内閣府(2012)の南海トラフの最大クラスモデルなどの行政機関による波源モデルも確認した。
- これらの検討確認結果および国内外の巨大地震の最新知見を踏まえ、痕跡再現モデルを基に、東北沖地震において巨大津波が発生した要因(地震規模、浅部の破壊 形態)を不確かさとして保守的に考慮した東北沖型の波源モデル(Mw9クラス)を設定することとし、それらの要因を南海トラフにおいて考慮した内閣府(2012)や土木学 会(2016)のすべり量分布の設定方法を用いることにより、南海トラフの特徴と東北沖地震の知見とを適切に反映した複数の検討波源モデルを設定した(検討波源モデル A~D)。このように設定した検討波源モデルについて、日本海溝の手法を用いたすべり量分布等との比較も行い、東北沖型のモデル設定としての妥当性確認も行った。

検討波源モデルのパラメータスタディ

- 敷地への影響の観点から検討波源モデルのパラメータスタディを行うに当たっては、土木学会(2016)を参照し、次のとおり順に検討することにより、津波評価に影響を与える主 要な因子に関するパラメータスタディを網羅的に実施し、水位上昇側および水位下降側のそれぞれの評価地点について、敷地に及ぼす影響が最も大きいケースを選定した。
- ■まず、
 <u>概略パラメータスタディ</u>として、設定した複数の検討波源モデルに対し、敷地への影響が支配的と考えられる
 <u>大すべり域の位置</u>を東西に移動させて検討し、漏れのない パラメータスタディとするため、敷地への影響が最も大きいケースおよびそれと同程度のケースを選定することとして、
 <u>複数の基準断層モデルを選定</u>した(基準断層モデル1-1~ 5、2-1~3、3-1~3、4-1)。
- ■次に、詳細パラメータスタディとして、選定した基準断層モデルに対し、動的パラメータであるライズタイム、破壊伝播速度・破壊開始点について、国内外の巨大地震・津波の発生事例および内閣府の最大クラスモデルのパラメータ設定を踏まえて網羅的に検討した。その際、Mw9クラスの地震ではライズタイムが津波水位に与える影響が大きいと考えられることを考慮して、まずライズタイム、次に破壊開始点・破壊伝播速度の順でパラメータスタディを実施した。これらのパラメータスタディ結果およびパラメータスタディ因子の影響分析結果から、大すべり域の位置、ライズタイム、破壊伝播速度・破壊開始点のパラメータスタディの順序などが網羅的な検討として妥当であることを確認した。

内閣府の最大クラスモデルとの比較による確認

■ 設定した波源モデルと内閣府の最大クラスモデルのすべり量分布の違いを比較して示すとともに、すべり量分布の設定の違いが評価結果に与える影響について定量的な分析 を行い、敷地の津波評価が、内閣府の最大クラスモデルのパラメータを含めて、敷地への影響の観点から不確かさを考慮したものとなっていることを確認した。

プレート間地震の津波評価結果

- ・敷地前面の上昇水位は、最大T.P.+22.7m(基準断層モデル1-1(検討波源モデルA、大すべり域1箇所)のケース)
- ·1~5号取水槽の上昇水位は、1~4号(敷地標高6m)で最大T.P.+9.6m、5号(敷地標高8m)で最大T.P.+11.8m

(基準断層モデル3-2(検討波源モデルD、大すべり域1箇所)のケース)

・3、4号取水塔の水位低下時間は、最大13.6min(基準断層モデル2-3(検討波源モデルA、大すべり域2箇所)のケース)

第1109回資料1-1

p.4再掲

地震による津波の全体概要 海洋プレート内地震の津波評価の全体概要

海洋プレート内地震の津波評価の方針

■ 海洋プレート内地震の津波評価は、プレート境界の下盤にその断層が位置しプレート間地震の破壊が伝播することは考えにくいことから、敷地への影響がプレート間地震の 津波と比べて小さいことを確認することとし、最新の科学的・技術的知見に基づき敷地に影響を及ぼす可能性のある海洋プレート内地震を想定したうえで、阿部(1989)の 予測式により敷地への影響が相対的に大きいものを検討対象とする地震として選定し、波源モデルを設定して数値シミュレーションによる津波評価を行う。

海洋プレート内地震に関する調査

- 敷地周辺で津波を発生させる南海トラフの海洋プレート内地震および南海トラフ沖合の海洋プレート内地震に関する文献調査を実施し、敷地に影響を及ぼす可能性がある海洋プレート内地震を想定した。
- 南海トラフの海洋プレート内地震に関し、南海トラフのフィリピン海プレートで発生した最大規模の過去地震(2004年紀伊半島南東沖の地震(本震M7.4))の他、 当該プレートと特徴が類似した海洋プレートで発生した地震規模、海洋プレートの地域性を考慮した地震規模を調査して、地震規模を保守的にMw7.5としたうえで、南 海トラフのフィリピン海プレートで発生する海洋プレート内地震の発生場所を予め特定することは困難であると考え、敷地前面の海溝軸沿いで敷地に近い位置に「御前崎 沖の想定沈み込む海洋プレート内地震」を想定した。
- 南海トラフ沖合の海洋プレート内地震に関し、地質構造図に基づき、南海トラフの沖合に認められる「銭州断層系による海洋プレート内地震」を想定した。

検討対象とする地震の選定

- 想定した海洋プレート内地震について、阿部(1989)の予測式により津波高を評価し、敷地への影響が相対的に大きい「御前崎沖の想定沈み込む海洋プレート内地 震」を検討対象とする地震として選定した。
- なお、選定に当たっては、これら地震よりもさらに遠方の伊豆島弧周辺の地震に関する影響検討も実施し、阿部(1989)の予測式による津波高が「御前崎沖の想定沈み込む海洋プレート内地震」より小さいことも確認した。

海洋プレート内地震の津波評価

- ■「御前崎沖の想定沈み込む海洋プレート内地震」について、波源モデルを南海トラフのフィリピン海プレートで発生した過去地震の知見(2004年紀伊半島南東沖の地震 の分析結果等)に基づき設定し、波源位置を敷地前面の海溝軸沿いで敷地に近い複数箇所に設定して、数値シミュレーションによる津波評価を実施した。
- 津波評価の結果、海洋プレート内地震の津波による影響は、Mw9クラスのプレート間地震の津波による影響と比較して明らかに小さいことを確認したことから、断層パラメータに関するパラメータスタディまでは実施しないこととした。

·敷地前面の上昇水位は最大T.P.+6.1m

- ・1~5号取水槽の上昇水位は1~4号(敷地標高6m)で最大T.P.+3.8m、5号(敷地標高8m)で最大T.P.+4.2m
- ·3, 4号取水塔の下降水位は最大T.P.-7.0m(水位低下時間0.9min)

*朔望平均潮位(満潮位T.P.+0.80m、干潮位T.P.-0.93m)を考慮

第1178回資料3-1 p.21再掲

地震による津波の全体概要 海域の活断層による地殻内地震の津波評価の全体概要 ^{第1178回資料3-1}

海域の活断層による地殻内地震の津波評価の方針

■ 海域の活断層による地殻内地震の津波評価は、海域の活断層がプレート境界の上盤に位置しプレート間地震の破壊に伴い活動し発生する津波が重なる可能性を否定できないことを慎重に考慮して、敷地への影響の観点から網羅的な検討を行うこととし、最新の科学的・技術的知見に基づき敷地に影響を及ぼす可能性のある海域の活断層による地殻内地震を想定したうえで、阿部(1989)の予測式により敷地への影響が相対的に大きいものを検討対象とする地震として選定し、津波評価に影響を与える主要な因子を考慮してパラメータスタディを網羅的に実施する。

活断層調査(分岐断層、地殻内地震として考慮する断層の選定)

■ 敷地周辺海域の活断層調査結果に基づき認定した敷地周辺の海域の活断層について、文献調査、詳細な地形調査及び音波探査記録による検討を実施し、分岐断層とされる知見があり顕著な地形的高まりとの関連が認められる海域の活断層は、プレート間地震に伴う分岐断層として選定した。それ以外の分岐断層とされる知見がなく顕著な地形的高まりとの関連が認められない海域の活断層は、地殻内地震として考慮する活断層として選定した。

検討対象とする地殻内地震の選定

■ 地殻内地震として考慮する活断層として選定した海域の活断層による地殻内地震について、阿部(1989)の予測式により津波高を評価し、敷地への影響が相対的に大きい「御前崎海脚西部の断層帯の地震」、「A-5・A-18断層の地震」、「A-17断層の地震」および「遠州断層系の地震」を検討対象として選定した。

海域の活断層による地殻内地震の津波評価

■「御前崎海脚西部の断層帯の地震」、「A-5・A-18断層の地震」、「A-17断層の地震」および「遠州断層系の地震」について、土木学会(2016)の方法を用い、波源 モデルを活断層調査結果に基づいて設定し、津波評価に影響を与える主要な因子として傾斜角、すべり角、断層上端深さの不確かさを考慮し、これらの組合せのパラメー タスタディを実施した。

海域の活断層による地殻内地震の津波評価結果*

・敷地前面の上昇水位は最大T.P.+6.2m(「A-5・A-18断層の地震」の津波評価結果)

・1~5号取水槽の上昇水位は1~4号(敷地標高6m)で最大T.P.+3.1m、5号(敷地標高8m)で最大T.P.+2.9m

(「御前崎海脚西部の断層帯の地震」の津波評価結果)

·3, 4号取水塔の下降水位は最大T.P.-6.1m(水位低下時間0.6min)(「御前崎海脚西部の断層帯の地震」の津波評価結果)

*朔望平均潮位(満潮位T.P.+0.80m、干潮位T.P.-0.93m)を考慮

地震による津波の全体概要

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

地震による津波の全体概要 動地周辺の既往津波

- 南海トラフの沿岸域を対象として、伝承を含む歴史記録に基づく津波痕跡の文献調査*1を実施した。
- その結果、敷地が位置する遠州灘沿岸域では、南海トラフのプレート間地震が他の津波発生要因よりも大きな影響を及ぼしていることを確認。
- プレート間地震については、南海トラフの遠州灘沿岸域において5~10mの津波が確認されている。
- *1 国内外の津波痕跡に関する主な科学技術系論文データベース等を対象とし、敷地周辺を含む南海トラフの沿岸域の津波高が整理されている文献を抽出。 ・津波痕跡データベース ・地震調査委員会等のHP ・J-STAGE ・CiNii ・KAKEN ・JAIRO ・当社歴史地震調査

(海上保安庁「海洋台帳」を基に作成)

日本列島周辺の海底地形

津波発生要因		名称	Mj	Mw	敷地周辺の津波高	
		1944年昭和東南海地震	7.9	8.1-8.2		
		1854年安政東海地震	8.4	—		
	南海トラフ	1707年宝永地震	8.6	—	5~10m程度 (遠州灘沿岸域)	
		1605年慶長地震	7.9	_		
		1498年明応地震	8.2-8.4	_		
 9 1.88	南西諸島海溝	敷地周辺に影響を及ぼした津波は	確認されていな	L1º	-	
ノレーN間 地震	伊豆·小笠原海溝	1972年八丈島東方沖地震	7.2	_	0.25m^{*2} (御前崎市)	
-Circ	日本海溝	2011年東北地方太平洋沖地震	9.0	9.0	1.44m (御前崎市)	
		1952年カムチャツカ地震	-	9.0		
		1960年升地震	—	9.5	0 0 1 0*2	
	遠地津波	1964年アラス力地震	-	9.2	0.3~1.9 [∞] m (遠州灘沿岸ば)	
		1996年ニューギニア島沖地震	-	8.1		
		2010升地震	-	8.8		
海洋プレート内地震*3		2004年紀伊半島南東沖の地震	7.4	7.5	0.5m (御前崎市)	
海域の活断層による地殻内地震		敷地周辺に影響を及ぼした津波は確認されていない。			_	
地すべり		2009年駿河湾の海底地すべり			0.36m (御前崎市)	
火山現象		2022年トンガの火山噴火			(0.7m (御前崎市))*4	

各津波発生要因による敷地周辺の主な既往津波

*2 文献には最大全振幅が記載されているため、最大全振幅の1/2を津波高と仮定した。

*3 なお、2010年小笠原諸島父島近海の海洋プレート内地震(太平洋プレート内の地震、Mw7.3)について、敷地周辺の御前崎市では津波 は観測されていない。(気象庁(2010b))

*4 本事象に伴う潮位変化は、大気中を伝播する波による影響が支配的であったと考えられており(防災科学技術研究所 (2022)、気象庁 (2022a))、基準津波の策定において評価している海面を伝播する津波とはやや異なることから、括弧書きで表記した。

地震による津波の全体概要 プレート間地震の津波評価の検討概要 (第1109回審査会合資料再掲、構成再確認中)

■プレート間地震の津波評価は、敷地に近い南海トラフの Mw9 クラスのプレート間地震を対象とし、南海トラフおよび国内外の巨大地震の最新知見に基づき、南海トラフ の特徴と東北沖地震の知見とを反映した複数の検討波源モデルを設定したうえで、津波評価に影響を与える主要な因子に関するパラメータスタディを、内閣府の最大ク ラスモデルのパラメータを含めて網羅的に実施することにより、敷地への影響の観点から不確かさを考慮した津波評価を行い、内閣府の最大クラスモデルとの比較による確 認も行ったうえで、水位上昇側および水位下降側のそれぞれについて、敷地に及ぼす影響が最も大きいケースを津波評価結果とした。

フレート間地震の津波評価	
検討対象領域の選定	・敷地への影響の観点から、敷地に近い南海トラフ(駿河湾~日向灘沖)を検討 対象領域として選定した。
痕跡再現モデルの検討 ・遠州灘沿岸域の痕跡再現モデル・南海トラフ広域の痕跡再現モデル	・歴史記録及び津波堆積物に基づき、南海トラフの特徴が反映されている南海トラフの津波痕跡を再現するモデル(Mw8クラス)を検討した。
行政機関による津波評価の確認	→・国および地方自治体の津波の波源モデルを確認し、敷地周辺において影響の大きい内閣府の最大クラスモデルのパラメータ設定の詳細を確認し、分析を行った。
検討波源モデルの津波評価 検討波源モデルの設定 [敷地周辺の津波に着目したモデル] ・検討波源モデルA (断層破壊がプレート境界面浅部に伝播するモデル) (3倍すべり域を広域に設定したモデル)	 ・南海トラフおよび国内外の巨大地震の最新知見を踏まえ、痕跡再現モデルを基に、 東北沖地震において巨大津波が発生した要因(地震規模、浅部の破壊形態) を不確かさとして保守的に考慮した東北沖型の波源モデル(Mw9クラス)を設定することとし、南海トラフの特徴と東北沖地震の知見とを適切に反映した複数の検討 波源モデルを設定した。
 ・検討波源モデルB (断層破壊がプレート境界面浅部・分岐断層に伝播するモデル) ・検討波源モデルD (超大すべり域の深さを広域モデルと同じとしたモデル) 検討波源モデルのパラメータスタディ 検討波源モデルのパラメータスタディ 横割パラメータスタディ (大すべり域の位置の不確かさを考慮し、基準断層モデルを選定) 詳細パラメータスタディ (ライズタイム、破壊伝播速度、破壊開始点の不確かさ考慮) 	 ・検討波源モデルに対して、土木学会(2016)を参照し、津波評価に影響を与える主要な因子に関するパラメータスタディを、敷地への影響の観点から網羅的に実施した。 (概略パラメータスタディ) ・検討波源モデルに対し、敷地への影響が支配的と考えられる大すべり域の位置を東西に移動させて同時破壊の条件で検討し、敷地への影響が最も大きいケースおよびそれと同程度のケースを基準断層モデルとして選定した。 (詳細パラメータスタディ) ・選定した基準断層モデルに対し、動的パラメータであるライズタイム、破壊伝播速度、破壊開始点のパラメータスタディを、国内外の巨大地震・津波の発生事例および内閣府の最大クラスモデルのパラメータ設定を踏まえて網羅的に検討した。
内閣府の最大クラスモデルとの比較 (内閣府の最大クラスモデルとの比較分析を実施)	 ・設定した波源モデルと内閣府の最大クラスモデルのすべり量分布の違いを比較して 示すとともに、両者の破壊開始点の条件を揃えて津波評価を実施し、すべり量分布の設定の違いが評価結果に与える影響について定量的な分析を行った。 ・ 津波評価手法及び計算条件の詳細は第1109回資料1-3 3-1章を参照

地震による津波の全体概要 海洋プレート内地震の津波評価の検討概要

メータに関するパラメータスタディまでは実施しないこととした。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1178回資料3-1

p.27再掲

地震による津波の全体概要 第1178回資料3-1 p.28一部修正 海域の活断層による地殻内地震の津波評価の検討概要

■ 海域の活断層による地殻内地震の津波評価は、海域の活断層はプレート境界の上盤に位置しプレート間地震の破壊に伴い活動し発生する津波が重なる可能性 を否定できないことを慎重に考慮して、敷地への影響の観点から網羅的な検討を行うこととし、最新の科学的・技術的知見に基づき敷地に影響を及ぼす可能性の ある海域の活断層による地殻内地震を想定したうえで、阿部(1989)の予測式により敷地への影響が相対的に大きいものを検討対象とする地震として選定し、津 波評価に影響を与える主要な因子を考慮してパラメータスタディを網羅的に実施した。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

・津波評価では、朔望平均潮位(満潮位T.P.+0.80m、干潮位T.P.-0.93m)を考慮。

地震による津波の全体概要 地震による津波の評価結果一覧

■ 地震による津波の評価結果は以下のとおり。

(水位上昇側)	

津波発生要因		最大上昇水位(T.P. m) ^{*1}						
		敷地 前面	1,2号 取水槽	3号 取水槽	4号 取水槽	5号 取水槽	備考	
プレート問地震	南海トラフのプレート問地震	22.7	4.6	7.3	8.1	10.1	基準断層モデル1-1(検討波原モデルA)東海世域の大すべり域1箇所:東へ40km ライズタイム60s、破壊伝播東度2.5km/s、破壊開始点P4	
		19.8	6.4	9.0	9.6	11.8	基準断層モデル3-2(検討波原モデルD)東海地域の大すべり或1箇所:東へ60km ライズタイム60s、破壊伝播東度1.0km/s、破壊報告点P6	
		6.1	2.3	3.5	3.5	3.7	断層位置:位置②·内陸則こ20km·北西條料	
海洋プレート内地震	御前崎沖の想定沈み込む海洋プレート内地震	6.0	2.9	3.7	3.7	4.2	断層位置:位置2·内陸則こ10km·南東條料	
		4.9	2.6	3.8	3.8	4.0	断層位置:位置2·内陸則こ20km·南東條料	
海域の活断層による 地殻内地震	御前崎海期西部の新属帯の地震	5.0	2.2	2.9	3.0	2.7	傾斜角:70°(浅部)・45°(深部)、すべり角:100°、断層上端深さ:0km	
		4.3	2.2	3.0	3.1	2.9	傾斜角:70°(浅部)・45°(深部)、すべり角:90°、断層上端深さ:2.5km	
	A-5・A-18断層の地震	6.2	1.7	2.1	2.2	2.3	傾斜角:70°(浅部)・45°(深部)、すべり角:80°、断層上端深さ:0km	
	A-17断層の地震	1.5	1.3	1.5	1.5	1.5	傾斜角:70°(浅部)・45°(深部)、すべり角:80°、断層上端深さ:0km	
	遠州新属系の地震	3.3	1.5	1.9	1.9	1.9	傾斜角:80°、すべり角:160°、断層上端深さ:0km	
		3.1	1.9	2.5	2.5	2.3	傾斜角:100°、すべり角:160°、断層上端深さ:5km	
							・水位上昇側・朔望平均満潮位T P +0.80mを老庸	

(水位ト降側)

第1178回資料3-1 p.29一部修正

津波発生要因		最大下降水位(T.P.	m) (水位低下時間)	備老	
		3号取水塔	4号取水塔	7冊75	
プレート間地震	南海トラフのプレート間地震	海底面(13.6 min)	海底面(13.5 min)	基準断層モデル2-3(検討波原モデルA) 東海地域の大すべび域2箇所:東へ30km・距離120km ライズタイム90s、破壊伝番恵度1.0km/s、破壊開始点P1	
海洋プレート内地震	御前崎沖の想定沈み込む海洋プレート内地震	-7.0(0.9min)	-7.0(0.9min)	断層位置:位置②·内陸側-20km·北西(除)	
海域の活断層による 地殻内地震	御前崎海脚西部の断層帯の地震	-6.1(0.6min)	-6.0(0.5min)	傾斜角:70°(浅部)・45°(深部)、すべり角:90°、断層上端深さ:0km	
	A-5・A-18断層の地震	-2.0(なし)	-2.0(なし)	傾斜角:70°(浅部)・45°(深部)、すべり角:80°、断層上端深さ:0km	
	A-17断層の地震	-1.5(なし)	-1.5(なし)	傾斜角:50°(浅部)・25°(深部)、すべり角:90°、断層上端深さ:0km	
	遠州断層系の地震	-2.2(なし)	-2.2(なし)	傾斜角:100°、すべり角:160°、断層上端深さ:2.5km	

*1 防波壁の高さを無限大として解析を実施。また、1・2号取水槽周りに高さ無限大の壁を設定して解析を実施。 ・防波壁に関しては、基準津波の確定後、必要な津波対策を実施予定。1、2号取水槽に関しては、基準津波の確定後、 1号取水路出口流路の縮小(流路面積1.0m²)・2号取水路出口流路の閉塞等の対応を実施予定。

太字:全評価結果の中で、敷地への影響が最も大きいケース

・水位下降側:朔望平均干潮位T.P.-0.93mを考慮

・水位低下時間:取水塔地点の水位が取水塔吞口下端レベル(T.P.-6m)を下回り取水塔から取水できない時間 (なし:水位低下時間が発生していないことを示す。)

・海底面:最大下降水位時に海底面(約T.P.-10m)がほぼ露出している(水深1m未満である)ことを示す。

地震による津波の全体概要

コメント回答	19
No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方)	23
No.2コメント回答(阿部(1989)による津波予測式に用いる地震モーメント)	46
No.3コメント回答(A-5・A-18断層等の断層パラメータ)	51

地震による津波の評価結果まとめ

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

6

73

コメント回答の概要

項目	No.	コメント内容	コメント回答の概要
海洋プレート内地震 の津波評価 (組合せの評価方針)	1	【プレート間地震と海洋プレート内地震の組合せに関する考え方】 ・プレート間地震と海洋プレート内地震の組合せ要否について、審査ガ イドに照らし、敷地の地学的背景、津波発生要因の関連性に関する 既往知見と事実関係を十分に検討し、プレート間地震と海洋プレート 内地震を組合せる必要がないという論理構成を再整理すること。	 ・プレート間地震と海洋プレート内地震の組合せ要否について、敷地の地学的背景、津波発生要因の関連性に関する既往知見と事実関係を、(1)プレート間地震に伴う応力変化による別の地震の発生、(2)プレート間地震の破壊の直接伝播による一体性のある連動発生の観点から、プレート間地震と海域の活断層による地殻内地震との組合せ要否と合わせて再整理した。
海村の近戦屋	2	【阿部(1989)による津波予測式に用いる地震モーメント】 ・検討対象とする地震の選定について、敷地に大きな影響を及ぼす可能性のある地震を漏れなく選定する観点から、阿部(1989)による津波予測式が簡易的なものであることに留意し、断層が海域から陸域に連続して分布しているA-17断層等について、海域部分の地震モーメントだけでなく、陸域部分も含めた全体の地震モーメントから大きめに地震規模を算定し、津波予測式による評価に用いること。 	・阿部(1989)による津波予測式に用いる地震の規模(地震モーメント)について、当該予測式は海域の地震の規模・距離と津波高さとの関係を整理したものであるが、敷地に大きな影響を及ぼす津波波源を網羅的に抽出する観点から、海域から陸域に連続して分布している断層について、海域部の地震モーメントだけでなく、陸域部も含めた全体の地震モーメントを用いて津波予測式による評価を行うこととした。その結果、敷地に近いA-17断層も検討対象として追加した。
海域の活断層 による地殻内地震 の津波評価	3	 【A-5・A-18断層等の断層パラメータ】 ・地質調査によって断層変位が確認できないA-5・A-18断層の傾斜角のパラメータスタディ範囲は、南海トラフの敷地周辺における逆断層タイプの断層の傾斜角に係る既往知見を整理した上で、津波評価上、十分な保守性を有する根拠を説明すること。 ・また、断層上端深さのパラメータスタディ範囲は、津波評価上0kmまで考慮すること。 	 ・活断層調査によって断層面が確認できない活断層(A-5・A-18断層、A-17断層)の傾斜角を近傍の御前崎海脚西部の断層帯と同じ設定としたことについて、敷地周辺の海域の活断層の傾斜角に係る知見について検討し、傾斜角のパラメータスタディの範囲(基準(60°(浅部)・35°(深部))±10°)の設定が妥当であることを確認した。 ・断層上端深さについて、活断層調査によって地表付近に断層変位が認められない活断層(A-5・A-18断層、A-17断層)についても、津波評価上、土木学会(2016)に基づき0kmを考慮することとした。

前回審査会合からの変更概要

(海域の活断層による地殻内地震の津波評価の変更概要)

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

前回審査会合からの変更概要

(海洋プレート内地震、海域の活断層による地殻内地震の津波評価結果の変更概要)

■ 海洋プレート内地震、海域の活断層による地殻内地震の津波評価結果の変更概要は以下のとおり。

第1178回審査会合の津波評価結果 海洋プレート内地震 (波源モデルごとに各評価地点における最大値を記載) 【水位上昇側】 最大上昇水位(T.P.m) 波源モデル 敷地前面 1.2号取水槽3号取水槽4号取水槽5号取水槽 御前崎沖の想定沈み込む 6.1 2.9 3.8 3.8 4.2 海洋プレート内地震 【水位下隆側】 最大下降水位(T.P.m)(水位低下時間) 波源モデル 3号取水塔 4号取水塔 御前崎沖の想定沈み込む -7.0(0.9min) -7.0(0.9min) 海洋プレート内地震 海域の活断層による地殻内地震 【水位上昇側】 最大上昇水位(T.P.m) 波源モデル 敷地前面 1.2号取水槽3号取水槽4号取水槽5号取水槽 御前崎海脚西部の断層帯の地震 5.0 2.2 3.0 3.1 2.9 A-5・A-18断層の地震 2.3 4.6 1.8 2.12.2 遠州断層系の地震 3.3 1.9 2.5 2.5 2.3 【水位下降側】 最大下降水位(T.P.m)(水位低下時間) 波源モデル 3号取水塔 4号取水塔 御前崎海脚西部の断層帯の地震 -6.1(0.6min) -6.0(0.5min) A-5・A-18断層の地震 -1.9(なし) -2.0(なし) 遠州断層系の地震 -2.2(なし) -2.2(なし)

今回の津波評価結果

海洋プレート内地震

(波源モデルごとに各評価地点における最大値を記載)

【水位上昇側】

は、「「「」」	最大上昇水位(T.P.m)				
液源モデル	敷地前面	1.2号取水槽	3号取水槽 4号取水槽 5号取水		
御前崎沖の想定沈み込む 海洋プレート内地震	6.1	2.9	3.8	3.8	4.2
【水荷下降佃1】					

【水位下降側】

、市、西エニール	最大下降水位(T.P.m)(水位低下時間)			
	3号取水塔	4号取水塔		
御前崎沖の想定沈み込む 海洋プレート内地震	-7.0(0.9min)	-7.0(0.9min)		

海域の活断層による地殻内地震

【水位上昇側】

、市省エニビリ	最大上昇水位(T.P.m)					
ルル家モナル	敷地前面	1・2号取水槽	3号取水槽	4号取水槽	5号取水槽	
御前崎海脚西部の断層帯の地震	5.0	2.2	3.0	3.1	2.9	
A-5・A-18断層の地震 ²⁾	6.2	1.7	2.1	2.2	2.3	
A-17断層の地震 ¹⁾²⁾	1.5	1.3	1.5	1.5	1.5	
遠州断層系の地震	3.3	1.9	2.5	2.5	2.3	

【水位下降側】

、 中 酒 エ 二 川	最大下降水位(T.P.m)(水位低下時間)				
バタバ示て ブル	3号取水塔	4号取水塔			
御前崎海脚西部の断層帯の地震	-6.1(0.6min)	-6.0(0.5min)			
A-5・A-18断層の地震 ²⁾	<mark>-2.0</mark> (なし)	-2.0(なし)			
A-17断層の地震 ¹⁾²⁾	-1.5(なし)	-1.5(なし)			
遠州断層系の地震	-2.2(なし)	-2.2(なし)			
1) No.2コメント回答に伴い、陸域部も含めた全体の地震モーメントを用いて 阿部(1989)の予測式により評価した結果、新たに検討対象として追加 2) No.3コメント回答に伴い、断層上端深さを0kmまで考慮することに変更					

・水位上昇側:朔望平均満潮位T.P.+0.80mを考慮 ・水位低下時間:取水塔地点の水位が取水塔吞口下端レベル(T.P.-6m)を下回り取水塔から取水できない時間・水位下降側:朔望平均干潮位T.P.-0.93mを考慮 (なし:水位低下時間が発生していないことを示す。)

・1、2号取水槽に関しては、今後、基準津波の確定後、
 1号取水路出口流路の縮小(流路面積1,0m²)・2号取水路出口流路の閉塞等の対応を実施予定。

目次

地震による津波の全体概要

コメント回答		19

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) 23

- No.2コメント回答(阿部(1989)による津波予測式に用いる地震モーメント) 46
- No.3コメント回答(A-5・A-18断層等の断層パラメータ) 51

地震による津波の評価結果まとめ

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

6

73

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方)

コメント回答概要

O第1178回審査会合(2023年8月4日)におけるコメント

■ プレート間地震と海洋プレート内地震の組合せ要否について、審査ガイドに照らし、敷地の地学的背景、津波発生要因の関連性に関する既往知見と事実関係を 十分に検討し、プレート間地震と海洋プレート内地震を組合せる必要がないという論理構成を再整理すること。

Oコメント回答(概要)

■ プレート間地震と海洋プレート内地震の組合せ要否について、敷地の地学的背景、津波発生要因の関連性に関する既往知見と事実関係を、(1)プレート間地震 に伴う応力変化による別の地震の発生、(2)プレート間地震の破壊の直接伝播による一体性のある連動発生の観点から、プレート間地震と海域の活断層による 地殻内地震との組合せ要否と合わせて再整理した。

トラフ軸

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) 検討概要

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) (1)プレート間地震に伴う応力変化による別の地震の発生

- プレート間地震とその他の地震の組合せ要否について、「(1)プレート間地震に伴う応力変化による別の地震の発生」の観点から、①プレート間地震後の別の地震の 発生状況の確認、および②プレート間地震による別の断層活動への影響の確認を行い、南海トラフにおける津波評価上の関連性を評価する。
- ①プレート間地震後の別の地震の発生状況の確認では、国内外のM9クラスのプレート間地震および南海トラフのプレート間地震の事例に基づき、それぞれのプレート 間地震後、プレート間地震に伴う応力変化の影響などにより津波を発生させるような別の大規模(M7以上)の内陸地殻内地震もしくは海洋プレート内地震が発生 する時間間隔を確認する。
- ②プレート間地震による別の断層活動への影響の確認では、国内外の近年のM9クラスのプレート間地震後に上盤・下盤において発生したM7以上の地震の断層タイプを確認のうえ、南海トラフの上盤・下盤に分布する断層タイプと、M9クラスのプレート間地震に伴う周辺地殻の伸張作用による南海トラフの断層活動への影響を確認する。

(1)プレート間地震に伴う応力変化による別の地震の発生

構造	応力変化による別の地震の発生に関する 地学的背景	応力変化による 別の地震の発生に関する 津波評価上の関連性	
<u>上盤</u> (内陸地殻内地震 の領域) 下盤 (海洋プレート内地震 の領域)	 ①プレート間地震後の別の地震の発生状況の確認 p.27以降 ・国内外のM9クラスのプレート間地震および南海トラフのプレート間 地震の事例に基づき、それぞれのプレート間地震後、プレート間地 震に伴う応力変化の影響などにより大きな津波を発生させる可能 性がある別の大規模(M7以上)の内陸地殻内地震もしくは海 洋プレート内地震が発生する時間間隔を確認 ②プレート間地震による別の断層活動への影響の確認 ●.31以降 ・国内外の近年のM9クラスのプレート間地震後に上盤・下盤におい て発生したM7以上の地震の断層タイプを確認のうえ、南海トラフ の上盤・下盤に分布する断層タイプと、M9クラスのプレート間地震 に伴う周辺地殻の伸張作用による南海トラフの断層活動への影 響を確認 	①②に基づき、南海トラフにおける 津波評価上の関連性を評価	上盤 プレート間地震による断層変位 南海トラフの地震に伴う 海溝軸付近の上盤・下盤プレート の伸張作用のイメージ図

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) (1)プレート間地震に伴う応力変化による別の地震の発生 (1)プレート間地震後の別の地震の発生状況の確認)

- Lay et al.(2011)によると、巨大なプレート間地震が発生すると、それに伴う応力変化が周辺地殻の断層に影響し、稀ではあるが、沈み込む前の海洋プレート (アウターライズ領域)において大規模な地震の発生につながる場合があることが知られているとされ、日本海溝と千島海溝においてプレート間地震のそれぞれ約37 年後、約2か月後に当該海域における最大規模のアウターライズ地震が発生した事例が示されている。
- ここでは、国内外のM9クラスの地震および南海トラフの地震の発生後、プレート間地震に伴う応力変化の影響も受けて発生する上盤・下盤の地震のうち、津波に 関する検討を行う観点から、大きな津波を発生させる可能性があるM7以上*1の大地震の発生状況をプレート間地震後10年間(10年間で一度も発生して いない場合は10年後以降で最も早く発生したM7以上の地震まで)の期間で確認する。

地域	プレート間地震		当該海域最大規模の 海洋プレート内地震
日本海溝	1896年6月15日 明治三陸地震 (M8.2)	約37年後	1933年3月3日 昭和三陸地震 (M8.1)
千島 海溝	2006年11月15日 千島列島沖地震 (M8.3)	約2か月後	2007年1月13日 千島列島沖地震 (M8.1)
		()	

巨大なプレート間地震と、それに続く当該海域最大規模のアウターライズ地震の例

沈み込み帯の断面図と発生した地震の断層

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) (1)プレート間地震に伴う応力変化による別の地震の発生 (①プレート間地震後の別の地震の発生状況の確認: M9クラスの地震の領域)

■ 国内外のM9クラスのプレート間地震の波源域周辺において、プレート間地震後のプレート境界の上盤・下盤で発生したM7以上の大地震は以下のとおり。
 ■ 上盤・下盤のM7以上の地震は、プレート間地震発生後10年間でそれぞれ数個(0~5個)発生しており、プレート間地震とプレート間地震後最も早いイベントとの時間間隔は、2011年東北沖地震の事例ではプレート間地震の津波伝播が沿岸付近に達する程度の約40分であるが、M9クラスのその他の地震の事例では数か月~数十年の期間がある。

・本検討では、本震と関連している可能性の有無に関わらず対象となる地震を抽出。(次頁以降も同様)
 ・詳細な観測記録が充実している2000年代以降のM9クラスの地震である、2011年東北沖および2004年スマトラ島沖の地震の発生位置(上盤/下盤)と地震メカニズムについては、それぞれp.32、p.33に掲載している。
 ※1950~60年代の地震については、発生時期が古く、M7以上の地震の種類を判断できる記載がUSGS地震カタログにないことから、プレート間地震の可能性があるものを含め、全てのM7以上の地震を掲載している。

【①プレート間地震後の別の地震の発生状況の確認結果】

■ 国内外のM9クラスの地震および南海トラフの地震の事例によると、プレート間地震に伴う応力変化の影響などにより津波を発生させるような大規模(M7以上)の内陸地殻内地 震もしくは海洋プレート内地震が発生する時間間隔は、2011年東北沖地震の事例では約40分であるが、Mw9クラスのその他の地震や南海トラフの地震の事例では数か月~数 十年の期間がある。

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) (1)プレート間地震に伴う応力変化による別の地震の発生 (1)プレート間地震後の別の地震の発生状況の確認:(参考)南海トラフのM6以上の地震)

■ 南海トラフのプレート間地震の波源域周辺において、南海トラフのプレート間地震(1498年明応地震、1605年慶長地震、1707年宝永地震、1854年安政東海地震、1944年昭和東南海地震)のそれぞれの地震後にプレート境界の上盤・下盤で発生したM7以上の地震に加え、プレート間地震後10年間で発生した記録のあるM6以上の地震を示す。

■ 上盤・下盤のM6以上の地震の発生状況は、M7以上の地震のものと大きな違いがない。

・発生時期が古く、M6以上の地震の種類を判断できる記載が日本被害地震総覧(2013)等にないことから、 南海トラフの本震とされるもの以外は、プレート間地震の可能性があるものを含め、全てのM6以上の地震を掲載している。

・地震諸元は下記による。
 『日本被害地震総覧(2013』(宇佐美・他(2013)):1884年以前
 『茅野・宇津カタログ(2001)』(宇津・他(2001)):1885年~1922年
 『気象庁地震カタログ』(気象庁HPの地震月報(カタログ編)):1923年以降

	凡例
0	8.0 ≦ M
0	$7.0 \leqq M < 8.0$
0	$6.0 \leqq M < 7.0$
0	$5.0 \leqq M < 6.0$
0	M < 5.0
۰	未定

(日本被害地震総覧(2013)等に基づく)

▶ 1498年明応地震

No.	発生日	深さ(km)	М	
本震	1498-09-20	_	8.3	
1*	1520-04-04	_	7.4	本震の約22年後

▶ 1605年慶長地震

No.	発生日	深さ(km)	М	
本震	1605-02-03	—	7.9	
2*	1686-10-03	-	7.0	本震の約81年後

▶ 1707年宝永地震

No.	発生日	深さ(km)	Μ	
本震	1707-10-28	-	8.6	
3*	1718-08-22	_	7.0	本震の約11年後

▶ 1854年安政東海地震

No.	発生日	深さ(km)	М	
本震	1854-12-23	_	8.4	
4	1855-11-07	-	7.3	本震の約11ヶ月後
6	1857-07-14	_	6.3	
7	1861-03-24	-	6.0	

> 1944年昭和東南海地震

No.	発生日	深さ(km)	М	
本震	1944-12-07	40	7.9	
8	1945-01-13	11	6.8	本震の約1ヶ月後
9	1948-06-15	0	6.7	
10	1950-04-26	47	6.5	
5*	1984-01-01	_	7.0	

*10年間M7以上の地震が発生した記録がないことから、 10年後以降で最も早く発生したM7以上の地震を表示した

・本震以降の地震のMのうち、最大規模の地震は太字で表示 ・本震発生から最短の地震までの時間差を青字で表示

(本震後に発生したM6クラスの地震を斜体で表示)

南海トラフのプレート間地震の波源域周辺における、上盤・下盤のM6以上の地震

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) (1)プレート間地震に伴う応力変化による別の地震の発生 (2)プレート間地震による断層活動への影響の確認)

- 徐(2019)によると、プレート境界全域を破壊する巨大地震が発生した場合、津波に影響の大きい海溝軸付近の上盤・下盤にはともに沈み込み方向の伸張作用が働くとされ、この伸張作用が働いた際、同領域に正断層が分布する場合にはその活動が促進される方向となり、2011年の東北沖地震後には実際に沈み込み方向の伸張作用による正断層型の地震が多く観測されたとされる。
- ここでは、「②プレート間地震による断層活動への影響の確認」として、近年のM9クラスの地震の事例として2011年東北沖地震および2004年スマトラ島沖地震後に上盤・下盤において発生したM7以上の地震の断層タイプ(正断層等の伸張型/逆断層等の圧縮型のどちらか)を確認(p.32,33)のうえ、南海トラフの上盤・下盤に分布する断層タイプと、M9クラスのプレート間地震に伴う上盤・下盤の沈み込み方向の伸張作用による南海トラフの断層活動への影響を確認する。

徐(2019)

- 巨大地震が発生した場合の周囲への作用について、海溝型巨大地震を模擬した単純クラックモデルを用いた数値解析により検討した。
- 破壊が地表に達する海溝型巨大地震が生じた場合、上盤と下盤は幾何学的に非対称なため、断層の両側で変位が非対称に分配されることになる。地表に近いほど強い非対称が生じ、上盤プレートでは大きな変位が生じることになる。結果として、上盤プレートは全領域で沈み込み方向の引張となり、下盤プレートの浅い側は沈み込み方向の引張となる。
 2011年の東北沖地震では、上盤プレートの余震は正断層型の地震が、下盤プレートの海溝軸付近では正断層型の地震が多いという余震活動が実際に観測された。

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) (1)プレート間地震に伴う応力変化による別の地震の発生 (②プレート間地震による断層活動への影響:東北沖地震後に発生した上盤・下盤のM7以上の地震)

 ■ 2011年東北沖地震発生以降に上盤・下盤において発生したM7以上の地震のメカニズム解と断層タイプ(伸張型/圧縮型)の分類¹⁾は以下のとおり。
 ■ 東北沖では、2011年東北沖地震以降、上盤および下盤の浅い海溝軸付近ではM7以上の圧縮型の地震(逆断層型の地震もしくは沈み込み方向に圧縮軸を 持つ横ずれ型の地震)は発生せず、主に伸張型の地震(正断層型の地震もしくは沈み込み方向に伸張軸を持つ横ずれ型の地震)が発生している。
 ⇒ これはプレート間地震による沈み込み方向の伸張作用により、伸張型の断層活動が促進される方向に働いた結果と考えられる。

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) (1)プレート間地震に伴う応力変化による別の地震の発生 (2プレート間地震による断層活動への影響:2004年スマトラ島沖地震後に発生した上盤・下盤のM7以上の地震)

 ■ 2004年スマトラ島沖地震発生以降に上盤・下盤において発生したM7以上の地震のメカニズム解と断層タイプ(伸張型/圧縮型)の分類¹⁾は以下のとおり。
 ■ スマトラ島沖では、2004年スマトラ島沖地震以降、上盤および下盤の浅い海溝軸付近ではM7以上の圧縮型の地震(逆断層型の地震もしくは沈み込み方向に 圧縮軸を持つ横ずれ型の地震)は発生せず、主に伸張型の地震(正断層型の地震もしくは沈み込み方向に伸張軸を持つ横ずれ型の地震)が発生している。
 → これはプレート間地震による沈み込み方向の伸張作用により、伸張型の断層活動が促進される方向に働いた結果と考えられる。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) (1)プレート間地震に伴う応力変化による別の地震の発生 (2プレート間地震による断層活動への影響:東北沖の上盤・下盤に分布する断層)

 東北沖の上盤は、「陸域では逆断層が多数分布するのに対して、海底下の前弧域では造構性侵食作用により正断層が発達している」(木村(2002))とされており、 東北沖地震前に実施した海底の音波探査断面等からは、海底付近まで達する正断層が複数確認されている(産業技術総合研究所(2016))。
 下盤のアウターライズから海溝軸海側斜面にかけての領域では、厚い太平洋プレートが比較的急角度で沈み込んでおり、沈み込むプレートの下方への曲げにより、海溝軸 付近のプレート内部の浅い領域は正断層型の地震が、深い領域は逆断層型の地震が発生している。浅い領域の正断層型の地震は、東北沖地震前より地下構造探 査で確認されている海溝軸付近の正断層地形(ホルスト・グラーベン構造)に対応しているとされる。(瀬野(1995)等)

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) (1)プレート間地震に伴う応力変化による別の地震の発生 (2プレート間地震による断層活動への影響:南海トラフの上盤・下盤に分布する断層(1/2))

- 付加作用が卓越する南海トラフについて、上盤は、地殻が沈み込み方向に圧縮され逆断層成分をもつ断層が広範囲にわたり認められるとされる。 (東海沖海底活断層研究会(1999))
- 下盤は、薄いフィリピン海プレートが比較的低角度で沈み込むことでプレート内部の領域に沈み込み方向に圧縮応力が働き、逆断層型の地震が発生しているとされ、 またトラフ軸の沖合では正断層地形は認められないとされている。(Craig et al.(2014)、中田(2015)等)

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) (1)プレート間地震に伴う応力変化による別の地震の発生 (2プレート間地震による断層活動への影響:南海トラフの上盤・下盤に分布する断層(2/2))

- 敷地周辺の活断層評価*1の結果、敷地周辺の南海トラフの上盤には逆断層等の圧縮型の断層が分布することを確認している。
- 南海トラフの下盤では、海底地形および地下構造探査の結果から正断層や正断層地形(ホルスト・グラーベン構造)は認められず、南海トラフの沖合には銭洲断層系などの逆断層が認められ、トラフ軸付近の海洋プレート内では逆断層型の地震のみが発生している。
 - *1 敷地周辺の活断層評価では、敷地から概ね半径30km以内について、他機関による活断層調査も含めた文献調査、変動地形調査、地表地質調査、音波探査記録の分析等に基づき活断層を評価した。 また、半径約30~100kmについて、地震調査委員会が長期評価を行っている主要活断層帯や過去に規模の大きな地震が発生した活断層等を評価した。

【②プレート間地震による断層活動への影響の確認結果】

■ 付加作用が卓越する南海トラフでは、上盤・下盤とも主に逆断層等の圧縮型の断層が分布しており、沈み込み帯の全域を破壊する巨大地震が発生した場合には、津波に影響の大きい海 溝軸付近の上盤・下盤には沈み込み方向の伸張作用が働き、これら圧縮型の断層はプレート間地震に伴う応力変化により活動が緩和される方向となる。
No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) (1)プレート間地震に伴う応力変化による別の地震の発生

(応力変化による別の地震の発生に関する津波評価上の関連性)

- ①プレート間地震後の別の地震の発生状況について、国内外のM9クラスの地震および南海トラフの地震の事例によると、プレート間地震に伴う応力変化の影響など により津波を発生させるような大規模(M7以上)の内陸地殻内地震もしくは海洋プレート内地震が発生する時間間隔は、2011年東北沖地震の事例では約40分 であるが、Mw9クラスのその他の地震や南海トラフの地震の事例では数か月~数十年の期間があることから、応力変化の影響により津波が組合さる可能性は低いと考 えられる。
- ②プレート間地震の断層活動への影響について、付加作用が卓越する南海トラフでは、上盤・下盤とも主に逆断層等の圧縮型の断層が分布しており、沈み込み帯の 全域を破壊する巨大地震が発生した場合には、津波に影響の大きい海溝軸付近の上盤・下盤には沈み込み方向の伸張作用が働き、これら圧縮型の断層はプレート 間地震に伴う応力変化により活動が緩和される方向となる。
- ➡これらのことから、プレート間地震に伴う応力変化によって、別の大規模な内陸地殻内地震もしくは海洋プレート内地震が同時発生する津波評価上の関連性はなく、 (1)応力変化の観点からプレート間地震との組合せを考慮する必要はないと評価した。

(1)プレート間地震に伴う応力変化による別の地震の発生

構造	応力変化による別の地震の発生に関する 地学的背景	応力変化による 別の地震の発生に関する 津波評価上の関連性	地殻の伸張作用
上盤 (内陸地殻内地震 の領域)	 ①プレート間地震後の別の地震の発生状況の確認 ▶プレート間地震に伴う応力変化の影響などにより津波を発生させるような別の大規模な地震が発生する時間間隔は、2011 		
下盤	年東北沖地震の事例では約40分であるか、Mw9クラスのそ の他の地震や南海トラフの地震の事例では数か月〜数十年 の期間がある	関連性なしと評価 (→津波の組合せは行わない)	ウレート间地震による断層変位 南海トラフの地震に伴う
(海ハクレート内地震)の領域)	 ②プレート間地震による別の断層活動への影響の確認 p.31以降 ➡ 南海トラフには主に逆断層等の圧縮型の断層が分布し、プレート間地震により伸張作用が働くことで断層活動は緩和する方向 		海溝軸付近の上盤・下盤プレートの伸張作用のイメージ図

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) (2)プレート間地震の破壊の直接伝播による一体性のある連動発生

■ プレート間地震とその他の地震の組合せ要否について、「(2)プレート間地震の破壊の直接伝播による一体性のある連動発生」の観点から、南海トラフの沈み込み帯の構造等に関する知見の確認を行い、南海トラフにおける津波評価上の関連性を評価する。

■ 南海トラフの沈み込み帯の構造等に関する知見の確認では、付加作用が卓越する南海トラフの沈み込み帯の発達に伴い形成される上盤・下盤の構造を確認したうえで、それぞれの断層構造が形成される位置、外縁隆起帯等の顕著な隆起地形との関連、プレート間地震の破壊伝播に関する知見などを確認する。

(2)プレート間地震の破壊の直接伝播による一体性のある連動発生

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) (2)プレート間地震の破壊の直接伝播による一体性のある連動発生 (プレート間地震の破壊伝播に関する地学的背景:沈み込み帯の構造発達に伴い形成される断層・変形構造)

 付加作用が卓越する南海トラフでは、上盤の付加体は沈み込みによる圧縮により変形し、沈み込み帯の構造発達に伴い低角逆断層などの固有の変形構造が順次 形成され複雑な内部構造を有しているのに対し、下盤の海洋地殻は大きな変形をせずに沈み込んでいる。プレート境界から枝分かれする分岐断層は、このような沈 み込み帯の構造発達に伴い形成される付加体固有の構造であり、下盤では形成されず、上盤でのみ形成されている。(Moore et al.(2007)、小出(2019)等)
 分岐断層は外縁隆起帯等の顕著な隆起地形を形成しており、御前崎海脚西部の断層帯などの分岐断層以外の内陸地殻内地震の活断層は外縁隆起帯より陸 側に分布している。(Moore et al. (2007)等)

■ 分岐断層は、プレート間地震の破壊が伝播しプレート間地震との連動した活動を繰り返すことにより分岐断層の陸側には外縁隆起帯等の顕著な隆起地形が形成されている。分岐断層以外の内陸地殻内地震の活断層は、分岐断層とされる知見がなく、外縁隆起帯等の顕著な隆起地形との関連も認められない。 (詳細は補足説明資料5章参照)

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) (2)プレート間地震の破壊の直接伝播による一体性のある連動発生 (プレート間地震の破壊伝播に関する地学的背景:プレート間地震の破壊伝播に関する知見)

 南海トラフでは、大深度の反射法地震探査、掘削調査、既往津波の再現モデルの検討等に基づき、沈み込み帯の構造発達に伴い上盤の付加体中に形成された 分岐断層はプレート間地震の破壊が直接伝播することにより、プレート間地震と連動して活動することが推定されている。
 一方、プレート間地震の破壊が海洋プレート内地震の断層に伝播することが確認された知見・事例はない。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) (2)プレート間地震の破壊の直接伝播による一体性のある連動発生 (連動に関する津波評価上の関連性)

- 南海トラフの沈み込み帯の構造等に関する知見を確認した結果、分岐断層は、沈み込み帯の発達に伴い上盤のトラフ軸付近の付加体内部に形成される構造であり、プレート間地震の破壊が分岐断層に伝播することにより、プレート間地震と連動して活動することを示す知見があること、その活動の繰り返しにより外縁隆起帯等の顕著な隆起地形が形成されていることから、プレート間地震と津波評価上の関連性があると評価し、これを考慮した津波評価を実施することとした。
- これに関連し、**上盤の分岐断層以外の内陸地殻内地震の活断層**は、分岐断層のような地学的背景を持たないことから、分岐断層と同じようには破壊伝播しないと考えられ るが、上盤における複雑な付加体内部の構造を考慮するとプレート間地震の破壊の一部が伝播する可能性は考えられることから、(2)破壊伝播の観点から、プレート間地震 と津波評価上の関連性があると評価し、プレート間地震との組合せを考慮することとした。
- 一方、下盤の海洋プレート内地震は、分岐断層が上盤のトラフ軸付近の付加体内部に形成される構造であり付加体のない下盤では形成されないこと、プレート間地震の破壊が海洋プレート内地震の断層に伝播することを示す知見・事例もないことから、(2)破壊伝播の観点からも、プレート間地震と津波評価上の関連性はなく、プレート間地震との組合せを考慮する必要はないと評価した。
- なお、プレート間地震と海洋プレート内地震の連動発生を考慮しないという評価方針は、国内外の最新知見を踏まえて南海トラフの最大クラスの津波を想定した内閣府 (2012)が、南海トラフのプレート間地震と海洋プレート内地震とは「別地震とし、一体性のある連動については想定しない」としていることと、整合的である。

(2)プレート間地震の破壊の直接伝播による一体性のある連動発生

構造	破壊伝播による連動に関する 地学的背景 ●p.39~41	破壊伝播による連動に関する 津波評価上の関連性	
上盤 (内陸地殻内 地震の領域)	 分岐断層: ・トラフ軸付近の付加体内部に形成される構造 ・プレート間地震の破壊伝播を示す知見があり、外縁隆起帯等の顕著な隆起地形との関連が認められる 内陸地殻内地震の断層: ・外縁隆起帯等より陸側のより古い付加体内部に分布する構造 ・プレート間地震の破壊伝播を示す知見はなく、外縁隆起帯等の顕著な隆起地形との関連は認められない 	分岐断層: 関連性ありと評価 (→プレート間地震の津波 評価において検討実施) 内陸地殻内地震の断層: 分岐断層のようには破壊伝播しないと考えられ るが、上盤の複雑な付加体内部の構造を考慮 するとプレート間地震の破壊の一部が伝播する 可能性は考えられることを考慮し、 関連性ありと評価 (→津波の組合せを行う)	内陸地殻内地震の断層 分岐断層 トラフ軸 破壊の直接伝播 (付加体) 下盤
下盤 (海洋プレート 内地震の領域)	・分岐断層は上盤のトラフ軸付近の付加体内部に形成される構造であり付加体のない下盤では形成されない ・プレート間地震の破壊伝播を示す知見・事例はない	関連性なしと評価 (→津波の組合せは行わない)	海洋プレート内地震の断層
内閣府(2012) ・(参考) 相模 南海トラフの巨 のある連動発生	トラフ沿いの地震、糸魚川-静岡構造線断層帯の地震及びアウターライ 大地震とこれらの地震(相模トラフ沿いの地震、糸魚川-静岡構造線圏 Eについては想定しないこととする。	ズの地震等との連動について 新層帯の地震及びフィリピン海プレート内で発生する地	2震(アウターライズの地震など))とは別地震とし、一体性

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) プレート間地震と海洋プレート内地震の組合せに関する考え方 (まとめ)

■プレート間地震とその他の地震(上盤の内陸地殻内地震、下盤の海洋プレート内地震)の組合せについて、これらの地震が因果関係を持って同時発生し、津波が重なり 合う可能性がある「(1)プレート間地震に伴う応力変化による別の地震の発生」、「(2)プレート間地震の破壊の直接伝播による一体性のある連動発生」の観点から、 南海トラフの地学的背景を整理し、南海トラフにおける津波評価上の関連性を検討した。

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) プレート間地震と海洋プレート内地震の組合せに関する考え方 (まとめ)

- ■プレート間地震とその他の地震(上盤の内陸地殻内地震、下盤の海洋プレート内地震)の組合せについて、これらの地震が因果関係を持って同時発生し、津波が 重なり合う可能性がある「(1)プレート間地震に伴う応力変化による別の地震の発生」、「(2)プレート間地震の破壊の直接伝播による一体性のある連動発生」 の観点から、南海トラフの地学的背景を整理し、南海トラフにおける津波評価上の関連性を検討した。
- ■その結果、「(1)プレート間地震に伴う応力変化による別の地震の発生」について、まずプレート間地震後の別の地震の発生状況を確認した結果、プレート間地震 に伴う応力変化の影響などにより津波を発生させるような大規模(M7以上)の内陸地殻内地震もしくは海洋プレート内地震が発生する時間間隔は、2011年東 北沖地震の事例では約40分であるが、Mw9クラスのその他の地震や南海トラフの地震の事例では数か月~数十年の期間があることから、応力変化の影響により津 波が組合さる可能性は低いと考えられる。また、プレート間地震による別の断層活動への影響を確認した結果、南海トラフでは、プレート境界の上盤・下盤とも主に逆 断層等の圧縮型の断層が分布しており、圧縮型の断層はプレート間地震に伴う伸張作用により活動が緩和される方向となる。これらのことから、プレート間地震に伴 う応力変化によって、別の大規模な内陸地殻内地震もしくは海洋プレート内地震が同時発生する津波評価上の関連性はなく、(1)応力変化の観点からは、プレート 目地震との組合せを考慮する必要はないと評価した。
- ■また、「(2)プレート間地震の破壊の直接伝播による一体性のある連動発生」について、南海トラフの沈み込み帯の構造等に関する知見を確認した結果、分岐断層は、沈み込み帯の発達に伴い上盤のトラフ軸付近の付加体内部に形成される構造であり、プレート間地震の破壊が分岐断層に伝播することにより、プレート間地震と連動して活動することを示す知見があること、その活動の繰り返しにより外縁隆起帯等の顕著な隆起地形が形成されていることから、<u>プレート間地震と津波評価上の関連性があると評価し、これを考慮した津波評価を実施することとした</u>。これに関連し、上盤の分岐断層以外の内陸地殻内地震の活断層は、外縁隆起帯等より陸側のより古い付加体内部に分布し、分岐断層とされる知見がなく、外縁隆起帯等の顕著な隆起地形との関連も認められないことから分岐断層のようにはプレート間地震の破壊が伝播していないと考えられるが、上盤における複雑な付加体内部の構造を考慮するとプレート間地震の破壊の一部が伝播する可能性は考えられることから、(2)破壊伝播の観点から、プレート間地震と津波評価上の関連性があると評価し、プレート間地震との組合せを考慮することとした。
 - ー方、**下盤の海洋プレート内地震**は、分岐断層が上盤のトラフ軸付近の付加体内部に形成される構造であり付加体のない下盤では形成されないこと、プレート間 地震の破壊が海洋プレート内地震の断層に伝播することを示す知見・事例もないことから、(2)破壊伝播の観点からも、プレート間地震と津波評価上の関連性はなく、 プレート間地震との組合せを考慮する必要はないと評価した。
 - なお、プレート間地震と海洋プレート内地震の連動発生を考慮しないという評価方針は、国内外の最新知見を踏まえて南海トラフの最大クラスの津波を想定した内閣府(2012)が、南海トラフのプレート間地震と海洋プレート内地震とは「別地震とし、一体性のある連動については想定しない」としていることと、整合的である。

No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方) 津波評価における活断層に関する評価

第1178回 資料3-2 p.40一部修正

(海域の活断層に関する評価方針)

海域の活断層に関する評価方針

- 南海トラフでは、大深度の反射法地震探査や掘削調査等の調査が詳細に行われ、外縁隆起帯のトラフ側斜面にプレート境界の浅部から分岐して海底面へ延びる 分岐断層の存在が確認されている。分岐断層は、地殻内地震として考慮する活断層とは異なり、プレート間地震の際にプレート境界面の破壊が伝播して破壊し、その繰り返しにより外縁隆起帯等の顕著な地形的高まりが形成していると考えられる。
- このことから、分岐断層と地殻内地震として考慮する活断層とはそれぞれ異なる検討を実施する。

目次

地震による津波の全体概要

コメント回答	19
No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方)	23
No.2コメント回答(阿部(1989)による津波予測式に用いる地震モーメント)	46
No.3コメント回答(A-5・A-18断層等の断層パラメータ)	51

地震による津波の評価結果まとめ

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

6

73

No.2コメント回答(阿部(1989)による津波予測式に用いる地震モーメント) 海域の活断層による地殻内地震の津波評価の概要とコメント回答との関係

■ 海域の活断層による地殻内地震の津波評価の概要とNo.2コメント回答との関係は以下のとおり。

No.2コメント回答(阿部(1989)による津波予測式に用いる地震モーメント)

コメント回答概要

○第1178回審査会合(2023年8月4日)におけるコメント

■検討対象とする地震の選定について、敷地に大きな影響を及ぼす可能性のある地震を漏れなく選定する観点から、阿部(1989)による津波予測式が簡易的なものであることに留意し、断層が海域から陸域に連続して分布しているA-17断層等について、海域部分の地震モーメントだけでなく、陸域部分も含めた全体の地震モーメントから大きめに地震規模を算定し、津波予測式による評価に用いること。

○コメント回答(概要)

■阿部(1989)による津波予測式に用いる地震の規模(地震モーメント)について、当該予測式は海域の地震の規模・距離と津波高さとの関係を整理したものであるが、敷地に大きな影響を及ぼす津波波源を網羅的に抽出する観点から、海域から陸域に連続して分布している断層について、海域部の地震モーメントだけでなく、陸域部も含めた全体の地震モーメントを用いて津波予測式による評価を行うこととした。その結果、敷地に近いA-17断層も検討対象として追加した。

影地に近いA-17価増の地震を検討対象として進

No.2コメント回答(阿部(1989)による津波予測式に用いる地震モーメント) 検討対象とする地殻内地震の選定方針

(No.2コメント回答に伴う変更を反映)

■ 地殻内地震として考慮する活断層による地震について、阿部(1989)による津波予測式を用いて津波高を評価し、敷地への影響が相対的に大きい地震を検討対象として選定する。

■ ここで、阿部(1989)による津波予測式は海域で発生した地震の規模・距離と津波高さとの関係を整理したものであるが、敷地に大きな影響を及ぼす津波波源を 網羅的に抽出する観点から、海域から陸域に連続して分布している断層について、海域部の地震モーメントだけでなく、陸域部も含めた全体の地震モーメントを用い て津波予測式による評価を行うこととする。

阿部(1989)による津波予測式

 $logH_t=Mw-log\Delta-5.55$

- $(Mw = (log M_0 9.1)/1.5)$
- H_t:評価地点における津波高
- Mw : モーメントマグニチュード
 - : 津波の伝播距離(断層の上端中心位置~敷地までの距離。ただし、断層が海域から陸域に連続し て分布している場合は、津波の発生に寄与する海域部の断層の上端中心位置~敷地までの距離)
- Mo : 地震モーメント

地震モーメントMoの算出方法

No.2コメント回答(阿部(1989)による津波予測式に用いる地震モーメント) 検討対象とする地殻内地震の選定結果

■ 地殻内地震として考慮する活断層による地震について、阿部(1989)による津波予測式を用いて津波高を評価し、敷地への影響が相対的に大きい「御前崎海脚 西部の断層帯の地震」、「A-5・A-18断層の地震」、「A-17断層の地震」および「遠州断層系の地震」を検討対象として選定した。

阿部(1989)による	津波予	測式に	よる津波局の	の評価剤	吉果 」义	ント回合し	作つ後
), , , , , , , , , , , , , , , , , , ,		1

名 称	断層長さ L(km) ※5	断層幅 W(km)	すべり量 D(m)	地震 モーメントM ₀ (N・m)	地震規模 Mw	津波の 伝播距離 Δ(km) ^{※6}	津波高 H _t (m)
石花海海盆内西部の断層帯	26.4	15.0	2.2	3.0×10 ¹⁹	6.9	28.0	0.8
石花海海盆内東部の断層帯	23.4	15.0	2.0	2.4×10 ¹⁹	6.9	25.8	0.8
F-12断層	16.0	10.7	1.3	8.0×10 ¹⁸	6.5	29.4	0.3
御前崎海脚西部の断層帯	46.9	15.0	3.9	9.6×1019	7.3	23.2	2.2
A-4断層	12.1	8.1	1.0	3.4×10 ¹⁸	6.3	29.0	0.2
A-5・A-18断層	31.0 (19.2)	15.0	2.6	4.2×10 ¹⁹ (2.6×10 ¹⁹)	<u>7.0</u> (6.9)	11.7	<mark>2.5</mark> (1.8)
A-17断層 <mark>追加</mark>	15.7 (8.6)	10.5	1.3	7.5×10^{18} (4.1×10 ¹⁸)	<mark>6.5</mark> (6.3)	4.3	2.2 (1.4)
A-6断層	22.4	14.9	1.9	2.2×10 ¹⁹	6.8	38.3	0.5
A-41断層	7.0	4.7	0.6	6.7×10 ¹⁷	5.8	17.7	0.1
天竜海底谷に沿う断層	26.1	15.0	2.2	3.0×10 ¹⁹	6.9	55.1	0.4
遠州断層系※4	173.7	15.0	9.4	8.5×10 ²⁰	7.9	110.2	2.0
F-16断層	7.1	4.7	0.6	6.9×10 ¹⁷	5.8	24.1	0.1
渥美半島沖の断層	76.8	15.0	6.4	2.6×10 ²⁰	7.5	76.3	1.3

(下段の括弧書きは、海域部のみで算出した数値)

第1178回資料3-1 p.75一部修正

更

※4 断層長さが100kmを超える長大断層の地震モーメントは、長大断層では地表変位が約10mで飽和するとされるMurotani et al.(2015)の知見を踏まえて、 地震調査委員会(2010)による長大断層の地震モーメントの設定方法を参照し、すべり量が概ね10mを超えないそれぞれの区間に対して武村(1998)により 算出される地震モーメントの総和とし、複数の区間の組合せが想定される場合は最大となるケースを採用する。(詳細は補足説明資料6章参照)

※5 断層長さは、これまでの活断層調査結果および地震動評価に係る審査内容を反映。

※6 断層の上端中心位置から敷地までの距離。ただし、断層が海域から陸域に連続して分布している場合は、津波の発生に寄与する部分が海域部の断層であること を踏まえ、海域部の断層の上端中心位置から敷地までの距離とする。

※1 断層幅の上限W_tは、地震発生層の厚さH_aを15kmとし、傾斜角δを90°(45°~90°のうちM_w が最大となる値)とした

地震モーメントM_{0t}=10^(1.5M_{wt}+9.1)=2.21×10¹⁹(Nm)を用いて、剛性率をµ=3.5×10¹⁰(N/m²)とした際には、

※3 阿部の予測式は海域で発生した地震の規模・距離と津波高さとの関係を整理したものであるが、敷地に大きな影響を及ぼ す津波波源を網羅的に抽出する観点から、断層が海域から陸域に連続して分布しているA-5・A-18断層やA-17断層につ

(土木学会(2016)を参考に作成) 阿部(1989)による津波予測式による津波高の算定手順

目次

地震による津波の全体概要

コメント回答	19
No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方)	23
No.2コメント回答(阿部(1989)による津波予測式に用いる地震モーメント)	46
No.3コメント回答(A-5・A-18断層等の断層パラメータ)	51

地震による津波の評価結果まとめ

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

6

73

No.3コメント回答(阿部(1989)による津波予測式に用いる地震モーメント) 海域の活断層による地殻内地震の津波評価の概要とコメント回答との関係

■ 海域の活断層による地殻内地震の津波評価の概要とNo.3コメント回答との関係は以下のとおり。

No.3コメント回答(A-5・A-18断層等の断層パラメータ) コメント回答概要

○第1178回審査会合(2023年8月4日)におけるコメント

- 地質調査によって断層変位が確認できないA-5・A-18断層の傾斜角のパラメータスタディ範囲は、南海トラフの敷地周辺における逆断層タイプの断層の傾斜角に係る既往知見を整理した上で、津波評価上、十分な保守性を有する根拠を説明すること。
- また、断層上端深さのパラメータスタディ範囲は、津波評価上0kmまで考慮すること。

○コメント回答(概要)

1) A-5・A-18断層等の断層上端深さの設定

・活断層調査によって地表付近に断層変位が認められない活断層(A-5・A-18断層、A-17断層)の断層上端深さについて、前回は調査結果に基づき設定していたが、津波評価上、調査結果から断層上端深さを設定する考え方は確立された知見がないことから、今回は、津波評価の方法・手順が体系的に示されている土木学会(2016)に基づいて断層上端深さを0kmとして波源モデルを設定し、断層上端深さ0~5kmの範囲でパラメータスタディを行うことにより、御前崎海脚西部の断層帯等と統一的な評価を行うこととした。

2) A-5・A-18断層等の傾斜角の設定の妥当性確認

・活断層調査によって断層面が確認できない活断層(A-5・A-18断層、A-17断層)の傾斜角のパラメータスタディの範囲を近傍の御前崎海脚西部の断層帯と同じ設定(基準(60°(浅部)・35°(深部))±10°)としたことについて、敷地周辺海域における逆断層タイプの断層の傾斜角に係る知見を整理し、それらがパラメータスタディの範囲内であることを確認することにより、傾斜角のパラメータスタディの範囲の妥当性を確認した。

<u>基本モデル</u>
波源モデルの設定
・断層上端深さ:御前崎海脚西部の断層帯、遠州断層系:0km
A-5・A-18断層、 A-17断層 ※: <u>0</u> km
1) に伴う変更 ⇒波源モデルは、土木学会(2016)に 基づき断層上端深さを0kmとして設定(p.54~56)
パラメータスタディ 2) に伴う変更→傾斜角のパラメータスタディの妥当性
パラメータスタディの範囲 確認を追加(p.65~72)
・傾斜角:基準とする傾斜角±10°の範囲 <u>(妥当性確認を追加)</u>
・すべり角:基準とするすべり角±20°の範囲
・断層上端深さ:御前崎海脚西部の断層帯、遠州断層系:0、2.5、5.0km
A-5・A-18断層、 A-17断層 * : <u>0</u> 、2.5、5.0km
1) に伴う変更⇒ パラメータスタディは、断層上端深さ 0~5kmの範囲で実施 (p.57~63)
·

※: No.2コメント回答に伴い、A-17断層を検討対象として追加

No.3コメント回答(A-5・A-18断層等の断層パラメータ) **1) A-5・A-18断層等の断層上端深さの設定** (A-5・A-18断層の地震の波源モデル(基本モデル)の設定)

- ■「A-5・A-18断層の地震」の波源モデル(基本モデル)は、活断層調査結果に基づき土木学会(2016)の方法を用いて設定した。
- 断層上端深さについても、津波評価上、土木学会(2016)に基づき0kmと設定した。

A-5・A-18断層の地震(基本モデル)の断層パラメータ

A-5・A-18断層の地震の波源モデル

※1 深さ約2kmの調査範囲においては褶曲構造のみ確認され地下深部に連続する断層変位は認められないが、津波評価上、 土木学会(2016)に基づいて0kmと設定。

※2 活断層調査によって断層面が確認できないことから、周辺にある同じタイプの御前崎海脚西部の断層帯を参照し設定。

※3 武村(1998) (logM₀=2.0logL+16.64) により断層長さLから設定

※4 地震モーメントMoとMwの関係式 (LogMo=1.5Mw +9.1) から算定

第1178回資料3-1

p.77一部修正

No.3コメント回答(A-5・A-18断層等の断層パラメータ) 1) A-5・A-18断層等の断層上端深さの設定 (No.3コメント回答に伴う変更: A-5・A-18断層の地震の波源モデル)

■「A-5・A-18断層の地震」の波源モデル(基本モデル)は、活断層調査結果に基づき土木学会(2016)の方法を用いて設定している。

■ A-5・A-18断層の断層上端深さは、前回は調査結果に基づき2kmと設定していたが、津波評価上、調査結果から断層上端深さを設定する考え方は確立された知見がないことから、今回は、津波評価の方法・手順が体系的に示されている土木学会(2016)に基づいて断層上端深さを0kmとして波源モデルを設定することにより、御前崎海脚西部の断層帯等と統一的な評価を行うこととした。それに伴い、以下のとおり、波源モデルを変更した。

項目	前回の設定値(断層上端深さ2km)	今回の設定値(断層上端深さ0km)	設定根拠
断層長さ L(km)	31.0	31.0	当該断層の活断層調査結果に基づき設定
断層幅 W(km)	20.3	<u>22.6</u>	断層上端・下端深さおよび傾斜角より算出
断層上端深さ (km)	2	<u>0</u>	活断層調査結果を反映 →土木学会(2016) (0kmとする。) ^{※1}
断層下端深さ (km)	15	15	土木学会(2016) (上限15kmとする。)
傾斜角(°)	60 (深さ6km以浅) 35 (深さ6km以深)	60 (深さ6km以浅) 35 (深さ6km以深)	当該断層周辺の活断層調査結果に基づき設定
断層面積 (km ²)	<u>630</u>	<u>701</u>	断層長さ×断層幅
_ 地震モーメントM ₀ (Nm)	4.2×10 ¹⁹	4.2×10 ¹⁹	武村(1998) ^{※2}
Mw	7.0	7.0	*3
剛性率µ (N/m ²)	3.5×10 ¹⁰	3.5×10^{10}	土木学会(2016)
すべり量 D(m)	<u>1.9</u>	<u>1.7</u>	M ₀ =µDLWの関係
すべり角 (°)	90	90	

※1 深さ約2kmの調査範囲においては褶曲構造のみ確認され地下深部に連続する断層変位は認められないが、津波評価上、土木学会(2016)に基づいて0kmと設定。

※2 武村(1998) (logM₀=2.0logL+16.64) により断層長さLから設定

※3 地震モーメントMoとMwの関係式 (LogMo=1.5Mw +9.1) から算定

No.3コメント回答(A-5・A-18断層等の断層パラメータ) **1) A-5・A-18断層等の断層上端深さの設定** (A-17断層の地震の波源モデル(基本モデル)の設定)

- ■「A-17断層の地震」の波源モデル(基本モデル)は、活断層調査結果に基づき土木学会(2016)の方法を用いて設定した。
- 断層上端深さについても、津波評価上、土木学会(2016)に基づき0kmと設定した。

項目	設定値	設定根拠
断層長さ L(km)	15.7	当該断層の 活断層調査結果に基づき設定
断層幅 W(km)	10.5	武村(1998) ^{※1}
断層上端深さ (km)	0	土木学会(2016) ^{※2}
断層下端深さ (km)	8	断層幅と傾斜角より算出
傾斜角(°)	60 (深さ6km以浅) 35 (深さ6km以深)	当該断層周辺の 活断層調査結果に基づき設定 ^{※3}
断層面積 (km ²)	164	断層長さ×断層幅
地震モーメントM₀(Nm)	7.5×10 ¹⁸	M _o =µDLWの関係

₩4

逆断層

土木学会(2016)

 $D=D_t \times (L/L_t) \times 5$

※1 断層長さL<22.5km(断層幅が上限に達していないとき)に該当することから、武村(1998)の関係(L/W=1.5)により断層幅Wを算定

- ※2 深さ約2kmの調査範囲においては褶曲構造のみ確認され地下深部に連続する断層変位は認められないが、津波評価上、土木 学会(2016)に基づいて0kmと設定
- ※3 活断層調査によって断層面が確認できないことから、周辺にある同じタイプの御前崎海脚西部の断層帯を参照し設定。

6.5

 3.5×10^{10}

1.3

90

- ※4 地震モーメントMoとMwの関係式(LogMo=1.5Mw+9.1)から算定
- ※5 断層幅の上限に対応するすべり量D_tは、モーメントマグニチュードM_{wt}=(logL_t+3.77)/0.75=6.83、 地震モーメントM_{0t}=10^(1.5M_{wt}+9.1)=2.21×10¹⁹(Nm)を用いて、 剛性率をμ=3.5×10¹⁰ (N/m²) とした際には、 D_t=M_{0t}/(μL_tW_t)=1.87mとなる。

Mw

剛性率µ (N/m²)

すべり量 D(m)

すべり角 (°)

A-17断層の地震(基本モデル)の断層パラメータ

No.3コメント回答(A-5・A-18断層等の断層パラメータ) 1) A-5・A-18断層等の断層上端深さの設定 (パラメータスタディの検討方針と設定方法)

■ 断層上端深さに関する検討方針と設定値は以下のとおり。

■ 活断層調査によって地表付近に断層変位が認められない活断層(A-5・A-18断層、A-17断層)の断層上端深さについて、前回は調査結果に基づき断層上端深さ2 ~5kmの範囲でパラメータスタディを行っていたが、津波評価上、調査結果から断層上端深さを設定する考え方は確立された知見がないことから、今回は、津波評価の方 法・手順が体系的に示されている土木学会(2016)に基づいて、断層上端深さ0~5kmの範囲でパラメータスタディを行うことにより、御前崎海脚西部の断層帯等と統一的 な評価を行うこととした。

		100.3コメノト回告に十ノ垣加・返史
項目	検討方針	設定値
傾斜角	 ・同一断層内およびその周辺の断層の場所ごとの傾斜角の違いを考慮して、基準とする 傾斜角±10°の範囲で設定する。 ・断層面が確認できないA-5・A-18断層およびA-17断層については、それらの近傍に 位置し、同じ逆断層タイプでありかつ同様の断層走向を持つ御前崎海脚西部の断層 帯と同じ傾斜角の範囲で設定する。また、その設定の妥当性確認として、敷地周辺の 海域の活断層の傾斜角を整理し、それらが傾斜角のパラメータスタディの範囲内である ことを確認する。 2)に伴う変更→傾斜角のパラメータスタディの妥当性 確認を追加(p.65~72) 	<御前崎海脚西部の断層帯、A-5・A-18断層およびA-17断層> ・以下の3ケ-スを設定 : 50°(深さ6km以浅)・25°(深さ6km以深)(基準-10°) 60°(深さ6km以浅)・35°(深さ6km以深)(基準ケ-ス) 70°(深さ6km以浅)・45°(深さ6km以深)(基準+10°) <遠州断層系> ・以下の3ケ-スを設定 : 80°(基準-10°) 90°(基準ケ-ス) 100°(基準+10°)
すべり角	・同一断層内の場所ごとの水平・上下方向の変位量の違い、およびプレートの沈み込み 方向の違いを考慮し、基準とするすべり角±20°の範囲で設定する。	<御前崎海脚西部の断層帯、 A-5・A-18断層およびA-17断層> ・以下の5ケースを設定 : 70°(基準-20°) 80°(基準-10°) 90°(基準ケース) 100°(基準+10°) 110°(基準+20°)
断層上端深さ	 ・土木学会(2016)に基づき、深さ<u>0~5km</u>の範囲で設定する。 ・なお、地表付近に断層変位が認められないA-5・A-18断層およびA-17断層について も、津波評価上、深さ0~5kmの範囲で設定する。 1)に伴う変更→パラメータスタディは、断層上端深さ 	・以下の3ケースを設定 : Q、2.5、5.0kmを考慮 6km 15km 15km 0km 2.5km 5.0km 5.0km 断層上端深さ0km 断層上端深さ0km 断層上端深さ5km
	0~5KIIIの配因で美加 (p.57~63)	・傾斜角に応じた海域の活断層による地殻内地震の断層パラメータは、補足説明資料6章を参照。

No.3コメント回答に伴う追加・変更

No.3コメント回答(A-5・A-18断層等の断層パラメータ) 1) A-5・A-18断層等の断層上端深さの設定 (A-5・A-18断層のパラメータスタディの範囲)

■ A-5・A-18断層の断層上端深さは、音波探査記録、地表地質調査、反射法地震探査記録等の結果から、深さ約2kmの調査範囲においては褶曲構造のみ確認され地下深部に連続する断層変位は認められないが、津波評価上、土木学会(2016)に基づく深さ0~5kmの範囲で検討することとした。

コメント回答に伴う変更

・活断層評価の詳細は第413回審査会合資料2を参照。

第1178回資料3-1 p.91一部修正

No.3コメント回答(A-5・A-18断層等の断層パラメータ) 1) A-5・A-18断層等の断層上端深さの設定 (A-17断層のパラメータスタディの範囲)

■ A-17断層の断層上端深さは、音波探査記録、地表地質調査、反射法地震探査記録等の結果から、深さ約2kmの調査範囲においては褶曲構造のみ確認され 地下深部に連続する断層変位は認められないが、津波評価上、土木学会(2016)に基づく深さ0~5kmの範囲で検討することとした。

・活断層評価の詳細は第413回審査会合資料2を参照。

No.3コメント回答(A-5・A-18断層等の断層パラメータ) 1) A-5・A-18断層等の断層上端深さの設定

(海域の活断層による地殻内地震の津波評価結果の変更概要)

- 海域の活断層による地殻内地震の津波評価結果の変更概要は以下のとおり。
- No.2コメント回答に伴い、検討対象としてA-17断層を追加した。

■ No.3コメント回答に伴い、A-5・A-18断層等の断層上端深さを津波評価上、土木学会(2016)に基づいて0kmとして波源モデルを設定し、断層上端深さ0~ 5kmの範囲でパラメータスタディを行ったことにより、A-5・A-18断層の津波評価結果が変更となった。

(波源モデルごとに各評価地点における最大値を記載。A-5・A-18断層およびA-17断層のパラメータスタディ結果の詳細はp.75~82。)

第1178回審査会合の津波評価結果

今回の津波評価結果

【水位上昇側】						
(中)百工二)川	最大上昇水位(T.P.m)					
ルル家モナル	敷地前面	1・2号取水槽	3号取水槽	4号取水槽	5号取水槽	
御前崎海脚西部の断層帯の地震	5.0	2.2	3.0	3.1	2.9	
A-5・A-18断層の地震	4.6	1.8	2.1	2.2	2.3	
遠州断層系の地震	3.3	1.9	2.5	2.5	2.3	

【水位下降側】

、市省エニー	最大下降水位(T.P.m)(水位低下時間)			
ルズパネモナル	3号取水塔	4号取水塔		
御前崎海脚西部の断層帯の地震	-6.1(0.6min)	-6.0(0.5min)		
A-5・A-18断層の地震	-1.9(なし)	-2.0(なし)		
遠州断層系の地震	-2.2(なし)	-2.2(なし)		

【水位上昇側】								
「「「「」」、「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」	最大上昇水位(T.P.m)							
	敷地前面	1・2号取水槽	3号取水槽	4号取水槽	5号取水槽			
御前崎海脚西部の断層帯の地震	5.0	2.2	3.0	3.1	2.9			
A-5・A-18断層の地震 ²⁾ 変更	6.2	1.7	2.1	2.2	2.3			
A-17断層の地震 ¹⁾²⁾ 追加	1.5	1.3	1.5	1.5	1.5			
遠州断層系の地震	3.3	1.9	2.5	2.5	2.3			

【水位下降側】

(本))百工二)	最大下降水位(T.P.m)(水位低下時間)					
ルズルホモナル	3号取水塔	4号取水塔				
御前崎海脚西部の断層帯の地震	-6.1(0.6min)	-6.0(0.5min)				
A-5・A-18断層の地震 ²⁾ 変更	<mark>-2.0</mark> (なし)	-2.0(なし)				
A-17断層の地震 ¹⁾²⁾ 追加	-1.5(なし)	-1.5(なし)				
遠州断層系の地震	-2.2(なし)	-2.2(なし)				
1) No.2コメント回答に伴い、陸域部も含めた全体の地震モーメントを用いて						

阿部(1989)の予測式により評価した結果、新たに検討対象として追加

2) No.3コメント回答に伴い、断層上端深さを0kmまで考慮することに変更

・水位上昇側:朔望平均満潮位T.P.+0.80mを考慮
 ・水位下降側:朔望平均干潮位T.P.-0.93mを考慮

・水位低下時間:取水塔地点の水位が取水塔吞口下端レベル(T.P.-6m)を下回り取水塔から取水できない時間 (なし:水位低下時間が発生していないことを示す。)

・1、2号取水槽に関しては、今後、基準津波の確定後、

1号取水路出口流路の縮小(流路面積1.0m²)・2号取水路出口流路の閉塞等の対応を実施予定。

No.3コメント回答(A-5・A-18断層等の断層パラメータ) 断層上端深さの設定の違いが津波評価結果に及ぼす影響確認

(A-5・A-18断層の地震による津波の評価結果の比較)

- ■A-5・A-18断層の断層上端深さについて、前回は調査結果に基づき設定していたが、津波評価上、調査結果から断層上端深さを設定する考え方は確立された知見が ないことから、今回は、津波評価の方法・手順が体系的に示されている土木学会(2016)に基づいて断層上端深さを0kmとして波源モデルを設定(p.54、55)し、断 層上端深さ0~5kmの範囲でパラメータスタディを行う(p.57)ことにより、御前崎海脚西部の断層帯等と統一的な評価を行った。その結果、1~5号取水槽、3,4号 取水塔の水位は前回評価と同程度であるが、敷地前面の水位は前回評価より大きく保守的な評価となった。
- なお、下記の今回評価では、各評価地点において、海域の活断層による地殻内地震の全評価結果の中で最大値となるケースを掲載しており、水位上昇側の敷地前面は、A-5・A-18断層の地震の津波影響が最大、水位上昇側の1~5号取水槽、水位下降側の3,4号取水塔は、前回から変わらず、御前崎海脚西部の断層帯の地震の津波影響の方が最大となっている。

(水位上昇側)

【前回評価】

【今回評価】

A-5・A-18断層の地震

(土木学会(2016)に基づき断層上端深さを設定)

御前崎海脚西部の断層帯の地震(前回評価と同じ)

・水位下降側:朔望平均干潮位T.P.-0.93mを考慮

(3,4号取水塔地点の最大ケース)

· 市场工工" II	最大上昇水位(T.P.m)				/#== <u>2</u>		
液源モナル		1·2号取水槽※	3号取水槽	4号取水槽	5号取水槽	加方	
A-5・A-18断層の地震 (調査結果に基づき断層上端深さを設定)	4.6	1.8(1.72)	2.1	2.2	2.3	傾斜角:70°(深さ6km以浅)・45°(深さ6km以深)、すべり角:80°、 断層上端深さ:2.0km	
A-5・A-18断層の地震 (土木学会(2016)に基づき断層上端深さを設定)	6.2	1.7(1.70)	2.1	2.2	2.3	(頃斜角: 70°(深さ6km以浅)・45°(深さ6km以深)、すべり角: 80°、 断層上端深さ: 0km	
御前崎海脚西部の断層帯の地震(前回評価と同じ) (1~5号取水槽の最大ケース)	4.3	2.2	3.0	3.1	2.9	傾斜角:70°(深さ6km以浅)・45°(深さ6km以深)、すべり角:90°、 断層上端深さ:2.5km	
・水位上昇側:朔望平均満潮位T.P.+0.80mを考慮 (水位下降側) ※1、2号取水槽に関しては、今後、基準津波の確定後、1号取水路出口流路の縮小(流路面積1.0m²)・2号取水路出口流路の閉塞等の対応を実施予定 【前回評価】							
· 定酒工二" II	最大下降水位(T.P.m)(水位低下時間)			下時間)		- 備考	
ルメルホモナル	3.	3号取水塔 4		导取水塔			
A-5・A-18断層の地震 (調査結果に基づき断層上端深さを設定)	-1.9(なし) -2.0(なし) 傾斜角:70°(浅部)・45°(深部)、すべり角:80°、 断層上端深さ:2.0km		70°(浅部)・45°(深部)、すべり角:80°、 深さ:2.0km				

 ・水位低下時間:取水塔地点の水位が取水塔吞口下端レベル(T.P.-6m)を下回り取水塔から取水できない時間 (なし:水位低下時間が発生していないことを示す。)

-2.0(なし)

-6.1(0.6min)

-2.0(なし)

-6.0(0.5min)

太字:海域の活断層による地殻内地震の全評価結果の最大値

傾斜角:70°(浅部)・45°(深部)、すべり角:80°、

傾斜角:70°(浅部)・45°(深部)、すべり角:90°、

断層上端深さ:0km

断層上端深さ: 0km

No.3コメント回答(A-5・A-18断層等の断層パラメータ) 断層上端深さの設定の違いが津波評価結果に及ぼす影響確認 (水位上昇側:A-5・A-18断層の地震による津波の時刻歴波形比較)

■ 水位上昇側のA-5・A-18断層の水位の時刻歴波形について、敷地前面の最大水位は前回評価より大きくなっているが、津波波形の全体的な形状が異なるなどの傾向の違いは見られない。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

No.3コメント回答(A-5・A-18断層等の断層パラメータ) 断層上端深さの設定の違いが津波評価結果に及ぼす影響確認 (水位下降側:A-5・A-18断層の地震による津波の時刻歴波形比較)

■水位下降側のA-5・A-18断層の水位の時刻歴波形について、津波波形の全体的な形状が異なるなどの傾向の違いは見られない。

No.3コメント回答(A-5・A-18断層等の断層パラメータ) コメント回答概要(再掲)

○第1178回審査会合(2023年8月4日)におけるコメント

- 地質調査によって断層変位が確認できないA-5・A-18断層の傾斜角のパラメータスタディ範囲は、南海トラフの敷地周辺における逆断層タイプの断層の傾斜角に係る既往知見を整理した上で、津波評価上、十分な保守性を有する根拠を説明すること。
- また、断層上端深さのパラメータスタディ範囲は、津波評価上0kmまで考慮すること。

○コメント回答(概要)

1) A-5・A-18断層等の断層上端深さの設定

・活断層調査によって地表付近に断層変位が認められない活断層(A-5・A-18断層、A-17断層)の断層上端深さについて、前回は調査結果に基づき設定して いたが、津波評価上、調査結果から断層上端深さを設定する考え方は確立された知見がないことから、今回は、津波評価の方法・手順が体系的に示されている土 木学会(2016)に基づいて断層上端深さを0kmとして波源モデルを設定し、断層上端深さ0~5kmの範囲でパラメータスタディを行うことにより、御前崎海脚西部の 断層帯等と統一的な評価を行うこととした。

2) A-5・A-18断層等の傾斜角の設定の妥当性確認

・活断層調査によって断層面が確認できない活断層(A-5・A-18断層、A-17断層)の傾斜角のパラメータスタディの範囲を近傍の御前崎海脚西部の断層帯と同じ設定(基準(60°(浅部)・35°(深部))±10°)としたことについて、敷地周辺海域における逆断層タイプの断層の傾斜角に係る知見を整理し、それらがパラメータスタディの範囲内であることを確認することにより、傾斜角のパラメータスタディの範囲の妥当性を確認した。

○第1178回審査会合における説明	○今回説明
<u>基本モデル</u>	<u>基本モデル</u>
波源モデルの設定	波源モデルの設定
・断層上端深さ:御前崎海脚西部の断層帯、遠州断層系:0km	・断層上端深さ:御前崎海脚西部の断層帯、遠州断層系:0km
A-5・A-18断層: <u>2.0</u> km	A-5・A-18断層、 A-17断層 ※: <u>0</u> km
,; [⊢] /	i ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
<u>パラメータスタディ</u>	
パラメータスタディの範囲	パラメータスタディの範囲 確認を追加(p.65~72)
・傾斜角:基準とする傾斜角±10°の範囲	・傾斜角:基準とする傾斜角±10°の範囲 <u>(妥当性確認を追加)</u>
・すべり角:基準とするすべり角±20°の範囲	・すべり角:基準とするすべり角±20°の範囲
・断層上端深さ:御前崎海脚西部の断層帯、遠州断層系:0、2.5、5.0km	・断層上端深さ:御前崎海脚西部の断層帯、遠州断層系:0、2.5、5.0km
A-5·A-18断層: <u>2.0</u> 、2.5、5.0km	A-5・A-18断層、 A-17断層 ※ : <u>0</u> 、2.5、5.0km
l'i	1) に伴う変更→ パラメータスタディは、断層上端深さ 0~5kmの範囲で実施 (p.57~63)

※: No.2コメント回答に伴い、A-17断層を検討対象として追加

No.3コメント回答(A-5・A-18断層等の断層パラメータ) 2) A-5・A-18断層等の傾斜角の設定の妥当性確認 (パラメータスタディの検討方針と設定方法)

- 傾斜角に関する検討方針と設定値は以下のとおり。
- コメント回答に伴い、活断層調査によって断層面が確認できない活断層(A-5・A-18断層、A-17断層)の傾斜角のパラメータスタディの範囲を近傍の御前崎海脚 西部の断層帯と同じ設定(基準(60°(浅部)・35°(深部))±10°)としたことについて、敷地周辺海域における逆断層タイプの断層の傾斜角に係る知見を整理し、 それらがパラメータスタディの範囲内であることを確認することにより、傾斜角のパラメータスタディの範囲の妥当性を確認した。

項目	検討方針	
傾斜角	 ・同一断層内およびその周辺の断層の場所ごとの傾斜角の違いを考慮して、基準とする 傾斜角±10°の範囲で設定する。 ・断層面が確認できないA-5・A-18断層およびA-17断層については、それらの近傍に 位置し、同じ逆断層タイプでありかつ同様の断層走向を持つ御前崎海脚西部の断層 帯と同じ傾斜角の範囲で設定する。また、その設定の妥当性確認として、敷地周辺の 海域の活断層の傾斜角に係る知見を整理し、それらが傾斜角のパラメータスタディの範 囲内であることを確認する。 	<御前崎海脚西部の断層帯、A-5・A-18断層およびA-17断層> ・以下の3ケ-スを設定 : 50°(深さ6km以浅)・25°(深さ6km以深)(基準-10°) 60°(深さ6km以浅)・35°(深さ6km以深)(基準ケ-ス) 70°(深さ6km以浅)・45°(深さ6km以深)(基準+10°) <遠州断層系> ・以下の3ケ-スを設定 : 80°(基準-10°) 90°(基準ケ-ス) 100°(基準+10°)
すべり角	確認を追加 (p.65~72) ・同一断層内の場所ごとの水平・上下方向の変位量の違い、およびプレートの沈み込み 方向の違いを考慮し、基準とするすべり角±20°の範囲で設定する。	<御前崎海脚西部の断層帯、 A-5・A-18断層およびA-17断層> ・以下の5ケースを設定 : 70°(基準-20°) 80°(基準-10°) 90°(基準ケース) 100°(基準+10°) 110°(基準+20°) <
断層上端深さ	 ・土木学会(2016)に基づき、深さ<u>0~5km</u>の範囲で設定する。 ・なお、地表付近に断層変位が認められないA-5・A-18断層およびA-17断層について も、津波評価上、深さ0~5kmの範囲で設定する。 1) に伴う変更→ パラメータスタディは、断層上端深さ 	・以下の3ケースを設定 : <u>Q</u> 、2.5、5.0kmを考慮 6km 15km 15km 0km 2.5km 5.0km 5.0km 断層上端深さ0km 断層上端深さ2.5km 断層上端深さ2.5km 断層上端深さ2.5km
	0~5kmの範囲で実施 (p.57~63)	・傾斜角に応じた海域の活断層による地殻内地震の断層パラメータは、補足説明資料6章を参照。

No.3コメント回答に伴う追加・変更

No.3コメント回答(A-5・A-18断層等の断層パラメータ) 2) A-5・A-18断層等の傾斜角の設定の妥当性確認 (A-5・A-18断層周辺の褶曲構造等の分布・形状)

■活断層評価により認定したA-5・A-18断層、A-17断層の付近には複数の褶曲構造が形成されており、いずれも付加体地域に分布して褶曲軸がトラフ軸と並走してい ることから、プレートの沈み込みに伴う水平方向の圧縮応力により堆積盆に牛じた褶曲構造と考えられる。 ■ A-5・A-18断層、A-17断層の東側には、同じ逆断層タイプでありかつ同様の断層走向を持つ御前崎海脚西部の断層帯が位置している。

N 原段丘堆積物 相良層群 掛川層郡 1、空層群 兵岡原子力発電所 大陸机 猿州海盆 地質時代 遠州灘海域 完新世 A層 A:0 第四 四 紀 新 世 後期 中期 前期 新第三紀 10km 鮮新世

敷地前面海域に分布する北北東ー南南西方向の褶曲構造

御前崎台地

御前崎南方沖の褶曲群

- ・敷地前面の大陸棚から陸域に見られる褶曲構造(A-18グループ、A-17グループ、御前崎台地〜御 前崎南方沖の褶曲群)と遠州海盆に分布する褶曲群(A-4、A-5、A-6、A-41)は、付加体地域 に分布し、褶曲軸がトラフ軸と並走していることから、いずれもプレートの沈み込みに伴う水平方向の圧 縮応力によって、堆積盆に生じた褶曲構造と考えられる。
- A-4、A-5、A-6、A-41は、現世の堆積盆である遠州海盆内に位置し、敷地前面の大陸棚から陸域 に見られる褶曲構造(A-18グループ、A-17グループ、御前崎台地〜御前崎南方沖の褶曲群)は、 現在は陸化した相良層群・掛川層群堆積時の古い堆積盆内に位置する。
- ・A-17グループの女神背斜が掛川層群の分布域の東側を規制していること、牧ノ原段斤堆積物 (MIS6-5d) に調和的な変形を与えていないことから、A-17グループは、掛川層群が堆積し始めた鮮 新世頃には成長を始め、少なくとも中期更新世末頃までにはその成長を停止したと考えられる。
- ・A-17グループに並走し相良層群及び掛川層群に認められることから、A-18グループ及び御前崎台地 ~御前崎南方沖の褶曲群も、相良層群・掛川層群堆積時に形成された褶曲構造と考えられる。
- 遠州海盆に分布する褶曲構造(A-4、A-5、A-6、A-41)は、現世の堆積盆に分布しており、音波 探査記録から、後期更新世以降の活動が認められる。

第413回資料2

p.14一部修正

No.3コメント回答(A-5・A-18断層等の断層パラメータ) 2) A-5・A-18断層等の傾斜角の設定の妥当性確認 敷地周辺の海域の活断層の傾斜角に係る知見:検討方針

- 活断層調査によって断層面が確認できないA-5・A-18断層およびA-17断層の傾斜角のパラメータスタディの範囲は、それらの近傍に位置し、同じ逆断層タイプでありかつ 同様の断層走向を持つ御前崎海脚西部の断層帯と同じ設定としている。
- ここでは、A-5・A-18断層の傾斜角のパラメータスタディの範囲の妥当性確認として、他機関による調査も含めた文献調査、変動地形調査、地表地質調査、音波探査 記録の分析等に基づき断層構造を確認している『敷地周辺の活断層評価』に基づき、敷地周辺海域における逆断層タイプの断層の傾斜角を整理し、それらがA-5・A-18断層、A-17断層の傾斜角のパラメータスタディの範囲(基準(60°(浅部)・35°(深部))±10°)内であることを確認する。
- 敷地周辺海域における傾斜角の整理に当たっては、「横ずれ断層」は断層タイプが異なること、「外縁隆起帯に関連する分岐断層」はA-5・A-18断層・A-17断層から離れたトラフ軸付近の低角な逆断層であることから比較の対象外とし、「逆断層」およびA-5・A-18断層・A-17断層に近い「前弧海盆を区切る隆起帯に関連する分岐断層」の傾斜角と比較することとする。

1) 「敷地周辺の活断層評価」で説明(第493回審査会合資料1等)

No.	活断層の名称	活断層長さ (km)	断層タイプ	
1	根古屋海脚東縁・石花海堆 東縁の断層帯	62.6	前弧海盆を区切る 隆起帯に関連する 分岐断層	
2	石花海海盆内西部の断層帯	26.4	逆断層	
3	石花海海盆内東部の断層帯	23.4	逆断層	
4	御前崎海脚東部の断層帯・ 牧ノ原南稜の断層	86.3	前弧海盆を区切る 隆起帯に関連する 分岐断層	
5	F-12断層	16.0	逆断層	
6	御前崎海脚西部の断層帯	46.9	逆断層	
\bigcirc	東海断層系※1	167.1	外縁隆起帯に関連す る分岐断層	
8	小台場断層系※1	109.5	外縁隆起帯に関連す る分岐断層	
9	A-4断層	12.1	逆断層	
10	A-5・A-18断層	31.0	逆断層	
(11)	A-17断層	15.7	逆断層	
12	A-6断層	22.4	逆断層	
13	A-41断層	7.0	逆断層	
(14)	天竜海底谷に沿う断層*1	26.1	横ずれ断層	
(15)	遠州断層系※1	173.7	横ずれ断層	
16	F-16断層	7.1	逆断層	
(17)	渥美半島沖の断層	76.8	逆断層	

※1:「横ずれ断層」は断層タイプが異なること、「外縁隆起帯に関連する分岐断層」は A-5・A-18断層・A-17断層から離れたトラフ軸付近の低角な逆断層(内閣府 (2012))であることから比較の対象外とする。 ○地震調査委員会(2020)

震源断層モデルの傾斜角については、地表から地震発生層の最下部にいたる活断層全体の形状が実際に明らかとなった例は少ないが、その一方で、次の地震規模の推定に大きな影響を与えるため、注意深く設定する必要がある。そこで、対象とする断層についての反射法探査結果など、断層の傾斜角を推定する資料がある場合にはそれを参照する。また、周辺にある同じタイプの断層から傾斜角が推定できる場合には、それらを参照する。上記のような資料が得られない場合は、断層のずれのタイプ(ずれの方向)により次に示す傾斜角(逆断層:45°、正断層:45°、横ずれ断層:90°)を基本とする。

→地震調査委員会(2020)によると、当該断層の傾斜角が不明な場合には、 周辺にある同じタイプの断層から傾斜角が推定できるとされている。

○土木学会(2016) 本編4.2.1.4 海域活断層に想定される地震に伴う津波の波源の設定 ・海域活断層の傾斜角は、評価地点個別の海域活断層調査や文献調査等から明らかな場合には、確定的に取り扱うことができる。 付属編3.2 パラメータスタディにおける不確定性が比較的大きい因子の範囲 ・傾斜角が不明な場合、西南日本(近畿~九州の西南日本内陸部):45~ 90度、中越地方:30~60度程度と考えられる。これらを適用する場合、基

本断層モデルにおいて幅をもったパラメータを与えることとなる。 →土木学会(2016)によると、当該断層の傾斜角が不明な場合には、評価対

象地域の傾斜角に係る知見に基づくことが考えられるとされている。

No.3コメント回答(A-5・A-18断層等の断層パラメータ) 2) A-5・A-18断層等の傾斜角の設定の妥当性確認 敷地周辺の海域の活断層の傾斜角に係る知見:検討結果

- 敷地周辺の活断層の傾斜角の整理結果は以下のとおり。確認されている活断層には、褶曲構造や撓曲構造から断層を認定しているものもあり、傾斜角などの断層構造が確認できるのは②石花海海盆内西部の断層帯、③石花海海盆内東部の断層帯、④御前崎海脚東部の断層帯・牧ノ原南稜の断層、⑥御前崎海脚西部の断層帯の4つである。
- 逆断層および前弧海盆を区切る隆起帯に関連する分岐断層の傾斜角は、浅部で60~70°程度、深部で35~45°程度となっている。
- → 敷地周辺の海域の逆断層タイプの断層の傾斜角は、A-5・A-18断層とA-17断層の傾斜角の設定の範囲(基準(60°(浅部)・35°(深部))±10°)内であることを 確認した。

活断層の分布状況(活断層調査結果)

No.	活断層の名称	活断層長さ (km)	断層タイプ	断層変位の 確認有無	断斜角 (断層構造) の確認有無	傾斜角	
1	根古屋海脚東縁・石花海堆 東縁の断層帯	62.6	前弧海盆を区切る 隆起帯に関連する 分岐断層	無(褶曲構造)	_	_	
2	石花海海盆内西部の断層帯	26.4	逆断層	有	有	60~70°(深さ8km以浅)、 深さ8km以深は断層変位が認められない	
3	石花海海盆内東部の断層帯	23.4	逆断層	有	有	60~70°(深さ8km以浅)、 深さ8km以深は断層変位が認められない	
4	御前崎海脚東部の断層帯・ 牧ノ原南稜の断層	86.3	前弧海盆を区切る 隆起帯に関連する 分岐断層	有	有	セグメント①②:65°(深さ8km以浅)、45°(深さ8km以深) セグメント③:65°(深さ8km以浅)、35°(深さ8km以深) セグメント④:60°(深さ6km以浅)、35°(深さ6km以深)	
5	F-12断層	16.0	逆断層	有	無	-	
6	御前崎海脚西部の断層帯	46.9	逆断層	有	有	60° (深さ6km以浅)、35° (深さ6km以深)	
7	東海断層系※1	167.1	外縁隆起帯に関連す る分岐断層	-	-	-	
8	小台場断層系※1	109.5	外縁隆起帯に関連す る分岐断層	-	-	-	
9	A-4断層	12.1	逆断層				
10	A-5・A-18断層	31.0	逆断層		_	-	
(1)	A-17断層	15.7	逆断層	無(褶曲構造)			
12	A-6断層	22.4	逆断層				
13	A-41断層	7.0	逆断層				
(14)	天竜海底谷に沿う断層*1	26.1	横ずれ断層	-	-	-	
(15)	遠州断層系※1	173.7	横ずれ断層	-	-	-	
16	F-16断層	7.1	逆断層	有	無	-	
17	渥美半島沖の断層	76.8	逆断層	無(撓曲構造)	-	-	
ビビン ビジン ジェ ビジン ビジン ビジン ビジン ビジン ジェ ビジン ジェ ビジン ビジン ジェ ビジン ジェ ビジン ジェ ジェ ジェ ジェ ジェ ジェ ビジン ジェ ビジン ジェ ジ							
日本 日本							

■: 傾斜角が確認できる活断層。調査結果は、次ページ以降に掲載。

No.3コメント回答(A-5・A-18断層等の断層パラメータ) 2) A-5・A-18断層等の傾斜角の設定の妥当性確認 敷地周辺の海域の活断層の傾斜角に係る知見:調査結果(石花海海盆内西部・東部の断層帯)

■ 石花海海盆内西部・東部の断層帯は、石花海海盆内の圧縮応力場によって形成された逆断層と考えられ、海域活断層の音波探査断面によると、それぞれ深さ7 ~8km程度まで60~70°程度の断層が認められる。一方、これ以深の深さ8~9kmにおける連続性の良い反射面には上記断層に対応する変位・変形は認められない。

石花海海盆内西部・東部の断層帯の形状

第1041回資料2-2-5

p.51一部修正

No.3コメント回答(A-5・A-18断層等の断層パラメータ) 2) A-5・A-18断層等の傾斜角の設定の妥当性確認 敷地周辺の海域の活断層の傾斜角に係る知見:調査結果(御前崎海脚東部の断層帯・牧ノ原南稜の断層)

■ 御前崎海脚東部の断層帯・牧ノ原南稜の断層の傾斜角は、海域活断層の音波探査断面によると、浅部で60°~65°、深部で35°~45°である。

深さ~6km程度には、反射面の傾斜が変化する位置に60°程度の断層が認められ、 それ以深には、反射面の傾斜が変化する位置に35°程度の断層が認められる。 御前崎海脚東部の断層帯・牧ノ原南稜の断層に係る活断層評価結果

(上:Line10測線、下:Line1測線)

第1178回資料3-1

p.86一部修正

No.3コメント回答(A-5・A-18断層等の断層パラメータ) 2) A-5・A-18断層等の傾斜角の設定の妥当性確認 敷地周辺の海域の活断層の傾斜角に係る知見:調査結果(御前崎海脚西部の断層帯)

■ 御前崎海脚西部の断層帯の傾斜角は、海域活断層の音波探査断面によると深さ2~6km付近は60°程度、深さ6~8km付近は35°程度である。

・活断層評価の詳細は第413回審査会合資料2を参照。

第1178回資料3-1 p.79一部修正
目次

地震による津波の全体概要

コメント回答	19
No.1コメント回答(プレート間地震と海洋プレート内地震の組合せに関する考え方)	23
No.2コメント回答(阿部(1989)による津波予測式に用いる地震モーメント)	46
No.3コメント回答(A-5・A-18断層等の断層パラメータ)	51

地震による津波の評価結果まとめ

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

6

73

地震による津波の評価結果一覧

■ 地震による津波の評価結果は以下のとおり。

(水位上昇側)

赤字:今回のコメント回答に伴う追加・変更

津波発生要因					.P. m) ^{*⊥}			
		敷地 前面	1,2号 取水槽	3号 取水槽	3号 4号 5号 水槽 取水槽 取水槽		備考	
プレート問地震	南海トラフのプレート問地震	22.7	4.6	7.3	8.1	10.1	検討波源モデルA (基準断層モデル1-1)東海地域の大すべり域1箇所:東へ40km ライズタイム60s、破壊伝播速度2.5km/s、破壊開始点P4	
		19.8	6.4	9.0	9.6	11.8	検討波原モデルD(基準断層モデル3-2)東海地域の大すべり域1箇所:東へ60km ライズタイム60s、破壊伝播速度1.0km/s、破壊散台点P6	
		6.1	2.3	3.5	3.5	3.7	断層位置:位置2·内陸則-20km·北西條料	
海洋プレート内地震	御前崎沖の想定沈み込む海洋プレート内地震	6.0	2.9	3.7	3.7	4.2	断層位置:位置2·内陸側こ10km·南東條料	
		4.9	2.6	3.8	3.8	4.0	断層位置:位置2·内陸則、20km·南東條料	
	御前崎海期西部の断層帯の地震	5.0	2.2	2.9	3.0	2.7	傾斜角:70°(浅部)・45°(深部)、すべり角:100°、断層上端深さ:0km	
		4.3	2.2	3.0	3.1	2.9	傾斜角:70°(浅部)・45°(深部)、すべり角:90°、断層上端深さ:2.5km	
海域の活断層による 地殻内地震	A-5・A-18断層の地震	6.2	1.7	2.1	2.2	2.3	傾斜角:70°(浅部)・45°(深部)、すべり角:80°、 <mark>断層上端深さ:0km</mark>	
	A-17断層の地震	1.5	1.3	1.5	1.5	1.5	傾斜角:70°(浅部)・45°(深部)、すべり角:80°、断層上端深さ:0km	
	遠州新国系の地震	3.3	1.5	1.9	1.9	1.9	傾斜角:80°、すべり角:160°、断層上端深さ:0km	
		3.1	1.9	2.5	2.5	2.3	傾斜角:100°、すべり角:160°、断層上端深さ:5km	
(水位下降側)		・水位上昇側:朔望平均満潮位T.P.+0.80mを考慮						
津波発生要因		──最大下降水位(T.P 3号取水塔		<u>T.P. m)</u>			備考	
プレート間地震	南海トラフのプレート間地震	海底面	ī(13.6 mii	n) 3	海底面(13.5 min)		検討波原モデルA(基準断層モデル2-3) 東海地域の大すべり域2箇所:東へ30km・距離120km ライズタイム90s、破壊伝番恵度1.0km/s、破壊散台点P1	
海洋プレート内地震	御前崎沖の想定沈み込む海洋プレート内地震	-7.0)(0.9min)		-7.0(0.9min)		断層位置:位置②·内陸側-20km·北西條斜	
海域の活断層による	御前崎海脚西部の断層帯の地震	-6.1(0.6min)			-6.0(0.5min)		傾斜角:70°(浅部)・45°(深部)、すべり角:90°、断層上端深さ:0km	
	A-5・A-18断層の地震	-2.0(なし)			-2.0(なし)		傾斜角:70°(浅部)・45°(深部)、すべり角:80°、 断層上端深さ:0km	
地殻内地震 	A-17断層の地震	-1	.5(なし)		-1.5(な	し)	傾斜角:50°(浅部)・25°(深部)、すべり角:90°、断層上端深さ:0km	
	遠州断層系の地震	-2.2(なし)			-2.2(なし)			

*1 防波壁の高さを無限大として解析を実施。また、1・2号取水槽周りに高さ無限大の壁を設定して解析を実施。 ・防波壁に関しては、基準津波の確定後、必要な津波対策を実施予定。1、2号取水槽に関しては、基準津波の確定後、 1号取水路出口流路の縮小(流路面積1.0m²)・2号取水路出口流路の閉塞等の対応を実施予定。

太字: 全評価結果の中で、敷地への影響が最も大きいケース

・水位下降側:朔望平均干潮位T.P.-0.93mを考慮

・水位低下時間:取水塔地点の水位が取水塔吞口下端レベル(T.P.-6m)を下回り取水塔から取水できない時間 (なし:水位低下時間が発生していないことを示す。)

・海底面:最大下降水位時に海底面(約T.P.-10m)がほぼ露出している(水深1m未満である)ことを示す。

第1178回資料3-1 p.95一部修正

(水位上昇側:A-5・A-18断層の地震による津波)

■「A-5・A-18断層の地震の波源モデル」の水位上昇側のパラメータスタディの結果は以下のとおり。

A-5·A-18断層の 地震の波源モデル

赤字:各評価地点における最大値

: A-5・A-18断層の地震による津波のパ ラメータスタディの中で、全ての評価地点 における津波水位の最大値を持つケー スとして選定した代表ケース

临创在	オベり色	熊屋上端湾さ		-m)			
1頃赤十円	970月	町/盲工师/木C	敷地前面	1,2号取水槽	3号取水槽	4号取水槽	5号取水槽
	++++)// ()	0km	4.2	1.5	1.7	1.7	1.8
	基準-20°(/0°)	2.5km	2./	1.5	1./	1./	1./
-		5.0km	2.0	1.4	1.6	1.6	1.6
	甘洪 100(000)		4.3	1.5	1./	1.7	1.8
	基华-10°(80°)	2.5Km	2.7	1.5	1.7	1./	1.7
其准_100	其淮(000)	0km	4.3	1.4	1.0	1.0	1.5
金平 10 50°(深さ6km以浅)		2 5km	2.7	1.5	1.7	1.7	1.7
25°(深さ6km以深)	至十(50)	5.0km	1.9	1.4	1.6	1.6	1.5
		0km	4.2	1.4	1.6	1.6	1.7
	基準+10°(100°)	2.5km	2.6	1.4	1.7	1.6	1.6
		5.0km	1.9	1.4	1.6	1.6	1.5
		0km	3.9	1.3	1.6	1.6	1.6
	基準+20°(110°)	2.5km	2.5	1.4	1.6	1.6	1.6
		5.0km	1.8	1.3	1.6	1.5	1.4
	++++++ ================================	0km	5.4	1.6	1.9	2.0	2.1
	基準-20°(/0°)	2.5km	3.2	1.6	1.8	1.9	1.9
-		5.0km	2.2	1.5	1./	1./	1./
	基準-10°(80°)		2.5	1.0	1.9	2.0	2.1
		2.3KIII 5.0km	<u> </u>	1.0	1.0	1.9	1.9
基准	基準(90°)	0km	5 5	1.5	1.7	1.7	2.0
<u></u> 60°(深さ6km以浅)		2.5km	3.3	1.6	1.8	1.8	1.9
35°(深さ6km以深)		5.0km	2.2	1.5	1.7	1.7	1.7
		0km	5.4	1.6	1.8	1.9	2.0
	基準+10°(100°)	2.5km	3.2	1.5	1.8	1.8	1.9
		5.0km	2.2	1.4	1.7	1.7	1.6
		0km	5.2	1.5	1.7	1.8	1.9
	基準+20°(110°)	2.5km	3.2	1.5	1.7	1.7	1.8
		5.0km	2.1	1.4	1.7	1.6	1.6
基準+10° 70°(深さ6km以浅) 45°(深さ6km以深)	基準-20°(70°)	0km	6.0	1./	2.1	2.2	2.3
		2.5km	3.8	<u> </u>	2.0	2.1	2.2
		Okm	6.2	1.5	2.1	1.7	1.0
	其淮_100(800)	2.5km	3.8	1.7	2.1	2.2	2.5
	本年 10 (00)	5.0km	2.5	1.7	1.8	1 7	1.8
		0km	6.2	1.7	2.1	2.1	2.3
	基準(90°)	2.5km	3.8	1.7	2.0	2.0	2.1
		5.0km	2.4	1.5	1.8	1.7	1.8
		0km	6.0	1.7	2.0	2.1	2.2
	基準+10°(100°)	2.5km	3.7	1.7	2.0	2.0	2.1
		5.0km	2.4	1.5	1.7	1.7	1.7
		0km	5.8	1.6	1.9	2.0	2.1
	基準+20°(110°)	2.5km	3.6	1.6	1.9	1.9	2.0
		5.0km	2.3	1.4	1.7	1.7	1.7

①全ての評価地点における 津波水位の最大値を持つ ケースとして選定

・朔望平均満潮位T.P.+0.80mを考慮 選定した代表ケースについて、各評価地点における最大値(表中赤字)を持つケースと、その波形を比較する(次ページ)

第1178回資料3-1 p.96一部修正

(水位上昇側:A-5・A-18断層の地震による津波の波形比較)

■ A-5・A-18断層による津波のパラメータスタディの結果、各評価地点における上昇水位の最大値が同値となる複数のケースについて、これらの水位の時刻歴波形を比較した結果、代表ケースと異なる傾向(津波波形の全体的な形状が異なる、最大値が発生する波峰等が異なる、等)を有するケースはないことから、選定した代表ケースによって各評価地点への津波影響を代表できると評価した。

	割地前面の時刻歴波形 (最大上昇水位:T.P.6.2m)	1,2号取水槽の時刻歴波形 (最大上昇水位 : T.P.1.7m)	3号取水槽の時刻歴波形 (最大上昇水位 : T.P. <mark>2.1</mark> m)	4号取水槽の時刻歴波形 (最大上昇水位 : T.P.2.2m)	5号取水槽の時刻歴波形 (最大上昇水位:T.P.2.3m)
傾斜角 : 基準+10° すべり角 : 基準-20° 断層上端深さ : 0km	$\begin{bmatrix} E & 6 & 0 & 0 \\ -4 & -4 & 0 & 0 \\ -4 & -4 & 0 & 0 \\ -4 & -4 & 0 & 0 & 0 & 120 & 150(3) \end{bmatrix}$	$ \begin{array}{c} 8 \\ \hline E \\ a \\ E \\ c \\ c$	E E C E C E C E C E C E C E C	$\begin{array}{c} \begin{array}{c} \mathbb{E} & \mathbb{E} \\ \mathbb{E} & \mathbb{A} \\ \mathbb{E} & \mathbb{A} \\ \mathbb{E} & \mathbb{C} \\ \mathbb{E} & \mathbb{E} \\ \mathbb{E} & \mathbb{E} \\ \mathbb{E} & \mathbb{E} & \mathbb{E} & \mathbb{E} \\ \mathbb{E} & \mathbb{E} & \mathbb{E} & \mathbb{E} & \mathbb{E} \\ \mathbb{E} & \mathbb{E} & \mathbb{E} & \mathbb{E} & \mathbb{E} \\ \mathbb{E} & \mathbb{E} & \mathbb{E} & \mathbb{E} & \mathbb{E} \\ \mathbb{E} & \mathbb{E} & \mathbb{E} & \mathbb{E} & \mathbb{E} & \mathbb{E} \\ \mathbb{E} & \mathbb{E} \\ \\ \mathbb{E} & $	$\begin{array}{c} \mathbb{E} & \mathbb{E} \\ \mathbb{E} & \mathbb{E} \\ \mathbb{E} & \mathbb{E} \\ $
傾斜角 : 基準+10° すべり角 : 基準-20° 断層上端深さ : 2.5km	E 6 3.8 H 2 0 H 2 0 H 2 0 K 4 4 H 2 0 K 4 4 H 2 0 H 2 0 H 2 0 K 4 4 H 2 0 H 2 0 K 4 4 H 2 0 K 4 4 H 2 0 K 4 4 H 2 0 K 4 4 K	E 8 d 1.7 2 0 H -2 × -4 30 60 90 120 150(分)	E 4 4 - 2.0 日 2 0 日 2 0 天 4 4 2 0 日 2 0 天 4 4 3 0 60 90 120 150(分)	E d 2.1 ↓ 20 ↓ 2 + 4 ↓ 30 60 90 120 150(分)	E 6 4 2.2- 2 0 H -2 X -4 0 30 60 90 120 150(分)
傾斜角 : 基準+10° すべり角 : 基準-10° 断層上端深さ : 0km (代表ケースとして選定)	$ \begin{array}{c} \widehat{E} & \widehat{6} & - \widehat{6} & - 2 & - \\ \widehat{a} & \widehat{4} & - \widehat{6} & - 2 & - \\ \widehat{4} & \widehat{4} & 2 & - 2 & - \\ \widehat{4} & \widehat{4} & 2 & - 2 & - \\ \widehat{4} & \widehat{4} & 2 & - 2 & - \\ \widehat{4} & \widehat{4} & 2 & - 2 & - \\ \widehat{4} & \widehat{4} & 2 & - 2 & - \\ \widehat{4} & \widehat{4} & 2 & - 2 & - \\ \widehat{4} & \widehat{4} & 2 & - 2 & - \\ \widehat{4} & \widehat{4} & 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - \\ \widehat{4} & 2 & - 2 & - \\ \widehat{4 & 2 & - 2 & - \\ \widehat{4} & 2 & - \\ 4 & 2 & - 2 & - \\ \widehat{4 & 2$	$ \begin{array}{c} \overbrace{\substack{\text{E}\\\text{a},\text{c}\\\text{c}\\\text{c}\\\text{c}\\\text{c}\\\text{c}\\\text{c}\\\text{c}\\$	E 8 2.1 L 2 2 JZ 2 30 G 4 30 G 90 120 150(分) 150(分)	$ \begin{array}{c} \begin{array}{c} 8 \\ E \\ a \\ H \\ H$	E 8 4 A 2 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4
傾斜角 : 基準+10° すべり角 : 基準-10° 断層上端深さ : 2.5km	(E 8 3.8 4 3.8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(E d 4 L) 20 ∏ -2 X -4 0 30 60 90 120 150(分)	8 8 8 4 4 2 0 3 0 6 0 9 0 120 150(分)	(E.d. L) 現代 (E.d. L) (E.d. L) (E.	E d 4 H d 2 2 H d 2
傾斜角 : 基準+10° すべり角 : 基準 断層上端深さ : 0km	$ \begin{array}{c} \widehat{E} & \widehat{6} & 6.2 \\ \widehat{E} & \widehat{6} & 4 \\ \widehat{E} & 2 $	$ \begin{array}{c} \left(\begin{array}{c} \mathbb{E} \\ \mathbb{E} \\ \mathbb{A} \\ $	(E 8 A 4 L 0 (Z) 1 (Z) 1 (Z) 1 (Z) 1 (Z) 1	$ \begin{array}{c} \widehat{E} & \stackrel{8}{\leftarrow} & \\ E & \stackrel{4}{\leftarrow} & 2.1 \\ \stackrel{1}{\leftarrow} & 2 \\ \stackrel{1}{\leftarrow} & 2 \\ \stackrel{1}{\leftarrow} & 2 \\ \stackrel{1}{\leftarrow} & \stackrel{1}{\leftarrow} & 2 \\ \stackrel$	E 8 a. 4 b. 0 ↓ 0
傾斜角 : 基準+10° すべり角 : 基準 断層上端深さ : 2.5km	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E 4 4 1.7 2 2 2 2 2 2 2 2 2 2 2 2 2	日 日 日 日 日 日 日 日 日 日 日 日 日 日	(E. d. 4) 2.0 ↓□ 20 ↓□	E 4 2.1 2 2 2 2 2 2 2 2 2 2 2 2 2
傾斜角 : 基準+10° すべり角 : 基準+10° 断層上端深さ : 0km	E 6.0 H 6.0 H 1.0 H <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>(E d 4 d L) 2 0 (日 d - 2.0 (日 d - 4) 2 0 (日 d - 2.0) (日 d - 2.0) (1 d - 2.0)</td><td>E 2.1 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 3 I 2 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3</td><td>$\begin{array}{c} \left(\begin{array}{c} E \\ a \\ - \end{array} \right) \\ \left(\begin{array}{c} E \\ a \\ - \end{array} \right) \\ \left(\begin{array}{c} 2 \\ - \end{array}$</td></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(E d 4 d L) 2 0 (日 d - 2.0 (日 d - 4) 2 0 (日 d - 2.0) (日 d - 2.0) (1 d - 2.0)	E 2.1 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 3 I 2 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3	$\begin{array}{c} \left(\begin{array}{c} E \\ a \\ - \end{array} \right) \\ \left(\begin{array}{c} E \\ a \\ - \end{array} \right) \\ \left(\begin{array}{c} 2 \\ - \end{array}$
傾斜角 : 基準+10° すべり角 : 基準+10° 断層上端深さ : 2.5km	(E 4 4 2) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(E 4 1.7 上) 2 2 天 4 30 50 90 120 150(分)	(E d 2.0 (E d 2.0 (E d 2.0 (E d 2.0 (E d 2.0 (E d 2.0) (E d 2.0 (E d 2.0) (E d 2.0 (E d 2.0) (E d 2.	(E, a) 2.0 (E, a) 2.0 </td <td>(E 4 2 0 日 2 1 日 2 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2</td>	(E 4 2 0 日 2 1 日 2 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2

(水位上昇側:A-17断層の地震による津波)

■「A-17断層の地震の波源モデル」の水位上昇側のパラメータスタディの結果は以下のとおり。

地震の波源モデル

赤字:各評価地点における最大値

タスタディの中で、全ての評価地点にお ける津波水位の最大値を持つケースと して選定した代表ケース

補料項 3 / 0 月 时間上端未定 敷地前面 1,2号取水槽 3号取水槽 4号取水槽 5号取水槽 基準-20°(70°) 2.5km 1.2 1.1 1.2 1.4 1.4 1.4 5.0km 1.2 1.1 1.2 1.1 1.1 1.0 基準-10°(80°) 2.5km 1.2 1.1 1.2 1.1 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.1 1.0 5.0km 1.2
基準-20°(70°) 0km 1.4 1.2 1.4 1.4 1.4 1.4 5.0km 1.2 1.1 1.2 1.1 1.0 1.1 1.0 基準-10° 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.0 50°(深26km以ž) 2#9-10°(80°) 0km 1.4 1.2 1.4 1.4 1.4 50°(深26km以ž) 2#(90°) 2.5km 1.2 1.1 1.2 1.1 1.0 50°(深26km以ž) 2#(90°) 2.5km 1.2 1.1 1.2 1.1 1.0 50°(%?26kmužž) 2.5km 1.2 1.1 1.2 1.1 1.0 50°(%?26kmužž) 2.5km 1.2 1.1 1.2 1.1 1.0 50°(%?26kmužž) 2.5km 1.2 1.1 1.2 1.1 1.0 1.1 1.0 2.5km 1.2 1.1 1.0 1.1 1.1 1.0 1.1 1.0 1.1 1.0 1.1
基準 2.5km 1.2 1.1 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 基準 00km 1.4 1.2 1.4 1.4 1.4 1.4 基準 1.0°(80°) 2.5km 1.2 1.1 1.2 1.2 1.1 50°(深さ6km以浅) 2.5km 1.2 1.1 1.2 1.2 1.1 50°(?*** 0.km 1.3 1.3 1.3 1.3 1.3 50°(m 0.km 1.2 1.0 1.1 1.0 1.1 1.0 50°(m 1.1 1.0
基準-10° 5.0km 1.1 1.0 1.1 1.1 1.0 50°(深さ6km以洗) 2#-10°(80°) 2.5km 1.2 1.1 1.2 1.2 1.1 50°(深さ6km以洗) 3±(90°) 0km 1.4 1.2 1.4 1.4 1.4 50°(深さ6km以洗) 3±(90°) 0km 1.4 1.2 1.4 1.4 1.4 50°(深さ6km以洗) 3±(90°) 0km 1.4 1.2 1.4 1.4 1.4 25°(深さ6km以洗) 3±(90°) 0km 1.4 1.2 1.3 1.3 1.4 35°(深さ6km以洗) 3±(90°) 0km 1.4 1.2 1.3 1.3 1.4 35°(深さ6km以洗) 3±(10°) 0.5km 1.1 1.0 1.1 1.1 1.0 35°(深さ6km以洗) 3±(10°) 0.5km 1.2 1.1 1.2 1.1 1.0 35°(深さ6km以洗) 3±(10°) 1.3 1.2 1.3 1.3 1.3 1.3 35°(深さ6km以洗) 3±(10°)
基準-10°(80°) 0km 1.4 1.2 1.4 1.4 1.4 50°(深さ6km以浅) 基準(90°) 2.5km 1.2 1.1 1.2 1.2 1.1 50°(深さ6km以浅) 基準(90°) 2.5km 1.2 1.1 1.2 1.4 1.4 1.4 50°(深さ6km以浅) 基準(90°) 2.5km 1.2 1.1 1.2 1.2 1.4 5.0km 1.1 1.0 1.1 1.4 1.4 1.4 25°(深さ6km以浅) 基準(90°) 2.5km 1.2 1.1 1.2 1.2 35°(深 26km以浅) 基準+10°(100°) 2.5km 1.2 1.1 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.0 1.1 1.0 35°(% 26km以浅) 0km 1.3 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.
基準 基準 1.0°(80°) 2.5km 1.2 1.1 1.2 1.2 1.1 50°(深さ6km以決) 2.5km 1.1 1.0 1.1 1.0 1.4 1.4 1.4 50°(深さ6km以決) 基準(90°) 2.5km 1.2 1.1 1.2 1.2 1.1 50°(深さ6km以決) 基準(90°) 2.5km 1.2 1.1 1.2 1.2 1.1 50(m 1.1 1.0 1.1 1.1 1.0 1.1 1.0 50°(深さ6km以決) 基準+10°(100°) 2.5km 1.2 1.1 1.2 1.1 5.0km 1.1 1.0 1.1 1.0 1.1 1.0 基準+20°(110°) 2.5km 1.2 1.0 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.0 1.1 1.0 1.1 5.0km 1.2 1.1 1.2 1.2 1.1 1.0 1.1 1.0 基準-10°(80°) 2.5km 1.2
基準-10° 5.0km 1.1 1.0 1.1 1.1 1.0 50°(深さ6km以浅) 基準(90°) 2.5 km 1.2 1.1 1.2 1.4 1.4 50°(深さ6km以浅) 基準(90°) 2.5 km 1.2 1.1 1.2 1.1 1.0 25°(深さ6km以洗) 基準(90°) 2.5 km 1.2 1.1 1.2 1.1 1.0 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.0 基準+10°(100°) 2.5 km 1.2 1.1 1.2 1.3 1.3 1.4 5.0 km 1.1 1.0 1.1 1.1 1.0 1.1 1.0 基準+10°(100°) 2.5 km 1.2 1.1 1.1 1.0 1.3 1.3 1.3 基準+20°(110°) 2.5 km 1.2 1.0 1.1 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0
基準-10° 0km 1.4 1.2 1.4 1.4 1.4 50°(深さ6km以淡) 基準(90°) 5.0km 1.2 1.1 1.2 1.2 1.1 50°(深さ6km以淡) 5.0km 1.1 1.0 1.1 1.1 1.0 35°(深さ6km以淡) 6M 1.4 1.2 1.3 1.3 1.4 4 1.2 1.1 1.2 1.3 1.3 1.4 5.0km 1.1 1.0 1.1 1.1 1.0 4 4.20°(110°) 2.5km 1.2 1.3 1.3 1.3 5.0km 1.1 1.0 1.1 1.1 1.0 5.0km 1.1 1.0 1.1 1.0 1.1 1.0 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.0 1.1 1.0 5.0km 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0
50°(深さ6km以淡) 25°(深さ6km以深) 基準(90°) 2.5km 1.2 1.1 1.2 1.2 1.1 25°(深さ6km以深)
25°(深ż6km以深) 0 1.1 1.0 1.1 1.1 1.0 基準+10°(100°) 0km 1.4 1.2 1.3 1.3 1.4 基準+10°(100°) 2.5km 1.2 1.1 1.2 1.3 1.3 1.4 5.0km 1.1 1.0 1.1 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 基準+20°(110°) 2.5km 1.2 1.0 1.2 1.3 1.3 5.0km 1.1 1.0 1.1 1.0 1.1 1.0 5.0km 1.1 1.0 1.1 1.1 1.0 5.0km 1.1 1.0 1.1 1.1 1.0 ##+20°(110°) 2.5km 1.2 1.1 1.2 1.1 5.0km 1.1 1.0 1.1 1.0 1.1 1.0 ###+20°(10°) 2.5km 1.2 1.1 1.2 1.2 1.1 5.0km <
基準 0km 1.4 1.2 1.3 1.3 1.4 2.5km 1.2 1.1 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 基準+20°(110°) 2.5km 1.2 1.3 1.3 1.3 基準+20°(110°) 2.5km 1.2 1.0 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 1.3 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.1 1.0 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.1 1.0 5.0km 1.2 1.1 1.2 1.2 1.1 1.0 1.1 1.0 5.0km 1.1 1.0 1.1 1.1
基準 基準+10°(100°) 2.5km 1.2 1.1 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.0 基準+20°(110°) 0km 1.3 1.2 1.3 1.3 1.3 基準+20°(110°) 2.5km 1.2 1.0 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 5.0km 1.1 1.0 1.1 1.1 1.0 6.0km 1.1 1.0 1.1 1.0 1.1 1.0 ##-20°(70°) 2.5km 1.2 1.1 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.0 1.1 1.0 ## 0.0km 1.5 (1.43) 1.3 (1.21) 1.4 1.4 1.4 1.4 60°(深266km以浅 基準(90°) 2.5km 1.2 1.1 1.2 1.1 1.0 5.0km 1.1 1.0 1.1
基準 5.0km 1.1 1.0 1.1 1.1 1.0 基準+20°(110°) 0km 1.3 1.2 1.3 1.3 1.3 基準+20°(110°) 2.5km 1.2 1.0 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 b 0km 1.1 1.0 1.1 1.1 1.0 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.0 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.0 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.0 基準 0km 1.5(1.43) 1.3(1.22) 1.4 1.4 1.5(1.41) 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.0 5.0km 1.1 1.0 1.1 1.2 1.1 1.4 1.4 1.4 60°(深26km以浅) 基準(90°)
基準+20°(110°) 0km 1.3 1.2 1.3 1.3 1.3 2.5km 1.2 1.0 1.2 1.1 1.0 5.0km 1.1 1.0 1.1 1.1 1.0 5.0km 1.1 1.0 1.1 1.0 1.1 5.0km 1.1 1.0 1.1 1.0 1.1 ½ 0km 1.4 1.3(1.22) 1.4 1.4 1.4 1.1 1.0 1.1 1.1 1.0 1.1 1.0 1.1 5.0km 1.1 1.0 1.1 1.0 1.1 1.0 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 基準 10°(80°) 2.5km 1.2 1.1 1.2 1.1 1.0 1.1 1.0 5.0km 1.1 1.0 1.1 1.2 1.1 1.1 1.0
基準+20°(110°) 2.5km 1.2 1.0 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 基準-20°(70°) 基準-20°(70°) 0km 1.4 1.3 (1.22) 1.4 1.4 1.4 基準-20°(70°) 基準-20°(70°) 0km 1.2 1.1 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 基準-10°(80°) 0km 1.5 (1.43) 1.3 (1.22) 1.4 1.4 1.5 (1.41) 5.0km 1.1 1.0 1.1 1.0 1.1 1.0 50°(深26km以浅) 基準(90°) 基準(90°) 基準(90°) 0km 1.5 (1.42) 1.3 (1.21) 1.4 1.4 1.4 5.0km 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 35°(深26km以浅) 35°(深26km以浅) 0km 1.4 1.4 1.4 1.4 1.4 0km 1.4 1.2 1.4 1.4
基準 5.0km 1.1 1.0 1.1 1.1 1.0 修用 0km 1.4 1.3 (1.22) 1.4 1.4 1.4 基準-20°(70°) 2.5km 1.2 1.1 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.0 1.1 1.0 基準-10°(80°) 0km 1.5 (1.43) 1.3 (1.22) 1.4 1.4 1.5 (1.41) 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.0 基準 00°(80°) 2.5km 1.2 1.1 1.2 1.1 1.0 50°(726km以浅) 35°(726km以浅) 35°(726km以浅) 基準(90°) 1.5 (1.42) 1.3 (1.21) 1.4 1.4 1.4 60°(7266km以浅) 基準(90°) 5.0km 1.1 1.0 1.1 1.1 1.0 35°(726km以浅) 基準(90°) 0.0km 1.14 1.2 1.4 1.4 1.4 1.4 1.1 1.0 1.1 1.0 <
基準 0km 1.4 1.3 (1.22) 1.4 1.4 1.4 2.5km 1.2 1.1 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.0 1.1 5.0km 1.1 1.0 1.1 1.0 1.1 5.0km 1.1 1.0 1.1 1.0 1.1 5.0km 1.2 1.1 1.2 1.1 1.0 基準-10°(80°) 0.km 1.5 (1.43) 1.3 (1.22) 1.4 1.4 1.5 (1.41) 60°(深26km以浅) 0.km 1.5 (1.42) 1.3 (1.21) 1.4 1.4 1.4 50°(深26km以浅) 基準(90°) 0.km 1.5 (1.42) 1.3 (1.21) 1.4 1.4 1.4 55°(深26km以淡) 基準(90°) 0.km 1.1 1.0 1.1 1.1 1.0 35°(深26km以淡) 基準(90°) 0.km 1.4 1.4 1.4 1.4 1.4 1.4 0.0km 1.1 1.0 1.1 1.1<
基準 60°(深ż6km以浅) 基準(90°) 2.5km 1.2 1.1 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.0 基準 0km 1.5 (1.43) 1.3 (1.22) 1.4 1.4 1.5 (1.41) 5.0km 1.1 1.0 1.1 1.0 1.1 1.0 基準 0km 1.5 (1.42) 1.3 (1.21) 1.4 1.4 1.4 60°(深ż6km以浅) 35°(深ż6km以淡) 基準(90°) 0km 1.5 (1.42) 1.3 (1.21) 1.4 1.4 1.4 1.1 1.0 1.1 1.0 1.1 1.1 1.0 1.1 1.1 50°(深ż6km以淡) 基準(90°) 0km 1.4 1.4 1.4 1.4 1.1 1.0 1.1 1.0 1.1 1.0 1.1
基準 0km 1.1 1.0 1.1 1.1 1.0 基準-10°(80°) 2.5km 1.2 1.1 1.2 1.2 1.1 基準 0km 1.5 (1.43) 1.3 (1.22) 1.4 1.4 1.5 (1.41) 60°(深さ6km以浅) 35°(深さ6km以深) 基準(90°) 0km 1.1 1.0 1.1 1.1 1.0 5.0km 1.2 1.1 1.2 1.1 1.1 1.0 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.0 5.0km 1.1 1.0 1.1 1.2 1.1 1.4 1.4 60°(深さ6km以深) 基準(90°) 2.5km 1.2 1.1 1.2 1.1 1.1 35°(深さ6km以深) 基準(90°) 2.5km 1.2 1.1 1.2 1.1 1.1 35°(深さ6km以深) 0km 1.4 1.2 1.4 1.4 1.4 1.4
基準 0km 1.5 (1.43) 1.3 (1.22) 1.4 1.4 1.5 (1.41) 基準 2.5km 1.2 1.1 1.2 1.2 1.1 5.0km 1.1 1.0 1.1 1.1 1.0 50°(深さ6km以浅) 基準(90°) 0km 1.5 (1.42) 1.3 (1.21) 1.4 1.4 1.4 60°(深さ6km以浅) 基準(90°) 2.5km 1.2 1.1 1.2 1.1 1.0 35°(深さ6km以深) 基準(90°) 0km 1.1 1.0 1.1 1.1 1.0 0km 1.4 1.4 1.4 1.4 1.4 1.4
基準 ① ② ○
基準 5.0km 1.1 1.0 1.1 1.1 1.0 60°(深さ6km以浅) 35°(深さ6km以深) 基準(90°) 0km 1.5 (1.42) 1.3 (1.21) 1.4 1.4 1.4 60°(深さ6km以深) 基準(90°) 2.5km 1.2 1.1 1.2 1.1 1.1 1.5 (1.42) 1.4 1.4 1.4 1.4 1.4 60°(深さ6km以深) 0.6m 1.1 1.0 1.1 1.1
基準 0km 1.5 (1.42) 1.3 (1.21) 1.4 1.4 1.4 60°(深さ6km以浅) 35°(深さ6km以深) 基準(90°) 2.5km 1.2 1.1 1.2 1.1 1.1 1.5 (1.42) 1.1 1.2 1.1 1.2 1.1 1.1 1.1 35°(深さ6km以深) 0km 1.1 1.0 1.1 1.1 1.0 0km 1.4 1.2 1.4 1.4 1.4
60°(深さ6km以浅) 基準(90°) 2.5km 1.2 1.1 1.2 1.1 1.1 35°(深さ6km以深) 5.0km 1.1 1.0 1.1 1.1 1.0 0km 1.4 1.2 1.4 1.4 1.4 1.4
35°(深さ6km以深) 5.0km 1.1 1.0 1.1 1.1 1.0 けから、敷地前面および全ての いたまいて見ていたまた。
基準+10°(100°) 2.5km 1.2 1.0 1.1 1.1 1.1 ケースが4ケース存在
<u>5.0km 1.1 1.0 1.1 1.1 1.0</u> 小労第2位を確認
0km 1.4 1.2 1.4 1.4 1.4 1.4
基準+20°(110°) 2.5km 1.2 1.0 1.1 1.1 1.1
5.0km 1.0 1.0 1.1 1.1 1.0
0km 1.5 (1.44) 1.3 (1.23) 1.5 (1.43) 1.5 (1.44) 1.5 (1.46)
基準-20°(70°) 2.5km 1.2 1.1 1.1 1.1 1.1 1.1 () 今ての評価地方における
5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.1 1.0 11 1.1 1.
0km 1.5 (1.45) 1.3 (1.23) 1.5 (1.45) 1.5 (1.46) 1.5 (1.48) 7 洋波水位の最大値を持つ
基準-10°(80°) <u>2.5km 1.2 1.1 1.1 1.1 1.1 ケースとして</u> 選定
5.0km 1.1 1.0 1.1 1.1 1.0
基準+10° 0km 1.5 (1.44) 1.3 (1.23) 1.5 (1.44) 1.5 (1.45) 1.5 (1.47)
70°(深さ6km以浅) 基準(90°) <u>2.5km 1.2 1.0 1.1 1.1 1.1</u>
45°(深さ6km以深) 5.0km 1.1 1.0 1.1 1.1 1.0 1.1 1.0
0km 1.5 (1.43) 1.3 (1.21) 1.5 (1.42) 1.5 (1.43) 1.5 (1.45)
基準+10°(100°) 2.5km 1.2 1.0 1.1 1.1 1.1
5.0km 1.1 1.0 1.0 1.0 1.0
0km 1.4 1.2 1.4 1.4 1.5 (1.41)
基準+20°(110°) 2.5km 1.2 1.0 1.1 1.1 1.1
5.0km 1.1 1.0 1.0 1.0 1.0

・朔望平均満潮位T.P.+0.80mを考慮 選定した代表ケースについて、各評価地点における最大値(表中赤字)を持つケースと、その波形を比較する(次ページ)

(水位上昇側:A-17断層の地震による津波の波形比較)

■ A-17断層による津波のパラメータスタディの結果、各評価地点における上昇水位の最大値が同値となる複数のケースについて、これらの水位の時刻歴波形を比較した結果、代表ケースと異なる傾向(津波波形の全体的な形状が異なる、最大値が発生する波峰等が異なる、等)を有するケースはないことから、選定した代表ケースによって各評価地点への津波影響を代表できると評価した。

	敷地前面の時刻歴波形 (最大上昇水位:T.P.1.5m)	1,2号取水槽の時刻歴波形 (最大上昇水位 : T.P.1.3m)	3号取水槽の時刻歴波形 (最大上昇水位 : T.P. <mark>1.5</mark> m)	4号取水槽の時刻歴波形 (最大上昇水位 : T.P. <mark>1.5</mark> m)	5号取水槽の時刻歴波形 (最大上昇水位 : T.P. <mark>1.5</mark> m)
傾斜角 : 基準 すべり角 : 基準-20° 断層上端深さ : 0km	(E d 1.4) ガー・2 ガー・2 ガー・2 ガー・2 ガー・2 ガー・4 0 30 60 90 120 150(分)	$\begin{bmatrix} \tilde{E} & \delta \\ \tilde{E} & 4 \\ 2 & 0 \\ \mathcal{H} & 2 \\ \mathcal{H} & 2 \\ \mathcal{H} & 4 \\ \mathcal{H} & 4 \\ \mathcal{H} & 4 \\ \mathcal{H} & 4 \\ \mathcal{H} & 6 \\ \mathcal{H} & 6 \\ \mathcal{H} & 6 \\ \mathcal{H} & 1 \\$	(E, d, L) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	E 8 I.4 I.4 I.4 I.4 II.4 II.4 II.4 II.4 II.4 II.4 II.4 II.4 II.4 II.4	(E d 1.4) (E d 1.4) (日 d 1.4)
傾斜角 : 基準 すべり角 : 基準-10° 断層上端深さ : 0km	$\begin{bmatrix} E & 8 \\ a & 4 \\ c & 2 \\ \hline E & -2 \\ \hline X & -4 \\ \hline X & -4 \\ \hline 0 & 30 & 60 & 90 & 120 & 150(37) \end{bmatrix}$	$ \begin{array}{c} \widehat{E} & \stackrel{8}{_{c}} \\ \stackrel{1}{_{c}} & \stackrel{1}{_{c}} \\ \stackrel{1}{} \\ \stackrel{1}{} \\ \stackrel{1}{} \\ \stackrel{1}{}} \\ \stackrel{1}{} \\ \stackrel{1}{}} \\ \stackrel{1}{} \overset{1}{} \\ \stackrel{1}{} \\ \stackrel{1}{} \\ \stackrel{1}{} \overset{1}{} \overset{1}{} \\ \stackrel{1}{} \\ \stackrel{1}{} \overset{1}{} \overset{1}{} \\ \stackrel{1}{} \overset{1}{} \overset{1}} \overset{1}{$	$ \begin{bmatrix} E & 6 & 4 \\ E & 2 & 0 \\ E & -4 & 2 \\ E & -4 & 0 \\ E $	(E. d. 2) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
傾斜角 : 基準 すべり角 : 基準 断層上端深さ : 0km	$\begin{bmatrix} E & 8 \\ -4 & 4 \\ + & 2 \\ -2 & -2 \\ -2 & -4 \\ -4 & -30 & 60 & 90 & 120 & 150(37) \end{bmatrix}$	$ \begin{array}{c} \left(\begin{array}{c} \mathbb{E} \\ \mathbb{E} \\ \mathbb{A} \\ \mathbb{A} \\ \mathbb{H} \\ $	(E d 1.4 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	(Ê E d 1.4 E d 2 0 ↓ 2 0 ↓ 4 1.4 ↓ 0 ↓ 0 ↓ 0 ↓ 0 ↓ 0 ↓ 0 ↓ 0 ↓ 0	E E 4 1.4 1.4 1.2 2 2 2 2 2 2 2 2 2 2 2 2 2
傾斜角 : 基準+10° すべり角 : 基準-20° 断層上端深さ : 0km	$ \begin{array}{c} \widehat{E} & \stackrel{8}{\leftarrow} & \stackrel{1.5}{\leftarrow} & \stackrel{1.5}{\leftarrow} & \stackrel{1.44}{\leftarrow} & \stackrel{1.5}{\leftarrow} & \stackrel{1.44}{\leftarrow} & \stackrel{1.5}{\leftarrow} & \stackrel{1.44}{\leftarrow} & \stackrel{1.44}{\leftarrow}$	$ \begin{array}{c} \widehat{E} & \stackrel{8}{\leftarrow} & \\ \stackrel{1}{\leftarrow} & \stackrel{2}{\leftarrow} & \stackrel{2}{\leftarrow} & \\ \stackrel{1}{\leftarrow} & \stackrel{2}{\leftarrow} & \stackrel$	$ \begin{array}{c} \widehat{E} & \widehat{e} \\ \widehat{E} & \widehat{e} \\ \widehat{a} & 2 \\ \widehat{a} & 2$	$ \begin{array}{c} \widehat{E} & \stackrel{8}{\leftarrow} & \\ \widehat{E} & \stackrel{4}{\leftarrow} & 2 \\ \stackrel{1}{\leftarrow} & \stackrel{2}{\leftarrow} & \\ \stackrel{1}{\leftarrow} & \stackrel{2}{\leftarrow} & \\ \stackrel{1}{\leftarrow} & \stackrel{1}{\leftarrow} & \stackrel{1}{\leftarrow} & \\ \stackrel{1}{\leftarrow} & \stackrel{1}{\leftarrow} & \stackrel{1}{\leftarrow} & \\ \stackrel{1}{\leftarrow} & \stackrel{1}{\leftarrow} & \stackrel{1}{\leftarrow} & \stackrel{1}{\leftarrow} & \\ \stackrel{1}{\leftarrow} & \stackrel{1}{\leftarrow$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
傾斜角 : 基準+10° すべり角 : 基準-10° 断層上端深さ : 0km (代表ケースとして選定)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \left(\begin{array}{c} \mathbb{E} \\ \mathbb{E} \\ \mathbb{A} \\ \mathbb{E} \\ \mathbb{C} \\ \mathbb{C} \\ \mathbb{E} \\ \mathbb{C} \\ $	$(E_{4} \stackrel{8}{=} 0 \stackrel{1.5(1.45)}{1.42}$	$\begin{array}{c} \left(\begin{array}{c} \mathbb{E} \\ \mathbb{E} \\ \mathbb{A} \\ \mathbb{E} \\ \mathbb{C} \\ \mathbb{E} \\ \mathbb{C} \\ \mathbb{E} \\ \mathbb{C} \\ \mathbb$	$ \begin{array}{c} \widehat{E} & \stackrel{8}{6} \\ \widehat{a} & \stackrel{2}{2} \\ \stackrel{1}{\not{\vdash}} & \stackrel{2}{2} \\ \stackrel{1}{\not{\times}} & \stackrel{4}{4} \\ \stackrel{1}{\not{\vdash}} & \stackrel{1}{2} \\ \stackrel{1}{\not{\times}} & \stackrel{1}{4} \\ \stackrel{1}{\not{\times}} & \stackrel{1}{30} \\ \stackrel{1}{\not{\circ}} & \stackrel{1}{\not{\circ}} \\ \stackrel{1}{\not{\times}} & \stackrel{1}{\not{\circ}} \\ \stackrel{1}{\not{\times}} & \stackrel{1}{\not{\circ}} \\ \stackrel{1}{\not{\times}} & \stackrel{1}{\not{\circ}} \\ \stackrel{1}{\not{\times}} & \stackrel{1}{\not{\circ}} \\ \stackrel{1}{\not{\circ} \\ \stackrel{1}{\not{\circ}} \\ \stackrel{1}{\not{\circ}} \\ \stackrel{1}{\not{\circ} \\ \stackrel{1}{\not{\circ}} \\ \stackrel{1}{\not{\circ} \\ \stackrel{1}{\not{\circ}} \\ \stackrel{1}{\not{\circ} \stackrel{1}{\not{\circ} \stackrel{1}{ \rightarrow} \stackrel{1}{ \rightarrow} \stackrel{1}{$
傾斜角 : 基準+10° すべり角 : 基準 断層上端深さ : 0km	$\begin{bmatrix} \tilde{E} & \overset{8}{\overset{6}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{1$	$\begin{bmatrix} E & 6 & 4 \\ - 4 & 2 & 0 \\ \pm & -2 & 0 \\ \pm & -2 & 0 \\ \pm & -4 & 0 \\ \pm & -4 & 0 \\ \end{bmatrix} \begin{bmatrix} 1 & -2 & 0 \\ - 4 & -2 & 0 \\ \pm & -4 & -4 & 0 \\ \pm$	(E · d · 2 · 0	E 6 1.5(1.45)	$ \begin{array}{c c} \hline E & 8 \\ \hline C & 4 \\ - 1 & 2 \\ - 2 \\ \hline \Xi & -2 \\ \hline X & -4 \\ \hline \end{array} \begin{array}{c} 1.5(1.47) \\ - 1 & -2 \\ \hline \end{array} \\ \hline $ \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \\
傾斜角 : 基準+10° すべり角 : 基準+10° 断層上端深さ : 0km	$\begin{bmatrix} \hat{E} & \hat{6} \\ \hat{c} & 4 \\ \hat{E} & 2 \\ \hat{E} & 2 \\ \hat{E} & -2 \\ \hat{K} & -4 \\ 0 & 30 & 60 & 90 & 120 & 150(\hat{\mathcal{T}}) \end{bmatrix}$	$\begin{bmatrix} \tilde{E} & \tilde{6} & 1.3(1.21) \\ \tilde{E} & \tilde{6} & 1.3(1.21) \\ \tilde{E} & 0 & 1.2(1.21) \\ \tilde{E} & 0 & 1.2(1.21) \\ \tilde{E} & 0 & 0 & 1.2(1.21) \\ \tilde{E} & 0 & 0 & 0 & 1.2(1.21) \\ \tilde{E} & 0 & 0 & 0 & 0 & 0 & 0 \\ \tilde{E} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tilde{E} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tilde{E} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tilde{E} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tilde{E} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tilde{E} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tilde{E} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tilde{E} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tilde{E} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tilde{E} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tilde{E} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	(E. d. 2) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $
傾斜角 : 基準+10° すべり角 : 基準+20° 断層上端深さ : 0km	$\begin{bmatrix} E & 6 \\ -4 & 4 \\ -2 & 0 \\ -2 & -2 \\ -4 & 0 \end{bmatrix} = \begin{bmatrix} 1.4 & -4 & -4 \\ -4 & -4 & -4 \\ -4 & -4 & -$	$\begin{bmatrix} & 8 \\ a & 4 \\ -2 & 2 \\ 0 \\ \pm & -2 \\ \pm & -4 \\ \end{bmatrix} \xrightarrow{\begin{subarray}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 8 \\ 4 \\ -2 \\ -2 \\ -4 \\ -4 \\ -2 \\ -4 \\ -4 $	$\begin{bmatrix} \tilde{E} & 6 \\ \tilde{e} & 4 \\ 0 \\ \tilde{E} & 0 \\ \tilde{e} \\ e$

傾斜角

第1178回資料3-1 p.100一部修正

(水位下降側:A-5・A-18断層の地震による津波)

■「A-5・A-18断層の地震の波源モデル」の水位下降側のパラメータスタディの結果は以下のとおり。

基準-20°(70°) 0km -1.8 (なし) -1.8 (なし) 基準-20°(70°) 2.5km -1.7 (なし) -1.7 (なし) 5.0km -1.6 (なし) -1.6 (なし) 0km -1.8 (なし) -1.8 (なし)	
基準-20°(70°) 2.5km -1.7 (なし) 5.0km -1.6 (なし) 0km -1.8 (なし)	
5.0km -1.6 (なし) -1.6 (なし) 近し 0km -1.8 (なし) -1.8 (なし)	
→ 浜岡原子力発電所 / 0km -1.8 (なし) -1.8 (なし)	
「子」」「子」」「「子」」「「子」」「「子」」「「子」」「「子」」「「子」」	
5.0 km $-1.6 (3 L)$ $-1.6 (3 L)$	
基準-10° 0km -1.8 (なし) -1.8 (なし)	
50°(深さ6km以浅) 基準(90°) 2.5km -1.6 (なし) -1.6 (なし)	
25°(深さ6km以深) 5.0km -1.6 (なし) -1.6 (なし)	
0km -1.8 (なし) -1.7 (なし)	
基準+10°(100°) 2.5km -1.6 (なし) -1.6 (なし)	
5.0km -1.5 (なし) -1.5 (なし)	小数第1位までの津波水位
	から、3.4号取水塔において
<u>・ ッ ッ ッ ッ ッ ッ ッ い</u> は 基準+20°(110°) 2.5km -1.6 (なし) -1.6 (なし)	最大値を持つケーフが4ケーフ
5.0km -1.5 (<i>tt</i>) -1.5 (<i>tt</i>)	
A-5・A-18断層の 0km -1.9 (なし) -1.9 (なし)	
地 雲 の 波 頃 工 二 川 基準 - 20°(70°) 2.5km -1.8 (なし) -1.8 (なし)	▶小釵弟21业を唯認
地長の放旅モデル 5.0km -1.7 (なし) -1.7 (なし)	
$0 \text{ km} = \frac{-2.0(-1.92)}{(3 \text{ kb})} + \frac{-1.9}{(3 \text{ kb})} + $	
基準-10°(80°) 2.5km -1.8 (なし) -1.8 (なし)	
5.0km -1.7 (なし) -1.7 (なし)	
基準 0km -2.0 (-1.92) (なし) -1.9 (なし)	小奴弗2位までの津波水位
60°(深さ6km以浅) 基準(90°) 2.5km -1.8 (なし) -1.8 (なし)	から、3,4号取水塔において
35°(深さ6km以深) 5.0km -1.7 (なし) -1.7 (なし)	¦最大値を持つケースが2ケース
0km -1.9 (なし) -1.9 (なし)	存在
基準+10°(100°) <u>2.5km</u> -1.7 (なし) -1.7 (なし)	↓→小数第3位を確認
5.0km -1.6 (なし) -1.6 (なし)	· · · · · · · · · · · · · · · · · · ·
<u>0km -1.9 (なし) -1.8 (なし)</u>	
基準+20°(110°) <u>2.5km -1.7 (なし)</u> -1.7 (なし)	\sim
<u>5.0km -1.5 (なし) -1.6 (なし)</u>	
<u>0km</u> -2.0 (-1.97) (なし) -2.0 (-1.94) (なし)	
基準-20°(70°) <u>2.5km</u> -1.8 (なし) -1.9 (なし)	①全ての評価地点におけ
<u>5.0km -1.7 (なし) -1.7 (なし)</u>	る下降水位および水位
赤字・久評価地占における最大値 0km -2.0 (-1.989) (なし) -2.0 (-1.956) (なし)	- 低下時間の是大値を持
小子 : 白計画地点に600/300八個 基準-10°(80°) <u>2.5km -1.8 (なし) -1.9 (なし)</u>	
<u>5.0km</u> -1.7 (なし) -1.7 (なし)	つケー人として選定
□ : A-5・A-18断層の地震による津波のパラメータスタディの 基準+10°	
ーー 中で 全ての評価地占において下路水位の最大値を持 70°(深さ6km以浅) 基準(90°) <u>2.5km -1.8 (なし)</u> -1.8 (なし)	
- 1.7 (なし) -1.7 (なし) -1.7 (なし)	
$D_{1} = A_{1} = C_{1} = C_{1$	
基準+10°(100°) 2.5km -1.8 (なし) -1.8 (なし)	
基準+10°(100°)2.5km-1.8(なし)-1.8(なし)5.0km-1.7(なし)-1.7(なし)	
基準+10°(100°) 2.5km -1.8 (なし) -1.8 (なし) 5.0km -1.7 (なし) -1.7 (なし) 0km -1.9 (なし) -1.9 (なし)	
基準+10°(100°) 2.5km -1.8 (なし) -1.8 (なし) ・胡望平均于潮位T.P0.93mを老庫 基準+20°(110°) 2.5km -1.7 (なし) -1.7 (なし)	
・朔望平均干潮位T.P0.93mを考慮 基準+10°(100°) 基準+20°(110°) 2.5km -1.8 (なし) -1.8 (なし) ・対し: 水位低下時間が発生していないことを示す。 基準+20°(110°) 2.5km -1.7 (なし) -1.7 (なし)	

断層上端深さ

すべり角

選定した代表ケースについて、各評価地点における最大値(表中赤字)を持つケースと、その波形を比較する(次ページ)

最大下降水位(T.P.m) (水位低下時間)

第1178回資料3-1 p.101一部修正

(水位下降側:A-5・A-18断層の地震による津波の時刻歴波形比較)

■ A-5・A-18断層による津波のパラメータスタディの結果、各評価地点における下降水位の最大値が同値となる複数のケースについて、これらの水位の時刻歴波形を 比較した結果、代表ケースと異なる傾向(津波波形の全体的な形状が異なる、最大値が発生する波峰等が異なる、等)を有するケースはないことから、選定した 代表ケースによって各評価地点への津波影響を代表できると評価した。

(水位下降側:A-17断層の地震による津波)

■「A-17断層の地震の波源モデル」の水位下降側のパラメータスタディの結果は以下のとおり。

地震の波源モデル

佰 斜角	すべり角	断層上端涩さ	最大下降水位(T.P.r	n) (水位低下時間)	
间中小十户	97000	四//盲上·师/木C	3号取水塔	4号取水塔	
		0km	-1.5 (-1.48)(なし)	-1.5 (-1.48)(なし)	
	基準-20°(70°)	2.5km	-1.5 (-1.42)(なし)	-1.5 (-1.42)(なし)	小数第1位までの洋波水位
		5.0km	-1.4(なし)	-1.4(<i>x</i> _U)	¦から、3, 4号取水塔において
		0km	<u>-15(-149)(ない</u>)	$-1.5(-1.49)(kl_{1})$!最大値を持つケースが14ケー
	基准-10º(80º)	2.5km	$-15(-144)(kl_{1})$	-15(-143)(ない)	「ス存在
	<u>∞</u> + 10 (00)	5.0km	-1.4(t)	-1.4(t)	「▲小粉箔2位を破詞
其淮_109		0km	-1.5(-1.50)(t)	-1.5(-1.40)(t)	
空谷-10 E09(空さらしの以注)	甘淮(000)	2 Ekm	$\frac{-1.5(-1.50)(30)}{1.5(-1.42)(20)}$	$\frac{-1.5(-1.43)(30)}{1.5(-1.42)(20)}$	
30° (床COKIII以及)	<u>奉</u> 华(90°)		-1.5(-1.45)(30)	-1.5(-1.45)(30)	
25°(冻cokm以沫)		5.0KM			
	基準+10°(100°)		-1.5 (-1.49)(<i>a</i> U)	-1.5 (-1.49)(30)	
		2.5km	<u>-1.5 (-1.42)(なし)</u>	<u>-1.5 (-1.41)(なし)</u>	①全ての評価地点における
		5.0km	<u>-1.4(なし)</u>	-1.3(なし)	下降水位および水位低下時
		0km	<u>-1.5 (-1.47)(なし)</u>	<u>-1.5 (-1.46)(なし)</u>	
	基準+20°(110°)	2.5km	-1.4(なし)	-1.4(なし)	間の最大値を持っケームとし
		5.0km	-1.3(なし)	-1.3(なし)	て選定
		0km	-1.5 (-1.45)(なし)	-1.5 (-1.44)(なし)	
	基準-20°(70°)	2.5km	-1.4(なし)	-1.4(なし)	
		5.0km	-1.3(なし)	-1.3(<i>k</i> L)	
		0km	-1.5 (1.46)(なし)	-1.5(-1.45)(kl)	
基準 60°(深さ6km以浅)	基準-10°(80°)	2.5km	-1 4(なし)	-1 4(なし)	
		5.0km	-1 3(t)	-1 3(th)	
	基準(90°)	0km	-1.5(30)	-1.5(30)	
			$\frac{1.5(1.40)(30)}{1.4(181)}$	1.3(1.43)(30)	
			-1.4(30)	-1.4(30)	
35°(冻cokm以沫)		5.UKITI			
			-1.5 (-1.45)(<i>a</i> U)	-1.5 (-1.45)(<i>W</i>)	
	▲準+10°(100°)	2.5km	<u>-1.4(なし)</u>	<u>-1.4(なし)</u>	
		5.0km	-1.3(なし)	-1.3(なし)	
		0km	<u>-1.5 (-1.43)(なし)</u>	<u>-1.5 (-1.43)(なし)</u>	
	基準+20°(110°)	2.5km	-1.4(なし)	-1.4(なし)	
		5.0km	-1.3(なし)	-1.3(なし)	
		0km	-1.4(なし)	-1.4(なし)	
基準-20°(7(基準-10° 基準-10°(8(基準-10°(案さ6km以浅) 基準+10° 基準+10°(1) 基準+20°(11)	基準-20°(70°)	2.5km	-1.3(<i>x</i> U)	-1.3(<i>x</i> U)	
	基准_10%(80%)	5.0km	-1.2(なし)	-1.2(なし)	
		0km	<u>-1 4(なし)</u>	-1 4(なし)	
		2.5km	-1 3(かし)	-1.3(t)	
		5.0km		-1.2(20)	
		0km	$\frac{-1.2(30)}{1.4(131)}$	-1.2(30)	
	甘港(000)		-1.4(30)	-1.4(30)	
	基準(90°)	2.5Km	-1.3(40)	-1.3(&U)	
		5.0km	<u>-1.2(なし)</u>	<u>-1.2(なし)</u>	
		0km	-1.4(なし)	-1.4(なし)	
	基準+10°(100°)	2.5km	-1.3(なし)	-1.3(なし)	
		5.0km	-1.2(なし)	-1.2(なし)	
		0km	-1.4(なし)	-1.4(なし)	
	基準+20°(110°)	2.5km	-1.3(なし)	-1.3(なし)	
	±++20 (110)	5.0km	-1.2(なし)	-1.2(<i>k</i> L)	
		0.0.0	(3.6)	(3.0)	

赤字:各評価地点における最大値

: A-17断層の地震による津波のパラメータスタディの中で、 全ての評価地点において下降水位の最大値を持つケー スとして選定した代表ケース

> ・朔望平均干潮位T.P.-0.93mを考慮 ・なし:水位低下時間が発生していないことを示す。

選定した代表ケースについて、各評価地点における最大値(表中赤字)を持つケースと、その波形を比較する(次ページ)

(水位下降側:A-17断層の地震による津波の時刻歴波形比較)

■ A-17断層による津波のパラメータスタディの結果、各評価地点における下降水位の最大値が同値となる複数のケースについて、これらの水位の時刻歴波形を比較した結果、代表ケースと異なる傾向(津波波形の全体的な形状が異なる、最大値が発生する波峰等が異なる、等)を有するケースはないことから、選定した代表ケースによって各評価地点への津波影響を代表できると評価した。

・3,4号取水塔の最大値が同値となるケースが非常に多いことから、上位12ケースを掲載している。

