島根原子力発電所2号炉 審査資料										
資料番号	PLM-02 改10									
提出年月日	2023年10月4日									

島根原子力発電所2号炉 高経年化技術評価 (2相ステンレス鋼の熱時効)

補足説明資料

2023 年 10 月 4 日 中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

1.	栶	Ŧ	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 1
2.	砉	[本]	方針	計•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 1
3.	罰	四 (四)	対	象と	評	価	手	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 3
(1)	評	面文	计象	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		, 3
(2	2)	評	西月	≤法	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	11
4.	代	表	幾暑	皆の	技	術	評	価	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	12
(1)	健	全的	生評	価	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	12
(2	2)	現	状化	呆全	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	• :	20
(3	3)	総	合言	評佰	6.	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	• :	21
(4)	高約	圣年	化	\sim	の文	讨厉	5.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	21
5.	代	表機	器	以夕	トの	技	術	評化	襾	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	21
6.	ま	とめ)•	•••	•	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	21
(1)	審査	ミガ	イ	ド通	商合	附	•	•	•	•	•	•	•	•					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	21
(2)	施診	受管	理	こ月	罰す	-2	方	金	ŀŁ	: l	7	〕策	ぞ 定	1-9	トス	5耳	靪	頁・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	21

- 別紙1.フェライト量算出における適用規格と化学成分量の設定について
- 別紙2. き裂進展抵抗の算出過程
- 別紙3. 疲労き裂進展速度式の比較
- 別紙4. き裂進展力 (Japp) の算出過程
- 別紙5. 代表機器以外の機器に関する現状保全等について
- 別紙6. 評価対象外機器の熱時効への対応について
- 別紙7 原子炉再循環ポンプの構造および評価部位
- 別紙8 き裂進展抵抗(破壊靭性値)の妥当性および保守性について

1. 概要

本資料は、「実用発電用原子炉の設置、運転等に関する規則」第82条第1項に基づき実施した高 経年化技術評価のうち、2相ステンレス鋼の熱時効の評価結果について、補足説明するものである。

オーステナイト相とフェライト相の2相から成るステンレス鋳鋼は、高温状態(250℃以上)で長時間使用すると、材料特性(靱性)が低下する可能性がある。この現象は、熱時効脆化と呼ばれ、熱時効によってフェライト相中にCrの割合の高い相(Crリッチ相)が析出し、この析出相がフェライト相を硬化させることによって発生すると考えられている。熱時効の程度は材料に含まれるフェライト量が多く、使用温度が高く、時効時間が長いほど大きくなる。

熱時効により,靱性が低下した場合,き裂の存在によっては,機器の健全性維持に影響があるため,想定すべきき裂発生の有無および熱時効による脆化の観点から,2相ステンレス鋼の熱時効について評価を実施した。

2. 基本方針

評価対象部位において熱時効の発生の可能性について評価し、その発生の可能性が将来にわたっ て否定できない場合は、その発生または進展に係る健全性評価を行い、「実用発電用原子炉施設にお ける高経年化対策審査ガイド」および「実用発電用原子炉施設における高経年化対策実施ガイド」 に定める要求事項に適合することを確認する。

2相ステンレス鋼の熱時効を評価するにあたっての要求事項を表1に整理する。

カ゛イト゛	要求事項
実用発電用原子炉施設に おける高経年化対策審査 ガイド	 (1)高経年化技術評価の審査 (2)健全性の評価 実施が小、3.1⑤に規定する期間の満了日までの期間について、高 経年化対策上着目すべき経年劣化事象の発生又は進展に係る健全 性を評価していることを審査する。 (3)現状保全の評価 健全性評価結果から現状の保全策の妥当性が評価されていること を審査する。 (4)追加保全策の抽出 現状保全の評価結果から、現状保全に追加する必要のある新たな保 全策が抽出されていることを審査する。
	 (2)長期施設管理方針の審査 ①長期施設管理方針の策定 すべての追加保全策について長期施設管理方針として策定されているかを審査する。

表1(1/2) 2相ステンレス鋼の熱時効についての要求事項

カ゛イト゛	要求事項
実用発電用原子炉施設に おける高経年化対策実施 ガイド	要求事項 3.1 高経年化技術評価の実施及び見直し (⑤抽出された高経年化対策上着目すべき経年劣化事象について、以下に 規定する期間の満了日までの期間について機器・構造物の健全性評価 を行うとともに、必要に応じ現状の施設管理に追加すべき保全策(以 下「追加保全策」という。)を抽出すること。 イ 実用炉規則第82条第1項の規定に基づく高経年化技術評価 プラ 小の運転を開始した日から60年間 3.2 長期施設管理方針の策定及び変更 長期施設管理方針の策定及び変更 長期施設管理方針の策定及び変更に当たっては、以下の要求事項を満 たすこと。 ①高経年化技術評価の結果抽出された全ての追加保全策(発電用原子炉 の運転を断続的に行うことを前提として抽出されたもの及び冷温停 止状態が維持されることを前提として抽出されたものの全て。)につ いて、発電用原子炉ごとに、施設管理の項目及び当該項目ごとの実施 時期を規定した長期施設管理方針を策定すること。 なお、高経年化技術評価の結果抽出された追加保全策について、発電 用原子炉の運転を断続的に行うことを前提とした評価から抽出され たものと冷温停止状態が維持されることを前提とした評価から抽出され たものと冷温停止状態が維持されることを前提とした評価から抽出され たものの間で、その対象の経年劣化事象及び機器・構造物の部位 が重複するものについては、双方の追加保全策を踏まえた保守的な長
	期施設管理方針を策定すること。

表1(2/2) 2相ステンレス鋼の熱時効についての要求事項

3. 評価対象と評価手法

(1) 評価対象

熱時効の評価対象機器・部位については、最高使用温度が 250℃以上の機器のうち、材質がス テンレス鋳鋼の部位を「評価対象部位」として抽出する。

また、「評価対象部位」のうち、「一般社団法人 日本原子力学会標準 原子力発電所の高経年 化対策実施基準(AESJ-SC-P005:2008)」(以下、「実施基準」という。)のC.5(2相ステンレス鋼 の熱時効)C.5.2(評価対象)を基に、以下の条件に当てはまるものを「定量評価対象部位」とし て抽出する。

○使用温度が250℃以上

○き裂の原因となる経年劣化事象の発生が想定される

熱時効のスクリーニングフローを図1に示す。また,抽出された対象部位の一覧表を表2に示 す。評価の結果,き裂の原因として考えられる「低サイクル疲労」については問題ないことを確 認しており,定量評価部位は抽出されなかった。

しかしながら、製造時の判定基準未満となる初期欠陥が存在する可能性は否定できないことか ら、念の為、「低サイクル疲労」の評価を実施した部位について、保守的に初期欠陥を想定し、定 量評価(き裂安定性評価)を実施し、熱時効による機器の健全性への影響を確認する。

定量評価を実施するにあたり,熱時効への影響が大きいと考えられる条件(発生応力およびフ ェライト量の多寡)での比較を実施し,定量評価の対象機器・部位を選定した。その結果を表 3 に示す。また,発生応力の詳細を表 4 に示す。

図1 熱時効スクリーニングフロー

表2(1/3)	熱時効の劣化評価に関する評価対象部位の抽出結果ー	-覧表

評価書 分類	機器名称	対象部位	最高使用 温度【℃】	使用温度 【℃】	口径 【A】	最高使用 圧力【MPa】	き裂の原因となる 劣化事象 ^{※1}	備考
		ケーシング	302	289		10.4	低サイクル疲労	疲労評価を実施し、許容値を満たすことを確認しており、疲労割れ が評価期間において問題となる可能性はない。
ポンプ	原子炉再循環ポンプ	羽根車	302	289	_	10.4		
		水中軸受	302	289		10.4		
		ケーシンク゛リンク゛	302	289		10.4	_	
配管	主蒸気系配管	フローノス゛ル	304	289	600	9.0	_	
	原子炉再循環ポンプ入口弁 (代表機器以外)	弁箱	302	289	500	8.6	低サイクル疲労	代表機器と比較して,条件が同等であるため,疲労割れが評価期間 において問題となる可能性はない。
		弁ふた,弁体	302	289		8.6		
	原子炉再循環ポップ出口弁 (代表機器)	弁箱	302	289	500	10. 4	低サイクル疲労	代表機器として,疲労評価を実施し,許容値を満たすことを確認し ており,疲労割れが評価期間において問題となる可能性はない。
		弁ふた, 弁体	302	289		10.4	_	
	原子炉浄化系入口内側隔 離弁(代表機器以外)	弁箱	302	289	250	8.6	低サイクル疲労	代表機器と比較して,条件が同等であるため,疲労割れが評価期間 において問題となる可能性はない。
出初去		弁ふた, 弁体	302	289		8.6	_	
11.9977	原子炉净化系入口外侧隔 離弁(代表機器以外)	弁箱	302	289	250	8.6	低サイクル疲労	代表機器と比較して,条件が同等であるため,疲労割れが評価期間 において問題となる可能性はない。
		弁ふた,弁体	302	289		8.6	_	
	原子炉浄化補助ポンプバイ パス弁(代表機器以外)	弁箱	302	289	200	8.6	低サイクル疲労	代表機器と比較して,条件が同等であるため,疲労割れが評価期間 において問題となる可能性はない。
		弁ふた,弁体	302	289		8.6		
	原子炉浄化補助ポンプ入口 弁 (電動弁)	弁箱	302	289	250	8.6	低サイクル疲労	代表機器と比較して,条件が同等であるため,疲労割れが評価期間 において問題となる可能性はない。
	(Ⅰ \4X\7)又有百世人? ►)	弁ふた,弁体	302	289		8.6	—	

※1:技術評価書にて、高経年化対策上着目すべき経年劣化事象としている事象を記載する。

評価書 分類	機器名称	対象部位	最高使用 温度【℃】	使用温度 【℃】	口径 【A】	最高使用 圧力【MPa】	き裂の原因とな る劣化事象 ^{※1}	備考
	原子炉浄化補助ポンプ出口 弁(電動弁)	弁箱	302	289	200	8.6	低サイクル疲労	代表機器と比較して,条件が同等であるため,疲労割れが評価期間 において問題となる可能性はない。
	(代表機器以外)	弁ふた, 弁体	302	289		8.6		
	原子炉浄化再生熱交管側入 口弁(代表機器以外)	弁箱	302	289	200	8.6	低サイクル疲労	代表機器と比較して,条件が同等であるため,疲労割れが評価期間 において問題となる可能性はない。
		弁ふた, 弁体	302	289		8.6		
	原子炉浄化補助熱交入口弁 (代表機器以外)	弁箱	302	289	200	8.6	低サイクル疲労	代表機器と比較して,条件が同等であるため,疲労割れが評価期間 において問題となる可能性はない。
		弁ふた, 弁体	302	289		8.6		
任何会	原子炉浄化補助ポンプ入口 弁(手動弁)	弁箱	302	289	250	8.6	低サイクル疲労	代表機器と比較して,条件が同等であるため,疲労割れが評価期間 において問題となる可能性はない。
11.90开	(1\衣(矮吞以))	弁ふた, 弁体	302	289		8.6		
	原子炉浄化補助ポンプ出口 弁(手動弁)	弁箱	302	289	200	8.6	低サイクル疲労	代表機器と比較して,条件が同等であるため,疲労割れが評価期間 において問題となる可能性はない。
	(代衣機奋以外)	弁ふた, 弁体	302	289		8.6		
	残留熱除去系炉水入口止め 弁 (代表機器以外)	弁箱	302	289	450	8.6	低サイクル疲労	代表機器と比較して,条件が同等であるため,疲労割れが評価期間 において問題となる可能性はない。
		弁ふた,弁体	302	289		8.6		
	残留熱除去系炉水戻り止め 弁(代表機器以外)	弁箱	302	289	250	10. 4	低サイクル疲労	代表機器と比較して,条件が同等であるため,疲労割れが評価期間 において問題となる可能性はない。
		弁ふた, 弁体	302	289		10.4		
	排动 [*] 7.再結合器出口弁	弁箱 ,弁体	420	370	300	2.5		
	再循環メカシールパージ元弁	弁箱,弁ふた	302	250 未満	20	13.8		
玉形弁	原子炉净化系原子炉圧力容 器 ¹¹ 1/2流量調節弁	弁箱	302	289	80	8.6		

表2(2/3) 熱時効の劣化評価に関する評価対象部位の抽出結果一覧表

※1:技術評価書にて、高経年化対策上着目すべき経年劣化事象としている事象を記載する。

評価書 分類	機器名称	対象部位	最高使用 温度【℃】	使用温度 【℃】	口径 【A】	最高使用 圧力【MPa】	き裂の原因とな る劣化事象 ^{※1}	備考
	原子炉浄化系入口元弁	弁箱,弁ふた	302	289	200	8.6	—	
玉形弁	原子炉圧力容器ドレン側流量調節 弁バイパス弁	弁箱,弁ふた	302	289	80	8.6		
	原子炉浄化補助ポンプバイパス 逆止弁	弁箱	302	289	200	8.6	_	
	原子炉浄化再生熱交出口逆止弁	弁箱	302	250 未満	200	8.6	—	
谥止至	原子炉浄化補助熱交出口逆止弁	弁箱	302	250 未満	200	8.6	—	
	原子炉净化補助熱交冷却水逆止 弁	弁箱	302	289	50	8.6		
	ほう酸水注入系外側隔離弁	弁箱	302	250 未満	40	8.6	—	
	ほう酸水注入系内側隔離弁	弁箱	302	289	40	8.6	—	
	燃料支持金具	中央燃料支持 金具	304	289	_	9.0	_	
	制御棒案内管	ベース	304	289		9.0	_	
炉内	炉心スプレイ配管 (原子炉圧力容器 内部)・スパージャ	ノズル	304	289	_	9.0		
(構)宣物		ライザ管	304	289		9.0		
	ა.ზ	インレットミキサ	304	289		9.0	—	
	シ エツトル シノ	ディフューサ	304	289	_	9.0	—	
		ブラケット	304	289	_	9.0	—	
h. 45 V	原子炉隔離時冷却ポンプ 駆動用 蒸気タービン	翼	302	296	_	8.6	_	
9-C 7	高圧原子炉代替注水ポンプ 駆動 用蒸気タービン	ケーシング	302	296	_	8.6	_	
	制御棒	落下速度リミッタ	302	289	_	8.6	—	
機械 設備	生心和法职重出继续	コレットヒ。ストン	304	250 未満		9.0	_	
	叩小叶小半词伫野//汶/ 再	コレットリテイナチューフ゛	304	250 未満		9.0		

表2(3/3) 熱時効の劣化評価に関する評価対象部位の抽出結果一覧表

※1:技術評価書にて、高経年化対策上着目すべき経年劣化事象としている事象を記載する。

機器 分類	対象機器	対象 部位	機器番号	フェライト量 [%]	使用温度 [℃]	発生応力 ^{*1*2} [MPa]	重大事故等時 の機能要求	選定 結果
+° 1/7°	原子炉再循環ポン	E 30/18	P201-1A	約 20.7	289	203	無し	0
4 27	7°	Ŋ - ŷŷŷ	P201-1B	約 19.9	289	127	無し	
	原子炉再循環ポン	台体	MV201-1A	約 13.6	289	106	無し	
	プ入口弁	开相	MV201-1B	約 11.5	289	115	無し	
	原子炉再循環ポン	分符	MV201-2A	約 12.2	289	106	無し	
	プ出口弁	<u></u> 开相	MV201-2B	約 11.0	289	105	無し	
	原子炉浄化系入 口内側隔離弁	弁箱	MV213-3	約 14.8	289	118	無し	
	原子炉浄化系入 口外側隔離弁	弁箱	MV213-4	約 14.8	289	119	無し	
	原子炉浄化補助 ポンプバイパス弁	弁箱	MV213-5	約 16.3	289	134	無し	
	原子炉浄化補助 ポンプ入口弁(電 動弁)	弁箱	MV213-6	約 14.8	289	184	無し	
仕切弁	原子炉浄化補助 ポンプ出口弁(電 動弁)	弁箱	MV213-7	約 15.2	289	197	無し	
	原子炉浄化再生 熱交管側入口弁	弁箱	MV213-8	約 17.4	289	166	無し	
	原子炉浄化補助 熱交入口弁	弁箱	MV213-9	約 17.4	289	118	無し	
	原子炉浄化補助 ポンプ入口弁(手 動弁)	弁箱	V213-4	約 13.9	289	91	無し	
	原子炉浄化補助 ポンプ出口弁(手 動弁)	弁箱	V213-5	約 15.2	289	131	無し	
	残留熱除去系炉 水入口止め弁	弁箱	V222-5	約 14.1	289	94	無し	
	残留熱除去系炉	金体	V222-6A	約 15.6	289	150	無し	
	水戻り止め弁	开相	V222-6B	約 15.3	289	143	無し	

表3 熱時効の定量評価対象部位の選定表

※1:発生応力は、破壊に寄与する荷重である一次応力(自重、内圧、地震)に、安全側に二次応力の熱膨張荷重を加え たものである。

※2:耐震 B クラスの機器については、耐震 S クラスの機器と比較して、地震による発生応力が小さいため、選定対象外 とする。

機器					一次応力		二次応力の			
分類	対象機器	機器番号	応力分類*1	自重	内圧	地震	熱膨張荷重	台書	+*2	
		D 004 44	膜応力[MPa]	_	35.9	_	_	35.9		
.L° \	国フに王任理心いが	P201-1A	曲げ応力[MPa]	4.5	-	97.6	65.0	167.1	203.0	
ホンノ	原于炉冉循填* 2/	D001 1D	膜応力[MPa]		43.4	_	_	43.4	107.0	
		P201-1B	曲げ応力[MPa]	1.9	_	63.7	18.0	83.6	127.0	
		MV001 14	膜応力[MPa]		41.8	_	—	41.8	100 0	
	原子炉再循環ポンプ	MV201-1A	曲げ応力[MPa]	2.6	_	48.6	13.0	64. 2	106.0	
	入口弁	W0001 1D	膜応力[MPa]	-	41.8	_	—	41.8	115.0	
		MV201-1B	曲げ応力[MPa]	1.5	_	56.7	15.0	73.2		
		MV001 04	膜応力[MPa]	_	43.4	_	_	43.4	100 0	
	原子炉再循環ポンプ	MVZU1-ZA	曲げ応力[MPa]	2.2	-	49.4	11.0	62.6	106.0	
	出口弁	WV001 OD	膜応力[MPa]	_	43.4	—	—	43.4	105 0	
		MV201-2B	曲げ応力[MPa]	1.3	—	45.3	15.0	61.6	105.0	
	原子炉浄化系入口内	10/010 0	膜応力[MPa]	_	38.2	—	_	38.2	110.0	
	側隔離弁	MV213-3	曲げ応力[MPa]	3.0	—	30.8	46.0	79.8	118.0	
	原子炉浄化系入口外	10/010 4	膜応力[MPa]		42.0	_	_	42.0	110.0	
	側隔離弁	MV213-4	曲げ応力[MPa]	8.0	_	36.0	33.0	77.0	119.0	
	原子炉浄化補助ポン	10/010 F	膜応力[MPa]		40.4	_	—	40.4	104.0	
	プバイパス弁	MV213-5	曲げ応力[MPa]	11.7	—	42.9	39.0	93.6	134.0	
	原子炉浄化補助ポン	W019 C	膜応力[MPa]	-	42.0	_	—	42.0	104 0	
在回去	プ入口弁(電動弁)	MV213-6	曲げ応力[MPa]	10.4	—	45.6	86.0	142.0	184.0	
江则开	原子炉浄化補助ポン	MU919 7	膜応力[MPa]	_	40.4	_	—	40.4	107.0	
	プ出口弁(電動弁)	MV213-7	曲げ応力[MPa]	7.5	—	61.1	88.0	156.6	197.0	
	原子炉浄化再生熱交	MV919_9	膜応力[MPa]	_	40.4		_	40.4	166 0	
	管側入口弁	MV213-0	曲げ応力[MPa]	12.0	-	53.6	60.0	125.6	100.0	
	原子炉浄化補助熱交	MV912_0	膜応力[MPa]	_	40.4		_	40.4	110 0	
	入口弁	MV213 9	曲げ応力[MPa]	5.0	—	19.6	53.0	77.6	110.0	
	原子炉浄化補助ポン	V212-4	膜応力[MPa]	_	42.0	_	_	42.0	01.0	
	プ入口弁(手動弁)	V213-4	曲げ応力[MPa]	1.2	_	31.8	16.0	49.0	91.0	
	原子炉浄化補助ポン	V212-5	膜応力[MPa]	_	40.4	_	_	40.4	121 0	
	プ出口弁(手動弁)	1213 5	曲げ応力[MPa]	4.2	_	24.4	62.0	90.6	131.0	
	残留熱除去系炉水入	V222-5	膜応力[MPa]	_	33.6	_	_	33.6	94.0	
	口止め弁	0-2224	曲げ応力[MPa]	0.9	_	36.5	23.0	60.4	94.0	
		V222_6A	膜応力[MPa]	_	38.2	_	_	38.2	150.0	
	残留熱除去系炉水戻 り止め弁	V222-0A	曲げ応力[MPa]	4.3	_	43.5	64.0	111.8	190.0	
		V999-6P	膜応力[MPa]	_	38.2	_	_	38.2	142.0	
		V222-6B	曲げ応力[MPa]	5.3	-	28.5	71.0	104.8	143.0	

表4 発生応力の詳細

※1: 膜応力は機器断面に一様に作用する応力成分のことを示し、内圧により生じる応力は膜応力に分類する。曲げ応力 は配管の曲げモーメントにより生じる応力成分のことを示し、自重、地震、熱膨張により生じる応力は曲げモーメ ントにより生じる応力が支配的であることから曲げ応力に分類する。

※2:き裂進展力の算出において考慮する応力は、破壊に寄与する荷重である一次応力(自重,内圧,地震)に、安全側 に二次応力の熱膨張荷重を加えたものである。 表3より,評価対象部位の選定の結果,フェライト量が最も多く発生応力が最大となる原子炉再循環 ポンプのケーシングを定量評価対象部位として選定した。

さらに、き裂の原因となる経年劣化事象によるき裂の発生有無について、原子炉再循環ポンプのケー シングに加えて原子炉冷却材の圧力バウンダリを構成する弁で、口径が大きく、最高使用圧力が高い原 子炉再循環ポンプ出口弁の弁箱を代表機器として評価を行う。代表機器の評価結果を「4. 代表機器の 技術評価」に、それ以外の評価結果は、「5. 代表機器以外の技術評価」に示す。

また,フェライト量は表5に示す製造時の材料成分を用いて,「Standard Practice for Steel Casting, Austenitic Alloy, Estimating Ferrite Content Thereof (ASTM A800/A800M-2006)」(以下,「ASTM A800/A800M」という。)に示される線図(図2)により決定した。

计每批号,如应	十十万万				Cra /Ni	フェライト量					
刘豕陇砧,司川正	171 頁	С	Si	Mn	Cr	Ni	Mo	Nb**	N*	Cr _e /N _e	F[%]
原子炉再循環ポンプの	CCC1CA							0.00	0.04	約140	約4 00 7
ケーシンク゛	SUSTOA							0.20	0.04	#J 1.40	矿 20.7

表5 ミルシートによる材料成分

※:Nb, Nの化学成分は規格上の規定値がなく、製造時のミルシートに記載がないため、別紙1に示すとおり、NUREG/CR-4513/Revision2「Estimation of Fracture Toughness of Cast Stainless Steels during Thermal Aging in LWR Systems」(以下,「NUREG/CR-4513/Revision2」という。)の記載を参考に、Nb=0.20[%]、N=0.04[%]とした。

FIG. X1.1 Schoefer Diagram for Estimating the Average Ferrite Content in Austenitic Iron-Chromium-Nickel Alloy Castings

図2 原子炉再循環ポンプのケーシングのフェライト量導出図

(2) 評価手法

原子炉再循環ポンプのケーシングと原子炉再循環ポンプ出口弁の弁箱について、き裂の原因となる 経年劣化事象の評価を実施する。

このうち、フェライト量および発生応力が最大となる原子炉再循環ポンプのケーシングについて、 運転開始後 60 年時点までの供用期間を仮定して、低下した破壊靱性(き裂進展抵抗)と想定き裂に おける破壊力(き裂進展力)とを比較して、構造安定性を評価する。評価の流れを図3に、評価手法 を以下に示す。

図3 熱時効評価の流れ

- ・実施基準にて規定されている靱性予測モデル(H3T モデル: Hyperbolic Time Temperature Toughness) を用いて,熱時効後のステンレス鋳鋼のき裂進展抵抗を予測する。本評価で用いる「S. Kawaguchi et al., "PREDICTION METHOD OF TENSILE PROPERTIES AND FRACTURE TOUGHNESS OF THERMALLY AGED CAST DUPLEX STAINLESS STEEL PIPING",ASME PVP 2005-71528」(以下,「PVP 2005-71528」という。)に て公開された H3T モデルは,熱時効により低下するき裂進展抵抗(靱性)を予測するために開発さ れたものであり,複数の鋼種や製造方法の材料により取得された材料データに基づき,フェライト 量から熱時効後の材料のき裂進展抵抗を予測するものである。今回の評価では保守的にばらつきの 下限線(-2S)を用いて,運転開始後 60 年間の熱時効によるき裂進展抵抗を予測している。
- ・社団法人 日本電気協会「原子力発電所配管破損防護設計技術指針(JEAG 4613-1998)」(以下,「JEAG 4613」という)および原子炉安全基準専門部会報告書の『配管の破断に伴う「内部発生飛来物に対する設計上の考慮」について』を参考にして,初期欠陥を設定する。

また,運転開始後 60 年時点までに,プラント運転によって生じる応力サイクルから,初期欠陥が 疲労き裂により進展する量を算出する。

・き裂進展力は、「DUCTILE FRACTURE HANDBOOK」EPRI NP-6301-D(1989)(以下、「HANDBOOK」という)の volume1 1章2項2.1~2.3節のJ積分の解析解に基づき算出する。

4. 代表機器の技術評価

- (1) 健全性評価
- a. き裂の原因となる経年劣化事象の評価

熱時効による靱性低下は、フェライト量が多く、使用温度が高く、時効時間が長いほど大きく なる。靱性が低下した状態でき裂が存在する場合には小さな荷重でき裂が進展し、不安定破壊 を引き起こす可能性がある。原子炉再循環ポンプのケーシングおよび原子炉再循環ポンプ出口 弁の弁箱の使用温度は 250℃以上であり、熱時効による靱性低下の可能性は否定できないが、 不安定破壊の原因となるき裂が存在しなければ健全性の維持は可能である。

き裂の原因となる経年劣化事象としては、応力腐食割れおよび低サイクル疲労割れが考えら れるが、ステンレス鋳鋼は、二相ステンレス組織であり、溶接等による熱影響によって鋭敏化 することがないため、応力腐食割れは発生しないものと考えられる^{※1}ことから、当該機器にお いて、き裂の原因として想定される経年劣化事象は低サイクル疲労割れのみである。

低サイクル疲労割れについては,運転実績に基づいた現時点の過渡回数と,今後も同様な運転を続けたと仮定して推定した 60 年時点の過渡回数を用いて,疲れ累積係数による評価を実施している。

表6に示すとおり,60年時点の疲れ累積係数は許容値である1を十分に下回ることを確認している。

※1:一般社団法人 日本原子力技術協会「BWR 炉内構造物点検評価ガイドライン」

	運転実績に基づく疲れ累積係数(許容値:1以下)								
计在拨号	1111、油乳相故の店	環境疲労評価							
∑	取引 · 建設 尻俗の 彼	手法による解析							
(白り八万)	現時点	運転開始後	運転開始後						
	(2015年7月末時点)	60年時点	60 年時点						
原子炉再循環ポンプ	0.001	0.001	0,005						
(ケーシングと配管の溶接部)	0.001	0.001	0.005						
原子炉再循環ポンプ出口弁	0.001	0,000	0.027						
(弁箱)	0.001	0.002	0.037						

表6 代表機器の運転60年時点の疲労評価結果

b. 熱時効による脆化評価

表3にて定量評価対象部位として選定した原子炉再循環ポンプのケーシングについて,以下 のとおり定量評価を実施した。

(a) 評価対象期間の靱性予測

プラントの長期運転により熱時効したステンレス鋳鋼は,引張強さが増加するので材料強 度の評価上の余裕は向上するが,材料の靱性が低下する。

ここでは, 靱性予測モデル(H3T モデル)を用いて, 評価対象機器の使用温度(熱時効温 度:289℃)で, 運転開始後 60 年時点の熱時効時間(409,147h)を想定し, き裂進展抵抗を 予測した。熱時効時間の算出過程を別紙2に示す。

評価結果であるき裂進展抵抗(破壊靱性値:J_{IC},J₆)は、データの下限値であり、算出結果 を表 7、算出過程を別紙 2 に示す。

表7 き裂進展抵抗(破壊靱性値:J_{IC}, J₆)

対象機器・部位	$J_{\rm IC}[{\rm kJ/m^2}]$	$J_6[kJ/m^2]$
原子炉再循環ポンプのケーシング	74.9	235. 1

(b) 想定き裂の評価

初期欠陥は,JEAG 4613 および『配管の破断に伴う「内部発生飛来物に対する設計上の考慮」について』を参考*に、図4のとおり、評価対象部位の板厚(t)から初期き裂長さ(2c₀)および初期き裂深さ(a₀)を設定している。

図4 初期欠陥の形状

※:想定した初期欠陥の検出性に関しては,過去に実施された国の実証事業「平成 16 年度 原子力発電施設検査技術実証事 業に関する報告書(超音波探傷試験における欠陥検出性及びサイジング精度の確認に関するもの)」において,ステンレ ス鋳鋼の深さ約0.18tの疲労き裂を検出可能であることが確認されている。 ポンプケーシング内面に仮定した初期欠陥がプラント運転時に生じる応力サイクルにより 運転開始後 60 年時点までに進展する量を算出する。

き裂進展速度は,BWR 環境中を考慮した式であり,保守的な評価*1となる社団法人 日本 機械学会「発電用原子力設備規格 維持規格(JSME S NA1-2008)(以下,「維持規格」という) 添付 E-2 き裂進展速度」に規定されているオーステナイト系ステンレス鋼の BWR 環境中の疲 労き裂進展速度(図添付 E-2-FA-2)を用いて算出する。

$$da/dN = 8.17 \times 10^{-12} \cdot t_r^{0.5} \cdot (\angle K)^{3.0} / (1-R)^{2.12}$$

 $\angle K = K_{max} - K_{min} \quad (R \ge 0 \ O 場合)$
 $\angle K = K_{max} \quad (R < 0 \ O 場合)$

応力サイクルは、実績過渡回数に基づいて、運転開始後 60 年時点までを想定したものとする。 実績過渡回数および推定過渡回数は、低サイクル疲労評価と同様に、表 8 および表 9 の方針 に基づき設定する。図 5 に 30 年目の高経年化技術評価(以下「PLM30」という)における評価 条件を示す。

表10に原子炉再循環ポンプの応力サイクルを示す。

き裂進展評価の応力を算出する解析モデル上の応力値は、モデルの設計上、評価対象機器と 配管の取合い部のうちの配管側の公称板厚部の値を用いており、本評価の評価点である取合い 部のうちの機器側の評価部位の値ではないため、評価の際は、解析モデルから算出した膜応力 および曲げ応力に、それぞれ応力算出部位と評価部位の断面積比および断面係数比を補正して 算出する。表 10 では上記の点を考慮した評価部位の応力を示す。

応力拡大係数は,供用状態 A, B および地震荷重を考慮した内圧・熱応力・曲げモーメント荷 重を用いて算出を行う。

*1:維持規格の環境(BWR環境中および大気中)の異なる2つのオーステナイト系ステンレス鋼の疲労き裂進展速度式および 社団法人 日本機械学会「発電用原子力設備規格 配管破損防護設計規格(JSME S ND1-2002)」(以下,「配管破損防護 設計規格」という)の鋼種(オーステナイトステンレス鍛鋼および鋳鋼)の異なる2つの疲労き裂進展速度式を比較し た結果を別紙3に示す。

No.	項目	内容
1	宇徳温速しした期間	2015年7月末時点までの運転実績を実績過渡回数とし
1	夫頑迴波とした労用	た。
0	** 海転時の実体温滞同粉	実績としてカウントするが、試運転時特有のものであるた
2 武連転時の美槇迴伋巴级		め、実績過渡発生頻度には含めない。
3	取替機器の実績過渡回数	対象機器に取替実績はない。

表 8 実績過渡回数策定方針

表 9 推定過渡回数策定方針

No.	項目	内容
		実績運転期間は、運転開始から評価時点(2015年7月
1	1 推移(回/年)の考え方	末)までの期間ではなく,現在の長期停止を考慮し,
		2012年3月末までの期間として推移を算出した。
		今後の運転想定期間として,2015年8月1日から運転
2	2 今後の過渡回数設定の考え方	開始後 60 年時点までの期間の推定過渡回数を算出し
		た。
	荻研時点 (2015 年 7 日本) 。 プ	断続的な運転を想定し、推定過渡回数を算出した。当
3	計価時点(2013年(月末)~)	該期間は、実績過渡回数は0回であることが想定され
	/小丹稼働までの期间について	るため、保守的な評価となる。
4	土奴除冯海同粉	未経験であるが,推定過渡回数算出においては1回と
4	木樦駛迴促凹剱	仮定し,評価を行う。

N -	io.		膜応力	^{∗2} [MPa]	曲げ応力	J ^{%3} [MPa]
NO.			σ_{mmax}	σ_{mmin}	σ bmax	σ bmin
1	ボルト締付	45	0.0	0.0	0.6	0.6
2	耐圧試験	55	113.5	0.0	23.9	0.6
3	起動(昇温,タービン起動)	74	105.0	0.0	209.9	9.1
4	夜間低出力運転(75%出力)	81	105.0	105.0	129.5	129.5
5	週末低出力運転(50%出力)	84	105.0	105.0	129.5	129.5
6	制御棒パターン変更	143	105.0	105.0	129.5	129.5
7	給水加熱機能喪失(発電機トリップ)	1	105.0	105.0	186.4	120.4
8	給水加熱機能喪失(給水加熱器部分バイパス)	1	105.0	105.0	148.6	126.9
9	スクラム (タービ゛ントリップ゜)	2	112.5	23.4	160.2	92.9
10	スクラム (その他スクラム)	7	105.0	23.4	160.2	92.9
11	停止(タービン停止,高温待機,冷却,容器満	74	105 0	0.0	106 1	0.1
11	水, 満水後冷却)	74	105.0	0.0	190.1	9.1
12	ボルト取り外し	46	0.0	0.0	14.6	1.3
13	スクラム(原子炉給水ポンプ停止)	1	120.0	23.4	160.2	92.9
14	スクラム(逃がし安全弁誤作動)	1	105.0	0.0	228.7	9.1
15	1/3Sd 地震	360	137.4	125.0	63.7	-63.7

表10 原子炉再循環ポンプの応力サイクル*1

*1:応力サイクルにおける「膜応力」「曲げ応力」は、社団法人 日本機械学会「発電用原子力設備規格 設計・建設規格(JSME S NC1-2005/2007)」(以下,「設計・建設規格」という)の PPB-3532 に基づき算出する。

*2:膜応力は機器断面に一様に作用する応力成分のことを示し、内圧により生じる応力は膜応力に分類する。

*3:曲げ応力は配管の曲げモーメントにより生じる応力成分のことを示し、自重、地震、熱膨張により生じる応力は曲げモーメントにより生じる応力が支配的であることから曲げ応力に分類する。

運転開始後60年時点の疲労き裂進展解析の結果を表11に示す。

表 11 疲労き裂進展解析結果

	き裂深さ[mm]	き裂長さ[mm]	備考
初期	$a_0 = 6.5$	$2c_0 = 32.5$	_
60 年想定時	a = 13.2	2c = 38.6	$\Delta a = 6.7 \text{mm}$ $2 \Delta c = 6.1 \text{mm}$

原子炉再循環ポンプのケーシング[板厚:t = 32.5 mm]

(c) き裂安定性評価用想定き裂

き裂安定性評価では、安全側に評価するため、(b)項で算出した疲労き裂を貫通き裂に置 き換える。想定き裂置き換えイメージを図6に、き裂安定性評価用想定き裂を表12に示す。

図6 想定き裂置き換えイメージ

表 12 き裂安定性評価用想定き裂

対象機器・部位	き裂長さ[mm]	板厚[mm]
原子炉再循環ポンプのケーシング	2c = 38.6	t = 32.5

(d) き裂進展力 (J_{app})

き裂進展力は,評価部位の応力とき裂長さが板厚の1倍,3倍,5倍およびき裂進展解析結果(運転60年時点の想定き裂)のき裂安定性評価用想定き裂(周方向貫通き裂)を用いて, HANDBOOKのZahoorのJ積分の解析解により,評価対象機器の使用温度(熱時効温度:289℃) におけるき裂進展力を算出する。

き裂進展力の評価に用いる発生応力の詳細を表 13 に,き裂進展力の算出結果を表 14 に, 算出過程を別紙 4 に示す。

<i>▲」有</i> ₩200 ±00/±	中十八卷*1	一次応力			二次応力の	△⇒1*2	
刈家懱菇・部位	心力分類。	自重	内圧	地震	熱膨張荷重	合計	
原子炉再循環ポンプ	膜応力[MPa]	_	35.9	—	—	35.9	
のケーシング	曲げ応力[MPa]	4.5	—	97.6	65.0	167.1	

表13 発生応力の詳細

※1: 膜応力は機器断面に一様に作用する応力成分のことを示し、内圧により生じる応力は膜応力に分類する。曲げ応力は 配管の曲げモーメントにより生じる応力成分のことを示し、自重、地震、熱膨張により生じる応力は曲げモーメント により生じる応力が支配的であることから曲げ応力に分類する。

※2:き裂進展力の算出において考慮する応力は、破壊に寄与する荷重である一次応力(自重,内圧,地震)に、安全側に 二次応力の熱膨張荷重を加えたものである。

		初期欠陥	60 年想定き裂	き裂想定	き裂想定
対象機器・部位		(板厚の1倍)	進展解析結果	(板厚の3倍)	(板厚の5倍)
	き裂長さ	00 F	20. 6	05 5	100 5
原子炉再循環ポンプ	2c[mm]	32.5	38.6	97.5	162.5
のケーシング	き裂進展力	15	57	000	500
	$J_{app}[kJ/m^2]$	47	57	208	562

表 14 き裂進展力 (Japp)

また,き裂進展力(J_{app})の評価において,以下の点を考慮することによりき裂進展力の評価の保守性を担保している。

- ・き裂進展力算出に用いる応力のうち,自重,地震,熱膨張荷重の応力は,き裂の開口に寄 与する曲げ応力成分による応力に加え,ねじり成分による応力を含んでいることにより, 評価の保守性を考慮している。
- ・き裂進展力の評価を安全側に評価するため,疲労き裂を貫通き裂に置き換えて評価を実施 している。

(e) 破壊力学による健全性の評価

き裂安定性評価用想定き裂および靱性予測モデルを用いて決定した評価対象部位の熱時効後の材料のき裂進展抵抗(J_{mat})と構造系に与えられた応力(一次応力である内圧,自重,地 震の応力値に二次応力の熱膨張荷重による応力値を加えたもの)とき裂形状から算出される き裂進展力(J_{app})を求めて,その比較を行う。

図7に原子炉再循環ポンプのケーシングのき裂安定性評価結果を示す。

評価の結果,運転開始後 60 年時点までの疲労き裂進展長さを考慮した評価用き裂を想定しても、J_{mat}が J_{app}と交差し、J_{mat}と J_{app}の交点において J_{mat}の傾きが J_{app}の傾きを上回ることから、評価対象機器は不安定破壊することはなく、健全性評価上問題とならないと判断する。

図7 原子炉再循環ポンプのケーシングのき裂安定性評価結果

(2) 現状保全

原子炉再循環ポンプのケーシングおよび原子炉再循環ポンプ出口弁の弁箱については,表15 に示すとおり,製造時に放射線透過試験および浸透探傷試験を実施しており,ポンプケーシン グの溶接部,弁箱の溶接部も含めてすべての内表面においてき裂がないことを確認している。

	-			
対象機器	対象部位	対象部位 検査方法 判定基準		判 定
百子后再毎増ポップ。	ケーシン/カン	放射線透過試験	告示第 501 号	合 格
尿丁炉丹循媒** 77	<i>ŋ=yyy</i>	浸透探傷試験	告示第 501 号	合 格
			JIS G 0581	
原子炉再循環ポンプ		放射線透過試験	JIS Z 3106	合 格
出口弁	开相		(溶接開先部)	
		浸透探傷試験	告示第 501 号	合 格

表 15 代表機器の製造時検査方法および結果

現状保全としては、定期事業者検査のクラス1機器供用期間中検査として維持規格等に基づき、定期的に溶接部の超音波探傷試験、内表面の目視点検を実施し、き裂が無いことを確認しており、これまでに補修した実績はない。表16に代表機器の現状保全の内容を示す。

対象機器	検査部位	検査方法	検査種別	判定基準	定期 検査	判	定
原子炉再循環 ポンプ	ケーシング の内表 面	目視点検	分解点検 社内基準※1		17 回	合	格
	ケーシンク [*] の内表 面	目視点検	供用期間 維持規格 (JSME S中検査 NA1-2008) VT-3		17 回	合	格
	ケーシンク [*] の耐圧 部の溶接継手	浸透探傷 試験	供用期間 中検査	周期間 溶接規格(JSME S 検査 NB1-2007)		合	格
	ケーシングと配管 の溶接部	超音波探 傷試験	供用期間 中検査	溶接規格(JSME S NB1-2007) NISA 文書 ^{※2}	17 回	合	格
	弁箱の内表面	目視点検	分解点検	社内基準**3	16 回	合	格
原子炉再循環 ポンプ出口弁	弁本体の内表 面	目視点検	供用期間維持規格 (JSME S中検査NA1-2008)VT-3		16 回	合	格
	弁箱と配管の 溶接部	超音波探 傷試験	供用期間 中検査	溶接規格 (JSME S NB1-2007) NISA 文書 ^{※2}	17 回	合	格

表16 代表機器の現状保全

※1:機能・性能に影響する傷及び腐食等が無いこと

※2:発電用原子力設備における破壊を引き起こすき裂その他の欠陥の解釈について(平成 21・ 11・18 原院第1号)

※3:著しい損傷・減肉・腐食・摩耗等の無いこと

(3) 総合評価

健全性評価結果から判断して,現時点の知見においては,2 相ステンレス鋼の熱時効は高経 年化対策上問題となる可能性はないと考える。

内面からの割れは溶接部の超音波探傷試験により検知可能であり,また,割れが発生すると すれば応力の観点から溶接部であると判断されるため,点検手法として適切である。

(4) 高経年化への対応

原子炉再循環ポンプのケーシングおよび原子炉再循環ポンプ出口弁の弁箱の熱時効について は、現状保全項目に、高経年化対策の観点から追加すべきものはなく、今後も現状保全を継続 していく。

5. 代表機器以外の技術評価

表2に示す機器のうち、使用温度が250℃以上となる機器について評価を行った。

き裂の原因となる低サイクル疲労割れが想定される機器は、代表機器の評価に包含され、低 サイクル疲労割れが評価期間において問題となる可能性はないと評価する。

また,その他の機器については,き裂の原因となる経年劣化事象が想定されないことから, 熱時効が問題となる可能性はないと評価する。

別紙 5 に対象機器の製造時検査および現状保全について,別紙 6 に評価対象外機器の熱時効 への対応を記載する。

6. まとめ

(1) 審査ガイドおよび実施ガイドへの適合性

「2. 基本方針」で示した要求事項について技術評価を行った結果,すべての要求を満足して おり,審査ガイドおよび実施ガイドに適合していることを確認した。熱時効についての要求事 項との対比を表 17 に示す。

(2)施設管理に関する方針として策定する事項施設管理に関する方針として策定する事項は、抽出されなかった。

カ゛イト゛	要求事項	技術評価結果
	(1) 高経年化技術評価の審査	「4. (1) 健全性評価」に示すとおり,代表機
	⑫健全性の評価	器である原子炉再循環ポンプのケーシングおよび
	実施ガイド 3.1⑤に規定する期間の満了日までの期間について、高経年	原子炉再循環ポンプ出口弁の弁箱について運
	化対策上着目すべき経年劣化事象の発生又は進展に係る健全性を評価	転開始後60年時点を想定した健全性評価を実
	していることを審査する。	施した。
宇田孫雪田百乙后旋	③現状保全の評価 健全性評価結果から現状の保全策の妥当性が評価されていることを審	「4.(2)現状保全」に示すとおり,健全性評価結果から,現状の保全策が妥当であること
設における高経年化	査する。	を確認した。
対策審査ガイド	④追加保全策の抽出	「4. (4) 高経年化への対応」に示すとおり,
	現状保全の評価結果から、現状保全に追加する必要のある新たな保全	現状保全項目に、高経年化対策の観点から追
	策が抽出されていることを審査する。	加すべき新たな保全策はなかった。
	(2)長期施設管理方針の審査	「4. (4) 高経年化への対応」に示すとおり,
	①長期施設管理方針の策定	現状保全項目に、高経年化対策の観点から追
	すべての追加保全策について長期施設管理方針として策定されている	加すべきものはなく,施設管理に関する方針
	かを審査する。	として策定する事項はなかった。

表17(1/2) 2相ステンレス鋼の熱時効についての要求事項との対比

22

カ゛イト゛	要求事項	技術評価結果
	3.1 高経年化技術評価の実施及び見直し	
	⑤抽出された高経年化対策上着目すべき経年劣化事象について、以下に規	「4. (4) 高経年化への対応」に示すとおり,
	定する期間の満了日までの期間について機器・構造物の健全性評価を行	現状保全項目に、高経年化対策の観点から追
	うとともに、必要に応じ現状の施設管理に追加すべき保全策(以下「追	加する新たな保全策はなかった。
	加保全策」という。)を抽出すること。	
	イ 実用炉規則第82条第1項の規定に基づく高経年化技術評価 プラントの	
	運転を開始した日から 60 年間	
	3.2 長期施設管理方針の策定及び変更	「4. (4) 高経年化への対応」に示すとおり,
 実用発電用原子炉施	長期施設管理方針の策定及び変更に当たっては、以下の要求事項を満た	現状保全項目に、高経年化対策の観点から追
設における高経年化	すこと。	加すべきものはなく、施設管理に関する方針
対策宝施が小	①高経年化技術評価の結果抽出された全ての追加保全策(発電用原子炉の	として策定する事項はなかった。
M R ZNEN TI	運転を断続的に行うことを前提として抽出されたもの及び冷温停止状態	
	が維持されることを前提として抽出されたものの全て。)について、発電	
	用原子炉ごとに、施設管理の項目及び当該項目ごとの実施時期を規定し	
	た長期施設管理方針を策定すること。	
	なお、高経年化技術評価の結果抽出された追加保全策について、発電用	
	原子炉の運転を断続的に行うことを前提とした評価から抽出されたもの	
	と冷温停止状態が維持されることを前提とした評価から抽出されたもの	
	の間で、その対象の経年劣化事象及び機器・構造物の部位が重複するも	
	のについては、双方の追加保全策を踏まえた保守的な長期施設管理方針	
	を策定すること。	

表17(2/2) 2相ステンレス鋼の熱時効についての要求事項との対比

熱時効によるき裂進展抵抗を予測する上で必要となるフェライト量の算出について,適用規格および化学成 分量の設定方法について以下に整理する。

1. 適用規格

き裂進展抵抗の予測は、「一般社団法人 日本原子力学会標準 原子力発電所の高経年化対策実施基準 (AESJ-SC-P005:2015)」に記載のある PVP 2005-71528 に従って実施した。PVP2005-71528 では、材料の破壊 靱性試験結果と ASTM A800/A800M により算出されたフェライト量の関係から、破壊靱性予測式の定数を決定し ている。

このため,島根2号炉の評価では,ASTM A800/A800Mに基づき,フェライト量を算出した。

2. 化学成分量の設定について

フェライト量算出に使用する化学成分量については,基本的にミルシートに記載される化学成分量を使用した。しかしながら,NbおよびNについては、ミルシートに化学成分量に関する記載がないことから、以下の 考え方で値を設定し、フェライト量を算出した。

Nbの含有量について

設定值:Nb=0.20wt%

【設定理由】

ASTM A800/A800M には、Nb の設定について記載がない。このため、NUREG/CR-4513/Revision2 の 2.2.2.2.2 ASTM 800/800M Methodology に「Nb=0.20%とした場合、フェライト量の推定値は、フェライト量 5%の材料 については、約 7%高く、フェライト量 30%の材料では約 4%高く見積もられる」と記載されていることから、本記載を参考とし、保守的に Nb=0.20wt%とした。

Nの含有量について

設定值:N=0.04wt%

【設定理由】

ASTM A800/A800M の 7. Estimation of Ferrite Content に「N については,類似材料のデータが多く得られている場合,その平均値を報告することができる。」と記載されていることから,

NUREG/CR-4513/Revision2のAPPENDIX A:MATERIAL INFORMATION に記載されるステンレス鋳鋼の化学成分量を参考とした。これらの値を確認した結果,表1のとおり,N含有量の平均値は,材料全体で0.047wt%,評価対象機器の使用材料であるA351 Gr.CF-3M (SCS16A 相当材) で0.043%であり,いずれも0.04~0.05の値となった。Nの値は小さくなるとフェライト量が大きくなる傾向にあるため,保守的にN=0.04wt%とした。

材料 (相当する JIS 材)	サンプル数	平均值(wt%)
A351 Gr.CF-3M (SCS16A)	6	0.043
全体 [A351 Gr.CF-8 (SCS13A),A351 Gr.CF-8M (SCS14A), A351 Gr.CF-3M (SCS16A),A351 Gr.CF-3 (SCS19A)]	112	0.047

表1 NUREG/CR-4513/Revision2 に記載される材料のN含有量

別紙 2

き裂進展抵抗の算出過程

熱時効脆化により低下するステンレス鋳鋼のき裂進展抵抗(破壊靱性値)を予測する式として,以下 に示す H3T モデルがある。

 $M = A + \frac{B}{t+C}$

M:熱時効時間 t 後の破壊靱性値[kJ/m²]

 $(J_{IC}: 延性き裂が成長を始める破壊靱性値, J_6: <math>\bigtriangleup a = 6 \text{ mm}$ における破壊靱性値)

A:熱時効温度無限大での破壊靱性値[kJ/m²]

B:熱時効温度に関連する定数

t:熱時効時間[h]

- C:熱時効時間に関連する定数
- ⊿a:き裂進展量[mm]

H3T モデルの定数 A, B, C の評価手法として参照した PVP2005-71528 の文献では,フェライト量の異な るステンレス鋳鋼の機械的特性試験や破壊靱性試験結果を基に,任意の運転温度(本評価では 289℃) における長時間熱時効後のき裂進展抵抗(破壊靱性値)を化学成分およびフェライト量から予測する 以下の H3T モデルが提唱されている。

$$M_{K} = A + \frac{B_{i}exp\left[\frac{Q}{R}\left(\frac{1}{T_{K}} - \frac{1}{T_{i}}\right)\right]}{t + (t_{Fi} + C_{i})exp\left[\frac{Q}{R}\left(\frac{1}{T_{K}} - \frac{1}{T_{i}}\right)\right] - t_{Fi}exp\left[\frac{F}{R}\left(\frac{1}{T_{K}} - \frac{1}{T_{i}}\right)\right]}$$

 $M_k: 熱時効時間 t 後の破壊靱性値[kJ/m²]$ (J_{IC}: 破壊靱性値, J₆: \angle a = 6 nm における破壊靱性値) A: 熱時効時間無限大での破壊靱性値[kJ/m²] B_i: 温度 T_i (325°C) における熱時効温度に関連する定数 t: 熱時効時間[h] (= 409, 147 h) T_k: 評価対象の使用温度[K] (= 289°C+273.15 = 562.15 K) t_{Fi}, t_{Fi}+C_i: 温度 T_i (325°C) における時間定数 Q, F: 活性化エネルギー[kJ/mo1] (= 100 kJ/mo1) R: ガス定数[kJ/ (mo1·K)] (= 0.008368 kJ/mo1·K) \angle a: き裂進展量[mm] 破壊靱性値 M_k (J_{IC}, J₆)の予測式 (H3T モデル)の定数 (A, B_i, t_{Fi}, t_{Fi}+C_i)を表1に示す。

表1 H3T モデルの定数 (325℃)

		Predicted equat	ion	S	
	٨	Log ₁₀ (A of CV-RT)=	2.2818	0.1411	
	A		-0.0472×F%	0.1411	
	Baa	$Log_{10} B_{325} =$	6.0909	0.2621	
CV-RT	D 325		-0.2861×Mo	0.2021	
(Charpy		$Log_{10} t_{F325} =$	10.7270		
absorbed	+		-0.4720×Cr	0.1124	
energy(J) at RT	4F325		+0.2846×Ni	0.1124	
			-13.9003×N		
	$(t \pm C)$	$Log_{10} (t_F + C)_{325} =$	3.9369	0 1507	
	(IF + C)325		-0.3784×Mo	0.1397	
	Δ	Log ₁₀ (A of CV-HT)=	2.8357	0.1638	
	А		-0.0592×F%	0.1038	
		$Log_{10} B_{325} =$	8.5909		
CV-HT	B ₃₂₅		$+2.4273 \times Mn$	0.1606	
(Charpy			-0.4328×Ni		
absorbed		$Log_{10} t_{F325} =$	22.8968		
energy at	t _{F325}		-2.0122×Mn	0.0742	
325°C)			-0.8227×Cr	0.0743	
			-23.0802×C		
	$(t_F + C)_{325}$	$Log_{10} (t_F + C)_{325} =$	4.9882	0 1454	
			-0.4121×Mo	0.1454	
	Δ	Log_{10} (A of J_{Ic} -HT)=	3.2961	0.2518	
	A		-0.0530×F%	0.2510	
Ь - НТ	B ₃₂₅	$Log_{10} B_{325} =$	5.7869	0.1514	
(L. at 325°C			+0.9256×Mn	0.1514	
$k I/m^2$	t _{F325}	$Log_{10} t_{F325} =$	4.3047	0 2732	
10,111,			-19.1095×N	0.2752	
	(t _v + C)225	$Log_{10} (t_F + C)_{325} =$	1.5354	0 1417	
	(4 C)323		+0.2062×Ni	0.1117	
	А	Log_{10} (A of J ₆ -HT)=	3.6699	0 1490	
			-0.0490×F%	0.1 19 0	
L-HT	Baas	$Log_{10} B_{325} =$	-1.7907	0 1783	
(L at 325°C	D 323		$+0.4130 \times Cr$	0.1705	
kJ/m^2		$Log_{10} t_{F325} =$	7.6362		
J ₆ : J value at Δa	t _{F325}		-0.3670×Ni	0.0892	
6mm			-16.108×N		
		$Log_{10} (t_F + C)_{325} =$	-2.9645		
	$(t_F + C)_{325}$		$+0.3438\times Cr$	0.0702	
			-0.1648×Mo		

Table 3Constants of Fully Aged Toughness Prediction Model
when the Operating Temperature is 325°C (H3T Model)

note) F% : Ferrite content(%) by ASTM A800 diagram. C, Si, Mn, Cr, Ni, Mo, N (wt%) S:標準偏差

熱時効時間は、運転開始後60年時点の運転時間を想定し、以下の通り算出した。

<運転開始後 60 年時点の EFPH>

= (2015 年 7 月末時点の総運転時間+次回起動日以降の総運転時間*1)

=167, 615(H) + 241, 532(H)

=409,147(H) (約 46.68 EFPY)

※1:次回起動日(暫定:2018年7月1日)~運転開始後60年時点(2049年2月10日)までの総時間のうち稼働率を90%と想定し算出した。(2018年7月1日までの実績稼働率約64%に対して保守的に設定)

また,H3T モデルでは表1のとおり,各定数の標準偏差Sが報告されている。本評価においても標準 偏差の2倍(-2S)を考慮し,表2のとおり,運転開始後60年時点における破壊靱性値(J_{IC},J₆)の 最小予測値を算出した。

	$J_{IC}[kJ/m^2]$	$J_6[kJ/m^2]$				
原子炉再循環ポンプのケーシング	74.9	235. 1				

表 2 破壊靱性値 (J_{IC}, J₆)

別紙3

疲労き裂進展速度式の比較

2相ステンレス鋼の熱時効のき裂進展評価における疲労き裂進展速度の式に関して,島根2号炉の評価対象機器・部位および使用環境への適用性を考慮し,保守的である式を検討した。

1. 維持規格の環境(BWR 環境中,大気中)の異なるき裂進展速度式

維持規格の添付 E-2 において、オーステナイト系ステンレス鋼(鍛鋼)の「①BWR 環境中(図添付 E-2-FA-2)」および「②大気中(図添付 E-2-FA-1)」の疲労き裂進展速度式が規定されている。

2. 配管破損防護設計規格の鋼種(鍛鋼,鋳鋼)の異なるき裂進展速度式

配管破損防護設計規格 解説 添付 5-4 において,「③オーステナイト系ステンレス鍛鋼(図解説添付 5-4-2)」および「④ステンレス鋳鋼(図解説添付 5-4-3)」のき裂進展速度式が規定されている。

上記の①~④の式を応力比(R = 0.7)の条件で比較した結果,①>③>④>②となった。以上より, 本評価では,BWR環境中を考慮しており,保守的な評価となる①の維持規格のオーステナイト系ステンレ ス鋼のBWR環境中の疲労き裂進展速度式を用いてき裂進展評価を実施する。

図1 疲労き裂進展速度式の比較図

別紙4

き裂進展力 (J_{app}) は, HANDBOOK の Zahoor の J 積分の解析解により算出しており, volume1 1 章 2 項 2.1~2.3 節のうち主に, 2.3 節 Combined Tension and Bending (P2-17, 2-18) にある以下 の式を用いて算出する。

$$\begin{split} J &= f_t \cdot P^2 / 4Rt^2 E + f_b \cdot M^2 / R^3 t^2 E + \alpha \sigma_0 \epsilon_0 R(\pi - \theta) \cdot (\theta/\pi) \cdot h_1 \cdot \left(P/P_0'\right)^{n+1} \\ P_0^{'} &= 0.5 \left[-\lambda R P_0^2 / M_0 + \left\{ \left(\lambda R P_0^2 / M_0 \right)^2 + 4 P_0^2 \right\}^{0.5} \right] \\ \lambda &= M/PR \\ P_0 &= 2 \sigma_0 R t [\pi - \theta - 2 sin^{-1} (0.5 sin \theta)] \\ M_0 &= 4 \sigma_0 R^2 t [\cos(\theta/2) - 0.5 sin \theta] \\ f_t &= (\theta_e/\pi) [1 + A \{5.3303(\theta_e/\pi)^{1.5} + 18.773(\theta_e/\pi)^{4.24}\}]^2 \\ f_b &= (\theta_e/\pi) [1 + A \{4.5967(\theta_e/\pi)^{1.5} + 2.6422(\theta_e/\pi)^{4.24}\}]^2 \\ \theta_e &= \theta \cdot \left[1 + (1/\beta) \cdot \{(n - 1)/(n + 1)\} \cdot \{(\sigma_t F_t + \sigma_b F_b)^2 / \sigma_0^2\} / \left\{ 1 + \left(P/P_0'\right)^2 \right\} \right] \\ \sigma_t &= P/2 \pi Rt \\ \sigma_b &= M/\pi R^2 t \\ F_t &= 1 + A [5.3303(\theta/\pi)^{1.5} + 18.773(\theta/\pi)^{4.24}] \\ F_b &= 1 + A [4.5967(\theta/\pi)^{1.5} + 2.6422(\theta/\pi)^{4.24}] \\ A &= [0.125(R/t) - 0.25]^{0.25} \qquad \text{for } 5 \leq R/t \leq 10 \\ A &= [0.4(R/t) - 3.0]^{0.25} \qquad \text{for } 10 \leq R/t \leq 20 \end{split}$$

(F_t, F_b, A はそれぞれ HANDBOOK volume1 1 章 2 項の 2.1 節 Axial Tension (P2-1) および 2.2 節 Bending Moment (P2-9) の値を使用する。)

なお,同解法における定数αおよび加工硬化指数 n は, Ramberg-Osgood の応力-ひずみ関係において下記のとおり与えられる。

$$\begin{split} \epsilon/\epsilon_0 &= \sigma/\sigma_0 + \alpha (\sigma/\sigma_0)^n\\ \alpha &= -0.011\sigma_f + 6.054\\ n &= -0.005\sigma_f + 6.763 \end{split}$$

ここで σ_{f} は時効材の流動応力であり、下記のとおり未時効材の流動応力 $\sigma_{f(0)}$ に熱時効の影響を考慮することにより求まる。

σ_{f(0)}は,H3Tモデルにある以下の予測式を用いて算出する。 σf(0)=105.472+6.96F+16.062Mo+1535.398C

F:フェライト量〔%〕, Mo:モリブデン重量組成〔wt%〕, C:炭素重量組成〔wt%〕

 $\sigma_{f} = \sigma_{f(0)} \left(\frac{1+1.161}{2} - \frac{1-1.161}{2} \times \tanh \frac{P(t,T) - 2.996}{0.929} \right) \cdot \cdot \cdot (F[\%] < 23[\%])$

 $\sigma_{f} = \sigma_{f(0)} \left(\frac{1+1.247}{2} - \frac{1-1.247}{2} \times \tanh \frac{P(t,T) - 3.148}{0.919} \right) \cdot \cdot \cdot (F[\%] \ge 23[\%])$

 $P(t,T) = \log(t) + 0.4343 \frac{Q}{R} (\frac{1}{673.2} - \frac{1}{T})$

t:熱時効時間[h] (= 409,147 h) Q:活性化エネルギー[kJ/mol] (= 100 kJ/mol) R:ガス定数[kJ/(mol・K)] (= 0.008368 kJ/mol・K) T:熱時効温度[K] (= 289℃+273.15 = 562.15 K)

さらに、Zahoorの解析解における σ_0 は時効硬化を考慮した 0.2%耐力を用いる。未時効材の 0.2%耐力は、PVP2005-71528の Table2 から引用した。 σ_0 は、 σ_{y0} に熱時効の影響を考慮し、下記のとおり算出する。

 $\sigma_{0} = \sigma_{y0} \left(\frac{1+1.071}{2} - \frac{1-1.071}{2} \times \tanh \frac{P(t,T) - 1.617}{0.916} \right) \cdot \cdot (F[\%] < 23[\%])$ $\sigma_{0} = \sigma_{y0} \left(\frac{1+1.144}{2} - \frac{1-1.144}{2} \times \tanh \frac{P(t,T) - 3.02}{1.462} \right) \cdot \cdot (F[\%] \ge 23[\%])$

Jap 算出に使用した値と記号の説明を表1に示す。

Ja	pp算出に使用した	J _{app} 算出に	光序	進去
	パラメータ	使用する値	- 単位	加方
t	板厚	32.5	mm	板厚
R ₀	外半径	254.0	mm	外径 508.0÷2
R_{i}	内半径	221.5	mm	$R_i=R_0-t$
R	平均半径	237.75	mm	$R=R_0-t/2$
σ t	軸方向応力	35.9	MPa	—
σь	曲げ応力	167.1	MPa	—
σ _{y0}	未時効材の 0.2%耐力	161	MPa	H3T モデルにある予測式から求めたもの
σ	0.2%耐力	173	MPa	σ _{y0} に熱時効の影響を考慮したもの
0 3	0.2%耐力のひずみ	9.83 $\times 10^{-4}$	_	ε ₀ =σ ₀ /E
$\sigma_{\mathrm{f}(0)}$	未時効材の流動応力	306	MPa	H3T モデルにある予測式から求めたもの
σ f	流動応力	351	MPa	σ _{f(0)} に熱時効の影響を考慮したもの
α	定数	2. 193	_	Ramberg-Osgood の応力-ひずみ関係にお ける定数
n	加工硬化指数	5.008	_	Ramberg-Osgood の応力-ひずみ関係にお ける加工硬化指数
β	補正定数	2.0	_	平面ひずみの補正定数
Е	縦弾性係数	1.76×10^5	MPa	設計・建設規格 付録材料図表 Part6 表 1 より
Р	軸方向荷重	1.74×10^{6}	Ν	$P = 2 \pi Rt \times \sigma_t$
М	曲げモーメント	9. 64×10^8	N•mm	$M = \pi R^2 t \times \sigma_b$
λ	軸力と曲げモーメント の比率	2.33	_	$\lambda = M/PR$

表1 J_{app}算出に使用した値と記号の説明

$\lambda / (1 + \lambda)$	n = 2	n = 5	n = 7	n = 10
0.00	3.967	5.567	6.104	6.510
0.05	4.313	6.500	6.500	7.969
0.10	4.736	7.375	7.080	9.721
0.15	5.125	8.250	7.875	11.250
0.20	5.614	9.080	8.787	12.937
0.25	6.000	9.750	9.875	14.250
0.30	6.438	10.501	11.078	15.463
0.35	6.789	11.000	12.125	16.375
0.40	7.140	11.457	13.188	17.063
0.45	7.500	11.875	14.000	17.500
0.50	7.901	12.150	14.610	17.839
0.55	8.094	12.313	15.000	17.550
0.60	8.287	12.236	15.130	17.241
0.65	8.344	11.938	14.875	16.375
0.70	8.257	11.642	14.408	15.500
0.75	8.125	11.125	13.625	14.500
0.80	7.811	10.617	12.729	13.366
0.85	7.500	9.875	11.688	12.125
0.90	7.063	9.190	10.447	10.738
0.95	6.563	8.500	9.250	9.313
1.00	6.018	7.620	8.160	7.928
		:原子炉冉	・循境ホンプの	ケーシング

表2 Japp 算出において設定した定数 h1

 h_1 for Throughwall Cracks in Combined Tension and Bending $\theta/\pi=0.0625,\,R/t=10$

き裂長さを板厚の1倍,3倍,5倍,60年想定き裂としたときの各き裂における Japp を表3に示す。

J _{app} 算出に 使用した値			証毎田知期を陸	60 年想定	き裂想定	き裂想定
		単位	計価用初熟入陥 (振厚の1位)	き裂進展	(板厚の	(板厚の
			(极序の1倍)	解析結果	3倍)	5倍)
2c	き裂長さ	mm	32.5	38.6	97.5	162.5
$ heta$ / π	き裂の角度	_	0. 023	0 099	0.070	0 117
	$c/(\pi R_i)$			0.028	0.070	0.117
h ₁	定数	_	14.875	14.875	14.875	14.875
$J_{\rm app}$	き裂進展力	kJ/m^2	47	57	208	562

表3 き裂安定性評価用想定き裂における Jap 算出について

別紙5

代表機器以外の機器に関する現状保全等について

熱時効の健全性評価において,代表機器以外の機器に関して,以下の理由から,現時点でき裂 は存在せず,今後もき裂は発生しないと評価した。

- ・製造時の検査または現状保全において、き裂が無いことを確認している。
- ・ステンレス鋳鋼は、二相ステンレス組織であり、溶接等による熱影響によって鋭敏化することがないため、応力腐食割れは発生しないものと考えられる^{*1}。
- ・低サイクル疲労割れについては、プラントの起動・停止時等に受ける温度・圧力変化により 大きな応力を受ける機器について、建設時に工事計画認可にて評価を実施しており、技術評 価においても代表機器の評価を実施し、許容値を満たすことを確認している。

その他の機器については、工事計画認可時の評価対象ではなく、また、疲労評価上、プラ ントの起動・停止時等に温度・圧力の影響が代表機器よりも厳しくないことから、低サイク ル疲労割れが評価期間において問題となる可能性はない。

※1: 一般社団法人 日本原子力技術協会「BWR 炉内構造物点検評価ガイドライン」

以下に,代表機器以外の機器において「き裂の原因となる経年劣化事象が想定される部位」お よび「き裂の原因となる経年劣化事象が想定されない部位」の対応について示す。

1. き裂の原因となる経年劣化事象が想定される部位の対応

(1) 仕切弁の弁箱について

各弁の弁箱は、表1に示すとおり、製造時の検査および現状保全を実施し、異常がないこと を確認している。

また,低サイクル疲労割れについては,プラントの起動・停止時等に受ける温度・圧力変化 により大きな応力を受ける部位として,高経年化技術評価書の代表機器である原子炉再循環ポ ンプ出口弁の弁箱について運転開始後 60 年時点を想定した評価を実施しており,許容値を満た していることから,低サイクル疲労割れが評価期間において問題となる可能性はない。

以上より,熱時効は想定されるが,そのことが機器の健全性に影響を与える可能性はないと 評価する。

評価書	+64 日口 な エムー	対象	製造時の検査	現状保全	加步
分類	機	部位	および判定基準*1	および判定基準*1	刊正
	宮フに王征押 じっ? 1 日ム	1 - hoka	 ・放射線透過試験:①② 	 ・供用期間中検査:⑥ 	<u>∧ +</u> ⁄z
	原于炉冉值琼4 27 入口开	开相	 浸透探傷試験:④ 	 目視点検:⑦ 	合格
	広った次ルズ1 5 土内地市が4 ム		 ・放射線透過試験:①③ 	 ・供用期間中検査:56 	A +6
	原于炉伊化米入口内侧隔離开	开相	 浸透探傷試験:④ 	 目視点検:⑦ 	合格
	ビスに次ルズ1 日月加速が ム		 ・放射線透過試験:①③ 	 ・供用期間中検査:56 	<u>∧ +</u> ⁄z
	原于炉伊化米入口外侧隔離开	开相	 浸透探傷試験:④ 	 目視点検:⑦ 	合格
	臣フに海仏なみない。シルッカ	台林	 ・放射線透過試験:③ 	日祖上松,③	人物
	原于炉伊化補助4 27 ^ 4^ 4开	开相	 浸透探傷試験:④ 	・日倪点検:⑧	台格
	原子炉浄化補助ポンプ入口弁		 ・放射線透過試験:③ 		<u>∧ +6</u>
	(電動弁)	开相	 浸透探傷試験:④ 	・日倪点検:⑧	百俗
	原子炉浄化補助ポンプ出口弁	台林	 ・放射線透過試験:③ 	口俎上捡、⑦	合格
在回去	(電動弁)	升相	 浸透探傷試験:④ 	・日悦県使:①	
江则开	原子炉浄化再生熱交管側入口	会体	 ・放射線透過試験:③ 	,日相占捡,③	公妆
	弁	开相	 浸透探傷試験:④ 	・日祝尽使:③	口 11日
	臣又后海北诸明教六九日台	弁箱	 ・放射線透過試験:③ 	,日相占松,③	公妆
	原于炉伊化桶助热交入口开		 浸透探傷試験:④ 	・日祝尽使:③	台格
	原子炉浄化補助ポンプ入口弁	金箔	 ・放射線透過試験:③ 	- 日相占於 - の	△故
	(手動弁)	开相	・浸透探傷試験 : ④	・日祝点使.③	口俗
	原子炉浄化補助ポンプ出口弁	金箔	 ・放射線透過試験:③ 	- 日相占於 - の	△故
	(手動弁)	开相	・浸透探傷試験 : ④	・日祝点使.③	口俗
	球の熱除土でに水1pkkk	会体	 ・放射線透過試験:①③ 	 ・供用期間中検査:56 	公技
	残留熱味云糸炉水入口止の升	开箱	 浸透探傷試験:④ 	 目視点検:⑦ 	合恰
	産の麹除土で后水戸り止め会	金箔	 ・放射線透過試験:①③ 	 ・供用期間中検査:56 	△故
	残留熱除去糸炉水戻り止め并	廾相	 ・浸透探傷試験:④ 	・目視点検:⑦	口伯

表1 仕切弁の弁箱の製造時の検査および現状保全

※1:製造時の検査および現状保全の判定基準を以下に示す。

①JIS G 0581

⑦社内基準:著しい損傷・減肉・腐食・摩耗等の無いこと ②JIS Z 3106(溶接開先部) ⑧社内基準:機能・性能に影響を及ぼす恐れのあるき裂,打痕,変形

③JIS Z 3104 (溶接開先部)

及び摩耗等がないこと

④告示第 501 号

⑤弁本体の内表面の目視点検:維持規格(JSME S NA1)または電気技術規程(JEAC4205) VT-3 ⑥弁箱と配管の溶接部の超音波探傷試験:溶接規格 (JSME S NB1) および NISA 文書 (き裂解釈)

- 2. き裂の原因となる経年劣化事象が想定されない部位の対応
 - (1) 原子炉再循環ポンプの羽根車,水中軸受,ケーシングリングについて

原子炉再循環ポンプの羽根車,水中軸受,ケーシングリングは,表2に示すとおり,製造時 の検査および現状保全を実施し,異常がないことを確認している。

また,プラントの起動・停止時等に受ける温度・圧力変化により大きな応力を受ける部位と して,ケーシングの疲労評価を実施しており,許容値を満たすことを確認している。

さらに,羽根車,水中軸受,ケーシングリングは,原子炉冷却材の圧力バウンダリではなく, 疲労評価上はケーシングが羽根車,水中軸受,ケーシングリングよりも厳しいと考えられるこ とから,低サイクル疲労割れが評価期間において問題となる可能性はない。

以上より,熱時効は想定されるが,そのことが機器の健全性に影響を与える可能性はないと 評価する。

*118 円 な また	対象部位	製造時の検査	現状保全	skil 🖨	
機都名称		および判定基準*1	および判定基準*1	刊化	
原子炉再循環ポンプ	羽根車※2	・浸透探傷試験 : ①	 ・目視点検:③ 	A +47	
		 放射線透過試験:① 	 ・浸透探傷試験:④⑤ 	合恰	
		 浸透探傷試験:① 	日相上台、③	入技	
	水中軸交***	 ・放射線透過試験:② 	・日倪県傾:③	合格	
	ケーシンク゛リンク゛	 ・浸透探傷試験:① 	 ・目視点検:③ 	合格	

表2 原子炉再循環ポンプの製造時の検査および現状保全

※1:製造時の検査および現状保全の判定基準を以下に示す。

①告示第 501 号

②JIS G 0581

④溶接規格 (JSME S NB1)

9,10 0 0001

CHEIX/241 (JUNE O HEI)

⑤設計・建設規格 (JSME S NC1)

③社内基準:機能・性能に影響する傷及び腐食等が無いこと

※2:取替実績があるため、取替後の製造時検査の内容を記載。

(2) 主蒸気系配管のフローノズルについて

主蒸気系配管のフローノズルは表3に示すとおり、製造時の検査を実施し、異常がないこと を確認している。

また,バウンダリを構成する部位ではなく,当該部位に発生する応力は自重および支持対象 物の重量が主であり,劣化によるき裂は想定されない。

以上より,熱時効は想定されるが,そのことが機器の健全性に影響を与える可能性はないと 評価する。

機器名称	対象部位	製造時の検査の検査	現状保全	判定
		わよび刊止基準	わよい刊止基準	
主蒸気系配管	フローノブル	・浸透探傷試験 : ANSI B31.1		△故
	/ / / //	・放射線透過試験:ANSI B31.1		口俗

表3 主蒸気系配管フローノズルの製造時の検査および現状保全

(3) 仕切弁, 玉形弁, 逆止弁(弁箱, 弁ふた, 弁体) について

各弁の弁箱,弁ふた,弁体は,表4に示すとおり,製造時の検査または現状保全により,異 常がないことを確認している。

また,低サイクル疲労割れについては,プラントの起動・停止時等に受ける温度・圧力変化 により大きな応力を受ける部位として代表機器である原子炉再循環ポンプ出口弁の弁箱につい て疲労評価を実施しており,許容値を満たすことを確認している。

さらに,疲労評価上,弁箱が弁ふた,弁体よりも厳しいと考えられることから,弁ふた,弁 体の低サイクル疲労割れが評価期間において問題となる可能性はない。

以上より,熱時効は想定されるが,そのことが機器の健全性に影響を与える可能性はないと 評価する。

評価書 分類	機器名称	対象部位	製造時の検査 および判定基準 ^{※1}	現状保全 および判定基準 ^{※1}	判定
	原子炉再循環ポンプ入口弁	弁ふた, 弁体	 ・放射線透過試験:① ・浸透探傷試験:② 	 ・目視点検:5 ・浸透探傷試験:34 	合格
仕切弁	原子炉再循環ポンプ出口弁	弁ふた, 弁体	 ・放射線透過試験:① ・浸透探傷試験:② 	・目視点検:⑤ ・浸透探傷試験:③④	合格
	原子炉浄化系入口内側隔 離弁	弁ふた, 弁体	 ・放射線透過試験:① ・浸透探傷試験:② 	・目視点検:⑤ ・浸透探傷試験:③④	合格
	原子炉净化系入口外侧隔 離弁	弁ふた, 弁体 ^{※2}	 ・放射線透過試験:①③ ・浸透探傷試験:②③ 	 ・目視点検:5 ・浸透探傷試験:34 	合格
	原子炉浄化補助ポンプバイ パス弁	弁ふた, 弁体	・浸透探傷試験(弁ふ た): ②	・目視点検:⑥ ・浸透探傷試験:③④	合格
	原子炉浄化補助ポンプ入口 弁(電動弁)	弁ふた, 弁体 ^{※2}	・浸透探傷試験(弁ふ た): ②	・目視点検:⑥ ・浸透探傷試験:③④	合格
	原子炉浄化補助ポンプ出口 弁(電動弁)	弁ふた, 弁体	・浸透探傷試験(弁ふ た): ②	・目視点検:⑤ ・浸透探傷試験:③④	合格
	原子炉浄化再生熱交管側 入口弁	弁ふた, 弁体	・浸透探傷試験(弁ふ た): ②	 ・目視点検:⑥ ・浸透探傷試験:③④ 	合格
	原子炉净化補助熱交入口 弁	弁ふた, 弁体	 ・浸透探傷試験(弁ふた):② 	 ・目視点検:⑥ ・浸透探傷試験:③④ 	合格

表4(1/2) 仕切弁,玉形弁,逆止弁の製造時の検査および現状保全

※1:製造時の検査および現状保全の判定基準を以下に示す。

①JIS G 0581

②告示第 501 号

③設計・建設規格 (JSME S NC1)

 ⑤社内基準:著しい損傷・減肉・腐食・摩耗等の無いこと
 ⑥社内基準:機能・性能に影響を及ぼす恐れのあるき裂,打痕, 変形,摩耗,侵食,付着物等がないこと

④溶接規格 (JSME S NB1)

※2: 取替実績があるため、取替後の製造時検査について記載する。

評価書 分類	機器名称	対象 部位	製造時の検査 および判定基準 ^{※1}	現状保全 および判定基準 ^{※1}	判定		
	原子炉浄化補助ポンプ入 口弁(手動弁)	弁ふた, 弁体	·浸透探傷試験:②	 ・目視点検: ⑩ ・浸透探傷試験: ⑥ 	合格		
	原子炉浄化補助ポンプ出 口弁(手動弁)	弁ふた, 弁体	・浸透探傷試験(弁ふた): ②	 ・目視点検: ⑩ ・浸透探傷試験: ⑥ 	合格		
仕切弁	残留熱除去系炉水入口 止め弁	弁ふた, 弁体	 ・放射線透過試験:① ・浸透探傷試験:② 	 ・目視点検: ⑨ ・浸透探傷試験: ⑤⑦ 	合格		
	残留熱除去系炉水戻り 止め弁	弁ふた, 弁体	 ・放射線透過試験:① ・浸透探傷試験:② 	 ・目視点検: ⑨ ・浸透探傷試験: ⑤⑦ 	合格		
	排カ [゙] ス再結合器出口弁	弁箱, 弁体	 ・放射線透過試験(弁箱): ③ ・浸透探傷試験(弁箱):2 	 ・目視点検:⑨ ・浸透探傷試験(弁体):⑤ ⑦ 	合格		
	原子炉浄化系原子炉圧 力容器ドン流量調節弁	弁箱	 ・放射線透過試験:③ ・浸透探傷試験:② 	•目視点検:⑨	合格		
玉形弁	原子炉浄化系入口元弁	弁箱, 弁ふた	 ・放射線透過試験:①③ ・浸透探傷試験:② 	 ・供用期間中検査: ⑧① ・目視点検: ⑨ ・浸透探傷試験(弁ふた): ⑤⑦ 	合格		
	原子炉圧力容器ドレン側 流量調節弁バイパス弁	弁箱, 弁ふた	 ・放射線透過試験(弁箱): ③ ・浸透探傷試験:② 	・目視点検:⑨ ・浸透探傷試験 (弁ふた): ②④	合格		
	原子炉浄化補助ポンプバ イパス逆止弁	弁箱	 ・放射線透過試験:③ ・浸透探傷試験:② 	・目視点検:⑩	合格		
逆止弁	原子炉浄化補助熱交冷 却水逆止弁	弁箱	 ・浸透探傷試験:② 	・目視点検:⑪	合格		
	ほう酸水注入系内側隔 離弁	弁箱	 ・浸透探傷試験:② 	 ・目視点検: ⑨ 	合格		

表4(2/2) 仕切弁, 玉形弁, 逆止弁の製造時の検査および現状保全

※1:製造時の検査および現状保全の判定基準を以下に示す。

①JIS G 0581

②告示第 501 号

③JIS Z 3104 (溶接開先部)

④電気工作物の溶接の技術基準の省令および解釈

⑤溶接規格 (JSME S NB1)

^{⑥NISA} 文書(き裂解釈)

⑦設計・建設規格 (JSME S NC1)

 ⑨社内基準:著しい損傷・減肉・腐食・摩耗等の無いこと
 ⑩社内基準:機能・性能に影響を及ぼす恐れのあるき裂, 打痕,変形および摩耗がないこと

⑧弁本体の内表面の目視点検:維持規格(JSME SNA1) VT-3

⑪弁箱と配管の溶接部の超音波探傷試験:

溶接規格 (JSME S NB1) および NISA 文書 (き裂解釈)

(4) 中央燃料支持金具,制御棒案内管のベース,炉心スプレイ配管・スパージャのノズル,制御 棒の落下速度リミッタについて

当該部位は,表5のとおり,製造時の検査および現状保全を実施し,異常がないことを確認 している。

また,発生する応力は自重および支持対象物の重量が主であり,劣化によるき裂は想定され ない。

以上より,熱時効は想定されるが,そのことが機器の健全性に影響を与える可能性はないと 評価する。

继兕友折		製造時の検査	現状保全	ماريا ملح	
機奋名称	对家韵位	および判定基準**1	および判定基準**1	判定	
做判主性今日	中央燃料支持	 · 浸透探傷試験:①② 	 ・供用期間中検査(目視点) 	合故	
<u> 然</u> 科又村並具	金具	 ・放射線透過試験:① 	検):⑥	百俗	
制御捧安内签	^ [*] -7	 浸透探傷試験:① 	・供用期間中検査(目視点	△按	
制御俸柔汋官	~ - ~	 ・放射線透過試験:③ 	検):⑥	口俗	
炉心スプレイ配管(原子	1751	, 涅沃恢復封殿, ①	・供用期間中検査(目視点	△按	
炉圧力容器)・スパージャ) × W	• 反迈休厉矾碘 . ①	検):⑥	口俗	
		・浸添炉復試験・①のの	・水中カメラによる目視点検:		
制御棒	落下速度リミッタ※2	· 仅边抹沥矾碳、①②④ • 故射線漆過試驗、⑦◎	\overline{O}	合格	
		- ルスオル水レシー回武歌、303	・運用基準**3に基づき取替		

表5 中央燃料支持金具等の製造時の検査および現状保全

※1:製造時の検査および現状保全の判定基準を以下に示す。

①告示第 501 号

②ASME NB-2546

3JIS G 0581

④設計・建設規格 (JSME S NC1)

⑦社内基準:強度・性能に影響を及ぼす有意なひび、破損等

※2:取替実績があるものとないものが混在するため、両方の製造時検査について記載する。

※3:制御棒の有効長を4等分したいずれかの区間で相対価値が10%減少した時点の核的寿命に対して保守的に定めた運用基準による。

⑤ASTM E71 および ASTM E186

⑥維持規格 (ISME S NA1) VT-3

がないこと

(5) ジェットポンプのライザ管、インレットミキサ、ディフューザ、ブラケットについて

当該部位は,原子炉冷却材の圧力バウンダリではなく,表6に示すとおり,製造時の検査お よび現状保全を実施し,異常がないことを確認している。

以上より,熱時効は想定されるが,そのことが機器の健全性に影響を与える可能性はないと 評価する。

	•••	··· = · · ·· ·· ··			
* 4 1 2 5 +	社会如告	製造時の検査	現状保全)에 수	
愤 奋 尔	刘家司心	および判定基準*1	および判定基準*1	刊化	
	う/4* 答	 ・浸透探傷試験:①② 	・供用期間中検査(目視	公技	
	719 目	 放射線透過試験:④ 	点検):56	口俗	
シ゛ェットホ゜ンフ゜	インレットミキサ	 ・浸透探傷試験:①② 	 ・供用期間中検査(目視) 	△按	
		 ・放射線透過試験:3④ 	点検):5	百俗	
		 ·浸透探傷試験:① 	・供用期間中検査(目視	△按	
	/ 1/1-9	 放射線透過試験:④ 	点検):56	口俗	
	7226 1	 ・浸透探傷試験:①② 	 ・供用期間中検査(目視) 	△故	
	7 779F	 放射線透過試験:④ 	点検):56	口俗	

表6 ジェットポンプの製造時の検査および現状保全

※1:製造時の検査および現状保全の判定基準を以下に示す。

①告示第 501 号

②ASME NB-2546

③ASTM E192 および ATM E447

④ASTM E446

⑤維持規格 (JSME S NA1) VT-3

⑥維持規格 (JSME S NA1) MVT-1 (溶接部のみ)

(6) 原子炉隔離時冷却ポンプ駆動用蒸気タービンの翼について

当該部位については,表7に示すとおり製造時の検査および現状保全を実施し,異常がない ことを確認している。

以上より,熱時効は想定されるが,そのことが機器の健全性に影響を与える可能性はないと 評価する。

表 7	原子炉隔離時冷却ポン	~プ駆動用蒸気タービ	ンの製造時の検査およ	び現状保全

松巴口友升	计色动位	製造時の検査	現状保全	判定	
1成在17小	刘家司心	および判定基準**1	および判定基準*1		
原子炉隔離時冷却ポンプ	মূহ	. 砂叭把有計驗 . ①	 目視点検:② 	△按	
駆動用蒸気タービン	異	• 娰朷休饧矾綊:①	 ・浸透探傷試験:③ 	合俗	

※1:製造時の検査および現状保全の判定基準を以下に示す。

①製造メーカー社内基準:原則として無欠陥とする

②社内基準:表面に機能・性能に影響を及ぼすおそれのあるき裂,打痕,変形,摩耗および腐食がないこと ③告示第 501 号 (7) 高圧原子炉代替注水ポンプ駆動用蒸気タービンのケーシングについて

当該部位については,表8に示すとおり製造時の検査を実施し,異常がないことを確認している。また、表8に示すとおり現状保全を実施し、異常がないことを確認することとしている。

以上より,熱時効は想定されるが,そのことが機器の健全性に影響を与える可能性はないと 評価する。

表8 高圧原子炉代替注水ポンプ駆動用蒸気タービンの製造時の検査および現状保全

+666 円口 な チケー	++++++++++++++++++++++++++++++++++++++	製造時の検査	現状保全		
機奋名你	对家韵位	および判定基準*1	および判定基準*1	判足	
高圧原子炉代替注水ポンプ	k 30148	 放射線透過試験:① 	. 日相占龄※2.①	△按	
駆動用蒸気タービン	7-277	 ・浸透探傷試験:2 	・日祝尽快~~:③	合格	

※1:製造時の検査および現状保全の判定基準を以下に示す。

①JIS G 0581 準拠

②設計・建設規格 (JSME S NC1)

③社内基準:表面に機能・性能に影響を及ぼすおそれのあるき裂,打痕,変形,摩耗および腐食がないこと ※2:計画している保全内容を記載する。

別紙6

評価対象外機器の熱時効への対応について

補足説明資料本文の表 2「熱時効の劣化評価に関する評価対象部位の抽出結果一覧表」において、使用 温度が 250℃未満と評価し、評価対象外とした理由を以下に示す。

(1) 使用温度が 250℃未満の玉形弁, 逆止弁について

以下の玉形弁, 逆止弁については, 最高使用温度は 302℃であるが, 使用温度は 250℃未満であること から, 評価対象外とした。

機器名称	使用温度	最高使用温度	
再循環メカシールパージ元弁	66°C以下	302°C	
原子炉浄化再生熱交出口逆止弁	112°C	302°C	
原子炉浄化補助熱交出口逆止弁	171°C	302°C	
ほう酸水注入系外側隔離弁	43°C	302°C	

表1 使用温度が250℃未満の玉形弁,逆止弁

(2) 制御棒駆動機構のコレットピストン、コレットリテイナチューブについて

当該部位は、ステンレス鋳鋼製であるが、構造上、冷却流路に設置されているため、使用環境は250℃ 未満であることから評価対象外とした。 原子炉再循環ポンプの構造および評価部位

原子炉再循環ポンプの構造図を図1に示す。原子炉再循環ポンプケーシングの熱時効評価対象部位は、 肉厚の薄い吸込・吐出ノズルのうち発生応力が大きい吸込ノズルとした。吸込ノズルの詳細を下図に示す。

図1 原子炉再循環ポンプ構造図

き裂進展抵抗(破壊靭性値)の妥当性および保守性について

島根2号炉の評価では、熱時効脆化により低下するステンレス鋳鋼のき裂進展抵抗(破壊靭性値)を予測する式としてH3Tモデルを適用しており、フェライト量はASTM A800/A800Mに基づき 算出している。一方、NUREG/CR-4513/Revision2の2.2.2.2.2においてASTM A800/A800Mはフェ ライト量が20%を超えるCASS材に対して過小評価されていること、また、NUREGではHullの等価 係数を用いた算出式(以下、「Hull式」という。)によるフェライト量の算出方法も紹介されてい る。本資料では、ASTM A800/A800Mに基づき算出したフェライト量が20%を超えるCASS材に対し てH3Tモデルを適用することの妥当性およびASTM A800/A800Mを用いたH3TモデルがHull式を用 いたNUREG/CR-4513/Revision2に示されている評価法(以下、「ANLモデル」という。)に比べて、 き裂進展抵抗(破壊靭性値)を保守的に算出する式であることを示す。

1. フェライト量が 20%を超える CASS 材に対する妥当性

H3T モデルによる2相ステンレス鋼の熱時効評価において,フェライト量の算出にASTM A800/A800M を用いる理由は,H3T モデルの脆化予測式の各係数がASTM A800/A800M で求められ るフェライト量と熱時効試験で得た実験値との関係から決定されているためである。そのため,フェライト量が20%を超える CASS 材に対する過小評価の範囲もH3T モデルでは考慮されている ため ASTM A800/A800M による評価は妥当である。

2. H3T モデルと ANL モデルを用いた評価の比較による保守性

(1)評価方針

フェライト量の算出には ASTM A800/A800M と Hull 式があるが,H3T モデルを使用する場合は ASTM A800/A800M,ANL モデルを使用する場合は Hull 式を用いることが適切である。定量評価 部位である原子炉再循環ポンプのケーシングについて,H3T モデルにより求まる延性き裂進展 抵抗曲線と ANL モデルを用いた延性き裂進展抵抗曲線を比較することで,H3T モデルの評価が ANL モデルによる評価よりも保守的であることを説明する。

- (2) 評価対象と評価条件
 - a. 評価対象

原子炉再循環ポンプのケーシング(定量評価部位)

- b. 評価条件
 - (a)使用温度(熱時効温度):289℃
 - (b)運転開始後 60 年時点の熱時効時間:409,147h
 - (c) 材料成分

材質	化学成分[%](製品分析)							Cre /Ni	フェライト量	
	С	Si	Mn	Cr	Ni	Mo	Nb**	N [₩]	Cr _e /N1 _e	F[%]
SCS16A							0.20	0.04	約 1.40	約 20.7

ミルシートによる材料成分

※:Nb,Nの化学成分は規格上の規定値がなく,製造時のミルシートに記載がないため,

別紙1に示すとおり,NUREG/CR-4513/Revision2「Estimation of Fracture Toughness of Cast Stainless Steels during Thermal Aging in LWR Systems」(以下, 「NUREG/CR-4513/Revision2」という。)の記載を参考に,Nb=0.20[%],N=0.04[%] とした。

(3)評価結果

H3T モデルにより求まる延性き裂進展抵抗曲線とANL モデルを用いた延性き裂進展抵抗曲線を比較した結果を図1に示す。図1より、H3T モデルにより求まる平均特性、実機評価に用いる下限特性はANL モデルによって求めた延性き裂進展抵抗よりも低いことから、H3T モデルによる評価がANL モデルによる評価よりも保守的である。

図1 H3TモデルとANLモデルによる延性き裂進展抵抗曲線の比較