# 福島第一原子力発電所における地すべりの可能性について コメント回答



2023年4月3日 東京電力ホールディングス株式会社

# コメントリスト



| No. | 実施日               | 指摘事項                                                                                                                                                                                                                                                                                                                | 回答内容                                                                                                                                        |
|-----|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | 2022.9.20<br>面談   | 福島第一原子力発電所における地すべりの可能性<br>・第94回特定原子力監視・評価検討会資料3-2のDタンクエリアのボーリング<br>柱状図等から,段丘堆積物直下にN値が大きく下がる箇所が複数箇所存在するこ<br>と<br>・過去の地震時にDタンクエリアのタンクが他のタンクエリアと異なり有意な滑<br>動が生じていること<br>・以上のことから,コメントNo.2における調査結果等も考慮した上で,福島第一<br>原子力発電所における地すべりの可能性について見解を示すこと                                                                        | 【2022.12.7 技術会合】<br>・敷地内の既往のボーリング調査結<br>果を再整理し,段丘堆積物直下の風<br>化部の分布状況を整理した。                                                                   |
| 2   | 2022.9.20<br>面談   | 福島第一原子力発電所敷地南側の地すべり地形の可能性<br>・8月23日の面談資料のボーリング柱状図14箇所のうち約半数の箇所で段丘堆積<br>物直下にN値が大きく下がる強風化部が存在すること、また、それらは孔口標高<br>が高い箇所(約30m)に集中していること。<br>・国土地理院の地図を見る限りにおいて、福島第一原子力発電所付近に地すべり<br>地形と思われる箇所が複数箇所存在すること。また、それら地形は8月23日の面<br>談で東京電力が示した見解「高さが異なる段丘面」とは形状が異なること。<br>・以上のことから、再度、各種調査等を踏まえ、福島第一原子力発電所南側の地<br>形について見解を示すこと | 【2022.12.7 技術会合】<br>・既往の空中写真判読図により,指<br>摘された箇所の地形について,当時<br>の当社の見解を説明した。<br>・「地すべり地形と思われる」と指<br>摘された複数箇所について,空中写<br>真の再判読等を実施した結果を報告<br>した。 |
| 3   | 2022.12.7<br>技術会合 | 段丘堆積物直下の風化部の分布状況の検討を進め,既往のボーリング調査結果か<br>ら富岡層風化部を読み取り,敷地内の分布状況を把握し、これを反映した地質平<br>面図・断面図を作成する(東電)。                                                                                                                                                                                                                    | 本資料「1.」で説明。                                                                                                                                 |
| 4   | 2022.12.7<br>技術会合 | 富岡層風化部の介在による地盤の地震時応答への影響を検討する(東電)。                                                                                                                                                                                                                                                                                  | 本資料「2.」で説明。                                                                                                                                 |
| 5   | 2022.12.7<br>技術会合 | コメントNo.4の検討の結果,風化部の介在による地盤安定性への影響の可能性が<br>認められる場合は、ボーリング調査と室内試験を行い,風化部の物性を評価し,<br>今後の基礎地盤の安定性評価への適用の必要性を検討する(東電)。ボーリング<br>調査の計画ができたら,報告すること(規制庁)。                                                                                                                                                                   | 本資料「3.」で説明。                                                                                                                                 |
| 6   | 2022.12.7<br>技術会合 | 大規模な地すべり跡が見られないという東電の見解について,当該検討に資する<br>情報をより充実しうる観点から,同様の地形を有する南相馬市塚原地区・楢葉町<br>下小塙地区についても地形判読を実施すること(規制庁)。                                                                                                                                                                                                         | 本資料「4.」で説明。                                                                                                                                 |





- 1. 敷地内の富岡層風化部の分布状況
- 2. 風化部による地盤の地震時応答への影響検討
  - 2.1 検討概要
  - 2.2 検討方法
  - 2.3 検討結果
  - 2.4 まとめ
- 3. 敷地内のボーリング調査計画
  - 3.1 調查方針
  - 3.2 ボーリング調査位置の選定
  - 3.3 調査·試験内容
  - 3.4 今後のスケジュール
- 4. 追加2地点の地形判読結果
  - 4.1 設置許可申請時の追加2地点の地形
  - 4.2 下小塙地点の地形判読
  - 4.3 塚原地点の地形判読
  - 4.4 まとめ 下小塙地点および塚原地点の地形について

# 1. 敷地内の富岡層風化部の分布状況





図 ボーリング位置図・地質断面位置図

# 1. 敷地内の富岡層風化部の分布状況





富岡層T2部層 富岡層T1部層 先富岡層

凝灰岩鍵層

風化部

※ 各ボーリング孔は

断面線に投影

地質断面図(汀線平行方向A-A) 义

# 1. 敷地内の富岡層風化部の分布状況





▶ 風化部は富岡層の上部に分布し、海側(東側)に向かい厚くなる傾向が認められる。

### 2. 風化部による地盤の地震時応答への影響検討 2.1 検討概要

- ▶ 富岡層の上部に風化部が介在することによる施設の耐震評価と基礎地盤の安定性評価への影響を検討する。
- ▶ 富岡層T3部層の砂岩あるいは泥岩を一括とした地質区分(a)と、段丘堆積物直下の 風化部を考慮した地質区分(b)の両方で地盤の地震応答解析を行い、解析結果(地表 面加速度、基礎岩盤上面せん断力)を比較する。
- 敷地内の場所により、風 化部の厚さ、およびN値が 異なることから、これら をパラメータとした影響 検討を行う。
- 地震応答解析は重複反射 理論に基づく一次元地震 応答解析手法とし、地盤 のひずみ依存性は等価線 形化法を用いる。



ΤΞΡϹΟ

# 2.2 検討方法(地質層序)

### ΤΞΡϹΟ

- ▶ 検討は、富岡層上部に風化部の介在が認められ、地質層序・区分とN値が既知のDエリ アの地質層序を例(基本ケース)に行う。Dエリアは、2022年9月22日の面談におい て,当該エリアのタンクの風化部介在による地震時滑動を指摘されたエリアである。
- ▶ Dエリアの4本のボーリング結果のうち、ボーリングコアの色調観察による風化部が最 も厚い(風化部厚さ:1.09m)南東部のボーリング結果を検討対象とする。

### 2.1 段丘堆積物直下の風化部の分布状況

- > 9月20日の面談において指摘された「段丘堆積物直下のN値が大きく下がる強風化部」について,既往のボーリング調査結果を再整理し, 段丘堆積物直下の富岡層における風化部の分布状況を把握した。分布状況を下図に示す。
- 風化部は敷地内全域に分布し、海側に向かって厚さが厚くなる傾向がみられる。なお、今回、整理した「風化部」はコア観察においてコ アに変色がみられるものを風化部と判断したものであり、指摘された「N値が大きく下がる強風化部」とは異なる。
- Dエリアと地すべり指摘箇所の風化部が特に厚いなどの特徴は認められないことから,「Dエリア タンクの滑動」および「地すべりと指 摘された箇所」と風化部の分布状況に関係性は認められない。





特定原子力施設の実施計画の審査等に係る技術会合

(2022.12.7 第2回) 資料より抜粋

5

IEPCO

# 2.2 検討方法 (解析モデル)



▶ 地震応答解析用の一次元解析モデルを左下図に示す。本解析モデルを「基本ケース」 とし、風化部の厚さとN値を変化させたパラスタ用解析モデルの解析結果を比較することにより、風化部の介在による影響を確認する。



# 2.2 検討方法 (風化部の解析用物性値の設定)



▶ 風化部の解析用物性値は、N値より推定した。

➢ 初期せん断弾性係数G₀は、Dエリアのボーリング結果における風化部のN値の最小値 (N=16)をもとに、道路橋示方書に記載されているN値からせん断弾性波速度V<sub>s</sub>を 推定する式よりV<sub>s</sub>を推定して、算定した。

(4) 平均せん断弾性波速度 V<sub>si</sub>を,弾性波探査, PS 検層等の適切な手法で直接計測して求める場合又は式(3.6.2)により推定する場合には,(3)を満足するとみなしてよい。



ここに,

N<sub>i</sub>:標準貫入試験による i 番■の地層の平均 N 値

道路橋示方書・同解説 V耐震設計編(日本道路協会,平成29年11月)より抜粋・加筆

 $V_{\rm S} = 80 \times N^{1/3}, \ G_0 = \rho V_{\rm S}^2$ 

N=16,  $\rho$ =1.71g/cm<sup>3</sup>より, G<sub>0</sub>=69.5N/mm<sup>2</sup>

# 2.2 検討方法(その他,解析用物性値)



▶ その他の地盤の解析用物性値は,設置許可申請書等に記載した物性値を用いる。

|          |            |                                                                                      | 배ం .                                                                    | 即戶維持屋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 富岡層                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                     |                                                                                                         | 化合图屏                                                                                                                                                                                                                                                                                                                                                                                            |                                    |
|----------|------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|          |            |                                                                                      | 埋庆工                                                                     | 校工堆慣眉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T3部層 砂岩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T3部層 泥質部                                                                                                                    | T3部層 互層部 *2)                                                                                                                                                                                        | T2部層                                                                                                    | T1部層                                                                                                                                                                                                                                                                                                                                                                                            | 尤虽问眉                               |
| 物理       | 1特性        | $ ho_{\rm t}({\rm g/cm^3})$                                                          | 1.80                                                                    | 1. 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.71                                                                                                                        | 1.76                                                                                                                                                                                                | 1.75-0.000417Z                                                                                          | 1.79                                                                                                                                                                                                                                                                                                                                                                                            | 1.88                               |
| 静的変形特性   |            | E <sub>0</sub> (N/mm <sup>2</sup> )                                                  | 17.7                                                                    | 23. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 124P+94. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 506                                                                                                                         | 等価変形係数 *3)                                                                                                                                                                                          | 120-5. 42Z                                                                                              | 675                                                                                                                                                                                                                                                                                                                                                                                             | 931                                |
|          |            | ν                                                                                    | 0. 33                                                                   | 0. 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0. 47                                                                                                                       | 等価ポアソン比 *3)                                                                                                                                                                                         | 0.47                                                                                                    | 0. 47                                                                                                                                                                                                                                                                                                                                                                                           | 0.45                               |
| 動的変形特性   |            | G <sub>0</sub> (N/mm <sup>2</sup> )                                                  | 72.6                                                                    | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 427                                                                                                                         | 302                                                                                                                                                                                                 | 254-3. 22Z                                                                                              | 667                                                                                                                                                                                                                                                                                                                                                                                             | 954                                |
|          |            | ν <sub>d</sub>                                                                       | 0.35                                                                    | 0. 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.45                                                                                                                        | 0.46                                                                                                                                                                                                | 0. 467+0. 000222Z                                                                                       | 0.44                                                                                                                                                                                                                                                                                                                                                                                            | 0.42                               |
|          |            | $\begin{array}{c} \mathrm{G/G_0} \sim \gamma \\ \mathrm{(} \gamma : \%) \end{array}$ | $\frac{1}{1+10.65 \gamma^{0.778}}$                                      | $\frac{1}{1+6.872 \gamma^{0.614}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{1}{1+3.009 \gamma^{0.604}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{1}{1+3.600 \gamma^{-0.962}}$                                                                                         | $\frac{1}{1+3.257 \gamma^{0.688}}$                                                                                                                                                                  | <u>1</u><br>1+2. 845 γ <sup>0.918</sup>                                                                 | $\frac{1}{1+2.586 \gamma^{0.722}}$                                                                                                                                                                                                                                                                                                                                                              | $\frac{1}{1+2.714 \gamma^{0.920}}$ |
|          |            | $\begin{array}{c} h \sim \gamma \\ (h, \gamma : \%) \end{array}$                     | 22. 97 γ <sup>0. 289</sup>                                              | <u>14.79</u><br>1+0.036/γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>21.80</u><br>1+0.122/γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11. 90 y <sup>1. 086</sup> +1. 617                                                                                          | <u>17.57</u><br>1+0.084/γ                                                                                                                                                                           | 10. 54 $\gamma$ <sup>0. 865</sup> +0. 903                                                               | 15. 04 $\gamma$ <sup>0. 517</sup>                                                                                                                                                                                                                                                                                                                                                               | 14. 69 $\gamma$ <sup>0. 583</sup>  |
|          | t゚ーゥ<br>強度 | C <sub>u</sub> (N/mm <sup>2</sup> )                                                  | _                                                                       | 0.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.50                                                                                                                        | 0.098 *5)                                                                                                                                                                                           | 0.942-0.00758Z                                                                                          | 1.62                                                                                                                                                                                                                                                                                                                                                                                            | 1.80                               |
|          |            | φ <sub>u</sub> (°)                                                                   | _                                                                       | 24. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                           | 38.6 *5)                                                                                                                                                                                            | 0                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                               | 0                                  |
| 強度<br>特性 |            | $\sigma_{t} (N/mm^{2})$                                                              | —                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.222 *1)                                                                                                                   | 0 *5)                                                                                                                                                                                               | 0. 100-0. 00119Z<br>*1)                                                                                 | 0 *4)                                                                                                                                                                                                                                                                                                                                                                                           | 0.104                              |
|          | 残留         | C <sub>ur</sub> (N/mm <sup>2</sup> )                                                 | _                                                                       | 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.08                                                                                                                        | 0.069 *5)                                                                                                                                                                                           | 1.01-0.00365Z                                                                                           | 1.44                                                                                                                                                                                                                                                                                                                                                                                            | 1.46                               |
|          | 強度         | φ <sub>ur</sub> (°)                                                                  | _                                                                       | 25. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                           | 38.7 *5)                                                                                                                                                                                            | 0                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                               | 0                                  |
| 備考       |            |                                                                                      | 強度特性は下図の通りに設<br>定する。<br>ビーク強度<br>$\tau = C_u + \sigma \tan \phi_u$<br>の | 強度特性は下図の通りに設<br>定する。<br>ビーク強度<br><sup>5</sup> ← $c = C_u + \sigma \tan \phi_u$<br>- $\phi$<br>- $\phi$<br>- $\phi$<br>- $\phi$<br>- $\phi$<br>- $\phi$<br>- $\sigma$<br>- $\phi$<br>- | 強度特性は下図の通りに設<br>定する。<br>ピーク強度<br>て、<br>て、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>の<br>の<br>、<br>の<br>の<br>、<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の | 強度特性は下図の通りに設<br>定する。<br>ビーク強度<br>て= $C_u$ + $\sigma$ tan $\phi_u$<br>残留強度<br>て、 $= C_w$ + $\sigma$ tan $\phi_w$<br>$\sigma$ | 強度特性は下図の通りに設<br>定する。<br>ビーク強度<br>て、<br>$\tau = C_u$<br>$\tau = C_u$ | 強度特性は下図の通りに設<br>定する。<br>ビーク強度<br>$\tau (\sigma - C_w)^{z_+} \tau^{z} = C_w^{z}$<br>$\sigma$<br>$\sigma$ | 強度特性は下図の通りに設<br>定する。<br>ビーク強度<br>て = C<br>て $\tau$ $\tau = C$<br>$\tau$ $\tau = C$<br>$\tau = C$<br>$\tau = C$ |                                    |

\*1) すべり安全率の算定では安全側に0とする。

\*2) T3部層 互層部の砂岩と泥質部の層厚比は4:6とする。

\*3) T3部層 砂岩とT3部層 泥質部のE<sub>0</sub>, ν,層厚比から等価物性値を設定する。

\*4)解析用として安全側に設定した値。

\*5) 安全側に富岡層T3部層砂岩の値を用いた。

# 2.2 検討方法(入力地震動)



▶ 地震応答解析に用いる入力地震動は、解放基盤表面(T.P.約-197m)で定義される検討用地震動とし、水平加速度の最も大きいSs-900①を用いる。



図 Ss-900①の水平加速度時刻歴波形

### 2.2 検討方法 (解析ケース)



▶ 下表のとおり、風化部を考慮しない解析ケースと、風化部を考慮して風化部の厚さおよびN値をパラメータとして変化させた解析ケースの地震応答解析結果を比較し、風化部の介在による施設の耐震評価や基礎地盤の安定性評価への影響を評価する。

|            | 風化部厚さ(m) | N値 |
|------------|----------|----|
| 風化部考慮なし    | 0.0      | -  |
| 基本ケース      | 1.09     |    |
| パラスタケースA-1 | 5.0      | 16 |
| パラスタケースA-2 | 10.0     |    |

表 風化部厚さによる影響検討A

表 N値による影響検討B

|            | 風化部厚さ(m) | N値 |
|------------|----------|----|
| 風化部考慮なし    | 0.0      | -  |
| 基本ケース      | 1 09     | 16 |
| パラスタケースB-1 | 1.09     | 5  |

### 2.3 検討結果 (A:風化部厚さによる施設の耐震評価への影響) TEPCO

施設の耐震設計に用いる地表面の加速度に着目すると、風化部厚さが厚くなると、 最大加速度は1割程度小さくなることから、施設の耐震評価への影響はないと判断 される。



最大加速度分布(Gal)

表地表面最大加速度の比較

| 項目                     | 地表面最大加速度<br>(gal) |
|------------------------|-------------------|
| ①風化部考慮なし(風化部:0m)       | 1151.0            |
| ②基本ケース(風化部:1.09m)      | 1156.5            |
| ③パラスタケースA-1(風化部:5.0m)  | 1005.7            |
| ④パラスタケースA-2(風化部:10.0m) | 1003.1            |



図 ①風化部考慮なしのケースを1としたときの最大加速度の比較 13

### 2.3 検討結果 (A:風化部厚さによる基礎地盤安定性への影響) TEPCO

▶ 基礎地盤の安定性評価においてすべり線を設定する基礎岩盤上面の最大せん断応力に 着目すると、風化部の厚さが厚くなると最大せん断応力は増加するものの増加率は 10%程度にとどまることから、基礎地盤の安定性への影響は小さいと判断される。 (基礎地盤のすべり安全率は1.5以上を確認する,実際は重要施設は風化部を取り除いた 健岩上に設置される)



最大せん断応力の比較 表

| 項目                     | 風化部上端標高位置の<br>最大せん断応力(kN/m <sup>2</sup> ) |
|------------------------|-------------------------------------------|
| ①風化部考慮なし(風化部:0m)       | 126.8                                     |
| ②基本ケース(風化部:1.09m)      | 133.9                                     |
| ③パラスタケースA-1(風化部:5.0m)  | 136.5                                     |
| ④パラスタケースA-2(風化部:10.0m) | 137.9                                     |



①風化部考慮なしのケースを1としたときの最大せん断応力の比較 义

### 2.3 検討結果(B:N値による施設の耐震評価への影響)



▶ 施設の耐震設計に用いる地表面の加速度に着目すると、N値が小さくなると最大加 速度は小さくなる傾向であり、施設の耐震評価への影響はないと判断される。



#### 最大加速度分布(Gal)

表最大加速度の比較

| 項目                       | 地表面最大加速度<br>(gal) |
|--------------------------|-------------------|
| ①風化部考慮なし<br>(富岡層T3部層泥質部) | 1151.0            |
| ②基本ケース(N値:16)            | 1156.5            |
| ③パラスタケースB-1(N値:5)        | 819.6             |



図 ①風化部考慮なしのケースを1としたときの最大加速度の比較 ※①風化部考慮なしのN値は50で表示

### 2.3 検討結果 (B:N値による基礎地盤の安定性評価への影響) TEPCO

基礎地盤の安定性評価においてすべり線を設定する基礎岩盤上面の最大せん断応力に 着目すると、N値が大きく変化しても最大せん断応力の変化は小さいことから、基礎地 盤の安定性への影響は小さいと判断される。



表 最大せん断応力の比較

| 項目                | 風化部上端標高位置の<br>最大せん断応力(kN/m <sup>2</sup> ) |
|-------------------|-------------------------------------------|
| ①風化部考慮なし(T3部層泥質部) | 126.8                                     |
| ②基本ケース(N値:16)     | 133.9                                     |
| ③パラスタケースB-1(N値:5) | 120.1                                     |



図 ①風化部考慮なしのケースを1としたときの最大せん断応力の比較 ※①風化部考慮なしのN値は50で表示 16

# 2.4 まとめ



- ▶ 風化部を考慮しない地質区分と風化部を考慮した地質区分の両方を反映した解析モデ ルによる地盤の地震応答解析を行った。
- ▶ 風化部厚さ・N値をパラメータにして変化させ、地表面加速度、風化部せん断応力の傾向を把握した結果は以下のとおり。

|       | 項目           | 風化部なし                    | $\rightarrow$ | 風化部厚さ大                                  |
|-------|--------------|--------------------------|---------------|-----------------------------------------|
| 風化部なし |              | _                        | $\rightarrow$ | 地表面加速度(↓)<br>風化部せん断応力( <mark>↑</mark> ) |
|       | $\downarrow$ | $\downarrow$             |               |                                         |
|       | N値小          | 地表面加速度(↓)<br>風化部せん断応力(↓) |               |                                         |

- ▶ 以上の結果から、風化部を考慮し、風化部の厚さが厚く、N値が小さいほうが、施設設 計に用いる地表面加速度は小さくなることから、風化部の介在による施設の耐震評価 への影響はないと判断される。
- ▶ また,風化部厚さが大きくなると,基礎地盤のすべりの計算に用いるせん断応力度は 大きくなるが増加率は10%程度にとどまることから,地盤安定性評価への影響は小さいと判断される。
- ▶ よって、従来の地質区分による施設の耐震評価および基礎地盤の安定性評価への影響はない。

# 3. 敷地内のボーリング調査計画 3.1 調査方針

▶ 敷地内に広く分布する富岡層風化部の物性を把握するため、ボーリング調査およびボーリングにより採取した室内試験用試料による室内試験を実施する。

### 2.1 段丘堆積物直下の風化部の分布状況

特定原子力施設の実施計画の審査等に係る技術会合 (2022.12.7 第2回) 資料より抜粋

- 9月20日の面談において指摘された「段丘堆積物直下のN値が大きく下がる強風化部」について、既往のボーリング調査結果を再整理し、 段丘堆積物直下の富岡層における風化部の分布状況を把握した。分布状況を下図に示す。
- 風化部は敷地内全域に分布し、海側に向かって厚さが厚くなる傾向がみられる。なお、今回、整理した「風化部」はコア観察においてコアに変色がみられるものを風化部と判断したものであり、指摘された「N値が大きく下がる強風化部」とは異なる。
- Dエリアと地すべり指摘箇所の風化部が特に厚いなどの特徴は認められないことから、「Dエリア タンクの滑動」および「地すべりと指摘された箇所」と風化部の分布状況に関係性は認められない。





### 3.2 ボーリング調査位置の選定



- ▶ ボーリング調査位置は、室内試験用試料を確実に採取できるよう、富岡層風化部が比較的厚い箇所から選定する。
- ▶ また、富岡層風化部は敷地全体に広く分布することから、ボーリング調査位置も広く 偏りなく配置する。



### 3.3 調查·試驗内容



- ▶ ボーリング調査1箇所につき,地質判読用試料および室内試験用試料をそれぞれ採取す るために,計2本のボーリングを行う。また,約10箇所のうち1箇所については,N値 把握用のボーリングを1本追加して計3本実施する。
- ▶ 採取した試料を用いて室内試験を行い、富岡層風化部の物性値を把握する。



| 項目                          | 物性値                                                            | 必要な試験・調査                                             | 予定数量<br>(供試体) |  |  |  |
|-----------------------------|----------------------------------------------------------------|------------------------------------------------------|---------------|--|--|--|
| 物理特性                        | 密度:p <sub>t</sub>                                              | 三軸圧縮試験供試体                                            | 40            |  |  |  |
| 转的亦取法社                      | 変形特性:E <sub>0</sub>                                            | 三軸圧縮試験                                               | 40            |  |  |  |
| 靜的変形特性                      | 静ポアソン比:v                                                       | 三軸圧縮試験中の<br>堆積変化測定                                   | 40            |  |  |  |
|                             | 初期動せん断弾性係<br>数:G <sub>0</sub>                                  | <u>ダウホールPS検層</u> のV <sub>s</sub><br>と三軸圧縮試験供試<br>体密度 | 10            |  |  |  |
| 動的変形特性                      | 動ポアソン比:v <sub>d</sub>                                          | <u>ダウンホールPS検層</u>                                    | 10            |  |  |  |
|                             | 動せん断弾性係数のひ<br>ずみ依存性:G/G <sub>0</sub> ~γ<br>減衰定数のひずみ依存<br>性:h~γ | 繰返し三軸試験                                              | 10            |  |  |  |
| ピーク強度                       | C <sub>u</sub><br>Φ <sub>u</sub>                               | 三軸圧縮試験                                               | 40            |  |  |  |
| 残留強度                        | C <sub>ur</sub><br>Φ <sub>ur</sub>                             | 三軸圧縮試験                                               | 40            |  |  |  |
| ※1: 下線は原位置試験(ボーリング孔を利用した試験) |                                                                |                                                      |               |  |  |  |

表 室内試驗一覧

※2:調査の状況により数量は変更する

ボーリング調査の模式図 义

2()

### 3.4 今後のスケジュール



### ▶ ボーリング調査・室内試験は下図に示すスケジュールで進めていく。

|          | 2022年度下期 | 2023年度上期 | 2023年度下期 | 2024年度 |
|----------|----------|----------|----------|--------|
| ①ボーリング調査 |          |          |          |        |
| ・コン試料採取  |          |          |          |        |
| ②室内試験    |          | Ý        | ¥        |        |
| ③物性値評価   |          |          | ¥        |        |
|          |          |          |          |        |

※現場作業の進捗により工程が前後する可能性がある。

### 4. 追加2地点の地形判読結果

### 4.1 設置許可申請時の追加2地点の地形

敷地周辺陸域の地形

- 敷地を中心とする半径約30kmの範囲及びその周辺陸域における地形は、文献調査、変動地形学的調査、地表地質調査、地球物理学的調査等の結果によると以下のとおりである。
- 変動地形学的調査としては、陸域については、主に国土地理院で撮影された縮尺4万分の1、2万分の1および1万分の1の空中写真並びに国土地理院発行の縮尺2万5千分の1の地形図等を使用して、空中写真判読を行い、段丘面等の地形要素を抽出・分類した。
- 敷地周辺の陸域は、地形上、西半部の阿武隈山地と東半部の 丘陵とに大別され、いわき市横川から同市八茎付近を境に南 側では、丘陵が西方に大きく入り込んで発達している。いわ き市八茎以北においては、東半部の丘陵は、丘陵のほかに段 丘及び平野が発達する木戸川以北と、段丘及び平野の発達が 悪い木戸川以南とに区分される。

①下小塙地点 (次頁)

 木戸川の南側(右岸)にL1, L2, L3, A1段丘面を, 北側( 左岸)にL3段丘面を判読している。

②塚原地点(次頁)

- > 小高川の北側(左岸)にM1段丘面および,その低位にM2段 丘面を判読している。
- ➤ その西方にM2段丘面を判読している。



資料2

### 4.1 設置許可申請時の追加2地点の地形

TEPCO





23

福島第一発電所補正申請書(2010)による空中写真判読図(下小塙地区) (地形断面線を加筆)

### 4.2 下小塙地点の地形判読



高:5

低:0

<u>'</u>4



• 地形断面線



4.2 下小塙地点の地形判読



①下小塙地点 地形断面図

- ▶ 木戸川の南側(左岸側)にL1, L2, L3, A1段 丘面を判読している。
- ▶ 河成の段丘であり、木戸川上流(断面1)から 下流(断面2)にかけて各段丘面の標高が低下 する。
- 「川前及び井出」(産業技術総合研究所 地質 調査総合センター,2002)では、同地域に tm3,tm4,tl1,tl2段丘面を判読しており, L1がtm3に,L2がtm4に,L3がtl1に,A1が tl2におおよそ対応している。
- ▶ L1,L2,L3,A1段丘面の各面を境する崖面は、その連続性、形態などから、木戸川の側方浸食による段丘崖であると判断される。
- ▶ 段丘面上および段丘崖に,規模の大きな地すべりを示唆する馬蹄形~円弧上の崖地形,段丘崖の傾斜は認められない。
- これらのことから、当地域に大規模な地すべりは認められない。



### 4.2 下小塙地点の地形判読



26



- ①下小塙地点の地すべり地形(まとめ)
- ▶ 地すべりや崩壊が認められるが、いずれも小規模である。
- ▶判読した地すべりは、起伏が急峻な谷地形の斜面に認められ、その位置は福島 第一原子力発電所の敷地から遠く、また、敷地の高台(M1段丘面)下の段丘 崖の安定性に影響を与えるものではない。
- ▶ なお、「川前及び井出」(産業技術総合研究所 地質調査総合センター、 2002)によれば、地すべりは両側の山地をなす湯長谷層群(中新統)分布域 に認められ、古い岩質に起因したものと推測される。









塚原地区の2mDEMおよび一部5mDEMから作成したから作成した標高段彩傾斜図 (5mDEMは国土地理院基盤地図情報による)

塚原地区の段丘面分布図 (等高線は2mDEMおよび一部5mDEMによる)



②塚原地点 地形断面図

- ▶ 小高川の河口付近の北側(左岸側)に海岸 に面して平坦面の高い丘状を呈するM1段 丘面,その南側の低位にM2段丘面が判読 される(断面3)。M1段丘面とM2段丘面 には明瞭な高低差がある。
- ➤ その西方上流側にも連続してM2段丘面が 判読され(断面4,5),M1段丘面とM2段 丘面は,形成時代の異なる段丘面と判断され,海岸部では8~6mの比高の段丘崖によって境される。
- ▶「原町及び大甕」(通商産業省工業技術院 地質調査所, 1990)では、同地域にtm1, Tm2, tl1段丘面を判読しており、M1, M1'がtm1に, M2がtm2におおよそ対応し ている。



塚原地区の地形断面図 (2mDEMおよび5mDEMによる)





②塚原地点 陰影起伏図



凡 例
 地 1 <-00 (滑稽 法:風揚形 <-0 </li>
 金 
 金 
 金 
 金 
 金 
 金 
 金 
 金 
 金 
 金 
 金 
 金 
 金 
 金 
 金 
 金 
 金 
 ( 清 
 金 
 ( 清 
 ( 清 
 ( 清 
 ( 清 
 ( 清 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 
 ( 市 

0 62.5 125 250

375

地形断面線
 「皮面地区の2mDEMおと」

塚原地区の2mDEMおよび一部5mDEMから作成した陰影起伏図 (5mDEMは国土地理院基盤地図情報による)

30

TEPCO

②塚原地点の地すべり地形(まとめ)

- ▶ 地すべり, 崩壊が認められるが, いずれも小規模である。
- ▶ また、地すべりはM1段丘面を起点としたものではなく、福島第一原子力発電所敷地の 高台(M1面)下の段丘崖の安定性に影響を与えるものではない。

### 4.4 まとめ 下小塙地点および塚原地点の地形について

12月7日の技術会合において,追加の地形判読を指示された①下小塙地点および②塚原地点の地形について,当社の見解は以下のとおり。

- ▶ 両2地点において、小規模な地すべり、崩壊およびその崩積土の堆積は認められるが、 いずれも規模は小さく、2022年9月20日の面談において指摘された敷地南方の地すべ り堆積物(幅1km×長1km)を形成し、M1段丘面を広くすべり土塊に含むような大規 模な地すべり地形は認められない。
- ▶ また、判読した小規模な地すべり地形は、敷地高台を形成するM1段丘面を起点としたものではない。

以上より,12月7日技術会合で報告した発電所敷地南方の4地点および今回報告の2地点の 地形は,福島第一原子力発電所敷地の地すべりの可能性を示唆するものではない。

### 参考1) 下小塙地点の地質

①下小塙地点 地質図



0 125 250 500 750 1,000



「TTTT Lcリニアメント (短線は低下側を、矢印は横ずれを示す)

~ テフラ鍵層

• 地形断面線



### 参考2) 塚原地点の地質



②塚原地点 地質図



塚原地区の5万分の1地質図「原町及び大甕」(地質調査所,1990)による地質図 (地形断面線を加筆)

### 参考3)下小塙地点の地すべり地形断面図



### ①下小塙地点 地形断面図

### 断面1

▶ L1段丘面下の東向きの段丘崖に比高10m程度 の崖面からなる崩壊と、その基部に崩積土の堆 積が認められる。

### 断面2

- ▶ 東向き斜面の標高115m付近に比高15m程度の 崖面からなる地すべりおよび標高80m付近に比 高10m程度の崖面からなる地すべりが認められ る。
- ▶ 標高65m付近に比高5m程度の崖面からなる地 すべりとその基部に移動土塊,崩積土の堆積が 認められる。

断面3

東向き斜面の標高120m付近に比高10m程度の 崖面からなる地すべりが認められる。また、谷 をはさみ東方の西向き斜面の標高85m付近に比 高10m程度の崖面からなる崩壊が認められる。



### 参考3)下小塙地点の地すべり地形断面図



### ①下小塙地点 地形断面図

### 断面4

▶ 東向き斜面の標高130m付近に比高30m程 度の崖面からなる地すべりと、その基部に 移動土塊、崩積土の堆積が認められる。

#### 断面5

▶ 北向き斜面の標高50m付近に比高4~2m程 度の崖面からなる地すべりと、その基部に 移動土塊、崩積土の堆積が認められる。

### 断面6

▶ L1段丘面の南向きの段丘崖頂部に比高5m 程度の崖面からなる崩壊と、その基部に崩 積土の堆積が認められる。



### 参考3)下小塙地点の地すべり地形断面図



①下小塙地点 地形断面図

### 断面7

M1段丘面の北向き斜面の標高44m付近に比高5m 程度の崖面からなる地すべりと、その基部に移動土 塊、崩積土の堆積が認められ、さらに移動土塊内の 標高40m付近に2次的な地すべりが認められる。

#### 断面8

M1段丘面の南向き斜面の標高35m付近に比高10m 程度の崖面からなる崩壊が認められる。北向き斜面 の標高25m付近に小規模な崩壊が認められる。

#### 断面9

▶ H4段丘面の西向き斜面の標高70m付近に比高20m 程度の崖面からなる地すべりと、その基部に移動土 塊、崩積土の堆積が認められる。



(H:V=1:5)

下小塙地区の地形断面図(7~9)(2mDEMおよび5mDEMによる)

### 参考4)塚原地点の地すべり地形断面図



②塚原地点 地形断面図

断面1,2

- ▶ 断面1では、北東向き斜面の標高40m付近に比高4m程度の 崖面および標高30m付近に4m程度の崖面からなる地すべりが認められる。その基部にそれぞれ移動土塊、崩積土の 堆積が認められる。後者は、地すべり土塊内の2次的な地 すべりとして認められる。断面2においても、標高30m付 近および25m付近に同様の地すべり形態が認められる。
- ▶ 北向き斜面の標高35m付近および20m付近に崩壊と、その 基部に崩積土の堆積が認められる。

断面5

▶ M1段丘面の段丘崖の斜面の標高25m付近に比高6m程度の 崖面からなる崩壊と、その基部に崩積土の堆積が認められ る。

断面6

▶ M1′段丘面の斜面の標高15m付近に比高10m程度の崖面からなる崩壊が認められる。

断面7

▶ M1段丘面の段丘崖の斜面の標高25m付近に崩壊が認められる。

