女川原子力	女川原子力発電所第2号機 工事計画審査資料							
資料番号	02-変 2-工-B-04-0004 改 0							
提出年月日	2023年3月6日							

VI-3-3-3-3 残留熱除去設備の強度計算書

2023年3月

東北電力株式会社

申請範囲目録

VI-3-3-3-3 残留熱除去設備の強度計算書

VI-3-3-3-3-1 残留熱除去系の強度計算書

VI-3-3-3-3-1-4 弁の強度計算書(残留熱除去系)

VI-3-3-3-3-1-5 管の強度計算書(残留熱除去系)

VI-3-3-3-3-1-5-2 管の応力計算書(残留熱除去系)

Ⅵ-3-3-3-3 残留熱除去設備の強度計算書

VI-3-3-3-3-1 残留熱除去系の強度計算書

Ⅵ-3-3-3-3-1 残留熱除去系の強度計算書

VI-3-3-3-3-1-4 弁の強度計算書(残留熱除去系) VI-3-3-3-3-1-5 管の強度計算書(残留熱除去系) VI-3-3-3-3-1-4 弁の強度計算書(残留熱除去系)

まえがき

本計算書は,添付書類「VI-3-1-2 クラス1機器の強度計算の基本方針」及び「VI-3-2-3 ク ラス1弁の強度計算方法」並びに「VI-3-1-3 クラス2機器の強度計算の基本方針」及び「VI-3-2-5 クラス2弁の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお,評価条件の整理に当たって使用する記号及び略語については,添付書類「VI-3-2-1 強度計算方法の概要」に定義したものを使用する。

なお、クラス1弁(E11-F004A,B)は弁体の取替を実施するが、同仕様の弁体へ取替えること から、平成3年6月19日付け3資庁第1003号にて認可された工事計画の参考資料「参考資料3 主要弁の強度計算書」から変更はない。

・評価条件整理表

			施設時の		クラスアッ	ップするか			条件ア	・ ップする	, 力>						
機器名		既設 or	技術基準に対象と	クラス	施設時			条件	DB ∮	条件	SA 🗐	条件	既工認における	施設時の	評価区分	同等性 評価	評価
		新設	する施設 の規定が あるか	アップ の有無	機器 クラス	DB クラス	SA クラス	アップ の有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	評価結果 の有無	適用規格		区分	クラス
E11-F008A,	В	既設	有	兼	DB-2	DB-2		無	3. 73	186	_	_	無	S55告示	設計・建設規格 又は告示		DB-2
E11-F016A,	B .	既設	有	有*	DB-2	DB-1	_	無	8.62	302	_	_	無	S55告示	設計・建設規格 又は告示	_	DB-1
E11-F018A,	B.	既設	有	有*	DB-2	DB-1		無	10.40	302	_	_	兼	S55告示	設計・建設規格 又は告示	_	DB-1
E11-F021		既設	有	有*	DB-2	DB-1		無	8.62	302	_	_	兼	S55告示	設計・建設規格 又は告示	_	DB-1

注記*:原子炉冷却材圧力バウンダリ範囲の拡大によるクラスアップ。

1	. ク	ラス1弁 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	1.1	没計仕様 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
	1.2	魚度計算書・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2	. ク	ラス2弁・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
	2.1	没計仕様・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
	2.2	街度計算書 · · · · · · · · · · · · · · · · · · ·	4

1. クラス1弁

1.1 設計仕様

系統:残留熱除去系

機器の	区分		クラス1弁						
弁番号	種類	呼び径	呼び径 材料						
开留 5	1里 天只	(A)	弁箱	弁ふた	弁体	ボルト			
E11-F016A, B	止め弁	350	SCPH2	SCPH2	SCPH2				
E11-F018A, B	止め弁	300	SCPH2	SCPH2	S25C				
E11-F021	止め弁	100	SCPH2	SCPH2	S25C				

枠囲みの内容は商業機密の観点から公開できません。

1.2 強度計算書

系統:残留熱除去系

```
弁番号 E11-F016A,B シート 1
```

		設計・建設規格	告示第501号			設計・建設規格	告示第501	
設計条件				金箔の一次日	+二次応力評価			
最高使用圧力	カア (MPa)	8.	62	开相切机				
最高使用温度	度T _m (℃)	302		t e	(mm)			
弁箱材料		SCF	'H2	T _{e1}	(mm)			
接続管材料		_		T _{e 2}	(mm)			
接続管外径	(mm)	_		r _i	(mm)			
接続管内径	(mm)	- L		θ	(°)			
	図 3-1	(5		К				
添付図番号	⊠ 3-2	(2		P _e	(MPa)	91	89	
	図 3-3	(1),	(2)	$\alpha \times 10^{-6}$	(mm/mm°C)	12.69	12.63	
内圧による判	洋箱の一次応力評価			E	(MPa)	187600	181619	
		<u> </u>		C ₂		0.	47	
P 1		6.64	6.64	ΔΤ	(°C)			
P 2		9.95	9.96	C 4		1		
P _{r 1}		6.90	6.89	ΔPfm	(MPa)	1		
P _{r 2}		10.34	10.35	ΔT _{fm}	(°C)			
P _s		8.96	8.96	S n (1)	(MPa)	180		
d	(mm)	-		S n (2)	(MPa)	119		
Ть	(mm)	-		3 • S m	(MPa)	399		
T _r	(mm)	-		評価	: S_n (1) $\leq 3 \cdot$			
LA		-			S_n (2) $\leq 3 \cdot$		\ ~ ~	
L _N	(mm)	-				よって十分	すぐめる。	
A f	(mm ²)	-						
A_{m}	(mm ²)	-		弁箱の局部-	-次応力評価			
r ₁		10			(10)	150		
S	(MPa)	48		S	(MPa)	153		
S _m	(MPa)	133		2.25 • S m		299		
評1曲	: $S \leq S_m$	トーアレハズ	t Z	評1曲	: S \leq 2.25 · S m			
			める。	よって十分である。				
配管反力に」	この全箱の二次応力割	よって十分でる 変価		記動時及び値	 シート時の繰返しピ		うである。 	
	よる弁箱の二次応力評				亭止時の繰返しピ		うである。 	
A-A断面0	D弁外径 (mm)			C 3			うである。 	
A-A断面の A ₁	D弁外径 (mm) (mm ²)			C ₃ Q _T	(MPa)	ーク応力強さ		
A-A断面の A ₁ A ₂	D弁外径 (mm)	华価 		C ₃ Q _T S ℓ (1)	(MPa) (MPa)	ーク応力強さ 114	112	
A-A断面の A ₁ A ₂ C _b	D弁外径 (mm) (mm ²) (mm ²)		1.0	$ \begin{array}{c} C_3 \\ Q_T \\ S \ell (1) \\ S \ell (2) \end{array} $	(MPa) (MPa) (MPa)	ーク応力強さ 114 129	112 126	
A-A断面の A ₁ A ₂ C _b Z ₁	D弁外径 (mm) (mm ²) (mm ²) (mm ³)	华価 		C ₃ Q _T Sℓ(1) Sℓ(2) E _m	(MPa) (MPa)	ーク応力強さ 114 129 184760	112 126 178324	
A-A断面の A ₁ A ₂ C _b Z ₁ Z ₂	D 弁 外径 (mm) (mm ²) (mm ²) (mm ³) (mm ³)	华価 		C ₃ Q _T Sℓ(1) Sℓ(2) E _m N(1)	(MPa) (MPa) (MPa)	ーク応力強さ 114 129 184760 134683	112 126 178324 122777	
A - A 断面 0 A_1 A_2 C_b Z_1 Z_2 Z_p	D 弁外径 (mm) (mm ²) (mm ²) (mm ³) (mm ³) (mm ³)	华価 	1.0	C ₃ Q _T Sℓ(1) Sℓ(2) E _m	(MPa) (MPa) (MPa)	ーク応力強さ 114 129 184760	112 126 178324	
$A - A$ 断面 θ A_1 A_2 C_b Z_1 Z_2 Z_p S_y	D 弁 外径 (mm) (mm ²) (mm ²) (mm ³) (mm ³) (MPa)	単価 1.0 200	1. 0	C ₃ Q _T Sℓ(1) Sℓ(2) E _m N(1) N(2)	(MPa) (MPa) (MPa) (MPa)	ーク応力強さ 114 129 184760 134683	112 126 178324 122777	
$A - A 断面 \theta$ A_1 A_2 C_b Z_1 Z_2 Z_p S_y P_d	D 弁 外径 (mm) (mm ²) (mm ²) (mm ³) (mm ³) (mm ³) (MPa) (MPa)	 単価 1.0 200 44 	1. 0 194 43	C ₃ Q _T Sℓ(1) Sℓ(2) E _m N(1) N(2)	(MPa) (MPa) (MPa) (MPa) : N (1) ≧2000	 一ク応力強さ 114 129 184760 134683 81450 	112 126 178324 122777	
A - A 断面 0 A_1 A_2 C_b Z_1 Z_2 Z_p S_y P_d P_b	の弁外径 (mm) (mm ²) (mm ²) (mm ³) (mm ³) (mm ³) (MPa) (MPa) (MPa)	 単価 1.0 200 44 91 	1.0 194 43 89	C ₃ Q _T Sℓ(1) Sℓ(2) E _m N(1) N(2)	(MPa) (MPa) (MPa) (MPa)	ーク応力強さ 114 129 184760 134683 81450	112 126 178324 122777 74111	
$A - A$ 断面 θ A_1 A_2 C_b Z_1 Z_2 Z_p S_y P_d P_b P_t	の弁外径 (mm) (mm ²) (mm ²) (mm ³) (mm ³) (mm ³) (MPa) (MPa) (MPa)	 200 200 44 91 91 	1. 0 194 43	C ₃ Q _T Sℓ(1) Sℓ(2) E _m N(1) N(2)	(MPa) (MPa) (MPa) (MPa) : N (1) ≧2000	 一ク応力強さ 114 129 184760 134683 81450 	112 126 178324 122777 74111	
A - A断面 $0A_1A_2C_bZ_1Z_2Z_pS_yP_dP_bP_t1.5 \cdot S_m$	の弁外径 (mm) (mm ²) (mm ²) (mm ³) (mm ³) (mm ³) (MPa) (MPa) (MPa) (MPa) (MPa)	 単価 1.0 200 44 91 	1.0 194 43 89	C ₃ Q _T Sℓ(1) Sℓ(2) E _m N(1) N(2)	(MPa) (MPa) (MPa) (MPa) : N (1) ≧2000	ーク応力強さ 114 129 184760 134683 81450	112 126 178324 122777 74111	
A - A断面 $0A_1A_2C_bZ_1Z_2Z_pS_yP_dP_bP_t1.5 \cdot S_m$	の弁外径 (mm) (mm ²) (mm ²) (mm ³) (mm ³) (mm ³) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)	 200 200 44 91 91 	1.0 194 43 89	C ₃ Q _T Sℓ(1) Sℓ(2) E _m N(1) N(2)	(MPa) (MPa) (MPa) (MPa) : N (1) ≧2000	ーク応力強さ 114 129 184760 134683 81450	112 126 178324 122777 74111	
A - A断面 $0A_1A_2C_bZ_1Z_2Z_pS_yP_dP_bP_t1.5 \cdot S_m$	の弁外径 (mm) (mm ²) (mm ²) (mm ³) (mm ³) (mm ³) (MPa) (MPa) (MPa) (MPa) (MPa)	 200 200 44 91 91 	1.0 194 43 89	C ₃ Q _T Sℓ(1) Sℓ(2) E _m N(1) N(2)	(MPa) (MPa) (MPa) (MPa) : N (1) ≧2000	ーク応力強さ 114 129 184760 134683 81450	112 126 178324 122777 74111	

O 2 变二 VI-3-3-3-1-4 R 1

枠囲みの内容は商業機密の観点から公開できません。

弁番号 E11-F016A, B シート 2

m	n	A o	C 5	S	n	3 • S m		3 • m • S m
				(MI	Pa)	(MPa)		(MPa)
3.00	0.20	0.66	1.02	12	29	400		1200
Δ T $_{\rm f}$	S p	ł	K _e	Sl		N i	N _{r i}	N i / N r i
(°C)	(MPa)			(MPa)				
	803	-	_	402				0.0052
	740		_	370				0.0508
	235	-	_	118				0.0011
	212		_	106				0.0001
	182			91				0.0004
評価	」 :疲労累積	係数 I _t =	$=\sum \frac{N_i}{N_{ri}} =$	0.0576 ≦	≦1			よって十分である。
	「: 疲労累積 大規定 設計			0.0576 ≦	1	の一次応力評	価設計・建	
弁箱の形物		・建設規格		0.0576 ≦	1		 価 設計・建	
	大規定 設書	┼・建設規格 m)		0.0576 ≦	弁体		価設計・建	設規格
弁箱の形れ r 1 r 2	犬規定 設計 (m	┼・建設規格 m) m)		0.0576 ≦	弁体 材料		価 設計・建 (MPa)	設規格 SCPH2
弁箱の形れ r ₁ r ₂).3・t	犬規定 設言 (m (m	+・建設規格 m) m)		0.0576 ≦	 弁体 材料 形式 P 			設規格 SCPH2 W2
弁箱の形お r 1	犬規定 設計 (m (m (m	+・建設規格 m) m) m)		0.0576 ≦	 弁体 材料 形式 P 		(MPa)	設規格 SCPH2 W2
弁箱の形ね r ₁ r ₂ D.3・t D.05・t	犬規定 設計 (m (m (m (m (m	+・建設規格 m) m) m)		0.0576 ≦	 弁体 材料 形式 P P 。 		(MPa) (N)	設規格 SCPH2 W2
弁箱の形ね r ₁ r ₂).3・t).05・t).1・h d _n /d _m	犬規定 設計 (m (m (m (m (m	+・建設規格 m) m) m) m) m)		0.0576 ≦	 弁体 材料 形式 P P c h 		(MPa) (N) (mm)	設規格 SCPH2 W2
弁箱の形状 r 1 r 2). 3・t). 1・h d n∕d m 評価:	犬規定 設計 (m (m (m (m (m	+・建設規格 m) m) m) m) m) t	<u>{</u>	0.0576 ≦	 弁体 材料 形式 P P_c h a 		(MPa) (N) (mm) (mm)	設規格 SCPH2 W2

枠囲みの内容は商業機密の観点から公開できません。

弁番号 E11-F016A,B シート 3

		設計•	告示		設計・建設規格
		建設規格	第501号		
設計条件				ネック部の厚	
最高使用圧 (MPa)	力P	8.6	52	d _n (mm)
最高使用温, (℃)	度Tm	30	2	d_n / d_m	
弁箱又は弁	ふたの厚さ			t _m (mm) 21.0
弁箱材料		SCP	H2	t _{ma} (mm)
弁ふた材	料	SCP	H2		
P 1	(MPa)	6.64	_	評価: t m	$_{a} \ge t_{m}$
P ₂	(MPa)	9.95	_		よって十分である。
d m	(mm)				
t 1	(mm)	18.7	—		
t ₂	(mm)	22.5	_		
t	(mm)	21.0	_		
t _{a b}	(mm)				
t _{a f}	(mm)				
評価: t	$a b \ge t$				
t	$_{a\ f}\geqq t$				
		よって十分で	ある。		

枠囲みの内容は商業機密の観点から公開できません。

弁番号 E11-F016A,B シート 4

计条件			モーメントの		
, FD	(MPa)	12.11	H _D	(N)	1.373×10^{6}
) eq	(MPa)	3. 49	h _D	(mm)	94.0
m	(°C)	302	M _D	(N·mm)	1.290×10^{8}
I _e	$(N \cdot mm)$		H _G	(N)	8. 337×10^5
e	(N)		h _G	(mm)	95.4
? ランジの	形式	JIS B 8265 附属書3 図27)	M_{G}	(N·mm)	7.950×10^{7}
7ランジ			H _T	(N)	4. 450×10^5
彬		SCPH2	h _T	(mm)	109.7
fa ND (Nor		100	M_{T}	(N•mm)	4.881 $\times 10^{7}$
G温(ルスク (20℃)	ケット締付時)	160	M _o	(N•mm)	2.573×10^{8}
fь	(MPa)	105	Mg	(N·mm)	4. 657×10^8
	度(使用状態)	125	フランジの	の厚さと係数	
1	(mm)		t	(mm)	
3	(mm)		К		1.87
2	(mm)		h 。	(mm)	
5 0	(mm)		f		1.00
5 1	(mm)		F		0.834
1	(mm)		V		0.309
ジルト			е	(mm^{-1})	0.00656
材料			d	(mm^3)	2669082
「a ちゅ(ポット	(MPa)	040	L		1.60
≦温(ガスク (20 ℃)	rット締付時)	242	Т		1.56
бЪ	(MPa)	107	U		3.60
と 高使用温度	度(使用状態)	197	Y		3.27
1			Z		1.80
lь	(mm)		応力の計算	弃	
ゴスケット			$\sigma_{\rm Ho}$	(MPa)	127
树			σ _{Ro}	(MPa)	69
ゴスケット	厚さ (mm)		σто	(MPa)	60
ŕ	(mm)		σ _{Hg}	(MPa)	191
ı			σ _{Rg}	(MPa)	124
7	(N/mm^2)		σтg	(MPa)	109
) _o	(mm)				
)	(mm)		応力の	評価 : σ _{Н0} ≦1.5・	
1	(mm)		1	$\sigma_{\rm Ro} \leq 1.5$ ·	
й _s	(mm)		J	σ _{To} ≦1.5 •	σ _{fb}
ドルトの計	·算		_	.	
I	(N)	$1.818 imes 10^{6}$	_	$\sigma_{\rm Hg} \leq 1.5 \cdot$	
I p	(N)	8.337×10^5	4	$\sigma_{\rm Rg} \leq 1.5 \cdot$	
/ _{m 1}	(N)	2.651×10^{6}	_	σ Tg ≤ 1.5 ·	0 f a
/ _{m 2}	(N)	7.911×10^{5}	_		よって十分である。
A m 1	(mm ²)	1.341×10^{4}	_		ようて「刀てのる。
A _{m 2}	(mm^2)	3.269×10^{3}	4		
A m	(mm^2)	1.341×10^{4}	_		
Ъ	(mm^2)		J		
7 o	(N)	2.651 $\times 10^{6}$	_		
/ g	(N)	4.884×10^{6}	_		
評価:A	< A ,				

弁番	号 E1	1-F018A.	В	シー	ŀ

1

(MPa) (°C) (°C) (°m) (mm) (mm) (mm) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)	10. 302 SCF (4 (4 (3), 9.95 14.95 10.34 15.51 10.81	H2)	$ 弁箱の一次 + t e T e 1 T e 2 T i \theta K P e \alpha \times 10^{-6} E C 2 \Delta T C 4 \Delta P f m \Delta T f m S n (1) S n (2)$	+ 二次応力評価 (nm) (nm) (nm) (nm) (°) (MPa) (MPa) (°C) (MPa) (°C) (MPa)	111 12.69 187600	. 00 108 12. 63 181619 0. 49
(°C) (mm) (mm) (mm) 2 2 3 次応力評価 (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)	302 SCF (4 (4 (3), 9.95 14.95 10.34 15.51	H2)))(4) 9.96 14.93 10.35 15.51	$\begin{array}{c} t_{e} \\ T_{e1} \\ T_{e2} \\ r_{i} \\ \theta \\ K \\ P_{e} \\ \alpha \times 10^{-6} \\ E \\ C_{2} \\ \Delta T \\ C_{4} \\ \Delta P_{fm} \\ \Delta T_{fm} \\ S_{n} (1) \end{array}$	(mm) (mm) (mm) (°) (°) (MPa) (MPa) (°C) (MPa) (°C) (MPa)	111 12.69 187600	108 12.63 181619 .49
(mm) (mm) (mm) 2 2 3 次応力評価 (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)	(4 (4 (3), 9.95 14.95 10.34 15.51) (4) 9.96 14.93 10.35 15.51	$\begin{array}{c} T_{e1} \\ T_{e2} \\ r_i \\ \theta \\ K \\ P_e \\ \alpha \times 10^{-6} \\ E \\ C_2 \\ \Delta T \\ C_4 \\ \Delta P_{fm} \\ \Delta T_{fm} \\ S_n (1) \end{array}$	(mm) (mm) (mm) (°) (MPa) (mm/mm°C) (MPa) (°C) (MPa) (°C) (MPa)	111 12.69 187600	108 12.63 181619 .49
(mm) (mm) 2 2 3 3 次応力評価 (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)	(4 (3), 9,95 14,95 10,34 15,51) (4) 9.96 14.93 10.35 15.51	$\begin{array}{c} T_{e1} \\ T_{e2} \\ r_i \\ \theta \\ K \\ P_e \\ \alpha \times 10^{-6} \\ E \\ C_2 \\ \Delta T \\ C_4 \\ \Delta P_{fm} \\ \Delta T_{fm} \\ S_n (1) \end{array}$	(mm) (mm) (°) (MPa) (MPa) (°C) (MPa) (°C) (MPa)	111 12.69 187600	108 12.63 181619 .49
(mm) (mm) 2 2 3 3 次応力評価 (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)	(4 (3), 9.95 14.95 10.34 15.51) (4) 9,96 14,93 10,35 15,51	$\begin{array}{c} r_{i} \\ \theta \\ \\ \hline \\ R \\ P_{e} \\ \alpha \times 10^{-6} \\ \hline \\ E \\ \hline \\ C_{2} \\ \Delta T \\ \hline \\ C_{4} \\ \Delta P_{fm} \\ \hline \\ \Delta T_{fm} \\ \hline \\ S_{n} (1) \end{array}$	(mm) (°) (MPa) (mm/mm°C) (MPa) (°C) (MPa) (°C) (MPa)	111 12.69 187600	108 12.63 181619 .49
(mm) (mm) 2 2 3 3 次応力評価 (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)	(4 (3), 9.95 14.95 10.34 15.51) (4) 9,96 14,93 10,35 15,51	$\begin{array}{c} r_{i} \\ \theta \\ \\ \hline \\ R \\ P_{e} \\ \alpha \times 10^{-6} \\ \hline \\ E \\ \hline \\ C_{2} \\ \Delta T \\ \hline \\ C_{4} \\ \Delta P_{fm} \\ \hline \\ \Delta T_{fm} \\ \hline \\ S_{n} (1) \end{array}$	(°) (MPa) (mm/mm°C) (MPa) (°C) (MPa) (°C) (MPa)	111 12.69 187600	108 12.63 181619 .49
次応力評価 (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (mm) (mm)	(4 (3), 9.95 14.95 10.34 15.51) (4) 9,96 14,93 10,35 15,51	KP e $\alpha \times 10^{-6}$ EC 2 Δ TC 4 Δ P fm Δ T fmS n (1)	(MPa) (mm/mm°C) (MPa) (°C) (MPa) (°C) (MPa)	111 12.69 187600	108 12.63 181619 .49
2 次応力評価 (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (mm) (mm)	(4 (3), 9.95 14.95 10.34 15.51) (4) 9,96 14,93 10,35 15,51	$\begin{array}{c} P_{e} \\ \alpha \times 10^{-6} \\ E \\ C_{2} \\ \Delta T \\ C_{4} \\ \Delta P_{fm} \\ \Delta T_{fm} \\ S_{n} (1) \end{array}$	(mm/mm°C) (MPa) (°C) (MPa) (°C) (MPa)	111 12.69 187600	108 12.63 181619 .49
》 次応力評価 (MPa) (MPa) (MPa) (MPa) (MPa) (mm) (mm)	(3), 9.95 14.95 10.34 15.51	(4) 9.96 14.93 10.35 15.51	$\begin{array}{c} \alpha \times 10^{-6} \\ \hline E \\ \hline C_2 \\ \Delta T \\ \hline C_4 \\ \Delta P_{fm} \\ \Delta T_{fm} \\ \hline S_n (1) \end{array}$	(mm/mm°C) (MPa) (°C) (MPa) (°C) (MPa)	12.69 187600	12.63 181619).49
次応力評価 (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (mm) (mm)	9.95 14.95 10.34 15.51	9.96 14.93 10.35 15.51	E C_{2} ΔT C_{4} ΔP_{fm} ΔT_{fm} $S_{n} (1)$	(MPa) (°C) (MPa) (°C) (MPa)	187600 C	181619 0. 49
(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (mm) (mm)	14.95 10.34 15.51	14. 93 10. 35 15. 51	$\begin{array}{c} C_{2} \\ \Delta T \\ C_{4} \\ \Delta P_{fm} \\ \Delta T_{fm} \\ S_{n} (1) \end{array}$	(°C) (MPa) (°C) (MPa)	C	. 49
(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (mm) (mm)	14.95 10.34 15.51	14. 93 10. 35 15. 51	$\begin{array}{c} \Delta T \\ C_4 \\ \Delta P_{fm} \\ \Delta T_{fm} \\ S_n \end{array} $	(MPa) (℃) (MPa)		
(MPa) (MPa) (MPa) (MPa) (MPa) (mm) (mm)	14.95 10.34 15.51	14. 93 10. 35 15. 51	$\begin{array}{c} C_{4} \\ \Delta P_{fm} \\ \Delta T_{fm} \\ S_{n} \end{array} $	(MPa) (℃) (MPa)	228	
(MPa) (MPa) (MPa) (mm) (mm)	10.34 15.51	10.35 15.51	$\begin{array}{c} \Delta \ P_{fm} \\ \hline \Delta \ T_{fm} \\ S_n \end{array} (1)$	(°C) (MPa)	228	
(MPa) (MPa) (mm) (mm)	15.51	15.51	Δ T _{fm} S _n (1)	(°C) (MPa)	228	
(MPa) (mm) (mm)			S n (1)	(MPa)	228	
(mm) (mm)	10.81	10.81			228	
(mm)			S _n (2)	(1	j
				(MPa)	96	5
(mm)			3 • S m	(MPa)	399	
			評価	: S $_{n}$ (1) $\leq 3 \cdot$	S _m	
(mm)				S $_{n}$ (2) $\leq 3 \cdot$	S _m	
(mm)					よって十分	うである。
(mm^2)						
(mm^2)			会際の民部	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
(mm)			开相())同韵-	"伙心刀辞1曲	•	
(MPa)	79		S	(MPa)	192	
(MPa)	133		2.25 • S _m	(MPa)	299	
S			評価	: S \leq 2.25 · S m		
Ļ	って十分でお	ある。			よって十分	うである。
の二次応力評価			起動時及び保	亭止時の繰返しピ	ーク応力強さ	
(mm)			С 3			
(mm^2)			Q _T	(MPa)		
(mm^2)			Sℓ (1)	(MPa)	143	141
	1.0	1.0	S Ø (2)	(MPa)	158	155
(mm^3)			E _m	(MPa)	184760	178324
(mm^3)			N (1)		49592	45361
(mm^3)			N (2)		35859	33835
(MPa)	200	194				
(MPa)	57	55	評価			
(MPa)	111	108		N (2) ≥ 2000		
(MPa)	111	108			よって十分	うである。
(MPa)	199					
1.5 • S _m						
1.5 • S _m						
1.5 • S _m						
	(mm) (mm) (mm ²) (mm ²) (mm ²) (mm ²) (MPa) (MPa) (MPa) (mm ²) (mm ³) (mm ³) (mm ³) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)	(mm) (mm) (mm) (mm ²) (mm ²) (mm ²) (mm) (MPa) 79 (MPa) 133 5 m よって十分であ の二次応力評価 (MPa) 133 5 m よって十分であ の二次応力評価 (MPa) 133 5 m よって十分であ の二次応力評価 (MPa) 10 (mm ³) (mm ³) (mm ³) (mm ³) (MPa) 200 (MPa) 57 (MPa) 111 (MPa) 111 (MPa) 119 1.5 · S m 1.5 · S m 1.5 · S m	(mm) (mm) (mm2) (mm2) (mm2) (mm2) (mm4) (MPa) 79 (MPa) 133 (MPa) 133 (MPa) 133 (MPa) (mm7) (mm7) (mm7) (mm7) (mm3) (mm3) (mm3) (mm3) (mm3) (MPa) 200 194 (MPa) 57 55 (MPa) 111 108 (MPa) 111 108 (MPa) 199 1.5 · S m 1.5 · S m	(mm) (mm) (mm2) $\Re \pi 0 \beta \pi$ (mm2) $\Re \pi 0 \beta \pi$ (mm2) $\Re \pi 0 \beta \pi$ (MPa) 79 S (MPa) 133 $2.25 \cdot S_m$ βm $L \circ \tau + \beta \tau \delta \delta_o$ $I = 0$ $\sigma = \chi \kappa c \hbar T = 0$ $L \circ \tau + \beta \tau \delta \delta_o$ $I = 0$ $\sigma = \chi \kappa c \hbar T = 0$ $L \circ \tau + \beta \tau \delta \delta_o$ $I = 0$ $\sigma = \chi \kappa c \hbar T = 0$ $L \circ \tau + \beta \tau \delta \delta_o$ $I = 0$ $\sigma = 0$ $L \circ \tau + \beta \tau \delta \delta_o$ $I = 0$ $\sigma = 0$ $L \circ \tau + \beta \tau \delta \delta_o$ $I = 0$ $\sigma = 0$ $L \circ \tau + \beta \tau \delta \delta_o$ $I = 0$ $\sigma = 0$ $L \circ \tau + \beta \tau \delta \delta_o$ $I = 0$ $\sigma = 0$ $L \circ \tau + \beta \tau \delta \delta_o$ $I = 0$ $\sigma = 0$ $L \circ \tau + \beta \tau \delta \delta_o$ $I = 0$ $\sigma = 0$ $I = 0$ $I = 0$ $I = 0$ (MPa) $I = 0$ $I = 0$ $I = 0$ (MPa) $I = 0$ $I = 0$ $I = 0$ (MPa) $I = 0$ $I = 0$ $I = 0$ (MPa) $I = 0$ $I = 0$ $I = 0$	(mm) $S_n (2) \leq 3$ ・ (mm) π^{mn^2} (mm) π^{mn^2} (mm) π^{mn^2} (mm) π^{mn^2} (mm) π^{mn^2} (MPa) 79 S (MPa) (MPa) 133 $2.25 \cdot S_m$ (MPa) m^{mn^2} E^{mn^2} σ F^{mn^2} σ V^{mn^2} mn^2 V^{mn^2} (mn^2) V^{mn^2} (mn^3) V^{mn^3} (mn^3) V^{mn^3} (mn^3) V^{mn^3} (MPa) V^{mn^3} (MPa) V^{mn^3} (MPa) V^{mn^3} (MPa) V^{mn^3} V^{mn^3} V^{mn^3} (MPa) V^{mn^3} $V^{mn^$	(mm) $S_n(2) \leq 3 \cdot S_m$ $L \circ \tau + f_n$ (mm) $f = f = f = f = f = f = f = f = f = f =$

シート 2

m	n	A $_{\rm o}$	C 5		n n	3 • S m		$3 \cdot m \cdot S_m$
				(М	Pa)	(MPa)		(MPa)
3.00	0.20	0.66	0.94		98	400		1200
Δ T $_{\rm f}$	S _p		K _e	Sℓ		N i	N $_{\rm r~i}$	N $_{\rm i}\diagup$ N $_{\rm r}_{\rm i}$
$(^{\circ}C)$	(MPa)			(MPa)				
	559		—	280				0.0017
	503		—	252				0.0153
	231		—	116				0.0010
	211		-	106	1			0.0001
	184		_	92				0.0005
評価	五 :疲労累積	係数 I _t	$= \sum \frac{N_{i}}{N_{r_{i}}}$	= 0.0186	1			よって十分である。
	町:疲労累積 状規定 設書			= 0.0186	1	:の一次応力評価		
		┼・建設規材		= 0.0186	1			
弁箱の形料	伏規定 設書	+・建設規材 m)		= 0.0186	弁体			² 規格
弁箱の形料 F 1 F 2	状規定 設ま (m	+・建設規材 m) m)		= 0.0186	弁体材料			2規格 S25C
弁箱の形料 r ₁ r ₂ 0.3・t	状規定 設言 (m (m (m	+・建設規材 m) m)		= 0.0186	弁体 材料 形式 P		6 設計・建設	2規格 S25C G1
弁箱の形料 F 1 F 2 0.3・t 0.05・t	状規定 設言 (m (m (m	+・建設規相 m) m) m)		= 0.0186	弁体 材料 形式 P		6 設計・建設 (MPa)	2規格 S25C G1
弁箱の形¥ r 1	状規定 設計 (m (m (m (m (m	+・建設規相 m) m) m)		= 0.0186	弁体 材料 形式 P P。		6 設計・建設 (MPa) (N)	2規格 S25C G1
弁箱の形料 r ₁ r ₂ 0.3・t 0.05・t 0.1・h d _n ∕d _m	状規定 設計 (m (m (m (m (m (m (m (m	+・建設規相 m) m) m) m) t	各	= 0.0186	 弁体 材料 形式 P P c h 		6 設計・建設 (MPa) (N) (nm)	2規格 S25C G1
弁箱の形料 r ₁ r ₂ 0.3・t 0.05・t 0.1・h d _n ∕d _m	状規定 設計 (m (m (m (m	+・建設規相 m) m) m) m) t	各	= 0.0186	弁体 材料 形式 P C h a b σ _D		fi 設計・建部 (MPa) (N) (nm) (nm)	2規格 S25C G1

枠囲みの内容は商業機密の観点から公開できません。

弁番号 E11-F018A,B シート 3

		設計・ 建設規格	告示 第501号		設計・建設規格
設計条件			×1• •	ネック部の厚さ	<u>×</u>
最高使用圧 (MPa)	力P	10.	40	d _n (mm)	
最高使用温 (℃)	度Tm	30	2	d n/d m	
弁箱又は弁	ふたの厚さ			t _m (mm)	25.8
弁箱材料		SCP	H2	t _{ma} (mm)	
弁ふた材	料	SCP	H2		
P 1	(MPa)	9.95	_	評価: t _{ma}	≧t _m
P ₂	(MPa)	14.95	_		よって十分である。
d m	(mm)				
t 1	(mm)	20.5	_		
t ₂	(mm)	30.2	_		
t	(mm)	21.4	—		
t _{ab}	(mm)				
t _{a f}	(mm)				
評価: t	_{a b} ≧ t				
t	$_{a\ f}\geqq t$				
		よって十分で	ある。		

枠囲みの内容は商業機密の観点から公開できません。

弁番号 E11-F018A,B シート 4

设計条件			モーメントの		
P _{FD}	(MPa)	19.23	Η _D	(N)	1.489×10^{6}
Peq	(MPa)	8.83	h _D	(mm)	94.0
C m	(°C)	302	$M_{\rm D}$	(N·mm)	1.400×10^{8}
Ие	$(N \cdot mm)$		H _G	(N)	9.616 $\times 10^{5}$
e e	(N)		h _G	(mm)	119.6
フランジの	形式	JIS B 8265 附属書3 図27)	M _G	(N·mm)	1.150×10^{8}
7ランジ			H _T	(N)	3.704×10^{5}
树		SCPH2	h _T	(mm)	128.8
fa			M _T	$(N \cdot mm)$	4. 769×10^{7}
常温(ガスク (20 ℃)	「ット締付時)	160	M _o	(N•mm)	3.026×10^8
fb	(MPa)		Mg	(N·mm)	5.656 $\times 10^{8}$
	(使用状態)	125)厚さと係数	
1	(mm)		t	(mm)	
3	(mm)		K		2.16
2	(mm)		h o	(mm)	-
5 0	(mm)		f	,, .	1.00
5 U 5 1	(mm)		F		0. 744
1	(mm)		V		0. 154
ドルト	(/		e	(mm^{-1})	0.00637
材料	ſ		d	(mm ³)	4225825
σ _a			L	(1.54
言温(ガスケ (20 ℃)	ット締付時)	242	Т		1.45
бъ	(MPa)		U		2.94
	(使用状態)	197	Y		2.68
1			Z		1.55
lь	(mm)		応力の計算		
ゴスケット			σ _{Ho}	(MPa)	93
树			σ _{Ro}	(MPa)	95
ゴスケット	厚さ (mm)		σто	(MPa)	53
í	(mm)		σ _{Hg}	(MPa)	133
n			σ _{Rg}	(MPa)	177
7	(N/mm^2)		σ _{Tg}	(MPa)	98
) _o	(mm)				
)	(mm)		応力の詞	評価 : σ _{Hο} ≦1.5・	
1	(mm)			$\sigma_{\rm Ro} \leq 1.5$ ·	
Э _s	(mm)		J	σ _{To} ≦1.5 •	σ _{fb}
ドルトの計	 算				
I	(N)	$1.860 imes 10^{6}$		σ _{Hg} ≦1.5 •	
I p	(N)	9.616 $ imes$ 10 ⁵		$\sigma_{\rm Rg} \leq 1.5$ ·	
V m 1	(N)	2.821×10^{6}		σ _{T g} \leq 1.5 ·	σ _{fa}
V m 2	(N)	5. 742×10^{5}			L 1 // L
A _{m1}	(mm^2)	$1.427 imes 10^4$			よって十分である。
A m 2	(mm^2)	2.373×10^{3}			
A m	(mm^2)	1.427×10^{4}			
Δь	(mm^2)				
V o	(N)	2.821×10^{6}			
V g	(N)	4.731×10^{6}			
· 評価:Am	< 1		7		

枠囲みの内容は商業機密の観点から公開できません。

19

| 弁番号 | E11-F021 | シート | 1

設計条件			ネック部の厚さ				
最高使用圧 (MPa)	力P	8.62	d n	(mm)			
最高使用温 (℃)	度Tm	302	d n/	d m			
弁箱又は弁	ふたの厚さ	·	t m	(mm)	12.7		
弁箱材料		SCPH2	t _{ma}	(mm)			
弁ふた材	类	SCPH2					
P 1	(MPa)	6.64	評価:	_ 評価:t _{ma} ≧t _m			
P ₂	(MPa)	9.95	よって十分である。				
d m	(mm)						
t 1	(mm)	9.4					
t 2	(mm)	9.5					
t	(mm)	9.5					
t _{a b}	(mm)		7				
t _{a f}	(mm)						
評価: t	$_{a\ b}\geqq t$						
t	$_{a\ f}\geqq t$						
		よって十分である。					

枠囲みの内容は商業機密の観点から公開できません。

2. クラス2弁

2.1 設計仕様

系統:残留熱除去系

機器の	つ区分	クラス2弁					
- 今平日	七手 米石	呼び径	材料				
弁番号	種類	(A)	弁箱	弁ふた	ボルト		
E11-F008A, B	止め弁	350	SCPH2	SCPH2			

枠囲みの内容は商業機密の観点から公開できません。

2.2 強度計算書

系統:残留熱除去系

弁番号 E11-F008A,B

シート 1

設計条件			ネック部0	D厚さ	
最高使用圧	力P(MPa)	3.73	d n	(mm)	
最高使用温	度T _m (℃)	186	d n∕d	m	
弁箱又は弁ふたの厚さ			l	(mm)	
弁箱材料		SCPH2	t _{m 1}	(mm)	13.8
弁ふた材	料	SCPH2	t _{m 2}	(mm)	11.3
P 1	(MPa)	2.00	t _{ma1}	(mm)	
P_2	(MPa)	5.17	t ma 2	(mm)	
d m	(mm)				
t 1	(mm)	10.6	評価:1	$t_{mal} \ge t_{1}$	m 1
t ₂	(mm)	16.3		$t_{ma2} \ge t_{ma2}$	m 2
t	(mm)	13.8		L	って十分である。
t _{ab}	(mm)				
t _{a f}	(mm)				
評価: t	$a_b \ge t$				
t	$_{a\ f} \geqq t$				
		よって十分である。			

枠囲みの内容は商業機密の観点から公開できません。

弁番号 E11-F008A, B

シート 2

計条件		モーメント	の計算			
P _{FD} (MPa)	6. 77	H _D	(N)	9.192×10^{5}		
P _{eq} (MPa)	3.04	h _D	(mm)	48.5		
Т _m (°С)	186	M _D	(N·mm)	4. 458×10^{7}		
M_{e} (N·mm)		H _G	(N)	3.390×10^{5}		
F _e (N)		h _G	(mm)	36.4		
フランジの形式	JIS B 8265 附属書3 図27)	M_{G}	(N•mm)	1.233×10^{7}		
フランジ		Η _T	(N)	2.908×10^{5}		
材料	SCPH2	h _T	(mm)	51.7		
σ _{fa} (MPa) 常温 (ガスケット締付時)	100	M _T	(N·mm)	1.503×10^{7}		
吊温 (ルスクット柿付時) (20℃)	120	M _o	(N·mm)	7.193×10^{7}		
	100	Mg	(N·mm)	6.286×10^{7}		
σ _{fb} (MPa) 最高使用温度(使用状態)	120		フランジの厚さと係数			
A (mm)		t				
B (mm)		К		1.45		
C (mm)		h 。	(mm)			
g ₀ (mm)		f		1.00		
g 1 (mm)		F		0.838		
h (mm)		V		0.302		
ボルト		е	(mm^{-1})	0.00822		
材料		d	(mm^3)	1247165		
σ_{a} (MPa)		L		0.85		
常温(ガスケット締付時) (20 ℃)	173	Т		1.73		
σ _ь (MPa) 最高使用温度(使用状態)	173	U		5.91		
最高使用温度(使用状態)	110	Y		5.38		
n		Z		2.80		
d _b (mm)		応力の計算				
ガスケット		σ _{Ho}	(MPa)	156		
材料		σ _{Ro}	(MPa)	155		
ガスケット厚さ (mm)		σ _{To}	(MPa)	46		
G (mm)		σ _{Hg}	(MPa)	122		
m		σ _{Rg}	(MPa)	136		
y (N/mm ²)		σ _{Tg}	(MPa)	41		
b _o (mm)		++ + ==				
b (mm)		応力の	評価:σ _{Ho} ≦1.5・			
N (mm)			$\sigma_{\rm Ro} \leq 1.5 \cdot \sigma_{\rm To} \leq 1.5 \cdot $			
G _s (mm)			$0 1_0 \equiv 1.0$	U i b		
ボルトの計算	1.010\/106	_	σ _{Нg} ≦1.5 •	σ f a		
H (N)	1.210×10^{6}		$\sigma_{\rm Rg} \leq 1.5$			
H _p (N)	3.390×10^{5}		σ _{Tg} ≦1.5 •			
W_{m1} (N)	1.549×10^{6}			よって十分である		
W _{m 2} (N)	3.070×10^{5}	_				
A_{m1} (mm ²)	8. 953×10^3	_				
A_{m2} (mm ²)	1.775×10^{3}	_				
A_m (mm ²)	8.953×10^3	-				
A_b (mm ²)		4				
W _o (N)	1.549×10^{6}	_				
W _g (N)	1.729×10^{6}	_				
評価:A _m <a<sub>b</a<sub>						

枠囲みの内容は商業機密の観点から公開できません

VI-3-3-3-3-1-5 管の強度計算書(残留熱除去系)

VI-3-3-3-3-1-5-2 管の応力計算書(残留熱除去系)

VI-3-3-3-3-1-5-2 管の応力計算書(残留熱除去系)

1. 管の応力計算書(残留熱除去系)

管の応力計算書(残留熱除去系)は、令和3年12月23日付け原規規発第2112231号 にて認可された設計及び工事の計画から変更はない。