国立研究開発法人日本原子力研究開発機構大洗研究所(南地区)

原子炉設置変更許可申請書(高速実験炉原子炉施設の変更)の本文及び添付書類の一部補正(第3回)の新旧対比表

【添付書類6 (3. 地盤)】

変更前(2021.12.2 付補正)	変更後
3. 地盤	3. 地盤
3.1 調査の経緯	3.1 調査の経緯
(省略)	(変更なし)
3.2 敷地周辺の地質・地質構造	3.2 敷地周辺の地質・地質構造
3.2.1 調査内容	3.2.1 調査内容
(省略)	(変更なし)
3.2.2 調査結果	3.2.2 調査結果
(省略)	(変更なし)
3.2.2.1~3.2.2.2(省略)	3.2.2.1~3.2.2.2 (変更なし)
3.2.2.3 敷地周辺陸域の地質構造	3.2.2.3 敷地周辺陸域の地質構造
(1) 概要	(1) 概要
(省略)	(変更なし)
(2) 敷地周辺陸域の断層及びリニアメント	(2) 敷地周辺陸域の断層及びリニアメント
(省略)	(変更なし)
a. 棚倉破砕帯西縁断層(の一部)	a. 棚倉破砕帯西縁断層(の一部)
(省略)	(変更なし)
b. 棚倉破砕帯東縁付近の推定活断層	b. 棚倉破砕帯東縁付近の推定活断層
a)~b) (省略)	a)~b) (変更なし)
c) 地表地質調査結果	c) 地表地質調査結果
(省略)	(変更なし)
明神峠から折橋町にかけて判読されたリニアメントは、東側の阿武隈山地に分布する竹貫変成	明神峠から折橋町にかけて判読されたリニ
岩類と西側の久慈山地に分布する東金砂山層の礫岩等との不整合境界にほぼ一致しており、リニ	岩類と西側の久慈山地に分布する東金砂山層
アメント付近の東金砂山層の礫岩等の走向傾斜に乱れは認められず、リニアメントと一致する断	アメント付近の東金砂山層の礫岩等の走向修
層は認められない。常陸太田市小妻町では、リニアメント付近で東金砂山層と竹貫変成岩類の不	層は認められない。常陸太田市小妻町では、
整合面が認められ、東金砂山層には複数の断層が認められるが、いずれも断層面は癒着している	整合面が認められ、東金砂山層には複数の脚
(第3. 2. 62図、第3. 2. 63図、第3. 2. 64図)。さらに、小妻町の今泉ほか編(2018) ⁽²⁹⁾ において記載	(第3.2.62図、第3.2.63図、第3.2.64図)。
される推定活断層の直下で実施したトレンチ調査では、東金砂山層に破砕部や急傾斜構造は認め	される推定活断層の直下で実施したトレンチ
られない(第3. 2. 65図、第3. 2. 66図)。なお、活断層研究会編(1991) ⁽²⁴⁾ で古屋敷から小高東方に	られない(第3. 2. 65図、第3. 2. 66図)。なお、
かけて記載された確実度Ⅲ(活断層の疑いのあるリニアメント)の位置付近には断層は認められ	かけて記載された確実度Ⅲ(活断層の疑いの
ず、同リニアメントの東側には先新第三系の竹貫変成岩類(片麻岩)、西側には新第三系の久保田	ず、同リニアメントの東側には先新第三系の
層(砂岩)及び赤坂層(礫岩)が分布し、先新第三系と新第三系が不整合関係で接している。ま	層(砂岩)及び赤坂層(礫岩)が分布し、先
た、上渋井以南の断層近傍の新第三系は層理面が著しく傾斜しているが、同リニアメント付近の	た、上渋井以南の断層近傍の新第三系は層理
新第三系の層理面の傾斜は緩く、断層の存在を示唆する急傾斜構造も認められない。地質図を第	新第三系の層理面の傾斜は緩く、断層の存在
3.2.67図に、地質断面図を第3.2.43図(1)に、露頭スケッチを第3.2.68図から第3.2.72図に示す。	3.2.67図に、地質断面図を第3.2.43図(1) <u>、</u> に示す。
(省略)	(変更なし)
d) 棚倉破砕帯東縁付近の推定活断層の評価	d) 棚倉破砕帯東縁付近の推定活断層の評価
(省略)	(変更なし)

c.~g. (省略)

c.~g. (変更なし)

ニアメントは、東側の阿武隈山地に分布する竹貫変成 層の礫岩等との不整合境界にほぼ一致しており、リニ 項斜に乱れは認められず、リニアメントと一致する断 リニアメント付近で東金砂山層と竹貫変成岩類の不 新層が認められるが、いずれも断層面は癒着している さらに、小妻町の今泉ほか編(2018)⁽²⁹⁾において記載 チ調査では、東金砂山層に破砕部や急傾斜構造は認め 、活断層研究会編(1991)⁽²⁴⁾で古屋敷から小高東方に のあるリニアメント)の位置付近には断層は認められ つ竹貫変成岩類(片麻岩)、西側には新第三系の久保田 た新第三系と新第三系が不整合関係で接している。ま 里面が著しく傾斜しているが、同リニアメント付近の 在を示唆する急傾斜構造も認められない。地質図を第 (2)に、露頭スケッチを第3.2.68図から第3.2.72図

変更前(2021.12.2 付補正)	変更後
(3) 敷地を中心とする半径約 30km 以遠の断層	(3) 敷地を中心とする半径約 30km 以遠の断層
(省略)	(変更なし)
3.2.2.4~3.2.2.7 (省略)	3.2.2.4~3.2.2.7 (変更なし)
3.3 敷地近傍の地質・地質構造	3.3 敷地近傍の地質・地質構造
(省略)	(変更なし)
3.4 敷地の地質・地質構造	3.4 敷地の地質・地質構造
3.4.1 調査内容	3.4.1 調查內容
(省略)	(変更なし)
3.4.2 調査結果	3.4.2 調査結果
3.4.2.1 敷地の地形	3.4.2.1 敷地の地形
(省略)	(変更なし)
 3.4.2.2 敷地の地質 地表地質調査結果、ボーリング調査結果等から作成した地質平面図を第3.4.3図に、地質断面図を 第3.4.4図に示す。地質層序表を第3.4.1表に示す。敷地の地質は、新第三系中新統の多賀層群、新第 三系鮮新統~第四系下部更新統の久米層、第四系更新統の東茨城層群及びM1段丘堆積物並びに第四 系完新統の砂丘砂層等から成る。 各地層の概要は、以下のとおりである。 (1) 多賀層群 多賀層群は、主に砂質泥岩から成り、標高約-130m以深からボーリング下端の標高約-210mまで分布 することが確認されている。 本層の地質年代は、実施した珪藻及び石灰質ナンノ化石分析結果によれば、中部中新統である。 (2) 久米層 久米層は、主に砂質泥岩から成り、標高約-50m~標高約-130mに分布することが確認されている。 本層の地質年代は、実施した珪藻及び石灰質ナンノ化石分析結果によれば、中部中新統である。 (2) 久米層 久米層は、主に砂質泥岩から成り、標高約-50m~標高約-130mに分布することが確認されている。 本層の地質年代は、実施した珪藻及び石灰質ナンノ化石分析結果によれば、下部鮮新統~下部更新 統である。	 3.4.2.2 敷地の地質 地表地質調査結果、ボーリング調査結果等から 第3.4.4図に示す。地質層序表を第3.4.1表に示す 三系鮮新統~第四系下部更新統の久米層、第四系 完新統の砂丘砂層等から成る。 各地層の概要は、以下のとおりである。 (1) 多賀層群 多賀層群は、主に砂質泥岩から成り、標高約-1 することが確認されている。 本層の地質年代は、実施した珪藻及び石灰質寸 (2) 久米層 久米層は、主に砂質泥岩から成り、標高約-50 本層の地質年代は、実施した珪藻及び石灰質寸 統である。 (3) 東茨城層群 東茨城層群は、主に砂、礫及びシルトから成り とは不整合面を成しており、境界付近では亜円顧 る。本層群は、坂本(1975)⁽²⁾の見和層中部及び 当する。 (4) M1段丘堆積物 M1段丘堆積物は、敷地にM1面を形成して分布す 布との関係から、南関東の下末吉面から小原台函 比される。本層群は、坂本(1975)⁽²⁾の見和層上 する。
(5) 沖積層	(5) 沖積層
沖積層は、敷地の低地部に分布し、主に礫、砂及びシルトから成る。	沖積層は、敷地の低地部に分布し、主に礫、

(6) 砂丘砂層

ら作成した地質平面図を第3.4.3図に、地質断面図を す。敷地の地質は、新第三系中新統の多賀層群、新第 系更新統の東茨城層群及びM1段丘堆積物並びに第四系

130m以深からボーリング下端の標高約-220mまで分布

ナンノ化石分析結果によれば、中部中新統である。

iOm~標高約-130mに分布することが確認されている。 ナンノ化石分析結果によれば、下部鮮新統~下部更新

0、M1段丘堆積物に覆われて分布する。M1段丘堆積物 礫を主体とする砂礫から成る。層厚は最大約70mであ 「石崎層に、山元(2013)⁽⁶⁴⁾の笠神層及び夏海層に相

する。M1面は、その層相及び敷地近傍陸域の段丘面分面(MIS5e~MIS5c;貝塚・松田編(1982)⁽⁶⁸⁾等)に対 上部層に、山元(2013)⁽⁶⁴⁾の見和層及び茨城層に相当

砂及びシルトから成る。

変更前(2021.12.2 付補正)	変更後
砂丘砂層は、海岸付近に分布する。本層は、細粒砂から中粒砂より成る。	砂丘砂層は、海岸付近に分布する。本層は、網
3.4.2.3 敷地の地質構造	3.4.2.3 敷地の地質構造
変動地形学的調査結果によると、敷地には地すべり地形及びリニアメントは認められない。	変動地形学的調査結果によると、敷地には地す
ボーリング調査及び反射法地震探査結果によれば、多賀層群及び久米層は、敷地全域の標高-50m以	ボーリング調査及び反射法地震探査結果によれ
深に分布し、久米層の基底面はほぼ水平に分布する。	深に分布し、久米層の基底面はほぼ水平に分布す
M1段丘堆積物は、下位の東茨城層群を覆って、敷地に広く分布しており、東茨城層群及びM1段丘堆	M1段丘堆積物は、下位の東茨城層群を覆って、
積物の基底面はほぼ水平に分布しており、断層を示唆する系統的な不連続や累積的な変位・変形は認	積物の基底面はほぼ水平に分布しており、断層を
められない。このことから、敷地には、将来活動する可能性のある断層等は認められないと判断され	められない。このことから、敷地には、将来活動
る。	る。
3.5 原子炉施設設置位置付近の地質・地質構造及び地盤	3.5 原子炉施設設置位置付近の地質・地質構造及び地盤
3.5.1 調査内容	3.5.1 調査内容
3.5.1.1 ボーリング調査	3.5.1.1 ボーリング調査
原子炉施設設置位置付近の地質・地質構造を把握するとともに、室内試験の供試体を採取し、ボー	原子炉施設設置位置付近の地質・地質構造を把
リング孔を利用した原位置試験を実施するためにボーリング調査を実施した。	リング孔を利用した原位置試験を実施するために
設置位置付近のボーリング調査の孔数は <u>53</u> 孔であり掘進総延長は約 <u>4,480</u> m、最大掘進長は約 <u>250</u> m	設置位置付近のボーリング調査の孔数は <u>45</u> 孔で
である。	ある。
ボーリング調査においては、ロータリー型ボーリングマシンを使用し、掘削孔径66mm~400mmで実	ボーリング調査においては、ロータリー型ボー
施した。	施した。
採取したボーリングコアについて詳細な観察を行い、地質柱状図を作成した。さらに、他の調査結	採取したボーリングコアについて詳細な観察を
果と併せて水平地質断面図及び鉛直地質断面図を作成し、原子炉施設設置位置付近の地質・地質構造	果と併せて水平地質断面図及び鉛直地質断面図を
について検討を行った。調査位置図を第3.5.1図に示す。	について検討を行った。調査位置図を第3.5.1図
3.5.1.2 地下水位調查	3.5.1.2 地下水位調查
敷地内の地下水位の状態を把握するために、第3.5.1図に示す位置において地下水位の経時変化を	敷地内の地下水位の状態を把握するために、 <u>地</u>
<u>測定した。地下水位は、No.108孔で実施した。</u>	<u>を第3.5.1図(1)に示す。</u>
3.5.1.3 岩石試験	3.5.1.3 岩石試験
原子炉施設設置位置付近の地盤の物理特性及び力学特性を明らかにするため、採取した試料を用	原子炉施設設置位置付近の地盤の物理特性及ひ
いて、物理試験及び力学試験を実施した。	て、物理試験及び力学試験を実施した。
試験は、日本工業規格(JIS)、地盤工学会基準(JGS)等に準拠した。	試験は、日本工業規格(JIS)、地盤工学会基準
(1) 試験項目	(1) 試験項目
物理特性を明らかにする試験として、湿潤密度、含水比、土粒子の密度等を測定する物理試験を実	物理特性を明らかにする試験として、湿潤密度
施した。また、強度特性及び変形特性を明らかにする試験として、引張強さ試験、三軸圧縮試験、静	施した。また、強度特性及び変形特性を明らかに
ポアソン比測定、繰返し三軸試験(変形特性)を実施した。	ポアソン比測定、繰返し三軸試験(変形特性)を
(2) 試験方法	(2) 試験方法
a. 引張強さ試験	a. 引張強さ試験
岩石の引張強さ試験により引張強さを求めた。	岩石の引張強さ試験により引張強さを求めた。
	<u>6.5cm、高さ約6~6.5cmとした。</u>
b. 三軸圧縮試験	b. 三軸圧縮試験

細粒砂から中粒砂より成る。

すべり地形及びリニアメントは認められない。 れば、多賀層群及び久米層は、敷地全域の標高-50m以 する。<u>久米層以浅の地層には断層は認められない。</u> 敷地に広く分布しており、東茨城層群及びM1段丘堆 を示唆する系統的な不連続や累積的な変位・変形は認 かする可能性のある断層等は認められないと判断され

B握するとともに、室内試験の供試体を採取し、ボー こボーリング調査を実施した。

であり掘進総延長は約<u>3,170</u>m、最大掘進長は約<u>260</u>mで

-リングマシンを使用し、掘削孔径66mm~<u>150</u>mmで実

を行い、地質柱状図を作成した。さらに、他の調査結 を作成し、原子炉施設設置位置付近の地質・地質構造 (1)に示す。

1下水位及び宙水位の経時変化を観測した。観測位置

び力学特性を明らかにするため、採取した試料を用い

(JGS)等に準拠した。

を、含水比、土粒子の密度等を測定する物理試験を実 こする試験として、引張強さ試験、三軸圧縮試験、静 を実施した。

供試体寸法は直径約5cm、高さ約5cm又は直径約6~

変更前(2021.12.2 付補正)	変更後
 試験は、ゴムスリーブ中の供試体を有効土被り圧相当で圧密した後、非排水状態で所定の側圧の もとで軸荷重を載荷し(以下「CUU条件」という。)、破壊時の軸差応力を求める方法で実施した。 供試体寸法は直径約5cm、高さ約10cmとした。 c. 静ポアソン比測定 静ポアソン比は、三軸圧縮試験(CUU条件)実施時に、軸荷重載荷時の供試体の体積変化量を測定 する方法で算出した。 d. 繰返し三軸試験(変形特性) 試験は、ゴムスリーブ中の供試体を有効土被り圧相当で圧密した後、非排水状態で周波数1Hzの繰 返し軸荷重を段階的に加える方法で実施した。 供試体寸法は、直径約5cm、高さ約10cmとした。 	 試験は、ゴムスリーブ中の供試体を有効土被り もとで軸荷重を載荷し(以下「CUU条件」という。 供試体寸法は直径約5cm、高さ約10cm又は直径約 た。静ポアソン比測定 静ポアソン比は、三軸圧縮試験(CUU条件)実施 する方法で算出した。 d. 繰返し三軸試験(変形特性) 試験は、ゴムスリーブ中の供試体を有効土被り、 返し軸荷重を段階的に加える方法で実施した。 供試体寸法は、直径約5cm、高さ約10cm又は直径
 3.5.1.4 土質試験 原子炉施設設置位置付近の地盤の物理特性及び力学特性を明らかにするため、採取した試料を用いて、物理試験及び力学試験を実施した。 試験は、日本工業規格(JIS)、地盤工学会基準(JGS)等に準拠して実施した。 (1) 試験項目 物理特性を明らかにする試験として、湿潤密度、含水比、土粒子の密度等を計測する物理試験を実施した。また、強度特性及び変形特性を明らかにする試験として、三軸圧縮試験、静ボアソン比測定、 繰返し三軸試験(変形特性)、繰返し中空ねじりせん断試験(変形特性)を実施した。 (2) 試験方法 a. 三軸圧縮試験 試験は、ゴムスリーブ中の供試体を有効土被り圧相当で圧密した後、非排水状態で所定の側圧の もとで軸荷重を載荷し(UX下「CD条件」という。)、破壊時の軸差応力を求める方法及び非排水状態で 軸荷重を載荷し(UX下「CD条件」という。)、破壊時の軸差応力を求める方法及び非排水状態で 軸荷重を載荷し(UX下「CD条件」という。)、破壊時の軸差応力を求める方法及び非排水状態で 軸荷重を載荷し(UX下「CD条件」という。)、破壊時の軸差応力を求める方法で実施した。 供試体寸法は、直径約5cm、高さ約10cm<u>及び直径約3.5cm、高さ約7cm</u>とした。 b. 静ボアソン比測定 静ボアソン比測定 静ボアソン比測定(変形特性) 試験は、ゴムスリーブ中の供試体に有効土被り圧相当で圧密した後、非排水状態で周波数1Hzの繰返し軸高差を段階的に加える方法で実施した。 4. 繰返し中空ねにりせん断試験(変形特性) 試験は、ゴムスリーブ中の供試体を有効土被り圧相当で圧密した後、非排水状態で周波数1Hzの繰返し軸高度段階的に加える方法で実施した。 4. 繰返し中空ねにりせん断試験(変形特性) 試験は、ゴムスリーブ中の供試体を有効土被り圧相当で圧密した後、非排水状態で周波数1Hzの繰返しねじり力を段階的に加える方法で実施した。 供試体寸法は、直径約7cm、内径約3cm、高さ約7cmとした。 	 3.5.1.4 土質試験 原子炉施設設置位置付近の地盤の物理特性及びた て、物理試験及び力学試験を実施した。 試験は、日本工業規格(JIS)、地盤工学会基準 (1) 試験項目 物理特性を明らかにする試験として、湿潤密度、施した。また、強度特性及び変形特性を明らかにす 繰返し三軸試験(変形特性)、繰返し中空ねじりせ (2) 試験方法 a. 三軸圧縮試験 武験は、ゴムスリーブ中の供試体を有効土被り もとで軸荷重を載荷し(以下「CD条件」という。 能で軸荷重を載荷し(以下「CD条件」という。)、 供試体寸法は、直径約5cm、高さ約10cm又は直径 b. 静ボアソン比測定 静ボアソン比測定 静ボアソン比は、三軸圧縮試験(CUU条件、CD条体の体積変化量を測定する方法で算出した。 c. 繰返し三軸試験(変形特性) 試験は、ゴムスリーブ中の供試体に有効土被り 返し軸荷重を段階的に加える方法で実施した。 供試体寸法は、直径約5cm、高さ約10cm又は直径
 3.5.1.5 原位置試験 (1) PS検層 基礎地盤の深さ方向の動的な変形特性を把握するため、第3.5.1図に示す位置でPS検層を実施し 	 3.5.1.5 原位置試験 (1) PS検層 基礎地盤の深さ方向の動的な変形特性を把握する

0 圧相当で圧密した後、非排水状態で所定の側圧の 。)、破壊時の軸差応力を求める方法で実施した。 約6~6.5cm、高さ約12~13cmとした。

施時に、軸荷重載荷時の供試体の体積変化量を測定

圧相当で圧密した後、非排水状態で周波数1Hzの繰

径約6~6.5cm、高さ約12~13cmとした。

力学特性を明らかにするため、採取した試料を用い

(JGS) 等に準拠した。

、含水比、土粒子の密度等を計測する物理試験を実 する試験として、三軸圧縮試験、静ポアソン比測定、 せん断試験(変形特性)を実施した。

) 圧相当で圧密した後、非排水状態で所定の側圧の É応力を求める方法、所定の圧力で圧密した後、排 5。)、破壊時の軸差応力を求める方法及び非排水状 破壊時の軸差応力を求める方法で実施した。 <u>径約9.2cm、高さ約18.4cm</u>とした。

条件及びUU条件)の実施時に、軸荷重載荷時の供試

圧相当で圧密した後、非排水状態で周波数1Hzの繰

<u>径約9.2cm、高さ約18.4cm</u>とした。

圧相当で圧密した後、非排水状態で周波数1Hzの繰

勺7cmとした。

るため、第3.5.1図(1)に示す位置でPS検層を実施し

変更前(2021.12.2 付補正)	変更後
変更前(2021.12.2付補正) た。 PS検層は、孔中に受振器を設け、地上で板たたき法によって起振するダウンホール方式及び起振装 置と受振器が一体となったゾンデを孔内に挿入し、孔内で起振受振するサスペンション方式で行っ た。検層により基礎地盤のP波及びS波の伝搬速度を求め、初期動せん断弾性係数及び動ポアソン比を 算出した。 原子炉施設設置位置付近においてPS検層は22孔で実施し、総延長約2,840mである。 (2) 標準貫入試験 基礎地盤の硬軟、締まり具合を把握するため、第3.5.1図に示す位置で標準貫入試験を実施した。 試験は、ハンマーを自由落下させ標準貫入試験用サンプラーを30cm打込むのに要する打撃回数(N 値)を測定する方法で実施した。	変更後 た。 PS検層は、孔中に受振器を設け、地上で板たたき法に 置と受振器が一体となったゾンデを孔内に挿入し、引 た。検層により基礎地盤のP波及びS波の伝搬速度を求 算出した。 原子炉施設設置位置付近においてPS検層は10孔で実 (2) 標準貫入試験 基礎地盤の硬軟、締まり具合を把握するため、第3 た。 試験は、ハンマーを自由落下させ標準貫入試験用サ 値)を測定する方法で実施した。 ()に示す位置で試験施工を行い、物理試験及び力学評 地盤工学会基準(JGS)等に準拠した。試料を採取した (1) 試験項目 物理試験として、湿潤密度試験を実施した。また、
	 て、一軸圧縮試験、引張強さ試験、三軸圧縮試験、線 (2) 試験方法 a. 一軸圧縮試験 試験は、岩石の一軸圧縮試験により、自然状態の何 5cm、高さ約10cmとした。 b. 引張強さ試験 岩石の引張強さ試験により引張強さを求めた。供請 c. 三軸圧縮試験 試験は、UU条件により破壊時の軸差応力を求めるご 供試体寸法は、直径約5cm、高さ約10cmとした。 d. 静ポアソン比測定 静ポアソン比は、一軸圧縮試験で算出した。 e. 繰返し三軸試験(変形特性) 試験は、ゴムスリーブ中の供試体に有効土被り圧れ 返し軸荷重を段階的に加える方法で実施した。 供試体寸法は、直径約5cm、高さ約10cmとした。
 3.5.2 調査結果 3.5.2.1 原子炉施設設置位置付近の地質・地質構造 地質	 3.5.2 調査結果 3.5.2.1 原子炉施設設置位置付近の地質・地質構造 地質 <u>敷地で実施した</u>ボーリングの地質柱状図<u>について</u> す。地表地質調査、ボーリング調査結果等から作成し 面図を第3.5.13図(1)から第3.5.13図(4)に示す。

き法によって起振するダウンホール方式及び起振装 、 孔内で起振受振するサスペンション方式で行っ を求め、 初期動せん断弾性係数及び動ポアソン比を

で実施し、総延長約<u>1,460</u>mである。

第3.5.1図(1)に示す位置で標準貫入試験を実施し

用サンプラーを30cm打込むのに要する打撃回数(N

<u>の設計及び施工の基礎資料を得るため、第3.5.1図</u> <u>り学試験を実施した。試験は、日本工業規格(JIS)、</u> した位置を第3.5.1図(2)に示す<u>。</u>

た、強度特性及び変形特性を明らかにする試験とし 、繰返し三軸試験(変形特性)を実施した。

まの供試体について実施した。供試体寸法は直径約

供試体寸法は直径約5cm、高さ約5cmとした。

りる方法で実施した。

) 圧相当で圧密した後、非排水状態で周波数1Hzの繰

<u>いて代表的なもの</u>を第3.5.2図から第3.5.11図に示 成した水平地質断面図を第3.5.12図に、鉛直地質断

変更前(2021.12.2 付補正)	変更後
原子炉施設設置位置付近の地質は、新第三系中新統の多賀層群及び新第三系鮮新統~第四系下部	原子炉施設設置位置付近の地質は、新第三系中
更新統の久米層、第四系更新統の東茨城層群及びM1段丘堆積物から成る。	新統の久米層、第四系更新統の東茨城層群及びM
a. 多賀層群	a. 多賀層群
多賀層群は、主に暗灰色を呈する砂岩・泥岩の互層から成る。ボーリングコアは棒状を呈し、生	多賀層群は、主に暗灰色を呈する砂岩・泥岩
痕化石、有機物、サガリテスなどが観察されるとともに、石英脈の貫入に伴う珪化作用を受け、硬	痕化石、有機物、サガリテスなどが観察される
質となっている。	質となっている。
b. 久米層	b. 久米層
久米層は、主に暗緑灰色を呈する砂質泥岩から成る。砂質泥岩は塊状で、貝化石片や軽石粒が観	久米層は、主に暗緑灰色を呈する砂質泥岩か
察される。	察される。
また、泥岩の下位には、シルト分が多く、下位層と狭い範囲で漸移するシルト質砂岩が分布し、	また、泥岩の下位には、シルト分が多く、下
ほぼ均質塊状であるが、貝化石や軽石粒の混入が見られる。また、この層の基底部には礫が分布す	ほぼ均質塊状であるが、貝化石や軽石粒の混入
るところがあるが、厚さは一定しない。	るところがあるが、厚さは一定しない。
c. 東茨城層群	c. 東茨城層群
東茨城層群は、坂本(1975) ⁽²⁾ の石崎層及び見和層中部層から成り、山元(2013) ⁽⁶⁴⁾ の笠神層及	東茨城層群は、坂本(1975)(2)の石崎層及び
び夏海層に相当する。	び夏海層に相当する。
石崎層は、細砂を主体とした層で、全体として均質塊状であるが、連続性のよいシルト層、シル	石崎層は、細砂を主体とした層で、全体とし
ト混り砂層、砂礫層を挟んでいる。層厚は、約50mである。	ト混り砂層、砂礫層を挟んでいる。層厚は、約
見和層中部層は、河川堆積砂礫層と考えられ、礫種はチャート、砂岩が多く、花崗岩類や安山岩	見和層中部層は、河川堆積砂礫層と考えられ
類も含んでいる。層厚は <u>、</u> 約5mで <u>あり、</u> ほぼ水平に連続して分布 <u>している。本層群は、</u> M1段丘堆積	類も含んでいる。層厚は約5mでほぼ水平に連続
物に不整合に覆われており、山元(2013) ⁽⁶⁴⁾ は笠神層及び夏海層をMIS7に形成されたものとしてい	
ることから、中部更新統と判断される。	
d. M1段丘堆積物	d. M1段丘堆積物
M1段丘堆積物は、坂本(1975) ⁽²⁾ の見和層上部層から成り、山元(2013) ⁽⁶⁴⁾ の見和層及び茨城層	M1段丘堆積物は、坂本(1975) ⁽²⁾ の見和層上話
に相当する。山元 (2013) ⁽⁶⁴⁾ は見和層をMIS5eに、茨城層をMIS5cに形成されたものとしている。	に相当する。
M1段丘堆積物の下部は海成層から成り、円礫混じり砂、砂礫を挟在する淘汰の良い砂層、淘汰の	M1段丘堆積物の下部は海成層から成り、円礫
悪い砂層と層相が変化し、その上部には白斑状生痕を伴う層準が認められる。下位の東茨城層群と	悪い砂層と層相が変化し、その上部には白斑状
は不整合境界面を成している。中部は比較的均質塊状シルト〜粘性の高い粘土から成り淡水環境で	は <u>層相が異なっており、層相の境界には不連続</u>
堆積したと考えられる。上部は風成層から成り、淘汰の良い砂~中砂から成り、平行葉理が発達し、	(堆積間隙) が認められることから、両地層は
渇鉄鉱の濃集が認められる。最上部にはローム層が堆積している。層厚は最大約20mである。M1段丘	ルト〜粘性の高い粘土から成り淡水環境で堆積
堆積物の分布状況は、敷地周辺の分布状況と整合しており、M1段丘堆積物の下部はMIS5eの堆積物で	良い砂~中砂から成り、平行葉理が発達し、渇
あると考えられる。	積している。層厚は最大約20mである。M1段丘堆
	おり、M1段丘堆積物の下部はMIS5eの堆積物であ
(2) 地盤分類	(2) 地盤分類
原子炉施設設置位置付近の地盤分類図を第3.5.13図(1)から第3.5.13図(4)に示す。設置位置付近	原子炉施設設置位置付近の地盤分類図を第3.5.
には、多賀層群、久米層、東茨城層群、M1段丘堆積物が分布する。	は、多賀層群、久米層、東茨城層群、M1段丘堆積
社団法人日本電気協会の「原子力発電所耐震設計指針 JEAG4601」を参考に、各層の年代、層相、	社団法人日本電気協会の「原子力発電所耐震部
固結の程度等の地質学的性質及び工学的性質の違いから、原子炉基礎地盤を次のように分類した。	固結の程度等の地質学的性質及び工学的性質の違
多賀層群は、中新統の砂岩・泥岩の互層であり、軟質岩盤に分類され、岩相に変化は少ないことか	多賀層群は、中新統の砂岩・泥岩の瓦層であり

ら、砂岩泥岩互層 (Tg) の区分とした。

久米層は、鮮新統~下部更新統の砂質泥岩とシルト岩から成り、軟質岩盤に分類され、砂質泥岩 (Km)及びシルト質砂岩(Ks)に区分とした。

ら、砂岩泥岩互層 (Tg) の区分とした。

(Km) 及びシルト質砂岩 (Ks) に区分とした。

新統の多賀層群及び新第三系鮮新統~第四系下部更 1段丘堆積物から成る。

の互層から成る。ボーリングコアは棒状を呈し、生 とともに、石英脈の貫入に伴う珪化作用を受け、硬

ら成る。砂質泥岩は塊状で、貝化石片や軽石粒が観

位層と狭い範囲で漸移するシルト質砂岩が分布し、 、が見られる。また、この層の基底部には礫が分布す

見和層中部層から成り、山元(2013)⁽⁶⁴⁾ の笠神層及

て均質塊状であるが、連続性のよいシルト層、シル 50mである。

礫種はチャート、砂岩が多く、花崗岩類や安山岩 して分布し、M1段丘堆積物に不整合に覆われる。

部層から成り、山元(2013)⁽⁶⁴⁾の見和層及び茨城層

混じり砂、砂礫を挟在する淘汰の良い砂層、淘汰の 生痕を伴う層準が認められる。下位の東茨城層群と 面が確認される。その不連続面には堆積環境の変化 不整合関係で接している。中部は比較的均質塊状シ したと考えられる。上部は風成層から成り、淘汰の 鉄鉱の濃集が認められる。最上部にはローム層が堆 積物の分布状況は、敷地周辺の分布状況と整合して らると考えられる。

.13図(1)から第3.5.13図(4)に示す。設置位置付近に 責物が分布する。

設計指針 JEAG4601」を参考に、各層の年代、層相、 違いから、原子炉基礎地盤を次のように分類した。 、軟質岩盤に分類され、岩相に変化は少ないことか

久米層は、鮮新統~下部更新統の砂質泥岩とシルト岩から成り、軟質岩盤に分類され、砂質泥岩

変更前(2021.12.2付補正)	変更後
低固結~未固結地盤に分類される東茨城層群、M1段丘堆積物は、以下のように区分した。	低固結~未固結地盤に分類される東茨城層群、MI
東茨城層群は、坂本(1975) ⁽²⁾ に対比される石崎層及び見和層中部層に区分した。石崎層は、砂混	東茨城層群は、坂本(1975) ⁽²⁾ に対比される石崎
じり礫を主体とする砂混じり砂礫土 (Is-Sg)、砂を主体とする4層の砂質土 (Is-S ₁ 、Is-S ₂ U、Is-S ₂ L、	じり礫を主体とする砂混じり砂礫土 (Is-Sg)、砂を
Is-S ₃)、細粒分を多く含む砂質土(Is-Sc)、粘土を主体とする粘性土(Is-C)に区分した。見和層中	Is-S ₃)、細粒分を多く含む砂質土 (Is-Sc)、粘土を
部層は、砂混じり砂礫土(Mm-Sg)に区分した。	部層は、砂混じり砂礫土 (Mm-Sg) に区分した。
M1段丘堆積物は、坂本(1975) ⁽²⁾ に対比される見和層上部層及びローム層に区分した。見和層上部	M1段丘堆積物は、坂本(1975) ⁽²⁾ に対比される見
層は、砂混じり礫を主体とする砂混じり砂礫土 (Mu-Sg)、砂を主体とする3層の砂質土(Mu-S、Mu-S ₁ 、	層は、砂混じり礫を主体とする砂混じり砂礫土(Mu-
Mu-S ₂)、粘土を主体とする粘性土(Mu-C)に、ローム層は火山灰質粘性土(Lm)に区分した。なお、埋	Mu-S ₂)、粘土を主体とする粘性土(Mu-C)に、ロー
戻土(B)の記載は省略した。	埋戻土(B)の記載は省略した。
(3) 地下水位 <u>調査</u> の結果	(3) 地下水位 <u>観測</u> の結果
<u>№.108孔において、</u> 2015年2月より <u>2016年7月</u> までの間に実施した地下水位 <u>調査</u> 結果を第3.5.14図に	2015年2月より <u>2022年2月</u> までの間に実施した地下
示す。 <u>常水位</u> は、 <u>約T.P.+6.0</u> m付近に存在し、 <u>調査</u> 期間中の変動幅は1m以内である。	<u>位</u> は、 <u>T. P. 約+4~7</u> m付近に存在し、 <u>観測</u> 期間中の変
	2015年5月より2022年2月までの間に実施した宙水
	<u>T.P.約+28~30m付近に存在し、宙水が帯水する層の</u>
(4) 地質構造	(4) 地質構造
ボーリング調査結果によると、久米層は約T.P50m以深に分布し、久米層を不整合に覆って東茨城	ボーリング調査結果によると、久米層は <u>T.P.約</u> -5
層群及びM1段丘堆積物が分布している。	層群及びM1段丘堆積物が分布している。
M1段丘堆積物の基底面の分布標高は各ボーリング孔でほぼ同様であり、ほぼ水平に分布している。	M1段丘堆積物の基底面の分布標高は各ボーリング
更に、M1段丘堆積物の層相変化も各孔で連続的に確認され、各層の分布標高もほぼ同様である。ま	更に、M1段丘堆積物の層相変化も各孔で連続的に確
た、東茨城層群及び久米層の基底面もほぼ水平に分布しており、断層を示唆する系統的な不連続や累	東茨城層群及び久米層の基底面もほぼ水平に分布し
積的な変位・変形は認められず(第3.5.15図 <u>~</u> 第3.5.18図)、久米層中には断層の存在を示唆する鏡	な変位・変形は認められず(第3. 5. 15図 <u>から</u> 第3. 5.
肌や条線及び挟材物等は認められない。	や条線及び挟材物等は認められない。
以上のことから、原子炉施設設置位置付近には、将来活動する可能性のある断層等は認められない	以上のことから、原子炉施設設置位置付近には、
と判断される。	と判断される。
3.5.2.2 室内試験結果	3.5.2.2 室内試験結果
(1) 岩石試験結果	(1) 岩石試験結果
原子炉施設設置位置付近に分布する多賀層群及び久米層から採取した試料による岩石試験結果を	原子炉施設設置位置付近に分布する多賀層群及び
以下に示す。	以下に示す。
a. 物理特性	a. 物理特性
ボーリングコアの <u>約T.P55m~約T.P.</u> -200mの範囲から採取した <u>616</u> 個の試料について、物理試験	ボーリングコアの <u>T.P.約</u> - <u>60</u> m~ <u>T.P.約</u> -200mの範
を実施した。	を実施した。
湿潤密度 ρ tの試験結果を第3.5.19図に、湿潤密度 ρ t、含水比w、土粒子の密度、間隙比eの試験結	湿潤密度ρtの試験結果を第3.5.19図に、湿潤密
果を第3.5.1表に示す。	果を第3.5.1表に示す。
Km 層の湿潤密度 ρ _t は平均 <u>1.79</u> g/cm ³ 、含水比 w は平均 <u>39.1%</u> 、土粒子の密度は平均 <u>2.66</u> 、間隙比	Km 層の湿潤密度 ρ _t は平均 <u>1.78</u> g/cm ³ 、含水比 w β
e は平均 1.06 である。	隙比 e は平均 1.07 である。

Ks 層の湿潤密度 ρ_t は平均 1.83g/cm³、含水比 w は平均 32.3%、土粒子の密度は平均 2.68、間隙比 e は平均 0.95 である。

Tg層の湿潤密度ρ_tは平均1.89g/cm³、含水比wは平均26.1%である。

b. 引張強さ

ボーリングコアから採取した20個の供試体について、岩石の引張強さ試験を実施した。引張強さ

添 6-3-7

隙比 e は平均 0.97 である。

b. 引張強さ

1段丘堆積物は、以下のように区分した。 層及び見和層中部層に区分した。石崎層は、砂混 ·主体とする4層の砂質土(Is-S₁、Is-S₂U、Is-S₂L、 主体とする粘性土 (Is-C) に区分した。見和層中

和層上部層及びローム層に区分した。見和層上部 -Sg)、砂を主体とする3層の砂質土 (Mu-S、Mu-S₁、 ・ム層は火山灰質粘性土(Lm)に区分した。なお、

、水位の観測結果を第3.5.14図<u>(1)</u>に示す。<u>地下水</u> 動幅は1m以内である。

、位の観測結果を第3.5.14図(2)に示す。宙水位は、)厚さは0.2~2.0m程度である。

50m以深に分布し、久米層を不整合に覆って東茨城

「孔でほぼ同様であり、ほぼ水平に分布している。 認され、各層の分布標高もほぼ同様である。また、 ており、断層を示唆する系統的な不連続や累積的 18図)、久米層中には断層の存在を示唆する鏡肌

将来活動する可能性のある断層等は認められない

び久米層から採取した試料による岩石試験結果を

範囲から採取した<u>138</u>個の試料について、物理試験 度 ρ_t、含水比w、土粒子の密度、間隙比eの試験結 は平均<u>37.2%</u>、土粒子の密度は平均<u>2.67g/cm³、間</u> Ks 層の湿潤密度 ρ_tは平均 1.81g/cm³、含水比 w は平均 32.6%、土粒子の密度は平均 2.66g/cm³、間 Tg層の湿潤密度ρ_tは平均1.86g/cm³、含水比wは平均26.5%である。

ボーリングコアから採取した16個の供試体について、岩石の引張強さ試験を実施した。引張強さ

変更前(2021.12	変更後		
σ _t の試験結果を第3.5.20図に示す。		σtの試験結果を第3.5.20図に示す。	
Km層、Ks層引張強 <u>度</u> は平均値で <u>0.161</u> N/m	m²である。	Km層、Ks層 <u>の</u> 引張強 <u>さ</u> は平均値で <u>0.160</u> N/mm ² であ	
c. 三軸圧縮試験結果(強度特性)	c. 三軸圧縮試験結果(強度特性)		
ボーリングコアから採取した <u>80</u> 個の供試体	なについて、三軸圧縮試験(CUU条件)を実施した。	ボーリングコアから採取した <u>126</u> 個の供試体につい	
三軸圧縮試験による非排水せん断強さCuと	:標高Zの関係を第3.5.21図に示す。	<u>Km層、Ks層の</u> 三軸圧縮試験による非排水せん断強	
破壊時の非排水せん断強さCuと残留時の表	非排水せん断強さCurは深度方向に増加する傾向が認め	破壊時の非排水せん断強さCuと残留時の非排水せ	
られ、標高Zとの関係は次式で近似される。		られ、標高Zとの関係は次式で近似される。	
Km層、Ks層		Km層、Ks層	
$Cu = 0.780 - 0.00333 \cdot Z$	(N/mm ²)	$Cu = 0.660 - 0.00440 \cdot Z$	
$\underline{Cur} = 0.322 - 0.00455 \cdot \underline{Z}$	(N/mm ²)	$Cur = 0.295 - 0.00495 \cdot Z$	
d. 静弹性係数		d. 静弹性係数	
三軸圧縮試験(CUU条件)により静弾性係	数E50を求めた。静弾性係数E50の結果を第3.5.22図及び	三軸圧縮試験(CUU条件)により静弾性係数E50をオ	
第3.5.3表(1)に示す。Tg層の静弾性係数E50に	は平均1,080 <u>(</u> N/mm ²)である。Km層、Ks層の静弾性係数E ₅₀	3.5.3表(1)に示す。Tg層の静弾性係数E50は平均1,08	
は深度方向に増加する傾向が認められ、標高	高Zとの関係は次式で近似される。	度方向に増加する傾向が認められ、標高Zとの関係	
Km層、Ks層		Km層、Ks層	
$\underline{E}_{50} = 302 - 2.96 \cdot Z$	(N/mm^2)	$\underline{E}_{50} = 327 - 2.74 \cdot \underline{Z}$	
e. 静ポアソン比		e. 静ポアソン比	
三軸圧縮試験(CUU条件)実施時に静ポア	ソン比測定を実施した。静ポアソン比の結果を第3.5.3	三軸圧縮試験(CUU条件)実施時に静ポアソン比	
表(1)に示す。Km層及びKs層の静ポアソン比	νは平均 <u>0.45</u> 、Tg層の静ポアソン比νは平均0.47であ	表(1)に示す。Km層及びKs層の静ポアソン比νは平	
る。		る。	
f. <u>繰返し三軸試験結果(変形特性)</u>		f. <u>動的変形特性</u>	
ボーリングコアから採取した <u>53</u> 個の供試体	はについて、繰返し三軸試験(変形特性)を実施した。	ボーリングコアから採取した <u>35</u> 個の供試体につい	
得られた正規化せん断弾性係数G/G₀とせん肉	fひずみγの関係並びに減衰率hとせん断ひずみγの関	得られた正規化せん断弾性係数G/G₀とせん断ひずみ	
係を、第3.5.23図(1)から第3.5.23図(3)に示	係を、第3.5.23図(1)から第3.5.23図(3)に示す。		
正規化動せん断弾性係数G/G ₀ 及び減衰率h。	とせん断ひずみγの関係は次式で近似される。	正規化動せん断弾性係数G/G ₀ 及び減衰率hとせん断	
Km層		Km層	
$G/G_0 = 1/(1 + 2.02\gamma^{0.808})$		$G/G_0 = 1/(1 + 2.32\gamma^{1.04})$	
$h = \frac{15.2\gamma}{(\gamma + 0.861) + 1.82}$		$h = 15.3\gamma/(\gamma + 0.763) + 1.54$	
Ks層		Ks層	
$G/G_{0} = 1/(1 + 2.74\gamma^{0.853})$		$G/G_{0} = 1/(1 + 3.09\gamma^{0.986})$	
$h = 16.9\gamma/(\gamma + 0.779) + 1.47$		$h = 15.0\gamma/(\gamma + 0.603) + 1.30$	
Tg層		Tg層	
$G/G_0 = 1/(1 + 1.66\gamma^{0.863})$		$G/G_0 = 1/(1 + 1.75\gamma^{0.925})$	
$h = 9.63\gamma/(\gamma + 0.370) + 1.14$		$h = 9.59\gamma/(\gamma + 0.346) + 1.00$	
2) 土質試験結果		(2) 土質試験結果	
a. 物理特性		a. 物理特性	
ボーリングコアから採取した <u>2,555</u> 個の試	料について物理試験を実施した。湿潤密度ρ _t 、 <u>土粒子</u>	ボーリングコアから採取した <u>591</u> 個の試料につい [、]	

:ある。

ついて、三軸圧縮試験(CUU条件)を実施した。 所強さCuと標高Zの関係を第3.5.21図に示す。 水せん断強さCurは深度方向に増加する傾向が認め

> (N/mm^2) (N/mm^2)

を求めた。静弾性係数E50の結果を第3.5.22図及び第 ,080N/mm²である。Km層、Ks層の静弾性係数E50は深 係は次式で近似される。

 (N/mm^2)

比測定を実施した。静ポアソン比の結果を第3.5.3 t平均<u>0.49</u>、Tg層の静ポアソン比 v は平均0.47であ

ついて、繰返し三軸試験(変形特性)を実施した。 ずみγの関係並びに減衰率hとせん断ひずみγの関

ん断ひずみγの関係は次式で近似される。

いて物理試験を実施した。湿潤密度 ρ_t、<u>含水比w、</u>

変更前(2021.12.2 付補正)	変更後
<u>の密度ρ_s、含水比w</u> 、間隙比eの試験結果を第3.5.2表に示す。	<u>土粒子の密度ρ</u> _s 、間隙比eの試験結果を第3.5.
	周辺の地盤において薄く部分的であることから
	度特性、静弾性係数、静ポアソン比、動的変形
埋戻土の湿潤密度 ρ _t は平均1.90g/cm ³ 、含水比wは平均20.5%、土粒子の密度 ρ _s は平均2.68g/cm ³ 、	埋戻土の湿潤密度 ρ _t は平均1.90g/cm ³ 、含水
間隙比 e は平均 0.71 である。	間隙比 e は平均 0.71 である。
Lm 層の湿潤密度 ρ _t は平均 1.35g/cm ³ 、含水比 w は平均 97.8%、土粒子の密度 ρ _s は平均 <u>2.72</u> g/cm ³ 、	Lm 層の湿潤密度 ρ _t は平均 1.35g/cm ³ 、含水b
間隙比 e は平均 <u>3.03</u> である。	間隙比 e は平均 <u>3.09</u> である。
Mu-S ₁ 層の湿潤密度 $ ho_{ m t}$ は平均 1.89 g/cm³、含水比 w は平均 18.6 %、土粒子の密度 $ ho_{ m s}$ は平均	Mu-S ₁ 層の湿潤密度 ρ _t は平均 <u>1.86</u> g/cm ³ 、
<u>2.70</u> g/cm ³ 、間隙比 e は平均 <u>0.70</u> である。	<u>2.69</u> g/cm ³ 、間隙比 e は平均 <u>0.71</u> である。
Mu-C層の湿潤密度ρ _t は平均 <u>1.73</u> g/cm ³ 、含水比wは平均 <u>44.6</u> %、土粒子の密度ρ _s は平均 <u>2.66</u> g/cm ³ 、	Mu-C層の湿潤密度 ρ _t は平均 <u>1.72</u> g/cm ³ 、含水
間隙比 e は平均 <u>1.24</u> である。	間隙比 e は平均 <u>1.32</u> である。
Mu-S層の湿潤密度 ρ _t は平均1.87g/cm ³ 、含水比wは平均31.8%、土粒子の密度 ρ _s は平均2.71g/cm ³ 、	Mu-S層の湿潤密度 ρ _t は平均1.87g/cm ³ 、含水
間隙比 e は平均 0.91 である。	間隙比 e は平均 0.91 である。
Mu-S $_2$ 層の湿潤密度 $ ho_{ m t}$ は平均 1.87 g/cm 3 、含水比 w は平均 21.0% 、土粒子の密度 $ ho_{ m s}$ は平均	Mu-S $_2$ 層の湿潤密度 ρ_{t} は平均 1.86 g/cm 3 、
2.70g/cm ³ 、間隙比 e は平均 <u>0.75</u> である。	2.70g/cm ³ 、間隙比 e は平均 <u>0.76</u> である。
$Mm-Sg層の湿潤密度 ho_t$ は平均 2.21 g/cm³、含水比wは平均 8.9 %、土粒子の密度 $ ho_s$ は平均 2.70 g/cm³、	Mm-Sg層の湿潤密度 ρ _t は平均 <u>2.23</u> g/cm ³ 、含z
間隙比 e は平均 <u>0.33</u> である。	間隙比 e は平均 <u>0.32</u> である。
$Is-S_1$ 層の湿潤密度 $ ho_t$ は平均 $\underline{1.86}$ g/cm³、含水比 w は平均 $\underline{27.2}$ %、土粒子の密度 $ ho_s$ は平均	Is -S ₁ 層の湿潤密度 $ ho_{\mathrm{t}}$ は平均 $\mathrm{\underline{1.83}g/cm^{3}}$ 、
<u>2.72</u> g/cm ³ 、間隙比 e は平均 <u>0.87</u> である。	<u>2.71</u> g/cm ³ 、間隙比 e は平均 <u>0.88</u> である。
Is-C層の湿潤密度 ρ _t は平均 <u>1.87</u> g/cm ³ 、含水比wは平均 <u>33.5</u> %、土粒子の密度 ρ _s は平均2.69g/cm ³ 、	Is-C層の湿潤密度 ρ _t は平均 <u>1.85</u> g/cm ³ 、含水
間隙比 e は平均 <u>0.92</u> である。	間隙比 e は平均 <u>0.96</u> である。
Is-S ₂ U 層の湿潤密度 ρ _t は平均 <u>1.84</u> g/cm ³ 、含水比 w は平均 <u>33.9</u> %、土粒子の密度 ρ _s は平均	Is-S ₂ U 層の湿潤密度 ρ _t は平均 <u>1.82</u> g/cm ³ 、
<u>2.67</u> g/cm ³ 、間隙比 e は平均 <u>0.95</u> である。	<u>2.68</u> g/cm ³ 、間隙比 e は平均 <u>0.96</u> である。
Is-Sc 層の湿潤密度 $ ho_{ m t}$ は平均 1.81 g/cm ³ 、含水比 w は平均 37.6 %、土粒子の密度 $ ho_{ m s}$ は平均	Is-Sc 層の湿潤密度 ρ _t は平均 <u>1.78</u> g/cm ³ 、
<u>2.65</u> g/cm ³ 、間隙比 e は平均 <u>1.02</u> である。	<u>2.66</u> g/cm ³ 、間隙比 e は平均 <u>1.07</u> である。
Is-S ₂ L 層の湿潤密度 ρ _t は平均 1.91g/cm ³ 、含水比 w は平均 <u>28.1</u> %、土粒子の密度 ρ _s は平均	$Is-S_2L$ 層の湿潤密度 $ ho$ t は平均 $1.91g/cm^3$ 、
<u>2.71</u> g/cm ³ 、間隙比 e は平均 <u>0.82</u> である。	<u>2.74</u> g/cm ³ 、間隙比 e は平均 <u>0.80</u> である。
<u>Is-Sg 層の湿潤密度 ρt</u> は平均 1.98g/cm ³ 、含水比 w は平均 21.7%、土粒子の密度 ρs は平均	
<u>2.74g/cm³、間隙比 e は平均 0.64 である。</u>	
Is-S ₃ 層の湿潤密度ρ _t は平均 <u>1.96</u> g/cm ³ 、含水比wは平均 <u>26.5</u> %、土粒子の密度ρ _s は平均2.72g/cm ³ 、	Is-S ₃ 層の湿潤密度ρ _t は平均 <u>1.94</u> g/cm ³ 、含水
間隙比eは平均 <u>0.76</u> である。	間隙比eは平均 <u>0.78</u> である。
b. 三軸圧縮試験結果(強度特性)	b. 三軸圧縮試験結果(強度特性)
ボーリングコアから採取した <u>318</u> 個の供試体について、三軸圧縮試験(CD条件、CUU条件及びUU条	ボーリングコアから採取した <u>264</u> 個の供試体
件)を実施した。	件)を実施した。
三軸圧縮試験(CD条件、CUU条件及びUU条件)によるピーク強度及び残留強度の破壊応力円を第	三軸圧縮試験(CD条件、CUU条件及びUU条件
3.5.24図(1)から第3.5.24図(13)に示す。	3.5.24図(1)から第3.5.24図(13)に示す。
埋戻土 (CD条件)	
$\tau = 0.008 + \sigma \cdot \tan 34.9^{\circ}$ (N/mm ²)	$\tau = 0.008 + \sigma \cdot \tan 34.9^{\circ} \qquad (\text{N/mm}^2)$
$\tau_{\rm r} = 0.008 + \sigma \cdot \tan 34.2^{\circ}$ (N/mm ²)	$\tau_{\rm r} = 0.008 + \sigma \cdot \tan 34.2^{\circ}$ (N/mm ²)

.2表に示す。なお、Is-Sg層については、耐震重要施設 らIs-S₂L層の試験結果を物性値に設定する(以降の強 形特性についても同様)。 <比wは平均20.5%、土粒子の密度ρ。は平均2.68g/cm³、 比 w は平均 97.8%、土粒子の密度 ρ。は平均 <u>2.76</u>g/cm³、 含水比 w は平均 <u>18.1%</u>、土粒子の密度 ρ_sは平均 K比wは平均<u>48.5</u>%、土粒子の密度ρ。は平均<u>2.67</u>g/cm³、 、比wは平均31.8%、土粒子の密度ρ。は平均2.71g/cm³、 含水比wは平均<u>21.7%</u>、土粒子の密度 ρ_sは平均 水比wは平均<u>8.8</u>%、土粒子の密度ρ_sは平均2.70g/cm³、 含水比wは平均27.0%、土粒子の密度 ρ。は平均 K比wは平均<u>34.7%、土粒子の密度ρ。は平均2.69g/cm³、</u> 含水比wは平均 33.8%、土粒子の密度 ρ。は平均 含水比wは平均<u>38.6%</u>、土粒子の密度 ρ。は平均 含水比 w は平均 <u>25.7</u>%、土粒子の密度 ρ_sは平均

水比wは平均<u>26.8</u>%、土粒子の密度ρ_sは平均2.72g/cm³、

本について、三軸圧縮試験(CD条件、CUU条件及びUU条 牛)によるピーク強度及び残留強度の破壊応力円を第

変更前(2021.12.2 付補正)			変更後		
Lm層 (UU条件)			Lm層 (UU条件)		
$\tau = 0.061 + \sigma \cdot \tan 15.1^{\circ}$	(N/mm^2)		$\tau = 0.042 + \sigma \cdot \tan 19.7^{\circ}$	(N/mm^2)	
$\tau_r^2 = 0.073 \cdot \sigma$	(N/mm^2)	$(\sigma < 0.069 \text{ N/mm}^2)$	$\underline{\tau_r}^2 = 0.052 \cdot \sigma$	(N/mm^2)	
$\tau_{r} = 0.057 + \sigma \cdot \tan 11.4^{\circ}$	(N/mm^2)	$(\sigma \geq 0.069 \text{ N/mm}^2)$	$\tau_r = 0.040 + \sigma \cdot \tan 15.8^\circ$	(N/mm^2)	
Mu-S1層 (CD条件)			Mu-S1層 (CD条件)		
$\tau = 0.022 + \sigma \cdot \tan 36.9^{\circ}$	(N/mm^2)		$\tau = 0.021 + \sigma \cdot \tan 37.0^{\circ}$	(N/mm^2)	
$\tau_{r}^{2} = 0.070 \cdot \sigma_{r}$	(N/mm^2)	$(\sigma < 0.005 \text{ N/mm}^2)$	$\underline{\tau_r}^2 = 0.068 \cdot \sigma$	(N/mm^2)	
$\tau_{\rm r} = 0.016 + \sigma \cdot \tan 32.9^{\circ}$	(N/mm^2)	$(\sigma \geq 0.005 \text{ N/mm}^2)$	$\tau_r = 0.014 + \sigma \cdot \tan 33.0^\circ$	(N/mm^2)	
Mu-C層 (CUU条件)			Mu-C層 (CUU条件)		
$\tau = 0.164 + \sigma \cdot \tan 21.0^{\circ}$	(N/mm^2)		$\tau = 0.227 + \sigma \cdot \tan 16.6^{\circ}$	(N/mm^2)	
$\tau_{r}^{2} = 0.195 \cdot \sigma$	(N/mm^2)	$(\sigma < 0.155 \text{ N/mm}^2)$	$\tau_r^2 = 0.227 \cdot \sigma$	(N/mm^2)	
$\tau_{\rm r} = 0.138 + \sigma \cdot \tan 13.0^{\circ}$	(N/mm^2)	$(\sigma \geq 0.155 \text{ N/mm}^2)$	$\tau_{\rm r} = 0.179 + \sigma \cdot \tan 9.3^{\circ}$	(N/mm^2)	
Mu-S層 (CD条件)			Mu-S層 (CD条件)		
τ = 0.060 + $\sigma \cdot \tan 36.0^{\circ}$	(N/mm^2)		$\tau = 0.060 + \sigma \cdot \tan 36.0^{\circ}$	(N/mm^2)	
$\tau_{\rm r}^2 = 0.124 \cdot \sigma$	(N/mm^2)	$(\sigma < 0.003 \text{ N/mm}^2)$	$\tau_r^2 = 0.124 \cdot \sigma$	(N/mm^2)	
$\tau_{\rm r} = 0.018 + \sigma \cdot \tan 35.5^{\circ}$	(N/mm^2)	$(\sigma \ge 0.003 \text{ N/mm}^2)$	$\tau_{\rm r} = 0.018 + \sigma \cdot \tan 35.5^{\circ}$	(N/mm^2)	
Mu-S2層 (CD条件)			Mu-S2層 (CD条件)		
$\tau = 0.031 + \sigma \cdot \tan 38.8^{\circ}$	(N/mm^2)		$\tau = 0.040 + \sigma \cdot \tan 38.4^{\circ}$	(N/mm^2)	
$\tau_{r} = 0.000 + \sigma \cdot \tan 38.0^{\circ}$	(N/mm^2)		$\underline{\tau}_{r} = \sigma \cdot \tan 38.0^{\circ}$	(N/mm^2)	
Mm-Sg層 (CD条件)			Mm-Sg層 (CD条件)		
τ = 0.086 + $\sigma \cdot \tan 40.0^\circ$	(N/mm^2)		$\tau = 0.086 + \sigma \cdot \tan 40.0^{\circ}$	(N/mm^2)	
$\tau_{\rm r} = 0.003 + \sigma \cdot \tan 40.1^{\circ}$	(N/mm^2)		$\tau_{\rm r} = 0.003 + \sigma \cdot \tan 40.1^{\circ}$	(N/mm^2)	
Is-S₁層 (CUU条件)			Is-S1層 (CUU条件)		
$\tau = 0.388 + \sigma \cdot \tan 26.8^{\circ}$	(N/mm^2)		$\tau = 0.399 + \sigma \cdot \tan 27.7^{\circ}$	(N/mm^2)	
$\underline{\tau}_{\underline{r}^2} = 0.632 \cdot \sigma$	(N/mm^2)	$(\sigma < 0.440 \text{ N/mm}^2)$	$\underline{\tau}_{r}^{2} = 0.660 \cdot \sigma$	(N/mm^2)	
$\tau_r = 0.268 + \sigma \cdot \tan 30.5^\circ$	(N/mm^2)	$(\sigma \geq 0.440 \text{ N/mm}^2)$	$\tau_r = 0.268 + \sigma \cdot \tan 27.7^\circ$	(N/mm^2)	
Is-C層 (CUU条件)			Is-C層 (CUU条件)		
$\tau = 0.524$	(N/mm^2)		$\tau = 0.543$	(N/mm^2)	
$\underline{\tau}_{\underline{r}}^2 = 0.396 \cdot \sigma$	(N/mm^2)	$(\sigma < 0.505 \text{ N/mm}^2)$	$\underline{\tau}_{r}^{2} = 0.409 \cdot \sigma$	(N/mm^2)	
$\tau_{r} = 0.447$	(N/mm^2)	$(\sigma \geq 0.505 \text{ N/mm}^2)$	$\tau_r = 0.464$	(N/mm^2)	
Is-S ₂ U層 (CUU条件)			Is-S2U層 (CUU条件)		
τ = 0.656 + $\sigma \cdot \tan 13.7^{\circ}$	(N/mm^2)		$\tau = 0.725 + \sigma \cdot \tan 12.4^{\circ}$	(N/mm^2)	
$\tau_r^2 = 0.938 \cdot \sigma$	(N/mm^2)	$(\sigma < 0.712 \text{ N/mm}^2)$	$\tau_r^2 = 1.01 \cdot \sigma$	(N/mm^2)	

$$(\sigma \leq \underline{0.066}$$
N/mm²)
 $(\sigma \geq \underline{0.066}$ N/mm²)

(
$$\sigma \leq \underline{0.004}$$
N/mm²)
($\sigma \geq \underline{0.004}$ N/mm²)

$$(\sigma < 0.196 \text{N/mm}^2)$$

 $(\sigma \ge 0.196 \text{N/mm}^2)$

$$(\sigma < 0.003 \text{N/mm}^2)$$

 $(\sigma \ge 0.003 \text{N/mm}^2)$

$$(\sigma \leq \underline{0.228}$$
N/mm²)
 $(\sigma \geq \underline{0.228}$ N/mm²)

$$(\sigma < 0.527 \text{N/mm}^2)$$

 $(\sigma \ge 0.527 \text{N/mm}^2)$

$$(\sigma < 0.787 \text{N/mm}^2)$$

変更前	(2021.12.2付補		変更後	
$\tau_{\rm r} = 0.637 + \sigma \cdot \tan 14.2^{\circ}$	(N/mm^2)	$(\sigma \geq \underline{0.712} \text{ N/mm}^2)$	$\tau_{\rm r} = 0.719 + \sigma \cdot \tan 12.4^{\circ}$	(N/mm^2)
Is-Sc層 (CUU条件)			Is-Sc層 (CUU条件)	
$\tau = 0.601 + \sigma \cdot \tan 9.5^{\circ}$	(N/mm^2)		$\tau = 0.559 + \sigma \cdot \tan 10.0^{\circ}$	(N/mm^2)
$\underline{\tau}_{x}^{2} = 0.715 \cdot \sigma$	(N/mm^2)	$(\sigma < 0.749 \text{ N/mm}^2)$	$\tau_{\rm r}^2 = 0.664 \cdot \sigma$	(N/mm^2)
$\tau_{\rm r} = 0.620 + \sigma \cdot \tan 8.5^{\circ}$	(N/mm^2)	$(\sigma \geq \underline{0.749} \text{ N/mm}^2)$	$\tau_{\rm r} = 0.559 + \sigma \cdot \tan 8.8^{\circ}$	(N/mm^2)
Is-S ₂ L層 (CUU条件)			Is-S ₂ L層 (CUU条件)	
$\tau = 0.654 + \sigma \cdot \tan 19.3^{\circ}$	(N/mm^2)		$\tau = 0.631 + \sigma \cdot \tan 20.0^{\circ}$	(N/mm^2)
$\tau_{\underline{r}}^2 = 1.03 \cdot \sigma$	(N/mm^2)	($\sigma < \underline{0.815}$ N/mm ²)	$\underline{\tau_{r}}^{2} = 1.02 \cdot \sigma$	(N/mm^2)
$\tau_{\rm r} = 0.618 + \sigma \cdot \tan 20.1^{\circ}$	(N/mm^2)	$(\sigma \geq 0.815 \text{ N/mm}^2)$	$\tau_{\rm r} = 0.611 + \sigma \cdot \tan 20.0^{\circ}$	(N/mm^2)
Is-S ₃ 層 (CUU条件)			Is-S₃層 (CUU条件)	
$\tau = 0.777 + \sigma \cdot \tan 17.5^{\circ}$	(N/mm^2)		$\tau = 0.888 + \sigma \cdot \tan 16.9^{\circ}$	(N/mm^2)
$\tau_r^2 = 1.12 \cdot \sigma$	(N/mm^2)	$(\sigma < \underline{0.910} \text{ N/mm}^2)$	$\tau_r^2 = 1.27 \cdot \sigma$	(N/mm^2)
$\tau_{\rm r} = 0.691 + \sigma \cdot \tan 19.3^{\circ}$	(N/mm^2)	$(\sigma \geq \underline{0.910} \text{ N/mm}^2)$	$\tau_{\rm r} = 0.768 + \sigma \cdot \tan 16.9^{\circ}$	(N/mm^2)
 c. 静弾性係数 三軸圧縮試験(CD条件、CUU条件 結果を第3.5.3表(2)に示す。 	⁼ 及び UU 条件))	こより静弾性係数 E50 を求めた。静弾性係数 E50 の	 c. 静弾性係数 三軸圧縮試験(CD条件、CUU条件 結果を第3.5.3表(2)に示す。 	牛及び UU 条件
UU 条件の静弾性係数 E ₅₀ は Lm 層で平均 <u>10.9</u> N/mm ² である。			UU 条件の静弾性係数 E50 は Lm 層	で平均 <u>9.38</u> N/
<u>CUU 条件の静弾性係数 E₅o</u> は Mu-	C 層で平均 124M	N/mm ² 、Is-S ₁ 層で平均 60.2N/mm ² 、Is-C 層で平均	<u>CD 条件の静弾性係数 E50 は埋戻</u>	〔土で平均 25.
<u>264N/mm²、Is-S₂U 層で平均 114N/mm²</u>	² 、Is-Sc 層で平均	<u>勾228N/mm²、Is-S₂L層、Is-Sg層で平均149N/mm²、</u>	<u>59.9N/mm²、Mu-S₂層で平均 80.6N/m</u>	nm²、Mm-Sg層`
<u>Is-S₃層で平均 194N/mm²である。</u>			<u>CUU 条件の静弾性係数 E₅₀は Mu-</u>	-C 層で平均 1
<u>CD 条件の静弾性係数 E50 は埋戻</u>	<u>土で平均 25.3N</u>	/mm ² 、Mu-S <u>1</u> 層で平均 37.2N/mm ² 、Mu-S 層で平均	<u>279N/mm²、Is-S₂U 層で平均 109N/m</u>	m²、Is-Sc 層て
<u>59.9N/mm²、Mu-S₂層で平均 75.1N/m</u>	m ² 、Mm-Sg層で ³	平均188N/mm ² である <u>。</u>	<u>で平均176N/mm²である。</u>	
d. 静ポアソン比			d. 静ポアソン比	
三軸圧縮試験(CD条件、CUU条件)	及びUU条件)実施	施時に静ポアソン比の測定を実施した。静ポアソ	三軸圧縮試験(CD条件、CUU条件	及びUU条件)
ン比の結果を第3.5.3表(2)に示す。			ン比の結果を第3.5.3表(2)に示す。)
静ポアソン比νの平均値は、埋房	戻土で0.23、Lm層	膏で <u>0.28</u> 、Mu−S₁層で0.26、Mu−C層で <u>0.50</u> 、Mu−S層	静ポアソン比νの平均値は、埋厚	戻土で0.23、L
で0.28、Mu-S₂層で0.26、Mm-Sg層で	*0.26、Is-S ₁ 層で	で <u>0.48</u> 、Is-C層で <u>0.44</u> 、Is-S₂U層で <u>0.44</u> 、Is-Sc層	で0.28、Mu-S2層で0.26、Mm-Sg層で	℃0.26、Is-S ₁ ≸
で <u>0.45</u> 、Is-S ₂ L層 <u>、Is-Sg層</u> で0.48、Is-S ₃ 層で <u>0.48</u> である。			で <u>0.48</u> 、Is-S ₂ L層で0.48、Is-S ₃ 層	で <u>0. 49</u> である。
e. 動的変形特性			e. 動的変形特性	
ボーリングコアから採取した <u>141</u>	個の供試体につ	いて、動的変形特性を求める目的で、繰返し三軸	ボーリングコアから採取した <u>70</u>	個の供試体に~

ずみγの関係並びに減衰率hとせん断ひずみγの関係を第3.5.25図(1)から第3.5.25図(13)に示す。 正規化動せん断弾性係数G/Go及び減衰率hとせん断ひずみγの関係は次式で近似される。

圧縮試験又は繰返し中空ねじり試験を実施した。この結果の正規化せん断弾性係数G/Goとせん断ひ

埋戻土

 $G/G_0 = 1/(1 + 15.3\gamma^{0.935})$ $h = 22.5\gamma/(\gamma + 0.0734) + 0.171$ 埋戻土(B層)

 $G/G_0 = 1/(1 + 15.3\gamma^{0.935})$

 $h = 22.5\gamma/(\gamma + 0.0734) + 0.171$

($\sigma \geq 0.787 \text{N/mm}^2$)

 $(\sigma < \underline{0.658}$ N/mm²) $(\sigma \ge \underline{0.658}$ N/mm²)

($\sigma \leq \underline{0.793}$ N/mm²) ($\sigma \geq \underline{0.793}$ N/mm²)

 $(\sigma \leq \underline{0.812}$ N/mm²) $(\sigma \geq \underline{0.812}$ N/mm²)

‡)により静弾性係数 E50 を求めた。静弾性係数 E50 の

 $/mm^2$ である。

<u>3N/mm²、Mu-S₁層で平均 45.0N/mm²、Mu-S 層で平均</u> で平均 188N/mm²である。

<u>.36N/mm²、Is-S₁層で平均 55.9N/mm²、Is-C 層で平均</u> で平均 251N/mm²、Is-S<u>2</u>L 層で平均 162N/mm²、Is-S₃層

実施時に静ポアソン比の測定を実施した。静ポアソ

m層で<u>0.32</u>、Mu−S₁層で0.26、Mu−C層で<u>0.497</u>、Mu−S層 層で<u>0.49</u>、Is−C層で<u>0.49</u>、Is−S₂U層で<u>0.48</u>、Is−Sc層

ボーリングコアから採取した<u>70</u>個の供試体について、動的変形特性を求める目的で、繰返し三軸 圧縮試験又は繰返し中空ねじり試験を実施した。この結果の正規化せん断弾性係数G/G₀とせん断ひ ずみγの関係並びに減衰率hとせん断ひずみγの関係を第3.5.25図(1)から第3.5.25図(13)に示す。 正規化動せん断弾性係数G/G₀及び減衰率hとせん断ひずみγの関係は次式で近似される。

変更前(2021.12.2 付補正)	変更後
Lm層 $\frac{G/G_0 = 1/(1 + 5.35\gamma^{0.734})}{h = 11.9\gamma/(\gamma + 0.117) + 1.82}$	Lm層 $\frac{G/G_0 = 1/(1 + 4.56\gamma^{0.711})}{h = 8.80\gamma/(\gamma + 0.0579) + 1.70}$
Mu-S ₁ 層 $\frac{G/G_0 = 1/(1 + 14.1\gamma^{0.819})}{h = 19.1\gamma/(\gamma + 0.0527) + 0.490}$	Mu-S ₁ 層 $\frac{G/G_0 = 1/(1 + 13.6\gamma^{0.873})}{h = 20.7\gamma/(\gamma + 0.0758) + 0.180}$
<u>Mu-S</u> 層 <u>G/G₀ = 1/(1 + 6.20$\gamma^{0.830}$)</u> <u>h = 20.4γ/(γ + 0.141)</u>	<u>Mu-C</u> 層 <u>$G/G_0 = 1/(1 + 4.34\gamma^{0.791})$</u> <u>$h = 10.1\gamma/(\gamma + 0.148) + 1.82$</u>
<u>Mu-C</u> 層 <u>G/G₀ = 1/(1 + 4.00$\gamma^{0.771}$)</u> <u>h = 9.94γ/(γ + 0.171) + 1.95</u>	<u>Mu-S</u> 層 <u>$G/G_0 = 1/(1 + 6.20\gamma^{0.830})$</u> <u>$h = 20.4\gamma/(\gamma + 0.141) + 0.004$</u>
Mu-S ₂ 層 $\frac{G/G_0 = 1/(1 + 8.24\gamma^{0.858})}{h = 25.7\gamma/(\gamma + 0.164) + 0.667}$	Mu-S ₂ 層 $\frac{G/G_0 = 1/(1 + 6.86\gamma^{0.827})}{h = 22.8\gamma/(\gamma + 0.130) + 0.472}$
Mm-Sg層 $\frac{G/G_0 = 1/(1 + 7.14\gamma^{0.815})}{h = 13.5\gamma/(\gamma + 0.0429) + 1.20}$	Mm-Sg層 $\frac{G/G_0 = 1/(1 + 6.69\gamma^{0.801})}{h = 13.2\gamma/(\gamma + 0.0512) + 1.72}$
Is-S ₁ 層 $\frac{G/G_0 = 1/(1 + 6.42\gamma^{0.889})}{h = 23.6\gamma/(\gamma + 0.176) + 0.353}$	Is-S ₁ 層 $\frac{G/G_0 = 1/(1 + 5.08\gamma^{0.817})}{h = 23.7\gamma/(\gamma + 0.203) + 0.374}$
Is-C層 $\frac{G/G_0 = 1/(1 + 5.15\gamma^{0.921})}{h = 18.6\gamma/(\gamma + 0.287) + 1.05}$	Is-C層 $\frac{G/G_0 = 1/(1 + 5.21\gamma^{0.913})}{h = 13.6\gamma/(\gamma + 0.149) + 1.19}$
Is-S ₂ U層 $\frac{G/G_0 = 1/(1 + 5.34\gamma^{0.966})}{h = 22.6\gamma/(\gamma + 0.297) + 0.349}$	Is-S ₂ U層 $\frac{G/G_0 = 1/(1 + 3.79\gamma^{0.937})}{h = 24.0\gamma/(\gamma + 0.501) + 0.892}$
Is-Sc層 <u>$G/G_0 = 1/(1 + 4.14\gamma^{0.876})$</u>	Is-Sc層 <u>$G/G_0 = 1/(1 + 3.73\gamma^{0.918})$</u>

 $h = 23.3\gamma/(\gamma + 0.502) + 0.969$

 $h = 17.4\gamma/(\gamma + 0.277) + 0.877$

変更前(2021.12.2 付補正)	変更後
Is-S2L層	Is-S2L層
$\underline{G/G_0} = 1/(1+5.20\gamma^{0.946})$	$\underline{G/G_0} = \frac{1}{(1+5.30\gamma^{1.04})}$
$h = 21.2\gamma/(\gamma + 0.311) + 0.583$	$h = 28.1\gamma/(\gamma + 0.453) + 0.803$
Is-S₂層	Is-S。層
$G/G = 1/(1 + 5.44\gamma^{0.965})$	$G/G = 1/(1 + 4.72\gamma^{1.00})$
$\frac{b}{h} = \frac{22.4\gamma}{(\gamma + 0.312) + 0.412}$	$\frac{h}{h} = 29.6\gamma/(\gamma + 0.517) + 0.740$
	(3) 改良地盤の試験結果
	a. 物理特性
	比eの試験結果を第3.5.2表に示す。改良地盤の
	<u></u> b. 引張強さ
	である。ただし、引張強さは「建築物のための目
	考に保守的に0.3N/mm ² を設定する。
	c. 三軸圧縮試験結果(強度特性)
	三軸圧縮試験(UU条件)によるピーク強度及び
	改良地盤 (UU条件)
	$\underline{\tau = 1.12 + \sigma \cdot \tan 21.0^{\circ} \qquad (N/mm^2)}$
	$\underline{\tau_r^2 = 1.10 \sigma} \tag{N/mm^2}$
	$\underline{\tau_r} = 0.468 + \sigma \cdot \tan 21.0^\circ \qquad (N/mm^2)$
	d. 静弹性係数
	三軸圧縮試験から得られた静弾性係数E50を第3
	<u>である。</u>
	<u>e. 静ポアソン比</u>
	一軸圧縮試験から得られた静ポアソン比を第3
	<u> </u>
	<u>f.</u> 動的変形特性
	繰返し三軸試験(変形特性)の結果を第3.5.2
	<u>率hとせん断ひずみγの関係は次式で近似される</u>
	改良地盤
	$\underline{G/G}_0 = 1/(1 + 3.44 \gamma^{0.998})$
	$h = 12.5 \gamma / (\gamma + 0.393) + 1.40$
3.5.2.3 原位置試験結果	3.5.2.3 原位置試験結果
(1) PS検層による弾性波速度	(1) PS検層による弾性波速度
	添 6-3-13

した。湿潤密度ρ_t、含水比w、土粒子の密度ρ_{s、}間隙 湿潤密度ρ_tは平均2.05g/cm³、含水比wは平均23.8%、 均0.65である。

内再構成試料の供試体による最小値は、0.438N/mm² 改良地盤の設計及び品質管理指針」(2018)⁽¹²⁴⁾を参

び残留強度の破壊応力円を第3.5.27図に示す。

$\frac{(\sigma < 0.314 \text{N/mm}^2)}{(\sigma \ge 0.314 \text{N/mm}^2)}$

3.5.3表(2)に示す。静弾性係数E50は、平均1,720N/mm²

3.5.3表(2)に示す。静ポアソン比は、平均0.18であ

28図に示す。正規化動せん断弾性係数G/G₀及び減衰 5。

変更前(2021.12.2 付補正)	変更後
<u>各孔で</u> 実施したPS検層結果を第3.5.4表(1)から第3.5.4表(<u>7</u>)及び第3.5. <u>26</u> 図(1)から第3.5. <u>26</u> 図	実施したPS検層結果を第3.5.4表(1)から第3.5.4
(7)に示す。	す。
a. 動せん断弾性係数	a. 動せん断弾性係数
PS検層によるS波速度Vsと物理試験より得られた湿潤密度ρtを用いて、次式により初期動せん断	PS検層によるS波速度Vsと物理試験より得られた
弾性係数G ₀ を求めた。	弾性係数G ₀ を求めた。
$G_0 = \rho_t \times V s^2$	$G_0 = \rho_t \times V S^2$
初期動せん断弾性係数G ₀ の結果を第3.5.5表に示す。	初期動せん断弾性係数G ₀ の結果を第3.5.5表に示
(2) 標準貫入試験	(2) 標準貫入試験
原子炉施設設置位置付近のボーリング孔 <u>42</u> 孔で標準貫入試験を実施した。標準貫入試験の結果を	原子炉施設設置位置付近のボーリング孔 <u>22</u> 孔で標
第3.5.13図(1)から第3.5.13図(3)に示す。	3.5.13図(1)から第3.5.13図(3)に示す。
3.6 原子炉施設の基礎地盤及び周辺斜面の安定性	3.6 原子炉施設の基礎地盤及び周辺斜面の安定性
耐震設計上の重要度分類Sクラスの機器・配管系及びそれらを支持する建物・構築物(耐震重要施設)が設	耐震設計上の重要度分類Sクラスの機器・配管系及びそれ
置される基礎地盤について、十分な安定性を有することを確認する。	置される基礎地盤について、十分な安定性を有することを確
対象施設は原子炉建物及び原子炉附属建物、主冷却機建物とし、基礎地盤の地震時の支持性能については、	対象施設は原子炉建物及び原子炉附属建物、主冷却機建物
基礎地盤のすべり、基礎地盤の支持力及び基礎底面の傾斜を評価する。主冷却機建物については、 <u>基礎地盤の</u>	基礎地盤のすべり、基礎地盤の支持力及び基礎底面の傾斜を
<u>すべりに対して安定性を確保するため、抑止杭による補強を行う。</u>	改良を行い、基礎地盤のすべりに対して安定性を確保する。
また、周辺地盤の変状による施設への影響評価、地殻変動による基礎地盤の変形の影響評価及び周辺斜面	また、周辺地盤の変状による施設への影響評価、地殻変動
の安定性評価を行い、対象施設の安全機能に重大な影響を及ぼさないことを確認する。	安定性評価を行い、対象施設の安全機能に重大な影響を及ほ
3.6.1 地震力に対する基礎地盤の安定性評価	3.6.1 地震力に対する基礎地盤の安定性評価
3.6.1.1 評価方法	3.6.1.1 評価方法
(1) 解析手法	(1) 解析手法
基礎地盤のすべり、基礎地盤の支持力及び基礎底面の傾斜に関する安定性について、2次元有限要素	基礎地盤のすべり、基礎地盤の支持力及び基礎底面
法による地震応答解析により検討した。	法による地震応答解析により検討した。
地震応答解析は、2次元有限要素モデルを用いた周波数応答解析とし、等価線形化法により動せん断	地震応答解析は、2次元有限要素モデルを用いた周辺
弾性係数及び減衰率のひずみ依存性を考慮する。	弾性係数及び減衰率のひずみ依存性を考慮する。
地震時の応力は、静的有限要素法解析による常時応力及び地震応答解析による地震時増分応力を重	地震時の応力は、静的有限要素法解析による常時応知
ね合わせることにより求める。常時応力は建物の荷重及び地盤の初期応力を考慮して求め、地震時増分	合わせることにより求める。常時応力は建物の荷重及
応力は水平地震動及び鉛直地震動を同時加振した場合の応答を考慮して求める。基礎地盤の安定性評	力は水平地震動及び鉛直地震動を同時加振した場合の
価フローを第3.6.1図に示す。	ローを第3.6.1図に示す。
(2) 解析条件	(2) 解析条件
a. 解析断面	a. 解析断面
解析の対象とする断面は、基礎地盤の地質構造及び対象施設の配置を考慮し、対象施設を中心に直	解析の対象とする断面は、基礎地盤の地質構造及で
交する3断面A-A'、B-B'及びC-C'とする。解析断面位置図を第3.6.2図に示す。	交する3断面A-A'、B-B'及びC-C'とする
b. 解析モデル	b. 解析モデル
有限要素法解析に用いる解析用地盤モデルは、第3.5.13図(1) <u>及び第3.5.13図(2)及び</u> 第3.5.13図	有限要素法解析に用いる解析用地盤モデルは、第
(3)に示す鉛直地質断面図に基づき作成する。また、建設時の掘削範囲については <u>、</u> 埋戻土として、解	面図に基づき作成する。また、建設時の掘削範囲に·
析用地盤モデルに反映する。解析用建物モデルは、多質点系モデルに基づき作成する。解析モデルを	範囲については改良地盤として解析用地盤モデルに
第3.6.3図(1)、第3.6.3図(2)及び第3.6.3図(3)に示す。	に基づき作成する。解析モデルを第3.6.3図(1) <u>から</u>
	に示す。

4表(2)及び第3.5.29図(1)から第3.5.29図(7)に示

た湿潤密度 ρ_tを用いて、次式により初期動せん断

示す。

標準貫入試験を実施した。標準貫入試験の結果を第

れらを支持する建物・構築物(耐震重要施設)が設 確認する。

物とし、基礎地盤の地震時の支持性能については、 を評価する。主冷却機建物については、<u>周辺地盤の</u>

動による基礎地盤の変形の影響評価及び周辺斜面の ぼさないことを確認する。

面の傾斜に関する安定性について、2次元有限要素

周波数応答解析とし、等価線形化法により動せん断

芯力及び地震応答解析による地震時増分応力を重ね 及び地盤の初期応力を考慮して求め、地震時増分応 の応答を考慮して求める。基礎地盤の安定性評価フ

るび対象施設の配置を考慮し、対象施設を中心に直る。解析断面位置図を第3.6.2図に示す。

第3. 5. 13図(1)<u>から</u>第3. 5. 13図(3)に示す鉛直地質断 こついては埋戻土として、<u>主冷却機建物の地盤改良</u> こ反映する。解析用建物モデルは、多質点系モデル 5.第3. 6. 3図(3)に<u>、改良地盤の範囲を第3. 6. 3図(4)</u>

変更前(2021.12.2 付補正)	変更後
常時応力を算定する静的解析における境界条件は、モデル下端を固定境界、側方を鉛直ローラー境	常時応力を算定する静的解析における境界条件は
界とする。また、動的解析における境界条件は、モデル下端を粘性境界、側方をエネルギー伝達境界	界とする。また、動的解析における境界条件は、モ
とする。境界条件を第3.6.4図に示す。	とする。境界条件を第3.6.4図に示す。
c. 解析用物性值	c. 解析用物性值
解析用物性値は、地盤調査結果に基づき設定する。また、地盤強度のばらつき(平均値-1.0×標準	解析用物性値は、地盤調査結果に基づき設定する
偏差(σ))を考慮した検討も実施する。 <u>解析用物性値を第3.6.1表(1)及び第3.6.1表(2)に示す。</u>	<u>に示す。</u> また、地盤強度のばらつき(平均値-1.0×
	良地盤については、試験施工に基づいた各種試験か
	<u>により所定の強度が確保されていることを施工時の</u>
d. 解析用地下水位	d. 解析用地下水位
解析用地下水位は、第3.5.14図の地下水位測定結果に基づき設定する。解析用地下水位を第3.6.3図	地盤の安定性評価における解析用地下水位は、係
(1)、第3.6.3図(2)及び第3.6.3図(3)に示す。なお、地下水位の変動を考慮し、解析用地下水位を地表	
面に設定した評価も行う。	
e. 入力地震動	e. 入力地震動
入力地震動は、解放基盤表面で定義される基準地震動を第3.6.3図(1) <u>、第3.6.3図(2)及び</u> 第3.6.3図	入力地震動は、解放基盤表面で定義される基準地
(3)に示す解析モデルの下端に入力する。なお、応答スペクトル手法に基づく基準地震動(Ss-D及び	モデルの下端に入力する。なお、応答スペクトル手
Ss-6)については水平地震動及び鉛直地震動の位相反転を考慮する。	は水平地震動及び鉛直地震動の位相反転を考慮する
3.6.1.2 評価内容	3.6.1.2 評価内容
(1) 基礎地盤のすべり	(1) 基礎地盤のすべり
すべり安全率は、想定すべり線上のせん断抵抗力の和を想定すべり線上のせん断力の和で除して求	すべり安全率は、想定すべり線上のせん断抵抗力
め、すべり安全率が1.5を上回ることを確認する。想定すべり線は建物の基礎底面を通り、地表面へ立	め、すべり安全率が1.5を上回ることを確認する。想
ち上がる連続したすべり線とする。地表面へ立ち上がるすべり線は局所安全率、応力状態及び受働崩壊	ち上がる連続したすべり線とする。地表面へ立ち上な
角を踏まえて設定する。	角を踏まえて設定する。
すべり安全率算定に用いる地盤強度は、せん断強度に達した要素では残留強度を用いる。また、引張	すべり安全率算定に用いる地盤強度は、せん断強
破壊が生じる要素ではすべり線の垂直応力が圧縮の場合は残留強度、引張の場合は強度をゼロとして	破壊が生じる要素ではすべり線の垂直応力が圧縮の
すべり安全率を算定する。	べり安全率を算定する。
さらに、最小すべり安全率を示すケースについて、地盤強度のばらつきを考慮した評価 <u>、解析用地下</u>	さらに、最小すべり安全率を示すケースについて、
水位を地表面に設定した評価を行う。	
(2) 基礎地盤の支持力	(2) 基礎地盤の支持力
地震時における基礎底面の接地圧が評価基準値(支持力)を下回ることを確認する。	地震時における基礎底面の接地圧が評価基準値(
(3) 基礎底面の傾斜	(3) 基礎底面の傾斜
地震時における基礎底面の傾斜が評価の目安である1/2,000を下回ることを確認する。	地震時における基礎底面の傾斜が評価の目安であ
3.6.1.3 評価結果	3.6.1.3 評価結果
(1) 基礎地盤のすべり	 (1) 基礎地盤のすべり
原子炉建物及び原子炉附属建物の最小すべり安全率はいずれも評価基準値1.5を上回ることから、基	<u> 想定すべり線におけるすべり安全率を第3.6.2表(</u>
礎地盤はすべりに対して十分な安定性を有している。	原子炉建物及び原子炉附属建物の最小すべり安全
主冷却機建物の最小すべり安全率を示すケースについて、地盤強度のばらつきを考慮した場合、解析	地盤強度のばらつきを考慮した場合は1.8であり、い
用地下水位を地表面に設定した場合のいずれも評価基準値1.5を上回るように抑止杭による補強を行	はすべりに対して十分な安定性を有している。
い、すべりに対して十分な安定性を確保する。	主冷却機建物の最小すべり安全率は2.1、最小す~
	へたた老康」た相人は1.7万たり、いどかく 河圧甘滞

は、モデル下端を固定境界、側方を鉛直ローラー境 モデル下端を粘性境界、側方をエネルギー伝達境界

る。<u>解析用物性値を第3.6.1表(1)及び第3.6.1表(2)</u> ×標準偏差(σ))を考慮した検討も実施する。<u>改</u> いら強度を設定しており、3.8章に示す品質管理方針 の品質管理で確認する。

呆守的な評価となるよう地表面に設定する。

地震動を第3.6.3図(1)<u>から</u>第3.6.3図(3)に示す解析 手法に基づく基準地震動(Ss-D及びSs-6)について る。

りの和を想定すべり線上のせん断力の和で除して求 想定すべり線は建物の基礎底面を通り、地表面へ立 がるすべり線は局所安全率、応力状態及び受働崩壊

度に達した要素では残留強度を用いる。また、引張 場合は残留強度、引張の場合は強度をゼロとしてす

、地盤強度のばらつきを考慮した評価を行う。

(支持力)を下回ることを確認する。

る1/2,000を下回ることを確認する。

(1)から第3.6.2表(3)に示す。 率は2.0、最小すべり安全率を示すケースについて、 いずれも評価基準値1.5を上回ることから、基礎地盤

<u>主冷却機建物の最小すべり安全率は2.1、最小すべり安全率を示すケースについて、地盤強度のばら</u> つきを考慮した場合は1.7であり、いずれも評価基準値1.5を上回ることから、基礎地盤はすべりに対し

(2) 基礎地盤の支持力

評価基準値は、対象施設の基礎地盤(東茨城層群Is-S₁、M1段丘堆積物Mu-S₂)における平板載荷試験 の結果から、原子炉建物及び原子炉附属建物で2.94N/mm²、主冷却機建物で2.69N/mm²とする。地震時に おける基礎底面の最大接地圧は、評価基準値を下回ることから、基礎地盤は十分な支持性能を有してい る。

(3) 基礎底面の傾斜

基礎底面の最大傾斜は、原子炉建物及び原子炉附属建物、主冷却機建物で評価の目安である1/2,000 を下回ることから、施設の安全機能に支障を与えるものではない。

3.6.2 液状化に対する安全性

「建築基礎構造設計指針」⁽¹²²⁾によると、液状化判定を行う必要がある土層は地表面から20m程度以浅の 飽和土層で、土の種類は「沖積層で、細粒分含有率が35%以下の土層」、「粘土分含有率が10%以下又は 塑性指数が15%以下の埋立地盤あるいは盛土地盤」又は「細粒土を含む礫や透水性の低い土層に囲まれた 礫」とされている。

対象施設基礎地盤における飽和土層は地表面から32m以深であり、原子炉建物及び原子炉附属建物の支 持地盤は中部更新統の東茨城層群(砂質土)、主冷却機建物の支持地盤は上部更新統のM1段丘堆積物(砂 質土)であるため、液状化のおそれはなく、施設の安全機能に支障を与えるものではない。

3.6.3 地震発生に伴う周辺地盤の変状及び地殻変動による影響評価

3.6.3.1 周辺地盤の変状による施設への影響評価

対象施設は十分な支持性能を有する地盤に支持されており、対象施設以外に耐震重要施設はない ことから、不等沈下、液状化や揺すり込み沈下等の影響はなく、周辺地盤の変状により施設の安全機 能が損なわれるおそれはない。

3.6.3.2 地殻変動による基礎地盤の変形の影響評価

敷地には将来活動する可能性のある断層等は認められないことから、地震活動に伴い生じる地殻 変動による基礎地盤の変形は小さいと考えられるため、施設の安全機能に支障を与えるものではな V)

て十分な安定性を有している。

(2) 基礎地盤の支持力

評価基準値は、対象施設の基礎地盤(東茨城層群Is-S₁、M1段丘堆積物Mu-S₂)における平板載荷試験 の最大荷重から設定し、原子炉建物及び原子炉附属建物で2.94N/mm²、主冷却機建物で2.69N/mm²とする。 地震時における基礎底面の接地圧は、原子炉建物及び原子炉附属建物で最大1.14N/mm²、主冷却機建物 で最大0.62N/mm²であり、評価基準値を下回ることから、基礎地盤は十分な支持性能を有している。 (3) 基礎底面の傾斜

変更後

基礎底面両端の鉛直方向の相対変位・傾斜を第3.6.3表に示す。基礎底面の最大傾斜は、原子炉建物 及び原子炉附属建物で1/2,370、主冷却機建物で1/7,600であり、評価の目安である1/2,000を下回るこ とから、施設の安全機能に支障を与えるものではない。

3.6.2 液状化に対する安全性

「建築基礎構造設計指針」⁽¹²²⁾によると、液状化判定を行う必要がある土層は地表面から20m程度以浅の 128日本1日で、土の種類は「沖積層で、細粒分含有率が35%以下の土層」、「粘土分含有率が10%以下又は塑 性指数が15%以下の埋立地盤あるいは盛土地盤」又は「細粒土を含む礫や透水性の低い土層に囲まれた礫」 とされている。

対象施設基礎地盤における飽和土層は地表面から32m以深に存在する。原子炉建物及び原子炉附属建物 の支持地盤は地表面から31.8mに位置する第四系更新統であり、主冷却機建物の支持地盤は地表面から20m に位置する不飽和土層(第四系更新統)である。いずれも液状化判定の対象土層に該当しないため、対象 施設の支持地盤に液状化のおそれはなく、施設の安全機能に支障を与えるものではない。

3.6.3 地震発生に伴う周辺地盤の変状及び地殻変動による影響評価 3.6.3.1 周辺地盤の変状による施設への影響評価

> 原子炉建物及び原子炉附属建物は、十分な支持性能を有する地盤に支持されている。主冷却機建物 は、改良地盤により基礎地盤のすべりを防止する。また、十分な支持性能を有する地盤に支持されて いる。以上のことから、対象施設が周辺地盤の不等沈下、液状化、揺すり込み沈下等による影響を受 けるおそれはない。

3.6.3.2 地殻変動による基礎地盤の変形の影響評価

敷地には将来活動する可能性のある断層等は認められないことから、地震活動に伴い生じる地殻変 動による基礎地盤の変形は小さいと考えられるが、「5. 地震」における地震動評価を踏まえ、敷地周 辺に想定される断層のうち、すべり量が大きく、かつ、すべり域が敷地に近い「2011年東北地方太平 洋沖型地震」の強震動生成域 (SMGA) 位置の不確かさを考慮したモデルについて地殻変動による基礎 底面の傾斜を算出し、施設への影響評価を行った。 地殻変動による基礎底面の傾斜については、食い違い弾性論に基づき、0kada(1992)⁽¹²³⁾の手法に よって得られる地殻変動量より算出した。 地殻変動による基礎底面の最大傾斜は1/17,000であり、さらに基準地震動による基礎底面の傾斜と の重畳を考慮した場合の最大傾斜は、原子炉建物及び原子炉附属建物で1/2.080、主冷却機建物で 1/5,200であり、評価基準値の目安である1/2,000を下回ることから、施設の安全機能に支障を与える ものではない。

変更前(2021.12.2 付補正)	変更後
3.6.4 周辺斜面の安定性評価	3.6.4 周辺斜面の安定性評価
(省略)	(変更なし)
3.7 地質調査に関する実証性	3.7 地質調査に関する実証性
(省略)	(変更なし)
	 3.8 改良地盤の品質確認 基礎地盤の安定性評価に用いる改良地盤については、対施する。 主冷却機建物のすべり安全率の評価において改良地盤(実施していることから、改良地盤の品質管理では、改良地盤の範囲を第3.6.3図(4)に、改良地盤の確認項地盤改良の工法は、深層混合処理工法(高圧噴射撹拌工品質管理に係る詳細な記載がされている「建築物のための適用する。なお、その他の基準^{(125)~(128)}についても適宜参用する。なお、その他の基準^{(125)~(128)}についても適宜参用する。なお、その他の基準^{(125)~(128)}についても適宜参用する。なお、その他の基準^{(125)~(128)}についても適宜参加
	品質確認試験の頻度は、各基準の目安を満足するように
3.8 参考文献 (1)~(121) (省略)	3. <u>9</u> 参考文献 (1)~(121)(変更なし)
(122) <u>一般</u> 社団法人日本建築学会、建築基礎構造設計指針、2001.	 (122) 社団法人日本建築学会、建築基礎構造設計指針、2 (123) Yoshimitsu Okada. Internal deformation due y Bulletin of the Seismological Society of Ameri (124) 一般財団法人日本建築センター、2018 年度版 建築 ント系固化材を用いた深層・浅層混合処理工法、2 (125) 社団法人日本建築学会、建築基礎設計のための地盤 (126) 社団法人日本電気協会、乾式キャスクを用いる使 術規程、2009. (127) 財団法人土木研究センター、陸上工事における済 2004. (128) 一般財団法人沿岸技術研究センター、港湾・空港に

施工において改良地盤の品質確認を以下のとおり実

の範囲及び強度を設定し、基礎地盤の安定性評価を 盤の範囲及び強度が基準値を満足することを確認す 質目及び基準値を第3.8.1表に示す。

<u>二法)とし、品質確認準拠基準は高圧噴射撹拌工法の</u> D改良地盤の設計及び品質管理指針」(2018)⁽¹²⁴⁾を 送考とする。

:設定する。改良地盤の試験頻度を第3.8.2表に示す。

001.

to shear and tensile faults in a half-space, ca, vol.82-2, 1992, pp.1018-1040.

<u> 築物のための改良地盤の設計及び品質管理指針-セメ</u> 018.

用済燃料中間貯蔵建屋の基礎構造の設計に関する技

<u> 深層混合処理工法 設計施工マニュアル 改訂版.</u>

こおける深層混合処理工法技術マニュアル. 2014.

第3.2.1表~第3.4.1表 (省略)

第3.5.1表物理試驗結果(岩石)

হা	区 分 試驗数(個)		湿潤密度		含水比		土粒子の密度		間隙比				
<u>д</u>	73		时间代有关	(1四)		$\rho_t (g/cm^3)$		w (%)		$\rho_{\rm s}(\rm g/cm^3)$		е	
		湿潤密度	含水比	土粒子	間隙比	平均 値	標準偏差	平均 値	標準偏差	平均 値	標準偏差	平均 値	標準偏差
久米層	Km	159	121	25	62	1.79	0.03	39.1	2.9	2.66	0.02	1.06	0.05
	Ks	26	23	5	20	1.83	0.06	32.3	2.6	2.68	0.03	0.95	0.06
多賀層	Tg	95	80	_	_	1.89	0.07	26.1	4.7	_	_	_	_

第3.2.1 表~第3.4.1 表 (変更なし)

第3.5.1表物理試験結果(岩石)

T I	区 分 試驗数(個)				湿潤密度		含水比		土粒子の密度		間隙比		
	50	分 武被叙(1回)		$\rho_{t}(g$	$ ho_{\rm t}({\rm g/cm^3})$		(%)	$ ho_{\rm s}({\rm g/cm^3})$		е			
		湿潤	승규나	上始了	問防レ	亚坎结	標準	平均值	標準	平均值	標準	平均值	標準
		密度	百不比	上松丁	间隙比	平均恒	偏差		偏差		偏差		偏差
h 业园	Km	53	52	12	48	1.78	0.02	37.2	2.6	2.67	0.01	1.07	0.05
八不層	Ks	18	18	4	16	1.81	0.05	32.6	2.2	2.66	0.01	0.97	0.04
多賀層 群	Tg	67	66	-	-	1.86	0.04	26.5	4.4	-	-	-	-

第3.5.2表 物理試験結果(土質)

		試験数(個)			湿潤 (g/	密度 cm³)	含水 ()	:比 ()	土粒子 (g/-	·密度 cm³)	間隙比	
区分		密度	含水	土粒子	平均値	標準 偏差	平均値	標準 偏差	平均値	標準 偏差	平均値	標準 偏差
埋戻土	埋戻土	96	96	8	1.90	0.10	20.5	7.4	2.68	0.02	0.71	0.19
ローム層	Lm	43	43	11	1.35	0.08	97.8	12.0	2.72	0.07	3.03	0.47
	Mu−S1	119	113	20	1.89	0.08	18.6	3.3	2.70	0.03	0.70	0.07
見和層上部層	Mu-C	63	58	16	1.73	0.08	44.6	11.1	2.66	0.02	1.24	0.23
	Mu-S	40	40	9	1.87	0.08	31.8	6.6	2.71	0.02	0.91	0.16
	Mu−S₂	128	128	25	1.87	0.08	21.0	5.0	2.70	0.03	0.75	0.11
見和層中部層	Mm-Sg	61	61	15	2.21	0.12	8.9	3.6	2.70	0.01	0.33	0.11
	Is-Sı	250	237	43	1.86	0.07	27.2	4.4	2.72	0.02	0.87	0.07
	Is-C	46	46	10	1.87	0.03	33.5	2.1	2.69	0.01	0.92	0.07
	Is-S₂U	164	149	47	1.84	0.07	33.9	5.2	2.67	0.04	0.95	0.11
石崎層	Is-Sc	60	51	15	1.81	0.04	37.6	3.3	2.65	0.02	1.02	0.08
	Is-S ₂ L	66	57	15	1.91	0.07	28.1	5.1	2.71	0.04	0.82	0.10
	Is-Sg	11	2	4	1.98	0.1	21.7	7.9	2.74	0.04	0.64	0.16
	Is-S₃	40	40	9	1.96	0.05	26.5	3.6	2.72	0.01	0.76	0.08

第3.5.2表 物理試験結果(土質<u>·改良地盤</u>)

			34 EQ #4	(加)		湿潤	密度	含水	:比	土粒子	密度	間隙	比
			武映叙	(1回)		$\rho_{t}(g)$	$ ho_{\rm t}({\rm g/cm^3})$		%)	ρ _s (g/	/cm ³)	е	
		泊油卒中	승규나	上始了	問防レ	亚坎结	標準	亚坎荷	標準	亚齿荷	標準	亚均荷	標準
		他們省及	占小比	工松丁	间隙比	平均恒	偏差	「「「」」「「」」「」」「「」」「」」「」」「」」「」」「」」「」」「」」「」	平均恒	偏差	平均恒	偏差	
埋戻土	В	96	96	8	96	1.90	0.10	20.5	7.4	2.68	0.02	0.71	0.19
ローム層	Lm	17	17	5	17	1.35	0.08	97.8	11.0	2.76	0.04	3.09	0.46
	Mu-S ₁	65	65	10	65	1.86	0.07	18.1	3.4	2.69	0.03	0.71	0.07
日和民人如民	Mu-C	37	37	10	37	1.72	0.08	48.5	8.5	2.67	0.01	1.32	0.23
兄和唐上라唐	Mu-S	40	40	9	40	1.87	0.08	31.8	6.6	2.71	0.02	0.91	0.16
	Mu-S ₂	88	88	15	88	1.86	0.08	21.7	4.6	2.70	0.03	0.76	0.10
見和層中部層	Mm-Sg	56	56	10	56	2.23	0.10	8.8	3.5	2.70	0.01	0.32	0.10
	Is-S ₁	93	93	12	93	1.83	0.06	27.0	3.4	2.71	0.01	0.88	0.05
	Is-C	17	17	5	17	1.85	0.04	34.7	2.2	2.69	0.01	0.96	0.07
工修屋	Is-S ₂ U	21	21	4	21	1.82	0.05	33.8	2.5	2.68	0.04	0.96	0.05
口呵虐	Is-Sc	20	20	3	20	1.78	0.03	38.6	4.0	2.66	0.02	1.07	0.09
	Is-S ₂ L	21	20	3	20	1.91	0.10	25.7	6.1	2.74	0.05	0.80	0.12
	Is-S ₃	20	20	3	20	1.94	0.05	26.8	2.6	2.72	0.00	0.78	0.07
改良地盤	Ι	32	32	32	32	2.05	0.22	23.8	11.7	2.69	0.01	0.65	0.34

第3.5.3表(1) 静弾性係数及び静ポアソン比測定結果(岩石)

		静弹性低	系数	静ポアソン比		
区分		E ₅₀		ν		
		E ₅₀ (N/mm ²)	試験個数	ν	試験個数	
久米層	Km, Ks	<u>302-2.96 • Z</u>	80	0.45	20	
多賀層	Tg	1080	62	0.47	16	

Z;標高(m)

第3.5.3 表(2) 静弾性係数及び静ポアソン比測定結果(土質)

		静弹	性係数	静ポフ	アソン比	
	<u>_</u>	1	E ₅₀	ν		
			試験個数	平均值	試験個数	
埋戻土	В	25.3	32	0.23	8	
ローム層	Lm	10.9	20	0.28	5	
	$Mu-S_1$	37.2	32	0.26	6	
目和屋上如屋	Mu-C	124	28	0.50	7	
见和眉上即眉	Mu-S	59.9	16	0.28	4	
	$Mu-S_2$	75.1	44	0.26	9	
見和層中部層	Mm-Sg	188	20	0.26	5	
石崎層	$Is-S_1$	60.2	44	0.48	11	
	Is-C	264	14	0.44	4	
	$Is-S_2U$	114	20	0.44	5	
	Is-Sc	228	16	0.45	4	
	$Is-S_2L$	149	16	0.48	4	
	Is-Sg	149	16	0.48	4	
	$Is-S_3$	194	16	0.48	4	

		静弹性的	系			
<u>ل</u> ا		E ₅₀				
	- 刀	E ₅₀				
		(N/mm^2)				
久米層	Km, Ks	<u>327-2.74 • Z</u>				
多賀層群	Tg	1080				

Z:標高(m)

第3.5.3 表(2) 静弾性係数及び静ポアソン比測定結果(土質・改良地盤)

		静弾	性係数	静ポン	アソン比	
	1]	E ₅₀	ν		
			試驗個数	亚均值	試驗個粉	
		(N/mm^2)	网络	国で「	的现代回知	
埋戻土	В	25.3	32	0.23	8	
ローム層	Lm	9.38	16	0.32	4	
	Mu-S ₁	45.0	20	0.26	5	
目和民人如民	Mu-C	136	24	0.497	6	
兄们眉上即眉	Mu-S	59.9	16	0.28	4	
	Mu-S ₂	80.6	36	0.26	9	
見和層中部層	Mm-Sg	188	20	0.26	5	
	Is-S ₁	55.9	40	0.49	10	
	Is-C	279	12	0.49	3	
工体屋	Is-S ₂ U	109	12	0.48	3	
石町眉	Is-Sc	251	12	0.48	3	
	Is-S ₂ L	162	12	0.48	3	
	Is-S ₃	176	12	0.49	3	
改良地盤	Ι	1720	12	0.18	17	

数 静ポアソン比 ν 試験個数 試験個数 ν 0.49 16 64 62 0.47 16

第3.5.3表(1) 静弾性係数及び静ポアソン比測定結果(岩石)

		No. 1∼9 [₩]							
区分		下限深度	下限標高	Vp	Vs				
		(m)	T.P. (m)	(km/s)	(km/s)				
ローム層	Lm	3. 33	33.80	0.88	0.17				
	Mu-S ₁	8.73	28.40	0.93	0.35				
	Mu-C	10.23	26.90	1.00	0.30				
見和層上部層	Mu-S ₂	16.43	20.70	1.07	0.43				
	Mu-Sg	18.33	18.80	1.20	0.49				
	Mu-S ₃	20.93	16.20	1.05	0.45				
見和層中部層	Mm-Sg	26.63	10.50	1.37	0.61				
	Is-S ₁	39.33	-2.20	1.58	0.43				
	Is-C	40.43	-3.30	1.59	0.37				
	$Is-S_{2(1:)}$	65.93	-28.80	1.58	0.37				
石崎層	Is-Sc	72.23	-35.10	1.58	0.39				
	$Is-S_{2(T)}$	84.63	-47.50	1.63	0.44				
	Is-Sg	86.03	-48.90	1.70	0.51				
	Is-S ₃	91.13	-54.00	1.68	0.50				
	W	137.13	-100.00	1.63	0.48				
久米層	Km	160.73	-123.60	1.68	0.54				
	Ks	172.53	-135.40	1.76	0.62				
多賀層群	Tg	-	-	2.17	1.01				

第3.5.4表(1) PS 検層結果 (No.1~9)

ける9本のボーリングのサスペンション法の平均を用いた。

第3.5.4表(1) PS 検層結果(No.1~9)

		No. 1~9*							
区分		下限深度	下限標高	Vp	Vs				
		(m)	T.P. (m)	(km/s)	(km/s)				
ローム層	Lm	3. 33	33.80	0.88	0.17				
	Mu-S ₁	8.73	28.40	0.93	0.35				
	Mu-C	10.23	26.90	1.00	0.30				
見和層上部層	Mu-S ₂	16.43	20.70	1.07	0.43				
	Mu-Sg	18.33	18.80	1.20	0.49				
	Mu-S ₃	20.93	16.20	1.05	0.45				
見和層中部層	Mm-Sg	26.63	10.50	1.37	0.61				
	Is-S ₁	39. 33	-2.20	1.58	0.43				
	Is-C	40. 43	-3.30	1.59	0.37				
	Is-S _{2(上)}	65.93	-28.80	1.58	0.37				
石崎層	Is-Sc	72.23	-35.10	1.58	0.39				
	Is-S _{2(F)}	84.63	-47.50	1.63	0.44				
	Is-Sg	86.03	-48.90	1.70	0.51				
	Is-S ₃	91.13	-54.00	1.68	0.50				
	V	137.13	-100.00	1.63	0.48				
久米層	Km	160.73	-123.60	1.68	0.54				
	Ks	172.53	-135.40	1.76	0.62				
多賀層群	Tg	-	-	2.17	1.01				
・ ・ HTTR 建家周辺にお	, ける No. 1~9	の PS 検層結果の	D平均値。地震動評	価における	解放基盤表				

面の設定に用いる。

		No. 11							
区分		下限深度	下限標高	Vp	Vs				
		(m)	T.P. (m)	(km/s)	(km/s)				
ローム層	Lm	3.00	35.65	1.00	0.30				
	Mu-S ₁	10.10	28.55	1.00	0.30				
見和層上部層	Mu-C	15.80	22.85	1.00	0.30				
	Mu-S ₂	22.65	16.00	1.00	0.48				
見和層中部層	Mm-Sg	28.10	10.55	1.00	0.48				
	T- C	34.00	4.65	1.00	0.37				
	15-51	40.20	-1.55	1.65	0.37				
	Is-C	42.80 -4.15		1.65	0.37				
石崎層	Is-S ₂	78.00	-39.35	1.65	0.37				
		87.55	-48.90	1.65	0.42				
	Is-Sg	88.50	-49.85	1.65	0.42				
	Is-S3	93.60	-54.95	1.65	0.42				
		130.00	-91.35	1.65	0.46				
カンド屋	Km	155.00	-116.35	1.70	0.52				
<u> </u>		162.10	-123. 45	1.70	0.62				
	Ks	169.80 -131.1		1.70	0.62				
夕加民兴	Ta	171.00	-132.35	1.70	0.62				
少 頁眉群	Ig	-	-	2.00	0.90				

第3.5.4表(2) PS 検層結果(No.11)

第3.5.4表(3)~(7) (省略)

第3.5.4 表(2) PS 検層結果(No.11、112~116)

			No. 11、112∼116 [™]							
区分		下限深度	下限標高	Vp	Vs					
		(m)	T.P.(m)	(km/s)	$(\rm km/s)$					
ローム層	Lm	3.47	35.05	0.66	0.23					
	Mu-S ₁	10.26	28.26	0.83	0.31					
	Mu-C	11.57	26.95	1.03	0.30					
見和層上部層	Mu-S	12.99	25. 53	1.16	0.32					
	Mu-C	15.28	23. 24	1.03	0.30					
	Mu-S ₂	23. 12	15.40	0.78	0.42					
見和層中部層	Mm-Sg	27.90	10.62	1.07	0.53					
	Is-S ₁	40.45	-1.93	1.69	0.42					
	Is-C	42.56	-4.04	1.66	0.38					
	Is-S ₂ U	66.72	-28.20	1.67	0.38					
石崎層	Is-Sc	77.25	-38.73	1.73	0.41					
	Is-S ₂ L	85.52	-47.00	1.71	0.44					
	Is-Sg	87.44	-48.92	1.72	0.44					
	Is-S ₃	93.40	-54.88	1.71	0.44					
万 业屋	Km	155.63	-117.11	1.75	0.51					
· 八不偕	Ks	165.79	-127.27	1.80	0.57					
多賀層群	Tg	-	-	2.03	0.80					

※:常陽建物周辺における No. 11、112~116の PS 検層結果の平均値。基礎地盤の安定性評価 における解析用物性値の設定に用いる。

第3.5.4表(3)~(7) (表の削除)

地質名 (記号) 理戻土 増 ローム層	展土	係数 G (N/mm²)	νa
(記号)	提 戻土	G (N/mm²)	ν
埋戻土 担 ローム層	展 土	700 10 0 7	
ローム層		733-19.8+2	0.35
l h	Lm	40.8	0.45
	lu-S1	195	0.43
	Mu-C	148	0.44
目的屏临如屏	Mu-S	164	0.45
	lu-S2	338	0.31
N	lu-Sg	409	0.44
N	Mu-S3 386		0.38
見和層中部層	fm-Sg	631	0.35
]	ls-Sl	358	0.46
	Is-C	274	0.47
I	s-S2U	266	0.47
石崎層	ls-Sc	291	0.47
I	s-S2L	383	0.46
	[s-Sg	714	0.44
]	[s-S3	477	0.45
力平面	Km	487	0.45
	Ks	684	0.44
多賀層群	Tg	1540	0.39

第3.5.5表 初期動せん断弾性係数と動ポアソン比

第3.5.5 表 初期動せん断弾性係数と動ポアソン比

変更後

地質名		初期動せん断弾性 係数	動ポアソン比
(記方)		G_0 (N/mm ²)	u d
埋戻土	В	733-19.8 • Z	0.35
ローム層	Lm	71.4	0.43
	Mu-S ₁	179	0.42
日和國上如國	Mu-C	155	0.45
兄和唐上하唐	Mu-S	191	0.46
	Mu-S ₂	328	0.30
見和層中部層	Mm-Sg	626	0.34
	Is-S ₁	323	0.47
	Is-C	267	0.47
了达屋	Is-S ₂ U	263	0.47
石崎唐	Is-Sc	299	0.47
	Is-S ₂ L	370	0.46
	Is-S ₃	376	0.46
カンド屋	Km	463	0.45
<u> </u>	Ks	588	0.44
多賀層群	Tg	1190	0.41
改良地盤	Ι	1090	0.41

Z:標高(m)

Z:標高(m)

		物理特性			強度特性	強度特性(地盤物性のばらつき考慮)			強度特性(地盤物性のばらつき考慮)		
	林雪		Ľ-2	2強度			Ľ-3	2強度			
地層名	記号	湿潤密度 ø. (g/cm ³)	粘着 力 C (N/mm²)	内部摩擦角 す(゜)	残留强 7, 0\/m	度 m ²)	粘着 力 C (N/mm ²)	内部摩擦角 す(゜)	残留我 て, (N/i	kg nm²)	
埋戻土	В	1.90	0.008	34.9	τ ,=0.008+ σ ·tan34.2°		0.000	34.0	τ ,= σ ·tan34.0°		
	Lm	1.35	0.061	15.1	τ , ² =0.073 · σ τ , =0.057 + σ ·tan11.4°	(σ <0.069 N/mm ²) (σ ≧0.069 N/mm ²)	0.045	15.1	τ , $^{2} = 0.047 \cdot \sigma$ τ , $= 0.040 + \sigma \cdot \tan 11.4^{\circ}$	(σ <0.056 N/mm²) (σ ≧0.056 N/mm²)	
	Mu-S _t	1.89	0.022	36.9	τ , $^{2}=0.070 \cdot \sigma$ τ , $=0.016 + \sigma \cdot tan 32.9^{\circ}$	$(\sigma < 0.005 \text{ N/mm}^2)$ $(\sigma \ge 0.005 \text{ N/mm}^2)$	0.007	36.9	τ,=0.002+σ·tan 32.9°		
M1段丘 堆積物	Mu-C	1.73	0.164	21.0	τ , ² =0.195 · σ τ , =0.138 + σ ·tan13.0°	(σ <0.155 N/mm²) (σ ≧0.155 N/mm²)	0.091	21.0	τ , $^{2} = 0.110 \cdot \sigma$ τ , $= 0.087 + \sigma \cdot \tan 13.0^{\circ}$	(σ <0.119 N/mm²) (σ ≧0.119 N/mm²)	
	Mu-S	1.87	0.060	36.0	τ, ² =0.124·σ τ,=0.018+σ·tan35.5°	$(\sigma < 0.003 \text{ N/mm}^2)$ $(\sigma \ge 0.003 \text{ N/mm}^2)$	0.034	36.0	τ ,= σ ·tan34.8°		
	Mu-S ₂	1.87	0.031	38.8	τ , = $\sigma \cdot tan 38.0^{\circ}$		0.000	38.7	$\tau = \sigma \cdot tan 36.0^{\circ}$		
	Mm-Sg	2.21	0.086	40.0	τ ,=0.003+ σ ·tan40.1°		0.007	40.0	τ ,= σ ·tan38.8°		
	ls−Sι	1.86	0.388	26.8	τ , $^{2}=0.632 \cdot \sigma$ τ , =0.268+ σ ·tan27.0°	$(\sigma < 0.243 \text{ N/mm}^2)$ $(\sigma \ge 0.243 \text{ N/mm}^2)$	0.250	26.8	τ , $^{2} = 0.335 \cdot \sigma$ τ , $= 0.137 + \sigma \cdot \tan 27.0^{\circ}$	(σ <0.113 N/mm ²) (σ ≧0.113 N/mm ²)	
	[s-C	1.87	0.524	0.0	τ , $^{2}=0.396 \cdot \sigma$ τ , = 0.447	$(\sigma < 0.505 \text{ N/mm}^2)$ $(\sigma \ge 0.505 \text{ N/mm}^2)$	0.425	0.0	$\tau^2 = 0.278 \cdot \sigma$ $\tau = 0.348$	$(\sigma < 0.435 \text{ N/mm}^2)$ $(\sigma \ge 0.435 \text{ N/mm}^2)$	
市茶絵写新	[s=S ₂ U	1.84	0.656	13.7	τ , $^{2}=0.938 \cdot \sigma$ τ , =0.637 + σ ·tan13.7°	(σ <0.693 N/mm²) (σ ≧0.693 N/mm²)	0.484	13.7	τ , $^{2} = 0.638 \cdot \sigma$ τ , $= 0.465 + \sigma \cdot \tan 13.7^{\circ}$	(σ <0.573 N/mm²) (σ ≧0.573 N/mm²)	
JR.2\36/∎0+	[s-Sc	1.81	0.601	9.5	τ, ² =0.715 · σ τ, =0.601+ σ · ten8.5°	(σ <0.695 N/mm²) (σ ≧0.695 N/mm²)	0.474	9.5	$\tau_{r}^{2} = 0.509 \cdot \sigma$ $\tau_{r} = 0.477 + \sigma \cdot \tan 8.5^{\circ}$	(σ <0.647 N/mm²) (σ ≧0.647 N/mm²)	
	[s-S ₂ [_	1.91	0.654	19.3	τ , ² =1.03 · σ τ , =0.618 + σ ·tan19.3°	$(\sigma < 0.757 \text{ N/mm}^2)$ $(\sigma \ge 0.757 \text{ N/mm}^2)$	0.465	19.3	τ , $^{2} = 0.682 \cdot \sigma$ τ , $= 0.432 + \sigma \cdot \tan 19.3^{\circ}$	(σ < 0.615 N/mm ²) (σ ≥0.615 N/mm ²)	
	[s-Sg	1.98	0.654	19.3	τ , ² =1.03 · σ τ , =0.618+ σ ·tan19.3°	(σ <0.757 N/mm²) (σ ≧0.757 N/mm²)	0.465	19.3	$\tau^2 = 0.682 \cdot \sigma$ $\tau = 0.432 + \sigma \cdot \tan 19.3^\circ$	(σ <0.615 N/mm²) (σ ≧0.615 N/mm²)	
	[s-S ₃	1.96	0.777	17.5	τ , $^{2}=1.12 \cdot \sigma$ τ , =0.691+ σ ·tan17.5°	(σ <0.788 N/mm²) (σ ≧0.788 N/mm²)	0.549	17.5	τ , $^{2} = 0.739 \cdot \sigma$ τ , $= 0.483 + \sigma \cdot \tan 17.5^{\circ}$	(σ <0.628 N/mm ²) (σ ≧0.628 N/mm ²)	
た 半尾	Km	1.79	Cu=0.780-0. σ t=0.161	.00333·Z	Cur=0.322-0.00455 · Z		Cu=0.692-0. σt=0.121	00333 · Z	Cur=0.221-0.00455.Z		
2247	Ks	1.83	τ ₈ =0.366		a=0.241-0.00371+Z		τ _R =0.318		a=0.130-0.00371.Z		
多賀層群	Τs	1.89	-	-	-		-	-	-		
σ:垂直応力	7 Z:標高(m	പ്			久米層(Km.Ks)の強度特性:	下図のとおり					
					(ピーク強度) ↑			(残留強度)	ľ		
					$(\tau/\tau_R)^2 = l + \sigma/\sigma_L$	$\tau = - \frac{1}{2} (C_1)$			$\tau_c = -\frac{2}{2}(C_u)$ $\tau_c^2 = u \cdot d$		
					-d. 0	•			0	→	

第3.6.1表(1) 解析用物性值

第3.6.1表(1) 解析

		物理特性			強度特性		強度特性(地盤物性のばらつきを考慮)			ġ.)	
地扇名	地質記号	曾紀号 泪海索座	ピーク	7強度	T İR	印改中	Ľ	ビーク強度 務留強度			
2011	753C85-7	$\rho_{\tau} (g/cm^3)$	粘着力 C (N/mm ²)	内部摩擦角	7χ τ _r (留 短度 (N/mm ²)	粘着力 C (N/mm ²)	内部摩擦角	7% H 54 τ _r (N/π	nm ²)	
埋戻土	В	1.90	0.008	34.9	$\tau_{\rm r}=\!0.008{}^+\sigma\cdot\!{\rm tan}34.2^\circ$		0.000	34.0	$\tau_{r}=\sigma\cdot tan34.0^\circ$		
	Lm	1.35	0.042	19.7	$\tau_r^2 = 0.052 \cdot \sigma$ $\tau_r = 0.040 + \sigma \cdot \tan 15.8^\circ$	$(\sigma < 0.066 \text{ N/mm}^2)$ $(\sigma \ge 0.066 \text{ N/mm}^2)$	0.031	19.7	$\tau_r^2 = 0.033 \cdot \sigma$ $\tau_r = 0.027 + \sigma \cdot \tan 15.8^\circ$	$(\sigma < 0.056 \text{ N/mm}^2)$ $(\sigma \ge 0.056 \text{ N/mm}^2)$	
	Mu-S ₁	1.86	0.021	37.0	$\tau_r^2 = 0.068 \cdot \sigma$ $\tau_r = 0.014 + \sigma \cdot \tan 33.0^\circ$	$(\sigma < 0.004 \text{ N/mm}^2)$ $(\sigma \ge 0.004 \text{ N/mm}^2)$	0.002	37.0	$\tau_{\rm r}=\sigma\cdot tan 32.9^\circ$		
M1段丘 堆積物	Mu-C	1.72	0.227	16.6	$\tau_r^2 = 0.227 \cdot \sigma$ $\tau_r = 0.179 + \sigma \cdot \tan 9.3^\circ$	$(\sigma < 0.196 \text{ N/mm}^2)$ $(\sigma \ge 0.196 \text{ N/mm}^2)$	0.178	16.6	$\tau_r^2 = 0.169 \cdot \sigma$ $\tau_r = 0.142 + \sigma \cdot \tan 9.3^\circ$	$(\sigma < 0.170 \text{ N/mm}^2)$ $(\sigma \ge 0.170 \text{ N/mm}^2)$	
	Mu-S	1.87	0.060	36.0	$\tau_r^2 = 0.124 \cdot \sigma$ $\tau_r = 0.018 + \sigma \cdot \tan 35.5^\circ$	$(\sigma < 0.003 \text{ N/mm}^2)$ $(\sigma \ge 0.003 \text{ N/mm}^2)$	0.034	36.0	$\tau_{r}=\sigma\cdot tan34.8^\circ$		
	Mu-S ₂	1.86	0.040	38.4	$\tau_{_{\rm T}}=\sigma\cdot tan 38.0^\circ$		0.001	38.4	$\tau_{\rm r} = \sigma \cdot tan 36.0^\circ$		
	Mm-Sg	2.23	0.086	40.0	$\tau_{r}=\!0.003{}^{+}\sigma\cdot\!\tan\!40.1^{\circ}$		0.007	40.0	$\tau_{_{\rm F}}=\sigma\cdot tan 38.8^\circ$		
	$Is-S_1$	1.83	0.399	27.7	$\tau_r^2 = 0.660 \cdot \sigma$ $\tau_r = 0.268 + \sigma \cdot \tan 27.7^\circ$	$(\sigma \le 0.228 \text{ N/mm}^2)$ $(\sigma \ge 0.228 \text{ N/mm}^2)$	0.322	27.7	$\tau_r^2 = 0.455 \cdot \sigma$ $\tau_r = 0.182 + \sigma \cdot \tan 27.7^\circ$	$(\sigma < 0.149 \text{ N/mm}^2)$ $(\sigma \ge 0.149 \text{ N/mm}^2)$	
	Is-C	1.85	0.543	0.0	$\tau_r^2 = 0.409 \cdot \sigma$ $\tau_r = 0.464$	$(\sigma < 0.527 \text{ N/mm}^2)$ $(\sigma \ge 0.527 \text{ N/mm}^2)$	0.450	0.0	$\tau_r^2 = 0.297 \cdot \sigma$ $\tau_r = 0.370$	$(\sigma < 0.460 \text{ N/mm}^2)$ $(\sigma \ge 0.460 \text{ N/mm}^2)$	
事業社民業	Is-S ₂ U	1.82	0.725	12.4	$\tau_r^2 = 1.01 \cdot \sigma$ $\tau_r = 0.719 + \sigma \cdot \tan 12.4^\circ$	$(\sigma < 0.787 \text{ N/mm}^2)$ $(\sigma \ge 0.787 \text{ N/mm}^2)$	0.521	12.4	$\tau_r^2 = 0.670 \cdot \sigma$ $\tau_r = 0.516 + \sigma \cdot \tan 12.4^\circ$	$(\sigma < 0.646 \text{ N/mm}^2)$ $(\sigma \ge 0.646 \text{ N/mm}^2)$	
米/八州間年	Is-Sc	1.78	0.559	10.0	$\tau_r^2 = 0.664 \cdot \sigma$ $\tau_r = 0.559 + \sigma \cdot \tan 8.8^\circ$	$(\sigma \le 0.658 \text{ N/mm}^2)$ $(\sigma \ge 0.658 \text{ N/mm}^2)$	0.424	10.0	$\tau_r^2 = 0.446 \cdot \sigma$ $\tau_r = 0.428 + \sigma \cdot \tan 8.8^\circ$	$(\sigma \le 0.613 \text{ N/mm}^2)$ $(\sigma \ge 0.613 \text{ N/mm}^2)$	
	ls-S ₂ L	1.91	0.631	20.0	$\tau_r^2 = 1.02 \cdot \sigma$ $\tau_r = 0.611 + \sigma \cdot \tan 20.0^\circ$	$(\sigma < 0.793 \text{ N/mm}^2)$ $(\sigma \ge 0.793 \text{ N/mm}^2)$	0.413	20.0	$\tau_r^2 = 0.621 \cdot \sigma$ $\tau_r = 0.396 + \sigma \cdot tan 20.0^\circ$	$(\sigma < 0.627 \text{ N/mm}^2)$ $(\sigma \ge 0.627 \text{ N/mm}^2)$	
	Is-Sg	1.91	0.631	20.0	$\tau_r^2 = 1.02 \cdot \sigma$ $\tau_r = 0.611 + \sigma \cdot \tan 20.0^\circ$	$(\sigma < 0.793 \text{ N/mm}^2)$ $(\sigma \ge 0.793 \text{ N/mm}^2)$	0.413	20.0	$\tau_r^2 = 0.621 \cdot \sigma$ $\tau_r = 0.396 + \sigma \cdot tan 20.0^\circ$	$(\sigma < 0.627 \text{ N/mm}^2)$ $(\sigma \ge 0.627 \text{ N/mm}^2)$	
	Is=S3	1.94	0.888	16.9	$\tau_r^2 = 1.27 \cdot \sigma$ $\tau_r = 0.768 + \sigma \cdot \tan 16.9^\circ$	$(\sigma < 0.812 \text{ N/mm}^2)$ $(\sigma \ge 0.812 \text{ N/mm}^2)$	0.701	16.9	$\tau_r^2 = 0.939 \cdot \sigma$ $\tau_r = 0.594 + \sigma \cdot \tan 16.9^\circ$	$(\sigma < 0.686 \text{ N/mm}^2)$ $(\sigma \ge 0.686 \text{ N/mm}^2)$	
点 米扇	Km	1.78	Cu=0.660-	0.00440•Z 0.160	Cur=0.295-0.00495•Z		Cu=0.588-0.00440 \cdot Z $\alpha = 0.120$		Cur=0.196-0.00495•Z		
70/0H	Ks	1.81	τ "=	0.359	a= 0.208-0.00417•Z		τ _R =	0.314	a= 0.098-0.00417•Z		
多賀層群	Tg	1.86	-	-		-	-	-	-		
改良地盤	I	2.05	$\tau = 1.12 + \sigma_{\tau} = \tau_{R}$	σ •tan21.0 0.300 1.12	$\tau_r^2 = 1.10 \cdot \sigma$ $\tau_r = 0.468 + \sigma \cdot \tan 21.0^\circ$	$(\sigma < 0.314 \text{ N/mm}^2)$ $(\sigma \ge 0.314 \text{ N/mm}^2)$	$\tau = 1.09 + \sigma_{\tau} = \sigma_{\tau} = \tau_{R} =$	σ •tan21.0° 0.300 = 1.09	$\begin{array}{l} \tau _{r}^{2} = 1.05 \cdot \sigma \\ \tau _{r} = 0.448 + \sigma \cdot tan 21.0^{\circ} \end{array}$	(σ <0.302 N/mm ²) (σ $\geqq0.302$ N/mm ²)	
σ:垂直	応力 Z:	標高(m)	久米 (ビー	K層(Km,Ks)の	D強度特性:下図のとおり) (御辺論座) ▲ ^T r			改良地盤の強 (ビーク論座) ▲	度特性 :下図のとおり	
			(6-	ン 3月(見)	$\tau = -\widetilde{\mathcal{E}}(C_u)$	(汉田)田茂)	τ_r — $\vec{\epsilon}(C_{ur})$		(亡一//强度)		
			(1/	τ) ² 1 α/σι τ		Tr2 a. c		-	$(\tau/\tau_R)^2 = 1 + \sigma/\sigma_t \qquad \tau_R - 1$	r-I s tang	
	$\begin{array}{c c} & & & \\ \hline \\ \hline$										

斤用	物性	値
----	----	---

				変形特性		
				動的変形特性		静的変形特性
地層名	地度記号	初期動せん断 弾性係数 G _o (N/mm [®])	動ポアソン比ぃ。	G/G ₀ -γ(%)	h (%)- γ (%)	静彈性係数 E _{s0} (N/mm²)
埋戻土	в	733-19.8• Z	0.35	1/(1+15.3•γ ^{0,939})	22.5• y/(y+0.0734)+0.171	25.3
	Lm	40.8	0.45	1/(1+5.35• γ ^{0.134})	11.9• γ/(γ+0.117)+1.82	10.9
	Mu-S _L	195	0.43	1/(1+14.1•γ ⁰²¹⁹)	19.1•γ/(γ+0.0527)+0.490	37.2
M1段丘 堆積物	Mu-C	148	0.44	1/(1+4.00 γ ^{0.ffb})	9.94• γ/(γ+0.171)+1.95	124
	Mu-S	164	0.45	1/(1+6.20• γ ^{0.230})	20.4• y/(y+0.141)	59.9
	Mu-S ₂	338	0.31	1/(1+8.24• γ ^{0.258})	25.7• γ/(γ+0.164)+0.667	75.1
	Mm-Sg	631	0.35	1/(1+7.14 γ ^{0.816})	13.5• γ/(γ+0.0429)+1.20	188
	Is-S _L	358	0.46	1/(1+6.42• γ ^{0.229})	23.6• γ/(γ+0.176)+0.353	60.2
	ls-C	274	0.47	1/(1+5.15• γ ^{0.921})	18.6• γ /(γ +0.287)+1.05	264
由花城园群	Is−S ₂ U	266	0.47	1/(1+5.34• γ ^{0.966})	22.6• γ/(γ+0.297)+0.349	114
ж.ж.жин он	ls-Sc	291	0.47	1/(1+4.14• γ ^{0.216})	23.3• y/(y+0.502)+0.969	228
	ls−S ₂ L	383	0.46	1/(1+5.20• γ ^{0.946})	21.2• y /(y +0.311)+0.583	149
	ls-Sg	71 4	0.44	1/(1+5.20• γ ^{0.946})	21.2• y /(y +0.311)+0.583	149
	Is-S _s	477	0.45	1/(1+5.44• γ ^{0.969})	22.4• y /(y +0.312)+0.412	194
な米屋	Km	487	0.45	1/(1+2.02• γ ^{0.808})	15.2• γ/(γ+0.861)+1.82	302-2 96•7
八本省	Ks	684	0.44	1/(1+2.74 γ ^{0.253})	16.9• γ /(γ +0.779)+1.47	002 2.30 2
多賀層群	Τg	1540	0.39	1/(1+1.66• γ ^{0.263})	9.63• y /(y +0.370)+1.14	1080

第3.6.1表(2) 解析用物性值

G:動せん断弾性係数 γ:せん断ひずみ h:減衰率 Z:標高(m)

第361表(2) 解析用物性值

				変形特性			
		動的変形特性					
地層名	地質記号	初期動せん断 弾性係数 G ₀ (N/mm ²)	動ポアソン比 v _d	${\rm G/G_0}\!\sim\gamma$ (%)	h (%) $\sim \gamma$ (%)	静弾性係数 E ₅₀ (N/mm ²)	
埋戻土	В	733-19.8•Z	0 35	$1/(1+15.3 \gamma^{0.935})$	22.5 γ /(γ +0.0734)+0.171	25.3	
	Lm	71.4	0 43	$1/(1+4.56 \gamma^{0.711})$	8.80 y /(y +0.0579)+1.70	9.38	
	Mu-S ₁	179	0 42	$1/(1+13.6 \gamma^{0.873})$	20.7 γ /(γ +0.0758)+0.180	45.0	
M1段丘 堆積物	Mu-C	155	0 45	$1/(1+4.34 \gamma^{0.791})$	10.1 γ /(γ +0.148)+1.82	136	
	Mu-S	191	0 46	$1/(1+6.20 \gamma^{0.830})$	20.4 y /(y +0.141)+0.004	59.9	
	Mu-S ₂	328	0 30	$1/(1+6.86 \gamma^{0.827})$	22.8 y /(y +0.130)+0.472	80.6	
	Mm-Sg	626	0 34	$1/(1+6.69 \gamma^{0.801})$	13.2 y /(y +0.0512)+1.72	188	
	Is-S ₁	323	0 47	$1/(1+5.08 \gamma^{0.817})$	23.7 y /(y +0.203)+0.374	55.9	
	Is-C	267	0 47	$1/(1+5.21 \gamma^{0.913})$	13.6 γ /(γ +0.149)+1.19	279	
市本社区社	Is-S ₂ U	263	0 47	$1/(1+3.79 \gamma^{0.937})$	24.0 γ /(γ +0.501)+0.892	109	
朱八朔眉杆	Is-Sc	299	0 47	$1/(1+3.73 \gamma^{0.918})$	17.4 y /(y +0.277)+0.877	251	
	Is-S ₂ L	370	0 46	$1/(1+5.30 \gamma^{1.04})$	28.1 y /(y +0.453)+0.803	162	
	Is-Sg	370	0 46	$1/(1+5.30 \gamma^{1.04})$	28.1 y /(y +0.453)+0.803	162	
	Is-S3	376	0 46	$1/(1+4.72 \gamma^{1.00})$	29.6 y /(y +0.517)+0.740	176	
h 业园	Km	463	0 45	$1/(1+2.32 \gamma^{1.04})$	15.3 γ /(γ +0.763)+1.54	207 0 74 7	
<u></u> 人不增	Ks	588	0 44	$1/(1+3.09 \gamma^{0.986})$	15.0 γ /(γ +0.603)+1.30	321-2.14•2	
多賀層群	Tg	1190	0 41	$1/(1+1.75 \gamma^{0.925})$	9.59 γ /(γ +0.346)+1.00	1080	
改良地盤	I	1090	0 41	$1/(1+3.44 \gamma^{0.998})$	12.5 y /(y+0.393)+1.40	1720	

弾性係数 γ:せん断ひす 1: 减衰率 Z:標局(n

変更前(2021.12.2 付補正)			変更後	
		第3.6.2 表	₹(1) すべり安全	≧率(A−A'断面)
	番	弓 想定すべり線形状	地震動 ^{※1}	すべり 基本モデル ^{※2}
	1	原子炉建物及び 主冷却機建物 原子炉附属建物 60°	S s - D (+, -)	2.9 [46.62]
	2	45° 45°	S s - D (+, -)	2. 6 [46. 63]
	3	30°	S s - D (+, -)	2.3 [46.63]
	4	25° 25°	S s - D (+, -)	2.2 [46.63]
	※1(+ ※2 地想 ※3 []	, +) 位相反転なし、(-, +) 水	.平反転、(+, - .を地表面に設定) 。) 鉛直反転、(-, -) したモデルを基本とする
	1			

すべり多	₹全率 ^{*3}
基本モデル*2	地盤強度 ばらつき考慮
2.9 [46.62]	
2.6 $[46.63]$	
2. 3 [46. 63]	—
2. 2 [46. 63]	1.9 $[46.63]$

沿直反転、(−, −)水平反転かつ鉛直反転 モデルを基本とする。

変更前(2021.12.2 付補正)				変更後	ź	
			第 3. 6. 2 表	(2) すべり安全	全率(B-B,斛面)	
					すべり	安全率*3
		番号	想定すべり線形状	地震動 ^{※1}	基本モデル ^{※2}	大工1 地盤強度 ばらつき考慮
		1	原子炉建物及び 原子炉附属建物 60° 60°	S s - D (+, -)	3.6 [46.62]	_
		2	45° 45°	S s - D (+, -)	2.8 [46.65]	_
		3	30° 30°	S s - D (+, -)	2.2 [46.66]	_
		4	25° 25°	S s - D (+, -)	2.0 [46.67]	1.8 [46.67]
	**1 **2 **3	 (+, + 地盤強 []は 	-)位相反転なし、(-, +)水 度を平均強度、解析用地下水位 発生時刻(秒)	平反転、(+, -	ー)鉛直反転、(ー, ー) Eしたモデルを基本とする	水平反転かつ鉛直反転 る。

すべり安全率(C−C'	そ(3) すべり安	<u>第 3. 6. 2</u> 表	
§動 ^{※1}	地震動※1	想定すべり線形状	番号
基本モ			
- 6 2.	S s - 6	主冷却機建物 60° / 60°	
(-) [14.	(-, -)		
- D 2.	S s – D	45°45°	2
(-) [46.	(+, -)		
- D 2.	Ss-D	30°30°	3
(46.	(+, -)		
-D 2.	S s - D	25°25°	
, -) [46.	(+, -)		4-1
-D 2	$S_{s} - D$	25°,60°	
)	(+ -)		4-2
(_) [40.	(1,)		

断面)

すべり安	全率 *3
基本モデル ^{※2}	地盤強度 ばらつき考慮
2.4 [14.53]	_
2.3 [46.64]	_
2.3 [46.64]	_
2.2 [46.64]	_
2. 1 [46. 63]	1.7 $[46.63]$

(-,-)水平反転かつ鉛直反転 基本とする。

変更前	(2021.	12.	2	付補正)
-----	--------	-----	---	------

第3.6.3 表 基礎底面両端の鉛直方向の相対変位・傾斜

変更後

断面	施設名	地震動 ^{**1}	基礎底面両端の最大相対変位 ^{**2} (δ _{v1} -δ _{v2})	基礎底面両端の最大傾斜 (δ _{y1} -δ _{y2} /L ^{※3})
A-A'	原子炉建物 及び 原子炉附属建物	S s - D (+, +)	2.32cm [39.69]	1/2, 370
主冷却機建物		S s - 2 (+, +)	0.36cm [8.09]	1/7, 600
B-В'	原子炉建物 及び 原子炉附属建物	S s - D (+, +)	1.39cm [39.66]	1/3, 500
С-С'	主冷却機建物	S s - D (+, +)	0.84cm [22.88]	1/7, 900

※1(+,+)位相反転なし、(-,+)水平反転、(+,-)鉛直反転、(-,-)水平反転かつ鉛直反転 ※2[]は発生時刻(秒)

※3 [A-A' 原子炉建物及び原子炉附属建物] L = 55.00 m、
 [A-A' 主冷却機建物] L = 27.40 m、
 [B-B'] L = 50.00 m、

[C - C'] L = 67.00 m

東3.7.1 表 主な地質調査会社一覧表 第3.7.1 第3.7.1 表 主な地質調査会社一覧表 第3.7.1 17週26名 死筋中度 水筋・ 地質調査 平成 15 年度、 平成 21 年度 株式会社ダイヤコンサルタント 数地近傍 数地近傍 数地近傍 数地近傍 平成 19 年度・ 平成 20 年度 新台地質調査株式会社 同和 59 年度 東邦基礎運動電流 数地市 単成 19 年度 東邦基礎運動電気会社 同和 59 年度 東北市面海域 平成 平成 平成 10 年度 昭和 59 年度 東州基礎運動業式会社 同和 20 年度 素地市面海域 平成 平成 平成 平成 10 年度 昭和 62 年度 東北市 東北会社 数地市 昭和 福和 昭和 昭和 昭和 昭和 昭和 平成 10 年度 昭和 昭和 昭和 昭和 昭和 昭和 平成 平成 平成 平成 平成 平成 平成 平成 平成 平成 平成 市 大震 10 年度 昭和 昭和 昭和 昭和 昭和 昭和 昭和 平成 平成 平成 平成 平成 平成 平成 平成 平成 平成 平成 平成 平成						
	第 3.7.1	表 主な地質調査会社一覧表				第3.7.1表
調査名	実施年度	会社名	摘要		地質調査	実施年度
地質調査	平成 18 年度~	株式会社ダイヤコンサルタント	敷地周辺		載む ほう	平成 18 年月
	平成 21 年度		敷地近傍		款地向起	平成 21 年月
			敷地内		款地址 (方 動 4)(力	
	平成 19 年度~	総合地質調査様式会社	敷地前面海域		50,000	令和 4 年)
	平成 20 年度	川崎地質株式会社			 	平成 19 年)
	昭和 39 年度	東邦基礎調査様式会社	┃敷地内		XX2000 m149-84	平成 20 年)
	昭和 59 年度	│ 京浜調査工事様式会社	_			昭和 39 年)
	昭和 61 年度	基礎地盤コンサルタント株式会社 				昭和 59 年)
	昭和 62 年度	-				昭和 61 年)
	平成2年度					昭和 62 年)
	平成4年度	-				亚成 9 年
	平成 10 年度 亚式 10 年度	-				工成 4 年 1
	平成 18 年度	12	-		敷地内	
	昭和 63 年度	「体践会社口建設計	-			平成10年)
	平成 Z1 平長	川呵地貝怀氏云仙				──平成 18 年↓
	亚成 97 年度	広田柳暦株式会社				
	平成 27 年度 平成 20 年度	応用地質様式会社				昭和 63 年,

主な地質調査会社一覧表

平成 27 年度

平成 29 年度

会社名
株式会社ダイヤコンサルタント
総合地質調査株式会社
川崎地質様式会社
東邦基礎調査株式会社
京浜調査工事株式会社
基礎地盤コンサルタント株式会社
株式会社日建設計
川崎地質様式会社
応用地質様式会社

第3.8.1表 改良地盤の確認項目及び基準値

変更後

確認項目	要求品質			必要改良範囲	備考				
		収行き		基準位置(東西外壁面)から 7m以上	改良体の配置(ロッド挿入位置)*1の確認により、必要改良幅及び必要改良奥行き以上改良さ				
改良地盤 の範囲	必要改良範囲が施工 されていること			基準位置(南外壁面)から 27.5m以上	 れていることを確認する。 ※1 改良体の配置は、詳細設計段階においてロ ッドを中心とした改良可能範囲や干渉物等 の現地の状況を踏まえて定める。 				
						中々	上端	東側 T.P.+23.5m以上 西側 T.P.+21.5m以上	改良開始深度と改良終了深度のロッド長さの確 認により、 必要投合言さが改良されていること
		同ぐ	下端	東側 T.P.+10.6m以下 西側 T.P.+10.3m以下	いにより、必安以及同さが以及されていることを確認する。				

室内配合試験による一軸圧縮強度quと評価に用いる強度特性の相関関係 (内部摩擦角Φ、粘着力C、引張強さσ、)

第3.8.2表 改良地盤の試験頻度

基準名称	基準における試験頻度の目安	設定する試験頻度
2018 年度版 建築物のための改良地盤の 設計及び品質管理指針-セメント系固化材 を用いた深層・浅層混合処理工法- (日本建築センター、2018)	検査対象層(改良範囲内の各土層)に対し て、100本の改良コラムに1箇所以上かつ 1検査対象群に1箇所以上。	
建築基礎設計のための地盤改良設計指針案 (日本建築学会、2006)	改良体 100 本ごとに 1 本以上。	・調査箇所は、改良土量が約 5000m ³ (改良
乾式キャスクを用いる使用済燃料中間貯蔵 建屋の基礎構造の設計に関する技術規程 (日本電気協会、2009)	改良体 300 本ごとに 1 本以上。	体本数 100 本未満) であることから、東 側・西側の改良地盤に対して、各3箇所 とする。 ・試験(一軸圧縮試験)は、改良範囲内の
陸上工事における深層混合処理工法 設計 施工マニュアル 改訂版 (土木研究センター、2004)	設計強度ごとに改良体 500 本未満は 3 本× 3 深度、500 本以上は 250 本ごとに 1 本追 加。	各土層に対して実施する。
港湾・空港における深層混合処理工法技術 マニュアル (沿岸技術研究センター、2014)	改良土量 10000m ³ ごとに 1 本程度。	

一軸圧縮強度qu(N/mm²)

↓1. 5N/mm²

「(引張り強さ/一輪圧縮強さ)の値は一 輪圧縮強さが大きくなると小さくなる傾 向がある」とされており、上限値は 0.3N/mm²。上限値に対応するquiは1.5N/mm²。

変更前(2021.12.2 付補正)	変更後
	第3.5.1 図(2) 原子炉施設設置位置付近の調
第3.5.2 図~第3.5.9 図(4) (省略)	第3.5.2 図~第3.5.9 図(4) (変更なし)

ボー	リン	グ孔名	No	116				孔口標高	1 P +38.25m	総掘進長	256.0	Om
棵	棵	深	柱	地	地	色	地質			コ 7	RQD	最大コア長
R	高	度	状	層	質		×	観	察記事	採		
m	m	m		名	名	89	分			率	(%)	(c
_						-	-	201.49	:厚さ1cmの細粒砂岩の薄層を 持た	20 40 60 10 100	20 42 60 80 100	23 40 60 80
								202.26~202.32	・ 報方向に伸びる白色の鉱物 がみられる。	R.	1	K
205								203.52	: 傾斜35°の割れ目沿いに自	<u>6</u>		
			Ħ			黑褐		203.68	服かかられる。 :長さ1~2mの縦方向の密着 た割れ目が多い、上下へは	L at		
								207. 10~211. 31	続しない。 ・傾斜20~80°の癒着して国 した面構造が多くみられる	16	5	
210			圁							8	1	
					砂岩泥	i.		212 AF 21			1	1
					-e a.nl			212.35~214.92	- 平~粗和歩岩を薄層状、レ ズ状に挟む。層厚は1~15g で境界は凸回している。	2		
215								215.38~220.41	: 傾斜10~30°の癒着して困 した面構造が多くみられる	lă -		$ \rangle$
						a.		218.67~218.83 220.10	 ・ 黄灰色のノジュールを挟む ・ ・ 厚さ2cmの細粒砂岩満層を 			
						<u> </u>			¢.,			
220				多質層群			Tg	221.35~221.40	:粒状の生痕化石を含む。			ł
	-186, 05	224.37	1		0.00.00		-	223.02~223.45 224.37~225.55	堆積構造に乱れがみられる。 概ね境状の中粒砂岩。泥岩	e		1
225	-187.23	225.55	1		岩 岩	BR	-		偽緑状に取り込む。下位は や粗粒。	ф		·
						黑褐		226.00~226.82	 : 粗粒砂岩をレンズ状、薄層に挟む。 	伏		
					砂岩泥 岩互層	1		231.32~232.05	 上方細粒化する中粒砂岩か なる。弱い葉理がみられる 	6		
230		1.1				褶			下部の15mは泥岩を偽磔状 含む。	(E)		
	-193, 00 -193, 73	231.32	1		中粒砂	黑袍 ?	1	232.42~232.58	:傾斜60~70°の割れ目沿い 白色の鉱物額がみられる。	12	1	
			E			農		233.15	: 開新45°の感着して固結し 面構造がみられる。	74 -	1	
235					砂岩泥	黑褐		233. 38~233. 59 233. 60~234. 00	 中転歩岩の薄層を挟む。 ・縦方向の割れ目が多くみら。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	n	Ļ	•
					ed#	2		234.36~234.40	るか、エトヘは連接しない :割れ目沿いに白色脈がみら: ス	ħ		
	-199, 19 -199, 74	237.51	H		細粒砂	尿	-	237.51~238.06	 ○: :細粒砂岩からなる。上方細 化を示す 	粒		
					8	黑褐		240. 30~242. 20	 ・砂岩、泥岩が相互層をなす。 局提示の傾斜は20° 却で生 	a		ЦŔ
240			目		砂岩泥 岩五層	黒褐		240 42	化石が多くみられる。			
	-203, 84	242.16	丰		細粒砂	- K		242. 16~243. 41	:上方細粒化する細粒砂岩。 分的に家里の薄層を挟む。	部下		
	-205.09	243.41	1			(R) 黒排		243.71~245.09	部は業理が発達する。 : 傾斜20~40°の症差して回	lt.	ļ	
245	-207 61	245 92			砂岩泥 岩五層	2		245 02~247 50	した面構造がみられる。			
	207.00	AN. 02			細粒砂	暗灰	1	247 50-247.00	- エルロセルビホティロ担切石			K
	-209.24	247.56	Ħ		秋曲沢	黑褐		248. 35~251. 01	 1~10cmの厚さで不定形状に 			
					岩互層	-			石炭 炭雪焼が湿じる			

第3.5.9 図(3)原子炉施設設置位置地質柱状図(No.1165/6)

ボー	リン	グ孔名	S No.	113	ě.			孔口標高	T 1 +38	P . 10m		総掘進	E 262.4	16m
標尺m	構真的	菠 度 m	柱状因	地層名	地 質 名	e g	地質区分	12	¥	82	*	コア採取率	R Q D	最大口7番 (cr
255 260 265	-222.40	260 50		12 (0.014	砂北正暦 地工暦 細粒砂 周	展開 展開 展 展 展	Tg	248 95~250 83, 250 19~250 55 252 05~258 27 258 54~260 50 260 59~262 44 260 50~260 70 260 75~260 90 260 75~260 90 260 75~261 20 262 21	25 二素精た標や理 上ら702原素煤が様す煤業れ	0~253.100 した利用の した利用の した利用の のの の の の の の の の の の の の	 ・ 硬貨なノジ らられるご開発して開発した。 して開発用 た、一部発現 たさせる、平行国 す細板砂窓か まなる、平行国 動活用面には を設した。 をなる、 のののの ののののの ののののののののののののののののののののののの			

第3.5.9 図(5) 原子炉施設設置位置地質柱状図(No.116 5/6)

第3.5.10図~第3.5.13図 (変更なし)

第3.5.10 図~第3.5.13 図 (省略)

第3.5.9 図(6) 原子炉施設設置位置地質柱状図(No.116 6/6)

添 6-3-34

変更前(2021.12.2 付補正)	変更後
	In the second seco
	(m) 10.1 10.1 10.0 1

第3.5.21図 非排水せん断強さと標高の関係<u>(Km層、Ks層)</u>

変更後

10⁻²

0 0 0

10^{-z}

変更前(2021.12.2 付補正)	変更行	爰
	1.0	
	0.9 -	
	0.8 -	
	0.7	0
		0
	<u>ک</u> ق 0.5 -	
	その 一部 1111111111111111111111111111111111	0
	0.2	
	0.1	
	第 3.5.26 図 引張強	<u>さ</u> う

(験の結果(改良地盤)

変更前(2021.12.2 付補正)	変更後
	$ \begin{array}{c} 5.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.0 \\ $
	5.0 $\tau_r^2 = 1.10 \cdot \sigma$ ($\tau_r = 0.468 + \sigma \cdot \tan 21.0^\circ$ (τ
	σ(<u>第3.5.27図</u> 三軸圧縮試験の破壊

変更前(2021.12.2 付補正)	変更後
	1.2
	$G/G_0 = 1/$
	₹ 108
	125 0.6 子
	亞 0.4
	四 0.2
	0.0
	10~ 10~ 10~ せん断ひずみ
	(a) 動的変形特
	30
	$h = 12.5\gamma/(\gamma + 0.393) + 1.4$
	8 20
	変
	郑 10
	104 105 105 せん断ひずみ
	(b)減衰特性
	<u>第3.5.28 図 繰り返し三</u>

軸試験結果(改良地盤)

第3.5.26図(5) PS 検層結果(No.114)

第3.5.26図(6) PS 検層結果(No.115)

変更後

第3.5.29図(6) PS 検層結果(No.115)

第3.6.3 図(2) 解析モデル(B-B'断面)

第3.6.3 図(2) 解析モデル(B-B'断面)

第3.6.3 図(3) 解析モデル(C-C'断面)

変更前(2021.12.2 付補正)	変更後
	7m 0 至这良範囲 0 要这良範囲 0 要这良範囲 0 要这良範囲 0 要这良範囲 0 要求改良範囲 0 要求改良範囲 0 要求改良範囲 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 0 p <
	C T P. +38.5m (GL : ±0m) 改良地盤上編 T P. +21.5m (GL - 17.0m) 改良地盤上編 T P. +21.5m (GL - 17.0m) 改良地盤上編 T P. +38.5m (GL - 12.0m) (GL - 28.2m)
	断面図(東西(C-C')断面)
	<u>弗 3. 0. 3 因(4) 以良地温</u>
第3.6.4 図 (省略)	第3.6.4 図 (変更なし)

盤の範囲