資料1-7
Doc No. MA035B-SC-F01 Rev.2
2022 年 12 月 22 日
日立造船株式会社

補足説明資料16-6

16条 燃料体等の取扱施設及び貯蔵施設

材料・構造健全性(長期健全性)に関する説明資料

無断複製·転載禁止 日立造船株式会社

目 次

1.	要求事項		 	 	·1
2.	要求事項への	の適合性	 	 	·3
3.	参考文献		 	 	·18

別紙1 特定兼用キャスク構成部材等の経年変化要因について

別紙2 参考文献の概要

別紙3 金属ガスケットの経年変化に対する評価について

別紙4 中性子遮蔽材の質量減損率について

1. 要求事項

特定機器の設計の型式証明申請において、特定兼用キャスクの材料・構造健全性(長期) 健全性)に関する要求事項は、以下のとおりである。

- (1) 設置許可基準規則要求事項
- a. 設置許可基準規則第16条第2項第一号ハ 燃料体等が臨界に達するおそれがないものとすること。
- b. 設置許可基準規則第16条第4項第一号
 使用済燃料からの放射線に対して適切な遮蔽能力を有するものとすること。
- c. 設置許可基準規則第16条第4項第二号 使用済燃料の崩壊熱を適切に除去することができるものとすること。
- d. 設置許可基準規則第16条第4項第三号
 使用済燃料が内包する放射性物質を適切に閉じ込めることができ、かつ、その機能を 適切に監視することができるものとすること。
- e. 設置許可基準規則解釈別記4第16条第5項

第16条第2項第1号ハ及び同条第4項各号を満たすため、兼用キャスクは、当該兼 用キャスクを構成する部材及び使用済燃料の経年変化を考慮した上で、使用済燃料の 健全性を確保する設計とすること。ここで、「兼用キャスクを構成する部材及び使用済 燃料の経年変化を考慮した上で、使用済燃料の健全性を確保する設計」とは、以下を満 たす設計をいう。

- ・設計貯蔵期間を明確にしていること。
- ・設計貯蔵期間中の温度、放射線等の環境条件下での経年変化を考慮した材料及び構造であること。

(2) 原子力発電所敷地内での輸送・貯蔵兼用乾式キャスクによる使用済燃料の貯蔵に関 する審査ガイド確認事項

「4.自然現象等に対する兼用キャスクの設計 4.5 材料・構造健全性」には、以下の ように記載されている。

【審査における確認事項】

ſ

設計貯蔵期間中の温度、放射線等の環境及び当該環境下での兼用キャスクの経年 変化に対して十分な信頼性を有する材料及び構造であること。また、貯蔵建屋を設置 しない場合には、雨水等により兼用キャスクの安全機能が喪失しないよう対策が講 じられていること。輸送荷姿等の緩衝体を装着した状態で貯蔵を行う場合は、緩衝体 の経年変化についても考慮していること。

]

【確認内容】

Γ

- (1) 安全機能を維持する上で重要な兼用キャスクの構成部材は、兼用キャスクの最低使用温度における低温脆性を考慮したものであること。また、設計貯蔵期間中の温度、放射線等の環境及び当該環境下での腐食、クリープ、応力腐食割れ等の経年変化の影響を、設計入力値(例えば、寸法、形状、強度及び材料物性値)又は設計基準値の算定に際し考慮していること。さらに、必要に応じて防食措置等が講じられていること。
- (2) 兼用キャスク内部の不活性環境を維持し、温度を制限される範囲に収めること により、兼用キャスクに収納される使用済燃料の経年変化を低減又は防止する設 計であること。

」

2. 要求事項への適合性

(1) 設置許可基準規則への適合性

Hitz-P24型の材料・構造健全性については、以下のとおり設置許可基準規則に適合している。

e. 設置許可基準規則解釈別記4第16条第5項

第16条第2項第1号ハ及び同条第4項各号を満たすため、兼用キャスクは、当該兼用キャスクを構成する部材及び使用済燃料の経年変化を考慮した上で、使用 済燃料の健全性を確保する設計とすること。ここで、「兼用キャスクを構成する部 材及び使用済燃料の経年変化を考慮した上で、使用済燃料の健全性を確保する設 計」とは、以下を満たす設計をいう。

- ・設計貯蔵期間を明確にしていること。
- ・設計貯蔵期間中の温度、放射線等の環境条件下での経年変化を考慮した材料及 び構造であること。

Hitz-P24型の設計貯蔵期間は 60 年である。

Hitz-P24型は、特定兼用キャスクの構成部材について、設計貯蔵期間中の温度、放射 線等の環境及びその環境下での腐食、クリープ、応力腐食割れ等の経年変化に対して十分 な信頼性のある材料を選定し、その必要とされる強度及び性能を維持することで使用済 燃料の健全性を確保する設計とする。表 1 に Hitz-P24 型の主要な構成部材の材質を示 す。

また、Hitz-P24型は、特定兼用キャスク本体内面、バスケット及び使用済燃料集合体 の腐食等を防止するために、使用済燃料収納時にその内部空間を真空乾燥し、使用済燃料 を不活性ガスであるヘリウムガスとともに封入する。さらに、特定兼用キャスク本体及び 蓋部表面の必要な箇所には、塗装等による防錆措置を講じる。

設計貯蔵期間中の温度、放射線等の環境及び当該環境下での腐食、クリープ、応力腐食 割れ等の経年変化要因に対する影響について、表 2 から表 4 に示す Hitz-P24 型の構成 部材及び使用済燃料(燃料被覆管)の温度及び放射線照射量を条件として、文献及び試験 データに基づき、別紙1に示す観点から経年変化に対する評価を行った。Hitz-P24 型の 主要な構成部材及び使用済燃料(燃料被覆管)の経年変化に対する評価結果を表 5 に示 す。また、評価に用いた参考文献の概要を別紙2に示す。評価結果より、経年変化要因に 対して、主要な構成部材の経年変化を考慮した上で、使用済燃料の健全性が維持されるこ とを確認した。 (2) 審査ガイドへの適合性

審査ガイドでは、兼用キャスクの有する安全機能(臨界防止機能、遮蔽機能、除熱機能 及び閉じ込め機能)に係る設計の基本方針の妥当性を確認することが定められており、 Hitz-P24型の材料・構造健全性については、以下の通り審査ガイドの確認内容に適合し ている。

〔確認内容〕

(1) 安全機能を維持する上で重要な兼用キャスクの構成部材は、兼用キャスクの最低使用温度における低温脆性を考慮したものであること。また、設計貯蔵期間中の温度、放射線等の環境及び当該環境下での腐食、クリープ、応力腐食割れ等の経年変化の影響を、設計入力値(例えば、寸法、形状、強度及び材料物性値)又は設計基準値の算定に際し考慮していること。さらに、必要に応じて防食措置等が講じられていること。

表 5 に示したとおり、構成部材には最低使用温度における低温脆性破壊のおそれがない材料を使用している。

また、表 5 に示した主要な構成部材の経年変化の影響については、安全機能評価にお ける設計入力値又は設計基準値として考慮し、安全機能が維持されることを確認してい る(補足説明資料 16-2「臨界防止機能に関する説明資料(MA035B-SC-E01)」、補足説 明資料 16-3「遮蔽機能に関する説明資料(MA035B-SC-D01)」、補足説明資料 16-4「除 熱機能に関する説明資料(MA035B-SC-B01)」、補足説明資料 16-5「閉じ込め機能に関 する説明資料(MA035B-SC-C01)」参照)。

なお、閉じ込め機能については、蓋間圧力を測定することにより閉じ込め機能を監視で きる設計としており、蓋間圧力を測定するための圧力センサ(圧力計)及び圧力センサケ ーブルは、蓋間圧力を維持した状態で圧力センサ及び圧力センサケーブルの保守及び交 換が可能な構造としている。蓋間圧力を維持することで、使用済燃料等を内封する空間を 外部と隔離している状態を維持できる設計としていることから、閉じ込め機能に係る長 期健全性は維持される(補足説明資料 16-5「閉じ込め機能に関する説明資料(MA035B-SC-C01)」参照)。

さらに、2.(1)設置許可基準規則への適合性に示したとおり、特定兼用キャスク本体 及び蓋部表面の必要な箇所には、塗装等による防錆措置を講じている。 〔確認内容〕

(2) 兼用キャスク内部の不活性環境を維持し、温度を制限される範囲に収めること により、兼用キャスクに収納される使用済燃料の経年変化を低減又は防止する設 計であること。

2.(1) 設置許可基準規則への適合性に示したとおり、Hitz-P24型は、特定兼用キャス ク本体内面、バスケット及び使用済燃料集合体の腐食等を防止するために、使用済燃料収 納時にその内部空間を真空乾燥し、使用済燃料を不活性ガスであるヘリウムガスと共に 封入する。さらに、表5に示すとおり、温度を制限される範囲に収めることにより、特定 兼用キャスクに収納する使用済燃料の健全性が維持される設計としている。

構成部材	材質
特定兼用キャスク本体	
月同	低合金鋼 (注1)
底板	低合金鋼 (注1)
外筒	炭素鋼 (注2)
底部中性子遮蔽材カバー	ステンレス鋼 ^(注 2)
下部端板	炭素鋼 (注2)
トラニオン	析出硬化系ステンレス鋼
伝熱フィン	銅
中性子遮蔽材(底部、側部)	樹脂(エポキシ系レジン)
バスケット	
バスケットプレート	アルミニウム合金
中性子吸収材	ほう素添加アルミニウム合金
補助遮蔽材兼中性子吸収材	ほう素添加ステンレス鋼
タイロッド	析出硬化系ステンレス鋼
固定金具	ステンレス鋼
蓋部	
一次蓋	低合金鋼 (注3)
蓋部中性子遮蔽材カバー	ステンレス鋼
二次蓋	炭素鋼 (注3)
一次蓋ボルト	ニッケルクロムモリブデン鋼 ^(注4)
二次蓋ボルト	ニッケルクロムモリブデン鋼 ^(注4)
中性子遮蔽材 (蓋部)	樹脂(エポキシ系レジン)
金属ガスケット	ニッケル基合金/アルミニウム合金
(注記)経年劣化に対する評価の結果、腐1	食による影響がないものは防錆措置を講じる必要
はない。	
(注1) 防錆措置として、胴の表面のうち	、一次蓋及び二次蓋との接触面は
を、胴及び底板の内面に	は を、 胴及び底板の外面のうち
大気に触れる部分については塗装	を施す。
(注2) 防錆措置として、外筒及び下部端	歳板及び底部中性子遮蔽材カバーの外表面には塗
装を施す。	
(注3) 防錆措置として、一次蓋及び二次	蓋のうち、胴との接触面は
を、二次蓋の外面には塗装を施	す。また、その他の表面には
施す。	
(注4) 防錆措置として、一次蓋ボルト及	び二次蓋ボルトの表面にはメッキを施す。
	内は高変地変のたみ 北八間しし
新複製・転載禁止 日立造船株式会社	

表1 Hitz-P24型の主要な構成部材の材質

部材	最高温度 (℃) (注1)
用同	132
底板	156
外筒	121
下部端板	122
一次蓋	124
二次蓋	102
蓋部中性子遮蔽材カバー	103
底部中性子遮蔽材カバー	130
一次蓋ボルト	108
二次蓋ボルト	102
中性子遮蔽材(蓋部、側部、底部)(注2)	138
金属ガスケット	107
バスケットプレート	171
中性子吸収材	171
補助遮蔽材兼中性子吸収材	171
タイロッド	171
固定金具	171
伝熱フィン	129
トラニオン	129
使用済燃料 (燃料被覆管)	203

表 2 Hitz-P24 型の主要な構成部材及び使用済燃料の温度条件

(注1) 除熱解析(補足説明資料16-4「除熱機能に関する説明資料(MA035B-SC-B01)」 参照)から得られた結果を示す。

(注2) 蓋部、側部及び底部の中性子遮蔽材のうちの最も高い温度を示す。

立77 大才	中性子照射量 (注1)			
руда 	(n/cm^2)			
胴及び底板	5.0×10^{14}			
外筒 (注2)	5.0×10^{14}			
下部端板 (注2)	5.0×10^{14}			
トラニオン ^(注 2)	$5.0 imes 10^{14}$			
蓋部 (注 3)	1.8×10^{14}			
底部中性子遮蔽材カバー (注2)	5.0×10^{14}			
中性子遮蔽材 (蓋部、側部、底部) (注4)	5.0×10^{14}			
バスケット ^(注5)	1.3×10^{15}			
伝熱フィン ^(注2)	5.0×10^{14}			
使用済燃料 (燃料被覆管)	1.3×10^{15}			

表3 Hitz-P24型の主要な構成部材及び使用済燃料の中性子照射量

(注1) 遮蔽解析(補足説明資料 16-3「遮蔽機能に関する説明資料(MA035B-SC-D01)」 参照)から得られた貯蔵初期の中性子束が 60 年間一定であると仮定して算出した 値。

- (注2) 外筒、下部端板、トラニオン、底部中性子遮蔽材カバー及び伝熱フィンの中性子照 射量は、保守的に胴の値と同じとした。
- (注3) 一次蓋、二次蓋、蓋部中性子遮蔽材カバー、一次蓋ボルト、二次蓋ボルト及び金属 ガスケットを含む。
- (注4) 蓋部、側部及び底部の中性子照射量は、保守的にそれぞれ蓋部、胴及び底板の値と 同じとし、この中で最も大きいところを選定した。
- (注5) 中性子吸収材、補助遮蔽材兼中性子吸収材、固定金具及びタイロッドを含む。

無断複製·転載禁止 日立造船株式会社

部材	照射量 ^(注1) (Gy)		
中性子遮蔽材(蓋部、側部、底部)	3.0×10^4		

表 4 Hitz-P24 型の中性子遮蔽材に対する照射量

(注1) 構造材放射化ガンマ線のみ、設計貯蔵期間 60 年間における減衰を考慮して算出した値。その他の線種については貯蔵初期の値が 60 年間一定であると仮定した。

無						
斤複製			表 5 Hitz-P24 型	型の主要な構成部材及び使用済燃料の経年変化に	対する評価について	(1/8)
ず	部材及び材質	要因	主な評価の観点	各部材の材質に対する経年変化に係わるデータ	設計条件	評価
載禁止 日立造船株式	胴(内面、中性子遮蔽 材接触部)、底板(内 面、中性子遮蔽材接触 部)、外筒(内面)、下 部端板(内面)、一次 蓋、二次蓋(内面)、一 次蓋ボルト 【材質】 低合金鋼 炭素鋼	腐食	 構造強度: 腐食による構造 強度の低下 	 ・1%燃料破損相当の燃料棒内ガス中のヨウ素ガスを 含む実機模擬環境における、鉄系材料の最大腐食速 度により、60年間の腐食量を保守的に推定しても 0.5mm程度⁽¹⁾である。 	使用環境: ・ヘリウム雰囲気 ・中性子遮蔽材と接 触	 ・胴(内面)、底板(内面)、一次蓋、二次蓋(内面) 及び一次蓋ボルトは、不活性雰囲気が維持される 限り、腐食しない。仮に1%燃料破損相当の燃料 棒内ガスの存在を考慮しても、胴(内面)の腐食 による構造強度への影響はない。 ・胴(中性子遮蔽材接触部)、底板(中性子遮蔽材 接触部)及び外筒(内面)は、中性子遮蔽材充填空間 は閉鎖環境にあり、酸素が連続的に供給されない ため、腐食による構造強度への影響はない。
之 会社 10	ニッケルクロムモリフ゛テ゛ン 3両	熱	 ●構造強度: 熱による亀裂・ 破損 	 ・金属キャスク構造規格⁽²⁾(設計・建設規格(2007年 追補版)⁽³⁾)では、-30℃から350℃までの設計用強 度が規定されている。 ・クリープによる変形を考慮すべき温度(融点[絶対温 度]の1/3に相当)は約300℃以上^{(4)、(5)}。 ・ニッケルクロムモリフ[*] デ[*]ン鋼は-20℃において低温脆性破壊の おそれはない⁽⁶⁾。低合金鋼及び炭素鋼は金属キャス ク構造規格⁽²⁾の靭性要求を満足するように製造する ため、-20℃において低温脆性破壊のおそれはない。 	使用環境温度: -20~160℃	 ・設計用強度が規定されており、熱により亀裂・破 損することはない温度範囲で使用するため、構造 強度への影響はない。 ・使用環境温度は300℃よりも十分低く、クリープ を考慮する必要はないため、構造強度への影響は ない。
		照射	 ●構造強度: 照射による機械 的特性の変化 	 ・中性子照射量が 10¹⁶n/cm² までは、顕著な機械的特 性変化は認められない⁽⁷⁾。 	中性子照射量: 5.0×10 ¹⁴ n/cm ² 以下 (60 年間一定)	 ・中性子照射量は機械的特性に変化が認められる 値以下であり、構造強度への影響はない。
	 胴(外面)、底板(外 面)、外筒(外面)、下 部端板(外面)、二次蓋 (外面)、二次蓋ボルト 	腐食	 構造強度: 腐食による構造 強度の低下 	 ・各種金属材料の 16 年間の海浜大気曝露試験結果から、最も定常腐食速度の大きい炭素鋼のデータ(21µm/年)で 60 年間の腐食量を推定しても1.26mm 程度⁽⁸⁾である。 	使用環境: ・外気(海塩粒子雰 囲気) ・結露水	 ・胴(外面)、底板(外面)、外筒(外面)、下部端板(外面)、二次蓋(外面)及び二次蓋ボルトは、防錆処理により腐食しない。
	【材質】 低合金鋼 炭素鋼 ニッケルクロムモリブ・デッン鋼	熱	 ●構造強度: 熱による亀裂・ 破損 	 ・金属キャスク構造規格⁽²⁾(設計・建設規格(2007年 追補版)⁽³⁾)では、-30℃から350℃までの設計用強 度が規定されている。 ・クリープによる変形を考慮すべき温度(融点[絶対温 度]の1/3に相当)は約300℃以上^{(4)、(5)}。 ・ニッケルクロムモリブデン鋼は-20℃において低温脆性破壊の おそれはない⁽⁶⁾。低合金鋼及び炭素鋼は金属キャス ク構造規格⁽²⁾の靭性要求を満足するように製造する ため、-20℃において低温脆性破壊のおそれはない。 	使用環境温度: -20~160℃	 ・設計用強度が規定されており、熱により亀裂・破損することはない温度範囲で使用するため、構造強度への影響はない。 ・使用環境温度は300℃よりも十分低く、クリープを考慮する必要はないため、構造強度への影響はない。
		照射	 ●構造強度: 照射による機械 的特性の変化 	 ・中性子照射量が 10¹⁶n/cm² までは、顕著な機械的特 性変化は認められない⁽⁷⁾。 	中性子照射量: 5.0×10 ¹⁴ n/cm ² 以下 (60 年間一定)	 ・中性子照射量は機械的特性に変化が認められる 値以下であり、構造強度への影響はない。

無断複製			表 5 Hitz-P24型	型の主要な構成部材及び使用済燃料の経年変化に	対する評価について	· (2/8)
· 费	部材及び材質	要因	主な評価の観点	各部材の材質に対する経年変化に係わるデータ	設計条件	評価
載禁止 日	 蓋部中性子遮蔽材カバ 一(外面)、固定金具 【材質】 ステンレス鋼 	腐食	 ●構造強度: 腐食による構造 強度の低下 	 ・1%燃料破損相当の燃料棒内ガス中のヨウ素ガスを 含む実機模擬環境における、鉄系材料(ステンレス 鋼)の最大腐食速度により、60年間の腐食量を推定 しても10µm 程度⁽¹⁾である。 	使用環境: ・ヘリウム雰囲気	 ・蓋部中性子遮蔽材カバー(外面)及び固定金具は、 不活性雰囲気が維持される限り腐食しない。仮に 1%燃料破損相当の燃料棒内ガスの存在を考慮し ても、蓋部中性子遮蔽材カバー及び固定金具の腐 食による構造強度への影響はない。
立造船株式会		熱	 ●構造強度: 熱による亀裂・ 破損 	 ・金属キャスク構造規格⁽²⁾(設計・建設規格(2007年 追補版)⁽³⁾)では、-30℃から425℃までの設計用強 度が規定されている。 ・クリープによる変形を考慮すべき温度(融点[絶対温 度]の1/3に相当)は約280℃以上⁽⁴⁾。 ・-20℃において低温脆性破壊のおそれはない⁽⁶⁾。 	使用環境温度: −20~180℃	 ・設計用強度が規定されており、熱により亀裂・破損することはない温度範囲で使用するため、構造強度への影響はない。 ・使用環境温度は280℃よりも十分低く、クリープを考慮する必要はないため、構造強度への影響はない。
祥		照射	 ●構造強度: 照射による機械 的特性の変化 	 ・中性子照射量が 10¹⁷n/cm² までは、顕著な機械的特 性変化は認められない⁽⁹⁾。 	中性子照射量: 1.3×10 ¹⁵ n/cm ² 以下 (60年間一定)	・中性子照射量は、機械的特性に変化が認められる 値以下であり、構造強度への影響はない。
11	 蓋部中性子遮蔽材カバ 一(内面)、底部中性子 遮蔽材カバー(内面) 【材質】 ステンレス鋼 	腐食	 ●構造強度: 腐食による構造 強度の低下 	 ・各種金属材料の16年間の海浜大気曝露試験結果から、ステンレス鋼のデータ(0.25µm/年)で60年間の腐食量を推定しても15µm程度⁽⁸⁾である。 ・ステンレス鋼は軽水炉の一次冷却水である純水又はほう酸水に浸漬された場合において、実用上問題になるような腐食を生じない⁽¹⁰⁾。 	使用環境: ・中性子遮蔽材と接 触 ・閉鎖環境(閉鎖時 は大気)	 ステンレス鋼は大気に対して問題となるような 腐食は生じない。 - 蓋部中性子遮蔽材カバー(内面)及び底部中性子 遮蔽材カバー(内面)は、中性子遮蔽材と接して おり、中性子遮蔽材の熱劣化により水が生じる が、ステンレス鋼は耐食性に優れていることに加 え、中性子遮蔽材充填領域は閉鎖環境にあり、酸 素が連続的に供給されないため、腐食による構造 強度への影響はない。
		熱	 ●構造強度: 熱による亀裂・ 破損 	 ・金属キャスク構造規格⁽²⁾(設計・建設規格(2007年 追補版)⁽³⁾)では、-30℃から425℃までの設計用強 度が規定されている。 ・クリープによる変形を考慮すべき温度(融点[絶対温 度]の1/3に相当)は約280℃以上⁽⁴⁾。 ・-20℃において低温脆性破壊のおそれはない⁽⁶⁾。 	使用環境温度: -20~140℃	 ・設計用強度が規定されており、熱により亀裂・破損することはない温度範囲で使用するため、構造強度への影響はない。 ・使用環境温度は280℃よりも十分低く、クリープを考慮する必要はないため、構造強度への影響はない。
		照射	 ●構造強度: 照射による機械 的特性の変化 	 ・中性子照射量が 10¹⁷n/cm² までは、顕著な機械的特 性変化は認められない⁽⁹⁾。 	中性子照射量: 5.0×10 ¹⁴ n/cm ² 以下 (60年間一定)	・中性子照射量は、機械的特性に変化が認められる 値以下であり、構造強度への影響はない。

無断複製・			表 5 Hitz-P24 型	型の主要な構成部材及び使用済燃料の経年変化に	対する評価について	(3/8)
费	部材及び材質	要因	主な評価の観点	各部材の材質に対する経年変化に係わるデータ	設計条件	評価
載禁止	底部中性子遮蔽材カバ ー (外面) 【材質】 ステンレス鋼	腐食	 構造強度: 腐食による構造 強度の低下 	 ・各種金属材料の 16 年間の海浜大気曝露試験結果から、ステンレス鋼のデータ(0.25µm/年)で60年間の腐食量を推定しても15µm程度⁽⁸⁾である。 	使用環境: ・外気(海塩粒子雰 囲気) ・結露水	 ・ステンレス鋼は大気に対して問題となるような 腐食は生じない。 ・底部中性子遮蔽材カバー(外面)は、防錆処理に より腐食しない。
日立造船株式		熱	 ●構造強度: 熱による亀裂・ 破損 	 ・金属キャスク構造規格⁽²⁾(設計・建設規格(2007年 追補版)⁽³⁾)では、-30℃から425℃までの設計用強 度が規定されている。 ・クリープによる変形を考慮すべき温度(融点[絶対温 度]の1/3に相当)は約280℃以上⁽⁴⁾。 ・-20℃において低温脆性破壊のおそれはない⁽⁶⁾。 	使用環境温度: -20~140℃	 ・設計用強度が規定されており、熱により亀裂・破損することはない温度範囲で使用するため、構造強度への影響はない。 ・使用環境温度は280℃よりも十分低く、クリープを考慮する必要はないため、構造強度への影響はない。
治会社		照射	 ●構造強度: 照射による機械 的特性の変化 	 ・中性子照射量が 10¹⁷n/cm² までは、顕著な機械的特 性変化は認められない⁽⁹⁾。 	中性子照射量: 5.0×10 ¹⁴ n/cm ² 以下 (60年間一定)	・中性子照射量は、機械的特性に変化が認められる 値以下であり、構造強度への影響はない。
	トラニオン 【材質】 析出硬化系ステンレ ス鋼	腐食	 ●構造強度: 腐食による構造 強度の低下 	・0.2%耐力相当の応力を負荷した条件における海浜環 境での長期曝露試験において、応力腐食割れに対す る高い耐食性が確認された ⁽¹¹⁾ 。	 使用環境: ・外気(海塩粒子雰囲気) ・結露水 	 ・実機より厳しい使用環境(応力及び雰囲気)においても応力腐食割れに対する高い耐食性を有し、 腐食による構造強度への影響はない。
12		熱	 ●構造強度: 熱による亀裂・ 破損 	 ・金属キャスク構造規格⁽²⁾(設計・建設規格(2007年 追補版)⁽³⁾)では、-30℃から350℃までの設計用強 度が規定されている。 ・クリープによる変形を考慮すべき温度(融点[絶対温 度]の1/3に相当)は約280℃以上⁽⁴⁾。 ・金属キャスク構造規格⁽²⁾の靭性要求を満足するよう に製造するため、-20℃において低温脆性破壊のお それはない。 	使用環境温度: -20~130℃	 ・設計用強度が規定されており、熱により亀裂・破損することはない温度範囲で使用するため、構造強度への影響はない。 ・使用環境温度は280℃よりも十分低く、クリープを考慮する必要はないため、構造強度への影響はない。
		照射	 ●構造強度: 照射による機械 的特性の変化 	 ・中性子照射量が 10¹⁷n/cm² までは、顕著な機械的特 性変化は認められない⁽⁹⁾。 	中性子照射量: 5.0×10 ¹⁴ n/cm ² 以下 (60 年間一定)	・中性子照射量は、機械的特性に変化が認められる 値以下であり、構造強度への影響はない。

無断複製・			表 5 Hitz-P24 型	型の主要な構成部材及び使用済燃料の経年変化に	対する評価について	(4/8)
费	部材及び材質	要因	主な評価の観点	各部材の材質に対する経年変化に係わるデータ	設計条件	評価
;載禁止 日立造船梯	伝熱フィン 【材質】 銅	腐食	 ●除熱機能: 腐食による亀 裂・破損 	 ・胴(低合金鋼)-外筒(炭素鋼)の閉鎖環境であり、 銅の電極電位は鉄に比べて高く、イオン化傾向の低 い金属であるため、銅は腐食しない⁽¹²⁾。 ・密閉静止した淡水環境における、銅が接続された鋼 の腐食試験において、腐食速度は鋼単体の場合と同 程度⁽¹³⁾。 	使用環境: ・胴と外筒間の閉鎖 環境 ・中性子遮蔽材と接 触	 ・銅に比べて鉄はイオン化傾向の高い金属であり、 炭素鋼及び低合金鋼が選択的に腐食されること から、伝熱フィンが亀裂・破損することはない。 また、中性子遮蔽材の熱劣化により水が生じる が、中性子遮蔽材充填空間は閉鎖環境にあり、酸 素が連続的に供給されないため、伝熱フィンと胴 及び外筒との接合部において異種金属接触によ る腐食促進の影響は小さく、除熱性能への影響は ない。
式会社		熱	 ●除熱機能: 熱による亀裂・ 破損 	 ASME Boiler & Pressure Vessel Code Section II Materials Part D-Properties⁽¹⁴⁾では、200℃までの設計用強度が規定されている。 	使用環境温度: -20~130℃	・使用環境温度は 200℃よりも低く、熱により亀 裂・破損することはないため、除熱機能への影響 はない。
Ľ.		照射	 ●除熱機能: 照射による亀 裂・破損 	 ・中性子照射量が 10¹⁶n/cm² までは、顕著な機械的特 性変化は認められない⁽¹⁵⁾。 	中性子照射量: 5.0×10 ¹⁴ n/cm ² 以下 (60年間一定)	・中性子照射量は、機械的特性に変化が認められる 値以下であり、除熱機能への影響はない。

無断複製·			表 5 Hitz-P24 型	型の主要な構成部材及び使用済燃料の経年変化に	対する評価について	(5/8)
惯	部材及び材質	要因	主な評価の観点	各部材の材質に対する経年変化に係わるデータ	設計条件	評価
載禁止 日立造船株式会社 14	バスケットプレート 【材質】 アルミニウム合金	腐食	 ●構造強度: 腐食による構造 強度の低下 	 ・キャスク内部に残留する酸素量が全てバスケットの 腐食に費やされたとして評価しても、腐食量は 1µm 以下であり、1%燃料破損相当の燃料棒内ガス中のヨ ウ素ガスを含む実機模擬環境においても表面の酸化 被膜が維持され母材の腐食を防止する⁽¹⁾。 ・使用済燃料収納時における使用済燃料プール水(ほう酸水)による腐食量は 0.127mm/年以下⁽⁸⁾。 	使用環境: ・ヘリウム雰囲気	 ・不活性雰囲気が維持される限り、腐食しない。仮に1%燃料破損相当の燃料棒内ガス中のヨウ素ガスの存在を考慮しても、構造強度への影響はない。 ・使用済燃料収納時に使用済燃料プール水中に置かれる期間は最大でも数日程度であり、腐食による構造強度への影響はない。
		熱	●構造強度: 熱による亀裂・ 破損	 バスケットプレートに用いるアルミニウム合金は40℃から250℃までの温度において、設計貯蔵期間中の熱による材料特性変化を考慮した材料特性試験データに基づき設計用強度を設定。 バスケットプレートに用いるアルミニウム合金は、クリープひずみが0.1%から1.0%程度の範囲において、クリープひずみが材料の機械的特性に影響を与えることはない⁽¹⁾。 設計貯蔵期間経過後のクリープ歪みが0.1%となるためには10MPa以上の応力が必要。 初期材及び設計貯蔵期間中の熱による材料変化を考慮した材料においても、-40℃において低温脆性破壊のおそれはない。 	使用環境温度: -20~180℃	 ・設計用強度が規定されており、熱により亀裂・破損することはない温度範囲で使用するため、構造強度への影響はない。 ・貯蔵中にバスケットプレートに発生する応力は1MPa以下であり、クリープ歪による構造強度への影響はない。
		照射	 ●構造強度: 照射による機械 的特性の変化 	 ・中性子照射量が10¹⁹n/cm²までは、顕著な機械的特性 変化は認められない^{(16)、(17)、(18)}。 	中性子照射量: 1.3×10 ¹⁵ n/cm ² 以下 (60 年間一定)	・中性子照射量は、機械的特性に変化が認められる 値以下であり、構造強度への影響はない。
	タイロッド 【材質】 析出硬化系ステンレ ス鋼	腐食	 ●構造強度: 腐食による構造 強度の低下 	 ・1%燃料破損相当の燃料棒内ガス中のヨウ素ガスを 含む実機模擬環境における、鉄系材料(ステンレス 鋼)の最大腐食速度により、60年間の腐食量を推定 しても10µm 程度⁽¹⁾である。 	使用環境: ・ヘリウム雰囲気	・タイロッドは、不活性雰囲気が維持される限り腐 食しない。仮に1%燃料破損相当の燃料棒内ガス の存在を考慮しても、タイロッドの腐食による構 造強度への影響はない。
		熱	 ●構造強度: 熱による亀裂・ 破損 	 ・金属キャスク構造規格⁽²⁾(設計・建設規格(2007年 追補版)⁽³⁾)では、-30℃から350℃までの設計用強 度が規定されている。 ・クリーブによる変形を考慮すべき温度(融点[絶対温 度]の1/3に相当)は約280℃以上⁽⁴⁾。 ・金属キャスク構造規格⁽²⁾の靭性要求を満足するよう に製造するため、-20℃において低温脆性破壊のお それはない。 	使用環境温度: -20~180℃	 ・設計用強度が規定されており、熱により亀裂・破損することはない温度範囲で使用するため、構造強度への影響はない。 ・使用環境温度は280℃よりも十分低く、クリープを考慮する必要はないため、構造強度への影響はない。
		照射	 ●構造強度: 照射による機械 的特性の変化 	 ・中性子照射量が 10¹⁷n/cm² までは、顕著な機械的特 性変化は認められない⁽⁹⁾。 	中性子照射量: 1.3×10 ¹⁵ n/cm ² 以下 (60 年間一定)	・中性子照射量は、機械的特性に変化が認められる 値以下であり、構造強度への影響はない。

無断複製			表 5 Hitz-P24 型	型の主要な構成部材及び使用済燃料の経年変化に	対する評価について	. (6/8)
· 费	部材及び材質	要因	主な評価の観点	各部材の材質に対する経年変化に係わるデータ	設計条件	評価
載禁止 日立造船株式	 中性子吸収材 【材質】 ほう素添加アルミニ ウム合金 	腐食	●臨界防止機能: 腐食による臨界 防止機能の低下	 ・中性子吸収材内に存在する炭化ほう素は耐化学薬品 性も大きいことから、酸・アルカリに侵されること はない⁽¹⁹⁾。 ・キャスク内部に残留する酸素量が全てバスケットの 腐食に費やされたとして評価しても、腐食量は 1µm 以下であり、1%燃料破損相当の燃料棒内ガス中のヨ ウ素ガスを含む実機模擬環境においても表面の酸化 被膜が維持され母材の腐食を防止する⁽¹⁾。 ・使用済燃料収納時における使用済燃料プール水(ほう酸水)による腐食量は 0.127mm/年以下⁽⁸⁾。 	使用環境: ・ヘリウム雰囲気	 ・不活性雰囲気が維持される限り、腐食しない。仮に1%燃料破損相当の燃料棒内ガス中のヨウ素ガスの存在を考慮しても、臨界防止機能への影響はない。 ・使用済燃料収納時に使用済燃料プール水中に置かれる期間は最大でも数日程度であり、腐食による臨界防止機能への影響はない。
会社		熱	 ●臨界防止機能: 熱による臨界防止機能の低下 	 ・中性子吸収材内に存在する炭化ほう素の融点は 2000℃以上であり、熱に対して安定性を有している ⁽¹⁹⁾。 ・アルミニウム及びアルミニウム合金の融点は約 600℃である⁽⁸⁾。 	使用環境温度: −20~180℃	 ・炭化ほう素は使用環境温度に対して熱的に安定 であり、臨界防止機能への影響はない。 ・使用環境温度は600℃よりも十分低く、臨界防止 機能への影響はない。
15		照射	 ●臨界防止機能: 照射による臨界 防止機能の低下 	 ¹⁰Bの60年の設計貯蔵期間中の減損割合は、保守的に 全中性子束を用いて評価しても10⁻⁵程度。 ・中性子照射量が10¹⁹n/cm²以下では未照射材の機械 的特性に対して有意な差がなく、照射の影響を考慮 する必要はない。また、照射影響に対するほう素含 有量による影響は見られない⁽²⁰⁾。 	中性子照射量: 1.3×10 ¹⁵ n/cm ² 以下 (60 年間一定)	・ ¹⁰ Bの減損割合は無視でき、また、中性子照射量 は機械的特性に変化が認められる値以下である ため、臨界防止機能への影響はない。
	補助遮蔽材兼中性子吸収 材 【材質】 ほう素添加ステンレ ス鋼	腐食	●臨界防止機能: 腐食による臨界 防止機能の低下	 ・1%燃料破損相当の燃料棒内ガス中のヨウ素ガスを含む実機模擬環境における、ほう素添加ステンレス鋼の最大腐食速度により、60年間の腐食量を推定しても30µm程度⁽¹⁾である。 ・ステンレス鋼は軽水炉の一次冷却水である純水又はほう酸水に浸漬された場合において実用上問題になるような腐食を生じない⁽¹⁰⁾。 	使用環境: ・ヘリウム雰囲気	 ・不活性雰囲気が維持される限り、腐食しない。仮に1%燃料破損相当の燃料棒内ガス中のヨウ素ガスの存在を考慮しても、臨界防止機能への影響はない。 ・使用済燃料収納時に使用済燃料プール水中に置かれる期間は最大でも数日程度であり、腐食による臨界防止機能への影響はない。
		熱	 ●臨界防止機能: 熱による臨界防止機能の低下 	・ステンレス鋼の融点は約 1400℃である ⁽⁴⁾ 。	使用環境温度: -20~180℃	・使用環境温度は1400℃よりも十分低く、臨界防 止機能への影響はない。
		照射	●臨界防止機能: 照射による臨界 防止機能の低下	 ¹⁰Bの60年の設計貯蔵期間中の減損割合は、保守的に 全中性子束を用いて評価しても10⁻⁵程度。 ・中性子照射量が10¹⁷n/cm²以下では未照射材の機械 的特性に対して有意な差がなく、照射の影響を考慮 する必要はない。また、照射影響に対するほう素含 有量による影響は見られない⁽²¹⁾。 	中性子照射量: 1.3×10 ¹⁵ n/cm ² 以下 (60年間一定)	・ ¹⁰ Bの減損割合は無視でき、また、中性子照射量 は機械的特性に変化が認められる値以下である ため、臨界防止機能への影響はない。

無断複			≠ 5 U:4- D04 ₹	別の之西な進代如けひびは田汝姆約の奴左亦ルに	サナス証在について	(7/0)
×=	++ \VI	щШ	太う Hitz-P24 空	2の主要な構成部材及い使用消燃料の経中変化に	対する評価について	(1/8)
盟		安囚	土な評価の観点	谷部材の材質に対する経年変化に係わるテータ		ā¥1曲
載禁止 日立造	金属カスケット 【材質】 ニッケル基合金、アル ミニウム合金	腐食	 ●閉じ込め機能: 腐食による閉じ 込め機能の低下 	 ・金属ガスケットの外皮のアルミニウム合金は外気に 触れることになるが、各種金属材料の 16 年間の海 浜大気曝露試験結果から、アルミニウム合金のデー タ(0.25µm/年)で60年の腐食を推定しても15µm (8)程度である。 ・蓋部縮小モデルにおける3年間の塩水噴霧試験では、 漏えい率に変化はない⁽²²⁾。 	使用環境: 一次蓋、二次蓋内側: ・ヘリウム雰囲気 二次蓋外側: ・外気(海塩粒子 雰囲気) ・結露水	 一次蓋の金属ガスケット及び二次蓋の金属ガス ケット内側は、不活性雰囲気が維持される限り、 腐食しない。 二次蓋の金属ガスケット外側は、実機の使用環境 より厳しい塩水噴霧環境においても漏えい率に 変化はなく、閉じ込め機能への影響はない。
皆船株式会社		熱	 ●閉じ込め機能: 熱による閉じ込め機能の低下 	 ・初期の閉じ込め機能(1×10⁻¹⁰Pa・m³/s以下)を保持できる限界ラーソン・ミラー・パラメータ(LMP)は、定数 C=20 の場合は 11.0×10^{3 (23)}、定数 C=14 の場合は約 8.0×10^{3 (24)}(別紙 3 参照)。 ・長期密封性能試験において 130℃~140℃(19 年以上)で閉じ込め性能維持⁽²⁵⁾(別紙 3 参照)。 	使用環境温度: -20~110℃	・一次蓋の金属ガスケットは、貯蔵期間中に胴内の 負圧を維持するための境界として使用する。二次 蓋の金属ガスケットは、輸送中の防水機能を有す る境界として使用する。使用環境温度から設計貯 蔵期間(60年間)に相当する LMP を算出する と、定数 C=20 の場合は約 9.6×10 ³ 、定数 C=14 の場合は約 7.3×10 ³ となり、設計貯蔵期間を通じ て初期の漏えい率が維持されると判断される。
16		照射	 ●閉じ込め機能: 照射による機械 的特性の変化 	 ・ニッケル基合金は中性子照射量が 10¹⁷n/cm² 程度以下では、顕著な機械的特性の変化は認められない⁽²⁶⁾。 ・アルミニウム合金は中性子照射量が 10¹⁹n/cm² 程度以下では、顕著な機械的特性の変化は認められない⁽¹⁸⁾。 	中性子照射量: 1.8×10 ¹⁴ n/cm ² 以下 (60年間一定)	・中性子照射量は、各材料の機械的特性に変化が認められる値以下であり、閉じ込め機能への影響はない。
	中性子遮蔽材 【材質】 樹脂(エポキシ系レジ ン)	腐食・熱	 ・遮蔽機能: 留量減損の有無 ・遮蔽機能: 質量減損の有無 	 (独) 原子力安全基盤機構「平成 14 年度リサイクル 燃料資源貯蔵技術調査等(金属キャスク貯蔵技術確 証試験)報告書」⁽²⁷⁾に記載されているデータ及び熱 解析結果に基づき、熱による設計貯蔵期間経過後の 中性子遮蔽材の質量減損率は、側部中性子遮蔽材で約 1.5%、蓋部中性子遮蔽材で約 1.2%、底部中性子 遮蔽材で約 1.9%と評価(別紙 4 参照)。 ・中性子遮蔽材である樹脂は、10¹⁵n/cm²程度の中性子 照射量、又は約 4×10⁴Gy 程度のガンマ線照射量が、 質量減損に影響を与えることはない⁽¹⁾。 	使用環境: ・閉鎖環境 使用環境温度: -20~140℃ 放射線照射量: 5.0×10 ¹⁴ n/cm ² 以下 (60 年間一定)	 ・遮蔽評価では、設計貯蔵期間及び使用環境温度を 考慮した質量減損を評価したうえで、これに余裕 を加えて、側部中性子遮蔽材では 1.6%、蓋部中 性子遮蔽材では 1.4%、底部中性子遮蔽材では 2.0%の質量減損があるものとし、中性子遮蔽材 の原子個数密度を保守的に設定して、これを考慮 して評価を行っている。 ・照射中加熱試験は設計条件を超える照射量で行 っており、照射による質量減損を考慮する必要は ない。
		照射			3.0×10 ⁴ Gy 以下 (構造材放射化ガン マ線のみ減衰を考 慮)	

泄	表 5 Hitz-P24 型の主要な構成部材及び使用済燃料の経年変化に対する評価について(8/8)					(8/8)
調	材 料	要因	主な評価の観点	各部材の材質に対する経年変化に係わるデータ	設計条件	評価
載禁止	燃料被覆管 【材質】 ジルカロイ	腐食	 ●腐食による亀 裂・破損 	 ・残存水分が10wt%以下の不活性雰囲気にある燃料被 覆管の酸化量及び水素吸収量は無視できる程度である⁽²⁰⁾。 	使用環境: ・ヘリウム雰囲気	・燃料被覆管は、不活性雰囲気が維持される限り腐 食による影響はなく、亀裂・破損は生じない。
日立造船株式会社 17		熱	 ●熱による亀裂・ 破損 	 ・熱による経年変化としては、クリープひずみの進行による燃料被覆管の破損、照射硬化の回復による燃料被覆管強度の低下、及び燃料被覆管中の水素化物再配向による燃料被覆管の脆化について評価する必要がある⁽²⁸⁾。 ・クリープひずみの進行による燃料被覆管の破損については、クリープ予測式に基づく累積クリープひずみが 1%以下となるよう制限することで燃料被覆管の破損を防止できる⁽²⁸⁾。以下に示す燃料被覆管の水素化物再配向に係る制限範囲では、累積クリープひずみが 1%を超えることはない。 ・国内の軽水炉で照射された PWR 燃料集合体の燃料被覆管を用いた照射硬化回復試験の結果では、硬化の回復のしきい値は 300℃近傍である⁽²⁸⁾。しきい値以下であれば照射硬化の回復の可能性は小さく、燃料被覆管を用いた水素化物再配向試験及び機械的特性試験の結果、被覆管周方向機械的特性が低下しない燃料被覆管の温度が 275℃以下、周方向応力が100MPa以下となめられており、燃料被覆管温度と周方向応力を制限することによって、機械的特性の劣化を防止できる⁽²⁸⁾。 ・応力腐食割れについては、燃料ペレットの温度上昇による腐食性核分裂生成ガスの放出はなく、また、原子炉運転中に燃料ペレットから放出されたよう素はヨウ化セシウムとして安定に存在することから応力腐食割れが発生する化学的雰囲気となっていない⁽²⁸⁾。 	使用環境温度: -20~210℃	 ・熱による経年変化要因のうち、燃料被覆管中の水素化物再配向を防止することにより、他の発生も同時に防ぐことができる。設計貯蔵期間中の燃料被覆管の温度及び周方向応力は 275℃及び 100MPa を超えないことから、熱による影響はなく、亀裂・破損は生じない。
		照射	 ● 照射による亀 裂・破損 	 ・ジルコニウム合金は、中性子照射量が炉内の中性子 照射量(10²¹~10²²n/cm²)に対して十分低い場合、 照射の影響は無視できる程度である⁽²⁸⁾。 	中性子照射量: 1.3×10 ¹⁵ n/cm ² 以下 (60 年間一定)	 ・中性子照射量は機械的特性に変化が認められる 値以下であり、亀裂・破損は生じない。

無断複製

- 3. 参考文献
- (独)原子力安全基盤機構、「平成15年度 金属キャスク貯蔵技術確証試験 報告
 書 最終報告」、(2004)
- (2) (社)日本機械学会、「使用済燃料貯蔵施設規格 金属キャスク構造規格(2007 年版)(JSME S FA1-2007)」、(2007)
- (3) (社)日本機械学会、「発電用原子力設備規格 設計・建設規格(2005年版(2007年追補版含む))<第1編 軽水炉規格>(JSMESNC1-2005/2007)」、(2007)
- (4) ステンレス協会、「ステンレス鋼便覧(第3版)」、日刊工業新聞社、(1995)
- (5) (社)日本金属学会、「金属便覧(改訂6版)」、丸善(株)、(2000)
- (6) (一社)日本原子力学会、「使用済燃料・混合酸化物新燃料・高レベル放射性廃棄物 輸送容器の安全設計及び検査基準:2013(AESJ-SC-F006:2013)」、(2014)
- (7) K. Farrell, et al., "An evaluation of low temperature radiation embrittlement mechanisms in ferritic alloys", Journal of Nuclear Materials, Vol.210, (1994)
- (8) (社)日本アルミニウム協会、「アルミニウムハンドブック(第7版)」、(2007)
- (9) 土肥謙次ら、「304 ステンレス鋼の SCC 特性に及ぼす中性子照射効果(その2) 熱鋭敏化材の SCC 感受性に及ぼす照射影響-」、(財)電力中央研究所、(1997)
- (10) 前川立夫、香川優、「ステンレス鋼の高温ホウ酸水中における腐食」、防蝕技術、Vol.17、
 No.3、(1967)
- R.R. Gaugh, "Stress corrosion cracking of precipitation-hardening stainless steels", Materials Performance, Vol.26, No.2, (1987)
- (12) 腐食防食協会、「腐食・防食ハンドブック」、丸善(株)、(2000)
- (13) 能登谷武紀、「密閉系淡水における鋼-銅系のガルバニック腐食」、伸銅技術研究会誌
 33 巻、(1994)
- (14) ASME Boiler and Pressure Vessel Committee, "ASME Boiler & Pressure Vessel Code Section II Materials Part D-Properties", The American Society of Mechanical Engineers, (2019)
- (15) S. J. Zinkle, G. L. Kulcinski, "Low-Load Microhardness Changes in 14-MeV Neutron Irradiated Copper Alloys", The use of small scale specimens for testing irradiated material, ASTM STP 888, (1986)
- K. Farrell, "Microstructure and Tensile Properties of Heavily Irradiated 5052–O Aluminum Alloy", Journal of Nuclear Materials, Vol.97, (1980)
- J. A. Dunlap, et al., "Effect of Irradiation in a Spallation Neutron Environment on Tensile Properties and Microstructure of Aluminum Alloys 5052 and 6061", Effects of Radiation on Materials: 17th Int. Sympo., ASTM STP 1270, (1996)
- (18) H. Yoshida, et al., "Reactor irradiation effects on Al 1100", Proc. Jpn. Congr. Mater. Res., Vol.24, (1981)

- (19) 吉村壽次、「化学辞典(第2版)」、森北出版(株)、(2009)
- (20) (社)日本原子力学会、「使用済燃料中間貯蔵施設用金属キャスクの安全設計及び検査基準:2010(AESJ-SC-F002:2010)」、(2010)
- (21) S. E. Soliman, et al., "Neutron effects on borated stainless steel", Nuclear Technology, Vol.96, (1991)
- (22) 小崎明朗、「使用済燃料貯蔵中の耐久性に関する海外動向他」、(株)日本原子力情報 センター主催セミナー「使用済燃料貯蔵技術の現状と課題」、(1998)
- (23) 加藤治、伊藤千浩、三枝利有、「使用済燃料貯蔵キャスクの長期密封性能評価手法の 開発」、日本原子力学会誌、Vol.38、No.6、(1996)
- (24) (一財)電力中央研究所、「使用済核燃料貯蔵の基礎」、ERC 出版、(2014)
- (25) (財)電力中央研究所、「平成21年度 リサイクル燃料資源貯蔵技術調査等(中間 貯蔵設備等長期健全性等試験)報告書」、(2010)
- (26) T. S. Byun, K. Farrell, "Tensile properties of Inconel 718 after low temperature neutron irradiation", Journal of Nuclear Materials, Vol.318, (2003)
- (27) (財)原子力発電技術機構、「平成14年度 リサイクル燃料資源貯蔵技術調査等(金属キャスク貯蔵技術確証試験)報告書」、(2003)
- (28)総合資源エネルギー調査会 原子力安全・保安部会 核燃料サイクル安全小委員会 中間貯蔵ワーキンググループ 輸送ワーキンググループ、「金属製乾式キャスクを 用いる使用済燃料中間貯蔵施設における金属製乾式キャスクとその収納物の長期 健全性について」、(2009)

1. 特定兼用キャスク構成部材及び使用済燃料の経年変化要因と設計対応

特定兼用キャスクの構成部材及び使用済燃料について、設計特性上考慮すべき経年変 化要因は以下とされている⁽¹⁾。

(1) 腐食

全面腐食、隙間腐食、応力腐食割れ、異種材料接触部の化学反応及びジルカロイにお ける水素吸収・酸化

(2) 熱

低温又は高温での材料組成・材料組織の変化、強度・延性・脆性・クリープ・その他 物性値の変化及び質量減少

(3) 放射線照射

ガンマ線及び中性子照射による材料組成・材料組織の変化及び強度・延性・脆性・そ の他物性値の変化

特定兼用キャスクの構成部材及び使用済燃料については、安全機能(安全機能部材)及 び構造強度(構造強度部材及び使用済燃料)への影響について、経年変化の影響を防止す るための特定兼用キャスクの設計対応(防食措置等)を踏まえ、経年変化を考慮する必要 の有無を文献や試験データに基づき判定する。また、設計対応を考慮した上でも経年変化 による安全機能及び構造強度への影響が生じることが考えられるものについては、経年 変化の影響を考慮して設計及び評価を行う。 2. 特定兼用キャスク構成部材の経年変化の評価の観点

1.の(1)~(3)に示した3つの経年変化要因に対して、特定兼用キャスクの構成部材 及び使用済燃料の評価における、主な評価の観点について、別紙1-1表に示す。

別紙 1-1 表 特定兼用キャスクの構成部材及び使用済燃料の主な評価の観点

経年変化要因	主な評価の観点
	特定兼用キャスク構成部材及び使用済燃料(燃料被覆管)の材質及
府会	び使用環境を踏まえ、腐食の有無又は腐食の程度を算定し、腐食に
腐良	よる構造強度(構造強度部材)又は安全機能(安全機能部材)への
	影響について評価する。
	特定兼用キャスク構成部材及び使用済燃料(燃料被覆管)の材質及
龙山	び使用温度を踏まえ、主に強度部材に対しては、低温での脆性破壊、
然	高温でのクリープの有無について、また、安全機能部材に対しては、
	熱による物性値や質量等への影響について評価する。
	特定兼用キャスク構成部材及び使用済燃料(燃料被覆管)の材質及
七日、	び放射線照射量を踏まえ、主に強度部材に対しては、照射による機
<i>加</i> 入外 禄 炽 外	械的特性の変化への影響、また、安全機能部材に対しては、照射に
	よる安全機能への影響について評価する (注1)。

(注1) 放射線照射の影響について、金属材料に対するガンマ線の影響は中性子に比べて 小さいため、中性子照射に対する影響について評価する。

3. 参考文献

(社)日本原子力学会、「使用済燃料中間貯蔵施設用乾式キャスクの安全設計及び検査基準:2010(AESJ-SC-F002:2010)」、(2010)

参考文献の概要について

表 5 に示した Hitz-P24 型の主要な構成部材及び使用済燃料の経年変化に対する評価に 用いた参考文献の概要を別紙 2-1 表に示す。

• •			参考文献	シネナキレー マのダリ州	
中 本	番号	文献名	文献概要	参与 入 献 と し く の 女 ヨ 住	
	1	 (独)原子力安全基盤機構、「平成 15 年度 金属キャスク貯蔵技術確証試験報告書 最終報告」、(2004) 	 ・鉄系材料(A350LF5)の腐食速度は、6ヶ月間の腐食試験(ヨウ素ガス 濃度 3g/m³;1%の燃料破損率相当)では最大 2.3µm/年であり、この腐 食速度が 60 年間維持されたとしても 138µm 程度となり、問題となる 腐食量ではない。容器底部の高濃度条件下(20.5g/m³)でも 8µm/年程 度であり、60 年間の腐食量は 500µm 程度となり、問題となる腐食量で はない。 ・鉄系材料(SUSF304 及び B 添加 SUS304)の腐食速度は、6ヶ月間の 腐食試験(ヨウ素ガス濃度 3g/m³;1%の燃料破損率相当)では最大 0.13µm/年(SUSF304)及び 0.51µm/年(B 添加 SUS304)であり、こ の腐食速度が 60 年間維持されたとしてもそれぞれ 10µm 及び 30µm 程 度となり、問題となる腐食量ではない。 ・アルミ系材料は、キャスク内に残留する酸素が全てバスケットの腐食に 使用されたとしても、平均被膜厚さは 1µm 以下であり、1%燃料破損相 当程度のヨウ素ガス濃度では、酸化被膜が維持されることで母材の腐食 が防止される。 ・エポキシ系レジンの照射材(中性子照射量 1.5×10¹⁵n/cm²及びガンマ線 照射量 3.9×10⁴Gy)の質量減損率は、未照射の加熱試験後に比べ、質量 減損率でオーダーが 2 桁異なるほど小さい。また、中性子照射後加熱試 験及びガンマ線照射後加熱試験と未照射加熱試験の比較においても有 	 ○本文献の腐食試験結果は、特定兼用キャスクの収納物が健全燃料であるのに対して燃料破損率1%の条件、及び特定兼用キャスク内部の最高温度(燃料集合体最高温度:210℃)に対して試験温度が270℃の条件のもと得られた結果であり、特定兼用キャスクの設計貯蔵期間中の環境に比べて厳しい条件下で得られた結果であるため、参考文献として妥当である。 ○本文献におけるキャスクと Hitz-P24 型で、空間容積が同等であるため、適用することは妥当である。 ○本文献での試験は、特定兼用キャスクの中性子遮蔽材と同じエポキシ系レジンを用い、特定兼用キャスクと同じ閉鎖系条件で行われている。本文献は、特定兼用キャスクの設計貯蔵期間中の放射線照射量(5.0×10¹⁴n/cm²以下、又は3.0×10⁴Gy以下)を上回る放射線照射量で実施されており、参考文献として妥当である。 ○本文献のクリープ特性試験は、複数のアルミニウ 	
			意な違いはなく、照射の影響は、加熱による影響に比べ無視し得る。 ・アルミニウム合金のクリープ特性試験より、クリープ歪みが 0.1%~ 1.0%程度の範囲では、機械強度に影響がないことが確認された。	ム合金に対して 0.1%~1.0%程度のクリープ歪を 付与した条件で引張試験を行い、機械強度に影響 がないことを確認しており、参考文献として妥当 である。	
	2	(社)日本機械学会、「使用済燃料貯蔵施 設規格 金属キャスク構造規格(2007 年 版)(JSME S FA1-2007)」、(2007)	・想定される材料温度において、破壊靭性に対する要求(破壊靭性試験の 要否、試験内容、試験の判定基準)が規定されている。 ・低合金鋼、炭素鋼及びニッケルクロムモリブデン鋼は、-30℃~350℃の	 ○本文献には、機器区分毎に破壊靭性要求、試験内容が示されており、参考文献として妥当である。 ○本文献には、特定兼用キャスク各部材の設計用強 	
	3	 (社)日本機械学会、「発電用原子力設備 規格 設計・建設規格(2005年版(2007 年追補版含む))<第I編 軽水炉規格> (JSME S NC1-2005/2007)」、(2007) 	温度範囲において、ステンレス鋼は、-30℃~425℃の温度範囲において、析出硬化系ステンレス鋼は、-30℃~350℃の温度範囲において、設計用強度が規定されている。	度(クリーフの影響を考慮)の規格値が示されて いる。文献の温度範囲は、特定兼用キャスクの設 計貯蔵期間中の温度範囲を包絡しており、参考文 献として妥当である。	

無断複製・ 野東宗山 Π 回航体式武住

無断後				
湕			やますおししてのでいい	
费	番号	文献名	文献概要	参与文献としての女ヨ庄
載禁止	4	ステンレス協会、「ステンレス鋼便覧(第 3版)」、日刊工業新聞社、(1995)	 ・金属材料は、融点(絶対温度)の1/3を超えるとクリープによる変形量が無視できなくなる。また、SUS304の融点は、1398℃~1453℃、SUS630の融点は、1397℃~1435℃である。 	○本文献は、金属材料においてクリープを考慮すべき温度、及びステンレス鋼材の基礎データ(融点)を示すものであり、参考文献として妥当である。
日 公	5	(社)日本金属学会、「金属便覧(改訂6版)」、丸善(株)、(2000)	・炭素鋼の融点は、1492℃である。	○本文献は、炭素鋼の基礎データ(融点)を示すもの であり、参考文献として妥当である。
造船株式会	6	 (一社)日本原子力学会、「使用済燃料・ 混合酸化物新燃料・高レベル放射性廃棄物 輸送容器の安全設計及び検査基準:2013 (AESJ-SC-F006:2013)」、(2014) 	 ・ニッケルクロムモリブデン鋼及びステンレス鋼で、-20℃において低温 脆化が生じない材料が示されている。 	○本文献は、特定兼用キャスク各部材の最低温度である-20℃を含む低温特性評価が示されており、参考文献として妥当である。
☆社 】 別紙 2−3	7	K. Farrell, et al., "An evaluation of low temperature radiation embrittlement mechanisms in ferritic alloys", Journal of Nuclear Materials, Vol.210, (1994)	・様々な組成の鋼及び合金鋼の照射材を用いたシャルピー衝撃試験及び 引張試験の結果、中性子照射量が 10 ¹⁶ n/cm ² 以下では、未照射材の機械 的特性(遷移温度及び降伏強さ)との有意な差は見られない。	○炭素鋼及びニッケルクロムモリブデン鋼と同等の 組成の鋼への中性子照射による機械的特性への影響を示した文献である。本文献結果には、特定兼 用キャスクの設計貯蔵期間中の中性子照射量 (5×10 ¹⁴ n/cm ² 以下)を上回る中性子照射量 (10 ¹⁶ n/cm ²)と遷移温度変化及び降伏強さ変化の 関係が示されており、機械的特性へ影響が無い中 性子照射量の範囲を示すための参考文献として妥 当である。
	8	(社)日本アルミニウム協会、「アルミニ ウムハンドブック(第7版)」、(2007)	 ・炭素鋼、ステンレス鋼及びアルミニウムの各種金属材料を用いた 16 年間の海浜大気曝露試験の結果、定常腐食速度はそれぞれ 21µm/年、0.25µm/年、0.25µm/年程度であり、この腐食速度が 60 年間維持されたとしても、腐食量はそれぞれ 1.26mm、15µm、15µm 程度である。 ・アルミニウムのほう酸水に対する腐食量は、0.127mm/年以下である。 ・アルミニウムの融点は、646~657℃、アルミニウム合金(3004)の融点は、629~654℃である。 	 ○本文献は、炭素鋼、ステンレス鋼及びアルミニウムの海浜大気曝露試験における腐食速度を示す文献である。特定兼用キャスクの設置が想定される最も厳しい環境での腐食影響を示すものである、参考文献として妥当である。 ○本文献は、アルミニウムのほう酸水に対する腐食量を示す文献である。PWR使用済燃料プールのほう素濃度を上回る濃度100%までのデータであり、参考文献として妥当である。 ○本文献は、アルミニウム及びアルミニウム合金の融点を示すものであり、参考文献として妥当である。
	9	土肥謙次ら、「304 ステンレス鋼の SCC 特 性に及ぼす中性子照射効果(その 2)-熱	 ・ステンレス鋼の照射材を用いた引張試験の結果、中性子照射量が 10¹⁷n/cm²以下では、未照射材に対する機械的特性(0.2%耐力及び一様 	○ステンレス鋼への中性子照射による機械的特性への影響を示した文献である。本文献結果には、特

無断褚						
襲						
费	番号	文献名	文献概要	参与文献としての女当1生		
散禁止 日立造		鋭敏化材の SCC 感受性に及ぼす照射影響 −」、(財)電力中央研究所、(1997)	伸び)の有意な差はみられない。	定兼用キャスクの設計貯蔵期間中の中性子照射量 (1.3×10 ¹⁵ n/cm ² 以下)を上回る中性子照射量 (10 ¹⁷ n/cm ²)と 0.2%耐力及び一様伸びの関係が 示されており、機械的特性への影響がない中性子 照射量の範囲を示すための参考文献として妥当で ある。		
船株式会	10	前川立夫、香川優、「ステンレス鋼の高温 ホウ酸水中における腐食」、防蝕技術、 Vol.17、No.3、(1967)	 ・ステンレス鋼を用いた高温ホウ酸水中における腐食試験の結果、腐食量は純水中と大差がなく、10,000時間の平均腐食量は軽水炉の設計上一般に採用されている腐食量をはるかに下回っている。 	○本文献での試験条件は、使用済燃料収納時に想定 される環境よりも厳しい条件で実施されており、 参考文献として妥当である。		
会社	11	R.R. Gaugh, "Stress corrosion cracking of precipitation-hardening stainless steels", Materials Performance, Vol.26, No.2, (1987)	 ・0.2%耐力相当の応力を負荷した条件における析出硬化系ステンレス鋼の海浜環境での長期曝露試験において、応力腐食割れは認められない。 	○析出硬化系ステンレス鋼の応力腐食試験結果を示 す文献である。特定兼用キャスクの使用環境(応 力及び雰囲気)よりも厳しい環境での試験結果を 示すものであり、参考文献として妥当である。		
归秩 2	12	腐食防食協会、「腐食・防食ハンドブッ ク」、丸善(株)、(2000)	・銅の電極電位は鉄に比べて高く、イオン化傾向の低い金属である。	○本文献は、金属の熱力学的貴卑を示す基礎データ であり、参考文献として妥当である。		
2 - 4	13	能登谷武紀、「密閉系淡水における鋼-銅系 のガルバニック腐食」、伸銅技術研究会誌 33巻、(1994)	・密閉した水道水において銅を接続した鋼の腐食試験の結果、鋼の腐食速度は、1週間以内に約2桁減少した。銅を接続した鋼の腐食速度は、比液量、表面積比、溶液の電気伝導度等に依存するが、腐食反応に伴う溶存酸素の消費により、鋼の腐食速度は短時間に減少し、鋼単独の場合の腐食速度と同程度となる。	○本文献には、特定兼用キャスクの伝熱フィン及び 胴又は外筒と同じ材料である銅及び炭素鋼を用い た腐食試験の結果が示されている。本試験は、貯 蔵中の伝熱フィンと同じ淡水条件(中性子遮蔽材 により生じる水分に相当)及び酸素が供給されな い条件(密閉環境)であるため、参考文献として妥 当である。		
	14	ASME Boiler and Pressure Vessel Committee, "ASME Boiler & Pressure Vessel Code Section II Materials Part D-Properties", The American Society of Mechanical Engineers, (2019)	・200℃までの温度範囲において、設計用強度が規定されている。	○参考文献には、銅の設計用強度の規定値が示されている。文献の温度範囲は特定兼用キャスクの設計貯蔵期間中の温度範囲を包絡しており、参考文献として妥当である。		
	15	S. J. Zinkle, G. L. Kulcinski, "Low-Load Microhardness Changes in 14-MeV Neutron Irradiated Copper Alloys", The use of small scale specimens for testing irradiated material, ASTM STP 888,	・銅の照射材を用いた硬さ試験の結果、中性子照射量が10 ¹⁶ n/cm ² 以下では、未照射材に対する機械的特性(ビッカース硬さ)の有意な差はみられない。	○本文献は、銅への中性子照射による機械的特性への影響を示した文献である。本文献は、特定兼用キャスクの設計貯蔵期間中の中性子照射量(5.0×10 ¹⁴ n/cm ² 以下)を上回る中性子照射量(10 ¹⁶ n/cm ²)とビッカース硬さの関係が示されて		

無断後				
蒙			やまたや し こので 火地	
费	番号	文献名	文献概要	参考文献としての女当1生
載禁止 日立造船株式会社		(1986)		おり、機械的特性への影響が無い中性子照射量の 範囲を示すための参考文献として妥当である。
	16K. Farrell, "Microstructure and Tensile Properties of Heavily Irradiated 5052–O Aluminum Alloy", Journal of Nuclear Materials, Vol.97. (1980)		・アルミニウム(5052)の照射材を用いた引張試験の結果、中性子照射量が10 ²¹ n/cm ² 以下では未照射材に対する機械的特性(引張強さ及び伸び)の有意な差はみられない。	○各種のアルミニウムに対する、中性子照射による 機械的特性への影響を示した文献である。これら の文献には、特定兼用キャスクの設計貯蔵期間中 の中性子照射量(1.3×10 ¹⁵ n/cm ² 以下)を上回る中
	17	J. A. Dunlap et al., "Effect of Irradiation in a Spallation Neutron Environment on Tensile Properties and Microstructure of Aluminum Alloys 5052 and 6061", Effects of Radiation on Materials: 17th Int. Sympo., ASTM STP 1270, (1996)	・アルミニウム(6061)の照射材を用いた引張試験の結果、中性子照射量が10 ²¹ n/cm ² 以下では未照射材に対する機械的特性(引張強さ及び伸び)の有意な差はみられない。	性子照射量(10 ¹⁹ n/cm ² ~10 ²¹ n/cm ²)と機械的特性 の関係が示されており、機械的特性へ影響が無い 中性子照射量の範囲を示すための参考文献として 妥当である。
別紙 2	18	H. Yoshida, et al., "Reactor irradiation effects on Al 1100", Proc. Jpn. Congr. Mater. Res., Vol.24, (1981)	・アルミニウム(1100)の照射材を用いた引張試験の結果、中性子照射量が10 ¹⁹ n/cm ² 以下では未照射材に対する機械的特性(引張強さ及び伸び)の有意な差はみられない。	
 ਹਾ	19	吉村壽次、「化学辞典(第2版)」、森北出版(株)、(2009)	 ・炭化ほう素は耐化学薬品性も大きく、酸・アルカリに侵されることはない。 ・炭化ほう素の融点は約2350℃である。 	○本文献は、中性子吸収材に含まれる炭化ほう素の 基礎データ(安定性・融点)を示すものであり、参 考文献として妥当である。
	20	 (社)日本原子力学会、「使用済燃料中間 貯蔵施設用金属キャスクの安全設計及び検 査基準:2010(AESJ-SC-F002: 2010)」、(2010) 	 ・種々のアルミニウム合金を用いた機械試験の結果、中性子照射量が 10¹⁹n/cm²以下では、顕著な機械的特性変化は認められない。また、照 射影響に対するほう素含有量による影響も認められない。 ・残留水分が 10wt%以下の不活性雰囲気にある燃料被覆管の酸化量及び 水素吸収量は無視し得るほど小さい。 	 ○本文献は、様々な種類のアルミニウム合金への中 性子照射による機械的特性への影響を示した文献 である。本文献は、特定兼用キャスクの設計貯蔵 期間中の中性子照射量(1.3×10¹⁵n/cm²以下)を上 回る中性子照射量(10¹⁹n/cm²)と機械的特性の関 係が示されており、機械的特性への影響が無い中 性子照射量の範囲を示すための参考文献として妥 当である。 ○本文献は、特定兼用キャスクの設計貯蔵期間中の 環境に対し、キャスク内部雰囲気、キャスク内部 体積及び燃料有効部の被覆管表面積が同等の条件 で得られた結果であり、参考文献として妥当であ る。

無断袗					
製			会共大共しての近火地		
暫	番号	文献名	文献概要	参与文献としての女当住	
≵禁止 □ 立造船株式会社] 別紙 2−6	21	S. E. Soliman, et al., "Neutron effects on borated stainless steel", Nuclear Technology, Vol.96, (1991)	 ・ほう素添加ステンレス鋼の照射材を用いた引張試験及び衝撃試験の結果、中性子照射量が10¹⁷n/cm²以下では未照射材に対する機械的特性(引張強さ、降伏応力及び衝撃強さ)の有意な差はみられない。また、照射影響に対するほう素含有量による影響も認められない。 	○本文献は、ほう素添加ステンレス鋼への中性子照射による機械的特性への影響を示した文献である。本文献は、特定兼用キャスクの設計貯蔵期間中の中性子照射量(1.3×10 ¹⁵ n/cm ² 以下)を上回る中性子照射量(10 ¹⁷ n/cm ²)と機械的特性の関係が示されており、機械的特性への影響が無い中性子照射量の範囲を示すための参考文献として妥当である。	
	22	小崎明朗、「使用済燃料貯蔵中の耐久性に 関する海外動向他」、(株)日本原子力情報 センター主催セミナー「使用済燃料貯蔵技 術の現状と課題」、(1998)	 ・金属ガスケット(外被材:アルミニウム、内被材及びコイルスプリング: ニッケル基合金)の性能について、実機より厳しい環境である塩水噴霧 環境において、3年間漏えい率に変化がないことを確認している。 	○本文献での試験は、特定兼用キャスクで使用する 金属ガスケットと同じ材質で行われている。また、 特定兼用キャスクの設計貯蔵期間中の環境より厳 しい塩水噴霧環境下で得られた結果であり、参考 文献として妥当である。	
	23	加藤治、伊藤千浩、三枝利有、「使用済燃 料貯蔵キャスクの長期密封性能評価手法の 開発」、日本原子力学会誌、Vol.38、 No.6、(1996)	 ・LMP は以下の式で示される。 LMP = T × (C × log (t)) T:温度(K) C:LMP の定数 t:時間(h) ・金属ガスケット(外被材:アルミニウム、内被材及びコイルスプリング: ニッケル基合金)の応力緩和による漏えい率の影響について、金属ガス ケットの漏えい率とLMP の関係が示されており、初期の密封性能 (1×10⁻¹⁰Pa・m³/s以下)を保持できる限界のLMP は、定数 C=20 の 場合、11.0×10³と求められている。 	 ○本文献での試験は、特定兼用キャスクで使用する 金属ガスケットと同じ材料で行われている。また、 金属ガスケット断面の外径(φ5.5mm)は、特定 兼用キャスクの一次蓋及び二次蓋のガスケット断 面外径(」」よりも小さい。したがって、一 次蓋及び二次蓋用金属ガスケットに対しては、よ り厳しい条件下で得られた結果である。さらに、 特定兼用キャスクの設計貯蔵期間を上回る金属ガ スケットの LMP と漏えい率の関係が示されてお り、参考文献として妥当である。 	
	24	(一財)電力中央研究所、「使用済核燃料 貯蔵の基礎」、ERC 出版、(2014)	・金属ガスケット(外被材:アルミニウム、内被材及びコイルスプリング: ニッケル基合金)の限界のLMPについて、定数C=14の場合、約8.0×10 ³ であることが示されている。	○本文献には、特定兼用キャスクで使用する金属ガ スケットと同じ材料で行われた試験結果について まとめられている。また、金属ガスケット断面の 外径(φ5.5mm)は、特定兼用キャスクの一次蓋 及び二次蓋のガスケット断面外径 したがって、一次蓋及び二次蓋用金 属ガスケットに対しては、より厳しい条件下で得 られた結果である。さらに、特定兼用キャスクの 設計貯蔵期間を上回る金属ガスケットの LMP と	

内は商業機密のため、非公開とします。

無断袗				
〔製・転載禁止 日立造船株式会社 〕 別紙 2-7			やまたおししてので火地	
	番号	文献名	文献概要	参与文献としての女当1生 (1)
				漏えい率の関係が示されており、参考文献として 妥当である
	25	 (財)電力中央研究所、「平成21年度 リサイクル燃料資源貯蔵技術調査等(中間貯蔵設備等長期健全性等試験)報告書」、(2010) 	 ・金属ガスケット(外被材:アルミニウム、内被材及びコイルスプリング: ニッケル基合金)の性能について、ガスケット部の温度を約 130℃~ 140℃で一定とし、定期的に密封性能を測定した結果、試験開始から 19 年以上が経過しても密封部の漏えい率の変化はなく、良好な密封性能を 保持していることが確認された。 	○本文献での試験は、特定兼用キャスクで使用する 金属ガスケットと同じ材料で行われている。また、 金属ガスケット断面の外径(φ6.1mm)は、特定 兼用キャスクの一次蓋及び二次蓋のガスケット断 面外径(」 よりも小さい。さらに、試験に おけるガスケット部の温度(約 130℃~140℃) は、特定兼用キャスクの設計貯蔵期間中の熱解析 結果で得られた金属ガスケット部温度(約 110℃) より高い。したがって、一次蓋及び二次蓋用金属 ガスケットにおいて、特定兼用キャスクの設計貯 蔵期間中の環境より厳しい条件下で得られた結果 であり、参考文献として妥当である。
	26	T. S. Byun, K. Farrell, "Tensile properties of Inconel 718 after low temperature neutron irradiation", Journal of Nuclear Materials, Vol.318, (2003)	 ・ニッケル基合金であるインコネルの照射材を用いた引張試験の結果、中 性子照射量が3.7×10¹⁷n/cm²以下では未照射材に対する機械的特性(引 張強さ及び伸び)の有意な差はみられない 	○金属ガスケットに使用するニッケル基合金に対す る、中性子照射による機械的特性への影響を示し た文献である。本文献には、特定兼用キャスクの 設計貯蔵期間中の中性子照射量(1.8×10 ¹⁴ n/cm ² 以 下)を上回る中性子照射量(3.7×10 ¹⁷ n/cm ²)と機 械的特性の関係が示されており、機械的特性への 影響がない中性子照射量の範囲を示すための参考 文献として妥当である。
	27	(財) 原子力発電技術機構、「平成 14 年度 リサイクル燃料資源貯蔵技術調査等(金属 キャスク貯蔵技術確証試験)報告書」、 (2003)	・閉鎖系環境でのエポキシ系レジンの加熱試験及び照射試験により、エポ キシ系レジンの質量減損率には、照射の影響は認められなかった。また、 質量減損率は、温度及び加熱時間を基に劣化パラメータを用いた整理に よる以下の式で評価ができる。 $\Delta w = 5.69 \times 10^{-4} \times E_p - 19.2$ $\Delta w : 中性子遮蔽材の質量減損率(%)$ $E_p : 劣化パラメータ = T \times (77.6 + \ln (t))$ T : 中性子遮蔽材温度(K) t : 中性子遮蔽材加熱時間(h)	○本文献での試験は、特定兼用キャスクの中性子遮 蔽材と同じエポキシ系レジンを用い、特定兼用キ ャスクと同じ閉鎖系条件で行われており、参考文 献として妥当である。

無断褚				
漫				
费	番号	文献名	文献概要	参考又 断としての 安当性
截禁止 日立造船株式会社] 別紙 2-8	28	総合資源エネルギー調査会 原子力安全・ 保安部会 核燃料サイクル安全小委員会 中間貯蔵ワーキンググループ 輸送ワーキ ンググループ、「金属製乾式キャスクを用 いる使用済燃料中間貯蔵施設における金属 製乾式キャスクとその収納物の長期健全性 について」、(2009)	 ・熱による経年変化としては、クリーブひずみの進行による燃料被覆管の 破損、照射硬化の回復による燃料被覆管強度の低下、燃料被覆管中の水 素化物再配向による燃料被覆管の脆化、及び応力腐食割れについて評価 する必要がある。 ・クリープ 国内の軽水炉で照射されたジルカロイー4 被覆管を用いたクリープ試 験が実施され、1%以上の変形能力を有することが確認されている。設 計貯蔵期間中には、温度を制限することでクリープひずみを 1%以下に 制限でき、クリーブ破損を防止することができる。 ・照射硬化 被覆管は炉内照射により強度が増し、延性が低下するが、高温条件に 長時間保持されると照射硬化が徐々に回復する。国内の軽水炉で照射 されたジルカロイー4 被覆管を用いた照射硬化回復試験が実施され、約 300℃では照射硬化の回復の可能性は小さいことが確認されている。 ・水素化物再配向 貯蔵中は燃料棒の内圧が外圧より高いため、被覆管には周方向応力 が発生している。国内の軽水炉で照射されたジルカロイー4 被覆管を用 いた水素化物再配向試験及び機械特性試験が実施され、機械特性が劣 化しない条件が求められており、被覆管温度を 275℃以下、周方向応力 を 100MPa 以下に制限することにより、機械特性の劣化を防止するこ とができる。 ・応力腐食割れ 燃料ペレットの温度上昇による腐食性核分裂生成ガスの放出はな く、また、原子炉運転中に燃料ペレットから放出されたよう素はヨウ化 セシウムとして安定に存在することから、応力腐食割れが発生する化 学的雰囲気となっていない。 ・照射劣化 貯蔵期間中の中性子照射量10²¹~10²²n/cm² に比べて無視できる ものであり、貯蔵中の中性子照射は機械特性に影響しないと評価する。 	 ○本文献には、特定兼用キャスクに収納する PWR の 照射済 48GWd/t 燃料を対象とし、実燃料と同じ材 料を用いた試験結果に基づく評価結果が示されて いる。これらの評価結果は、特定兼用キャスクの 設計貯蔵期間中の条件を包絡したものとなってお り、参考文献として妥当である。 ○本文献には、燃料被覆管に使用するジルカロイに 対する、中性子照射による機械特性への影響が示 されている。特定兼用キャスクの設計貯蔵期間中 の中性子照射量(1.3×10¹⁵n/cm²以下)は、炉内の 中性子照射量(10²¹~10²²n/cm²)と比較して無視 でき、貯蔵中の中性子照射による機械特性の変化 がないことを示すための参考文献として妥当であ る。

金属ガスケットの閉じ込め性能は、特定兼用キャスクのシール部が比較的高温下にある ため、長期貯蔵中のクリープによる反発力の低下を考慮する必要がある。

以下に示すように、文献データを元に、金属ガスケットの経年変化に対する評価を行い、 設計貯蔵期間(60年間)を通じて初期の漏えい率が維持されることを確認している。

1. 金属ガスケットの長期密封特性^{(1)、(2)}

金属ガスケットの反発力の低下による漏えい率への影響については、(財)電力中央研 究所で実施された長期密封特性を確認するための試験(以下「長期密封特性確認試験」と いう。)において、金属ガスケットの漏えい率とラーソン・ミラー・パラメータ(以下「LMP」 という。)の関係が別紙 3-1 図に示すとおり整理されている。ここで、LMP は以下の式 で示される。

 $LMP = T \times (C \times \log (t))$

ここで、

T:温度(K)

C:LMPの定数

t:時間(h)

LMP は温度-時間の換算を表すパラメータで、C は材料によって決まる定数である。 金属ガスケットはコイルスプリング及び二重の被覆材(外被材、内被材)で構成されて いる。そのため、金属ガスケット全体の経年変化による反発力の低下を LMP で整理する 場合、これらの構成部材全体の変形によってC を決めることが妥当であると考えられる。

長期密封特性確認試験の結果に基づいてアルミニウム被覆金属ガスケットを評価した 例では、C をパラメータとして金属ガスケットの塑性変形率の線形近似線と実験結果と の標準誤差を計算し、その標準誤差が最小となる C=20 が最適値として示されている。

また、長期密封特性確認試験の結果によると、別紙 3-1 図に示すように、金属ガスケットの LMP が約 11×10³ を超えないように設計すれば、長期貯蔵中のクリープによる反発力の低下を考慮しても設計貯蔵期間を通じて初期の漏えい率に維持されることが示されている。

Hitz-P24 型の除熱評価の結果(補足説明資料 16-4「除熱機能に関する説明資料 (MA035B-SC-B01)」参照)の金属ガスケット温度(107℃)に基づき、設計貯蔵期間 に相当する LMP を算出すると約 9.6×10³となり、長期密封特性確認試験の金属ガスケッ トの漏えい率と LMP の関係から金属ガスケットは設計貯蔵期間を通じて初期の漏えい 率を維持できると判断される。

一方、LMPの定数Cについては、上記の長期密封特性確認試験とは別の試験の結果や

金属ガスケットの反発力の低下に最も寄与する外被材であるアルミニウム合金単体のク リープデータに基づいて設定するという考え方から C=14 としている例^{(3)、(4)}もある。 定数 C=14 として別紙 3-1 図の漏えい率と LMP の関係を整理した場合、初期の漏えい率 が維持される LMP は約 8.0×10³となる。

そこで、参考評価として C=14 とした場合、上記と同様に Hitz-P24 型の金属ガスケット温度から設計貯蔵期間に相当する LMP を算出すると、約 7.3×10³ となり、定数 C=14の場合でも設計貯蔵期間を通じて初期の漏えい率が維持できると判断される。

2. 蓋部実物大モデルを用いた金属ガスケットの長期密封性能試験⁽⁴⁾

金属キャスク蓋部を模擬した実物大の試験体及びアルミニウム被覆金属ガスケットを 用いて、蓋間圧力の経時変化を連続測定した長期密封性能試験が実施されている。別紙 3-2 図に、この長期密封性能試験の温度及び漏えい率の経時変化を示す。

試験開始から 19 年以上(平成 2 年から平成 22 年 1 月)が経過した時点での蓋閉じ込め部の漏えい率に変化はなく、その金属ガスケットは試験開始時と同等の閉じ込め性能を維持できることが確認されている。なお、この試験での金属ガスケットの LMP は 10×10^3 以上(温度を試験温度である 130°C一定、C=20 とした条件)である。

相当する LMP

別紙 3-1 図 金属ガスケットの漏えい率と LMP の関係⁽²⁾

別紙 3-2 図 金属ガスケットの長期密封性能試験結果(眼鏡型)(4)

(参考文献)

- (1) 加藤治、伊藤千浩、三枝利有、「使用済燃料貯蔵キャスクの長期密封性能評価手法の 開発」、日本原子力学会誌、Vol.38、No.6、(1996)
- (2) 加藤治、伊藤千浩、「使用済燃料貯蔵用ガスケットの長期密封特性」、(財)電力中央 研究所、(1992)
- (3) (一財)電力中央研究所、「使用済核燃料貯蔵の基礎」、ERC 出版、(2014)
- (4) (財)電力中央研究所、「平成 21 年度 リサイクル燃料資源貯蔵技術調査等(中間 貯蔵設備等長期健全性等試験)報告書」、(2010)

設計貯蔵期間経過後の中性子遮蔽材の質量減損率の評価を行い、経年変化を考慮した原 子個数密度を遮蔽解析に用いている。

質量減損率は、劣化パラメータを用いて次式で表される。

 $\Delta w = 5.69 \times 10^{-4} \times E_p - 18.7^{*1}$

ここで、

Δw : 中性子遮蔽材の質量減損率(%)

 E_n : 劣化パラメータ = T × (77.6 + ln (t))

T :中性子遮蔽材温度(K)

t : 中性子遮蔽材加熱時間(h)

貯蔵中は、使用済燃料の崩壊熱量の低下に伴い、中性子遮蔽材の温度も低下する。設計貯 蔵期間経過後の中性子遮蔽材の質量減損率の算定に当たっては、貯蔵初期の最高温度を用 いて温度一定の条件で質量減損率を算定する方法もあるが、より合理的な算定方法として、 中性子遮蔽材の温度低下を考慮して質量減損率を算定する。温度低下を考慮する際には、劣 化パラメータを用いた質量減損率の算定式を、時間区分して適用する。なお、中性子遮蔽材 の温度は部位(蓋部、側部及び底部)により異なるため、質量減損率も部位毎に算定する。 また、各部位の中性子遮蔽材内においても温度分布を有しているが、保守的に各部位の中性 子遮蔽材の最高温度を用いて算定する。設計貯蔵期間中の中性子遮蔽材の最高温度を別紙 3-1 表に示す。

温度の低下を考慮すると、設計貯蔵期間の劣化パラメータは、温度の高い底部中性子遮蔽 材で約36200となり、質量減損率は約1.9%となる。同様に、蓋部中性子遮蔽材は約1.2%、 側部中性子遮蔽材は約1.5%となる。遮蔽解析ではこれらに裕度(0.1%程度)を考慮し、底 部中性子遮蔽材は2.0%、蓋部中性子遮蔽材は1.4%、側部中性子遮蔽材は1.6%の質量減損 があるとして評価する。

なお、中性子遮蔽材から放出される成分は水が支配的であり、水よりも水素含有率が高い ガス成分はわずかである⁽²⁾。したがって、遮蔽解析においては、中性子の遮蔽性能を安全 側に設定するため、中性子遮蔽材の質量減損の成分を全て水とし、この質量減損分を遮蔽体 として無視している。

※1:NUPEC報告書⁽¹⁾の評価式を 95%信頼性確度で再評価している。

於	中性子遮蔽材各部の最高温度 (℃)		
灯 風 労 间 (平)	蓋部	側部	底部
0	123	129	138
5	116	123	130
20	103	108	114
40	92	96	100
60	84	87	91

別紙 3-1表 設計貯蔵期間中の中性子遮蔽材の最高温度

(参考文献)

- (1) (財)原子力発電技術機構、「平成 14 年度 リサイクル燃料資源貯蔵技術調査等(金属キャスク貯蔵技術確証試験)報告書」、(2003)
- (2) 原燃輸送株式会社、「使用済燃料等の輸送容器に用いられる中性子しゃへい材 (NS-4-FR)の連続加熱評価試験」、(1997)