資料 1-1-2

伊方発電所3号炉 震源を特定せず策定する地震動 -標準応答スペクトルを考慮した地震動評価-<補足説明資料>

令和4年12月6日

四国電力株式会社

1. 乱数位相を用いた模擬地震波の振幅包絡線に関する検討	2
1.1 地震規模の設定に関する検討	4
1.2 継続時間に関する検討	
1.2.1 既往の経験式との比較	
1.2.2 実観測記録との比較	23
1.3 まとめ	
2. 観測記録の位相を用いた模擬地震波作成に関する検討	
2.1 伊方発電所における地震観測記録の収集・整理	
2.2 伊方発電所立地地点の地盤特性の整理	
2.3 伊方発電所周辺における地震観測記録の収集・整理	48
2.4 まとめ	

【参考資料】

① Mw4.0以上の地震で観測記録が取得(震央距離30㎞以内)された収集対象地点	
② 収集された観測地点(5地点)の地盤情報	
③ 適用可能性の検討対象外とした観測地点において取得された観測記録の時刻歴波形	
④ 佐藤・岡崎(2013)による群遅延時間を考慮した模擬地震波の作成	

1. 乱数位相を用いた模擬地震波の振幅包絡線に関する検討

- 1.1 地震規模の設定に関する検討
- 1.2 継続時間に関する検討
 - 1.2.1 既往の経験式との比較
 - 1.2.2 実観測記録との比較
- 1.3 まとめ
- 2. 観測記録の位相を用いた模擬地震波作成に関する検討
 - 2.1 伊方発電所における地震観測記録の収集・整理
 - 2.2 伊方発電所立地地点の地盤特性の整理
 - 2.3 伊方発電所周辺における地震観測記録の収集・整理2.4 まとめ

検討の概要

○乱数位相を用いた模擬地震波の振幅包絡線の設定条件(M7.0-Xeq10km)の保守性について検討する。

■検討の概要

① 地震規模の設定に関する検討(1.1節)

・強震部の継続時間に関係するパラメータである地震規模の設定について, 既往の知見や伊方発電所周辺の地域性の観点から考察する。

② 継続時間に関する検討(1.2節)

- ・継続時間に係る既往の経験式を整理し, Noda et al.(2002)に基づく継続時間との比較を行う。(1.2.1項) ・「全国共通に考慮すべき地震動」相当の実観測記録を収集・整理し, Noda et al.(2002)に基づく継続時間
- との比較を行う。(1.2.2項)

1. 乱数位相を用いた模擬地震波の振幅包絡線に関する検討

1.1 地震規模の設定に関する検討

- 1.2 継続時間に関する検討
 - 1.2.1 既往の経験式との比較
 - 1.2.2 実観測記録との比較
- 1.3 まとめ
- 2. 観測記録の位相を用いた模擬地震波作成に関する検討
 - 2.1 伊方発電所における地震観測記録の収集・整理
 - 2.2 伊方発電所立地地点の地盤特性の整理
 - 2.3 伊方発電所周辺における地震観測記録の収集・整理2.4 まとめ

全国共通に考慮すべき地震動の地震規模に関する既往の知見

令和4年4月15日 審査会合資料再掲

○武村(1998)は、地表地震断層の出現率及び地震による被害程度それぞれについて、地震規模との関連性を示し、 地表地震断層の出現率と地震規模との関係から「M=6.5と6.8の間で、地震断層との関連性がある地震の発生 率が急激に増加し、明らかにM≦6.5の地震とM≧6.8の地震では様子が異なる」と述べ、地震による被害程度 と地震規模との関係も確認したうえ、「現象が大きく変化している位置は、M6.5-6.8」と述べている。

○これを踏まえれば、断層破壊領域が地震発生層の内部に留まる地震による地震動(全国共通に考慮すべき地震動)である標準応答スペクトルの模擬地震波の振幅包絡線の設定にあたって、M7.0の地震規模を設定していることは適切である。

Fig. 9. Relation between damage rank and JMA magnitude *M*. Solid circles indicate the events accompanying surface faults of higher reliability marked with (H) in Table 2, and half solid circles the events accompanying surface faults of lower reliability marked with (L) or ***** in Table 2. Open circles indicate the events for which any surface fault (including closely related active fault) is not found.

武村(1998)より抜粋・一部加筆

地域性の検討①:伊方発電所周辺の地震発生層厚さ - 地震発生層上限深さ

令和4年4月15日 審查会合資料再掲

○伊方発電所周辺の地震発生層上限深さは、敷地周辺の地震発生状況、敷地および敷地周辺の速度構造について それぞれ検討のうえ、中央構造線断層帯の断層上端深さも参照し、2kmと設定している。(平成25年8月28日審 査会合資料)

平成25年8月28日審査会合資料

地域性の検討①:伊方発電所周辺の地震発生層厚さ - 地震発生層下限深さ(1/3) 審査

令和4年4月15日 審查会合資料再掲

○伊方発電所周辺の地震発生層下限深さは、敷地周辺の微小地震分布、地震波トモグラフィー、キュリー点深度、 地殻熱流量についてそれぞれ検討のうえ、地震調査研究推進本部による知見も参照し、15kmと設定している。 (平成25年8月28日審査会合資料)

7

地域性の検討①:伊方発電所周辺の地震発生層厚さ – 地震発生層下限深さ(2/3)

令和4年4月15日 審査会合資料再掲

○伊藤(2006)による検討結果を下記に示す。(平成25年8月28日審査会合資料)

平成25年8月28日審査会合資料

76

地域性の検討①:伊方発電所周辺の地震発生層厚さ – 地震発生層下限深さ(3/3)

令和4年4月15日 審査会合資料再掲

- ○伊藤(2006)は、中央構造線付近から南側で地震 発生層下限は浅いとしており,敷地周辺は地震 発生層の薄い地域である。
- ○長谷川ほか(2012)も、中央構造線に沿って南側 にD90が浅い領域が帯状に分布するとしており, **敷地周辺が地震発生層の薄い地域**であることが 支持される。

【伊藤(2006)より抜粋】 中央構造線付近の変化の様子を見ると, 共通に地震発生層が北側 に向かって深くなることが分かる。また、中国地方を横断すると日 本海側に向かって地震発生層は浅くなり、さらに日本海に向けて再 び深くなる。中央構造線付近から紀伊半島中部および四国中央部に かけて地震発生層は浅くなり、紀伊半島と四国の南部では再び深く なる。

【長谷川ほか(2012)より抜粋】 上記の火山地域に加えて,四国西部から紀伊半島までの中央構造 線に沿っても、D90が浅い領域が帯状に分布する。ここでは地殻熱 流量は必ずしも高くない(図17a)ので、浅いD90の原因は温度では ない。図17cには、深部低周波地震を×印で示すが、この中央構造線 に沿う地域を含め、日本列島全域で、深部低周波地震の発生域では **D90が浅いという顕著な傾向がみてとれる**。ここでプロットした深 部低周波地震は、1つは陸域プレート内のモホ面付近の深さで発生す るもの、もう1つは西南日本のプレート境界で発生するものであり、 どちらも水がその発生に関わっていると推定されている(Hasegawa and Yamamoto,1994; Obara, 2002)。したがって、D90 の浅い領域では、その直下に深部からの地殻流体の供給があると推 定される。マグマが供給されれば温度が上昇しD90が浅くなるであ ろうが、中央構造線のように、水が供給されてD90が浅くなるのは 容易には理解できない。この点については、さらなる検討が必要で ある。

- 図 17 (a) 地殻熱流量の分布 (Tanaka et al., 2004). 地殻熱流量をカ ラースケールで示す. (b) D90 と第四紀火山, (c) D90 と深部 低 周 波 地 震, (d) D90 と M> 6.5 の 地震 の 分布 (Omuralieva et al., submitted). D90 をカラー スケールで, 第四紀火山を三 角で、深部低周波地震を×で、 M>6.5の地震を赤丸で示す。 太平洋スラブおよびフィリピ ン海スラブ上面の深さを破線 および実線のコンターで示す.
- Fig. 17 (a) Heat flow (Tanaka et al., 2004), (b) D90 and Quaternary volcanoes, (c) D90 and deep low-frequency earthquakes and (d) D90 and large earthquakes (Omuralieva et al., submitted). Heat flow values and D90 are shown by the color scale at the top of each figure. Quaternary volcanoes, deep low-frequency earthquakes, and M > 6.5 earthquakes occurring since 1926 are shown by triangles, crosses, and red circles, respectively. Depths to the upper surfaces of the Pacific and Philippine Sea slabs are shown by iso-depth contours of broken and solid lines, respectively, in (d).

長谷川ほか(2012)より抜粋

伊藤潔,2006,地震発生層の深さ分布と活断層のセグメンテーションとの関係,京都大学防災研究所年報B,49,227-238. 長谷川昭・中島淳一・内田直希・梁田高広・岡田知己・趙大鵬・松澤暢・海野徳仁、2012、沈み込み帯の地震の発生機構一 地殻流体に規定されて 発生する沈み込み帯の地震一,地学雑誌,121,128-160.

地域性の検討①:伊方発電所周辺の地震発生層厚さ

令和4年4月15日 審查会合資料再掲

○伊方発電所周辺の地震発生層厚さは13kmと設定している。(平成27年3月20日審査会合資料)

*2: 地震規模は、Mw6.5程度以上

地域性の検討①:伊方発電所周辺の地震発生層厚さを踏まえて想定される地震規模の検討

令和4年4月15日 審查会合資料再掲

○全国共通に考慮すべき地震の最大規模は、断層破壊が地震発生層厚さに相当する断層幅及び断層長さで地震発生
 ■全体に広がるような震源断層と対応すると考えられる(下図に震源像のイメージを示す)。

全国共通に考慮すべき「震源を特定せず策定 する地震動|に関する検討報告書より抜粋

○伊方発電所周辺は地震発生層下限の浅い(地震発生層の薄い)地域であり、伊方発電所周辺の地震発生層厚さ13 kmと東西圧縮横ずれの応力場を踏まえれば、地震発生層上端から下端まで拡がる断層幅及びそれに等しい断層長 さを持つ震源断層として、長さ13km×幅13kmの震源断層が想定される。

○そして,長さ13km×幅13kmの震源断層(断層面積Sは169km)で想定される地震規模は、断層幅が飽和する場合の地震のスケーリングで用いられる入倉・三宅(2001)から、

 $Mo = (S/4.24 \times 10^{11})^2 \times 10^{-7} \Rightarrow 1.59 \times 10^{18} (Nm)$ となり、**Mwは6.1程度**である。

○これを踏まえれば、断層傾斜角のばらつき等を考慮しても、伊方発電所において、標準応答スペクトルの模擬地 震波の振幅包絡線の設定にあたってMw6.5(に相当する気象庁マグニチュードとして保守的にM7.0)の地震規 模を設定していることは十分な保守性を有する。

シナリオ地震の強震動予測,2001,入倉孝次郎・三宅弘恵,地学雑誌, Vol.110,849-875.

地域性の検討②:伊方発電所周辺の地震活動を踏まえたM7.0以上の地震の年発生頻度

令和4年4月15日 審杳会合資料再掲

○設定したM7.0の保守性に関連して,伊方発電所周辺の地震活動を踏まえた検討を行った。

○日本全域及び伊方発電所周辺で発生した内陸地殻内地震の発生頻度(震源近傍を想定し,半径10kmの円の面積 相当に換算)によれば、伊方発電所周辺の地震活動は低調であり、伊方発電所近傍におけるM7.0以上の地震の 年発生頻度は日本全域と比べて低いと評価される。

敷地周辺における震源分布※1

*1震源データは気象庁一元化震源+Hi-netによる(1997/10/1-2020/12/31、20km以浅、M0以上)。 ※2発生頻度は、伊方発電所周辺10km内、50km内、日本全域における震源分布より、半径10kmの円の面積相当の頻度に換算。 ※3GR則は宇津(1965)に基づいて最小規模はM2として算出。伊方発電所周辺10㎞内はM2以上の地震がほとんど発生していないため、GR則は算定してない。

1. 乱数位相を用いた模擬地震波の振幅包絡線に関する検討

1.1 地震規模の設定に関する検討

1.2 継続時間に関する検討

1.2.1 既往の経験式との比較

1.2.2 実観測記録との比較

1.3 まとめ

2. 観測記録の位相を用いた模擬地震波作成に関する検討

2.1 伊方発電所における地震観測記録の収集・整理

2.2 伊方発電所立地地点の地盤特性の整理

2.3 伊方発電所周辺における地震観測記録の収集・整理 2.4 まとめ

14

○**地震動の継続時間と断層の破壊時間との関係**については,武村ほか(1989),壇・渡辺(1989),佐藤ほか(1994)など の知見があり,断層の一方の端の中央からラディアルに破壊(ユニラテラル破壊)する場合の断層等を想定した **理論的な検討**がこれまでなされてきている。

○例えば,佐藤ほか(1994)では,地震動の立ち上がり部・強震部・減衰部を表したJennings et al.(1968)による振幅 包絡線(以下,「Jennings型包絡線」)における立ち上がり部と強震部の理論的な継続時間について,断層長さL, 断層幅W,破壊伝播速度Vrをパラメータとして下式のように導いている。

立ち上がり部T_b-T_a: (W/2)/Vr, 強震部T_c-T_b: L/Vr-(W/2)Vr

そのうえで、W=L/2、Vr=0.72 β 、logS = M-4.07(Sは断層面積)、 β = 3.7km/s(β は地盤のS波速度)を仮定し、

立ち上がり部T_b-T_a : 10^{0.5M-2.91} , 強震部T_c-T_b : 10^{0.5M-2.43} の式を導いている。

○このような背景のもと、実際の観測記録では、立ち上がり部・強震部は「地震規模」と、減衰部は「地震規模」 および「震源距離」と対応する傾向があることを踏まえ、Jennings型包絡線の継続時間に関する経験式が既往 研究において提案されていることから、各研究の継続時間の整理・比較を行う。

武村雅之・釜田正毅・小堀鐸二, 1989, 地震波の発生伝播理論を考慮した模擬地震動作成法, 日本建築学会構造系論文集, 403, pp.25-34. 壇一男・渡辺孝英, 1989, 地震波形の包絡関数に関する一考察, 日本建築学会大会学術講演梗概集, pp.773-774.

佐藤智美・川瀬博・佐藤俊明, 1994, ボアホール観測記録を用いた表層地盤同定手法による工学的基盤波の推定及びその統計的経時特性, 日本建築 学会構造系論文集, 461, pp19-28

Jennings, P.C., Housner, G.W., and Tsai, N.C., 1968, Simulated earthquake motions, Earthquake Engineering Research Laboratory, Pasadena, California, 1968.

地震動の継続時間に関する経験式 – JEAG4601-1987及び大崎(1994)

令和4年4月15日 審査会合資料再掲

JEAG4601-1987及び大崎(1994)は、地震動の継続時間と振幅包絡線の関係について、実用上は地震規模から十分な精度で継続時間を推定できると考え、地震規模との経験式として下式を提案している。

○JEAG4601-1987及び大崎(1994)による地震規模M7.0の場合の継続時間は下表のように計算される。

地震規模	震源距離	全継続時間	強震部の	振幅包絡	線の経時的	変化(秒)
Μ	A X(km) (秒) A T _c -T _b	Т _b	Τ _c	T _d		
7.0	- 24.89 9.46		9.46	2.99	12.45	24.89

日本電気協会,1987,原子力発電所耐震設計技術指針 JEAG4601-1987. 大崎順彦,1994,新・地震動のスペクトル解析入門,鹿島出版会.

地震動の継続時間に関する経験式 - 奈良岡ほか(1999)

令和4年4月15日 審查会合資料再掲

〇奈良岡ほか(1999)は、強震部と減衰部の継続時間と振幅包絡線の関係について、強震部の継続時間は地震規模に 大きく依存し、震源距離にはあまり依存しない傾向が見られていることを踏まえ、地震規模と等価震源距離との 経験式として下式を提案している(なお、立ち上がり部については言及されていない)。

○奈良岡ほか(1999)による地震規模M7.0,等価震源距離10kmの場合の継続時間は下表のように計算される。

地震規模	等価震源	全継続時間	強震部の	振幅包絡	線の経時的	変化(秒)
Μ	正商庄 Xeq(km)	(秒)	継続時間(秒)	Т _ь	Τ _c	T _d
7.0	10.0 - 4.4		4.49	_	4.49 [%]	17.55*

※ 奈良岡ほか(1999)ではT_bの式が示されていないため,表中のT_c及びT_dの数値はT_bが0秒として記載 (T_c-T_b=4.49秒,T_d-T_c=13.06秒から計算)

奈良岡浩二・宮腰淳一・渡辺孝英・八代和彦, 1999, 岩盤上における観測記録の経時特性のマグニチュード・等価震源距離依存性, 日本建築学会大会学術講演梗概集, pp.179-180.

地震動の継続時間に関する経験式 – 佐藤ほか(2001)

令和4年4月15日 審查会合資料再掲

○佐藤ほか(2001)は、地震動の継続時間と振幅包絡線の関係について、地震規模と震源距離との経験式として、 地震タイプによって異なる式を提案しており、内陸地殻内地震の継続時間の式は下記のとおりである。

○佐藤ほか(2001)による地震規模M7.0,震源距離10kmの場合の継続時間は下表のように計算される。

地震規模	震源距離	全継続時間	強震部の	振幅包絡	線の経時的	変化(秒)
Μ	X(km)	(秒)	継続時間(秒) T _c -T _b	Т _ь	T _c	T _d
7.0	10.0	12.56	3.33	1.11	4.44	12.56

※ 佐藤ほか(2001)では、2000年鳥取県西部地震が検討時点では速報値であり規模も大きいため、同地震を含む場合と含まない場合の2通りで検討を行っており、上記の表は同地震を含まない場合の数値を記載している。 なお、同地震を含む場合であっても、M7.0-X10kmの場合の強震部の継続時間の差は0.1秒にも満たない。

佐藤智美・片岡正次郎・田村敬一・奥村俊彦,2001, K-net強震記録を用いた加速度応答スペクトルと経時特性の推定式の検討, 第26回地震工学研究発表会講演論文集,pp.397-400.

地震動の継続時間に関する経験式 - 鎌田ほか(2003)

令和4年4月15日 審查会合資料再掲

○鎌田ほか(2003)は、地震動の継続時間と振幅包絡線の関係について、地震規模と震源距離との経験式として、 地震タイプによって異なる式を提案するとともに、堆積層の影響を受けていない地中の硬質岩盤上と、堆積層の 影響を受けている地表部の違いに着目した検討を行っており、地中記録から推定した地震基盤における継続時間 の式(内陸地殻内地震における加速度時刻歴波形の式)は下記のとおりである。

○鎌田ほか(2003)による地震規模M7.0, 震源距離10kmの場合の継続時間は下表のように計算される。

地震規模	震規模 震源距離 全継続時間 強震部の		振幅包絡	線の経時的	変化(秒)	
М	X(km)	(秒)	継続時間(秒) 「 T _c -T _b	Т _b	T _c	T _d
7.0	10.0	6.03	1.25	0.41	1.66	6.03

鎌田丈史・福和伸夫・飛田潤,2003,多点強震観測記録に基づく地震動の継続時間の統計的特性と推定式,日本建築学会大会学術 講演梗概集,pp.195-196.

1.2 継続時間に関する検討/1.2.1 既往の経験式との比較 地震動の継続時間に関する経験式 一佐藤・岡崎(2019)

令和4年4月15日 審査会合資料再掲

○**佐藤・岡崎(2019)**は,解放基盤表面(Vs700m/s以上の地盤)における地震動の継続時間と振幅包絡線の関係に ついて,地震規模と震源距離との経験式として,地震タイプによって異なる式を提案しており,Jennings型包絡 線による内陸地殻内地震の継続時間の式(Mを用いた式)は下記のとおりである。

○佐藤・岡崎(2019)による地震規模M7.0,震源距離10kmの場合の継続時間は下表のように計算される。

地震規模	地震規模 震源距離 全継続時間 強震部の		振幅包絡	線の経時的	変化(秒)	
М	X(km)	(秒)	継続時間(秒) T _c -T _b	Т _ь	T _c	T _d
7.0	10.0	11.01	2.57	0.85	3.42	11.01

佐藤智美・岡崎敦,2019,解放基盤における地震動の経験的経時特性モデル,日本地震工学会・大会-2019梗概集,pp.1-10.

地震動の継続時間に関する経験式 - Noda et al.(2002)

令和4年4月15日 審査会合資料再掲

○Noda et al.(2002)は,岩盤サイトで得られた地震観測記録(内陸地殻内地震及び海溝型地震の観測記録)に基 づき,地震動の継続時間と振幅包絡線の関係について,地震規模と等価震源距離との経験式を提案しており, 継続時間の式は下記のとおりである。

○Noda et al.(2002)による地震規模M7.0,等価震源距離10kmの場合の継続時間は下表のように計算される。

地震規模	等価震源	全継続時間	強震部の	振幅包絡	線の経時的	変化(秒)
Μ	⊯ല雨≞ Xeq(km)	(秒)	継続時間(秒)	Т _b	T _c	T _d
7.0	10.0	10.0 29.80 12.59		3.72	16.31	29.80

Noda, S., K. Yashiro, K. Takahashi, M. Takemura, S. Ohno, M. Tohdo and T. Watanabe, 2002, Response spectra for design purpose of stiff structures on rock sites, OECD-NEA workshop on the relation between seismological data and seismic engineering analysis, OCT.16-18, Istanbul. 20

1.2 継続時間に関する検討/1.2.1 既往の経験式との比較 地震動の継続時間に関する各知見の強震部の継続時間の比較

令和4年4月15日 審査会合資料再掲

○以上に示した知見を比較すると, Noda et al.(2002)以外の既往の経験式からは, 全国共通に考慮すべき地震を 敷地近傍に想定した場合の継続時間は, **強震部で10秒程度未満が想定される**。

○Noda et al.(2002)に基づく振幅包絡線は他の経験式よりも地震動の継続時間が長めとなっている。

■地震規模M7.0の場合の強震部の継続時間に関する各知見の比較

注)振幅包絡線は各知見の強震部の開始時刻を0秒として図示しており,各知見の強震部の継続時間(秒)を併記した(減衰部は震源距離及び等価震源距離を10kmで図示)。

令和4年4月15日 審查会合資料再掲

○Noda et al.(2002)における継続時間の式は、

- ・先に示した奈良岡ほか(1999)で見られた**断層の破壊方向に起因するばらつきも考慮に入れた保守的な式** (平均+σに相当する式)として提案されており(下図),継続時間が長めに評価される
- ・継続時間の分析のデータセットに海溝型地震(経験的にM≒Mw)を含んだ式として提案されており、 内陸地殻内地震(規模が大きい領域では経験的にM>Mw)に対しては継続時間が長めに評価される

ことから、今回の標準応答スペクトルの模擬地震波の振幅包絡線の設定においては、他の経験式と比較して 継続時間が長く、保守的な経験式となっている。

奈良岡ほか(1999)による強震部の継続時間と地震規模Mとの関係(水平動)

1. 乱数位相を用いた模擬地震波の振幅包絡線に関する検討

1.1 地震規模の設定に関する検討

1.2 継続時間に関する検討

1.2.1 既往の経験式との比較

1.2.2 実観測記録との比較

1.3 まとめ

2. 観測記録の位相を用いた模擬地震波作成に関する検討

2.1 伊方発電所における地震観測記録の収集・整理

2.2 伊方発電所立地地点の地盤特性の整理

2.3 伊方発電所周辺における地震観測記録の収集・整理 2.4 まとめ

- ○震源を特定せず策定する地震動のうち、「全国共通に考慮すべき地震動」相当の実観測記録の継続時間について 検討する。
- ○1.2.1項で示したとおり,**地震動の継続時間は経験的に地震規模と震源との距離と関係性がある**ことを踏まえ, 下記に示す条件にて観測記録を収集する。

■地震動の継続時間の検討に用いる観測記録の収集条件

防災科学技術研究所の観測地点から、下記の条件にて内陸地殻内地震の観測記録を収集する。 なお、観測地点は、地盤の非線形性等の影響が含まれないと考えられるKiK-netの地中記録を対象とし、 時刻歴波形に明らかに複数地震の影響が含まれている記録は除く。

	観測記録の収集条件
地震規模	・「全国共通に考慮すべき地震動」で想定される地震規模として, Mw5.0 [*] ~6.5の地震を収集
距離	・震源近傍を想定し, 震央距離10㎞以内の記録を収集

※強震部で十分な振幅が得られている記録を収集することを念頭に最小規模をMw5.0と設定

(全国共通に考慮すべき「震源を特定せず策定する地震動」に関する検討報告書で対象とされている地震の最小規模と同じ)

収集した地震リスト

○収集した地震リスト(震央距離10km以内で観測記録が取得されている内陸地殻内地震)と震央分布を示す。

Na		発:	生日時	寺		雷山地々	经由	经库	深さ	рл]			
INO.	年	月	B	時	分	辰 兴 地石	祥伎	栓皮	(km)					
1	2001	3	31	6	9	NW GUNMA PREF	36.8210	139.3750	4.73	5.0				
2	2002	9	16	10	10	EASTERN TOTTORI PREF	35.3700	133.7393	9.64	5.1]	130° 135°	140° 145	5°
3	2004	11	4	8	57	MID NIIGATA PREF	37.4303	138.9157	18.02	5.1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
4	2008	6	14	9	20	NORTHERN MIYAGI PREF	38.8863	140.6730	6.50	5.5			. (~~)	
5	2008	6	16	23	14	SOUTHERN IWATE PREF	38.9972	140.8397	7.12	5.1	45°	2	0	J 4
6	2010	7	4	4	33	SOUTHERN IWATE PREF	39.0247	140.9128	7.12	5.0		2 × 5	J. m	P.ª
7	2011	3	19	8	49	NORTHERN IBARAKI PREF	36.7373	140.6045	4.95	5.1		and the han	Serie for	Pro"
8	2011	3	19	18	56	NORTHERN IBARAKI PREF	36.7837	140.5715	5.37	5.8		(me		
9	2011	6	30	8	16	CENTRAL NAGANO PREF	36.1885	137.9547	4.30	5.0		لمر ا	242	
10	2011	7	5	19	18	CENTRAL WAKAYAMA PREF	33.9905	135.2342	7.33	5.0	40°	5	55)	4
11	2011	9	21	22	30	NORTHERN IBARAKI PREF	36.7372	140.5772	8.64	5.1			is in the	
12	2011	11	21	19	16	SHIMANE HIROSHIMA BORDER	34.8717	132.8937	11.66	5.2				
13	2012	1	28	7	43	EASTERN YAMANASHI PREF	35.4892	138.9770	18.16	5.2		1 1 and 1		
14	2012	3	10	2	25	NORTHERN IBARAKI PREF	36.7177	140.6125	6.52	5.2	35°		9, V	3
15	2012	3	14	21	5	NEAR CHOSHI CITY	35.7477	140.9320	15.08	5.8				
16	2013	12	31	10	3	NORTHERN IBARAKI PREF	36.6915	140.6287	6.63	5.0				
17	2014	9	3	16	24	NORTHERN TOCHIGI PREF	36.8737	139.5225	7.14	5.0		45.24		
18	2016	4	14	21	26	NW KUMAMOTO PREF	32.7417	130.8087	11.39	6.1	30°		★:震央	30
19	2016	4	16	16	2	NW KUMAMOTO PREF	32.6992	130.7200	12.30	5.1		S -	km	-
20	2016	12	28	21	38	NORTHERN IBARAKI PREF	36.7202	140.5742	10.84	5.9		and the second sec	0	500
21	2017	6	25	7	2	WESTERN NAGANO PREF	35.8680	137.5865	6.66	5.2	25°	***************************************		2
22	2017	8	2	2	2	NORTHERN IBARAKI PREF	36.8035	140.5352	8.65	5.1	20	100° 105°	140°	~
23	2017	12	6	0	13	CENTRAL NAGANO PREF	36.3772	137.9725	10.38	5.1]	130 135	140 145)

※震源データは気象庁及びF-netから1997年1月~2021年8月,震源深さ20km以浅(気象庁による値)を抽出。

収集した観測点

○収集した観測点情報(震央距離10km以内で内陸地殻内地震の 観測記録が取得されている観測点)と震央との位置関係を示す。 40°

観測点名		緯度	経度	Vs速度 (m/s)	観測された地震と震央距離
CHBH14	銚子中	35.7342	140.8230	2330	No.15:震央距離10.0km
HRSH06	口和	34.9137	132.9123	1650	No.12:震央距離5.0km
IBRH13	高萩	36.7955	140.5750	3000	No.7 : 震央距離7.0km No.8 : 震央距離1.3km No.11 : 震央距離6.5km No.14 : 震央距離9.3km No.20 : 震央距離8.4km No.22 : 震央距離3.7km
IBRH14	+王	36.6922 140.5484 3200		3200	No.11:震央距離5.6km No.14:震央距離6.4km No.16:震央距離7.2km No.20:震央距離3.9km
IWTH25	一関西	39.0092	140.8638	1810	No.5 :震央距離2.5km
IWTH26	一関東	38.9690	141.0013	680	No.6 :震央距離9.8km
KMMH14	豊野	32.6345	130.7521	1540	No.19:震央距離7.8km
KMMH16	益城	32.7967	130.8199	2700	No.18:震央距離6.2km
MYGH02	鳴子	38.8587	140.6513	2205	No.4 :震央距離3.6km
NGNH18	開田	35.9324	137.5950	1300	No.21:震央距離7.2km
NGNH31	塩尻	36.1184	137.9389	1100	No.9 :震央距離7.9km
NGNH32	松本	36.2578	137.9898	1340	No.9 :震央距離8.3km
NGNH33	生坂	36.4598	137.9637	1100	No.23:震央距離9.2km
NIGH01	長岡	37.4272	138.8876	_ *	No.3 :震央距離2.5km
TCGH07	栗山西	36.8817	139.4534	1870	No.1 :震央距離9.7km No.17:震央距離6.2km
TTRH07	関金	35.3649	133.7486	2120	No.2 :震央距離1.0km
WKYH01	広川	33.9804	135.2122	1580	No.10:震央距離2.3km
YMNH14	都留南	35.5115	138.9675	2280	No.13:震央距離2.6km

※PS検層を実施していない

1.2 継続時間に関する検討/1.2.2 実観測記録との比較 実観測記録の継続時間とNoda et al.(2002)に基づく振幅包絡線の比較

令和4年4月15日 審査会合資料再掲

○収集した23地震27記録の加速度時刻歴波形の振幅を基準化し, Noda et al.(2002)に基づき「M7.0-Xeq10km」 から設定した振幅包絡線と重ね描いた結果を示す。なお,伊方発電所の解放基盤表面のVs2600m/sを踏まえ, 地震計位置のせん断波速度が地震基盤相当(Vs2200m/s以上)の観測記録を抽出した結果も参考として示す。

○実観測記録の継続時間は強震部で10秒程度未満であり、Noda et al.(2002)に基づき「M7.0-Xeq10km」から 設定した継続時間(強震部で12.59秒)の方が長い。

注) 強震部の継続時間を確認する観点から,気象庁の走時表に基づき計算した各観測記録のS波の到達時刻を同時刻にして全記録の図を作成。 そのうえで,観測記録の強震部の始まりがNoda et al.(2002)の振幅包絡線の強震部の開始時刻付近となり,かつ,立ち上がり部も含めた波 形が振幅包絡線に包絡されるように,水平動・鉛直動でそれぞれ一律に時刻を調整している。このため,Vs2200m/s以上のみを抽出した記 録の波形は,見かけ上,振幅包絡線と対応していないが,いずれにしても強震部の継続時間はNoda et al.(2002)の振幅包絡線の方が長い。

1. 乱数位相を用いた模擬地震波の振幅包絡線に関する検討

- 1.1 地震規模の設定に関する検討
- 1.2 継続時間に関する検討
 - 1.2.1 既往の経験式との比較
 - 1.2.2 実観測記録との比較

1.3 まとめ

- 2. 観測記録の位相を用いた模擬地震波作成に関する検討
 - 2.1 伊方発電所における地震観測記録の収集・整理
 - 2.2 伊方発電所立地地点の地盤特性の整理
 - 2.3 伊方発電所周辺における地震観測記録の収集・整理2.4 まとめ

乱数位相を用いた模擬地震波の作成における振幅包絡線の設定について(まとめ)

令和4年4月15日 審查会合資料再掲

【1.1節】

- ○「全国共通に考慮すべき地震動」で想定される地震規模に関して以下の検討を実施したところ、伊方発電所において標準応答スペクトルの模擬地震波の振幅包絡線の設定にあたってM7.0を設定していることは保守的である。
 - ・武村(1998)によれば、M=6.5と6.8の間で地表地震断層との関連性がある地震の発生率が急激に増加し、明らかにM≤6.5の地震とM≥6.8の地震では様子が異なる。
 - ・伊方発電所周辺の地震発生層厚さを踏まえれば, 伊方発電所周辺で想定される地震規模はMw6.1程度である。
 - ・伊方発電所周辺で発生した内陸地殻内地震の発生頻度を踏まえれば, 伊方発電所近傍におけるM7.0の地震の年発生頻度は日本全域と比べて低いと評価される。

【1.2節】

○地震動の継続時間に関して以下の検討を実施したところ, Noda et al.(2002)に基づき「M7.0 – Xeq10km」 から設定した継続時間は長めに設定されている。

① 既往の経験式との比較(1.2.1項)

- ・既往の経験式から、全国共通に考慮すべき地震を敷地近傍に想定した場合の継続時間は、 強震部で10秒程度未満が想定される。
- ・標準応答スペクトルの模擬地震波の振幅包絡線の設定においては, Noda et al.(2002)の継続時間の式は, 他の経験式よりも地震動の継続時間が長く評価され,保守的な経験式となっている。

② 実観測記録との比較(1.2.2項)

- ・「全国共通に考慮すべき地震動」相当の実観測記録の継続時間は強震部で10秒程度未満である。
- ・Noda et al.(2002)に基づき「M7.0-Xeq10km」から設定した継続時間と実観測記録の継続時間 とを比較すると、設定した継続時間は実観測記録よりも長めである。

【まとめ】

〇以上より、伊方発電所における乱数位相を用いた模擬地震波の作成にあたって、Noda et al.(2002)に基づく 振幅包絡線の設定条件として「M7.0-Xeq10km」を採用したことは、耐震設計上の観点から保守的である。

【参考】 地震規模(M7.0, M6.9)の違いによる継続時間の比較

令和4年4月15日 審査会合資料再掲

して設定

○参考として、申請時にNoda et al.(2002)に基づき「M6.9-Xeq10km」から設定した振幅包絡線との比較を示す。

)「M7.0-Xeq10㎞」から設定した継続時間の方が長くなっていることが確認できる。

■Noda et al.(2002)に基づく振幅包絡線の経時的変化の比較 (地震規模がM6.9の場合とM7.0の場合との比較)

地震規模	等価震源	全継続時間	強震部の	振幅包絡	線の経時的		
М	¤⊏ м⊭ Xeq(km)	(秒)	和丞和近山寸旧」(4岁) T _c -T _b	T _b	Τ _c	T _d	
6.9	10.0	28.03	11.75	3.31	15.06	28.03	1 粉位相を用いた
7.0	10.0	29.80	12.59	3.72	16.31	29.80	● 模擬地震波の作成に おける振幅匀終線と

1. 乱数位相を用いた模擬地震波の振幅包絡線に関する検討

1.1 地震規模の設定に関する検討

1.2 継続時間に関する検討

1.2.1 既往の経験式との比較

1.2.2 実観測記録との比較

1.3 まとめ

2. 観測記録の位相を用いた模擬地震波作成に関する検討

2.1 伊方発電所における地震観測記録の収集・整理

2.2 伊方発電所立地地点の地盤特性の整理

2.3 伊方発電所周辺における地震観測記録の収集・整理2.4 まとめ

検討の概要

 ○実観測記録の位相を用いた模擬地震波の検討にあたって、伊方発電所及び伊方発電所周辺における観測記録の収 集を行い、模擬地震波作成に用いることが可能な観測記録の有無を確認する。

○伊方発電所における模擬地震波の作成に用いることが可能な観測記録の検討は、下記の流れで実施する。

■検討の概要

① 伊方発電所における地震観測記録の収集・整理(2.1節)

・伊方発電所における地震観測記録を収集・整理する。

② 伊方発電所立地地点の地盤特性の整理(2.2節)

・伊方発電所と地盤特性が同程度と考えられる伊方発電所周辺での観測記録の収集に先立ち, 伊方発電所立地地点の震源特性,伝播特性及び増幅特性を改めて整理する。

③ 伊方発電所周辺における地震観測記録の収集・整理(2.3節)

・2.2節で整理した伊方発電所立地地点の震源特性,伝播特性及び増幅特性を踏まえ, 伊方発電所と地盤特性が同程度と考えられる観測記録を収集・整理する。 1. 乱数位相を用いた模擬地震波の振幅包絡線に関する検討

1.1 地震規模の設定に関する検討

1.2 継続時間に関する検討

1.2.1 既往の経験式との比較

1.2.2 実観測記録との比較

1.3 まとめ

2. 観測記録の位相を用いた模擬地震波作成に関する検討

2.1 伊方発電所における地震観測記録の収集・整理

2.2 伊方発電所立地地点の地盤特性の整理

2.3 伊方発電所周辺における地震観測記録の収集・整理2.4 まとめ

2.1 伊方発電所における地震観測記録の収集・整理

伊方発電所の地震計配置

令和4年4月15日
審査会合資料再掲

■地震計設置位置図(配置図・柱状図)

観測点	観測期間
A地点	1975~1982
B地点	1982~1994
C地点	1999~

標高	A地	点	B地	点	C地点					
(m)	地震計	地層	地震計	地層	地震計	地層				
+51	GL C GL±0m	第四系	GL		GL					
+10 +5			O GL−5m	三波川 変成岩	O GL-5m	三波川 変成岩				
-9	GL−60m ⊖	三波川 変成岩 類		類		類				
-70			GL-80m O		GL-80m O					
-150			GL−160m O		GL-160m O					
-200										
※図中の「地層」けいずれも地震計設置時占の地層情報を表して										

※図中の「地層」はいずれも地震計設置時点の地層情報を表して おり、A地点の地層情報は3号機建設前の情報である。

2.1 伊方発電所における地震観測記録の収集・整理 伊方発電所の地震計で観測された地震の一覧

令和4年4月15日 審查会合資料再掲

○伊方発電所の地震計で観測された地震のうち,内陸地殻内地震は,愛媛県南予で発生した地震(Mw3.8, No.55) 及び2016年熊本地震(Mw7.1, No.56)が挙げられるが,愛媛県南予の地震は地震規模が小さく,熊本地震は 敷地までの距離が遠い地震である。

○その他の地震は全て海洋プレート内地震であり、震源を特定せず策定する地震動の位相特性として適切ではない。

地震諸元 (JMA,F-net)						地震諸元 (JMA , F-net)								是大加速度					
No	年月日	時刻	震央地名	地震タイプ	Mj	Mw	深さ (km)	(gal	l)	No	年月日	時刻	震央地名	地震タイプ	Mj	Mw	深さ (km)	يركن (ga	al)
1	1976/4/12	15:12	豊後水道	プレート内	4.5		43	4.5	А	32	2005/9/4	19:06	伊予灘	プレート内	4.3	4.2	54	5.4	С
2	1979/7/13	17:10	周防灘	プレート内	6.0	6.1	70	17.7	Α	33	2006/2/1	12:15	伊予灘	プレート内	4.3	4.2	46	7.2	С
3	1982/10/25	17:56	大分県北部	プレート内	4.6	-	120	3.4	В	34	2006/5/28	20:36	伊予灘	プレート内	4.3	4.3	80	8.1	С
4	1982/12/10	9:32	松山沖	プレート内	4.9	-	50	5.2	В	35	2006/6/6	23:28	伊予灘	プレート内	3.6	3.7	49	11.5	С
5	1983/2/16	21:12	伊予灘	プレート内	4.1	-	48	3.5	В	36	2006/6/12	5:01	大分県西部	プレート内	6.2	6.4	145	34.1	С
6	1983/4/17	14:22	大洲付近	プレート内	3.4	-	39	2.3	В	37	2006/8/23	0:07	伊予灘	プレート内	3.6	3.6	54	8.0	С
7	1983/5/20	18:36	愛媛県東部	プレート内	4.9	-	50	4.9	В	38	2006/9/26	7:03	伊予灘	プレート内	5.3	5.3	70	19.3	С
8	1983/6/19	6:29	伊予灘	プレート内	4.9	-	73	6.7	В	39	2006/11/19	13:29	豊後水道	プレート内	4.2	4.2	41	10.4	С
9	1983/8/26	5:23	大分県北部	プレート内	6.6	6.5	116	31.3	В	40	2007/4/26	9:03	東予	プレート内	5.3	5.0	39	4.0	С
10	1984/10/3	6:28	伊予灘	プレート内	4.7	-	59	4.9	В	41	2009/1/25	2:33	伊予灘	プレート内	4.4	4.7	78	9.0	С
11	1985/5/13	19:41	愛媛県南西部	プレート内	6.0	5.5	39	22.6	В	42	2009/3/28	12:27	伊予灘	プレート内	3.9	4.0	83	6.5	С
12	1988/1/1	4:03	伊予灘	プレート内	4.9	-	59	19.9	В	43	2010/4/17	5:34	南予	プレート内	4.3	4.4	43	18.8	С
13	1988/3/3	5:28	伊予灘	プレート内	4.4	-	60	16.2	В	44	2011/6/29	23:36	伊予灘	プレート内	3.8	3.9	64	5.6	С
14	1988/7/29	18:59	伊予灘	プレート内	5.1	-	53	16.0	В	45	2012/5/25	4:43	伊予灘	プレート内	4.0	4.3	63	4.1	С
15	1991/1/4	3:36	伊予灘	プレート内	5.3	-	58	34.4	В	46	2012/9/8	10:41	伊予灘	プレート内	4.5	4.5	50	9.0	С
16	1993/8/14	10:29	愛媛県南西部	プレート内	5.3	-	47	13.1	В	47	2012/12/22	15:15	伊予灘	プレート内	4.5	4.4	47	12.3	С
17	1993/8/31	0:08	伊予灘	プレート内	5.1	-	62	14.0	В	48	2014/3/14	2:07	伊予灘	プレート内	6.2	6.3	78	91.1	С
18	1999/11/15	9:30	豊後水道	プレート内	3.5	3.6	44	5.8	С	49	2014/10/16	4:39	伊予灘	プレート内	4.0	4.0	41	5.0	С
19	2000/9/7	14:51	豊後水道	プレート内	4.3	4.1	45	7.4	С	50	2015/2/3	14:07	南予	プレート内	3.9	4.0	44	10.0	С
20	2001/1/5	5:15	安芸灘	プレート内	4.0	3.9	44	4.9	С	51	2015/7/3	4:55	伊予灘	プレート内	3.9	3.8	43	8.0	С
21	2001/1/9	13:37	伊予灘	プレート内	4.7	4.6	46	17.3	С	52	2015/7/13	2:52	大分県南部	プレート内	5.7	5.5	58	13.3	С
22	2001/3/24	15:27	安芸灘(芸予地震)	プレート内	6.7	6.8	46	86.4	С	53	2015/7/24	17:53	南予	プレート内	4.6	4.6	44	4.6	С
23	2001/3/25	19:19	安芸灘	プレート内	4.5	4.4	47	5.0	С	54	2015/8/21	16:54	豊後水道	プレート内	4.3	4.5	48	6.0	С
24	2001/3/26	5:40	安芸灘	プレート内	5.2	5.1	46	11.0	С	55	2016/2/12	11:46	南予	内陸地殻内	3.8	3.8	15	8.0	С
25	2001/4/25	23:40	日向灘	プレート内	5.8	5.7	39	6.7	С	56	2016/4/16	1:25	熊本県熊本	内陸地殻内	7.3	7.1	12	10.2	С
26	2002/3/25	22:58	安芸灘	プレート内	4.7	4.7	46	15.4	С	57	2016/8/15	13:37	伊予灘	プレート内	4.3	4.5	71	9.2	С
27	2002/4/6	1:57	愛媛県南西部	プレート内	4.4	4.4	42	15.4	С	58	2017/9/19	18:33	豊後水道	プレート内	4.2	4.4	41	6.7	С
28	2002/10/13	19:06	豊後水道	プレート内	4.9	4.8	43	5.2	С	59	2018/2/19	3:31	豊後水道	プレート内	5.0	5.1	39	13.4	С
29	2003/5/31	3:58	伊予灘	プレート内	4.5	4.3	65	5.2	С	60	2019/3/11	15:37	南予	プレート内	4.6	4.8	38	9.1	С
30	2004/4/20	22:26	伊予灘	プレート内	4.6	4.4	48	10.4	С	61	2020/3/9	4:28	豊後水道	プレート内	4.7	4.7	59	12.6	С
31	2005/5/25	20:31	豊後水道	プレート内	4.6	4.6	54	24.9	С	62	2021/2/23	16:08	伊予灘	プレート内	4.2	4.2	53	9.1	С

※最大加速度の欄のアルファベット(A~C)は観測された地震計の設置位置を示す。
2.1 伊方発電所における地震観測記録の収集・整理 伊方発電所の地震計で観測された地震の一覧(震央分布)

令和4年4月15日 審査会合資料再掲

2.1 伊方発電所における地震観測記録の収集・整理 – 伊方発電所の地震計で観測された内陸地殻内地震 –

— 2016年南予 Mw3.8

- 2016年熊本地震 Mw7.1

令和4年4月15日 審査会合資料再掲

37

○2016年南予の地震(Mw3.8)は,標準応答スペクトル策定に用いられた地震の最小規模(Mw5.0)より有意に小さく, 主要動も数秒程度と短い。2016年熊本地震本震は,震源が遠く表面波等による影響が考えられ,応答スペクトル の長周期成分が大きい。また,どちらも最大振幅が10ガル未満と小さく,**適切な記録ではない**。

○このため、伊方発電所と地盤特性が同程度と考えられる伊方発電所周辺における観測記録の収集・整理を行う。

1. 乱数位相を用いた模擬地震波の振幅包絡線に関する検討

1.1 地震規模の設定に関する検討

1.2 継続時間に関する検討

1.2.1 既往の経験式との比較

1.2.2 実観測記録との比較

1.3 まとめ

2. 観測記録の位相を用いた模擬地震波作成に関する検討

2.1 伊方発電所における地震観測記録の収集・整理

2.2 伊方発電所立地地点の地盤特性の整理

2.3 伊方発電所周辺における地震観測記録の収集・整理2.4 まとめ

震源特性 -敷地周辺の活断層分布

平成27年3月20日 審査会合資料再掲

震源特性 – 敷地周辺のテクトニクスの概要

平成27年3月20日 審査会合資料再掲

○敷地周辺は横ずれ断層が卓越する地域と正断層が卓越する地域の遷移域に位置し,横ずれの卓越する地域に属する と考えられる。

Fig. 6 Dextral faults (the Oita-Kumamoto Tectonic Line and the Median Tectonic Line) and the Hohi volcanic zone (solid dots) in Kyushu and Shikoku Islands (Kamata 1992). Open arrows show the present subduction direction of the Philippine Sea plate (Seno 1977). Small solid arrows show the active strike–slip faults. [HVZ, Hohi volcanic zone; KT, Kokura-Tagawa Fault zone; MTL. Median Tectonic Line.]

Kamata, H. and K. Kodama, 1999, Volcanic history and tectonics of the Southwest Japan Arc, The Island Arc, 8, 393-403.

震源特性 –四国周辺の内陸地殻内地震のメカニズム解

平成27年3月20日 審査会合資料再掲

- ○四国中東部および中国地方における内陸地殻内地震には横ずれ型のメカニズム解が多く見られ、最大主応力はほぼ東西方向と考えられる。敷地周辺では内陸地殻内地震が少ないものの、伊予灘北方や宇和海南方のメカニズム 解は東西圧縮の横ずれ型である。
- 〇一方,大分県北部における内陸地殻内地震のメカニズム解は、ほとんどが南北伸張の正断層型である。敷地周辺の応力場は東西圧縮の横ずれ型で、南北伸長の正断層型の応力場への遷移域に位置する。

震源特性 – 敷地周辺における地震発生層下限深さ(1/2)

令和4年4月15日 審査会合資料再掲

- ○伊藤(2006)は、中央構造線付近から南側で地震
 発生層下限は浅いとしており、敷地周辺は地震
 発生層の薄い地域である。
- ●長谷川ほか(2012)も、中央構造線に沿って南側 にD90が浅い領域が帯状に分布するとしており、
 敷地周辺が地震発生層の薄い地域であることが 支持される。

【伊藤(2006)より抜粋】 中央構造線付近の変化の様子を見ると,共通に地震発生層が北側 に向かって深くなることが分かる。また,中国地方を横断すると日 本海側に向かって地震発生層は浅くなり,さらに日本海に向けて再 び深くなる。中央構造線付近から紀伊半島中部および四国中央部に かけて地震発生層は浅くなり,紀伊半島と四国の南部では再び深く なる。

【長谷川ほか(2012)より抜粋】 上記の火山地域に加えて、四国西部から紀伊半島までの中央構造 線に沿っても、D90が浅い領域が帯状に分布する。ここでは地殻熱 流量は必ずしも高くない(図17a)ので、浅いD90の原因は温度では ない。図17cには、深部低周波地震を×印で示すが、この中央構造線 に沿う地域を含め、日本列島全域で、深部低周波地震の発生域では **D90が浅いという顕著な傾向がみてとれる**。ここでプロットした深 部低周波地震は、1つは陸域プレート内のモホ面付近の深さで発生す るもの、もう1つは西南日本のプレート境界で発生するものであり、 どちらも水がその発生に関わっていると推定されている(Hasegawa and Yamamoto,1994; Obara, 2002)。したがって、D90 の浅い領域では、その直下に深部からの地殻流体の供給があると推 定される。マグマが供給されれば温度が上昇しD90が浅くなるであ ろうが、中央構造線のように、水が供給されてD90が浅くなるのは 容易には理解できない。この点については、さらなる検討が必要で ある。

 図 17 (a) 地殻熱流量の分布 (Tanaka et al., 2004). 地殻熱流量をカ ラースケールで示す. (b) D90 と第四紀火山, (c) D90 と深部 低周波地震, (d) D90 と M>
 6.5 の地震の分布 (Omuralieva et al., submitted). D90 をカラー スケールで, 第四紀火山を三 角で, 深部低周波地震を×で, M>6.5 の地震を赤丸で示す. 太平洋スラブおよびフィリピ ン海スラブ上面の深さを破線 および実線のコンターで示す.

Fig. 17 (a) Heat flow (Tanaka et al., 2004), (b) D90 and Quaternary volcanoes, (c) D90 and deep low-frequency earthquakes and (d) D90 and large earthquakes (Omuralieva et al., submitted). Heat flow values and D90 are shown by the color scale at the top of each figure. Quaternary volcanoes, deep low-frequency earthquakes, and M > 6.5 earthquakes occurring since 1926 are shown by triangles, crosses, and red circles, respectively. Depths to the upper surfaces of the Pacific and Philippine Sea slabs are shown by iso-depth contours of broken and solid lines, respectively, in (d).

長谷川ほか(2012)より抜粋

伊藤潔, 2006, 地震発生層の深さ分布と活断層のセグメンテーションとの関係, 京都大学防災研究所年報B, 49, 227-238. 長谷川昭・中島淳一・内田直希・梁田高広・岡田知己・趙大鵬・松澤暢・海野徳仁, 2012, 沈み込み帯の地震の発生機構一 地殻流体に規定されて 発生する沈み込み帯の地震一, 地学雑誌, 121, 128-160.

震源特性 – 敷地周辺における地震発生層下限深さ(2/2)

〇Omuralieva et al.(2012)は、西南日本外帯の中央構造線沿いで帯状にD90が浅いことを示し、三波川変成岩類が何らかの役割を果たしている可能性やD90が浅い場所で深部低周波地震が発生していることを指摘した。

○敷地は外帯の三波川変成岩類分布域に位置しており、敷地周辺は地震発生層の薄い地域である。

【Omuralieva et al.(2012)より抜粋】 As described in Section 3, <u>a belt-like area with shallow</u> <u>D90's is also seen along the MTL from west Shikoku to</u> <u>the Kii Peninsula in the forearc side of southwest Japan</u>, where no volcanoes are distributed. Moreover, heat flow values in Fig. 5 are not high there, which suggest that a high

geotherm is not the direct cause for the shallow D90

Fig. 4. Distribution of D90's, volcances, and M>6.5 earthquakes. D90's are shown by the Fig. 10. Distribution of D90's and deep low-frequency earthquakes. Low-frequency color scale at the bottom. Regions with the number of events insufficient for the lower sarthquakes are shown by crosses. Others are the same as Fig. 4. Large open circles represent large earthquakes (M>6.5) that occurred in the period from 1926-2010. Depth to the upper surface of the subducting Pacific and Philippine Sea plates is shown by contours. Depth to the subducting plates is from Baba et al. (2002), Nakajima and Hasegawa (2007), Hirose et al. (2008), Nakajima et al. (2009), and Kita et al. (2010).

【Omuralieva et al.(2012)より抜粋】

Lithology might contribute to some extent to the locally shallow D90's along the MTL. The MTL is known as the boundary fault between the Cretaceous Sambagawa metamorphic rocks and Ryoke granitic and metamorphic rocks (Miyashiro, 1961). This east–west trending tectonic line divides southwest Japan arc into the Inner zone (back-arc) and Outer zone (fore-arc). Seismic reflection studies have revealed that the MTL dips gently northward at an angle of about 30–40° (Ito et al., 1996, 2009; Sato et al., 2005; Tsutsumi et al., 2007). Thus, the lithology on either side of the MTL is quite different, and the Sambagawa metamorphic rocks distributed to the south of the MTL might cause the locally shallow D90's along its length. If we look in detail at the D90 distribution (Fig. 4), however, shallow D90's are also distributed widely in the Osaka Plain of the Kinki region to the north of the MTL, where the Ryoke metamorphic rocks are distributed. This suggests that the lithology of the Sambagawa metamorphic rocks is not the primary cause for the shallow D90's along the MTL, although it may play some role.

Fig. 10 shows the epicenter distribution of deep low-frequency earthquakes plotted on a map of D90 distribution. Both types of low-frequency earthquakes mentioned above are plotted on the map. The frequency distributions of D90's for areas with and without deep low-frequency earthquakes are shown separately in Fig. 8(b). These figures clearly show that **low-frequency earthquakes occur in areas with shallow D90's**.

Omuralieva, A.M., Hasegawa, A., Matsuzawa, T., Nakajima, J., Okada, T., 2012, Lateral variation of the cutoff depth of shallow earthquakes beneath the Japan Islands and its implications for seismogenesis, Tectonophysics, 518-521, 93-105.

震源特性 – 敷地周辺における地震活動

令和4年4月15日 審査会合資料再掲

○日本全域及び伊方発電所周辺で過去に発生した内陸地殻内地震の発生頻度によれば,伊方発電所周辺の地震活動は低調である。

^{※1}震源データは気象庁一元化震源+Hi-netによる(1997/10/1-2020/12/31, 20km以浅, M0以上)。 ^{※2}発生頻度は, 伊方発電所周辺10km内, 50km内, 日本全域における震源分布より, 半径10kmの円の面積相当の頻度に換算。 ^{※3}GR則は宇津(1965)に基づいて最小規模はM2として算出。伊方発電所周辺10km内はM2以上の地震がほとんど発生していないため, GR則は算定してない。

伝播特性・増幅特性 – 敷地周辺の地質

平成27年3月20日 審査会合資料再掲

○敷地周辺の内帯には領家帯に属する地層、外帯には北から三波川帯、秩父累帯および四万十帯に属する地層が分布し、地質構造および地質境界断層は東北東−西南西方向である。

○敷地付近には三波川変成岩類が広く分布する。

伝播特性・増幅特性 – 敷地近傍の地質

平成27年3月20日 審査会合資料再掲

○敷地近傍には広く堅硬な塩基性片岩が分布し、敷地における深部ボーリング調査によって少なくとも深さ2kmまで 堅硬かつ緻密な結晶片岩が連続することを確認しており、審査ガイドにおける「上部に軟岩や火山岩、堆積層が 厚く分布する地域」ではない。また、敷地近傍に火山岩の貫入は認められない。

■伊方発電所立地地点の地盤特性

- ○敷地は沖合約8kmを通過する右横ずれの中央構造線断層帯の南方に位置し,中央構造線断層帯より近い場所に活 断層は分布しない。
- ○敷地周辺の**地震発生層は薄く**応力場は**東西圧縮の横ずれ型**であり,敷地近傍の内陸地殻内地震の地震活動は低調 である。
- ○外帯に位置する敷地周辺には堅硬な三波川変成岩類が分布し、敷地における深部ボーリング調査によって少なくとも深さ2kmまで堅硬かつ緻密な結晶片岩が連続することを確認している(敷地の解放基盤表面のせん断波速度は Vs=2600m/sであり、地震基盤面に相当)。

○模擬地震波作成に本来用いるべき敷地での内陸地殻内地震の観測記録がないことから、 以上の地盤特性を踏まえて、伊方発電所の地盤特性と同程度の観測地点・観測記録としては、

- ・地震発生層の薄い敷地近傍(半径10km程度以内)の活断層の認められない場所で 発生する内陸地殻内地震(東西圧縮の横ずれ型が卓越)の観測記録であること
- ・伊方発電所の解放基盤表面と同じく地震基盤面に相当する 堅硬な三波川変成岩類から成る岩盤での観測記録であること

を念頭に、これに準じる条件の観測地点および観測記録の収集・整理を行う。

1. 乱数位相を用いた模擬地震波の振幅包絡線に関する検討

1.1 地震規模の設定に関する検討

1.2 継続時間に関する検討

1.2.1 既往の経験式との比較

1.2.2 実観測記録との比較

1.3 まとめ

2. 観測記録の位相を用いた模擬地震波作成に関する検討

2.1 伊方発電所における地震観測記録の収集・整理

2.2 伊方発電所立地地点の地盤特性の整理

2.3 伊方発電所周辺における地震観測記録の収集・整理2.4 まとめ

伊方発電所周辺の観測地点で取得された観測記録の収集条件

○2.2節で整理した伊方発電所立地地点の地盤特性を踏まえ、伊方発電所の地盤特性と同程度の観測点として、 まずは下表に示す良好な条件において地震観測記録の収集・整理を行う。

■伊方発電所の地盤特性と同程度の条件における観測地点および観測記録の収集条件

防災科学技術研究所のK-NET及びKiK-net観測地点から、下記の条件にて内陸地殻内地震の観測記録を収集する。

		収集条件
	収集範囲	 ・東西圧縮横ずれ型の震源メカニズム解を有する地震を 三波川変成岩類から成る岩盤で観測した地震観測記録を想定して、 伊方発電所敷地から半径30kmの観測地点を収集
観測記録の	震源特性	・「全国共通に考慮すべき地震動」で想定される地震規模として, Mw5.0 [*] ~6.5の地震を収集
● 収集条件	伝播特性	・震源近傍を想定し, 観測地点から半径10㎞以内で発生した地震を収集
	増幅特性 (地盤条件)	・敷地の解放基盤表面が地震基盤に相当することを踏まえ, 地震基盤相当(Vs2200m/s以上)の観測地点を収集

※強震部で十分な振幅が得られている記録を収集することを念頭に最小規模をMw5.0と設定 (全国共通に考慮すべき「震源を特定せず策定する地震動」に関する検討報告書で対象とされている地震の最小規模と同じ)

2.3 伊方発電所周辺における地震観測記録の収集・整理 伊方発電所から半径30km以内の観測地点

○伊方発電所から半径30km以内の観測地点を下記に示す。

観	測点名	せん断波速	速度 [※] (m/s)
ЕНМ011	K NET 小栎沂	地表	170
		AVS30	268
EHM013	K_NFT 三 亾	地表	280
		AVS30	475
EHM015	K NFTE沂	地表	233
	N-NLI 支洪	AVS30	332
ЕНИНОО	Kik not伊古	地表	250
LINNING	KIK-Hetry	地中	2780
ЕНМИ11	KiK_not+>洲	地表	190
		地中	2570
ЕНМИ12	Kik pot空和	地表	190
		地中	1700
ЕНМИ13	Kik not三屹	地表	260
		地中	2600

※ 地震計位置のせん断波速度。AVS30は地下30mまでの平均せん断波速度で、 地下30mまでの地層情報が無い観測点は、最下層の地層が30mまで続くも のと仮定して計算。(以降のページも同様)

令和4年4月15日 審査会合資料再掲

2.3 伊方発電所周辺における地震観測記録の収集・整理 伊方発電所周辺で発生した内陸地殻内地震と観測記録の有無

令和4年4月15日 審査会合資料再掲

○Mw5.0以上の地震は伊方発電所周辺では発生しておらず,周辺の観測点を含めても震央距離10km以内で観測 された記録はない。

132

※震源データは気象庁及びF-netから1997年1月~2021年8月, Mw≥3.0, 震源深さ20km以浅 (気象庁による値)を抽出。震央位置に記載の数値は地震規模Mw。

2.3 伊方発電所周辺における地震観測記録の収集・整理 令和4年4月15日 伊方発電所周辺の観測地点で取得された観測記録の収集条件の拡大

審杳会合資料再掲

○先に示した良好な条件下では、模擬地震波作成に用いることが可能な観測記録は見つからなかった。

○敷地から遠方の観測記録では適用できる可能性が低くなるものの、敷地周辺の応力場、地震活動のほか、西南日 本の外帯(三波川変成岩類の分布と概ね対応)で地震発生層が薄いことに鑑み、観測地点の収集範囲を四国と 九州東岸の三波川帯以南に広げるなど収集条件を拡大し、観測記録を探索した。

■伊方発電所の地盤特性に比較的近い条件における観測地点および観測記録の収集条件

防災科学技術研究所のK-NET及びKiK-net観測地点から、下記の条件にて内陸地殻内地震の観測記録を収集する。

		収集条件 (下線部が収集条件を拡大した箇所)
	収集範囲	 ・敷地周辺の応力場(東西圧縮横ずれ),地震活動のほか, 西南日本の外帯で地震発生層が薄いことに鑑み, 四国と九州東岸の三波川帯以南の観測地点を収集
観測記録の	震源特性	・「全国共通に考慮すべき地震動」で想定される地震規模として, Mw <u>4.0</u> ~6.5の地震を収集
収集条件	伝播特性	・観測地点から <u>半径30km以内</u> で発生した地震を収集
	増幅特性 (地盤条件)	 ・敷地の解放基盤表面が地震基盤に相当することを踏まえ、 地震基盤に近いVs2000m/s以上の観測地点を収集

2.3 伊方発電所周辺における地震観測記録の収集・整理 四国周辺の地質図とK-NET及びKiK-net観測地点

令和4年4月15日 審查会合資料再掲

○四国周辺の地質図とK-NET及びKiK-net観測地点との位置関係を示す。

2.3 伊方発電所周辺における地震観測記録の収集・整理 収集範囲の観測地点および地震の震央位置(1/2)

令和4年4月15日 審査会合資料再掲

○四国周辺で発生したMw3.0以上の地震の震央位置とそのメカニズムを示す。

2.3 伊方発電所周辺における地震観測記録の収集・整理 収集範囲の観測地点および地震の震央位置(2/2)

令和4年4月15日 審査会合資料再掲

○Mw4.0以上の地震の震央位置とそのメカニズムを示す。

2.3 伊方発電所周辺における地震観測記録の収集・整理 収集した地震・観測地点・地震観測記録の一覧

令和4年4月15日 審査会合資料再掲

○先に示した条件で収集された地震・観測地点・地震観測記録の一覧(6地震/5地点/6記録)を示す。

- ○これらの観測記録は、伊方発電所周辺で良好な条件の記録がなく条件を拡大して選定した記録であることから、 伊方発電所と同程度の地盤特性であるとみなして模擬地震波作成に用いる観測記録は、最大加速度が大きく、 かつ、三波川変成岩類での観測記録であることが望ましい。
- 〇そこで、収集対象となった観測地点の構成岩種と観測記録の最大加速度を参照したところ、No.1の地震のKiKnet新宮の記録が該当する。その他の記録はいずれも最大加速度が小さいが、三波川変成岩類で観測されたNo.4 の地震のKiK-net本山及びNo.6の地震のKiK-net西条の記録については、時刻歴波形を確認したうえで適用可能 性を判断することとし、伊方発電所への適用可能性の検討対象として3地震/3地点/3記録を選定した。
- ○なお, Mw4.0以上の地震で観測記録が取得(震央距離30km以内)された収集対象地点は参考資料①, 5地点の地 盤情報の詳細は参考資料②, 適用可能性の検討対象外とした観測地点の観測記録は参考資料③に示す。

No	地震	観	則地点名	Vs速度(m/s)	主な構成岩種	観測記録の 最大加速度	適用可能性	
1	1999/10/30:Mw4.5	999/10/30:Mw4.5 EHMH03 KiK-net新宮 地中:2140 黑色		黒色片岩	24 gal	検討対象		
2	2000/ 7/23:Mw4.0	TKSH03	KiK-net木屋平	地中:2041	頁岩	5 gal	検討対象外	
3	2003/ 3/26 : Mw4.2	EHMH01	KiK-net津島	地中:2500	砂岩粘板岩互層	7 gal	検討対象外	
4	2010/10/ 6 : Mw4.2	KOCH13	KiK-net本山	地中:2410	黒色片岩	5 gal	検討対象	
5	2015/ 2/ 6:Mw4.8	TKSH03	KiK-net木屋平	地中:2041	頁岩	7 gal	検討対象外	
6	2019/11/26:Mw4.5	EHMH02	KiK-net西条	地中:2195	緑色片岩	9 gal	検討対象	

○No.1の地震のKiK-net新宮の観測記録は、時刻歴波形に複数の波群が確認できる。

No.1:1999/10/30の燧灘の地震(Mw4.5)の観測記録に含まれる2地震の波形について

- ○1999/10/30に燧灘で発生したMw4.5(M4.6)の地震は、気象庁の地震カタログによると、同地震の直後に近傍 で別の地震が発生している。
- ○KiK-net新宮の観測記録に含まれる複数の波群はこれら2地震による影響が含まれたものであり、模擬地震波作成に用いることは適切ではない。

<気象庁地震カタログ(1999年)より抜粋>

時刻		緯度		経度		深さ 【	М	震央地名	
<u>J1999103006255085</u> J1999103006255638	002	<u>340281</u> 340474	010 038	<u>1333017</u> 1333048	011 027	<u>1312</u> 053 <u>4</u> 1484236	6D47V5114 571	6241 <u>HIUCHINADA SETONAIKAI</u> 6241 <u>HIUCHINADA SETONAIKAI</u>	37K 15S

KiK-net本山の観測記録(No.4の地震)及びKiK-net西条の観測記録(No.6の地震)(1/2)

令和4年4月15日 審査会合資料再掲

○最大加速度は小さいものの,三波川変成岩類で観測された残り2記録についても観測記録を確認する。

令和4年4月15日 審査会合資料再掲

2.3 伊方発電所周辺における地震観測記録の収集・整理 **収集した観測記録の強震部の継続時間の確認**

令和4年4月15日 審査会合資料再掲

○収集した観測記録の加速度時刻歴波形の最大振幅を基準化し、強震部の継続時間を確認した。比較のため、図には、乱数位相を用いた模擬地震波の振幅包絡線の設定で用いたNoda et al.(2002)に基づく振幅包絡線(M7.0-Xeq10km)を重ね描いている。ただし、複数地震の影響が含まれるNo.1の地震のKiK-net新宮の記録については、振幅の大きい2つ目の地震の記録を3成分とも同時刻で切り出して比較した。

- ○規模の小さい地震の観測記録であることから、いずれの記録も1.2.2項で検討した全国共通に考慮すべき地震動相 当の実観測記録の強震部の継続時間(10秒程度未満)と比べて短く、また、 Noda et al.(2002)に基づき「M7.0 -Xeq10km」から設定した強震部の継続時間(12.59秒)よりも有意に短く、適切な記録とは言い難い。
- No.1:1999/10/30 燧灘の地震(Mw4.5) KiK-net新宮の地中観測記録(地中地震計位置のVs2140m/s) (振幅の大きい2つ目の地震の記録が含まれるように目視で切り出し) 1.2 1.2 1.2 NS ΕW UD 振幅 振幅 振幅 0 0 0 -1.2 -1.2 -1.2 10 30 0 10 20 30 0 10 20 30 0 20 時刻(秒) 時刻(秒) 時刻 (秒) No.4:2010/10/6 高知県中部の地震 (Mw4.2) KiK-net本山の地中観測記録 (地中地震計位置のVs2410m/s) 1.2 1.2 1.2 NS ΕW UD 振幅 振幅 振幅 0 0 -1.2 -1.2 -1.2 10 20 30 0 10 20 30 10 30 0 20 0 時刻(秒) 時刻(秒) 時刻(秒) No.6:2019/11/26 燧灘の地震 (Mw4.5)KiK-net西条の地中観測記録(地中地震計位置のVs2195m/s) 1.2 1.2 1.2 NS ΕW UD 振幅 振幅 振幅 0 0 -1.2 -1.2 -1.2 10 10 20 30 0 10 20 30 0 30 0 20 時刻(秒) 時刻(秒) 時刻(秒)

── 各観測記録の時刻歴波形(最大振幅を1に基準化) ── Noda et al.(2002)の振幅包絡線(M7.0-Xeq10km)

1. 乱数位相を用いた模擬地震波の振幅包絡線に関する検討

- 1.1 地震規模の設定に関する検討
- 1.2 継続時間に関する検討
 - 1.2.1 既往の経験式との比較

1.2.2 実観測記録との比較

1.3 まとめ

2. 観測記録の位相を用いた模擬地震波作成に関する検討

2.2 伊方発電所立地地点の地盤特性の整理

- 2.3 伊方発電所周辺における地震観測記録の収集・整理
- 2.3 観測記録の位相を用いた模擬地震波作成の妥当性に関する考察

2.3.1 内陸地殻内地震の観測記録を用いた継続時間の検討

2.3.2 伊方発電所における観測記録を用いた継続時間の検討

2.4 まとめ

3.まとめ

観測記録の位相を用いた模擬地震波作成に関する検討のまとめ

【2.1節】

○伊方発電所における地震観測記録を収集・整理したところ、伊方発電所で観測された内陸地殻内地震は最大振幅が10ガル未満と小さい2地震のみ(その他は海洋プレート内地震の観測記録)であり、いずれの記録も、地震規模や敷地との距離等から模擬地震波作成に用いる記録としては適切ではない。

【2.2節】

○伊方発電所においては適切な観測記録が無いため、伊方発電所と地盤特性が同程度と考えられる伊方発電所周辺における観測記録の収集・整理を行うこととし、収集・整理に先立って、伊方発電所立地地点の震源特性、伝播特性及び増幅特性を改めて整理した。

【2.3節】

- ・整理した特性を踏まえ、模擬地震波作成に用いることができる内陸地殻内地震の観測記録を収集したところ、 良好な条件下(伊方発電所から半径30kmの観測地点でMw5.0以上・震央距離10km以内)の観測記録は存在しない。

 ・条件を拡大して内陸地殻内地震の観測記録を収集したところ、3地震/3地点/3記録が選定されたものの、No.1の 地震は観測記録に複数の地震の影響が含まれること、No.4及びNo.6の地震は観測記録の最大加速度が10ガル未満 と小さく、また、いずれの記録も継続時間が短い*ことから、適切な観測記録とは言い難い。
 - ※1.2.2項で収集した実観測記録における強震部の継続時間(10秒程度未満), Noda et al.(2002)による強震部の継続時間(12.59秒)よりも有意に短い

余白

【参考資料】

① Mw4.0以上の地震で観測記録が取得(震央距離30km以内)された収集対象地点

- ② 収集された観測地点(5地点)の地盤情報
- ③ 適用可能性の検討対象外とした観測地点において取得された観測記録の時刻歴波形
- ④ 佐藤・岡崎(2013)による群遅延時間を考慮した模擬地震波の作成

【参考資料】

① Mw4.0以上の地震で観測記録が取得(震央距離30km以内)された収集対象地点

- ② 収集された観測地点(5地点)の地盤情報
- ③ 適用可能性の検討対象外とした観測地点において取得された観測記録の時刻歴波形
- ④ 佐藤・岡崎(2013)による群遅延時間を考慮した模擬地震波の作成

Mw4.0以上の地震で観測記録が取得(震央距離30km以内)された収集対象地点(1/8)

令和4年4月15日 審查会合資料再掲

発震時刻							震源位置		地震	規模				<u> </u>					
年	в		咭		私	级庄		深さ(km)	M	M	震	央地名	+	走向		たった 「個斜角」		オベ	い角
+	л		৸৾৾ৢ	л 05	12	100 5000										75	105	<u>у</u> д	
1999	10	30	6	25	50.85	133.5028	34.0468	13.12	4.6	4.5		A_SETONAIKAI	11	346	87	/5	-165	-4	
ЦX	集対	象と	した 三	E波川	帯以南(こ位置する観	測点を緑で着	自色 				灰色ハッチはVs	速度が	2000m/	sを下回	回る観測	山点		
						HRS015_ ۱۳ ۱۳	OKY013	~~ - [L	λη	- Ok	(YHO1 J	観測点	名		Vs速	度(n	n/s)		
					HRSÍ016		2.			′0,1`4	ad example		KiK-n	et	地表		230		
		4)17 🛆	Jor	HRSH04	They a	J.A.	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			EHMH03	新宮		地中		2140		
		HRSI	101	h	* ° 7	in the second		لېک م	· ·	کړ و	KGŴ004								
	.0.	Ĩ ()	L'A	ר_ א_`⊞ו	RS020.			0	15grad	200									
	£	Ľζ	الممر	JU.	5	okm	eg v	go o se	KGV	V003									
م ۲	ل م	Å.	A.	Ç.	, ,	130.	~	and KC	NH02		KGWH01								
ph.		ر ا ل	ואועה איי	.0	0	₽°			102	,	KGW008								
		א ני			/	•	Ъ	KGW005		2	_								
	م م ۵۰ ۲	~~		`~~		•.	4 5	<u>}</u>											
		אואוטט ז	4 ~				ىر 🛟)] TP	<s012< td=""><td>TKS010</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></s012<>	TKS010								
34		\backslash	4.			20 ⁵ /	Surger	1001			SH06								
		كر	L	/	- shin			1001											
	ЕНМН	104_	EĤM	00 [′] 3 ~1	\sum	EHM002		EHMH03											
		-		E	нмног			/			TKS011								
G			(The state	and internet			k	•	KiK-n	et観測点								
2	Are the	A CAR	inder State	لي الم) ~ (λ		JCH13	\bigtriangleup	K-NE	T観測点								
	-	and a)	سل کھ		KOCH02	2	K	\bigcirc	伊方発	8電所								
	C.		(5	\searrow				0	10	 20 km								
	لمحج		show		広域	×		Ac	0(-									
H	133					_					134								

Mw4.0以上の地震で観測記録が取得(震央距離30km以内)された収集対象地点(2/8)

令和4年4月15日 審查会合資料再掲

震源データは気象庁及びF-net 発震時刻 震源位置 地震規模 震源メカニズム 震央地名 年 月 日 時 分 秒 経度 緯度 深さ(km) Μ Μw 走向 傾斜角 すべり角 23 206 2000 43.69 134.3352 33.8842 7.14 4.1 4.0 TOKUSHIMA PREF 298 81 76 170 7 1 46 14 収集対象とした三波川帯以南に位置する観測点を緑で着色 灰色ハッチはVs速度が2000m/sを下回る観測点 KGW004 観測点名 Vs速度(m/s) HYGH01 地表 130 KGWH03 **K-NET** KGW003 HYG027 KGW006 **TKS005** 上勝 AVS30 593 KGW007 KGWH01 TIKS00 KGWH04 地表 150 KGW008 **K-NET** Ð **TKS008** 木屋平 AVS30 391 °_∆TKS007 地表 160 K-NET **TKS009** TKS010 TKS002 $^{\mathsf{TKS012}}$ 木頭 AVS30 452 TKSH02 TKSH06 ткяно4 34 地表 143 KiK-net TKSH03 TKS008 木屋平 地中 2041 4.0 TKS011 TKSH03 TKS005 地表 150 **K-NET TKS006** 2 牟岐 AVS30 251 KS004 TKS009 TKSH01_ 地表 98 KiK-net TKSH02 貞光 地中 905 KOC004 TKS006 TKSH05 КОСН09 KiK-net観測点 K-NET観測点 \triangle CH01 K0C001 伊方発電所 10 20 km 0 \wedge 広域図

注) 震央距離30km以内に位置する収集対象地点のうち,表中に記載がない観測点は,地震観測記録が公開されていない。

134

Mw4.0以上の地震で観測記録が取得(震央距離30km以内)された収集対象地点(3/8)

令和4年4月15日 審查会合資料再掲

震源データは気象庁及びF-net 発震時刻 震源位置 地震規模 震源メカニズム 震央地名 年 月 日 時 分 秒 経度 緯度 深さ(km) Μ Μw 走向 傾斜角 すべり角 2001 58.50 134.4942 33.9055 13.24 4.5 4.3 TOKUSHIMA PREF 152 85 80 5 2 8 14 11 61 169 灰色ハッチはVs速度が2000m/sを下回る観測点 収集対象とした三波川帯以南に位置する観測点を緑で着色 KGW004 , my 観測点名 Vs速度(m/s) HYG025 HYGH01 地表 130 **K-NET** I -**TKS005** KGWH03 -ALHYG027 上勝 AVS30 593 2. TKS001 $KGW006^{\triangle}KGWH04_{\blacksquare}$ KGW007 KGWH01 地表 90 **K-NET TKS003** Ð 阿南 AVS30 375 半径30km 地表 150 TKS007 **K-NET TKS004** 由岐 ₹ KS002 AVS30 279 TKS010 TKSH02 地表 150 34 TKSH04 **K-NET TKS002** 徳島 AVS30 178 TKS008 4.3 TKS005 地表 150 K-NET TKSH03 TKS003 **TKS008** 木屋平 AVS30 391 TKS004 地表 150 **K-NET** TKSH01_ TKS009 **TKS006** 牟岐 AVS30 251 TKS006 TKSH05 KiK-net観測点 K-NET観測点 \triangle 伊方発電所 C001 10 20 km 0 A広域図 135 134

注) 震央距離30km以内に位置する収集対象地点のうち,表中に記載がない観測点は,地震観測記録が公開されていない。

Mw4.0以上の地震で観測記録が取得(震央距離30km以内)された収集対象地点(4/8)

令和4年4月15日 審查会合資料再掲

Mw4.0以上の地震で観測記録が取得(震央距離30km以内)された収集対象地点(5/8)

令和4年4月15日 審查会合資料再掲

Mw4.0以上の地震で観測記録が取得(震央距離30km以内)された収集対象地点(6/8)

令和4年4月15日 審査会合資料再掲

震源データは気象庁及びF-net 発震時刻 震源位置 地震規模 震源メカニズム 震央地名 年 月 日 時 分 秒 経度 緯度 深さ(km) Μ Μw 走向 傾斜角 すべり角 318 2010 13 51 47.77 133.7308 33.5278 7.40 4.5 4.2 MID KOCHI PREF 198 62 10 6 46 128 40 収集対象とした三波川帯以南に位置する観測点を緑で着色 灰色ハッチはVs速度が2000m/sを下回る観測点 Can 22 観測点名 Vs速度(m/s) EHM001 TKS008 _AEHM002 EHMH03 地表 70 **K-NET** KOC005 TKSH03 TKS011 土佐山田 EHMH02 AVS30 431 地表 110 **K-NET** KOC003 KOC017 KOC008 TKS009 安芸 AVS30 272 KOCH13 KOCH02 KiK-net 地盤情報が KOC004 KOCH09 香北 公開されていない KOCH09 地表 200 **K-NET** KOC007 KOC005 高知 AVS30 145 KOC007 косно1_ 4.2 косніо KOCH12 KOC001 140 地表 **K-NET** KOC003 KOC004 KOC006 物部 AVS30 372 地表 570 коснот KiK-net KOCH10 伊野 地中 1780 地表 180 **K-NET** KOC017 ົດດາດຈ 半径30km 大豊 AVS30 462 KiK-net観測点 地表 200 K-NET観測点 KiK-net \triangle KOCH13 本山 地中 2410 伊方発電所 地表 90 0 10 20 km **K-NET** KOC006 土佐 広域図 AVS30 211 134

注) 震央距離30km以内に位置する収集対象地点のうち,表中に記載がない観測点は,地震観測記録が公開されていない。

参考資料①

Mw4.0以上の地震で観測記録が取得(震央距離30km以内)された収集対象地点(7/8)

令和4年4月15日 審查会合資料再掲

震源データは気象庁及びF-net 発震時刻 震源位置 地震規模 震源メカニズム 震央地名 年 月 日 時 分 秒 経度 緯度 深さ(km) Μ Μw 走向 傾斜角 すべり角 146 2015 2 25 12.44 134.3703 33.7337 11.15 5.1 4.8 TOKUSHIMA PREF 238 83 80 -170 6 10 -7 灰色ハッチはVs速度が2000m/sを下回る観測点 収集対象とした三波川帯以南に位置する観測点を緑で着色 TKS001 観測点名 Vs速度(m/s) $^{\Lambda}$ KGW008 Ð 地表 150 **K-NET TKS006** 牟岐 AVS30 251 TKS002 TKS010 地表 160 KiK-net TKSH02 TKSH05 TKSH06 34 TKSH04 海南 地中 1740 半径30km TKS008 地表 130 K-NET **TKS005** 上勝 TKSH03 TKS011 TKS005 AVS30 593 TKS003 2 地表 160 **K-NET TKS009** TKS004 木頭 TKSH01 AVS30 452 TKS009 4.8 地表 150 **K-NET** KOC004 **TKS004** 由岐 AVS30 279 TKSODE TKSH05_ КОСН09 • · · · · 地表 200 K-NET KOC001 東洋 AVS30 304 КОСН01 KOC001 KOCH12 90 地表 **K-NET** KOC003 **TKS003** 阿南 KiK-net観測点 AVS30 375 K-NET観測点 \triangle 地表 150 K-NET **TKS008** 伊方発電所 木屋平 AVS30 391 0 10 20 km 地表 143 KiK-net A広域図 OC002 TKSH03 木屋平 地中 2041

注) 震央距離30km以内に位置する収集対象地点のうち,表中に記載がない観測点は,地震観測記録が公開されていない。

134

参考資料①

Mw4.0以上の地震で観測記録が取得(震央距離30km以内)された収集対象地点(8/8)

【参考資料】

① Mw4.0以上の地震で観測記録が取得(震央距離30km以内)された収集対象地点

② 収集された観測地点(5地点)の地盤情報

③ 適用可能性の検討対象外とした観測地点において取得された観測記録の時刻歴波形

④ 佐藤・岡崎(2013)による群遅延時間を考慮した模擬地震波の作成

収集された観測地点(5地点)の地盤情報(1/5)

参考資料(2)

収集された観測地点(5地点)の地盤情報(2/5)

令和4年4月15日 審査会合資料再掲

77

参考資料②

収集された観測地点(5地点)の地盤情報(3/5)

参考資料②

収集された観測地点(5地点)の地盤情報(4/5)

134

参考資料②

収集された観測地点(5地点)の地盤情報(5/5)

133

【参考資料】

① Mw4.0以上の地震で観測記録が取得(震央距離30km以内)された収集対象地点

② 収集された観測地点(5地点)の地盤情報

③ 適用可能性の検討対象外とした観測地点において取得された観測記録の時刻歴波形

④ 佐藤・岡崎(2013)による群遅延時間を考慮した模擬地震波の作成

参考資料③

適用可能性の検討対象外とした観測地点において取得された観測記録の時刻歴波形(1/3)

令和4年4月15日 審查会合資料再掲

○適用可能性の検討対象外とした観測地点において取得された観測記録(5地震5記録)の時刻歴波形を示す。

適用可能性の検討対象外とした観測地点において取得された観測記録の時刻歴波形(3/3)

【参考資料】

① Mw4.0以上の地震で観測記録が取得(震央距離30km以内)された収集対象地点

- ② 収集された観測地点(5地点)の地盤情報
- ③ 適用可能性の検討対象外とした観測地点において取得された観測記録の時刻歴波形

④ 佐藤・岡崎(2013)による群遅延時間を考慮した模擬地震波の作成

佐藤・岡崎(2013)による手法の概要

令和4年4月15日 審查会合資料再掲

- ○佐藤・岡崎(2013)は、Mw4.9~6.9、震源距離5~200kmの内陸地殻内地震の地震観測データを基に、群遅延時間 を用いた経時特性モデルを作成するとともに、周期依存の破壊伝播補正モデルを提案しており、内陸地殻内地震 の観測記録を用いた手法である。
- ○本手法は、想定する地震の地震モーメント・震源距離・地盤種別(1種地盤,2種地盤,3種地盤,Vs=700m/s程度の解放基盤の4種)をパラメータとして設定した経時特性モデル(群遅延時間)を、断層面・破壊開始点と評価地点との位置関係をパラメータとして設定した破壊伝播補正モデル(補正係数)によって補正を行う手法である。

■経時特性モデル(群遅延時間)

 $Z(f) = A(f)M_0^{1/3} + B(f)X + C_i(f)$

A,B,C:回帰係数(Cはサイト係数)

- M₀:地震モーメント (dyne-cm)
- X:震源距離(km)
- Z:経時特性モデル(群遅延時間)
- f:周波数

■破壊伝播補正モデル (経時特性モデルの補正係数) log₁₀(FP/FN) = q_ilog₁₀(FN_i/FP_i)

FP,FN:断層平行方向,断層直交方向 q:回帰係数 i:地震タイプ(横ずれ断層,逆断層)

■破壊伝播補正モデル作成に必要な

■経時特性モデル作成に用いられた 内陸地殻内地震

■破壊伝播補正モデルに用いた地震

1 経時特性の破壊伝播補正モデルに用いる地震の諸元とパラメータ¹⁵⁾

	地震規模			震源(破壞開始点)位置			断層パラメータ				
横ずれ断層		M _w	M_0	緯度	経度	深さ	L	L_1	L_2	走向	傾斜角
			dyne•cm	度	度	km	km	km	km	度	度
995年兵庫県南部地震	7.3	6.9	3.30E+26	34.60	135.04	16.4	55.0	35.0	20.0	53.0	90.0
997年3月鹿児島県北西部の地震	6.6	6.1	1.50E+25	31.97	130.39	7.6	15.0	7.5	7.5	280.0	90.0
000年鳥取県西部地震	7.3	6.7	1.61E+26	35.27	133.35	7.8	26.0	13.0	15.0	145.0	90.0
005年福岡県西方沖地震	7.0	6.6	1.15E+26	33.75	130.16	14.0	26.0	15.0	11.0	122.0	93.0
	地震規模			震源(破壞開始点)位置			断層パラメータ				
逆断層	MJ	Mw	Mo	緯度	経度	深さ	W	W_1	W_2	走向	傾斜角
			dyne•cm	度	度	km	km	km	km	度	度
004年新潟県中越地震	6.8	6.6	1.07E+26	37.31	138.84	10.6	18.0	13.0	50.0	212.0	47.0
007年新潟県中越沖地震	6.8	6.7	1.20E+26	37.54	138.62	9.0	24.0	10.0	14.0	34.0	36.0

佐藤智美・岡崎敦:地震動の経験的経時特性モデルの破壊伝播補正モデルと周期間相関モデルの導入,日本建築学会構造系論文集,第78巻,第684号,289-298,2013. 86

参考資料④

佐藤・岡崎(2013)による手法を用いた模擬地震波の作成

令和4年4月15日 審査会合資料再掲

- ○伊方発電所においては,観測位相を用いた模擬地震波作成に用いる適切な観測記録が見つからなかったことから, 参考検討として,**観測記録の回帰分析に基づく模擬地震波作成手法である佐藤・岡崎(2013)による群遅延時間を** 考慮した模擬地震波を作成する。
- ○佐藤・岡崎(2013)の手法を用いた模擬地震波の作成にあたって必要なパラメータを下記のとおり設定する。
 - ・断層モデル及び地震モーメントは、 震源を特定せず策定する地震動に相当するものとして、「短い活断層か ら想定される地震による強震動予測」について検討した壇ほか(2010)による諸元を用いることとし、伊方発電 所周辺で発生する内陸地殻内地震の断層タイプを踏まえ、横ずれ断層を想定する。
 - ・評価地点は, 壇ほか(2010)で用いられた評価地点のうち, 指向性パルスが生じる可能性を考慮し, 下図のよう な破壊伝播方向の評価地点とし, 地盤種別は解放基盤とする。

■断層モデルと評価地点(壇ほか(2010)に加筆)

地震モーメント: 7.0×10¹⁸Nm(壇ほか(2010)による設定値)

壇一男・具典淑・武藤真菜美:地表の短い活断層から想定される地中の震源断層のモデル化と強震動の試算, 日本建築学会構造系論文集,第75巻,第648号,279-288,2010.

^{参考資料④} 佐藤・岡崎(2013)による手法を用いた模擬地震波の作成結果(1/2) 審査会合資料再掲

■作成した模擬地震波 FN方向:断層直交方向(Fault Normal), FP方向:断層平行方向(Fault Parallel)

■ 適合度確認(スペクトル比は全周期帯の適合度のうちの最小値を示している)

	スペクトル比(R) (≧0.85)	スペクトル強度比(SI比) (≧1.0)
FN方向	0.8728	1.0002
FP方向	0.8553	1.0016
UD方向	0.8928	1.0001
判定式	$R = \frac{Sv_1(T)}{Sv_2(T)} (0.02 \leq T)$ $Sv_1(T) : 模擬地震波の応答スペクトル値$	$SI比 = \frac{\int_{0.1}^{2.5} S_V(T) dt}{\int_{0.1}^{2.5} S_V(T) dt}$ Sv(T): 模擬地震波の応答スペクトル値
	$Sv_2(T):$ 目標とする応答スペクトル値	$\overline{S}_V(T)$:目標とする応答スペクトル値
	T :固有周期	T : 固有周期

■作成した模擬地震波の応答スペクトルと応答スペクトル比

模擬地震波の諸特性の分析 – 周波数特性の比較

令和4年4月15日 審查会合資料再掲

○作成した模擬地震波の諸特性(周波数特性,継続時間,位相特性等)について,乱数位相を用いた模擬地震波 (基準地震動Ss-3-3の模擬地震波)と比較する。

○**周波数特性**については、同じ応答スペクトルをターゲットとしているため差異がない。

参考資料④

模擬地震波の諸特性の分析 –時刻歴波形(継続時間等)の比較

- ○時刻歴波形で比較すると,乱数位相の模擬地震波の方が比較的振幅の大きい波の継続時間が長い。 (乱数位相が12秒程度,群遅延時間は8秒程度)
- ○佐藤・岡崎(2013)による群遅延時間を考慮した模擬地震波は、20秒以降に長周期成分に富む波形が 見られるが、主要動と比較してその振幅は小さい。

模擬地震波の諸特性の分析 -フーリエ振幅スペクトルの比較

令和4年4月15日 審査会合資料再掲

○フーリエ振幅スペクトルで比較すると、乱数位相の模擬地震波の方がフーリエ振幅スペクトルのばらつきがやや 大きいものの、両者に顕著な差はない。

赤: 乱数位相 青: 群遅延時間(佐藤・岡崎(2013)の手法)

参考資料④

模擬地震波の諸特性の分析 – フーリエ位相スペクトルの比較

令和4年4月15日 審査会合資料再掲

○フーリエ位相スペクトルで比較すると、両者とも模擬地震波に目立った特徴はなく(位相特性のまとまりなどがなく)、両者に顕著な差はない。

