泊発電所 3 号炉審査資料	
資料番号	資料 2
提出年月日	令和4年10月 12 日

泊発電所 3 号炉
設置変更許可申請に係る審査取りまとめ資料
（新規制基準適合性審査）
（7条，10条，11条，12条，14条，17条，24条，33条）

令和 4 年 10 月
北海道電力株式会社

目次

第4条 地震による損傷の防止
第5条 津波による損傷の防止
第6条 外部からの衝撃による損傷の防止（自然現象）
第6条 外部からの衝撃による損傷の防止（竜巻）
第6条 外部からの衝撃による損傷の防止（外部火災）
第6条 外部からの衝撃による損傷の防止（火山）［今回提出】
1第7条－発電用原子炉施設への人の不法な侵入等の防止 （DB07 5.5 ）
第8条 火災による損傷の防止
第9条 溢水による損傷の防止
第10条謤操作の防正 （DB10 r． 4.0 ）
第11条 安全避難通路等 （DB11 r．4．0）
1第12条 安全施設 （DB12 r．4．0）
第14条 全交流動力電源喪失対策設備 （DB14 r．4．0）
第16条 燃料体等の取扱施設及び貯蔵施設
1第17条 原子炉椧却材庄力バウジラジリ （DB17 r．$\overline{4} .0$ ）
第24条 安全保護回路 （DB24 r．5．0）
第26条 原子炉制御室等
第31条 監視設備
第33条 保安電源設備 （DB33 r．4．0）
第34条 緊急時対策所
第35条 通信連絡設備

泊発電所 3 号炉審査資料	
資料番号	DB07 r．5．0
提出年月日	令和4年10月7日

泊発電所 3 号炉

設置許可基準規則等への適合状況について （設計基準対象施設等）

第7条 発電用原子炉施設への人の不法な侵入等の防止

令和 4 年 10 月
北海道電力株式会社

第 7 条：発電用原子炉施設への人の不法な侵入等の防止

$$
<\text { 目 次 }>
$$

1．基本方針

1.1 要求事項の整理

1．2追加要求事項に対する適合性
（1）位置，構造及び設備
（2）安全設計方針（手順書等含む。）
（3）適合性説明
1．3 気象等
1．4設備等

2．発電用原子炉施設への人の不法な侵入等の防止
2． 1 概要
2．2区域管理
2．2．1 物理的障壁による区画
2．2．2 出入管理
2． 3 探知施設
2． 4 通信連絡設備
2.5 持込み確認
2.6 不正アクセス行為（サイバーテロを含む。）への対応

3．別添
別添 泊発電所3号炉 運用，手順説明資料
発電用原子炉施設への人の不法な侵入等の防止

1．において，設計基準事故対処設備の設置許可基準規則，技術基準規則の追加要求事項を明確化するとともに，それら要求に対する泊発電所 3 号炉における適合性を示す。

2．において，設計基準事故対処設備について，追加要求事項に適合するために必要となる機能 を達成するための設備又は運用等について説明する。

3．において，追加要求事項に適合するための運用，手順等を抽出し，必要となる運用対策等を整理する。

1．基本方針
1.1 要求事項の整理

発電用原子炉施設への人の不法な侵入等の防止について，設置許可基準規則第 7 条及び技術基準規則第 9 条において，追加要求事項を明確化する。

設置許可基準規則第 7 条及び技術基準規則第 9 条の要求事項を，表 1 に示す。
表 1 設置許可基準規則第 7 条及び技術基準規則第 9 条 要求事項

設置許可基準規則 第 7 条（発電用原子炉施設への人の不法な侵入等の防止）	技術基準規則 第 9 条（発電用原子炉施設への人の不法な侵入等の防止）	備 考
工場等には，発電用原子炉施設への人の不法な侵入，発電用原子炉施設に不正に爆発性又は易燃性を有する物件その他人 に危害を与え，又は他の物件を損傷するおそれがある物件が持ち込まれること及び不正アクセス行為（不正アクセス行為 の禁止等に関する法律（平成十一年法律第百二十八号）第二条第四項に規定する不正アクセス行為をいう。第二十四条第六号において同じ。）を防止するための設備を設けなければな らない。		追加要求事項

1．2追加要求事項に対する適合性

（1）位置，構造及び設備
ロ，発電用原子炉施設の一般構造
（3）その他の主要な構造
（i）本発電用原子炉施設は，（1）耐震構造，（2）耐津波構造に加え，以下の基本的方針のもと に安全設計を行う。
a ．設計基準対象施設
（b）発電用原子炉施設への人の不法な侵入等の防止
発電用原子炉施設への人の不法な侵入を防止するための区域を設定し，核物質防護対策 として，その区域を人の容易な侵入を防止できる柵，鉄筋コンクリート造りの壁等の障壁 によって区画して，巡視，監視等を行うことにより，侵入防止及び出入管理を行うことが できる設計とする。

また，探知施設を設け，警報，映像等を集中監視するとともに，核物質防護措置に係る関係機関等との通信連絡を行うことができる設計とする。さらに，防護された区域内にお いても，施錠管理により，発電用原子炉施設及び特定核燃料物質の防護のために必要な設備又は装置の操作に係る情報システムへの不法な侵入を防止する設計とする。

発電用原子炉施設に不正に爆発性又は易燃性を有する物件その他人に危害を与え，又は他の物件を損傷するおそれがある物件の持込み（郵便物等による発電所外からの爆破物及 び有害物質の持込みを含む。）を防止するため，核物質防護対策として，持込み点検を行う ことができる設計とする。

不正アクセス行為（サイバーテロを含む。）を防止するため，核物質防護対策として，発電用原子炉施設及び特定核燃料物質の防護のために必要な設備又は装置の操作に係る情報 システムが，電気通信回線を通じた不正アクセス行為（サイバーテロを含む。）を受けるこ とがないように，当該情報システムに対する外部からのアクセスを遮断する設計とする。

【説明資料（2．1～2．6：P7 条－9～11）】
（2）安全設計方針（手順書等含む。）
1．安全設計
1.1 安全設計の方針

1．1．1 基本的方針
1．1．1．5 人の不法な侵入等の防止
（1）設計方針
発電用原子炉施設への人の不法な侵入を防止するための区域を設定し，核物質防護対策 として，その区域を人の容易な侵入を防止できる柵，鉄筋コンクリート造りの壁等の障壁 によって区画して，巡視，監視等を行うことにより，侵入防止及び出入管理を行うことが できる設計とする。

また，探知施設を設け，警報，映像等を集中監視するとともに，核物質防護措置に係る関係機関等との通信連絡を行うことができる設計とする。さらに，防護された区域内にお いても，施錠管理により，発電用原子炉施設及び特定核燃料物質の防護のために必要な設備又は装置の操作に係る情報システム～の不法な侵入を防止する設計とする。

【説明資料（2．1～2．3：P7条－9，10）】
発電用原子炉施設に不正に爆発性又は易燃性を有する物件その他人に危害を与え，又は他の物件を損傷するおそれがある物件の持込み（郵便物等による発電所外からの爆破物及 び有害物質の持込みを含む。）を防止するため，核物質防護対策として，持込み点検を行う ことができる設計とする。

【説明資料（2．1：P7条－9）（2．5：P7条－11）】
不正アクセス行為（サイバーテロを含む。）を防止するため，核物質防護対策として，発電用原子炉施設及び特定核燃料物質の防護のために必要な設備又は装置の操作に係る情報 システムが，電気通信回線を通じた不正アクセス行為（サイバーテロを含む。）を受けるこ とがないように，当該情報システムに対する外部からのアクセスを遮断する設計とする。

【説明資料（2．1：P7条－9）（2．6：P7条－11）】
（2）体制
発電用原子炉施設への人の不法な侵入等を防止するため，核物質防護対策として，「核原料物質，核燃料物質及び原子炉の規制に関する法律」に基づき核物質防護管理者を選任し，所長の下，核物質防護管理者が核物質防護に関する業務を統一的に管理する体制を整備す る。

人の不法な侵入等が行われるおそれがある場合又は行われた場合に備え，核物質防護に関する緊急時の対応体制を整備する。
核物質防護に関する緊急時の組織体制を，第1．1．1図に示す。
（3）手順等
a．発電用原子炉施設への人の不法な侵入等のうち，不正アクセス行為（サイバーテロを含む。）を防止することを目的に，発電用原子炉施設及び特定核燃料物質の防護のために必要な設備又は装置の操作に係る情報システムにおいて，核物質防護対策として，電気通信回線を通じた外部からのアクセス遮断措置を実施する。

- 外部からのアクセス遮断措置については，予め手順を整備し，的確に実施する。
- 外部からのアクセス遮断措置に係る設備の機能を維持するため，保守の計画に基づき適切に保守管理，点検を実施するとともに，必要に応じ補修を行う。
－外部からのアクセス遮断措置に係る教育を定期的に実施する。
b．発電用原子炉施設への人の不法な侵入等のうち，不正アクセス行為（サイバーテロを含む。）を防止することを目的に，発電用原子炉施設及び特定核燃料物質の防護のために必要な設備又は装置の操作に係る情報システムにおいて，核物質防護対策として，侵入防止及び出入管理を実施する。侵入防止及び出入管理は，区域の設定，人の容易な侵入 を防止できる柵，鉄筋コンクリート造りの壁等による防護，探知施設による集中監視，外部との通信連絡，物品の持达み点検並びに警備員による監視及び巡視を行う。
- 侵入防止及び出入管理については，予め手順を整備し，的確に実施する。
- 侵入防止及び出入管理に係る設備の機能を維持するため，保守の計画に基づき適切に保守管理，点検を実施するとともに，必要に応じ補修を行う。
－侵入防止及び出入管理に係る教育を定期的に実施する。

組 織	構 成	主な任務	組 織	構 成	主な任務
緊急時対策本部長	発電所長	緊急時対策本部の統括	事務局	事務局	対策本部設置 治安当局への通報•報告•対応
緊急時対策副本部長	発電所所長代理 または次長（施設防護担当）	本部長の補佐•代行	社外対応－広報班	総務グループ 労務安全グループ 自治体対応グループ 広報グループ	従業員の避難•誘導負傷者対応 自治体対応 報道機関対応
核物質防護管理者	国へ届け出た者	核物質防護に関する業務の統一的な管理	燃料•安全管理対応班	燃料グループ 安全管理グループ	炬心燃料に係る対応線量の把握•管理
発電用原子炉主任技 術者（各号炉）	発電用原子炉主任技術者	関する助言•協力	発電担当班	発電担当グルーブ	プラントの状況把握 プラント操作
			原因対策•工事班	原因対策グループ工事グループ	原因究明 各設備の応急対応•復旧作業

第1．1．1図 核物質防護に関する緊急時の体制図

第七条 発電用原子炉施設への人の不法な侵入等の防止
工場等には，発電用原子炉施設への人の不法な侵入，発電用原子炉施設に不正に爆発性又は易燃性を有する物件その他人に危害を与え，又は他の物件を損傷するおそれがある物件が持ち込 まれること及び不正アクセス行為（不正アクセス行為の禁止等に関する法律（平成十一年法律第百二十八号）第二条第四項に規定する不正アクセス行為をいう。第二十四条第六号にお いて同じ。）を防止するための設備を設けなければならない。

適合のための設計方針
発電用原子炉施設への人の不法な侵入，郵便物等による発電所外からの爆発物や有害物質の持込み及び不正アクセス行為（サイバーテロを含む。）に対し，これを防護するため，核物質防護対策として以下の措置を講じた設計とする。
（1）人の不法な侵入の防止
a．区域を設定し，区域の境界を物理的障壁により区画し，侵入防止及び出入管理を行える設計とする。
b．探知施設を設け，警報，映像監視等，集中監視する設計とする。
c．外部との通信連絡設備を設け，関係機関等との通信連絡を行うことができる設計とする。
d．防護された区域内においても，施錠管理により，発電用原子炉施設及び特定核燃料物質 の防護のために必要な設備又は装置の操作に係る情報システムへの不法な侵入を防止す る設計とする。

【説明資料 $(2.1 \sim 2.4: P 7$ 条 $-9,10)(2.6: P 7$ 条－11）】
（2）爆発性又は易燃性を有する物件等の持込み防止措置
a．区域を設定し，区域の境界を物理的障壁により区画し，侵入防止及び出入管理を行うこ とができる設計とする。
b．区域の出入口において，発電用原子炉施設に不正に爆発性又は易燃性を有する物件その他人に危害を与え，又は他の物件を損傷するおそれがある物件の持込み（郵便物等による発電所外からの爆発物及び有害物質の持込みを含む。）が行われないように物品の持込み点検を行うことができる設計とする。

【説明資料 $(2.1 \sim 2.2: P 7$ 条 $-9,10)(2.5: P 7$ 条－11）】
（3）不正アクセス行為（サイバーテロを含む。）の防止措置
a．発電用原子炉施設及び特定核燃料物質の防護のために必要な設備又は装置の操作に係る情報システムについては，電気通信回線を通じた当該情報システムに対する外部からのア クセスを遮断する設計とする。

【説明資料（2．1：P7条－9）（2．6：P7条－11）】

1．3 気象等
該当なし

1． 4 設備等
10．その他発電用原子炉の附属施設
10.10 構内出入監視装置

発電用原子炉施設に対する人の不法な侵入等を防止するため，核物質防護対策として，通信連絡設備，監視装置，検知装置，施錠装置等を設ける。

【説明資料 $(2.1 \sim 2.4: ~ P 7$ 条 $-9,10)$ 】

2．発電用原子炉施設への人の不法な侵入等の防止

2.1 概要

発電用原子炉施設への人の不法な侵入（核物質の不法な移動，妨害破壊行為を含む。）を防止 するための区域を設定し，核物質防護対策として，その区域を人の容易な侵入を防止できる柵，鉄筋コンクリート造りの壁等の障壁によって区画して，巡視，監視等を行うことにより，侵入防止及び出入管理を行うことができる設計とする。

また，探知施設を設け，警報，映像等を集中監視するとともに，核物質防護措置に係る関係機関等との通信連絡を行うことができる設計とする。さらに，防護された区域内においても，施錠管理により，発電用原子炉施設及び特定核燃料物質の防護のために必要な設備又は装置の操作に係る情報システムへの不法な侵入を防止する設計とする。

発電用原子炉施設に不正に爆発性又は易燃性を有する物件その他人に危害を与え，又は他の物件を損傷するおそれがある物件の持込み（郵便物等による発電所外からの爆発物及び有害物質の持込みを含む。）を防止するため，核物質防護対策として，持込み点検を行うことができる設計とする。

不正アクセス行為（サイバーテロを含む。）を防止するため，核物質防護対策として，発電用原子炉施設及び特定核燃料物質の防護のために必要な設備又は装置の操作に係る情報システム が，電気通信回線を通じた不正アクセス行為（サイバーテロを含む。）を受けることがないよう に，当該情報システムに対する外部からのアクセスを遮断する設計とする。

発電用原子炉施設への人の不法な侵入等を防止するため，核物質防護対策として，「核原料物質，核燃料物質及び原子炉の規制に関する法律」に基づき核物質防護者を選任し，所長の下，核物質防護管理者が核物質防護に関する業務を統一的に管理する体制を整備する。人の不法な侵入等が行われるおそれがある場合又は行われた場合に備え，核物質防護に関する緊急時の対応体制を整備する。核物質防護に関する緊急時の組織体制を第1．1．1図に示す。

2．2区域管理

2．2．1 物理的障壁による区画

特定核燃料物質の防護のための区域（以下，「防護区域」という。），その外周に周辺防護区域，さらにその外周に立入制限区域を設定し，区域の境界を物理的障壁により区画しており，人が侵入することを防止している。
［実用炉規則第 91 条第 2 項第 1 号，第 2 号，第 3 号］
［実用炉規則第 91 条第 2 項第 5 号，第 6 号］

2． 3 探知施設

［実用炉規則第 91 条第 2 項第 4 号，第 8 号，第 11 号，第 12 号，第 22 号］
2.4 通信連絡設備
［実用炉規則第 91 条第 2 項第 22 号］

枠囲みの内容は機密情報に属しますので公開できません。

2． 5 持込み確認

防護区域，周辺防護区域及び立入制限区域の出入口において，発電用原子炉施設に不正に爆発性又は易燃性を有する物件その他人に危害を与え，又は他の物件を損傷するおそれがある物件の持込み（郵便物等による発電所外からの爆発物及び有害物質の持込みを含む。）が行われな いように持込み点検を行っている。
［実用炉規則第 91 条第 2 項第 8 号］
2.6 不正アクセス行為（サイバーテロを含む。）への対応

不正アクセス行為（サイバーテロを含む。）に対しては，発電用原子炉施設及び特定核燃料物質の防護のために必要な設備又は装置の操作に係る情報システムが，電気通信回線を通じて妨害行為又は破壊行為を受けることがないように，電気通信回線を通じた当該情報システムに対 する外部からのアクセスを遮断する措置を講じている。
［実用炉規則第 91 条第 2 項第 18 号，第19号］
\square 枠囲みの内容は機密情報に属しますので公開できません。

泊発電所 3 号炉

運用，手順説明資料
 発電用原子炉施設への人の不法な侵入等の防止

第 7 条 発電用原子炉施設への人の不法な侵入等の防止

運用，手順に係る運用対策等（設計基準）

設置許可基準規則対象条文	対象項目	区分	運用対策等
第 7 条 発電用原子炉施設への人の不法な侵入 等の防止 ※核物質防護対策として実施	電気通信回線のアク セス遮断	運用•手順	－アクセス遮断措置に係る手順
		体制	- 平常時の警備体制 - 核物質防護上の緊急時の体制
		保守管理	－日常点検，定期点検及び必要時の補修
		教育•訓練	- 特定核燃料物質防護対策教育 - アクセス遮断措置に関する教育
	不審者の侵入防止	運用•手順	－侵入防止及び出入管理 防護区域，周辺防護区域及び立入制限区域の設定侵入防止及び出入管理に係る手順 人及び車両の監視等の侵入防止及び出入管理 物品の持込み点検 警備員による監視及び巡視 －核物質防護措置に係る関係機関等との通信連絡
		体制	- 平常時の警備体制 - 核物質防護上の緊急時の体制
		保守管理	－日常点検，定期点検及び必要時の補修
		教育•訓練	- 特定核燃料物質防護に係る教育 - 侵入防止及び出入管理に係る教育

泊発電所 3 号炉審査資料	
資料番号	DB10 \quad r．4．0
提出年月日	令和4年8月5日

泊発電所 3 号炉

設置許可基準規則等への適合状況について （設計基準対象施設等）

第10条 誤操作の防止

令和 4 年 8 月
 北海道電力株式会社

第 10 条：誤操作の防止
<目 次 >

1．基本方針
1.1 要求事項の整理
1.2 追加要求事項に対する適合性
（1）位置，構造及び設備
（2）安全設計方針
（3）適合性説明
1.3 気象等
1.4 設備等

2．誤操作の防止
（別添1）設置許可基準規則等への適合状況説明資料（誤操作の防止）

2.1 概要

2.2 制御盤の設計方針について

2．2．1 中央制御盤操作機器の範囲

2．2．2 盤面器具配列及び画面構成
2．2．3 盤面器具配列及び画面構成に関する具体的方針
2．2．4 盤面器具及び画面表示機器の識別
2．2．5 大型表示盤
2.3 中央制御室

2．3．1 制御盤配置
2．3．2 照明設備及び空調設備
2．3．2．1 照明設備について
2．3．2．2 空調設備について
2．3．3 運転員の地震及び火災等への対応
2.4 現場の誤操作防止

2．4．1 識別管理
2．4．2 施錠管理
2．4．3 現場操作の容易性
2．4．3．1 設計基準事故時等において求められる現場操作
2．4．3．2 現場操作の環境に影響を与える可能性のある事象に対する考慮
2.5 識別表示

2．5．1 タグによる識別

2.6 運転員の誤操作防止について

（参考資料）
1 新規制基準適合申請に係る設計基準対象追加設備の誤操作防止について（設置許可基準規則第1 0 条第 1 項への適合性）

2 現場操作の確認結果について
3 制御盤等の設計方針に関する実運用への反映について

3．技術的能力説明資料
（別添2）誤操作の防止

1．において，設計基準事故対処設備の設置許可基準規則，技術基準規則の追加要求事項を明確化するとともに，それら要求に対する泊発電所 3 号炉における適合性を示す。

2 ．において，設計基準事故対処設備について，追加要求事項に適合するために必要となる機能 を達成するための設備又は運用等について説明する。

3 ．において，追加要求事項に適合するための技術的能力（手順等）を抽出し，必要となる運用対策等を整理する。

1．基本方針

1.1 要求事項の整理

誤操作の防止について，設置許可基準規則第 10 条及び技術基準規則第 38 条において，追加要求事項を明確化する（表1）。
表 1 設置許可基準規則第 10 条及び技術基準規則第 38 条 要求事項

設置許可基準規則第 10 条（誤操作の防止）	技術基準規則 第 38 条（原子炉制御室等）	備 考
設計基準対象施設は，誤操作を防止するための措置を講じ たものでなければならない。	2 原子炉制御室には，反応度制御系統及び原子炉停止系統に係る設備を操作する装置，非常用炉心泠却設備そ の他の非常時に発電用原子炉の安全を確保するための設備を操作する装置，発電用原子炉及び一次冷却系統に係る主要な機械又は器具の動作状態を表示する装置，主要計測装置の計測結果を表示する装置その他の発電用原子炉を安全に運転するための主要な装置（第四十七条第一項に規定する装置を含む。）を集中し，かつ，誤操作することなく適切に運転操作することができるよう施設しなければならない。	変更なし
2 安全施設は，容易に操作することができるものでなけ ればならない。	－	追加要求事項

1.2 追加要求事項に対する適合性
（1）位置，構造及び設備
口．発電用原子炉施設の一般構造
（3）その他の主要な構造
（i）本原子炉施設は，（1）耐震構造，（2）耐津波構造に加え，以下の基本的方針のもとに安全設計を行う。
a．設計基準対象施設
（e）誤操作の防止
設計基準対象施設は，プラントの安全上重要な機能に支障をきたすおそれがある機器•弁等に対して，色分けやタグの取り付け等の識別管理や人間工学的な操作性も考慮 した監視操作エリア・設備の配置，中央監視操作の盤面配置，理解しやすい表示方法と するとともに施錠管理を行い，運転員の誤操作を防止する設計とする。

また，中央制御室は耐震性を有する原子炉補助建屋内に設置し，放射線防護措置（遮蔽及び換気空調の閉回路循環運転の実施），火災防護措置（感知•消火設備の設置），照明用電源の確保措置を講じ，環境条件を想定しても，運転員が運転時の異常な過渡変化及び設計基準事故に対応するための設備を容易に操作することができる設計とするとと もに，現場操作において同様な環境条件を想定しても，設備を容易に操作することがで きる設計とする。
【説明資料（2．1：P10 条－別添 1－1）（2．2：P10 条－別添 1－2～10）（2．3：P10 条－別添 1 － $11 \sim 15$ ）
（2．4：P10 条－別添 1－16～21）（2．5：P10 条－別添 1－22）］
（2）安全設計方針
1．1．1 基本的方針
1．1．1．10 誤操作防止及び容易な操作
（1）設計方針
設計基準対象施設は，設計，製作，建設及び試験検査を通じて，信頼性の高いもの とし，運転員の誤操作等による異常状態に対しては，警報により，運転員が措置し得 るようにするとともに，万一，これらの修正動作が取られない場合にも，原子炉の固有の安全性及び安全保護回路の動作により，過渡変化が安全に収束する設計とする。
設計基準対象施設は，運転員の誤操作を防止する設計とする。
安全施設は，操作が必要となる理由となった事象が有意な可能性をもって同時にも たらされる環境条件及び施設で有意な可能性をもって同時にもたらされる環境条件下 においても，運転員が運転時の異常な過渡変化及び設計基準事故に対応するための設備を中央制御室及び現場操作場所において容易に操作することができる設計とする。
【説明資料（2．1：P10 条－別添 1 －1）（2．3：P10 条－別添 1 － $11 \sim 15$ ）（2．4：P10 条－別添 1－16～21）
（2． 5 ：P10 条－別添 1－22）】
（2）手順等
a．現場手動弁の色分け及び保守•点検作業に係る識別管理方法を定めるとともに，弁•機器の施錠管理方法を定め運用する。
b．中央制御室空調装置については，閉回路循環運転に関する運転手順を定め運用する。
c．防火•防災管理業務及び初期消火活動のための体制及び運用方法等を定め運用する。
d．地震発生時は運転員机又は主盤等のデスク部につかまり身体の安全確保に努めると ともに，操作を中止し安全確保に努めるよう規定類に定め運用する。
e．適切に保守管理を実施するとともに，必要に応じ補修を行う。
f．識別管理，施錠管理に関する教育を実施する。また，換気空調設備，照明設備に関 する運転•操作及び保守•点検についても教育を実施する。
g．消防訓練を実施し，消火要員としての資質の向上を図る。
（3）適合性説明

第十条 誤操作の防止
1 設計基準対象施設は，誤操作を防止するための措置を講じたものでなければならな い。
2 安全施設は，容易に操作することができるものでなければならない。

第1項 について
運転員の誤操作を防止するため，盤の配置，操作器具等の操作性に留意するとともに，状態表示及び警報表示により原子炉施設の状態が正確，かつ迅速に把握できる設計とする。 また，保守点検において誤りを生じにくいよう留意した設計とする。

運転時の異常な過渡変化及び設計基準事故発生後，ある時間までは運転員の操作を期待 しなくても必要な安全機能が確保される設計とする。
さらに，その他の安全施設についても，プラントの安全上重要な機能に支障をきたすお それのある機器•弁や外部環境に影響を与えるおそれのある現場弁等に対して，色分けに よる識別管理を行うとともに，施錠管理により誤操作を防止する設計とする。

【説明資料（2．2：P10 条－別添 1－2～10）（2．4．1～2．4．2：P10 条－別添 1－16）】
第2項 について
原子炉施設の運転時の異常な過渡変化及び設計基準事故の対応操作に必要な各種指示の確認並びに原子炉施設を安全に停止するために必要な原子炉保護設備及び工学的安全施設作動設備の操作は，中央制御室から可能な設計とする。

また，中央制御盤は盤面機器及び盤面表示（操作器，指示計，警報）をシステムごとに

グループ化した配列及び色分けによる識別や操作器のコード化（色，形状，大きさ等の視覚的要素での識別）等を行うことで，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において運転員の誤操作を防止するとともに容易に操作することができる設計と する。

その他の安全施設の操作等についても，プラントの安全上重要な機能に支障をきたすお それのある機器•弁や外部環境に影響を与えるおそれのある現場弁等に対して，色分けに よる識別管理を行い，操作を容易にする設計とする。

当該操作が必要となる理由となった事象が有意な可能性をもって同時にもたらされる環境条件及び原子炉施設で有意な可能性をもつて同時にもたらされる環境条件（地震，内部火災，内部溢水，外部電源喪失，ばい煙，有毒ガス，降下火砕物及び凍結）を想定しても，運転員が運転時の異常な過渡変化及び設計基準事故に対応するための設備を中央制御室に おいて容易に操作することができる設計とするとともに，現場操作についても運転時の異常な過渡変化及び設計基準事故時に操作が必要な箇所は環境条件を想定し，適切な対応を行らことにより容易に操作することができる設計とする。

【説明資料（2．1：P10 条－別添 1－1）（2．2：P10 条－別添 1－2～10）（2．3：P10 条－別添 1 － $11 \sim 15$ ）
（2．4：P10 条－別添 1－16～21）（2．5：P10 条－別添 1－22）】
想定される環境条件とその措置は次のとおり。

（地震）

中央制御室及び中央制御盤は，耐震性を有する原子炉補助建屋内に設置し，基準地震動 による地震力に対し必要となる機能が喪失しない設計とする。また，中央制御室内に設置 する制御盤等は床等に固定することにより，運転操作に影響を与えず容易に操作できる設計とする。さらに，地震時には運転員机又は主盤等のデスク部につかまることで運転員の安全確保及び主盤等の操作器への誤接触を防止できる設計とするとともに天井照明設備に は落下防止措置を講じる。

現場操作については，操作対象設備が耐震性を有する建屋内に設置されており，基準地震動による地震力に対して機能喪失せず，現場操作場所へのアクセスルートも確保される設計とする。

【説明資料（2．1：P10 条－別添 1－1）（2．3．2．1：P10 条－別添1－12）（2．3．3：P10 条－別添 1－14～15） （2．4．3：P10 条－別添 1－17～21）】
（内部火災）
中央制御室に消火器を設置するとともに，火災が発生した場合の運転員の対応を手順に定め，運転員による速やかな消火を行うことで運転操作に影響を与えず容易に操作するこ とができる設計とする。また，中央制御盤（安全系コンソール）内で火災が発生した場合 には，盤内の煙感知器により火災を感知し，常駐する運転員が消火器による消火を行うこ

とを手順に定めることで速やかな消火を可能とし，容易に操作することができる設計とす る。なお，念のため，中央制御盤（安全系コンソール）に隣接する盤についても，火災を早期に感知するため，煙感知器を設置する。
現場操作が必要となる対象設備は，「1．6．1 設計基準対象施設の火災防護に関する基本方針」による設計とすることで，火災発生防止，火災感知及び消火並びに火災の影響軽減の措置を講じ，容易に操作することができる設計とする。

【説明資料（2．1：P10 条－別添 1－1）（2．3．3：P10 条－別添 1－14～15）
（2．4． 3 ：P10 条－別添 1－17～21）】

（内部溢水）

中央制御室には，地震時に溢水源となる機器を設けない設計とする。なお，中央制御室周りの消火作業については，中央制御室に影響を与えない消火方法とすることにより，溢水による影響を与えず，中央制御室にて容易に操作することができる設計とする。

現場操作が必要となる対象設備は，「1．7 溢水防護に関する基本方針」による設計とする ことで，溢水が発生した場合においても安全機能を損なわず，容易に操作することができ る設計とする。

【説明資料（2．3．3：P10 条－別添 1－14～15）（2．4．3：P10 条－別添 1－17～21）】

（外部電源喪失）

地震，竜巻•風（台風），積雪，落雷，外部火災，降下火砕物に伴い外部電源が喪失した場合には，ディーゼル発電機が起動することにより操作に必要な照明用電源を確保し，容易に操作することができる設計とする。また，全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が交流動力電源設備から開始されるまでの間においても，無停電運転保安灯又は可搬型照明により運転操作に必要な照明を確保し，容易に操作する ことができる設計とする。
現場操作が必要となる対象設備は，「10．11 安全避難通路等」による設計とすることで必要な照明を確保し，容易に操作することができる設計とする。

【説明資料（2．3．2．1：P10 条－別添 1－12）（2．3．3：P10 条－別添 1－14～15）
（2．4． 3 ：P10 条－別添 1－17～21）】
（ばい煙等による操作環境の悪化）
火災等により発生するばい煙，有毒ガス及び降下火砕物による中央制御室内の操作環境 の悪化に対しては，中央制御室空調装置を閉回路循環運転とし，外気を遮断することによ り運転操作に影響を与えず容易に操作することができる設計とする。
建屋内の現場操作に対しては，外気取入運転を行っている換気空調設備の外気取入口に フィルタを設置しているため，運転操作に影響を与えず容易に操作することができる設計

とする。また，換気空調設備を停止することにより外気取入を遮断し，運転操作に影響を与えず容易に操作することができる設計とする。

【説明資料（2．3．2．2：P10 条－別添 1－13）（2．3．3：P10 条－別添 1 －14～15）
（2．4．3：P10 条－別添 1－17～21）】
（凍結による操作環境への影響）
中央制御室空調装置により環境温度が維持されることで，運転操作に影響を与えず容易 に操作することができる設計とする。

建屋内の現場操作に対しては，換気空調設備により環境温度が維持されるため，運転操作に影響を与えず容易に操作することができる設計とする。

【説明資料（2．3．2．2：P10 条－別添 1－13）（2．3．3：P10 条－別添1－14～15）
（2．4．3：P10 条－別添 1－17～21）】

1.3 気象等

該当なし
1.4 設備等

6．計測制御系統施設
6.10 制御室

6．10．1 通常運転時等
6．10．1．2 設計方針
（1）中央制御室
中央制御室では，原子炉及び主要な関連設備の運転状況，主要パラメータの集中的 な監視及び制御並びに安全性を確保するための急速な手動操作を中央制御盤の主盤に て行うことができる設計とする。なお，運転指令卓及び大型表示盤は運転員による原子炉及び主要な関連設備の状況の把握が容易となるよう支援することが可能な設計と する。
（2）運転員操作に関する考慮中央制御盤は誤操作及び誤判断を防止でき，かつ，操作が容易に行えるよう配慮し た設計とする。また，保修時においても誤りを生じさせないよう留意した設計とする。 さらに，中央制御室にて同時にもたらされる環境条件（地震，内部火災，内部溢水，外部電源喪失，ばい煙，有毒ガス，降下火砕物及び涷結）を想定しても安全施設を容易に操作することが可能なように設計する。

【説明資料（2．1：P10 条－別添 1－1）（2．2：P10 条－別添 1－2～10）（2．3：P10 条－別添 1 － $11 \sim 15$ ）
（2．5：P10条－別添1－22）】
（3）施設の外の状況の把握
原子炉施設に影響を及ぼす可能性があると想定される自然現象等や発電所構内の状況を昼夜にわたり把握することができる設計とする。
（4）中央制御室の居住性
a．中央制御室の中央制御盤等は，火災に対する防護を考慮した設計とする。
b．設計基準事故時においても，運転員等が中央制御室に接近し，又はとどまり，事故対策操作を行うことが可能なように，遮蔽を設けた設計とする。
c．設計基準事故によって放出することがあり得る気体状放射性物質に対し，換気設計により運転員等を適切に防護した設計とする。
d．中央制御室外の火災等により発生するばい煙，有毒ガス及び降下火砕物に対する換気設備の隔離その他の適切に防護するための設備を設ける設計とする。
e．中央制御室は，有毒ガスが中央制御室内の運転員に及ぼす影響により，運転員の対処能力が著しく低下しないよう，運転員が中央制御室にとどまり，事故対処に必要な各種の指示，操作を行うことができる設計とする。
（5）原子炉の停止状態及び炉心の泠却状態の監視
原子炉の停止状態は，中性子源領域中性子束，原子炉トリップ遮断器の状態，制御棒クラスタ位置， 1 次冷却材のサンプリングによるほう素濃度の測定により，また，炉心の泠却状態については，加圧器水位， 1 次冷却材圧力•温度，サブクール度によ りそれぞれ 2 種類以上のパラメータで監視又は推定できる設計とする。
（6）中央制御室外からの原子炉停止機能
中央制御室において操作が困難な場合には，原子炉施設を安全な状態に維持するた めに，中央制御室以外の適切な場所に中央制御室外原子炉停止装置を設け，原子炉の急速な高温停止を可能とするとともに，適切な手順を用いてトリップ後の原子炉を高温停止状態から低温停止状態に容易に導くことができる設計とする。
現場操作を必要とするものについては，照明設備及び通信連絡設備を設ける設計と する。
（7）共用に関する考慮
中央制御室は原子炉施設間の共用によって原子炉の安全性に支障を来さない設計と する。
（8）電源喪失に対する考慮
中央制御盤は，無停電の計装用交流母線から給電し，一定時間の全交流動力電源喪失時にも機能を喪失しない設計とする。
（9）酸素濃度計等の施設に関する考慮
室内の酸素濃度及び二酸化炭素濃度が活動に支障がない範囲にあることを把握でき るように酸素濃度•二酸化炭素濃度計を保管する設計とする。

6．10． 1.3 主要設備

（1）中央制御盤
中央制御盤は，原子炉及び主要な関連設備の計測制御装置による運転監視操作機能を設けた主盤，原子炉及び主要な関連設備の状況の把握が容易となるよう支援するために設けた運転指令卓及び大型表示盤で構成する。主盤は，原子炉及び主要な関連設備の通常運転時，運転時の異常な過渡変化時及び設計基準事故時に必要な操作，指示，記録，警報機能等を有する表示装置及び操作器を運転員の操作性及び人間工学的観点を考慮し て配置する。

また，中央制御盤による原子炉施設の状態把握を補助するものとしてプラント計算機 を設け，プラント性能計算，データの収集，記録等を行う。さらに，定期検査時等の保修作業性向上のため保修用制御盤を設ける。

なお，中央制御盤は盤面機器及び盤面表示（操作器，指示計，警報）をシステムごと にグループ化した配列及び色分けによる識別や操作器のコード化（色，形状，大きさ等 の視覚的要素での識別）等を行うことで，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において運転員の誤操作を防止するとともに容易に操作ができる設計と する。
【説明資料（2．1：P10 条－別添 1－1）（2．2：P10 条－別添 1－2～10）（2．3．1：P10 条－別添 1－11）】

（2）中央制御室

中央制御室は，原子炬補助建屋内に設置し，1次冷却系統に係る原子炉施設の損壊又 は故障が発生した場合に，従事者が支障なく中央制御室に入ることができるよう，これ に連絡する通路及び出入りするための区域を多重化するとともに，中央制御室内にとど まり必要な操作，措置を行うことができる設計とする。

中央制御室は，有毒ガスが運転員に及ぼす影響により，運転員の対処能力が著しく低下し，安全施設の安全機能が損なわれることがない設計とする。

そのために，「有毒ガス防護に係る影響評価ガイド」（平成29年4月5日原規技発第 1704052号原子力規制委員会決定）（以下「有毒ガス評価ガイド」という。）を参照し，有毒ガス防護に係る影響評価を実施する。
有毒ガス防護に係る影響評価に当たっては，有毒ガスが大気中に多量に放出されるか の観点から，有毒化学物質の揮発性等の性状，貯蔵量，建屋内保管，換気等の貯蔵状況等を踏まえ，敷地内及び中央制御室等から半径 10 km 以内にある敷地外の固定源並びに敷地内の可動源を特定し，特定した有毒化学物質に対して有毒ガス防護のための判断基準値を設定する。また，固定源及び可動源の有毒ガス防護に係る影響評価に用いる貯蔵量等は，現場の状況を踏まえ評価条件を設定する。

固定源に対しては，貯蔵容器すべてが損傷し，有毒化学物質の全量流出によって発生 した有毒ガスが大気中に放出される事象を想定し，運転員の吸気中の有毒ガス濃度が有

毒ガス防護のための防護判断基準値を下回ることにより，運転員を防護できる設計とす る。可動源に対しては，通信連絡設備による連絡，中央制御室換気空調設備の隔離，防護具の着用等の対策により，運転員を防護できる設計とする。

中央制御室及びこれに連絡する通路並びに運転員その他の従事者が原子炉制御室に出入りするための区域は，運転員が過度の被ばくを受けないように施設し，運転員の勤務形態を考慮し，事故後30日間において，運転員が中央制御室に入り，とどまっても，中央制御室遮へいを透過する放射線による線量，中央制御室に侵入した外気による線量及 び入退域時の線量が，中央制御室空調装置，中央制御室遮へい等の機能とあいまって，
「実用発電用原子炉及びその附属施設の技術基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」に示される 100 m S v を下回るよう に遮蔽を設けた設計とする。

中央制御室空調装置は，他の換気空調系とは独立に設け，設計基準事故が発生した場合には，外気との連絡口を遮断し，事故によって放出することがあり得る気体状放射性物質が中央制御室に直接侵入することを防ぎ，運転員等を過度の放射線被ばくから防護 するため，よう素フィルタを通して再循環することができる。また，外部との遮断が長期にわたり室内の環境が悪化した場合には，外気をよう素フィルタで浄化しながら取り入れることもできる。

また，室内の酸素濃度及び二酸化炭素濃度が活動に支障のない範囲であることを把握 できるよう，酸素濃度•二酸化炭素濃度計を保管する設計とする。

中央制御室は，原子炉施設に影響を及ぼす可能性があると想定される自然現象等や発電所構内の状況を昼夜にわたり把握するため遠隔操作及び暗視機能等を持った監視カメ ラを設置する。

中央制御室は，当該操作が必要となる理由となった事象により有意な可能性をもつて同時にもたらされる環境条件及び原子炉施設で有意な可能性をもつて同時にもたらされ る環境条件（地震，内部火災，内部溢水，外部電源喪失，ばい煙，有毒ガス，降下火砕物及び凍結）を想定しても，適切な措置を講じることにより運転員が運転時の異常な過渡変化及び設計基準事故に対応するための設備を容易に操作することができるものとす る。

想定される環境条件及びその措置は以下のとおり。
【説明資料（2．1：P10 条－別添 1－1）（2．3．2：P10 条－別添 1－12，13）
（2．3．3：P10 条－別添 1－14～15）】
（地震）
中央制御室及び中央制御盤は，耐震性を有する原子炉補助建屋内に設置し，基準地震動に よる地震力に対し必要となる機能が喪失しない設計とする。また，中央制御室内に設置する

制御盤等は床等に固定することにより，運転操作に影響を与えず容易に操作できる設計とす る。さらに，地震時には運転員机又は主盤等のデスク部につかまることで運転員の安全確保及び主盤等の操作器への誤接触を防止できる設計とするとともに天井照明設備には落下防止措置を講じる。

【説明資料（2．1：P10条－別添1－1）（2．3．3：P10条－別添1－14～15）】

（内部火災）

中央制御室に消火器を設置するとともに，火災が発生した場合の運転員の対応を手順に定 め，運転員による速やかな消火を行うことで運転操作に影響を与えず容易に操作できる設計 とする。また，中央制御盤（安全系コンソール）内で火災が発生した場合には，盤内の煙感知器により火災を感知し，常駐する運転員が消火器による消火を行うことを手順に定めるこ とで速やかな消火を可能とし，容易に操作することができる設計とする。なお，念のため，中央制御盤（安全系コンソール）に隣接する盤についても，火災を早期に感知するため，煙感知器を設置する。

【説明資料（2．1：P10条－別添1－1）（2．3．3：P10条－別添1－14～15）】

（内部溢水）

中央制御室には，地震時に溢水源となる機器を設けない設計とする。なお，中央制御室周り の消火作業については，中央制御室に影響を与えない消火方法とすることにより，溢水による影響を与えず，中央制御室にて容易に操作することができる設計とする。

【説明資料（2．3．3：P10 条－別添 1－14～15）】
（外部電源喪失）
運転操作に必要な照明は，地震，竜巻•風（台風），積雪，落雷，外部火災，降下火砕物 に伴い外部電源が喪失した場合には，ディーゼル発電機が起動することにより操作に必要な照明用電源を確保し，容易に操作できる設計とする。また，全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が交流動力電源設備から開始されるまでの間にお いても，無停電運転保安灯により運転操作に必要な照明を確保し，容易に操作できる設計と する。

【説明資料（2．3．2．1：P10条－別添1－12）（2．3．3：P10条－別添1－14～15）】
（ばい煙等による中央制御室内環境の悪化）
中央制御室外の火災等により発生するばい煙，有毒ガス及び降下火砕物による中央制御室内の操作環境の悪化を想定しても，中央制御室空調装置の外気取入を手動で遮断し，閉回路循環運転に切り替えることにより，運転操作に影響を与えず容易に操作できる設計とする。

【説明資料（2．3．2．2：P10条－別添1－13）（2．3．3：P10条－別添1－14～15）】

（凍結による操作環境への影響）

中央制御室空調装置により環境温度が維持されることで，運転操作に影響を与えず容易に操作することができる設計とする。

【説明資料（2．3．2．2：P10条－別添1－13）（2．3．3：P10条－別添1－14～15）】

なお，原子炉施設の外の状況を把握するため，以下の設備を設置する。
a．監視カメラ
想定される自然現象等（地震，津波，洪水，風（台風）•竜巻通過後の設備周辺にお ける飛散状況，降水，積雪，落雷，地滑り，降下火砕物，火災，飛来物）に加え発電所構内の状況（海側，山側）を昼夜にわたり把握するために屋外に暗視機能等を持った監視カメラを設置する。
b．気象観測装置等
風（台風），竜巻等による発電所構内の状況の把握に有効なパラメータ（風向•風速等）を入手するために，気象観測設備等を設置する。

また，津波及び高潮については，津波監視設備として取水ピット水位計及び潮位計を設置する
c．気象情報等を入手する情報端末等
公的機関からの地震，津波，竜巻，雷雨，降雨予報，天気図，台風情報等を入手する ために，中央制御室に情報端末，テレビ，ラジオ等を設置する。

泊発電所 3 号炉

設置許可基準規則等への適合状況説明資料 （誤操作の防止）

2．誤操作の防止

2.1 概要

－泊 3 号機 中央制御盤の特徴
泊発電所 3 号機における中央制御盤は，運転員の負担軽減を目的として，以下の設計とす ることで監視性及び操作性の向上を図っている。

- 監視及び操作の機能を集中したコンパクトコンソールの適用
- 運転員の情報共有化等を目的とした大型表示盤の適用
- 監視及び操作の集約化を図ったタッチオペレーションの適用

－誤操作防止対策
（1）運転及び保守における誤操作を防止するため，環境条件，配置•作業空間，中央制御盤の盤面配置，表示システム，制御機能に関し，人間工学的な操作性を考慮した設計としてい る。この設計は現場盤等についても同様である。
（2）運転員の誤操作等による運転時の異常な過渡変化時には，警報により運転員が措置し得る ようにするとともに，これらの修正動作が取られない場合にも，原子炉固有の安全性並び に安全保護系の動作により，重大な事故に発展することがないようにしている。

なお，運転時の異常な過渡変化又は設計基準事故の発生後，一定時間の運転操作がなく とも必要な安全機能を確保することとしている。
－その他対策
上記の誤操作防止に加え中央制御室は，耐震性を有する原子炬補助建屋に設置され，放射線防護措置（遮蔽及び換気空調），火災防護措置（消火設備の設置等）を講じており，運転員が適切 に運転できるよう，照明，放射線等に対して適切な監視操作環境を実現している。
①地震発生時の対応として，運転員は地震が発生した場合，運転員机又は主盤等のデスク部に つかまり安全を確保するとともに，警報発信状況等の把握に努めることとしている。
（2）中央制御室にて火災が発生した場合は，運転員が火災状況を確認し，消火器にて初期消火を行らことを手順に定めることで速やかな消火が可能な設計としている。

上記のことから地震及び火災等の環境条件を想定しても，運転員は容易に操作することができ る。

2.2 制御盤の設計方針について

2．2．1 中央制御盤操作機器の範囲
中央制御盤にて監視操作を可能とする対象は下記のとおりとする。
（1）プラントの起動，通常運転，停止時の監視，操作が必要で，かつ監視，操作頻度の高いも の。
（主蒸気•給水系， 1 次冷却系，化学体積制御系，余熱除去系 等）
（2）プラントの異常時，プラントを安全に保つために必要なもの。
（主蒸気•給水系， 1 次冷却系，化学体積制御系，安全注入系，余熱除去系，格納容器ス プレイ系 等）

③その他，設置した場合，運転上のメリットが大きいもの。 （換気空調系，復水系，循環水系 等）

（3）その他，設置した場合，運転上のメリットが大きいもの
（例：換気空調系）

枠囲みの範囲は機密に係る事項ですので公開することはできません。

2．2．2 盤面器具配列及び画面構成

運転操作面からの盤面器具配列

- 通常運転と事故時運転操作の両運転時の操作性を良くする。
- 中央制御盤に設置する安全系FDP，常用系VDU，警報用VDU等は，運転員が座位 にて監視操作し易い位置に設置し，また一貫性を持った配置とすることで，誤操作及び誤認識を防止する。
－運転員が迅速に対応すべき緊急時の操作を必要とするスイッチについては，ハードウェ ア操作器を設ける。

系統毎の画面構成
－メニュー画面はプラントの系統毎に分割し，流体の流れ及び操作の流れを考慮した表示と
しており，また，本画面から系統毎の監視操作画面へ展開することが可能である。
1 次系系統の流れ
2 次系系統の流れ

枠囲みの範囲は機密に係る事項ですので公開することはできません。

2．2．3 盤面器具配列及び画面構成に関する具体的方針

盤面器具配列
－常用系VDU4台，警報用VDU 2 台及び安全系FDP3セット（A•B各トレン 1 台の 2台を1セット）とし，これらを近接して配置する。
－トレンA機器は常用系VDUの右上に配置した安全系FDP，トレンB機器は右下に配置し た安全系FDPにて監視操作を行う。
－ハードウェア操作器は緊急時の操作器であることから，常用系VDU等と混在させた配置と せず，また使用時の移動方向を統一する観点から1箇所に集中して配置する。

画面構成
－常用系VDUの画面は表示機能あるいは情報のまとまりごとにグループ分け（表示エリア，操作器•制御器エリア等）し，視覚的にそれが分かるようにする。
－異なるグループ間の識別を容易にするため，ブランクスペース，ラインまたはその他の手法 （背景色に変化をつけるなど）で区切りを明確にする。
－監視操作範囲が複数の系統に渡るタスクでは，処置に則した監視情報と操作器を極力 1 画面 に表示する。

- 操作上関連の深い情報は，操作器•制御器の近傍に表示する。
- 主要系統の流れの方向は一貫した方向とし原則として系統図と一貫性を取るものとする。
- 系統表示画面内で用いるミミック表示は，実際の系統のつながりと整合をとつている。
- 同種機器は向かって左，または上から A，B，C の順に配列する。
- 操作器エリアは，囲み枠とともにポジ表示（明るい背景色に暗い文字色）を適用することで他のエリアとの区別をしやすくする。
－多重化された指示計は同一の画面に表示して，比較し易い状態で表示する。
－表示灯類の表示は下記の通りとする。
（1）モニタライト
- 弁の分類及び補機をグループ化しトレン毎に分割表示する。
- 各分類内での配列は安全保護系信号毎にまとめて表示する。
（2）プラントトリップステータス表示
－トリップの要因となったファーストアウト警報および，トリップ時に動作する機器の状態をまとめて表示する。
－シーケンス動作する機器の状態は，シーケンス毎にまとめて表示する。
（3）バイパス・パーミッシブ表示
- 専用の画面にまとめて表示する。
- 警報と同じように可聴及び点滅機能を持たせる。

2．2．4 盤面器具及び画面表示機器の識別

運転員の判断機能の軽減化あるいは誤操作防止対策として，盤面器具及び画面表示機器のコ ード化（色，形状，大きさ，位置，シンボル，パターン等の視覚的要素での識別）を行う。
－盤面器具の識別
ハードウェア操作器については以下の設計としている。
（1）ハードウェア操作器は，大きさ，操作に要する力，触覚フィードバックを考慮した仕様と している。
（2）ハードウェア操作器の操作方法は，運転員の慣習に基づく動作•方向感覚に合致している。
③ハードウェア操作器は非安全な操作や運転員の意図しない操作を防止するため以下の設計 としている。

- 制御器•操作器の適切な配置
- 保護カバーの設置
（4）ハードウェア操作器の色，形，大きさのコーディング方法や操作方法が一貫性を持ち，類似の制御機能と統一されている。
（安全保護系，工安系など緊急時の操作を必要とするスイッチ）
- ハンドル色：赤
- ハンドル形状：楕円形
- 操作方法：右捻回で動作

⑤ハードウェア操作器は原子炉トリップ，ECCS 作動などの機能ごとにグループ化した配置と し，識別が容易となるようグルーブごとに枠で囲んでいる。
（6）ハードウェア操作器は緊急時の操作を必要とするものとそれ以外で色分けを行っている。

ハードウェア操作器
－画面表示機器の識別
タッチオペレーション方式を採用し，以下の設計としている。
①タッチ領域は凸表示とし，タッチ領域であることが識別可能な表示としている。
（2）タッチ時は凹表示に変化させ，タッチを受け付けたことを示す打ち返し表示を行う。
③操作信号を出力するタッチ領域は十分な大きさを確保し，近接するタッチ領域とも距離を離している。
（4）タッチ方式は，タッチ時に信号を出力する方式を一貫して用いている。
（5）タッチ操作器の呼び出しによって表示される制御器及び操作器の数は，原則として 1 つと している。
（6）操作器は標準的な形状を設け，タッチボタンの配置や大きさ等，可能な限り統一する。
（7）ポンプ／弁等のシンボルの形状及び状態変化（起動•停止，開•閉）の表示方式を統一す る。

枠囲みの範囲は機密に係る事項ですので公開することはできません。
－指示計の識別
指示計は，系統区分に従い，関連する系統又は操作器•制御器に近接して表示する。画面表示機器において，検出器などの不動作又は除外により情報を提供できない場合や，指示値が警報発信状態となっている場合について，以下の通り色による識別を行っている。

正常状態	：白
不信頼状態	：黄
警報発信状態	：赤

－警報表示灯の色による識別

警報発信時は吹鳴音を吹鳴させ，大型表示盤及び警報用 VDU で系統ごとにグループ化し警報を点滅表示させる。

また，警報発信時に警報の重要度•緊急度を確実かつ容易に識別•判断できるように色に よる識別を行う。

特に，事故時のよらに短時間に多数の警報発信がある場合でも，運転員の判断機能の負荷軽減ができるように，重要度の高い順に 3 色に色分けを行う。

- 警報 ：赤（運転員に対応操作を要求する警報）
- 注意警報 ：黄（運転員に確認を要求する警報）
- ステータス警報 ：緑（運転員に対応操作／確認を必要としない警報）

警報（赤色）

枠囲みの範囲は機密に係る事項ですので公開することはできません。

2．2．5 大型表示盤

運転員にプラント全体の情報を提供するため，大型表示盤を設置している。大型表示盤は，特に通常時の監視や異常時•事故時に重要となる監視情報を表示し，これを運転員全員で共有することによりプラント状態の把握の容易化，確実化を図る。

枠囲みの範囲は機密に係る事項ですので公開することはできません。

2．3 中央制御室
2．3．1 制御盤配置
－中央制御室は，運転業務を行うエリアと保修業務を行うエリアに区分し，運転員と保修員の輻輳を回避している。
－運転業務を行うエリアには，運転員相互の視認性及び運転員間のコミュニケーション を考慮して，主盤，運転指令卓および大型表示盤を配置している。
－監視操作を行うための安全系FDP，常用系VDU，警報用VDUは，運転員が監視操作し易い位置に集約して設置することで運転員の負担軽減を図っている。

2．3．2 照明設備及び空調設備

重大事故等が発生した場合においても運転員が適切に運転できるよう，必要な設備（中央制御室給気ファン，中央制御室循環ファン，中央制御室非常用循環ファン及び中央非常用照明） を設置している。

2．3．2．1 照明設備について

中央制御室の照明については非常用電源から給電しており，外部電源が喪失しても一定時間照明（外部電源喪失時照度：200 ルクス）を確保している。また，全交流動力電源喪失時にお いても，重大事故等に対処するために必要な電力の供給が交流電源設備から開始されるまでの間，無停電運転保安灯や可搬型照明により操作を可能としている。

なお，不快なまぶしさの軽減及び視認性を高めるために光天井を採用している。光天井は地震時の落下防止措置を講じている。

設備仕様

－中央非常用照明
運転保安灯照度 ：200ルクス（設計値）
非常灯照度
：20 ルクス以上（設計値）
－中央制御室通常照明 ：1000 ルクス（設計値）

光天井

2．3．2．2 空調設備について

①通常時，中央制御室給気ファン及び中央制御室循環ファンにより中央制御室の空調を行う。
②事故時は，外気を遮断し，中央制御室非常用循環ファンにより微粒子フィルタ及びよう素 フィルタを通した閉回路循環運転とし，放射線被ばくから防護する構成としている。

なお，室内の雰囲気が悪くなった場合には，中央制御室非常用循環系統により外気を浄化して取り入れることもできる。
③）ばい煙•有毒ガス及び降下火砕物に対しては，手動で閉回路循環運転へ切り替えることで外気を遮断できる。
（4）凍結（低温）による中央制御室内環境への影響に対しては，中央制御室空調装置により環境温度を維持することができる。

閉回路循環運転の例

設備仕様

－中央制御室給気ファン
台数：2台 容量：約 $500 \mathrm{~m}^{3} / \mathrm{min}$ フィルタ：中央制御室給気ユニット

- 粗フィルタ・冷却水泠却コイル
- 中央制御室循環ファン

台数：2台 容量：約 $500 \mathrm{~m}^{3} / \mathrm{min}$
－中央制御室非常用循環ファン
台数：2台 容量：約 $85 \mathrm{~m}^{3} / \mathrm{min}$
フィルタ：中央制御室非常用循環フィルタユニット

- よう素フィルタ（よう素除去効率 95% 以上）
- 微粒子フィルタ（粒子除去効率 99% 以上）

2．3．3 運転員の地震及び火災等への対応

想定される自然災害（地震，竜巻，台風等）と火災及び溢水について，中央制御室での操作 に影響を与える事象を抽出し，対応について整理した。

中央制御室の主な対応（中央制御室の対応状況一覧は表 1 参照）
－地震：中央制御室内に設置するラック等は転倒防止措置を講じ，ラック等の転倒による制御盤上の操作器への誤接触の防止を図る。また，運転員は地震が発生した場合，運転員机又は主盤等のデスク部につかまり安全を確保するとともに警報発信状況等の把握に努めることとしている。
－火災：中央制御室にて火災が発生した場合は，運転員が火災状況を確認し，初期消火を行うことができるよう消火器を設置している。
－溢水：中央制御室に溢水源がないことを確認しているが，火災のための消火栓による溢水については，内部溢水で評価を実施し，問題ないことを確認している。

中央制御室の環境に影響を与える可能性のある事象に対しては，表1の通り中央制御室での操作性（操作の容易性）に影響を与えることはない。

表1．中央制御室における環境条件への対応

起因事象	同時にもたらされる中央制御室の環境条件	中央制御室での操作性（操作の容易性）に与える影響
地震	内部火災	中央制御室は，耐震を考慮して設計していることから，地震が発生した場合でも火災が発生することはない。 また，仮に，中央制御室で火災が発生しても，運転員が火災状況 を確認し，消火器にて初期消火を行うことを手順に定めている。 また，中央制御盤（安全系コンソール）内で火災が発生した場合 には，盤内の煙感知器により火炎を感知し，常駐する運転員が消火器による消火を行うことを手順に定めることで速やかな消火 を可能とし，中央制御室の機能は維持される。 なお，念のため，中央制御盤（安全系コンソール）に隣接する盤についても，火災を早期に感知するため，煙感知器を設置する。
	内部溢水	中央制御室に溢水源がないことは確認しているが，火災のための消火栓による溢水については，内部溢水で評価を実施し，問題な いことを確認している。
	余震	地震発生時の対応として，運転員は地震が発生した場合，運転員机及び主盤等のデスク部につかまり安全確保に努めることを規定類に定める。
	外部電源喪失に伴う照明等の所内電源の喪失	外部電源喪失時においても，中央制御室の照明はディーゼル発電機から給電される。また，無停電運転保安灯及び可搬型照明を備 えており，全交流動力電源喪失時に重大事故等に対処するために必要な電源の供給が交流動力電源設備から開始されるまでの間 においても照明は確保される。
竜巻•台風		
積雪（暴風雪）		
落雷		
外部火災等		
	ばい煙又は有毒ガスの発生による中央制御室内換気設備への影響	外部火災等の影響評価及び火山の影響評価により原子炉補助建屋内部に影響がないことを確認している。 なお，中央制御室空調装置を手動で閉回路循環運転へ切り替え ることで，外気を遮断できる。
火山	降下火砕物による中央制御室内換気設備への影響	
凁結	凍結による中央制御室内環境への影響	中央制御室空調装置により環境温度が維持されるため，中央制御室内環境への影響はない。

2.4 現場の誤操作防止

2．4．1 識別管理

誤操作によりプラントの安全上重要な機能に支障をきたすおそれがある機器•弁や外部環境 に影響を与えるおそれのある現場弁等に対して色分けによる識別を行っている。

盤の識別
（原子炉安全保護盤の例）

伝送器の識別
（主蒸気ライン圧力の例）

油類に係る弁弁の識別

給水系統

蒸気系統

水消火系統

潤滑油系䖻

配管の識別

2．4．2 施錠管理

誤操作によりプラントの安全上重要な機能に支障をきたすおそれがある機器や弁類に対し，施錠管理を行っている。また，単一の誤操作により外部環境に影響を与えるおそれのある現場弁等に対しても，施錠管理を行っている。

施錠管理対象弁

2．4．3 現場操作の容易性

運転中の異常な過渡変化および設計基準事故等発生時において現場操作を行う場所の環境に影響を与える可能性のある事象に対しては，下記の通り，いずれの場合でも操作性（操作の容易性）に影響を与えることはない。

2．4．3．1 設計基準事故時等において求められる現場操作

運転中の異常な過渡変化及び設計基準事故等発生時に必要な現場操作を以下の通り抽出した。詳細な抽出の考え方及び抽出結果を参考資料 2 に示す。
（1）蒸気発生器伝熱管破損時における主蒸気隔離弁増し締め操作
蒸気発生器伝熱管破損時に 2 次系への放射性物質の拡散を回避するため，破損側蒸気発生器につながる主蒸気隔離弁を中央制御室での遠隔操作により閉止する。主蒸気隔離弁の閉止機能の信頼性向上を図るため，閉弁操作後現場で同弁を増締めすることとしている。

②）中央制御室を退避する必要が生じた場合の中央制御室外原子炉停止盤（以下，「EP 盤」と いう）操作

中央制御室に何らかの原因によりとどまることのできない場合，EP 盤にて，トリップ後の原子炉を高温停止状態から低温停止状態に移行させる操作を行う。

③ 全交流動力電源喪失時における，2次系強制冷却のための主蒸気逃がし弁操作，代替非常用発電機からの給電操作，およびディーゼル発電機復旧操作

全交流動力電源喪失時，非常用母線電源復旧のため，現場のディーゼル発電機制御盤にて ディーゼル発電機起動を試みる。また代替非常用発電機から受電するまでの間，現場にて， 2 次系強制冷却のための主蒸気逃がし弁操作及び代替非常用発電機からの給電操作を行う。

2．4．3．2 現場操作の環境に影響を与える可能性のある事象に対する考慮
（1）蒸気発生器伝熱管破損時における主蒸気隔離弁増し締め操作

【操作対象，操作場所】

－主蒸気隔離弁（原子炉建屋 29.3 m 主蒸気管室）

当該操作が必要となった事象が同時にもたらす環境条件を考慮しても，当該操作場所にて容易に操作可能な設計としており，いずれの場合でもアクセスルートを含めて現場操作場所 での操作性（操作の容易性）に影響を与えることはない。

表2－1．現場操作場所における環境条件への対応（主蒸気管室）

起因事象	同時にもたらされる現場の環境条件	現場での操作性（操作の容易性）に与える影響
地震	内部火災	主蒸気管室の耐震 S クラス機器は，耐震を考慮した設計であり，地震が発生した場合でも，火災が発生することはない。また主蒸気管室及びアクセスルートは，耐震性を有する建屋であり，火災防護対策を実施していることから，早期の火災感知及び消火が可能である。
	内部溢水	アクセスルートにおける溢水水位を歩行に支障のない水位に抑 える等により，溢水に伴う現場操作への影響はない。
	余震	地震発生時の対応として，運転員は地震が発生した場合，操作を中止し安全確保に努めることを規定類に定める。
	外部電源喪失に伴う照明等の所内電源の喪失	外部電源喪失時においても，現場およびアクセスルートの照明 は，無停電運転保安灯又は可搬型照明により確保される。
竜巻•台風		
積雪（暴風雪）		
落雷		
外部火災等		
	ばい煙又は有毒ガスの発生による建屋内換気の悪化	外部火災等の影響評価により原子炉建屋及び原子炉補助建屋内部に影響はないことを確認している。
火山	降下火砕物による建屋内換気の悪化	火山の影響評価により原子炬建屋及び原子炉補助建屋内部に影響はないことを確認している。 外気取り入れ箇所にはフィルタを設置しており，降下火砕物の建屋内への侵入を防止している。
谏結	凍結による建屋内環境へ の影響	換気空調設備により環境温度が維持されるため，建屋内環境への影響はない。

（2）中央制御室を退避する必要が生じた場合の中央制御室外原子灲停止盤（以下，「EP 盤」と いう）操作

【操作対象，操作場所】

－EP 盤

火災や内部溢水等の事象が発生し，また同時にもたらされる環境条件を考慮しても中央制御室の機能は維持されるため，この場合 EP 盤操作は必要とならない。

表 $2-2$ ．現場操作場所における環境条件への対応（EP 盤室）

起因事象	同時にもたらされる 中央制御室の環境条件	EP 盤室への退避の必要性 現場（EP 盤室）での操作性（操作の容易性）に与える影響
地震	内部火災	中央制御室は，耐震を考慮して設計していることから，地震が発生した場合でも火災が発生することはない。 また，仮に，中央制御室で火災が発生しても，運転員が火災状況 を確認し，消火器にて初期消火を行うことを手順に定めているた め，中央制御室の機能は維持される。 よってEP 盤室で操作する必要はない。
	内部溢水	中央制御室に溢水源がないことは確認しているが，火災のための消火栓による溢水については，内部溢水で評価を実施し，問題な いことを確認している。よってEP 盤室で操作する必要はない。
	余震	中央制御盤は，基準地震動による地震力に対して機能を損なわな い設計としていることから，EP 盤室で操作する必要はない。
	外部電源喪失に伴う照明等の所内電源の喪失	外部電源喪失時においても，中央制御室の照明はディーゼル発電機から給電される。また，無停電運転保安灯及び可搬型照明を備 えており，全交流動力電源喪失時に重大事故等に対処するために必要な電源の供給が交流動力電源設備から開始されるまでの間 においても照明は確保されることから，EP 盤室で操作する必要は ない。
竜巻•台風		
積雪（暴風雪）		
落雷		
外部火災等		
	ばい煙又は有毒ガスの発生による中央制御室内換気設備への影響	外部火災等の影響評価及び火山の影響評価により原子炉補助建屋内部に影響がないことを確認している。 なお，中央制御室空調装置を手動で閉回路循環運転へ切り替える ことで外気を遮断できることから，EP 盤室で操作する必要はな い。
火山	降下火砕物による中央制御室内換気設備への影響	
谏結	凍結による中央制御室内環境への影響	中央制御室空調装置により環境温度が維持されることから，EP盤室で操作する必要はない。

枠囲みの範囲は機密に係る事項ですので公開することはできません。

③全交流動力電源喪失時における，2次系強制冷却のための主蒸気逃がし弁操作，代替非常用発電機からの給電操作，およびディーゼル発電機復旧操作

【操作対象，操作場所】

- 主蒸気逃がし弁（原子炉建屋 29．3m，主蒸気管室）
- 代替非常用発電機受電遮断器（原子炉補助建屋 10.3 m ，安全補機開閉器室）
- ディーゼル発電機（ディーゼル発電機建屋 10.3 m ，ディーゼル発電機室）

当該操作は全交流動力電源喪失時に代替非常用発電機からの受電までの間の操作を現場に て実施するものである。当該操作が必要となった事象が同時にもたらす環境条件を考慮して も，当該操作場所にて容易に操作可能な設計としており，いずれの場合でもアクセスルート を含めて現場操作場所での操作性（操作の容易性）に影響を与えることはない。

表 $2-3$ ．現場操作場所における環境条件への対応（主蒸気管室，安全補機開閉器室，ディーゼ

ル発電機室）

起因事象	同時にもたらされる現場の環境条件	現場での操作性（操作の容易性）に与える影響
地震	内部火災	主蒸気管室，安全補機開閉器室，ディーゼル発電機室の耐震 S ク ラス機器は，耐震を考慮した設計であり，地震が発生した場合で も，火災が発生することはない。また主蒸気管室，安全補機開閉器室，ディーゼル発電機室及びアクセスルートは，耐震性を有す る建屋であり，火災防護対策を実施していることから，早期の火災感知及び消火が可能である。
	内部溢水	アクセスルートにおける溢水水位を歩行に支障のない水位に抑 える等により，溢水に伴う現場操作への影響はない。
	余震	地震発生時の対応として，運転員は地震が発生した場合，操作を中止し安全確保に努めることを規定類に定める。
	外部電源喪失に伴う照明等 の所内電源の喪失	外部電源喪失時においても，現場およびアクセスルートの照明 は，無停電運転保安灯又は可搬型照明により確保される。
竜巻•台風		
積雪（暴風雪）		
落雷		
外部火災等		
	ばい煙又は有毒ガスの発生 による建屋内換気の悪化	外部火災等の影響評価により原子炉建屋，原子炬補助建屋及びデ ィーゼル発電機建屋内部に影響はないことを確認している。
火山	降下火砕物による建屋内換気の悪化	火山の影響評価により原子炉建屋，原子炉補助建屋及びディーゼ ル発電機建屋内部に影響はないことを確認している。 外気取り入れ箇所にはフィルタを設置しており，降下火砕物の建屋内への侵入を防止している。
谏結	凍結による建屋内環境への影響	換気空調設備により環境温度が維持されるため，建屋内環境への影響はない。

（中央制御室 \rightarrow 主蒸気管室，安全補機開閉器室，ディーゼル発電機室）

2.5 識別表示

2．5．1 タグによる識別

点検や作業対象の機器等をタグ（ソフトタグ含む）により明確化することで，点検•作業対象機器の誤操作防止を図っている。液体および気体を保有する系統からの漏えい等を防止する ため設けた境界部および作業安全のために操作を禁止するものに対しては「操作禁止タグ」を取り付ける。

操作禁止タグ
タグによる識別

操作禁止タグ
ソフトタグによる識別

ソフトタグ：
常用系VDU 及び安全系 FDP の画面で操作 する機器に対して，ソフトウェア上でタグを取り付ける機能を設けている。ソフトタグは紙札のタグと同等の情報を表示することが できる。

試験•検査時の操作対象機器，および保修作業のために運転員以外が機器を操作する場合の対象機器については「特別許可タグ」を取り付ける。また，試験•検査および保修作業に伴い発信する警報に対しては予告警報設定を行い，試験•検査中および保修作業中であることが分 かるよう識別する。

特別許可タグ
タグによる識別

特別許可タグ ソフトタグによる識別

予告警報設定画面
赤枠：試験•検査時の確認対象となる警報
緑枠：試験•検査時に付随的に発信する可能性のある警報
緑塗りつぶし：保修作業に伴い発信する警報
（なお，赤塗りつぶしは使用していない。またマゼンダ色は選択状態であることを示す。）

枠囲みの範囲は機密に係る事項ですので公開することはできません。
2.6 運転員の誤操作防止について

運転員については，担当する業務に応じた認定制度を有しており，各ポジションには求めら れる知識•技能などの力量を持った者を配置している。

QMSに基づいた計画的なシミュレータ訓練（社内，社外）及びO J T教育等により習熟を図り，誤操作防止に努めている。

運転操作においては，誤操作防止のため，指差呼称等の基本動作を確実に実施し，操作前後及び操作中においても，複数の監視計器類を確認することにより，誤認に起因する誤操作防止 に努めている。

（操作•作業時の誤操作防止のための基本動作の例）

セルフチェック ：個人レベルの誤操作防止（自問自答，一操作一確認，指差呼称等） ピアチェック ：グループレベルの誤操作防止（ダブルチェック，復命復唱，報•連•相等）
3Wayコミュニケーション
：指示•復唱•確認（双方向確認）により，双方向の意思疎通を明確 にするためのコミュニケーション方法

新規制基準適合申請に係る設計基準対象追加設備の誤操作防止について （設置許可基準規則第 10 条第 1 項への適合性）

1．監視操作機能を有する設計基準対象追加設備の抽出
新基準適合申請において新たに設置した設計基準対象の追加設備を表1のとおり抽出し，誤操作防止（設置許可基準規則第 10 条第 1 項）への適合性を評価するため，さらにプラントの監視操作機能を有する設備を整理した。

表1 監視操作機能を有する設計基準対象追加設備の抽出（1／3）

設置許可		設計基準対象追加設備の抽出	プラントの
4条	地震による損傷の防止	なし	，
5 条	津波による損傷の防止	防潮堤	－
		防水壁	－
		流路縮小工	－
		貯留堰	－
		逆流防止設備	－
		海水戻りライン逆止弁	－
		水密扉	－
		浸水防止监	－
		貫通部止水蓋	－
		ドレンライン逆止弁	－
		貫通部止水処置	－
		津波監視カメラ	監視のみ
		取水ピット水位計	監視のみ
		潮位計	監視のみ
6 条	外部からの衝撃による損傷の防止	竜巻飛来物防護対策設備	－
		防火帯	－
		障壁（鋼板及び保温材より構成）	－

表 1 監視操作機能を有する設計基準対象追加設備の抽出（2／3）

設置許可		設計基準対象追加設備の抽出	プラントの
7 条	不法な侵入等の防止	なし	，
8 条	火災による損傷の防止	ドレンパン，ドレンポット	－
		水素浱度検知器	監視のみ
		火災受信機盤	監視操作
		光ファイバ温度監視端末	監視のみ
		ハロゲン化物消火設備	監視操作
		二酸化炭素消火設備	監視操作
		蓄電池を内蔵する照明	－
		煙等の流入防止装置（目血）	－
		煙感知器（中央制御盤内）	監視のみ
		可搬式の排風機	－
		ケーブルトレイ耐火材	－
		ほう酸ポンプ室耐火壁	－
9 条	溢水による損傷の防止等	止水板	－
		貫通部止水処置	－
		浸水防止堰	－
		水密扉	－
		保護カバー，パッキン等による被水防護措置	－
		漏えい検知システム	監視操作
		ドレンライン逆止弁	－
		循環水ポンプ自動停止インターロック	監視操作
10条	誤操作の防止	なし	，
11条	安全避難通路等	無停電運転保安灯	－
12 条	安全施設	格納容器スプレイライン逆止弁	－
14条	全交流電源喪失対策設備	なし	\square
16条	燃料体等の取扱設備及び貯蔵設備	なし	
17 条	原子炉冷却材圧力バウンダ リ	なし	
24 条	安全保護回路	なし	\square

表1 監視操作機能を有する設計基準対象追加設備の抽出（3／3）

設置許可		設計基準対象追加設備の抽出	プラントの
26条	原子炉制御室等	酸素濃度•二酸化炭素濃度計	－
		取水ピット水位計	監視のみ
		潮位計	監視のみ
		津波監視カメラ	監視のみ
31 条	監視設備	モニタリングポスト用データ伝送系（有線）	－
		モニタリングステーション用データ伝送系（有線）	－
		モニタリングポスト用データ伝送系（無線）	－
		モニタリングステーション用データ伝送系（無線）	－
		モニタリングポスト用無停電電源装置	－
		モニタリングステーション用無停電電源装置	－
		3 号機環境監視盤	監視のみ
33 条	保安電源設備	ディーゼル発電機燃料油貯油槽	監視のみ
		後備変圧器	監視操作
34 条	緊急時対策所	緊急時対策所	－
		衛星電話設備	－
		衛星携帯電話	－
		トランシーバ	－
		統合原子力防災ネットワークに接続する通信連絡設備	－
		酸素濃度•二酸化炭素濃度計	－
		データ表示端末	監視のみ
		データ収集計算機	－
		ERSS 伝送サーバ	－
35 条	通信連絡設備	トランシーバ	－
		携行型通話装置	－
		衛星電話設備	－
		衛星携帯電話	－
		データ収集計算機	－
		データ表示端末	監視のみ
		統合原子力防災ネットワークに接続する通信連絡設備	－
		ERSS 伝送サーバ	－

2．設計基準対象追加設備の誤操作防止について
1．項で整理した監視操作機能を有する設備について，表2のとおり誤操作防止に係る設計考慮事項を評価し，設置許可基準規則第 10 条第 1 項に適合していることを確認した。（技術基準に関する規則の解釈（別記－7）「原子炉制御室における誤操作防止のための設備面への要求事項」に照らし合わせて評価を実施）

表2 設計基準対象追加設備の誤操作防止について（ $1 / 4$ ）
（1）津波監視カメラ

盤配置及び作業空間	独立パネルであり，他操作による画面展開はない。
盤面配置	専用ディスプレイによる表示である。
情報表示機能	-
警報機能	-
制御機能	-

（2）取水ピット水位計

盤配置及び作業空間	「循環水ポンプ停止インターロック」，「漏えい検知システム」と共用の盤であ るが，運転操作を行うエリアに設置しており他作業との輻輳を回避できる配置と なっている。
盤面配置	タッチパネルによる表示である。
情報表示機能	機能または情報のまとまりごとにグループ分けした画面表示としている。
警報機能	吹鳴，フリッカ，確認，点灯など，中央制御盤と同等の機能としている。
制御機能	-

（3）潮位計

盤配置及び作業空間	独立パネルであり，他操作による画面展開はない。
盤面配置	専用ディスプレイによる表示である。
情報表示機能	-
警報機能	-
制御機能	-

（4）循環水ポンプ自動停止インターロック

盤配置及び作業空間	「取水ピット水位計」，「漏えい検知システム」と共用の盤であるが，運転操作 を行うエリアに設置しており他作業との輻輳を回避できる配置となっている。
盤面配置	タッチパネルによる表示および専用の操作スイッチを設けている。
情報表示機能	機能または情報のまとまりごとにグルーブ分けした画面表示としている。
警報機能	吹鳴，フリッカ，確認，点灯など，中央制御盤と同等の機能としている。
制御機能	操作スイッチは盤内に設置しており非安全な操作ができないようになつている。

表2 設計基準対象追加設備の誤操作防止について（ $2 / 4$ ）
（5）水素濃度検知器

盤配置及び作業空間	独立盤であり，他作業との輻淒を回避できる配置となっている。
盤面配置	表示（警報）と指示計を盤面の見やすい位置に配置している。
情報表示機能	-
警報機能	吹鳴，点灯により警報発信を認識できる機能としている。
制御機能	-

（6）火災受信機盤

盤配置及び作業空間	独立盤であり，他作業との輻輳を回避できる配置となっている。
盤面配置	専用ディスプレイによる表示および専用の操作スイッチを設けている。
情報表示機能	機能または情報のまとまりごとにグループ分けした画面表示としている。
警報機能	吹鳴，フリッカ，確認，点灯など，中央制御盤と同等の機能としている。
制御機能	スイッチ保護カバーにより非安全な操作ができないようになっている。

（7）光ファイバ温度監視装置

盤配置及び作業空間	独立パネルであり，他操作による画面展開はない。
盤面配置	専用ディスプレイによる表示である。
情報表示機能	-
警報機能	吹鳴，フリッカ，確認，点灯など，中央制御盤と同等の機能としている。
制御機能	-

（8）ハロゲン化物消火設備

盤配置及び作業空間	独立盤であり，他作業との輻淒を回避できる配置となっている。
盤面配置	タッチパネルおよび表示灯を盤面に設置している。
情報表示機能	消火対象区画ごとの表示としている。
警報機能	吹鳴，フリッカ，確認，点灯など，中央制御盤と同等の機能としている。
制御機能	手動での操作スイッチは手動起動盤内部に設置されており非安全な操作ができ ないようになっている。

（9）二酸化炭素消火設備

盤配置及び作業空間	独立盤であり，他作業との輻輳を回避できる配置となっている。
盤面配置	表示灯を盤面に設置している。
情報表示機能	消火対象区画ごとの表示としている。
警報機能	吹鳴，フリッカ，確認，点灯など，中央制御盤と同等の機能としている。
制御機能	手動での操作スイッチは手動起動盤内部に設置されており非安全な操作ができ ないようになっている。

表2 設計基準対象追加設備の誤操作防止について（3／4）
（10）煙感知器（中央制御盤内）

盤配置及び作業空間	感知器単体で機能を発揮する設備であり，監視対象の盤内に設置している。
盤面配置	-
情報表示機能	-
警報機能	吹鳴により警報発信を認裁できる機能としている。
制御機能	-

（11）漏えい検知システム

盤配置及び作業空間	「取水ピット水位計」，「循環水ポンプ自動停止インターロック」と共用の盤 であるが，運転操作を行うエリアに設置しており他作業との輻䡍を回避できる 配置となっている。
タッチパネルによる表示である。	
盤面配置	機能または情報のまとまりごとにグループ分けした画面表示としている。
情報表示機能	吹鳴，フリッカ，確認，点灯など，中央制御盤と同等の機能としている。
警報機能	ポップアップ表示によるタブルアクション機能により非安全な操作ができない ようになっている。
制御機能	

（12）3号機睘境監視盤

盤配置及び作業空間	独立盤であり，他作業との輻輳を回避できる配置となっている。
盤面配置	専用ディスプレイによる表示および記録計を設けている。
情報表示機能	-
警報機能	吹鳴，フリッカ，確認，点灯など，中央制御盤と同等の機能を持たせる設計と する。
制御機能	-

（13）ディーゼル発電機燃料油貯油槽

盤配置及び作業空間	貯油槽油量に関する警報を中央制御盤で確認できる設計としており，第10条第 1 項への適合性の評価は既設の中央制御盤と同様となる。
盤面配置	同上
情報表示機能	同上
警報機能	同上
制御機能	-

表2 設計基準対象追加設備の誤操作防止について（4／4）
（14）後備変圧器

盤配置及び作業空間	他操作との輻輳を回避できる設計とする。
盤面配置	盤面配置を操作性に留意した設計とする。
情報表示機能	状態表示，ミミック表示など理解しやすい表示方法を用いる設計とする。
警報機能	吹鳴，フリッカ，確認，点灯など，中央制御盤と同等の機能を持たせる設計と する。
制御機能	保護カバーやインターロックにより非安全な操作ができない設計とする。

（※更なる信頼性向上対策のため今後設置予定の設備であり，設計計画を記載する）
（15）データ表示端末

盤配置及び作業空間	独立パネルであり，他操作による画面展開はない。
盤面配置	専用ディスプレイによる表示である。
情報表示機能	-
警報機能	-
制御機能	-

現場操作の確認結果について

運転時の異常な過渡変化及び設計基準事故時に必要な操作（事故発生から泠温停止まで）に ついて，設置変更許可申請添付書類十（安全解析）及び事故時操作手順書より抽出した（添付資料1参照）。また，新規制基準適合性に係る審査において必要な現場操作についても抽出した （添付資料2参照）。

必要な現場操作の抽出フロー
表1 運転時の異常な過渡変化及びプラント停止•泠却に対する主要操作の整理（ $1 / 11$ ）

表1 運転時の異常な過渡変化及びプラント停止•冷却に対する主要操作の整理（2／11）

運転時の異常な過渡変化	事象ベース	事故対応中の主な操作項目	手順書要求操作場所	備考
出力運枟中の制御棒の異虽な引 き抜き（つづき）	原子炬トリップ处置（つづ き）	 運転槐作手順書に基づき椧温停止	中央制御室 「表3 ブラント停止時の運転操作」参照	－
制御棒の落下及び不整合 （䎺御棒落下（制御桋制御自動 の場合）） 【原因】 原子炉の出力運転中に制御棒墅動装圈の故障等により，灯心に捙入されている制御棒クラスタ の配㯰に異常が生じ，灯心内の出力分布が変化する。	原子炉制御系䋁の異常（制御棒落下）	 運転操作手順書に基づき椧温停止	中央制御室 「表3 プラント停止時の運転操作」参照	－
制御棒の落下及び不整合 （制御椿落下（制御棒制御手動 の場合）） 【原因】 原子炬の出力運転中に制御棒㠘動装置の故障等により，炉心に挿入されている制御棒クラスタ の配蟇に異常が生じ，炉心内の出力分布が変化する。	事故直後の操作むよび事象 の判別 原子炉トリップ処直	「出力運転中の制御棒の異常な引き抜き」 と同様		－

（䒠
：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施

\square
表1 運転時の異常な過渡変化及びブラント停止•份却に対する主要操作の整理（4／11）

運転時の異常な過洨変化	事象ベース	事故対応中の主な操作項目	手順書要求 操作場所	備考
原子炉椧却材中のほう素の異虽 な希釈 （出力運転時（制御棒制御自動 の場合）） 【原因】	洨却材補給系の異常			－
		希釈停止 - 1 次系補給水ボンブ「切」 - 1 次系純水補給ライン流量制御弁「閉」 - 体積制御タンク入口側補給弁「閉」 - 体積制御タンク出口側補給弁「閉」		
原子炉の起動時又は出力運転中 に，化学体積制御設備の故障，誤操作等により， 1 次椧却材中 に純水が注人され， 1 次冷却材中のほう素瀑度が低下して反応度が添加される。		緊急温緘 - ほう酸ボンブ「切」 - ほう酸注入タンク瓣噮ライン入口止め弁「閉」 - ほう酸タンク循墂ライン流量調節「㯗整開」 - ほう酸ポンブ速度選択「高速」 - ほう酸ボンブ「入」 - 原子炬補給水制御「切」 - 緊急ほう酸注入弁「開」 ほう酸注入完了後 - 緊急ほう酸注入弁「閉」 - ほう酸ボンブ「切」 - ほう酸注入タンク循興ライン入口止め弁「開」 - ほう酸タンク循蝗ライン流量調節「閉」 - ほう酸ボンフ速度選択「低速」 - ほう酸ボンブ「入」	中央制御室	
		運転復作手順書に基づき洽温停止	「表3 プラント停止時の運転操作」参照	
原子炉椧却材中のほう素の異常 な希釈 （出力運転時（制御柈制御手動 の場合））	事故㨁後の操作むよび事象 の判別	「出力運転中の制御䊂の異常な引き拔き」と同樣		
	原子炬トリップ处罟			
【原因】 原子炉の起動時又は出力運枟中 に，化学体積制御設㒀の故障，誤操作等により， 1 次椧却材中 に純水が注入され， 1 次椧却材中のほう萘㴚度が低下して反応度が添加される。				－
【原因】 原子炉の出力運転中に 1 次椧却材を歌動する1次椧却材ポンブ の故障等により，炉心の椧却材流量が減少する。	事故直後の操作および事象 の判別	「出力連枟中の制御棒の異常な引き抜き」と同様		－
	原子炬トリッブ处圄			

表1 運転時の異常な過渡変化及びプラント停止•冷却に対する主要操作の整理（5／11）

運転時の異常な過渡変化	事象ベース	事故対応中の主な操作項目	手順書要求操作場所	備考
原子炉椧却材系の停止ループの誤起動				
【原因】 1 次椧却材ボンブ 1 台が停止し ておら，原子炉が部分負荷で運転中に，ボンブ制御系の故障，潩操作等により停止中のボンブ が起動され，停止ルーブ中の比校的低温の椧却材が炬心に注入 されて反応度が添加される。	－	${ }^{-}$	－	－
外部電源㖜失	事故直後の操作および事象	原子炬トリッブ確認	中央制御室	－
	の判別	タービントリップ及び発電機トリップ矿認		
【原因】 原子炉の出力運転中に送電系統又は所内主発電設備の故障等に		所内電源及び外部電源の受電状況碓認 - ディーセル発電機自動起動，受電確認 - フララックアウトシーケンス作動機器の自動起動確認		
より外部電源が襄失する。	原子炉トリップ処傋	1 次椧却材温度碓認		
		電動補助給水ボンプおよびタービン動補助給水ポンプ自動起動確憙 - 補助給水ボンブ出口流量調節弁「整開」 - タービン動補助給水ポンブ駆動蒸気入口弁 A，B「閉ロック		
		主蒸気逃がし升設定圧力変更		
		主給水制御弁，主給水パイパス制御弁閉止磪認		
		制御棒挿入状鷲確認		
		加圧器水位制御系碓認		
		加圧器圧力制御系確㰻		
		蒸気発生器水位確認		
		所内電源及び外部電源受電状況矿認 －ディーセル発電機自動起動，受電確認		
		中性子源䫀域ブロック解除確認 •中性子束記録計切替「出力領域」 \rightarrow 「中性子源頱域」		
		高温停止状施確認		
	外部電源表失（自然循環冷却）	B O シーケンス信号リセット（A），（B）㩭作器「リセット」 •補機自動起動ブロック信号「リセット」		
		不要補機の停止，必要補機の再起動•復旧 - 使用済您料ピットボンブ「入」 - タービン設備，発電機設備復旧 - 換気空調設備復旧		
		加圧器逃がし尣作動確認		

の異常な過畆

運転時の異常な過渡変化	事象ベース	事故対応中の主な操作項目	手順書要求操作場所	備考
外部電源懐失（つづき）	外部電源懐失（自然衡無椧却）	充てん抽出系統復旧 - 充てんライン流量制御「HAND•開整開」 - 抽出ライン非再生クーラ出口圧力制御「HAND•証整開」 - 抽出ライン非再生クーラ出口温度制御「HAND•調整開」 - 抽出オリフィス出口 C / V 内側隔離并「開」 - 抽出ライン非再生クーラ出口圧力制御「AUTO」 - 抽出ライン非再生クーラ出口圧力制御設定值変更 - 抽出オリフィス出口 C / V 内側隔離交「開」 - 抽出ライン非再生クーラ出口压力制御設定値変更 - 抽出ライン非再生クーラ出口温度制御「AUTO」 - 充てんライン流量制御「AUTO」 高温停止状態碓認 緊急湍繣 - ほう酸ポンブ「切」 - ほう酸注入タンク循環ライン入口止め弁「閉」 - ほう酸タンク循擐ライン流量調節「倳整開」 - ほう酸ポンプ速度選択「高速」 - ほう酸ポンブ「入」 - 原子炉補給水制御「切」 - 緊急ほう酸注入弁「開」 ほう酸注入完了後 - 緊急ほう酸注人弁「閉」 - ほう酸ボンブ「切」 - ほう酸注入タンク循澴ライン入口止め弁「開」 - ほう酸タンク循噮ライン流量調節「閉」 - ほう酸ポンブ速度選択「低速」 - ほう酸ボンブ「入」 1 次椧却系降温•降圧 - 加圧器後備ヒータ「切ロック」 - 主蒸気逃がし并制御「HAND•讕整開」 - 補助給水ボンブ出口流量藅節弁「倳整聞」	中央制御室	－
		加圧器補助スブレイ弁を使用する場合 - 加圧器補助スプレイ升電源「入」 - 加圧器㭪助スブレイ弁を間欠「開」	現場 $\mathrm{A} / \mathrm{BlO} .3 \mathrm{~m}$中央制御室	代烡措置により実施可能なため対象外
		加圧器逃し弁を使用する場合 －加圧器逃し弁を開欠「開」	中央制御室	
		運枟復作手順書に基つき洽温停止	「表3 プラント停止時の運転操作」参照	

表1 運転時の異常な過渡変化及びプラント停止•冷却に対する主要操作の整理（7／11）
：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施

運軘時の異常な渦洨変化	事象ベース	事故対応中の主な操倾項目		侟考
主給水流量啬失（外部電源喪失） 【原因】 原子炉の出力運転中に，主給水 ポンプ，復水ボンプ又は給水制御系の故障等により，すべての蒸気発生器への給水が停止す る。	事故直後の操作まるよび事象 の判別	「外部電碩懐失」と同椾		－
	原子炬トリッフ処畳			
	外部電源䃞失（自然看環椧却）			
蒸気負歌の異常な増加 ［原因】 原子炉の出力運転中に，タービ ンバイバス弁，蒸気加械弁又は 主蒸気逃がし弁の槑䦨放により 主蒸気流量が異常に增加し，1 次泠却材の温度が低下して応 度が添加される。		－	－	－
2 次冷却系の異常な減圧 【原因】 原子炉の高温停止中に，タービ ンパイパス升，主蒸匃逃がし升等の 2 次椧却系の弁が誤開放 し，1 次椧却材の温度が低下し て反応度が添加される。	の井版	原子炉トリッフ絾䬶	中央制㚜室	－
	2 次汾刲材衰失			

表1 運転時の異常な過渡変化及びプラント停止•冷却に対する主要操作の整理（8／11）

運転時の異常な過渡変化	事象ベース	事故対応中の主な操作項目	手順書要求操作場所	備考
2 次冾却系の異常な减圧（つつ き）	2 次椧却材衰失（つ－うき）	 - 破損蒸気発生器の禣助給水郘髉弁「閒ロック」 - 破摃蒸気発生器の補助給水ポンブ出口流量澗節弁「閉ロック」 - 破損蒸気発生器の主蒸気隔崔分（A），（B）「閉」 - 破摃蒸気発生器の主蒸気バイパス烸帷亣（A），（B）「開」 - 破損蒸気䠏生器の主蒸気逃がし升制御「HAND•開」 - 破䪱蒸気発生器側のタービン動禣助給水ボンブ駼動蒸気B（C）主蒸気ライン元弁「䦥ロック」 - 破摃蒸気発生器の主蒸気隔崔亣上流ドレンライン隔崔弁「開」 - 破損蒸気発生器の主給水隔脽竕「閉」碓認 - 破摃蒸気発生器の主給水制御并「開」碓認 - 破摃蒸気発生器の主給水バイパス制御弁「閉」碓認 - 破損蒸気発生器の蒸気発生器水張調笽「閉」确認 - 破損蒸気溌生器のプロータウウン止め弁「閉」碓認 - 破損蒸気発生器の蒸気発生器サンブルラインC／V 外側臨崔升「閉」确認 －サフクール度用 1 次椧却林温度切脽ルーブ違択（高温側）「破損ル ーブ側」 －サブクール度用 1 次椧却林温度切離ループ選択（低温側）「破損儿 ーブ侧」 	中央制御室	－

表1 運転時の異常な過渡変化及びプラント停止•椧却に対する主要操作の整理（9／11）

赫化ひでブラント停止

運転時の異常な過洨変化	事象ベース	事故対応中の主な操作項目	手順書要求操作場所	備考
2次冾却系の異常な减圧（っつ き）	2 次椧却材衰失（つ－らき）		中央制御室	－

表 1 運転時の異常な過渡変化及びプラント停止•泠却に対する主要操作の整理（11／11）

運転時の異常な過渡変化	事象ベース	事故対応中の主な操作項目	手順書要求操作場所	備考
蒸気発生器への過剩給水	事故直後の操作および事象 の判別	「出力運転中の制御棒の異常な引き抜き」と同様		
【原因】 原子炬の出力運転中に，給水制御系の故障，誤操作等により蒸気発生器への給水が過剰とな り， 1 次椧却材の温度が低下し て反応度が添加される。	原子炉トリップ処置			－
負荷の衰失	事故直後の操作および事象 の判別	「出力運転中の制御棒の異常な引き抜き」と同様		
【原因】 原子炉の出力運転中に，外部電源系続又は蒸気タービンの故障等により，蒸気タービンへの蒸気流量が急減し原子炉圧力が上昇する。	原子炬トリップ処埴			－
原子炉冷却材系の異常な減圧	事故直後の操作および事象 の判別	「出力運転中の制御棒の異常な引き抜き」と同様		
【原因】 原子炉の出力運転中に，1次冷却系の圧力制御系の故障等によ り，原子炉圧力が低下する。	原子炉トリップ処堔			－
出力運転中の非常用灯心椧却系 の誤起動	事故直後の操作むよび事象 の判別	「出力運転中の制御棒の異常な引き拔き」と同様		－
【原因】原子炬の出力運転中に，非常用炉心椧却設備が誤起動する。	原子炉トリップ処浿			

設計基準事故	表2 設計基準手順書で要求されてい 事象ベース	事故及びプラント停止•冷却に対する主要操作操作を中央制御室で実施 \square ：手順書で要求され	$(2 / 12)$ 作を現場で	
		事故対応中の主な操作項目	手順書要求操作場所	備考
原子炉冷却材衰失（大破渐，外部電源懐失）（つづき）	1 次椧却材農失（つづき）	必要補機復旧 - 使用済燃料ビット椧却器補機椧却水入口弁「開」 - 使用済燃料ビット椧却器補機椧却水出口弁「開」 - 使用済慗料ビットボンブ「入」 - 予備側使用済燃料ビット椧却器補機冷却水入口弁「開」	中央制御室	－
	高温配管再锘擐	高温再循讕切替 - 余熱除去椧却器出口 C / V 内側連絡弁「閉」 - A，C ループ高温側低圧注入ライン止め弁「開」 - 高圧注入ボンブ出口 C / V 内側連絡并「閉」 - 高温側高压注入A，B ライン止め升「開」		
		運転乗作手順書に基づき高温再循儛による椧却継続		
原子炉椧却材震失（小破断） 【原因】 原子炉の出力運転中に原子炉冷却材圧力バウンダリを構成する配管あるいはこれに付随する機器の破損等により，1次椧却材 が系外に流失し，炬心の椧却能力が低下する。	事故直後の操作および事象 の判別	原子炉トリップ確認	中央制御室	－
		タービントリップおよび発電機トリップ確認		
		非常用炬心椧却設備作動信号「発信」碓認		
		所内電源及び外部電源受電状況磪認（非常用炬心椧却設備作動時） －ディーゼル発電機自動起動確照		
		非常用炉心椧却設備作動機器の確認		
		1 次椧却材ポンブ「停止」確認		
		主給水隔離作動磼認		
		原子炬格納容器隔騅A（T信号）「発信」穛認		
		電動補助給水ポンブおよびタービン動補助給水ポンブ「起動」確認		
		高圧注入ポンブ「起動」確認		
		余熱除去ポンブ「起動」確認		
		原子炬補機椧却水ポンブ「起動」碓認		
		原子炉補機冷却海水ポンブ「起動」確認		
		原子炬格納容器換気系隔離（ V 信号）「発信」確認		
		制御用空気圧蝺機「起動」確認		
		中央制御室換気系隔離（M信号）「発信」確認		
		格納容器スプレイ作動信号「発信」哊認		
		原子炉格納容器隔雅B（P信号）「発信」確認		
		非常用炬心冷却設備注水流量および蒠圧注入系作動確認		
		補助給水流量碓立碓認 －補助給水ボンブ出口流量調節升「罟整開」		
		1 次椧却材ボンブ封水注入碓認		
		1 次椧却材温度確諰		
		格納容器内での 1 次冷却材漏えい碓認		
	1 次冾却材懐失	非常用炬心冷却設備作動後状況㧞認		
		主蒸気逃がし升による除熱 - 主蒸気逃がし弁䏀御「HAND•全開」 - 補助給水ボンプ出口流量調節弁「誦整開」 - タービン動㭪助給水ボンプ駆動蒸気入口弁A，B「閉ロック」		
		格納容器スプレイ作動状涗確認		
		よう素除去薬品注入の停止およびp H諲整剂注入 －よう素除去薬品タンク注入 A ，Bライン止め弁「閉ロック」		

設計基準事故	表2 設計基準事故及びプラント停止•冷却に対する主要操作の整理（3／12） 手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施			
	事象ベース	事故対応中の主な操作項目	手順書要求操作場所	備考
原子炉椧却材衰失（小破断）（っ づき）	1 次椧却材㖆失（つづき）		现場 A／B10．3m	緊急性を要しない操作のため対像外
		－よう素除去薬品タンク注入 A，Bライン止め弁後异「閉」	中央制御室	－
		非常用炬心椧却設備停止条件成立性確認		
	低温配管再吘環			
	1 次洽却材壊失	- 高圧注入ポンプ封水注入ライン止め亣「開」 - 充てんボンブ「切」 - 制御用空気Cヘッダ供給弁「閉」 - 制御用空気原子炉格納容器内供給弁「閉」		
		ECCS 作動信号リセット（A），（B）「リセット」		
		所内電源受電状況確認 －ディーゼル発電機「停止」		
		必要補機復旧 - 使用済燃料ビット椧却器補機椧却水入口弁「開」 - 使用済燃料ビット椧却器補機椧却水出口弁「開」 - 使用済椥料ビットボンブ「入」 - 予備側使用済燥料ビット椧却器補機椧却水入口并「開」		
		蒸気発生器への給水切替（補助給水 \rightarrow 主給水） - 主給水制御「HAND•閉」 - 主給水バイパス制御「HAND•閉」 - 主給水际離弁「開」 - M／D FWP出口弁「閉ロック」 - 電動主給水ボンブ出口流量制御「HAND•全開」 - 電動主給水ボンブ操作器「入」 - 蒸気発生器水張制御「HAND•調整開」 - 補助給水ポンブ出口流量謂節弁「全閉」 - 蒸気発生器水張制御「AUTO」 - 電動補助給水ポンプ「切」 - タービン動補助給水ボンプ駆動蒸気人口弁A，B「自動」		
	高温配管再循塂	高温再篗環切替 - 余熱除去椧却器出口 C / V 内側連絡弁「閉」 - A，C ルーブ高温側低圧注入ライン止め弁「開」 - 高圧注入ボンブ出口 C / V 内側連絡亣「閉」 - 高温側高圧注入A，Bライン止め弁「開」		
		運転操作手順書に基づき高温再循擐による椧却継続		
原子炬椧却材流量の懐失 【原因】 原子炉の出力運転中に，1次椧却材の流量が，定格出力時の流量から自然循擐流量にまで大幅 に減少する。	事故直後の操作および事象 の判別	原子炉トリッブ確認	中央制御室	－
		タービントリップおよび発電機トリップ確認		
		所内電源及び外部電源受電状況確認		
	原子炉トリップ処置	1 次冷却材温度砤認		
		電動禣助給水ポンブおよびタービン動補助給水ボンプ自動起動確認 - 補助給水ボンブ出口流量謂節弁「調整開」 - タービン動補助給水ボンブ駆動蒸気入口弁A，B「閉ロック」		
		主給水制御弁，主給水バイパス制御升閉止碓認		
		制御棒挿入状龍矿羿		
		加圧器水位制御系確認		

表2 設計基準事故及びプラント停止•冷却に対する主要操作の整理（5／12）
\square ：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施

設計基準事故	表2 設計基準事故及びプラント停止•冷却に対する主要操作の整理（7／12） 手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施			
	事象ベース	事故対応中の主な操作項目	手順書要求操作場所	備考
主給水管破断（外部電源祭失） （つづき）	2 次椧却材農失（つづき）		中央制御室	－
		中性子源領域プロック解除の確認 －中性子束記録計切替「出力領域」 \rightarrow 「中性子源領域」		
		1 次冾却系降温•降圧 - 加圧器後備ヒータ「切ロック」 - 主蒸気逃がし弁制御「HAND•調整開」 - 補助給水ポンブ出口流量調節弁「調整開」		
		加圧器補助スブレイ弁を使用する場合 •加圧器神助スブレイ弁電源「入」 •加圧器補助スプレイ弁を間欠「開」	現場 A／B10．3m中央制御室	代替措蒖により実施可能のため対象外
		加圧器逃し升を使用する場合 －加圧器逃し并を間欠「開」	中央制御室	－
		連転操作手順書に基づき冷温停止	「表3 プラント停止時の運枟操作」参照	
主蒸気管破䅋	事故淔後の操作むよび事象 の判別	「2次洽却系の異常な墄圧」と同様		
【原因】 原子炉の高温停止時に，2次椧却系の破断等により，1次椧却材の温度が低下し，反応度が添加される。	2 次椧却材啔失			－
制御棒飛び出し	事故直後の操作むよひひ事象 の判別	「原子炉冾却材喪失（小破断）」と同栐		－
［原因］ 原子炉が臨界又は㠃界近傍にあ るときに，制御棒歌動系あるい は圧力ハウジングの破損等によ り制御棒クラスタ 1 本が炬心外 に飛び出し，急激な反応度の添加及び出力分布変化を生ずる。	1 次椧却材衰少			
	低温配管再循環			
	1 次椧却材衰失			
	高温配管再㵌環			
放射性気体廃象物処理施設の破損	$\begin{aligned} & \text { ブロセスモ二タ放射線レべ } \\ & \text { ル上昇 (排気筒ガスモニタ) } \end{aligned}$	排気筒ガスモニタ指示確認 －格納容器給気ファンおよよび排気ファン「切」 「排気简ガスモニタ計数率高」インターロック作動確照	中央制御室	－
［原因］ 気体㢕乗物处理設備の一部が破損し，ここに貯留されていた気体状の放射性物質が澴境に放出 される。		連転操作手順書に基つき原因訓査	中央制御室現場	財産保護のための操作のため対象外

	表2 設計基準事故及びプラント停止•冷却に対する主要操作の整理（9／12） ：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施			
設計基準事故	事象ベース	事故対応中の主な操作項目	手順書要求操作場所	備考
蒸気発生器伝熱管破損（外部電源遝失）（つづき）	蒸気発生器层熱管破損（つつ き）	破損蒸気発生器の隔離 - 破損蒸気発生器の主蒸気バイパス槅㒀弁（A），（B）「閉」 - 破損蒸気発生器の主蒸気逃がし弁制御「HAND•閉」 - 破損蒸気発生器側のタービン動補助給水ポンプ歌動蒸気 B（C）主蒸気 ライン元升「閉ロック」 - 破損蒸気発生器の補助給水隔離亣「闑」 - 破損蒸気発生器の補助給水ポンプ出口流量調節弁「閂ロック」 - 破損蒸気発生器の主給水隔離弁「閉」 - 破損蒸気発生器の主給水制御弁「閉」 - 破損蒸気発生器の主給水バイパス制御弁「閉」 - 破損蒸気発生器の蒸気発生器水張調節「閉」 - 破損蒸気発生器の主蒸気隔離弁上流ドレンライン隔離弁「閉」 - 破損蒸気発生器の蒸気発生器サンブルラインC／V 外側隔離升「閉」確認 - 破損蒸気発生器のプローダウンC／V 外側搹勧弁「閉」確認 - 破損蒸気発生器のプローダウン止め亣「閉」確認 - サブクール度用 1 次椧却材温度切離ループ選択（高温側）「破損ループ側」 －サブクール度用 1 次椧却材温度切雄ルーブ選択（低温側）「破損ルーブ側」 －サブクール度用 1 次椧却材圧力切離ループ選択「破損ルーブ側」 健全蒸気発生器による一次椧却材急速椧却 - 健全蒸気発生器の主蒸気逃がし升制御「HAND•全開」 - 健全蒸気発生器の主蒸気逃がし升制御「調整開」（目標温度到達後） 健全蒸気発生器水位調整 －健全蒸気発生器の補助給水ポンブ出口流量謂節弁「䜕整開」 非常用炬心冷却設備作動信号リセットおよび関連操作 - ECCS作動信号リセット（A），（B）「リセット」 - 原子炉格納容器瀜離A（T信号）リセット（A），（B）「リセット」 - 6－A，6－B母線電圧低信号リセット「リセット」 - 制御用空気Cヘッダ供給弁「開」 - 制御用空気原子炉格納容器内供給弁「開」 1 次椧却系の減圧開始条件の確認 1 次椧却系の減圧 - 加圧器逃がし弁「開」 - 1次椧却材圧力が破損侧主蒸気ライン圧力と平衡となれぼ，加圧器逃が し弁「閉」	中央制御室	－

־	表2 設計基準事故及びプラント停止•冷却に対する主要操作の整理（10／12） 手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施			
設計基準事故	事象ベース	事故対応中の主な操作項目	手順書要求操作場所	備考
蒸気発生器伝熱管破損（外部電源壊失）（つづき）	蒸気発生器伝熱管破損（つ－ き）	```充てんラインの復旧 - 高圧注入ポンブ封水注入ライン止め弁「開」確認 - 㔫てんライン流量制御「HAND•䦎」 - 充てんライン \(\mathrm{C} / \mathrm{V}\) 外側隔離弁「開」 - 充てんラインC / V外側止め升「開」 - 1 次椧却材ボンブ封水戻りオリフィスバイバス弁「開ロック」 - 1 次椧却材ボンブ封水戻りライン \(\mathrm{C} / \mathrm{V}\) 外側隔離弁「開」 - 1 次椧却材ボンブ封水戻りライン \(\mathrm{C} / \mathrm{V}\) 内側隔離弁「開」 - 1 次椧却材ボンプ封水戻りオリフィスバイバス升「開ロック」 解除 - 1 次椧却材ボンプ封水注入流量制御「HAND•調整開」 - 高圧注入ポンブ封水注入ライン止め亣「閉」 - 1 次椧却材ポンブ封水注入流量制御「AUTO」 - 充てんライン流量制御「調整開」 非常用炬心洽却設備停止条件確認わよび確立 非常用炬心椧却設備停止 - 高圧注入ポンブ「切」 - 余熱除去ボンブ「切」 非常用炉心椧却設備再起動条件確悲 加圧器水位•圧力の維持 - 充てんライン流量制御「調整開」 - 抽出ライン第1止め弁「開」 - 抽出ライン第 2 止め升「開」 - 抽出ライン格納容器外側隔睢升「開」 -抽出ライン非再生クーラ出口圧力制御「HAND•調整開」 -抽出ライン非再生クーラ出口温度制御「HAND•晹整開」 - 抽出オリフィス出口 \(\mathrm{C} / \mathrm{V}\) 内側隔離弁「開」 -抽出ライン非再生クーラ出口圧力制御「AUTO」 - 抽出ライン非再生クーラ出口温度制御「AUTO」 - 加圧器基準水位設定変更 - 充てんライン流量制御 「AUTO」 - 体積制御タンク出口第 1 止め弁「開」 - 体積制御タンク出口第 2 止め弁「開」 - 充てんボンブ入口㒄料取替用水ビット㑡入口弁A「閉」 - 充てんボンプ入口弥料取替用水ビット側入口并B「関」 - 加圧器後備ヒータ「入」```	中央制御室	－

\square ：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施

設計基準事故	事象ベース	事故対応中の主な操作項目	手順書要求操作場所	備考
蒸気発生器伝熱管破損（外部電源裏失）（つづき）	蒸気発生器伝熱管破損（つつ き）		$\begin{gathered} \text { 現場 } \\ \text { T/B } 10.3 \mathrm{~m} \\ \hline \end{gathered}$	緊急性を要しない操作のため対象外
		所内電源および外部電源の受電状況の確認	中央制御室	－
		1 次椧却材ほう素澸度の確認および湄縮		
		1 次渭却系圧力およひひ破損蒸気発生器圧力謌整加圧器補助スブレイ弁を使用する場合 - 加圧器補助スブレイ弁電源「入」 - 加圧器補助スブレイ弁を間欠「開」	現場 A／B 10.3 m中央制御室	代替措圈により実施可能のため対象外
		加圧器逃し弁を使用する場合 •加圧器逃し弁を間欠「開」		
		－加圧器後備ヒータ「入」		
		中性子源領域ブロック解除の碓認 •中性子束記録計切替「出力領域」 \rightarrow 「中性子源領域」		
		健全蒸気発生器水位确認 •健全蒸気発生器の補助給水ポンブ出口流量調節弁「調整開」	中央制御室	
		椧温停止に向けての 1 次椧却系椧却 －健全蒸気発生器の主蒸気逃がし并制御「訓整開」	中冓㱕至	－
		必要禣機復旧 - 使用済然料ビット冷却器補機椧却水人口弁「開」 - 使用済燃料ビット椧却器補機椧却水出口弁「開」 - 使用済燃料ビットポンブ「入」 - 予備側使用済然料ビット洽却器䪔機椧却水入口弁「開」		
		連転操作手順書に基づき椧温停止	「表3 プラント停止時の運転操作」参照	
盽料集合体の落下 【原因】 原子炉の慗料交換時に，何らか の理由によって燃料集合体が落下して破損し，放射性物質が環境に放出される。	「使用済燃料ピットエリア モニ夕線量当量率高」警報処置	使用済燃料ピットエリアモニタ，事故状況兓認	中冓制御家	－
	$\begin{aligned} & \text { プロセスモ二タ放射線レペ } \\ & \text { ル上昇 (排気简カスモニタ) } \end{aligned}$	排気筒ガスモニタ指示確認 －格納容器給気ファンおよび排気ファン「切」「排気简ガスモニタ計数率高」インターロック作動	人制御至	－
		燃料移送管仕切亣「閉」	現場 R／B 24.8 m	緊急性を要しない操作のため対象外
		燃料取扱梀隔嶉ダンパ「閉」	中央制御室	－
			現場 $\mathrm{A} / \mathrm{B} \quad 10.3 \mathrm{~m}$	緊急性を要しない操作のため対象外
		アニュラス圧力制御「HAND•閉」		
			中央制御室	－
可㷊性ガスの発生	事象直後の操作むよよび事象 の判別	「原子炬冾却材喪失」と同椂		
	1 次椧却材裏失			－
	低溫配管再循環			
	1 次冾却材袁失			

表3 プラント停止時の運転操作（1／11）
\square ：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施

分類	操作項目	手順書要求操作場所	侑考
負荷降下前準備	補助蒸気切替 －補助ボイラー「起動」	中央制御室	－
	－スチームコンバータ「停止」	中央制御室 現場 $\mathrm{T} / \mathrm{B} 2.8 \mathrm{~m}$ ほか	財産保護のための操作のため対象外
	高 $\mathrm{pH} \rightarrow \mathrm{A} V \mathrm{~T}$ 運枟切替 - 復水脱塩装贵バイパス運転 \rightarrow 通水運転切替 - 復水器非常用水位制御設定值変更 - 復水器常用水位制御「HAND•閉」	中央制御室	－
	タービン設備隼備 －S Gプロー熱回收フラッシュタンク復水器回収	中央制御室現場T／B2．${ }^{2} \mathrm{~m}$ ほか	\qquad
	$\begin{aligned} & \text { V C Tカバーカス切替 (H2 } \rightarrow \mathrm{N} 2 \text {) } \\ & \text { •体積制御タンク窒素供給ライン圧力制御設定值調整 } \end{aligned}$	中央制御室	－
	- 体積制御タンク窒素供給弁「開」 - 体稹制御タンク水素供給并「閉」	現場 A／B 17．8m	財産保護のための操作のため対象外
	- 体積制御タンク空素供給ライン圧力制御設定值調整 - 体積制御タンク水素供給ライン圧力制御設定唖調整	中央制御室	－
	VCTカス蹎換（水素 \rightarrow 窒素）	中央制御室 現場 $\mathrm{A} / \mathrm{B} \quad 17.8 \mathrm{~m}$ ほか	$\begin{aligned} & \text { 財商保護のための操作のため } \\ & \text { 対象外 } \end{aligned}$
	加圧器ミキシンク －加圧器圧力制御モード選択「ミキシング」		
負荷降下	発電機負荷降下開始 - ALR目標負荷設定変更 - A LR負荷変化率設定変更 - ALR制御モード選択「ALR使用」 - ALRブログラム運転「ALR起動」 - 制御棒位置およびRC S ほう䒺㴚度倳整 発電機負荷 75%（ 684 NW ） - 復水脱塩塔 1 塔目「停止」 - LPDT常用水位制御「HAND•閉」	中央制御室	－
	－L P D T 赏用水位制御亣後亣「開」	现場 T／B 10．3m	財産保護のための操作のため対象外
	－LPD T 常用水位制御「AUTO」		
	発電機負荷 50%（456 MV） －MSDT常用水位制御「HAND•閉」	中央制御室	－
	－MS D T 常用水位制御升後升「閉」	現場 T／B 24．3m	財産保護のための操作のため対像外
	－MSD T常用水位制御「AUTO」		
	発電機負荷 40%（約 365 MW ） - HPH－6常用水位制御弁後弁系䖻切替「閉」 - 1 stMS RD T常用水位制御升後并系統切替「閉」 - 2ndMSRD T常用水位制御弁後弁系統切替「閉」	中央制御室	－
	発電機負荷 35%（約 319 MW）		

表3 プラント停止時の運転操作（2／11）
\square ：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施

分類	操作項目	手順書要求操作場所	侑考
負荷降下（つづき）	発電機負荷 30%（約 274 NW ） - A L R 制御モード選択「A L R 除外」 - PSSモード選択「除外」 - タービン動主給水ポンプ速度制御「HAND•MV」，操作出力値㺃整 - T／D FWP出口弁「閉」 - FWPTEH停止\＆リセット「停止」 - 電動主給水ポンプ出口流量制御「HAND•全開」 - ALR目標負荷設定変更 - A LR負荷変化率設定変更 - A L R 制御モード選択「A L R 使用」 - ALRブログラム運転「ALR起動」	中央制御室	－
	発電機負荷 25%（ 228 MV ） - 復水脱塩塔 2 塔目「停止」 - 脱気器加熟蒸気主蒸気圧力制御弁前升「開」		
	加圧器基準水位手動設定 •加圧器基準水位制御「HAND•SV」 •充てんライン流量制御䔍整		
	発電機偩荷 15%（約 137 MW ） - A LR制御モード選択「ALR除外」 - AQRモード選択「除外		
	タービンバイパス制御系切替 - タービン第1段压力低信号りセット「リセット」 - タービンバイバス弁モード選択「Tavg制御」 \rightarrow 「主蒸気タイライン」 - 主蒸気タイライン圧力制御「AUTO」 - 復水器スブレイ弁「開」		
	S G 給水切替（主給水 \rightarrow バイパス） - 主給水制御弁・バイパス弁自動切替「主弁 \rightarrow バイパス弁」 - 主給水制御弁・バイバス开自動切替「開始」 - 主給水バイパス制御「AUTO」「調整開」確認 - 主給水制御「HAND」「閉」碓認		
	－主給水制御弁前升 「閉」	現場 R／B 31．1m	$\begin{aligned} & \begin{array}{l} \text { 財㕍保護のための操作のため } \\ \text { 対象外 } \end{array} \\ & \hline \end{aligned}$
	脱気器再循環ポンブ起動その他 －脱気器再㧓環ポンプ「入	中央制御室	－
		現場 T／B 10.3 m	財産保護のための操作のため対象外
	－低圧クリーンアッププロー元弁A，B「䚂開」	現場 T／B 24.3 m	
	- A L R 目標負荷設定変更 - A LR負荷変化率設定変更 - ALR制御モード選択「ALR使用」 - ALRブロダラム運転「ALR起動」	中央制御室	－
	高圧抽気マスタ停止碓認 －高圧抽気マスタモード逻択「手動		

表3 プラント停止時の運転操作（3／11）
\square ：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施

分類	罧作項目	手順書要求操作場所	備考
負荷降下（つづき）	発電機負荷 10%（絇 91 NW ） • P （ -13 以下タービン出力低原子炬トリッブプロック」 点灯確照	中央制御室	－
	発電機負荷 5%（約 46 MW） \cdot ALR制御モード選択「ALR除外」		
	原子炉出力 8% •「P -7 以下原子炬タービン出力低原子炉トリッブプロック1点灯確認		
発電機解列採作	発電機解列操作 - 復水ポンブ出ロプロー弁「調整開」 - ロードリミッタ開度調節及びAVR電圧調節にて発電機負荷調整 - 制御棒操作または，ほう素縟度調整にて原子炉出力倳整 - 3 「切」 - 3 X「切」		
発電機解列後操作	発電機解列後操作 - AVRモード選択「界磁一定制御」 - A VR電圧調節「減」操作，「設定値下限」点灯 .41 E 「切」		
	－界碳遮断器「断路」	現場 EL／B 17.8 m	財産保護のための操作のため対象外
		現場 T／B 17．8m	
	－低圧クリーンアップブロー元尣A，B「開」	现場 T／B24．3m	
		中央制御室	－
	脱気器降水管希ヒドラジン注入 - 黾受椧却水ポンプ吸入管ヒドラジン注入并「閉」 - ヒドラジン注入ボンブ出口連絡弁A「開」 - 脱気器降水管ヒドラジン注人弁A 「開」	現場 T／B 2.8 m	財産保護のための操作のため対象外
	－脱気器降水管集液注人（ N 2 H 4 ）亣 「開」	現場 T／B 24．8m	
	- 鍼ヒドラジン注入ボンブ「入」 - 濃ヒドラジン注入ポンブストローク調整 - 渾ヒドラジン注入ポンブ「停止」 - 澴ヒドラジン注入ボンブストローク潤整 - 澴ヒドラジン注入ボンブ「切ロック」 - ヒドラジン注入ポンブ出口連絡弁A「閉」 - 脱気器降水管ヒドラジン注入升A 「開」	現場 T／B 2.8 m	
	－脱気器降水管集液注人（ N 2 H 4）并「閉」	現場 T／B 24．8m	
	－軸受洽却水ボンブ吸入管ヒドラジン注入弁「開」	現場 T／B 2．8m	
	- アンモニア注入ポンブストローク制御器「手動」 - アンモニア注入ボンブストローク調整 - アンモニア注人ポンプ回転速度制御器「手動」 - アンモニア注入ポンブ速度設定調整 - アンモニア注入ボンブ「切」 - アンモニア注人装置「停止」 - 高 $\mathrm{pH} / \mathrm{AVT}$ 切替インターロック「除外」	現場 $\mathrm{T} / \mathrm{B} 2.8 \mathrm{~m}$中央制御室	
	異常時事故時運転支援システム「停止」		
タービン停止操作	タービン停止操作 - タービンEH全弁閉「全弁閉」 - タービントリップ「トリッブ」	中央制御空	－

表3 プラント停止時の運転操作（4／11）
\square ：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施

分類	操作項目	手順書要求操作場所	備考
タービン停止操作（つづき）		现場 T／B 10．3m	財産保護のための操作のため対象外
	- M S R ウォーミンクマスタタ制御モート選択「手動」 - 2ndMSR加熱蒸気温度制御 「HAND•MV」	中央制御室	－
	－第 3 抽気止め尣「閉」	現場 T／B 17．8m	$\begin{aligned} & \hline \text { 財産保護のための操作のため } \\ & \text { 対象外 } \end{aligned}$
	－制御棒抑入（原子炉出力 $2 \sim 3 \%$ まで）		
加圧器気相パージ	加圧器気相パージ準備 - VCT連続パージ実施 - 加圧器液相部サンブリングラインC／V内側隔帷弁「閉」	中央制御室	－
	- サンプル椧却器下流䧕圧棒 「閂」 - サンブル椧却器下流減圧棒出口止め弁 「閉」 - 加圧器気相部バージライン絞り升「開」 - サンブル椧却㗂側サンブルフード入口笄	現場 試料採取室	財産保護のための操作のため対象外
	－加圧器気相部サンプリングライン C / V 内側曒離矣「開許可」	中央制御室	－
		現場 試料採取室	財産保護のための檪作のため対象外
	加圧器気相パージ開始 －サンブル椧却器下流䧕圧㭺「罟整開	中央制御室現場 試料採取室	
ターピン停止後操作	$\begin{aligned} & \text { 補助蒸気切替 } \\ & \quad \cdot \text { グランド蒸気 } 1 \text { 次圧力制御「HAND•閉」 } \end{aligned}$	中央制御室	－
	－クランド雚気 1 次圧力制御开前异「閉」	現場 T／B 17．8m	\qquad
	－非常用タービングランド蒸気元弁「閉」		
	- 脱気器加熱蒸気主蒸気圧力制御「HAND」 - 脱気器加熱蒸気浦助蒸気圧力制御㩭作出力値調整 - 脱気器加熱蒸気主蒸気側圧力制御「闑」 - 脱気器加熱蒸気主蒸気圧力制御弁前升「閉」	中央制御室	－
	タービン設備ドレン切替 －低圧給水加熟器ドレンタンク常用フロー弁 「開」	現場 T／B 10．3m	財産保護のための操作のため対象外
	－湿分分囄器ドレンタンク常用プロー弁 「開」	現場 T／B 24.3 m	
	- HPH－6常用水位制御升後升系䖻切替「プロー」 - 1 stMS R D T常用水位制御弁後弁系統切替「プロー」 - 2 ndM S R D T常用水位制御弁後弁系䖻切替「プロー」 - 主蒸気管ドレン系䖻切替「フロー」	中央制御室	－
	電動主給水ボンブ起動（T／D $\rightarrow \mathrm{M} / \mathrm{D}$ 主給水ボンプ切替） - 電動主給水ボンブ出口流量制御「HAND」「䦥」 - 電動主給水ポンブ「切ロック」 - 電動主給水ボンブ用給水ブースタボンブ「入」 - 電動主給水ボンブ「入」 - 電動主給水ボンプ出口流量制御弁「開」		
	SG給水切替（バイパス \rightarrow 水張り） - 主給水バイバス制御「HAND」 - 蒸気発生器水張制御「拥整開」 - 主給水バイパス制御「閉」 - 葠気發生器水張制御「AUTO		

\square ：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施

分類	操作項目	手順書要求操作場所	備考
タービン停止後操作（つづき）	T / D 主給水ボンブ 2 台目停止（ $\mathrm{T} / \mathrm{D} \rightarrow \mathrm{M} / \mathrm{D}$ 主給水ボンプ切替） - タービン動主給水ポンブ速度制御「HAND•MV」，緗作出力值調整 - T／D FWP出口弁「閉」 - FWPTEH停止\＆リセット「停止」	中央制御室	－
	ターニング開始硙認	中央制御室 現場 T／B17． 8 m	
	サンプリング系統停止•他 - 主蒸気サンプル水手分析弁「闑」 - 高圧第 6 給水加熟器出口 pH H計入口并 「閉」 - 脱気器再循塞ポンプ出口／給水プースタポンブ出口／高圧第 6 給水加熱器出ロサンブ ル水溶存酸素蛐度計入口并「閉」 - 高圧第 6 給水加熱器出口サンプル水ヒドラジン唯度計入口弁「閉」 - 復水ポンブ出口／脱気器人口サンブル水溶存酸素濃度計入口弁「閉」 - スチームコンバータ器内水サンブル水手分析升 「閉」 - スチームコンパータ器内水／スチームコンバータ発生蒸気 p H計入口弁「閉」 - 脱気器入口サンブル水電気伝導高計入口弁「閉」 - 高圧第 6 給水加熱器出口電気伝導率計人口并（ $\mathrm{A} V \mathrm{~T}$ ）「閉」 - 高圧第 6 給水加熱器出口電気伝導率計入口弁高（ pH ）「閉」	現場 T／B 10．3m	財産保護のための操作のため対象外
	－プローダウンpH計入口弁「閉」	現場 R／B 24．8m	
	－復水回収タンク水位制御弁前升「閉」	現場 T／B 2．8m	
	タービン設備禣機停止 - 復水脱塩塔 3 塔目「停止」 - 復水ブースタボンブ 1 台目「切」，「切ロック」 - 復水ポンプ 1 台目「切」，「切ロック」	中央制御室	－
		现場 T／B 2.8 m	\qquad
	－軸受冷却水ボンブ 1 台目「切」	中央制御室	－
	- 䡉受欱却水ボンブ出口并「開」 - 低圧給水加疅器ドレンポンブ出口亣「閉」	現場 T／B 2.8 m	$\begin{aligned} & \text { 財産保護のための操作のため } \\ & \text { 対象外 } \end{aligned}$
	－低圧給水加熱器ドレンポンブ「切ロック」	中央制御室	－
	- 低圧給水加熱器ドレンポンプシール水入口元升「閉」 - 油清净機抽水器入口弁「閉」	现場 T／B 2.8 mm	財産保護のための操作のため
	－循環水ボンブ 1 台目停止	中央制御室 現場 T／B 2.8 m ほか	対象外
高温停止操作	制御用制御棒全挿入		
	$\mathrm{P}-6$ プロック解除（自動復帰）確認 - NS 31 B「バイパス」 - NS 32 B「バイバス」 - S R中性子束高原子炉トリップ設定值末満碓認 - NS 31 B「ノーマル」 - NS 32 B「ノーマル」 - 炬停止時中性子束高警報ブロック \＆リセット（I）「リセット」 - 炉停止時中性子束高警報プロック \＆リセット（II）「リセット」 - 中性子束記録計切替「出力領域」 \rightarrow 「中性子源領域」	中央制御室	－

表3 プラント停止時の運転操作（6／11）
\square ：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施

分類	操作項目	手順書要求操作場所	備考
高温停止操作（つづき）	ほう素濃度調整 - ほう酸ボンプクエンチンク水通水•停止 - ほう酸ボンブ「切」 - ほう酸注入タンク循睘ライン入口止め弁「閉」 - ほう酸タンク循環ライン流量調節操作出力値諨整 - ほう酸ポンプ速度選択「高速」 - ほう酸ポンプ「入」 - 原子炬補給水制御「切」 - 緊急ほう酸注入并「開」 ほう酸注入完了後 - ほう酸ボンブクエンチンク水通水•停止 - 緊急ほう酸注入并「閉」 - ほう酸ポンプ「切」 - ほう酸注入タンク循業ライン入口止め弁「開」 - ほう酸タンク輴罢ライン流量調節「閉」 - ほう酸ボンブ速度選択「低速」 - ほう酸ポンブ「入」	中央制御室	－
		现場 $\mathrm{A} / \mathrm{B} 17.8 \mathrm{~mm}$	財産保護のための操作のため対象外
	- ほう素濃度設定変更 - 原子炉補給水制御「入」	中央制御室	－
	加圧器気相部バージ停止 - サンブル椧却器下流減圧棒「関」 - 加圧器気相部サンブリンクライン C / V 内側愊離弁「関」 - 加圧器液相部サンプリングラインC／V内側隔離弁「開許可」 - 加圧器液相部サンブリンクラライン C / V 内側揓離弁「開」 - サンブル洽却器下流減圧棒「謂整開」 - サンブル椧却器下流減圧棒「閉」 - 加圧器気相部バージライン絞り弁「閉」 - サンブル椧却器下流減圧棒出口止め弁「開」 - サンブル椧却器下流減圧棒「謂整闌」 - 加圧器液相部サンブリングラインC $/ \mathrm{V}$ 内俱隔槯弁「開」	现場陚料採取室	財産保護のための操作のため対象外
	－加圧器液相部サンプリンクライン C / V 内側隔離弁「閉」	中央制御室	－
	－サンプル椧却器側サンブルフード入口弁「閉」	现場 試料採取空	財産保護のための操作のため対象外
	高温停止状施確認	中央制御室	
陽イオンデミ通水	椧却材陽イオン脱塩塔通水流量の增加 －椧却材陽イオンテミミ連続通水流哩满節弁「全閉」		－
	- 椧却材陽イオン脱塩塔入口并「闌」 - 椧却材陽イオン脱塩塔通水流量絞り弁「满整開」		財産保護のための操作のため対像外

\square ：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施

分類	罧作項目	手順書要求操作場所	備考
1 次椧却系降温，降圧潅備	加圧器ミキシング停止 －加圧器圧力制御モード選択「通常」 抽出オリフィス 1 本停止 - 充てんライン流量制御「HAND」 - 抽出ライン非再生クーラ出口圧力制御設定値調整 - 抽出オリフィス出口 C / V 内側搹離弃「閉」 - 充てんライン流量制御操作出力値調整 - 抽出ライン非再生クーラ出口圧力制御設定值証整	中央制御室	－
	－椧却材陽イオン脱塩塔通水流量絞り并「調整開」	現場 A／B17．8m	財産保護のための操作のため 対象外
	制御用制御柾各バンク引抜（5ステッブまで） - 制御桋制御モード選択「CBA」 - 制御棒「引抜」 - 㑬御棒制御モード選択「CBB」 - 制御桋「引拔」 - 制御棒制御モード選択「CBC」 - 制御棒「引抜」 - 制御棒制御モード選択「CBD」 - 制御棒「引抜」	中央制御室	－
1次椧却系降温，降圧	加圧器アウトサージ操作，加圧器スブレイ弁關許可 - 加圧器圧力制御「HAND」 - 加圧器後備ヒータ「入」 - 加圧器圧力制御出力値苇整 - 加圧器制御ヒータ「切ロック」 - 加圧器スブレイ弁「開許可」 タービンバイパス弁による1次椧却系降温 - 主蒸気タイライン圧力制御「HAND」「調整開」 - タービンバイパスインターロック（A）（B）「バイパス」加圧器スブレイ弁による1次椧却系降圧 －加圧器スブレイ弁制御操作出力值罸整加圧器水位上昇操作 - 充てんライン流量制御操作出力値拥整 - 加圧器基準水位制御設定値変更 - 充てんライン流量制御「AUTO」		
ECCSプロックおよびCM F除外	ECCS 作動プロック •加圧器ECCS作動信号プロック\＆リセット（I），（II），（III），（IV）「プロック」 •MSラインECCSS作動信号フロロック\＆リセット（I），（II），（III），（IV）「プロック」 CXF除外 •CXF 対策盤バイパス「除外」		
抽出オリフィス追加	抽出オリフィス追加 - 抽出ライン非再生クーラ出口温度制御「HAND」，操作出力値讄整 - 抽出オリフィス出口 C / V 内側隔離弁「開」 - 抽出ライン非再生クーラ出口温度制御「AUTO」		
蓄圧タンク隔離	蓄圧タンク隔離 －葍圧タンク出口弁「閉ロック		

表3 プラント停止時の運転操作（8／11）
\square ：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施

分類	操作項目	手順書要求操作場所	備考
抽出ラインの椧却	抽出ラインの椧却 - 非再生クーラ出口温度ブログラムモード選択「降温」 - 非再生クーラ出口温度ブログラム「入」	中央制御室	－
余熱除去系使用準備	原子炬補機椧却海水ボンブ追加起動（ 2 台 $\rightarrow 3$ 台） $\cdot \mathrm{B}$（A）	循環水ポンブ建屋	財孪保護のための操作のため対象外
	－B（A）－原子炬補機洽却海水ポンブ「入」	中央制御室	－
	－B（ A$)$－原子炉補機冷却海水ボンブ出口升「開」		財産保護のための操作のため対像外
	原子炬補機椧却水ポンプ追加起動（2台 $\rightarrow 3$ 台） －B（A）一原子炬補機椧却水ポンブ「入」余熟除去椧却器椧却水通水 －A－余熱除去冷却器㭪機冷却水出口升「開」	中央制御室	－
	原子炬補機椧却海水ボンプ追加起動（3台 $\rightarrow 4$ 台） $\cdot D(C)$－原子炉補機洽却海水ボンブ出口升 「微閎」	钼環水ポンブ建屋	$\begin{aligned} & \begin{array}{l} \text { 財产保護のための操作のため } \\ \text { 対象外 } \end{array} \\ & \hline \end{aligned}$
	－D（C）－原子炬補機冷却海水ボンブ「入」	中央制御室	－
	－D（C）－原子炬補機冷却海水ボンブ出口弁「開」	循噮水ボンプ建屋	財産保護のための操作のため 対象外
	原子炉補機椧却水ボンブ追加起動（3台 $\rightarrow 4$ 台） －D（C）一原子炉補機椧却水ポンブ「入」余熟除去椧却器冷却水通水 －B－余熱除去冷却器補機冷却水出口弁「開」	中央制御室	$-$
	- B，D（A，C）－原子炬補機椧却海水ボンプ電解被供給元弁「開」 - B，D（A，C）一原子炬補機椧却海水ボンブ出口ライン海水電解液注入流量論整 －海水電解装置整流器出力電流堣慗	笼噮水ポンブ建屋	財孪保護のための操作のため対象外
低温過加圧防護事前処㯰	低温過加压防護事前処園 •高圧注入ボンブ「切ロック」		
余熱除去系加圧		中央制御室	－
	－ A －余熱除去ボンブ入口 C / V 内側暚䫽升電源投入	现場 $\mathrm{A} / \mathrm{Bl} 10.3 \mathrm{~m}$	緊急性を要しない操作のため 対象外
	- A－余熱除去ボンブRWS P／再循睘サンプ側入口弁「閉」 - 余熱除去AラインC／V外側瀜離尣「関」 - 低圧抽出Aライン弁「開」 - A—余熱除去ポンプミニフロー弁「強制開」 - 低圧抽出ライン流量調節操作出力値調整 - 低圧抽出Aライン弁「閉」 - A —余熱除去ポンプ入口 C / V 内側隔霍并「開」 - 余熱除去Aライン入口止め弁「開」 - A—余熱除去椧却器出口流量譯節操作出力値「下限」	中央制御室	－
	$\begin{aligned} & \hline \text { B-余熱除去系統加圧 } \\ & \text { •B—熱除去ポンプ「切ロック」 } \end{aligned}$		
	$\cdot \mathrm{B}$－余熱除去ボンプ入口 C / V 内㑡新離交電願投入	現場 A／B10．3m	緊急性を要しない操作のため 対象外

\square ：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施

分類	操作項目	手順書要求操作場所	侑考
余熱除去系加圧（つ－゙き）	- B—余熱除去ボンプ R W S P／再循夢サンプ側入口并「閉」 - 余熱除去 B ライン C / V 外側㟽離弁「閉」 - 低圧抽出 Bライン弁「開」 - B—余熱除去ボンプミニフロー弁「強制開」 - 低圧抽出ライン流量調節操作出力値䜗整 - 低圧抽出 B ライン弁「閉」 - B—余熱除去ポンプ入口 C / V 内側陽離弁「開」 - 余熱除去Bライン入口止め弁「開」 - B—余熱除去椧却器出口流量調節操作出力値「下限」		
余熱除去系ウォーミング	A系䖻ウォーミンク - A－余熱除去ボンプ「入」 - A—余熱除去ボンブミニフロー弁「自動」 - 余熱除去AラインC／V外侧隔離弁「開」 - 抽出ライン非再生クーラ出口圧力制御「HAND」 - 低圧抽出Aライン弁「開」 - 低圧抽出ライン流量調節，抽出ライン非再生クーラ出口圧力制御操作出力値詷整 - C，B，A—抽出才リフィス出口 C / V 内側隔離弁「閉」 - 充てんライン流量制御操作出力值軖整 - 余熱除去Aラインウォーミング指令「許可」 - 余熱除去Aラインウォーミングプログラム運転「起動」 - 余熱除去Aラインウォーミング指令「除外」 - 低圧抽出ライン流量調節，抽出ライン非再生クーラ出口圧力制御操作出力值嚆整 - 充てんライン流量制御操作出力値㺃整 B系䖻ウォーミンク - B—余熱除去ボンブ「入」 - B—余熱除去ボンプミニフロー升「自動」 - 余熱除去 B ライン C / V 外側隔離弁「開」 - 余熱除去Bラインウォーミンク指令「許可」 - 余熱除去Bラインウォーミングプログラム運転「起動」 - 余熱除去Bラインウォーミング指令「除外」 - 低圧抽出ライン流量拥節，抽出ライン非再生クーラ出口圧力制御操作出力値拥整 - 充てんライン流量制御操作出力值詶整	中央制御室	－
加圧器気相消减	加圧器気相消滅 - 充てんライン流量制御操作出力值調整 - 加圧器スプレイ升制御操作出力値訓整 - 抽出ライン非再生クーラ出口圧力制御操作出力值㺃整 - 充てんライン流量制御操作出力値調整 - 加圧器後備ヒータ「切ロック」 - 抽出モード選択「通常」 \rightarrow 「低圧」 - 抽出ライン非再生椧却器出口圧力制御「AUTO」 - 加圧器スブレイ升制御操作出力値調整		

表3 プラント停止時の運転操作（10／11）
\square ：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施

分類	操作項目	手順書要求操作場所	備考
加圧器気相パージ停止	加圧器気相パージ停止 - サンブル椧却器下流墄圧棒「閉」 - 加圧器気相部サンブリンクラライン C / V 内側搹璃倠弃「閉」	現場 試料採取室	財产保護のための操作のため対象外
		中央制御室	－
	 - サンプル椧却器下流减圧棒「調整關」 \rightarrow 「関」 - 加圧器気相部パージライン絞り弁「閉」 - サンブル椧却器下流城圧棒出口止め并「開」 - サンプル冷却器下流减圧棒「倳整開」 - 加圧器液相部サンブリングラインC／V内侧原離分，「閉	現場 試料採取室	財産保護のための操作のため対象外
	－加圧器液相部サンプリングラインC／V内側隔篧尣「閉」	中央制御室	－
	－サンブル椧却器側サンブルフード入口升「閉」	现場 試料採取室	\qquad
$\begin{aligned} & \text { タービンバイパス弁 } \rightarrow \mathrm{RHR} \\ & \text { S負荷切替 } \end{aligned}$	ターピンバイパス弁 \rightarrow 余熱除去采負荷切替 - 主蒸気タイライン圧力制御操作出力値苇整 - 余熱除去椧却器出口流量調節操作出力値謌整 - 復水器スブレイ弁「自動」 - タービンバイバスインターロック（A）（B）「オフ」	中央制御室	－
1次椧却系降温再關	余熱除去椧却器出口流量調節操作出力值調整		
工安系補機の電源開放	暿圧タンク出口尣電滰開放	現場 $\mathrm{A} / \mathrm{B} 10.3 \mathrm{~m}$	財産保護のための操作のため対像外
最大浄化流量の礶保	椧却材混床式脱塩塔 2 塔通水 - 领却材混床式脱塩塔出口升「開」 - 爷却材混床式脱塩塔人口升「開」 - 椧却材陽イオン脱塩塔通水流量絞り并「開」 - 体積制御タンク入ロスプレイライン連絡并「開」	現場 A／B 17.8 m	財産保護のための操作のため対象外
	充てんボンプ追加起動（1台 $\rightarrow 2$ 台） - 充てんポンブ「入」 - 充てんライン流量制御操作出力值調整 - 抽出ライン非再生クーラ出口圧力制御設定値詯整		
過圧防護モード切替	過圧防護モード切替 - パーミッシプ表示灯「B—過圧防護設備低圧モード選択可」点灯確認 - 過圧防護設備モード選択（B）「低圧」 - パーミッシプ表示灯「A—過圧防護設備低圧モード選択可」点灯確認 - 過圧防護設備モード選択（A）「低圧」	中央制御室	－
モード5到達	モード5到達 - 格納容器スブレイボンブ「切ロック」 - よう素除去薬品タンク注入A，Bライン止め弁「閉ロック」 - 格納容器スプレイ椧却器出口 C / V 外側隔離弁「閉ロック」		
1 次椧却系温度 $80^{\circ} \mathrm{C}$ 到達	1 次椧却系温度 $80^{\circ} \mathrm{C}$ 到達 - 余熱除去椧却器出口流量調節操作出力値調整 - 体積制御タンク水位制御設定値調整		

\square ：手順書で要求されている操作を中央制御室で実施 \square ：手順書で要求されている操作を現場で実施

分類	操作項目	于順書要求操作場所	備考
主蒸気䭲離	主蒸気嗝離 - 主蒸気バイパス隔訪倠并開度調節操作出力値調整 - 主蒸気觜離弁「閉」	中央制御室	－
		现場 R／B33．1m	財産保護のための操作のため対象外
	- 主蒸気横脽亣（Aトレン）電源開放 - 主蒸気鹤雕升（Bトレン）電源開放	現場 $\mathrm{A} / \mathrm{B} 10.3 \mathrm{~m}$	
	－主亚気パイバス限霍弃制御用空気供給交「閉」	現場 R／B 33．1m	
	- 主蕉気バイバス隔雕弁（Aトレン）電源開放 - 主蒸気バイパス隔崔亣（Bトレン）電游開放	現場 A／B 10．3m	
	－主蒸気榞䨆亣鯧し締め	現場 R／B 36．3m	
	－主蒸気サンブリンク元弁「閉」	現場 T／B17．8m	
	－主蒸気止め弁上流ドレントラッブパイバス弁「開」		
補助給水ボンブ待機除外	補助給水ポンプ街機除外 - 補助給水隔離弁「閉ロック」 - タービン動補助給水ボンブ骒動蒸気B，C主蒸気ライン元弁「閉ロック」 - ターピン動補助給水ポンプ聖動蒸気入口升A，B「閉ロック」 - タービン動補助給水ポンブ非常用油ボンブ「切ロック」 - タービン動補助給水ボンブ補助油ボンブ「切ロック」 - 電動補助給水ポンブ「切ロック」	中央制御室	－
	－電動禣助給水ボンブ電源開放	現場 A／B 10.3 m	財商保護のための操作のため 対象外

表1 新規制基準適合性に係る審査における必要な現場操作

条文	操作項目	概要
第一条「適用範囲」	対象外	－
第二条「定義」	対象外	－
第三条「設計基準対象施設の地䇥」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第四条「地震による損傷の防止」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第五条「津波による損傷の防止」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第六条「外部からの衝撃による損傷の防止」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第七条「発電用原子炬施設への人の不法な侵入等の防止」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第八条「火災による損傷の防止」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第九条「敵水による損傷の防止等」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第十条「詔操作防止」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第十一条「安全避難通路等」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第十二条「安全施設」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第十三条「運転時の異常な過都変化及び設計基準事故の㹡大の防止」	今回申請対象外	－
第十四条「全交流動力電源䍗失対策設備」	全交流動力電源喪失時の現場操作	全交流動力電源祭失時に代替非常用発電機 から受電するまでの間，現場にて，2次采強制椧却のための主蒸気逃がし升操作，代替非常用発電機からの給電操作，およびディーゼ ル発電機復旧操作を行う。
第十五条「炉心等」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第十六条「燃料体等の取扱施設及び貯蔵施設」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第十七条「原子炉冾却材圧力バウンダリ」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第十八条「蒸匃ターピン」	今回申請対象外	－
第十九条「非常用炉心椧却設備」	今回申請対象外	－
第二十条「一次椧却材の減少分を補給する設備」	今回申請対象外	－
第二十一条「残留熱を除去することができる設備」	今回申請対象外	－
第二十二条「最終ヒートシンクへ熱を輸送す ることができる設備」	今回申請対象外	－
第二十三条「計測制御系統施設」	今回申請対象外	－
第二十四条「安全保護回路」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第二十五条「反応度制御系統及び原子炉制御系統」	今回申請対象外	－
第二十六条「原子炉制御室等」	中央制御室外原子炬停止操作	中央制御室において操作が困難な場合，中央制御室外原子炬停止装置にて，トリップ後の原子炉を高温停止状態から低温停止状態に移行させる操作を行う。

条文	操作項目	概要
第二十七条「放射性廃憲物の処理施設」	今回申請対象外	－
第二十八条「放射性廃巢物の貯蔵施設」	今回申請対象外	－
第二十九条「工場等周辺における直接ガンマ線等からの防護」	今回申請対象外	－
第三十条「放射線からの放射線業務従事者の防護」	今回申請対象外	－
第三十一条「監視設備」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第三十二条「原子炉格納施設」	今回申請対象外	－
第三十三条「保安電源設備」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第三十四条「緊急時対策所」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第三十五条「通信連絡設備」	安全施設が安全機能を損なわないために必要な現場操作なし	－
第三十六条「補助ポイラー」	今回申請対象外	－

制御盤等の設計方針に関する実運用への反映について

運転員の誤操作を防止するため，JEAC 4624 「原子力発電所の中央制御室における誤操作防止の設備設計に関する規程」や社内手順に基づき，盤の配置や識別管理，操作器具等の操作性に留意 するとともに，計器表示及び警報表示により原子炉施設の状態を正確，かつ，迅速に把握できる設計としている。
現在の設備について，改造等が発生した場合も表1の設計管理プロセスにより，上記の設計内容が反映されることを適切に管理している。

表1 設計管理プロセスの実施内容

プロセス	実施内容
設計計画	設計のインプットから妥当性確認までのプロセスの全体像，設計に 関する責任および権限ならびに設計に関与する関係箇所間のイン タフェースを明確にする
設計方針書策定	基本設計とし，仕様，環境条件，品質重要度，工程および設計取合 い境界等の要求事項を明確にする。
仕様書策定	設計方針書策定段階にて明確化した設計要求事項を受け，調達仕様 書を作成する。
詳細設計検証	調達先から提出された設計図書の内容が仕様書の調達要求事項を 満足していることを計妥当性確認 設備が要求した機能を満足することを試運転，検査等により確認す る。

泊発電所 3 号炉

技術的能力説明資料
 誤操作の防止

10 条 誤操作の防止
【追加要求事項】
10 条 誤操作の防止（技術基準 要求なし）

2 安全施設は，容易に操作することができるものでなければならない。
【解釈】
当該操作が必要となる理由となった事象が有意な可能性をもって同時にもたらされる環境条件（余震等を含む。）及 び施設で有意な可能性をもつて同時にもたらされる環境条件を想定しても，運転員が容易に設備を運転できる設計で あることをいう。

```
操作が必要となる理由となった事象が同時にもたらす環境条件を想定しても, 運転員が容易に中
央制御盤の操作ができること
```


（1）

ブラントの安全上重要な機能に障害をきたすおそれがある場合や外部環境に影響を与えるおそ れのある機器等に対して，運転員の誤操作を防止するとともに容易に操作ができること

機器等に対する色分けによる識別管理や識別管理•施錠管理施錠管理を行う
識別管理•施錠管理

技術的能力に係る運用対策等（設計基準）

【10条誤操作の防止】

対象項目	区分	運用対策等
識別管理施䚣管理	運用•手順	－識別管理•施錠管理に関する運用•手順
	体制	－
	保守•点検	－
	教育•䚯練	－識別管理•施錠管理に関する教育
中央制御室空調装置 の閉回路循襄運転	運用•手順	－閉回路循噮運転に関する操作手順
	体制	－
	保守•点検	－設備の日常点検，定期点検，必要に応じた補修
	教育•訓練	- 操作に開する教育 - 補修に開する教育
天井照明設備の落下防止	運用•手順	－
	体制	－
	保守•点検	－設備の日常点検，定期点検，必要に応じた補修
	教育•訓練	－補修に関する教育
消火設備（消火器）	運用•手順	－防火管理及び初期消火活動のための運用•手順
	体制	－初期消火活動のための体制
	保守•点検	－
	教有•訓練	－防火管理に関する教育，初期消火活動に関する教育•訓練
主盤等のデスク部等 につかまり安全碓保	運用•手順	－地震発生時の操作中止•安全碓保に関する運用•手順
	体制	－
	保守•点検	－
	教育•訓練	－地震発生時の操作中止•安全碓保に関する教有
地震発生時の操作中 止	運用•手順	－地震発生時の操作中止•安全碓保に関する運用•手順
	体制	－
	保守•点検	－
	教育•訓練	－地震発生時の操作中止•安全鹳保に関する教育
ラック等の転倒防止	運用•手順	－常設物の転倒防止に関する運用•手順
	体制	－
	保守•点検	－設備の日常点検，定期点検，必要に応じた補修
	教育•訓練	－常設物の転倒防止に関する教育

泊発電所 3 号炉審査資料	
資料番号	DB11 \quad r．4．0
提出年月日	令和4年8月5日

泊発電所 3 号炉

設置許可基準規則等への適合状況について （設計基準対象施設等）

第11条 安全避難通路等

令和 4 年 8 月
 北海道電力株式会社

第1 1 条：安全避難通路等

$$
<\text { 目 次 > }
$$

1．基本方針

1.1 要求事項の整理

1.2 追加要求事項に対する適合性
（1）位置，構造及び設備
（2）安全設計方針
（3）適合性説明
1．3 気象等
1． 4 設備等（手順等含む）

2．安全避難通路等

2． 1 概要
2.2 作業用照明について
2.3 可搬型照明について
（別添資料1）
設計基準事故と事故対応に必要な作業場所について
（別添資料2）
誘導灯及び非常灯についての規格基準等について

3．技術的能力説明資料
（別添資料3）安全避難通路等

1．において，設計基準事故対処設備の設置許可基準規則，技術基準規則の追加要求事項を明確化するとともに，それら要求に対する泊発電所 3 号炉における適合性を示す。

2 ．において，設計基準事故対処設備について，追加要求事項に適合するために必要となる機能 を達成するための設備又は運用等について説明する。

3 ．において，追加要求事項に適合するための技術的能力（手順等）を抽出し，必要となる運用対策等を整理する。

1．基本方針
1.1 要求事項の整理

安全避難通路等について，設置許可基準規則第 11 条及び技術基準規則第 13 条において，追加要求事項を明確化する（表1）。
表1 設置許可基準規則第 11 条及び技術基準規則第 13 条 要求事項

設置許可基準規則 第 11 条（安全避難通路等）	技術基準規則 第 13 条（安全避難通路等）	備 考
発電用原子灲施設には，次に掲げる設備を設けなければな らない。 一その位置を明確かつ恒久的に表示することにより容易 に識別できる安全避難通路 二 照明用の電源が喪失した場合においても機能を損なわ ない避難用の照明	発電用原子炉施設には，次に掲げる設備を施設しなければ ならない。 一 その位置を明確かつ恒久的に表示することにより容易に識別できる安全避難通路 二 照明用の電源が喪失した場合においても機能を損な わない避難用の照明	変更なし
$\begin{aligned} & \text { 三 設計基漼事故が発生した場合に用いる照明 (前号の避 } \\ & \text { 難用の照明を除く。) 及びその専用の電源 } \end{aligned}$	$\begin{aligned} & \text { 三 設計基準事故が発生した場合に用いる照明 (前号の避 } \\ & \hline \text { 難用の照明を除く。) 及びその専用の電源 } \end{aligned}$	追加要求事項

1.2 追加要求事項に対する適合性

（1）位置，構造及び設備
口 発電用原子炉施設の一般構造
（3）その他の主要な構造
（i）本発電用原子炉施設は，（1）耐震構造，（2）耐津波構造に加え，以下の基本的方針のもとに安全設計を行う。
a．設計基準対象施設
（f）安全避難通路等
原子炉施設には，位置を明確かつ恒久的に表示することにより容易に識別できる安全避難通路及び照明用の電源が喪失した場合においても機能を損なわない避難用照明を設 ける設計とする。
設計基準事故が発生した場合に用いる作業用照明として，運転保安灯又は無停電運転保安灯を設置する設計とする。運転保安灯及び無停電運転保安灯は非常用母線に接続し， ディーゼル発電機からも電力を供給できる設計とするとともに，無停電運転保安灯は専用の内蔵電池を備える設計とする。また，上記の照明設備設置箇所以外での対応が必要 となった場合に備え，可搬型照明を配備する。

【説明資料（2．1：P11 条－9，10）（2．2：P11 条－11～15）（2．3：P11 条－16）】
（2）安全設計方針
1.1 安全設計の方針

1．1．1 基本的方針
1．1．1．11 避難通路，照明，通信連絡設備
原子炉施設には，標識を設置した安全避難通路，避難用及び設計基準事故が発生した場合 に用いる照明，通信連絡設備を設ける設計とする。

【説明資料（2．1：P11 条－9，10】
（3）適合性説明
（安全避難通路等）
第十一条 発電用原子炬施設には，次に掲げる設備を設けなければならない。
一 その位置を明確かつ恒久的に表示することにより容易に識別できる安全避難通路
二 照明用の電源が喪失した場合においても機能を損なわない避難用の照明
三 設計基準事故が発生した場合に用いる照明（前号の避難用の照明を除く。）及びその専用の電源
適合のための設計方針
第 1 項第 1 号について
原子炉施設の建屋内には数箇所避難階段を設置し，それらに通じる避難通路を設ける。また，中央制御室，避難通路等には必要に応じて，標識並びに非常灯及び誘導灯を設け，その位置を明確かつ恒久的に表示することにより容易に識別できる設計とする。

第 1 項第 2 号について
非常灯及び誘導灯は，灯具に蓄電池を内蔵し，照明用の電源が喪失した場合においても機能 を損なわない設計とする。

第 1 項第 3 号について
設計基準事故が発生した場合に用いる作業用照明として，避難用の照明とは別に運転保安灯又は無停電運転保安灯を設置する設計とする。
運転保安灯及び無停電運転保安灯は非常用母線に接続し，ディーゼル発電機からも電力を供給できる設計とするとともに，無停電運転保安灯は，外部電源喪失時及び全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が交流動力電源から開始されるまでの間 においても点灯できるよう，専用の内蔵電池を備える。運転保安灯又は無停電運転保安灯は， プラント停止•泠却操作，監視等の操作が必要となる中央制御室，中央制御室退避時に必要な操作を行う中央制御室外原子炉停止盤，設計基準事故が発生した場合に現場操作の可能性のあ る主蒸気管室，全交流動力電源喪失時に復旧対応が必要となる安全補機開閉器室等，及びこれ らへのアクセスルート（以下「中央制御室，主蒸気管室及びアクセスルート等」という。）に設置することにより，昼夜，場所を問わず作業が可能な設計とする。

作業用照明は，設計基準事故が発生した場合に必要な操作が行えるよう，非常灯と同等以上 の照度を有する設計とする。

【説明資料（2．1：P11 条－9，10）（2．2：P11 条－11～15）】

設計基準事故に対応するための操作が必要な場所は，作業用照明が設置されており作業が可能である。また，上記の照明設備設置箇所以外での対応が必要となった場合に備え，初動操作 に対応する運転員が常駐している中央制御室に懐中電灯等の可搬型照明を配備する。

【説明資料（2．1：P11 条－9，10）（2．3：P11 条－16）】

1.3 気象等

該当なし

1.4 設備等（手順等含む）

10．その他発電用原子炉の附属施設
10．11 安全避難通路等

10．11．1 概要

照明用電源は，所内低圧系統より，原子炉建屋内（原子炉格納容器内及びアニュラス部を含 む。），原子炉補助建屋内，燃料取扱棟内，タービン建屋内等及び水中照明設備（以下，「建屋内等の照明設備」という。）へ給電する。
中央制御室及びその他必要な場所の非常灯及び棌導灯は，非常用母線から給電するとともに，照明用の電源が喪失した場合に内蔵の蓄電池から給電する。

【説明資料（2．1：P11 条－9，10）（2．2：P11 条－11～15）】

設計基準事故が発生した場合に用いる作業用照明として，避難用の照明とは別に運転保安灯又は無停電運転保安灯を中央制御室，主蒸気管室及びアクセスルート等に設置する。無停電運転保安灯は，外部電源喪失及び全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が交流動力電源から開始されるまでの間においても，中央制御室，主蒸気管室及び アクセスルート等は専用の内蔵電池からの給電により点灯を継続し，昼夜，場所を問わず作業 が可能となる設計とする。
運転保安灯又は無停電運転保安灯の配置場所の概要については第10．11．1図に示す。
【説明資料（1．4：P11 条－8）（2．1：P11 条－9，10）（2．2：P11 条－11～15）】

また，上記の照明設備設置箇所以外での対応が必要となった場合に備え，可搬型照明を配備す る。

10．11．2 設計方針

安全避難通路は，その位置を明確かつ恒久的に表示することにより，容易に識別できるよう に避難用照明を設置する。また，避難用照明は，電源が喪失した場合においても機能を損なう おそれがないようにする。さらに，設計基準事故が発生した場合に用いる照明（避難用の照明 を除く。）及びその専用の電源を設ける。

【説明資料（2．1：P11 条－9，10）】

10．11．3 主要設備

10．11．3．1 照明設備
照明用電源は，原子炉コントロールセンタ，タービンコントロールセンタ及び定検用コント ロールセンタから変圧器を通して，建屋内等の照明設備へ給電する。
中央制御室及びその他必要な場所の非常灯及び誘導灯は，非常用母線から給電するとともに，照明用の電源が喪失した場合に内蔵の蓄電池から給電する。
設計基準事故が発生した場合に用いる作業用照明として，避難用の照明とは別に運転保安灯又は無停電運転保安灯を中央制御室，主蒸気管室及びアクセスルート等に設置する。

【説明資料（2．1：P11 条－9，10）（2．2：P11 条－11～15）】

運転保安灯及び無停電運転保安灯は非常用母線に接続し，ディーゼル発電機からも電力を供給できる設計とする。無停電運転保安灯は，外部電源喪失時及び全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が交流動力電源から開始されるまでの間におい ても，中央制御室，主蒸気管室及びアクセスルート等は専用の内蔵電池からの給電により30分間以上点灯を継続する。

この運転保安灯又は無停電運転保安灯により，設計基準事故で操作が必要となる中央制御室，主蒸気管室及びアクセスルート等の照明を確保でき，昼夜，場所を問わず作業が可能な設計と する。

【説明資料（2．1：P11 条－9，10）（2．2：P11 条－11～15）】

また，設計基準事故に対応するための操作が必要な場所は，作業用照明が設置されており作業が可能であるが，上記の照明設備設置箇所以外での対応が必要となった場合に備え，初動操作を対応する運転員が常駐する中央制御室に，懐中電灯等の可搬型照明を配備する。

【説明資料（2．3：P11 条－16）】

10．11．4 手順等
（1）可搬型照明は，定められた箇所に保管し，必要時，迅速に使用できるよう必要数を保管管理する。
（2）可搬型照明，作業用照明に要求される機能を維持するため，適切に保守管理を実施すると ともに，必要に応じ補修を行う。
（3）作業用照明に係る保守管理に関する教育を実施する。
（4）可搬型照明の使用等に関する教育•訓練を実施する。
【別添資料3（11－別添 $3-1,2)$ 】

第 10.11 .1 図 運転保安灯，無停電運転保安灯配置概要図

2．安全避難通路等

2.1 概 要

安全避難通路は，中央制御室及び出入管理室の運転員その他の従事者が常時滞在する居室，居室から地上へ通じる廊下及び階段その他の通路を選定している。

「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」 第十一条 （安全避難通路等）第 1 項第一号によって要求される『その位置を明確かつ恒久的に表示する ことにより容易に識別できる安全避難通路』については，災害時に運転員その他の従事者に使用される部屋及び区画からの屋上への安全な避難のため，その位置を明確かつ恒久的に表示す ることにより容易に識別できるように非常灯及び誘導灯を配備した安全避難通路を設置して いる。

第二号によって要求される『照明用の電源が喪失した場合においても機能を損なわない避難用の照明』については，非常灯及び誘導灯は，灯具に蓄電池を内蔵し，照明用の電源が喪失し た場合においても機能を損なわないものとする。

第三号によって要求される『設計基準事故が発生した場合に用いる照明（前号の避難用の照明を除く。）及びその専用の電源』については，設計基準事故が発生した場合に用いる作業用照明として，避難用の照明とは別に運転保安灯又は無停電運転保安灯を設置している。運転保安灯及び無停電運転保安灯は非常用母線に接続し，ディーゼル発電機からも電力を供給 できる設計とする。無停電運転保安灯は，外部電源喪失時及び全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が交流動力電源から開始されるまでの間においても，中央制御室，主蒸気管室及びアクセスルート等は専用の内蔵電池からの給電により点灯を継続し，昼夜，場所を問わず作業が可能である。
この運転保安灯又は無停電運転保安灯は，表1に示すようにプラント停止•冷却操作，監視等 の操作が必要となる中央制御室，中央制御室退避時に必要な操作を行う中央制御室外原子炉停止盤，設計基準事故が発生した場合に現場操作の可能性のある主蒸気管室，全交流動力電源喪失発生時に復旧対応が必要となる安全補機開閉器室等，及び各機器へのアクセスルートに設置するこ とにより，設計基準事故時に作業が必要な場所の照明を確保することを目的としている。設計基準事故時における運転員の操作ならびに操作箇所について，別添資料 1 にまとめる。設計基準事故に対応するための操作が必要な場所には，運転保安灯又は無停電運転保安灯が設置されており作業が可能であるが，念のため，その他の現場作業で必要となった場合においても，各機器の操作，作業を可能にするため，可搬型の仮設照明である懐中電灯等の可搬型照明を中央制御室に備えている。
誘導灯及び非常灯についての規格基準等を別添資料 2 にまとめる。

表1 作業用照明の主な設置箇所

選定項目	設置箇所
プラント停止•泠却操作（蒸 気発生器による除熱を想定）	•主盤等（中央制御室） •主蒸気逃がし弁（主蒸気管室） ・タービン動補助給水ポンプ（タービン動補助給水ポンプ室）
プラントの泠却操作 （中央制御室退避時）	•中央制御室外原子炉停止盤

2.2 作業用照明について

設計基準事故が発生した場合に用いる作業用照明として，避難用の照明とは別に運転保安灯又は無停電運転保安灯を設置している。
運転保安灯及び無停電運転保安灯は非常用母線に接続し，ディーゼル発電機からも電力を供給できる設計とする。無停電運転保安灯は，外部電源喪失時及び全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が交流動力電源から開始されるまでの間におい ても，中央制御室，主蒸気管室及びアクセスルート等は専用の内蔵電池からの給電により点灯 を継続できる。
この運転保安灯又は無停電運転保安灯は，プラント停止•泠却操作，監視等の操作が必要と なる中央制御室，中央制御室退避時に必要な操作を行う中央制御室外原子炉停止盤，設計基準事故が発生した場合に現場操作の可能性のある主蒸気管室，全交流動力電源喪失時に復旧対応 が必要となる安全補機開閉器室等，及びこれらへのアクセスルートに設置することにより，昼夜，場所を問わず作業が可能である。
運転保安灯及び無停電運転保安灯は，設計基準事故が発生した場合に必要な操作が行えるよ う，非常灯（※建築基準法に基づき設置）と同等以上の照度を有している。

図 1 に作業用照明電源系統図，図 2 に無停電運転保安灯，図 3 に運転保安灯，無停電運転保安灯配置図を示す。

図1 作業用照明電源系統図

図 2 無停電運転保安灯

－—

2． 3 可搬型照明について

可搬型照明は，設計基準事故が発生した場合に各現場設置の機器の動作確認作業や機器の操作に用いる照明として懐中電灯等を備えている。

なお，現場操作が必要な設計基準事故「添付書類十 3．4．2 蒸気発生器伝熱管破損」時の主蒸気隔離弁増し締め操作，及び全交流動力電源喪失時に対応が必要となる安全補機開閉器室等 については，移動および操作を考慮した場所に運転保安灯又は無停電運転保安灯を確保してお り，作業が可能である。

仮に，その他の現場操作が必要となった場合に備え，可搬型照明は，初動操作に対応する運転員が常駐している中央制御室に保管し，懐中電灯等の可搬型照明も活用し，昼夜，場所を問 わず作業を可能とする。

保管場所及び数量（3 号炉）
懐中電灯：中央制御室（3号炉：12個）
ヘッドライト：中央制御室（3号炉：12個）
ワークライト：中央制御室（3号炉：10個）

【ヘッドライト】

- 照明 ：LED 光源
- 電源：単 4 乾電池 3 本

約 8 時間連続使用可能
－重量： 120 g

【懐中電灯】

- 照明 ：LED 光源
- 電源：単 4 乾電池 3 本

$$
\text { 約 } 30 \text { 時間連続使用可能 }
$$

－重量： 104 g

※暗所でのワークライト使用状況

図4 可搬型照明の仕様及び使用状況

泊発電所 3 号炉
設計基準事故と事故対応に必要な作業場所について

1．設計基準事故と事故対応に必要な作業場所について
原子炉設置許可申請書の添付書類十の安全評価における「運転時の異常な過渡変化」及び「事故」について，事故対応に必要な運転員の操作ならびに作業場所について表 $1-1$ ，表 $1-2$ に整理した。

表 1－1，表1－2より設計基準事故発生時に，運転員が事故対応のための作業が生じる場合 とは，原子炉冷却材喪失等における中央制御室での原子炉停止•冷却操作及び蒸気発生器伝熱管破損における伝熱管破損側蒸気発生器の主蒸気隔離弁の増し締め操作（主蒸気管室）であること から，設置許可基準規則第 11 条 3 号における設計基準事故が発生した場合に用いる作業用照明 は，中央制御室以外では主蒸気管室及び中央制御室からのアクセスルートが該当する。
（表1「作業用照明の主な設置箇所」の下線部。）
また，上記の場所に加えて，プラント停止•冷却操作，監視等の操作が必要となる中央制御室，中央制御室退避時に必要な操作を行う中央制御室外原子炉停止盤，全交流動力電源喪失発生時に復旧対応が必要となる安全補機開閉器室等，及び機器へのアクセスルートに作業用照明を設置す る計画としている。

なお，これらの設計には，設置許可基準規則第 10 条第 2 項で想定する現場操作箇所も含まれ ている。

表 $1-1$ 「運転時の異常な過渡変化」における運転員の操作ならびに作業場所

	項目	事故対応に必要な操作	作業場所
炉心内の反応度又 は出力分布の異常 な変化	原子炉起動時における制御棒 の異常な引き抜き	原子炉保護設備により原子炉は自動停止し，この過度変化は安全に終止できる。	中央制御室
	出力運転中の制御棒の異常な引き抜き	原子炉保護設備により原子炉は自動停止し，D N B R が許容限界値を下回る前に，この過度変化は安全に終止できる。	中央制御室
	制御棒の落下及び不整合	原子炉保護設備により原子炉は自動停止し，この過度変化は安全に終止できる。	中央制御室
	原子炉冷却材中のほう素の異常な希釈	運転員の操作又は原子炉トリップ により安全に終止できる。	中央制御室
炉心内の熱発生又 は熱除去 の異常な変化	原子炉冷却材流量の部分喪失	原子炉保護設備により原子炉は自動停止し，この過度変化は安全に終止できる。	中央制御室
	原子炉泠却材系の停止ループ の誤作動	原子炉保護設備により原子炉は自動停止し，この過度変化は安全に終止できる。	中央制御室
	外部電源喪失	原子炉保護設備により原子炉は自動停止する。また，補助給水系，主蒸気逃がし弁及び主蒸気安全弁の作動により，原子炉自動停止後の原子炉の崩壊熱及びその他の残留熱 を除去でき，過度変化は安全に終止 できる。	中央制御室
	主給水流量喪失	原子炉保護設備により原子炉は自動停止する。また，補助給水ポンプ が自動起動して蒸気発生器 2 次側 に給水し，原子炉トリップ後の原子炉の崩壊熱及びその他の残留熱を除去でき，過度変化は安全に終止で きる。	中央制御室

	項目	事故対応に必要な操作	作業場所
炬心内の熱発生又は熱除去の異常 な変化	蒸気負荷の異常な増加	手動による原子炬停止後，高温停止状態に移行し， 2 次側による冷却操作等により，原子炉は泠態停止状態 に移行することができる。	中央制御室
	2 次冷却系の異常な減圧	非常用炉心泠却設備の作動により，過度変化は安全に終止できる。	中央制御室
	蒸気発生器への過剰給水	原子炬保護設備により原子炉は自動停止し，過度変化は安全に終止で きる。	中央制御室
原子炉泠却材圧力又は原子炉冷却材保有量の異常な変化	負荷の喪失	主蒸気安全弁が動作して 1 次冷却系の泠却を確保するとともに，原子炉は「原子炉圧力高」，「加圧器水位高」，「過大温度 $\Delta \mathrm{T}$ 高」等の信号に より自動停止し，この過度変化は安全に終止できる。	中央制御室
	原子炉冷却材系の異常な減圧	原子炬保護設備により原子炉は自動停止し，過度変化は安全に終止で きる。	中央制御室
	出力運転中の非常用炬心冷却系の誤作動	原子炉トリップを伴わずに非常用炉心冷却設備のみが誤作動する場合でも，原子炉保護設備により原子炉は自動停止する。	中央制御室

表 $1-2$ 「事故」における運転員の操作ならびに作業場所

	項目	事故対応に必要な操作	作業場所
原子炉泠却材の喪失又 は炉心冷却状態の著し い変化	原子炉冷却材喪失	1 次冷却材の流出量の少ない場合 には，充てんポンプによる 1 次冷却材の補給で，加圧器水位を維持しな がら，通常の原子炉停止操作をとる ことができる。 1 次泠却材の流出量 が充てんポンプの補給量を上回る場合には，原子炉保護設備により原子炉は自動停止し，非常用炉心冷却設備の作動により，事故は炉心に過度の損傷を与えることなく終止で きる。また，原子炉格納容器スプレ イ設備の作動により原子炉格納容器内は減圧され，原子炉格納容器に損傷を与えることなく事故は終止 できる。	中央制御室
	原子炉冷却材流量の喪失	炉心損傷のおそれのない低出力時以外は，原子炉保護設備により原子炉は自動停止し，事故は安全に終止 できる。	中央制御室
	原子炉冷却材ポンプの軸固着	原子炉保護設備により自動停止し，事故は炬心に過度の損傷を与える ことなく終止できる。	中央制御室
	主給水管破断	原子炉保護設備により原子炉は自動停止し，健全側の蒸気発生器へ補助給水を供給することによって 1次冷却系を泠却することができる。 さらに，加圧器安全弁の動作により原子炉圧力の上昇を抑制すること ができるので，炬心に過度の損傷を与えることなく，原子炉泠却材圧力 バウンダリの健全性が損なわれる こともなく事故は安全に終止でき る。	中央制御室

	項目	事故対応に必要な操作	作業場所
原子炉冷却材の喪失又 は炉心泠却状態の著し い変化	主蒸気管破断	非常用炬心冷却設備の作動により，原子炉は再び臨界未満となり安全 に保たれる。	中央制御室
反応度の異常な投入又 は原子炉出力の急激な変化	制御棒飛び出し	原子炉保護設備により原子炉は自動停止し，事故は炉心に過度の損傷 を与えることなく終止できる。	中央制御室
環境への放射性物質の異常な放出	放射性気体廃车物処理施設の破損	放射性気体廃棄物処理設備から原子炉補助建屋内にガス状の放射性物質が放出された場合，排気設備に よって排気筒へ導く。さらに，排気設備には，放射性ガスの監視設備を設け，周辺環境に放出される放射性物質を監視する。 なお，放射性気体廃棄物処理施設の破損を仮定した場合，核分裂生成物 の放出量は少なく，周辺の公衆に対 し著しい放射線被ばくのリスクを与えることはない。	中央制御室

	項目	事故対応に必要な操作	作業場所
環境への放射性物質の異常な放出	蒸気発生器伝熱管破損	破損側蒸気発生器につながる主蒸気隔離弁等の閉止操作を行い，さら に健全側蒸気発生器の主蒸気逃が し弁および加圧器逃がし弁を操作 することにより，1次冷却系は早期 に泠却及び減圧され，2次側への 1次冷却材の流出を停止させること により放射性物質の環境への放出 を抑えることができる。その後，さ らに健全側蒸気発生器の主蒸気逃 がし弁又はタービンバイパス系に よる 1 次冷却系の冷却及び減圧を継続することにより，事故は終止で きる。 なお，主蒸気隔離弁の閉止機能の信頼性向上を図るため，閉弁操作後現場で同弁を増締めし，閉止すること ができるように設計している。	中央制御室
	燃料集合体の落下	使用済燃料ピット付近のエリアモ ニタで検知し，警報を発信する設計 としている。 なお，燃料集合体の落下を仮定した場合，核分裂生成物の放出量は少な く，周辺の公衆に対し著しい放射線被ばくのリスクを与えることはな い。	中央制御室
	原子炉冷却材喪失	上記，「原子炉冷却材喪失」と同じ。	中央制御室
	制御棒飛び出し	上記，「制御棒飛び出し」と同じ。	中央制御室
原子炉格納容器内圧力，雰囲気等の異常な変化	原子炉冷却材喪失	上記，「原子炉冷却材喪失」と同じ。	中央制御室
	可燃性ガスの発生	上記，「原子炉冷却材喪失」と同じ。	中央制御室

表1 作業用照明の主な設置箇所（※まとめ資料に記載している表1を再掲）

選定項目	設置箇所
プラント停止•冷却操作 （蒸気発生器による除熱を想定）	- 主盤（中央制御室） - 主蒸気逃がし弁（主蒸気管室） - タービン動補助給水ポンプ（タービン動補助給水 ポンプ室）
プラントの泠却操作 （中央制御室退避時）	－中央制御室外原子炬停止盤
電源確保操作	- ディーゼル発電機（ディーゼル発電機室） - 遮断器（安全補機開閉器室）
設計基準事故時の対応	- 外部電源喪失時の監視•操作（中央制御室） - 安全系の計装盤等が配置されており，プラント起動，停止時の碓認及び対応作業等（安全系計装盤室） －安全系補機の起動，停止確認及び対応作業 （安全補機開閉器室） －ディーゼル発電機の起動確認及び対応作業 （ディーゼル発電機室） －主蒸気逃がし弁，主蒸気隔離弁の確認及び対応作業 \qquad （主蒸気管室） －タービン動補助給水ポンプ等の確認 （タービン動補助給水ポンプ室）
通 路	－中央制御室から上記各操作箇所までの通路

泊発電所 3 号炉
誘導灯及び非常灯についての規格基準等について

1．誘導灯の設置に関する規格基準等について
誘導灯は，消防法（制定 昭和 23 年 7 月 24 日法律代 186 号，以下「消防法」という。），消防法施行令（制定 昭和 36 年 3 月 25 日政令第 37 号，以下「消防法施行令」という）及び消防法施行規則（制定 昭和 36 年 4 月 1 日自治省第 6 号，以下「消防法施行規則」という）に準拠し，屋内から直接地上へ通じる通路，出入口及び避難階段に設置する。

これらの誘導灯は，消防法施行規則にて区分，等級が定められており，これに準拠して設置す る。誘導灯に関する区分，等級と避難口誘導灯及び通路誘導灯の有効範囲となる当該誘導灯ま での距離を表1．1に示す。泊発電所 3 号炉に設置する誘導灯はB級もしくはC級である。

表1．1誘導灯の区分•等級について

区分			距離（メートル）
避難口誘導灯	A 級	避難の方向を示すシンボルのないもの	60
		避難の方向を示すシンボルのあるもの	40
	B 級	避難の方向を示すシンボルのないもの	30
		避難の方向を示すシンボルのあるもの	20
	C級		15
通路誘導灯	A級		20
	B 級		15
	C級		10

また，消防法施行規則による区分，等級とは別に，誘導灯内の灯具の種類や構造の違いにより，直管蛍光灯や LED，コンパクトスクエア型や吊り下げ型があるが，日本照明工業会の規格である非常用照明器具技術基準（JIL5501）に適合した誘導灯を天井，壁等にボルト等で堅固に固定し て設置している。

なお，誘導灯は換気空調に利いた屋内に設置するため，雨水等にさらされる環境下にはなく， また，通路誘導灯のうち，階段や傾斜路に設ける非常用照明については，踏面もしくは踊場の中心線の照度が 1 ルクス以上となるように設ける。

内蔵する蓄電池は，消防法に準拠し20分間有効に点灯できる設計とする。
泊発電所 3 号炉で使用する誘導灯の仕様（例）を図 1.1 に示す。

仕様
外部電源（交流）使用時 蓄電池（直流）使用時

- 電圧 ：交流 100 V •電圧 ：直流2． 4 V
- 消費電力：1． 4 W
- 消費電力：1． 4 W
- 点灯時間 ：20分間以上

図1． 1 誘導灯（コンパクトスクエア型）

2．非常灯の設置に関する規格基準等について
非常灯は，建築基準法（制定 昭和 25 年 5 月 24 日法律第 201 号，以下「建築基準法」という）及び建築基準法施行令（制定 昭和 25 年 11 月 16 日政令第 338 号，以下「建築基準法施行令」 という）に準拠し，安全避難通路の照明として非常灯を設置する。

これら非常灯の照明は，非常用照明器具技術基準（JIL5501）に「適合しており，標準的にかさ等を設置しており水に対する保護がされている。また，屋外に設置されるものについては防雨防湿型としている。

図2．1に非常灯の仕様（例）について示す。

蓄電池内蔵照明

仕様
外部電源（交流）使用時 蓄電池（直流）使用時

- 電圧 ：交流 200 V •電圧 ：直流 7.2 V
- 消費電力：40W－消費電力：40W
- 点灯時間： 30 分間以上

図 2． 1 非常灯について

照明器具の内蔵された蓄電池の容量は，照明の自己点検機能により，充電モニタの点灯等を確認する。もしくは電源供給元を非常用電源もしくは蓄電池に切替えるスイッチを用いて照明の点灯状態を確認することで健全性を確認することができる。

また，使用する配線については，消防法及び建築基準法に準拠し耐火配線を使用する。
照明器具の固定については，壁，天井等にボルト等を用いて堅固に設置する。
内蔵する蓄電池は，建築基準法に準拠し 30 分間において有効に点灯できる設計とする。

泊発電所 3 号炉

技術的能力説明資料
 安全避難通路等

11 条 安全避難通路等

【追加要求事項】
\square

「設計基準事故が発生した場合に用いる照明」とは，昼夜及び場所を問わず，発電用原子炉施設内で事故対策 のための作業が生じた場合に，作業が可能となる照明のことをいう。なお，現場作業の緊急性との関連に おいて，仮設照明の準備に時間的猶予がある場合には，仮設照明による対応を考慮してもよい

設計基準事故が発生した場合に用いる照明及びその専

用の電源の確保外部電源喪失時および全交流電源喪失時から重大事故等に対処するために必要な電力の供給が交流動力電源から開始されるまでの間においても点灯できる照明を設置する

運用による対応
設備による対応

技術的能力に係る運用対策等（設計基準）
【1 1 条 安全避難通路等】

対象項目	区分	運用対策等
運転保安灯，無停電運転保安灯を設置	運用•手順	－
	体制	－
	保守 •点検	運転保安灯及び無停電運転保安灯に要求される機能を維持するため，適切に保守管理を実施するとともに，必要に応じ補修を行う。
	教育•訓練	運転保安灯及び無停電運転保安灯に係る保守•点検に関する教育を実施する。
可搬型照明を設置	運用•手順	可搬型照明は，必要時，迅速に使用できるよう予め定められた所定の箇所に保管し，数量管理を行う。
	体制	－
	保守•点検	可搬型照明に要求される機能を維持するため，適切に保守管理を実施すると ともに，数量管理を行う。
	教育•訓練	可搬型照明の使用等に関する教育•訓練を実施する。

泊発電所 3 号炉審査資料	
資料番号	DB12 \quad r．4．0
提出年月日	令和4年8月5日

泊発電所 3 号炉

設置許可基準規則等への適合状況について （設計基準対象施設等）

第12条 安全施設

令和 4 年 8 月
 北海道電力株式会社

第12条：安全施設
<目 次>

1 ．基本方針

1.1 要求事項の整理
1.2 追加要求事項に対する適合性（手順等含む
（1）位置，構造及び設備
（2）安全設計方針
（3）適合性説明
1.3 気象等
1.4 設備等

2．安全施設
2． 1 静的機器の単一故障
2．1．1 長期間にわたり安全機能が要求される単一設計箇所の抽出
2．1．2 アニュラス空気浄化設備及び換気空調設備（中央制御室非常用循環系統）の基準適合性

2．1．3試料採取設備（事故時に 1 次冷却材を採取する設備）の基準適合性
2．1．4原子炉格納容器スプレイ設備の基準適合性
2.2 安全施設の共用•相互接続

2．2．1共用•相互接続設備の抽出方法
2．2．2 共用•相互接続設備の基準適合性の判断基準
（別添資料 1）単一故障（補足説明資料）
（別添資料2）共用（補足説明資料）

3．技術的能力説明資料
（別添資料3）安全施設
＜概 要＞

1．において，設計基準事故対処設備の設置許可基準規則，技術基準規則の追加要求事項 を明確化するとともに，それら要求に対する泊発電所 3 号炉における適合性を示す。

2 ．において，設計基準事故対処設備について，追加要求事項に適合するために必要とな る機能を達成するための設備又は運用等について説明する。

3 ．において，追加要求事項に適合するための技術的能力（手順等）を抽出し，必要とな る運用対策等を整理する。

1．基本方針
1.1 要求事項の整理

安全施設について，設置許可基準規則第 12 条並びに技術基準規則第 14 条及び第 15 条 において，追加要求事項を明確化する（表1）。
表1 設置許可基準規則第 12 条並びに技術基準規則第 14 条及び第 15 条 要求事項

設置許可基準規則第 12 条（安全施設）	技術基準規則第 14 条（安全設備）	備考
安全施設は，その安全機能の重要度に応じて，安全機能が確保されたものでなければならない。		変更なし
2 安全機能を有する系統のうち，安全機能の重要度が特に高 い安全機能を有するものは，当該系統を構成する機械又は器具の単一故障（単一の原因によって一つの機械又は器具が所定の安全機能を失うこと（従属要因による多重故障を含む。） をいう。以下同じ。）が発生した場合であって，外部電源が利用できない場合においても機能できるよう，当該系統を構成 する機械又は器具の機能，構造及び動作原理を考慮して，多重性又は多様性を確保し，及び独立性を確保するものでなけ ればならない。	第二条第二項第九号八及びホに掲げる安全設備は，当該安全設備を構成する機械又は器具の単一故障（設置許可基準規則第十二条第二項に規定する単一故障をいう。以下同じ。）が発生した場合であって，外部電源が利用できない場合において も機能できるよう，構成する機械又は器具の機能，構造及び動作原理を考慮して，多重性又は多樣性を確保し，及び独立性を確保するよう，施設しなければならない。	変更なし （静的機器 の単一故障 に関する考 え方の明確化）
3 安全施設は，設計基準事故時及び設計基準事故に至るまで の間に想定される全ての環境条件において，その機能を発揮 することができるものでなければならない。	2 安全設備は，設計基準事故時及び当該事故に至るまでの間 に想定される全ての環境条件において，その機能を発揮する ことができるよう，施設しなければならない。	変更なし

設置許可基準規則第12条（安全施設）	技術基準規則 第 15 条（設計基準対象施設の機能）	備考
－	設計基準対象施設は，通常運転時において発電用原子炉の反応度を安全かつ安定的に制御でき，かつ，運転時の異常な過渡変化時においても発電用原子炉固有の出力抑制特性を有す るとともに，発電用原子炉の反応度を制御することにより核分裂の連鎖反応を制御できる能力を有するものでなければな らない。	変更なし
4 安全施設は，その健全性及び能力を確認するため，その安全機能の重要度に応じ，発電用原子炉の運転中又は停止中に試験又は検査ができるものでなければならない。	2 設計基準対象施設は，その健全性及び能力を確認するた め，発電用原子炉の運転中又は停止中に必要な箇所の保守点検（試験及び検査を含む。）ができるよう，施設しなければな らない。	変更なし
－	3 設計基準対象施設は，通常運転時において容器，配管，ポ ンプ，弁その他の機械又は器具から放射性物質を含む流体が著しく漏えいする場合は，流体状の放射性廃棄物を処理する設備によりこれを安全に処理するように施設しなければなら ない。	変更なし
5 安全施設は，蒸気タービン，ポンプその他の機器又は配管 の損壊に伴う飛散物により，安全性を損なわないものでなけ ればならない。	4 設計基準対象施設に属する設備であって，蒸気タービン， ポンプその他の機器又は配管の損壊に伴う飛散物により損傷 を受け，発電用原子炉施設の安全性を損ならことが想定され るものには，防護施設の設置その他の損傷防止措置を講じな ければならない。	変更なし

設置許可基準規則第 12 条（安全施設）	技術基準規則 第 15 条（設計基準対象施設の機能）	備考
6 重要安全施設は，二以上の発電用原子炉施設において共用 し，又は相互に接続するものであってはならない。ただし，二以上の発電用原子炬施設と共用し，又は相互に接続するこ とによって当該二以上の発電用原子炉施設の安全性が向上す る場合は，この限りでない。	5 設計基準対象施設に属する安全設備であって，第二条第二項第九号八に掲げるものは，二以上の発電用原子炬施設にお いて共用し，又は相互に接続するものであってはならない。 ただし，二以上の発電用原子炉施設と共用し，又は相互に接続することによって当該二以上の発電用原子炉施設の安全性 が向上する場合は，この限りでない。	追加要求事項
7 安全施設（重要安全施設を除く。）は，二以上の発電用原子炉施設と共用し，又は相互に接続する場合には，発電用原子炉施設の安全性を損なわないものでなければならない。	6 前項の安全設備以外の安全設備を二以上の発電用原子炉施設と共用し，又は相互に接続する場合には，発電用原子炉施設の安全性を損なわないよう，施設しなければならない。	追加要求 事項 （相互接続 に関する要求追加）

1.2 追加要求事項に対する適合性（手順等含む）

（1）位置，構造及び設備

口．発電用原子炉施設の一般構造

（3）その他の主要な構造

（i）本原子炉施設は，（1）耐震構造，（2）耐津波構造に加え，以下の基本的方針のも とに安全設計を行う。
a．設計基準対象施設
（g）安全施設
（g－1）安全施設は，その安全機能の重要度に応じて，十分高い信頼性を確保し，かつ維持し得る設計とする。このうち，安全機能の重要度が特に高い安全機能を有す る系統は，原則，多重性又は多樣性及び独立性を備える設計とするとともに，当該系統を構成する機器に短期間では動的機器の単一故障が生じた場合，長期間で は動的機器の単一故障又は想定される静的機器の単一故障のいずれかが生じた場合であって，外部電源が利用できない場合においても，その系統の安全機能を達成できる設計とする。

【説明資料（2．1：12 条－20～53）】

重要度が特に高い安全機能を有する系統において，設計基準事故が発生した場合 に長期間にわたって機能が要求される静的機器のうち，単一設計とする以下の機器については，想定される最も過酷な条件下においても安全上支障のない期間に単一故障を確実に除去又は修復できる設計とし，その単一故障を仮定しない。設計に当たっては，想定される単一故障の除去又は修復のためのアクセス性及び補修作業性並びに当該作業期間における従事者及び周辺公衆の被ばくを考慮する。

- アニュラス空気浄化設備のうちアニュラス空気浄化系統ダクトの一部
- 換気空調設備のらち中央制御室非常用循環フィルタコニット及び中央制御室非常用循環系統ダクトの一部

また，試料採取設備のうち単一設計とする事故時に 1 次冷却材を採取する設備に ついては，当該設備に要求される事故時の原子炉の停止状態の把握機能が単一故障により失われる場合であっても，他の系統を用いて当該機能を代替できる設計 とする。

さらに，原子炉格納容器スプレイ設備のうちスプレイリングについては単一設計 とするが，安全機能に最も影響を与える単一故障を仮定しても，所定の安全機能 を達成できる設計とする。

安全施設の設計条件を設定するに当たっては，材料疲労，劣化等に対しても十分 な余裕を持って機能維持が可能となるよう，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に想定される圧力，温度，湿度，放射線量等各種の環境条件を考慮し，十分安全側の条件を与えることにより，これらの条件下において も期待されている安全機能を発揮できる設計とする。
また，安全施設は，その健全性及び能力を確認するために，その安全機能の重要度に応じ，原子炉の運転中又は停止中に試験又は検査ができる設計とする。
（g－2）安全施設は，蒸気タービン等の損壊に伴う飛散物により安全性を損ならことの ない設計とする。蒸気タービン及び発電機は，破損防止対策を行らことにより，破損事故の発生確率を低くするとともに，ミサイルの発生を仮に想定しても安全機能を有する構築物，系統及び機器への到達確率を低くすることによって，原子炉施設の安全性を損ならことのない設計とする。
（g－3）重要安全施設は，原子炉施設間で共用又は相互に接続しない設計とする。安全施設（重要安全施設を除く。）を共用又は相互に接続する場合には，原子炉施設の安全性を損なうことのない設計とする。

【説明資料（2． $2: 12$ 条－54～61）】

（2）安全設計方針

1．安全設計
1.1 安全設計の方針

1．1．1 基本的方針

1．1．1．6 多重性又は多様性及び独立性

（1）設計方針
安全施設は，その安全機能の重要度に応じて，十分高い信頼性を確保し，かつ維持 し得る設計とする。このうち，重要度が特に高い安全機能を有する系統は，原則，多重性又は多様性及び独立性を備える設計とするとともに，当該系統を構成する機器に短期間では動的機器の単一故障が生じた場合，長期間では動的機器の単一故障又は想定される静的機器の単一故障のいずれかが生じた場合であって，外部電源が利用でき ない場合においても，その系統の安全機能を達成できる設計とする。
なお，重要度が特に高い安全機能を有する系統のらち，長期間にわたつて安全機能 が要求される静的機器を単一設計とする場合には，単一故障が安全上支障のない期間 に確実に除去又は修復できる設計，他の系統を用いてその機能を代替できる設計又は単一故障を仮定しても安全機能を達成できる設計とする。

【説明資料（2．1：12 条－20～53）】

（2）手順等

a．アニュラス空気浄化系統ダクトの一部並びに中央制御室非常用循環フィルタユ ニット・中央制御室非常用循環系統ダクトの一部に要求される機能を維持する ため，適切に保守管理を実施するとともに，必要に応じ補修を行う。
b．アニュラス空気浄化系統ダクトの一部並びに中央制御室非常用循環フィルタユ ニット・中央制御室非常用循環系統ダクトの一部に係る保守管理に関する教育 を実施する。

【説明資料（2．1：12 条－20～53）】

1．1．1．8 試験検査

安全施設は，その健全性及び能力を確認するために，その安全機能の重要度に応じ，原子炉の運転中又は停止中に試験又は検査ができる設計とする。

1．1．1．9 共用

重要安全施設は，原子炉施設間で共用又は相互に接続しない設計とする。
安全施設（重要安全施設を除く。）を共用又は相互に接続する場合には，原子炉施設の安全性を損なうことのない設計とする。

安全施設（重要安全施設を除く。）のうち，2 以上の原子炉施設と共用するものと

して， 66 kV 送電線，モニタリングポスト及びモニタリングステーション専用の無停電電源装置， 2 次系純水タンク，火災感知設備の一部並びに消火設備の一部がある。

66 kV 送電線は， 1 号， 2 号及び 3 号炉の所内負荷をまかなうために必要な容量を有するとともに，各号炉に遮断器を設置し，短絡等が発生した場合，それを検知し故障箇所を自動で遮断することにより，原子炉施設の安全性を損ならことのない設計とする。

モニタリングポスト及びモニタリングステーション専用の無停電電源装置は， 1号， 2 号及び 3 号炉共用として設計し，非常用所内電源系から独立した電源構成に するとともに，モニタリングポスト及びモニタリングステーションの機能を維持す るために必要な電力を供給できる容量を有することにより，原子炉施設の安全性を損なうことのない設計とする。

2 次系純水タンクは， 1 号， 2 号及び 3 号炉で必要とする補給水量に対し，十分 な容量を有することにより，原子炉施設の安全性を損ならことのない設計とする。

火災感知設備の一部及び消火設備の一部は， 1 号及び 2 号炉と 3 号炉で独立した火災感知設備及び消火設備を設置することにより，原子炉施設の安全性を損なうこ とのない設計とする。

安全施設（重要安全施設を除く。）のうち，2 以上の原子炉施設を相互に接続する ものとして，運転指令装置，給水処理設備及び消火設備がある。

運転指令装置は， 1 号及び 2 号炉の運転指令装置と 3 号炉の運転指令装置を相互接続するものの， 3 号炉中央制御室から制御装置間の接続•切り離しを行うことが可能なことから，悪影響を及ぼすことはなく， 1 号及び 2 号炉と 3 号炉で独立した制御装置を設置することにより，原子炉施設の安全性を損なうことのない設計とす る。
給水処理設備及び消火設備は， 1 号及び 2 号炉と 3 号炉のろ過水及び消火水を融通 するために相互接続するものであり，連絡ラインには弁を設置して，連絡弁閉止時に は物理的に分離し，連絡時には弁を閉止することで物理的な分離を可能なことから，悪影響を及ぼすことはなく，連絡時において相互の圧力は同じであり，1号及び 2 号炉と 3 号炉のプラント運転に必要な水を供給できる容量を有することにより，原子炉施設の安全性を損ならことのない設計とする。

【説明資料（2．2：12 条－54～61）】

第十二条 安全施設
1 安全施設は，その安全機能の重要度に応じて，安全機能が確保されたものでなければな らない。
2 安全機能を有する系統のうち，安全機能の重要度が特に高い安全機能を有するものは，当該系統を構成する機械又は器具の単一故障（単一の原因によって一つの機械又は器具が所定の安全機能を失うこと（従属要因による多重故障を含む。）をいう。以下同じ。）が発生した場合であって，外部電源が利用できない場合においても機能できるよう，当該系統 を構成する機械又は器具の機能，構造及び動作原理を考慮して，多重性又は多様性を確保 し，及び独立性を確保するものでなければならない。
3 安全施設は，設計基準事故時及び設計基準事故に至るまでの間に想定される全ての環境条件において，その機能を発揮することができるものでなければならない。

4 安全施設は，その健全性及び能力を確認するため，その安全機能の重要度に応じ，発電用原子炉の運転中又は停止中に試験又は検査ができるものでなければならない。
5 安全施設は，蒸気タービン，ポンプその他の機器又は配管の損壊に伴ら飛散物により，安全性を損なわないものでなければならない。

6 重要安全施設は，二以上の発電用原子炉施設において共用し，又は相互に接続するもの であってはならない。ただし，二以上の発電用原子炉施設と共用し，又は相互に接続する ことによって当該二以上の発電用原子炉施設の安全性が向上する場合は，この限りでない。 7 安全施設（重要安全施設を除く。）は，二以上の発電用原子炉施設と共用し，又は相互 に接続する場合には，発電用原子炉施設の安全性を損なわないものでなければならない。

適合のための設計方針

第1項について

安全施設は，「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」に基 づき，それが果たす安全機能の性質に応じて分類し，十分高い信頼性を確保し，かつ，維持し得る設計とする。

第2項について

安全機能を有する系統のうち，重要度が特に高い安全機能を有する系統については，そ の構造，動作原理，果たすべき安全機能の性質等を考慮し，原則として多重性のある独立 した系列又は多様性のある独立した系列を設け，各系列又は各系列相互間は，離隔距離を取るか必要に応じ障壁を設ける等により，物理的に分離し想定される単一故障及び外部電源が利用できない場合を仮定しても所定の安全機能を達成できる設計とする。

また，重要度が特に高い安全機能を有する系統において，設計基準事故が発生した場合 に長期間にわたつて機能が要求される静的機器のらち単一設計を含む設備については以下のとおりとする。
アニュラス空気浄化設備のうちアニュラス空気浄化系統ダクトの一部については，当該設備に要求される「格納容器内又は放射性物質が格納容器内から漏れ出た場所の雰囲気中 の放射性物質の濃度低減機能」が喪失する単一故障として，想定される最も過酷な条件と なる故障を想定することとし，ダクトについて全周破断を想定する。
この想定される故障において，単一故障による放射性物質の放出に伴ら被ばくの影響を最小限に抑えるよう，安全上支障のない期間に故障を確実に除去又は修復できる設計とし， その単一故障を仮定しない。設計に当たっては，想定される故障の除去又は修復のための アクセスが可能であり，かつ，補修作業が容易となる設計とする。
安全上支障のない期間については，設計基準事故時に，ダクトの全周破断に伴う放射性物質の漏えいを考慮しても，周辺の公衆に対する放射線被ばくのリスクが「添付書類十 3 ． 4 環境への放射性物質の異常な放出」の評価結果と同程度であり，また，修復作業に係る被ばくが緊急時作業に係る線量限度以下とできる期間として，3日間とする。

換気空調設備のうち中央制御室非常用循環フィルタユニット及び中央制御室非常用循環系統ダクトの一部については，当該設備に要求される「原子炉制御室非常用換気空調機能」 が喪失する単一故障として，想定される最も過酷な条件となる故障を想定することとし， ダクトについては全周破断，フィルタユニットについてはフィルタ本体の閉塞を想定する。 いずれの故障においても，単一故障による中央制御室の運転員の被ばくの影響を最小限 に抑えるよう，安全上支障のない期間に故障を確実に除去又は修復できる設計とし，その単一故障を仮定しない。設計に当たつては，想定される故障の除去又は修復のためのアク セスが可能であり，かつ，補修作業が容易となる設計とする。
安全上支障のない期間については，設計基準事故時に，ダクトの全周破断又はフィルタ本体の閉塞に伴う放射性物質の漏えいを考慮しても，中央制御室の運転員の被ばく量は緊急作業時における線量限度に対して十分な裕度を確保でき，修復作業に係る被ばくが緊急時作業に係る線量限度以下とできる期間として，3日間とする。

試料採取設備のらち単一設計とする事故時に 1 次冷却材を採取する設備については，当該設備に要求される事故時の原子炉の停止状態の把握機能が単一故障により失われる場合であっても，格納容器再循環サンプ水位の確認により，事故時の再循環水のほう素濃度 が未臨界ほう素濃度以上であることを確認でき，事故時の原子炉の停止状態の把握機能を代替できる設計とする。

原子炉格納容器スプレイ設備については，安全機能に最も影響を与える条件となる単一

故障を仮定しても，原子炉格納容器の泠却機能を達成できる設計とする。動的機器の単一故障として原子炉格納容器スプレイ設備 1 系統の不動作又はディーゼル発電機 1 台の不動作を，静的機器の単一故障として配管 1 箇所の全周破断を仮定し，静的機器の単一故障 を仮定した場合でも，動的機器の単一故障を仮定した場合と同等の原子炉格納容器の冷却機能を達成できるよう，格納容器スプレイ配管を多重化した上で，逆止弁を設置し，スプ レイ流量を碓保できる設計とする。

なお，単一設計とするアニュラス空気浄化系統ダクトの一部，中央制御室非常用循環フ ィルタユニット及び中央制御室非常用循環系統ダクトの一部については，劣化モードに対 する適切な保守管理を実施し，故障の発生を低く抑える。

【説明資料（2．1：12 条－20～53）】

第3項について

安全施設は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に対して，そ れぞれの場所に応じた圧力，温度，湿度，放射線等に関する環境条件を定める。
これらの環境条件を必要に応じて換気空調設備，遮蔽等で維持するとともに，そこに設置する安全施設は，これらの環境条件下で期待されている安全機能を維持できる設計とす る。

第4項について

安全施設は，それらの健全性及び能力を確認するため，その安全機能の重要度に応じ，必要性及びプラントに与える影響を考慮してテストラインを用いる等適切な方法により原子炉の運転中又は停止中に試験又は検査ができる設計とする。
試験又は検査ができる設計とする対象設備を表に示す。

表 試験又は検査が可能な設計とする対象設備

構築物，系統及び機器	設計上の考慮
反応度制御系，原子炉停止系	試験のできる設計とする。
原子炉冷却材圧力バウンダリ	原子炉の供用期間中に試験及び検査ができ る設計とする。
残留熱を除去する系統	試験のできる設計とする。
非常用炉心泠却系統	定期的に試験及び検査できるとともに，その健全性及び多重性の維持を確認するため，独立に各系の試験及び検査ができる設計とす る。
最終的な熱の逃がし場へ熱を輸送する系統	試験のできる設計とする。
原子炉格納容器	定期的に，所定の圧力により原子炉格納容器全体の漏えい率測定ができる設計とする。電線，配管等の貫通部及び出入口の重要な部分 の漏えい試験ができる設計とする。
隔離弁	隔離弁は定期的な動作試験が可能であり，か つ，重要な弁については漏えい試験ができる設計とする。
原子炬格納容器熱除去系	試験のできる設計とする。
原子炉格納施設雰囲気を制御する系統	試験のできる設計とする。
安全保護系	原則として原子炉の運転中に，定期的に試験 ができるとともに，その健全性及び多重性の維持を確認するため，各チャンネルが独立に試験できる設計とする。
電気系統	重要度の高い安全機能に関連する電気系統 は，系統の重要な部分の適切な定期的試験及 び検査が可能な設計とする。
燃料の貯蔵設備及び取扱設備	安全機能を有する構築物，系統及び機器は，適切な定期的試験及び検査ができる設計と する。

第5項について

原子炬施設内部においては，内部発生エネルギの高い流体を内蔵する弁及び配管の破断並びに高速回転機器の破損による飛来物が想定される。
（1）内部発生エネルギの高い流体を内蔵する弁及び配管の破断による飛来物
高温高圧の流体を内包する原子炉冷却材圧力バウンダリを構成する主要配管，主蒸気管及び主給水管の破損（破断又は漏えい）時に，破損した配管のむち打ち及び流出流体のジ ェットカにより，他の安全施設が損傷しない設計とする。
設計に当たっては，配管の破損の形態を「配管の破断に伴う「内部発生飛来物に対する設計上の考慮」について」に基づいて決定し，必要に応じ以下の措置を講じる。
a．配管破損想定箇所と防護対象機器は，十分な離隔距離をとる。
b．配管破損想定箇所又は防護対象機器を障壁で囲む。
c．上記のいずれかの対策がとれない場合，破断の影響に十分耐える配管ホイップレス トレイント等を設ける。
（2）高速回転機器の破損による飛来物
タービンミサイルについては，蒸気タービン及び発電機の破損防止対策を行うことによ り，蒸気タービン及び発電機の破損事故の発生確率を低くするとともに，ミサイルの発生 を仮に想定しても安全施設への到達確率を低くすることによって，原子炉施設の安全性を損なう可能性を極めて低くする設計とする。
1 次泠却材ポンプのミサイルについては，ポンプの破損限界に達するような加速要因を排除し，ポンプミサイルを考慮する必要のない設計とする。
また，安全施設のうち独立性を要求されているものは，相互の離隔距離又は障壁によっ て分離し，ある系列で発生が想定される飛来物が他の系列に影響を与えず，かつ，ある系列で発生が想定される飛来物に伴ら溢水等の二次的影響が他の系列に波及しない設計と する。

第 6 項について

重要安全施設のうち， 2 以上の発電用原子炉施設において共用し，又は相互に接続する ものはない。

【説明資料（2．2．2：12条－57）】

第 7 項について

安全施設（重要安全施設を除く。）のうち， 2 以上の原子炉施設と共用するものとして， 66 kV 送電線，モニタリングポスト及びモニタリングステーション専用の無停電電源装置， 2 次系純水タンク，火災感知設備の一部並びに消火設備の一部がある。
66 kV 送電線は， 1 号， 2 号及び 3 号炉の所内負荷をまかならために必要な容量を有す るとともに，各号炉に遮断器を設置し，短絡等が発生した場合，それを検知し故障箇所

を自動で遮断することにより，原子炉施設の安全性を損なうことのない設計とする。 モニタリングポスト及びモニタリングステーション専用の無停電電源装置は， 1 号， 2 号及び 3 号炬共用として設計し，非常用所内電源系から独立した電源構成にするとと もに，モニタリングポスト及びモニタリングステーションの機能を維持するために必要 な電力を供給できる容量を有することにより，原子炉施設の安全性を損ならことのない設計とする。

2 次系純水タンクは， 1 号， 2 号及び 3 号炉で必要とする補給水量に対し十分な容量 を有することにより，原子炉施設の安全性を損ならことのない設計とする。
火災感知設備の一部及び消火設備の一部は， 1 号及び 2 号炉と 3 号炉で独立した火災，感知設備及び消火設備を設置することにより，原子炉施設の安全性を損なうことのない設計とする。

安全施設（重要安全施設を除く。）のらち， 2 以上の原子炉施設を相互に接続するもの として，運転指令装置，給水処理設備及び消火設備がある。
運転指令装置は， 1 号及び 2 号炉の運転指令装置と 3 号炉の運転指令装置を相互接続 するものの， 3 号炉中央制御室から制御装置間の接続•切り離しを行うことが可能なこ とから，悪影響を及ぼすことはなく，1号及び 2 号炉と 3 号炉で独立した制御装置を設置することにより，原子炉施設の安全性を損ならことのない設計とする。
給水処理設備及び消火設備は， 1 号及び 2 号炉と 3 号炉のろ過水及び消火水を融通する ために相互接続するものであり，連絡ラインには弁を設置して，連絡弁閉止時には物理的に分離し，連絡時には弁を閉止することで物理的な分離が可能なことから，悪影響を及ぼすことはなく，連絡時において相互の圧力は同じであり， 1 号及び 2 号炉と 3 号炉 のプラント運転に必要な水を供給できる容量を有することにより，原子炉施設の安全性 を損ならことのない設計とする。

【説明資料（2．2．2：12条－54～61）】

1.3 気象等

該当なし

1.4 設備等

6．計測制御設備
6.5 試料採取設備

6．5．2 設計方針
（6）多重性，多様性及び独立性
試料採取設備は，事故時において，原子炉格納容器内雰囲気ガスを採取し水素濃度及 び放射性物質濃度を監視できる設計とする。
また， 1 次冷却材を採取し 1 次冷却材中のほう素濃度及び放射性物質濃度を監視でき

る設計とする。
なお，単一設計とする事故時に 1 次冷却材を採取する設備については，当該設備に要求される「事故時の原子炉の停止状態の把握機能」が単一故障により失われる場合で あっても，格納容器再循環サンプ水位の確認により，事故時の再循環水のほう素濃度 が未臨界ほう素濃度以上であることを把握でき，事故時の原子炉の停止状態の把握機能の代替が可能とする設計とする。

【説明資料（2．1．3：12 条－44～47）】

8．放射線防護設備及び放射線管理設備
8.2 換気空調設備

8．2．2 設計方針

（6）多重性及び独立性
換気空調設備のうち重要度の特に高い安全機能を有する換気空調設備は原則として 2 系列で構成し，各系列ごとに独立のディーゼル発電機に接続する等，構成する機器 に対し事故後の短期間では動的機器の単一故障を仮定しても，また，事故後 24 時間以上経過した長期間では動的機器の単一故障又は想定される静的機器の単一故障のいず れかを仮定しても，さらにこれら単一故障の仮定に加え外部電源が利用できない場合 においてもその安全機能が達成できるように，多重性及び独立性を備えた設計とする。 なお，換気空調設備のうち単一設計とする中央制御室非常用循環フィルタユニット及 び中央制御室非常用循環系統ダクトの一部については，劣化モードに対する適切な保守管理を実施し，故障の発生を低く抑えるとともに，想定される故障の除去又は修復 のためのアクセスが可能であり，かつ，補修作業が容易となる設計とする。

【説明資料（2．1．2：12条－28～43）】

9．原子炉格納施設
9.2 原子炉格納容器スプレイ設備

9．2．2 設計方針

（3）多重性及び独立性
原子炉格納容器スプレイ設備は 2 系列で構成し，各系列ごとに独立のディーゼル発電機に接続する等，構成する機器の単一故障の仮定に加え外部電源が利用できない場合 においてもその安全機能が達成できるように，多重性及び独立性を備えた設計とする。原子炉格納容器スプレイ設備は，事故後の短期間では動的機器の単一故障を仮定して も，また，事故後の長期間では動的機器の単一故障又は静的機器の単一故障のいずれ かを仮定しても，所定の安全機能を果たし得るように多重性及び独立性を有する設計 とする。
単一故障に関連していう事故後の短期間とは，原則として事故発生後あるいは原子炉

停止後 24 時間の運転期間を，また，事故後の長期間とは，その後の運転期間をいうも のとするが，原子炉冷却材喪失事故を想定する場合，原子炉格納容器スプレイ設備に ついては，事故後の短期間は原子炉椧却材喪失事故発生から注入モード終了までの運転期間，また，事故後の長期間は再循環モード以降の運転期間とする。
単一設計としていた格納容器スプレイ配管については，多重化することとした。また，単一設計とするスプレイリングについては，当該設備に要求される安全機能に最も影響を与えると考えられる静的機器の単一故障を再循環モード切替え後に仮定した場合 でも，動的機器の単一故障を仮定した場合と同等の格納容器の泠却機能を達成できる よう，逆止弁を設置しスプレイ流量を確保できる設計とする。

【説明資料（2．1．4：12条－48～53）】

9．2．3 主要設備

（5）スプレイリング及びスプレイノズル
スプレイリングは，原子炉格納容器内に高さを変えて同心円状に 4 本設置する。最下段のスプレイリング入口の配管に逆止弁を設置する。スプレイノズルは，ホローコー ン型で角度を変えてスプレイリングに取り付ける。

【説明資料（2．1．4：12条－48～53）】

