女川原子力発電所第2号機 工事計画審査資料	
資料番号	O2－他－F－01－0101＿改1
提出年月日	2022年 8月5日

女川原子力発電所第2号機設計及びエ事計画変更認可申請の概要 （ホース本数の変更前後の内訳に対する補足資料）

2022年8月5日

東北電力株式会社

より，そう，ちから。

今回の設計及びエ事計画変更認可申請において，詳細設計の進捗に伴う可搬型設備の運用変更に伴い，一部の送水用ホースの敷設ルート（最長ルート）の変更を行うが，送水用ホースの本数の変更内容について，より詳細な比較も入れ本資料にて説明する。

2．ホース本数の変更前後の内訳（300A）

＞送水用ホース（300A）の本数および総延長の変更前後の比較を以下に示す。（説明資料「O2－補－E－01－0013」より抜粋）
＞送水用ホース（300A）の用途は以下の4つの接続用途で使用するが，このうち工事範囲を回避する必要がある，用途 1 及及び （4）のホース内訳を以下のように変更する（黄色網掛け部）。

用途（1）：大容量送水ポンプ（タイプ I ）設置場所（淡水貯水槽等）から注水用ヘッダ設置場所
用途（2）：大容量送水ポンプ（タイプII）設置場所（2号機海水ポンプ室等）から淡水貯水槽
用途（3）：大容量送水ポンプ（タイプ II）設置場所（取水ロ等）から放水砲設置場所
用途（4）：大容量送水ポンプ（タイプ I）設置場所（取水ロ）から熱交換器ユニット設置場所

【変更前】送水用ホース保有数

用途	最長ルート	ホース総延長	ホース内訳
（1）		1，620m	33 本（20m：1本，50m： 32 本）$\times 2$ セット
（2）		1，602m	33 本（2m：1本， $50 \mathrm{~m}: 32$ 本）$\times 1$ セット
（3）		1，445m	31 本（ $5 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 2$ 本， $50 \mathrm{~m}: 28$ 本）$\times 1$ セット
（4）		1，555m	34 本（ $5 \mathrm{~m}: 1$ 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 2$ 本， $50 \mathrm{~m}: 30$ 本） × セセット
特定儿 ート*	－	－	19本（2m： 5 本，5m：4本，10m： 4 本，20m：6本）
合計			217 本（ $2 \mathrm{~m}: 6$ 本， $5 \mathrm{~m}: 7$ 本， $10 \mathrm{~m}: 6$ 本， $20 \mathrm{~m}: 14$ 本， 50m：184本）
予備			```5本 (2m:1本, 5m:1本, 10m:1本, 20m:1本, 50m:1本)```

＊：各用途における最長ルート以外の敷設ルートでのみ使用するホース

【変更後】送水用ホース保有数

用途	最長ルート	ホース総延長	ホース内訳
（1）		$1,780 \mathrm{~m}$	37 本 $(10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 1$ 本， $50 \mathrm{~m}: 35$ 本）$\times 2$ セッ卜
（2）		1，602m	33 本（2m：1本， $50 \mathrm{~m}: 32$ 本）$\times 1$ セット
（3）		1，445m	31 本（5m：1本， $20 \mathrm{~m}: 2$ 本， $50 \mathrm{~m}: 28$ 本）$\times 1$ セット
（4）		$1,620 \mathrm{~m}$	35 本（ $5 \mathrm{~m}: 2$ 本， $10 \mathrm{~m}: 1$ 本， $50 \mathrm{~m}: 32$ 本）$\times 2$ セット
特定ル ート＊	－	－	21 本（2m：5本， $5 \mathrm{~m}: 2$ 本， $10 \mathrm{~m}: 4$ 本， $20 \mathrm{~m}: 10$ 本）
合計			229 本 $(2 \mathrm{~m}: 6$ 本， $5 \mathrm{~m}: 7$ 本， $10 \mathrm{~m}: 8$ 本， $20 \mathrm{~m}: 14$ 本， 50m: 194 本)
予備			5 本（ $2 \mathrm{~m}: 1$ 本， $5 \mathrm{~m}: 1$ 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 1$ 本， 50m：1本）

＊：各用途における最長ルート以外の敷設ルートでのみ使用するホース
＞ホースは $2 \mathrm{~m}, ~ 5 \mathrm{~m}, ~ 10 \mathrm{~m}, ~ 20 \mathrm{~m}$ 及び 50 m の 5 種類の長さがある。（1）から（4）の各用途において，最長ル一ト以外の敷設ルート では最長ルートで用いない長さのホース，または，最長ルートで用いるホースの本数を超えて必要となるホースがあり，こ れを特定ルートのホースとして考慮する。
＞用途（1）では工事範囲の回避により，東側の注水用ヘッダに接続したルートより，西側の注水用ヘッダに接続したルートの方が最長ルートとなる。
＞用途（4）では，取水ロからR／B北側の熱交換器ユニットに接続後，放水槽へ繋がるルートより，取水ロからR／B西側熱交換器ユニットに接続後，放水槽へ繋がるルートが最長ルートとなる。
＞ホースは起点となる水源から原子炉建屋に向かって主に長尺（ 50 m ）で敷設し，建屋近傍でそれ以外の長さを用いる場合 がある。
＞変更前後のルート比較について次頁以降に示す。
枓囲みの内容は商業機密の観点から公開できません。

2．ホース本数の変更前後の内訳（300A）

用途（1）：大容量送水ポンプ（タイプ I）設置場所（淡水貯水槽等）から注水用ヘッダ設置場所【変更前】

2．ホース本数の変更前後の内訳（300A）

用途（1）：大容量送水ポンプ（タイプ I）設置場所（淡水貯水槽等）から注水用ヘッダ設置場所【変更後】

2．ホース本数の変更前後の内訳（300A）

用途（4）：大容量送水ポンプ（タイプ I）設置場所（取水口等）から熱交換器ユニット設置場所【変更前】

2．ホース本数の変更前後の内訳（300A）

用途（4）：大容量送水ポンプ（タイプ I）設置場所（取水口等）から熱交換器ユニット設置場所【変更後】

3．ホース本数の変更前後の内訳（150A）

＞送水用ホース（150A）の本数および総延長の変更前後の比較を以下に示す。（説明資料「O2－補－E－01－0013」より抜粋）
$>$ 送水用ホース（150A）の用途は以下の4つの接続用途で使用するが，このうち工事範囲を回避する必要がある，用途（3） のホース内訳を以下のように変更する（黄色網掛け部）。

用途（1）：大容量送水ポンプ（タイプ I ）から使用済燃料プールの注水・スプレイ接続ロ
用途（2）：大容量送水ポンプ（タイプ I ）から原子炉圧力容器又は原子炉格納容器への注水接続口
用途（3）：注水用ヘッダ設置場所（西側）から復水貯蔵タンク接続口
用途（4）：大容量送水ポンプ（タイプ I ）から原子炉格納容器への送水接続口

【変更前】送水用ホース保有数

用途	最長儿ート	ホース総延長	ホース内訳
$\begin{aligned} & \text { (1), (2) } \\ & \text { 及 }{ }^{2}(4) \end{aligned}$		235 m	（1）13本（ $5 \mathrm{~m}: 1$ 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 11$ 本）$\times 2$ セット （2） 13 本 $(5 \mathrm{~m}: 1$ 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 11$ 本）$\times 2$ セット （4） 13 本 $(5 \mathrm{~m}: 1$ 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 11$ 本）$\times 2$ セット
（3）		185m	10 本（5m： 1 本， $20 \mathrm{~m}: 9$ 本）$\times 1$ セット
特定ル $\text { - }{ }^{*}$	－	－	49 本（ $1 \mathrm{~m}: 6$ 本， $2 \mathrm{~m}: 10$ 本， $5 \mathrm{~m}: 14$ 本， $10 \mathrm{~m}: 15$ 本， 20 m ： 4本）
合計			137 本 $1 \mathrm{~m}: 6$ 本， $2 \mathrm{~m}: 10$ 本， $5 \mathrm{~m}: 21$ 本， $10 \mathrm{~m}: 21$ 本， 20m：79 本）
予備			5 本 1 m：1 本， $2 \mathrm{~m}: 1$ 本， $5 \mathrm{~m}: 1$ 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 1$本）

＊：各用途における最長ルート以外の敷設ルート

【変更後】送水用ホース保有数

用途	最長ルート	ホース総延長	ホース内訳
$\begin{aligned} & \text { (1), (2) } \\ & \text { 及 U゚(4) } \end{aligned}$		235 m	（1） 13 本 $(5 \mathrm{~m}: 1$ 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 11$ 本）$\times 2$ セット （2） 13 本 $(5 \mathrm{~m}: 1$ 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 11$ 本）$\times 2$ セット （4） 13 本 $(5 \mathrm{~m}: 1$ 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 11$ 本）$\times 2$ セット
（3）		355 m	19 本（ $5 \mathrm{~m}: 1$ 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 17$ 本）$\times 1$ セット
特定ル ート*	－	－	48 本 $(1 \mathrm{~m}: 6$ 本， $2 \mathrm{~m}: 10$ 本， $5 \mathrm{~m}: 14$ 本， $10 \mathrm{~m}: 14$ 本， 20 m ： 4本）
合計			145 本 $1 \mathrm{~m}: 6$ 本， $2 \mathrm{~m}: 10$ 本， $5 \mathrm{~m}: 21$ 本， $10 \mathrm{~m}: 21$ 本， 20m：87 本）
予備			5 本 $(1 \mathrm{~m}: 1$ 本， $2 \mathrm{~m}: 1$ 本， $5 \mathrm{~m}: 1$ 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 1$本）

＊：各用途における最長ルート以外の敷設ルート
$>$ 用途（3）は「R／B西側注水用ヘッダ～復水貯蔵タンク接続ロ（マンホール）」が最長ルートであることに変わりはないが，エ事範囲を回避することで，ホース長および内訳が増加する。
＞変更前後のルート比較について次頁以降に示す。

3．ホース本数の変更前後の内訳（150A）
用途（3）：注水用ヘッダ設置場所から復水貯蔵タンク接続口【変更前】

3．ホース本数の変更前後の内訳（150A）
用途（3）：注水用ヘッダ設置場所から復水貯蔵タンク接続
口【変更後】
＞① から（4）の各用途において，最長ルート以外の敷設ルートでは最長ルートで用いない長さのホース，または，最長ルートで用いる ホースの本数を超えて必要となるホースがあり，これを特定ルートのホースとして考慮する。
＞各用途において異なる敷設ルートを同時に使用することはないため，最長ルートに記載の本数との比較により特定ルートに用いる ホースを集計する。
＞用途（1）（注水）及び用途（4）（除熱）の場合，必要本数として2セット（ホース長に対して2倍の量）を保有する。

用途	ホースルート	$\begin{aligned} & \text { 最長 } \\ & \text { ルート } \end{aligned}$	$\begin{gathered} \text { ホース長 } \\ (\mathrm{m}) \end{gathered}$	ホース内訳				
				2 m	5 m	10 m		50 m
（1）	淡水貯水槽～ルート $1 \sim R / B$ 東側注水用ヘッダ		1620	－	－	－		64
	淡水貯水槽～ルート $1 \sim R / B$ 北側注水用ヘッダ		1542	2	－	－	4	60
	淡水貯水槽～ルート $1 \sim R / B$ 西側注水用ヘッダ	\bigcirc	1780	－	－	2	2	70
	淡水貯水槽～ルート $2 \sim R / B$ 東側注水用ヘッダ		1220	－	－	－	2	48
	淡水貯水槽～ルート $2 \sim R / B$ 北側注水用ヘッダ		1115	－	2	2	－	44
	淡水貯水槽～ルート $2 \sim R / B$ 西側注水用ヘッダ		987	2	2	2	2	38
（2）	取水ロ～ルート1～淡水貯水槽		1410	－	－	1	－	28
	取水ロ～ルート2～淡水貯水槽		1432	1	－	1	1	28
	海水ポンプ室～ルート1～淡水貯水槽	\bigcirc	1602	1	－	－	－	32
	海水ポンプ室～ルート2～淡水貯水槽		1202	1	－	－	－	24
（3）	海水ポンプ室～北側放水砲		207	1	1	－	－	4
	海水ポンプ室～東側放水砲		165	－	1	1	－	3
	海水ポンプ室～西側放水砲		467	1	1	1	－	9
	取水ロ～ルート1～北側放水砲		870	－	－	－	1	17
	取水ロ～ルート1～東側放水砲		970	－	－	－	1	19
	取水ロ～ルート1～西側放水砲		1107	1	1	－	－	22
	取水口～迂回ルート～北側放水砲		1315	－	1	1		26
	取水口～迂回ルート～東側放水砲	\bigcirc	1445	－	1	－	2	28
	取水口～迂回ルート～西側放水砲		1192	1	－	－	2	23
	海水ポンプ室～北側泡薬剤混合装置～放水砲		207	1	1	1	2	
	海水ポンプ室～東側泡薬剤混合装置～放水砲		165	－	1	－	3	2
	海水ポンプ室～西側泡薬剤混合装置～放水砲		355	－	1	1	2	6
（4）	海水ポンプ室～北側熱交換器ユニット～放水槽		452	2	4		4	16
	海水ポンプ室～西側熱交換器ユニット～放水槽		900	－	4	4	2	34
	取水ロ～ルート1～北側熱交換器ユニット～放水槽		1110	－	－	－	6	42
	取水ロ～ルート1～西側熱交換器ユニット～放水槽		1537	2	2	2	2	60
	取水口～迂回ルート～北側熱交換器ユニット～放水槽		1555	－	2	2	＊ 4	60
	取水ロ～迂回ルート～西側熱交換器ユニット～放水槽	\bigcirc	1620	－	4	2	－	64

※1：4本中最長ルートの2本 を除く2本が対象
※2：3本中最長ルートの2本 を除く1本が対象
※3：4本中最長ルートの2本 を除く2本が対象

4．特定ルートに用いるホース内訳の考え方（150A）

＞150Aのホースは，屋外でのホース敷設と原子炉建屋内でのホース敷設を考慮し，保管場所ごとに必要なホ一ス本数を集計する。 150Aのホースにおける特定ルートのホース内訳を以下に示す。
$>$ 用途 1 （注水），用途（2）（注水）及び用途（4）（注水）の場合，必要本数として2セット（ホース長に対して 2 倍の量）を保有する。

用途	ホースルート	$\begin{aligned} & \text { 最長 } \\ & \text { ルート } \end{aligned}$	ホース長（m） ［保管場所内訳］	ホース内訳 ${ }^{\text {鹈，} 4}$					※ $1:$ 保管場所の記載がない場合
				1 m	2 m	5 m	10 m	20 m	
（1）	R / B 東側注水用ヘッダ～R／B東側注水接続口		10	－	－	4	－		は屋外保管エリアでの保管を
	R / B 北側注水用ヘッダ～R / B 北側注水接続口		33	2	2	－	2	2	※2：最長ルートの2本（5m及び 10m）はそれぞれR／B 1F保管のため，屋外分は屋外分 で特定ルートを集計
	R / B 西側注水用ヘッダ～R／B屋内注水接続口	\bigcirc	$\begin{gathered} 235 \\ {[\text { 屋外 }]} \\ {[R / B 1 F]} \\ {[R / B 3 F]} \end{gathered}$	－	－	$\begin{gathered} 2 \\ {[0]} \\ {[2]} \\ {[0]} \end{gathered}$	$\begin{gathered} 2 \\ {[0]} \\ {[2]} \\ {[0]} \end{gathered}$	$\begin{gathered} 22 \\ {[6]} \\ {[16]} \\ {[0]} \end{gathered}$	
	R / B 東側注水用ヘッダ～HPCS D／G室～プールスプレイ（可搬型）		174 ［屋外］ ［R／B $1 F$ 1F］ ［R／B $3 F$ ］	－	$\begin{gathered} 4 \\ {[0]} \\ {[0]} \\ {[4]} \\ \hline \end{gathered}$	$\begin{gathered} {[0\rfloor} \\ 8 \\ {[0]} \\ {[2]} \\ \hline 6] \end{gathered}$	$\begin{gathered} 6 \\ 6 \\ {[0]} \\ {[0]} \\ {[6]} \end{gathered}$	$\begin{aligned} & 12 \\ & {[4]} \\ & {[4]} \\ & \hline[4] \\ & \hline \end{aligned}$	
	R / B 北側注水用ヘッダ～大物搬出入ロ～プールスプレイ（可搬型）		154 ［屋外］ ［R／B $1 F]$ ［R／B $3 F]$	－	4 $[0]$ $[0]$ $[4]$	8 $[2]$ $[0]$ $[6]$	10 $[2]$ $[0]$ $[8]$	［4］ ［4］ ［2］ ［2］	※3：保管場所ごとに必要なホー ス本数を考虜して特定ルー トに用いるホースを集計

	R／B東側注水用ヘッダ～R／B東側注水接続口		10	－	－	－	2	－
	R / B 北側注水用ヘッダ～R / B 北側注水接続口		33	2	2	－	2	2
（2）	R / B 西側注水用ヘッダ～R／B屋内注水接続口	\bigcirc	$\left.\begin{array}{c} 235 \\ {[\text { [屋外] }} \\ {[R / B 1 F]} \\ {[R / B} \\ {[R F} \end{array}\right]$	－	－	2 $[0]$ $[2]$ $[0]$	$\begin{gathered} 2 \\ {[0]} \\ {[2]} \\ {[0]} \end{gathered}$	$\begin{gathered} 22 \\ {[6]} \\ {[16]} \\ {[0]} \end{gathered}$

（3）	R／B東側注水用ヘッダ～復水貯蔵タンク接続口		95	－	－	1	1	4
	R／B北側注水用ヘッダ～復水貯蔵タンク接続口		35	－	－	1	1	1
	R／B西側注水用ヘッダ～復水貯蔵タンク接続口	\bigcirc	355	17				
（4）	R／B東側注水用ヘッダ～R／B東側注水接続口		10	－	－	4	－	－
	R / B 北側注水用ヘッダ～R / B 北側注水接続口		33	2	2	4	－	2
	R / B 西側注水用ヘッダ～R／B屋内注水接続口	\bigcirc	235 ［屋外］ $[R / B 1 F]$ $[R / B 3 F]$	－	－	$\begin{gathered} 2 \\ {[0]} \\ {[2]} \\ {[0]} \end{gathered}$	$\begin{gathered} 2 \\ {[0]} \\ {[2]} \\ {[0]} \end{gathered}$	$\begin{gathered} 22 \\ {[6]} \\ {[16]} \\ {[0]} \end{gathered}$

※5：用途（1）のR／B北側注水用 ヘッダ設置で2本集計されて おり，プールスプレイ（可搬型）も同時に敷設する可能性を考慮してプールスプレイ （可搬型）の2本も集計
※4：用途（1）のR／B東側注水用 ヘッダ設置で4本集計されて おり，同時にR／B北側に注水用ヘッダを設置しないため プールスプレイ（可搬型）の2本は集計しない
\square 特定ルート合計 $\cdots 1 \mathrm{~m}: 6$ 本， $2 \mathrm{~m}: 10$ 本， $5 \mathrm{~m}: 14$ 本， $10 \mathrm{~m}: 14$ 本， $20 \mathrm{~m}: 4$ 本

