東通原子力発電所 津波の評価について (コメント回答)(補足説明資料)

2022年8月10日 東北電力株式会社

目次

Ι.Γ	十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価	
1.	. 固着域, すべり量に関する検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2.	. 3.11地震に伴う津波による津波堆積物 ······	13
З.	. 津波堆積物調査	19
4.	. 千島海溝・日本海溝沿いで発生する津波解析結果(スナップショット) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	82
5.	. 波源領域の違いが津波高さに与える影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	86
6.	. 3.11地震における広域の津波特性を考慮した特性化モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	91
7.	. 3.11地震における宮城県沖の大すべり域の破壊特性を考慮した特性化モデル ・・・・・・・・・・・・・・・・・・・・・・・・・	98
8.	. 超大すべり域のすべり分布の設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	107
9.	. 十勝沖・根室沖の超大すべり域が発電所の津波高さに及ぼす影響	116
10.	. 基準断層モデル選定と詳細パラメータスタディ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	123
11.	. 破壊開始点に係る知見の整理・反映 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	138
12.	. 内閣府(2020)の津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	150
13.	. 特性化モデル④の周期特性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	161
14.	. 発電所周辺地形及び各特性化モデルの周期特性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	173

Ⅱ.「プレート間地震」に起因する津波の評価

1.「プレート間地震」に起因する津波の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	191
2.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価結果との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	203

Ⅲ.「津波地震」に起因する津波の評価

1. 阿部(2003)及びMtとMwの関	系 ·····	209
2. 概略パラメータスタディ結果		211

Ⅳ.「海洋プレート内地震」に起因する津波の評価

1. 断層上縁深さの設定及び不確かさの考慮方法	•••••	216
2. 概略パラメータスタディ結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		220

V. 地震以外に起因する津波の評価

1. 発電所周辺陸域における地すべり ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	228
2. 下北太平洋側大陸棚外縁の海底地すべり ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	232
3. 日高舟状海盆の海底地すべり ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	237

Ⅵ. 地震に起因する津波と地震以外に起因する津波の組合せの評価

1. 評価対象とする津波の選定	•••••••••••••••••••••••••••••••••••••••	289
-----------------	---	-----

Ⅶ. 計算条件等

1.	潮位条件 ••••••••••••••••••••••••••••••••••••	295
2.	. 津波解析条件 ····································	298
З.	. 既往津波の再現解析	301
4.	津波水位の評価位置 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	305
5.	. 水位下降側の評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	311
6.	. 想定津波群の作成方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	314
7.	津波伝播特性の検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	319

1. 固着域, すべり量に関する検討

- 1.1 岩手県沖南部
- 1.2 福島県沖·茨城県沖
- 1.3 房総沖

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 1. 固着域、すべり量に関する検討

1.1 岩手県沖南部

- Ye et al.(2012)は、過去の地震発生履歴、すべり欠損分布及び2011年東北地方太平洋沖地震(以下、「3.11地震」という。)後の余震分布等の分析 から、岩手県沖南部には非地震性のすべりにより歪みが解放される低地震活動域(SLSR(Sanriku-Oki low-seismicity region))が存在することを明 らかにしている。
- ・ 地震調査研究推進本部(2012)は、過去の地震発生履歴から、蓄積されている地震モーメントを地震としてはほとんど解放しておらず、さらに、1989年、1992年、1994年の三陸沖の地震の後に非地震性すべりが起こったとし、カップリングは他の領域に比べると小さいと評価している。なお、すべり 欠損分布及び3.11地震でのすべり分布から、M9の地震が発生した際はある程度地震性のすべりを生じうると考えられるとしている。

Figure 1. (a) Seismicity from the NEIC catalog around Japan from 1973 to 2011 prior to the 11 March 2011 Tohoku-Oki earthquake with $m_b \ge 5.5$. Hypocentral depths are indicated by the color scale, and symbol size increases with seismic magnitude. The magenta rectangular region indicates the SLSR. The black rectangle indicates the zoomed-in region in Figure 1b. (b) Map showing the location of the Sarriku low-seismicity region (SLSR), and schematic rupture zone of historic large earthquakes along the northeast Honshu coast [*ERC*, 1998] with blue dotted ellipsoidal shapes and a gray dotted shape for the 1896 tsunami earthquake source area [*Tanioka and Satake*, 1996] updip of the SLSR, respectively. Slip contours of 1, 10, 20, 30, 40, and 50 m for 2011 Tohoku-Oki rupture model of *Yue and Lay* [2011] are shown along with a red star for the USGS/NEIC epicentral location. The darkly dotted ellipse indicates the approximate location of the 896 Jogan tsunami source region [*Minoura et al.*, 2001]. The dashed curve indicates the position of the trench.

1975年~2011年におけるM5.5以上の震源分布と低地震活動域(SLSR)の位置 (Ye et al.(2012))

Figure 12. Schematic map of the Japan megathrust fault showing the distribution of rupture zone of historic large events and the 2011 Tohoku earthquake (large blue regions), and aftershocks (small blue regions) along the megathrust from Japan Trench. We plot the southern end of the 1896 rupture zone as extending to about 39°N, north of the aseismic zone seen in Figure 2e, consistent with the southern extent of the tsunami model of *Aida* [1977] and the region of strong inundation on the Iwate coast indicated by *Hatori* [1974]. The convergence velocity of the Pacific Plate is indicated by a yellow arrow. The magenta region highlights the SLSR on the megathrust. The SLSR is largely aseismic, but does have modest-size patches of seismogenic regions downdip, including the off-Kamaishi repeater zone. The shallower portion of the SLSR is almost devoid of moderate-size thrust events, but seismic activity is high in the 1896 rupture zone zone region further updip.

既往地震の震源概略図 (Ye et al.(2012))

第1027回審査会合(R4.1.28) 資料1-2 p4 再掲

1. 固着域, すべり量に関する検討

1.1 岩手県沖南部

- Uchida and Matsuzawa (2011)では、小繰り返し地震データ等を用いて、3.11地震の震源域におけるカップリング率及びアスペリティの階層構造について分析を行い、岩手県沖南部のカップリングは、福島県沖・茨城県沖のカップリングよりも弱いことを示している。
- また、岩手県沖及び房総沖のカップリングが弱い領域は、本震の破壊伝播を防ぐ領域であるとしている。

Fig. 1. Hypocenters of mainshock and aftershocks in a 24-hour period for the 2011 Tohoku earthquake (black circles) and aftershock areas for $M \ge 7$ earthquakes since 1926 (green lines, Uchida *et al.*, 2009). Hypocenter data are from the Japan Meteorological Agency. Red dashed line shows down-dip limit of the Philippine Sea Plate (Uchida *et al.*, 2009). Thick pink line shows the western limit of interplate earthquake distribution from Igarashi *et al.* (2001) and Uchida *et al.* (2009).

3.11地震後24時間の地震分布(黒丸)と 1926年以降に発生したM7以上の余震域 (緑線)の関係 (Uchida and Matsuzawa(2011))

Fig. 2. Interplate coupling coefficient estimated from small repeating earthquakes for the period from 1993 to March 2007 (color). Distribution of small repeating earthquakes (black dots) and coseismic slip area (contours, linuma *et al.* (2011)) are also shown in this figure. Bold lines denote the down-dip limit of interplate earthquakes (Igarashi *et al.*, 2001; Uchida *et al.*, 2009) and the trench axis. Dashed bold line denotes northeastern limit of the Philippine Sea plate (Uchida *et al.*, 2009). The averaged coupling coefficient is estimated for every 0.3 degree by 0.3 degree windows that have three or smaller repeating earthquake groups. The red star indicates the hypocenter of the 2011 Tohoku earthquake. Stars marked by M, F and A indicate the hypocenter of the 2005 Miyagi-oki earthquake (*M*7.2), the *M*7.3 earthquake on March 19, 2011 and the largest aftershock on March 11, 2011 (*M*7.7), respectively.

1993年~2007年における小繰り返し地震データから 推定されるカップリング率(Uchida and Matsuzawa(2011))

第1027回審査会合(R4.1.28)

資料1-2 p5 再掲

Fig. 4. Schematic figure showing the distribution of the hierarchical structured asperities at Tohoku. The circles show asperities that have internal structures. The arrows indicate aseismic slip. The dashed bold line shows the NE limit of the Philippine Sea plate and the dashed thin line shows the down-dip limit of the interplate earthquake. The area between the down-dip limit and the Japan trench has both seismic and aseismic slip.

> アスペリティの階層構造の模式図 (Uchida and Matsuzawa(2011))

以上から, 岩手県沖南部の固着度は, 宮城県沖, 青森県東方沖及び岩手県沖北部, 福島県沖・茨城県沖※の固着度より小さいと考えられる。

※:福島県沖・茨城県沖の固着等に関する分析の詳細は、次頁以降で説明。

1. 固着域, すべり量に関する検討

1.2 福島県沖·茨城県沖:地震学的知見(地震発生履歴)①

 福島県沖・茨城県沖の領域では、1938年、1987年にM6~7クラスの地震が群発地震として発生しているが(気象庁(2009))、過去400年間で青森県 東方沖及び岩手県沖北部で見られるようなM8クラスの地震が発生した記録は無い(地震調査研究推進本部(2019))。

宮城県沖の地震(1936年、1978年、2005年)と2003年10月31日の地震のすべり分布は、山中(2003,2005)による.

1938 年5月23日、11月5日の地震のすべり分布は、室谷ほか(2004)による. 室谷ほか(2004)と今回の地震 のすべり分布のコンターは、0.5m、1m、2m、4m、6m、8m、10m、12mである. 海底地形データは日本海洋データセンターの J-EG6500 を使用.

引用文献

第谷智子・菊池正幸・山中佳子・島崎写彦(2004):1938年に起きた複数の福島県東方沖地震の破壊過程(2),日本地震学会2004年秋季大会 山中佳子(2003):EIC地震学ノート, No.141. 山中佳子(2005):EIC地震学ノート, No.188.

過去の地震のすべり量分布(気象庁(2009))

第1027回審査会合(R4.1.28) 資料1-2 p6 再掲

6

すり、そう、ちから。

1. 固着域, すべり量に関する検討

1.2 福島県沖·茨城県沖:地震学的知見(地震発生履歴)②

- 福島県沖沿岸では、超巨大地震(東北地方太平洋沖型)のうち、869年の津波、4-5世紀の津波、紀元前3-4世紀の津波による津波堆積物が存在しており(文部科学省研究開発局ほか(2010))、福島県沖は869年の津波の波源域(佐竹ほか(2008))に含まれる。
- 上記を踏まえ、地震調査研究推進本部(2019)では、「超巨大地震(東北地方太平洋沖型)」の次の地震の震源域は「宮城県沖を必ず含み、隣接する領域(岩手県沖南部または福島県沖)の一方にまたがり、場合によっては茨城県沖まで破壊が及ぶ超巨大地震である。」とし、「将来発生する地震の規模については、東北地方太平洋沖地震を代表値としてM9.0程度」と評価している。

<u>以上の地震学的知見から、福島県沖・茨城県沖はM7クラスの地震を発生させる領域であり、福島県沖は、「超巨大地震(東北地方太平洋沖</u>型)」の震源域に含まれる領域である。

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 1. 固着域、すべり量に関する検討 第1027回審査会合(R4.1.28) 資料1-2 p8 再掲

- 1.2 福島県沖・茨城県沖:測地学的知見(プレート境界深部で発生する長期的な非地震性すべり)①
- 西村(2012)は、GPSによって観測された地殻変動から推定されるすべり欠損分布から、福島県沖のプレート境界の固着状況について分析し、1990 年代後半(下図(a))は固着が強い傾向にあり、かつ固着域の一部は陸域までかかっていたが、2000年代後半(下図(b))はほとんどOであったとしている。
- ・ また,上記固着の状況と3.11地震の地震すべり域(下図(c))との比較から,2000年代後半に見られた固着の剥がれは,3.11地震に至る一連のプロ セスとして発生していたと捉えることができるとしている。

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 1. 固着域, すべり量に関する検討

9

- 1.2 福島県沖・茨城県沖:測地学的知見(プレート境界深部で発生する長期的な非地震性すべり)②
- Ozawa et al.(2012)は、2003年以降のGPSデータの測地インバージョンから、3.11地震の震源域において、2003年以降に発生した地震の余効すべり を推定し、2003年から2010年における余効すべりの全体モーメントは、2003年以降に発生した5つのM7クラスの地震すべり※の全体モーメントの 約2.5倍に達するとしている。また、同期間の余効すべりの領域は3.11地震の震源域でかつその深部に対応するとしている。
- さらに、上記余効すべりと2003年以降に発生した5つのM7クラスの地震すべりが、3.11地震の震源域での固着の剥がれを生じさせた可能性がある としている。

☆: 2003/10/31(Mw6.7), 2005/8/16(Mw7.1), 2008/5/8(Mw6.8), 2005/7/19(Mw6.9), 2010/3/14(Mw6.5)

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 1. 固着域、すべり量に関する検討

- 第1027回審査会合(R4.1.28) 資料1-2 p10 再掲 **10**
- 1.2 福島県沖・茨城県沖:測地学的知見(プレート境界深部で発生する長期的な非地震性すべり)③
- Yokota and Koketsu(2015)は、1996年3月21日~2011年3月8日におけるGPSによる地殻変動データの分析から、3.11地震の震源域のうち、福島県 沖から宮城県沖にかけての深部領域で2002年から3.11地震発生前までの約9年間、長期的なスロースリップが発生していたとしている。
- ・ また、上記の長期的なスロースリップが、3.11地震の発生に至る1つのイベントであった可能性があるとしている。

Figure 1 | Time series of east-west deformation at GPS stations in the Tohoku district. (a) Selected GPS stations (orange squares) and M_w 6-8 earthquakes (green stars) in the index map. (b) Original time series of east-west deformation obtained from the GEONET F3 solutions³⁴ at the stations and the effects of the M_w 6-8 earthquakes (green lines). (c) Detrended time series obtained by removing the regular trends in 1996-2001 (solid red lines), annual variations and earthquake effects. These time series deviated from the zero lines around 2002 and accelerated at the time of the 2003 or 2005 earthquake (green lines).

GPS観測点における東西方向の変位の時系列 (Yokota and Koketsu (2015))

Figure 2 | Distribution of total deviations and the result of a two-source inversion. The red and purple contours represent the distributions of the forward slip by the very long-term transient event and the backslip by the northern source, which were obtained through the two-source inversion of the total deviations (pink arrows). The black arrows denote synthetic deviations computed for the inversion result. The co-seismic slip distribution of the 2011 Tohoku earthquake⁸ is also displayed with the epicentre (white star) and Japan Trench (dark green line). The black bar at the bottom right denotes 100 km.

長期的なスロースリップの発生領域 (Yokota and Koketsu (2015))

<u>以上の測地学的知見から、福島県沖・茨城県沖のプレート境界深部で発生する長期的な非地震性すべりは、「超巨大地震(東北地方太平洋沖型)</u> の発生に至る一連のプロセスと考えられる。 I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 1. 固着域、すべり量に関する検討

- 1.2 福島県沖・茨城県沖:岩手県沖南部との比較
- 福島県沖には、岩手県沖南部のプレート境界深部と同様に、非地震性のすべりにより歪みが解放される低地震活動域(SLSR(Sanriku-Oki low-seismicity region))が存在する(Ye et al.(2012))。
- Uchida and Matsuzawa(2011)によれば、小繰り返し地震データ等を用いた3.11地震の震源域におけるカップリング率に関する分析から、福島県沖・ 茨城県沖のプレート境界深部のカップリングと比較して、岩手県沖南部のプレート境界深部のカップリングは弱いことを示している。

Figure 12. Schematic map of the Japan megathrust fault showing the distribution of rupture zone of historic large events and the 2011 Tohoku earthquake (large blue regions), and aftershocks (small blue regions) and aftershocks (small blue regions), north of the aseismic zone seen in Figure 2e, consistent with the southern extent of the tsunami model of *Aida* [1977] and the region of strong inundation on the Iwate coast indicated by *Hatori* [1974]. The convergence velocity of the Pacific Plate is indicated by a yellow arrow. The magenta region highlights the SLSR on the megathrust. The SLSR is largely aseismic, but does have modest-size patches of seismogenic regions downdip, including the off-Kamaishi repeater zone. The shallower portion of the SLSR is almost devoid of moderate-size thrust events, but seismic activity is high in the 1896 rupture zone region further updip.

岩手県沖南部における低地震活動域 (Ye et al.(2012))

Fig. 1. Hypocenters of mainshock and aftershocks in a 24-hour period for the 2011 Tohoku earthquake (black circles) and aftershock areas for $M \ge 7$ earthquakes since 1926 (green lines, Uchida *et al.*, 2009). Hypocenter data are from the Japan Meteorological Agency. Red dashed line shows down-dip limit of the Philippine Sea Plate (Uchida *et al.*, 2009). Thick pink line shows the western limit of interplate earthquake distribution from Igarashi *et al.* (2001) and Uchida *et al.* (2009).

3.11地震後24時間の地震分布(黒丸)と 1926年以降に発生したM7以上の余震域 (緑線)の関係 (Uchida and Matsuzawa(2011))

Fig. 2. Interplate coupling coefficient estimated from small repeating earthquakes for the period from 1993 to March 2007 (color). Distribution of small repeating earthquakes (black dots) and coseismic slip area (contours, linuma *et al.* (2011)) are also shown in this figure. Bold lines denote the down-dip limit of interplate earthquakes (Igarashi *et al.*, 2001; Uchida *et al.*, 2009) and the trench axis. Dashed bold line denotes northeastern limit of the Philippine Sea plate (Uchida *et al.*, 2009). The averaged coupling coefficient is estimated for every 0.3 degree by 0.3 degree windows that have three or smaller repeating earthquake groups. The red star indicates the hypocenter of the 2005 Miyagi-oki earthquake (M 7.2), the M 7.3 earthquake on March 9, 2011 and the largest aftershock on March 11, 2011 (M 7.7), respectively.

1993年~2007年における小繰り返し地震 データから推定されるカップリング率 (Uchida and Matsuzawa (2011))

上記知見から、福島県沖・茨城県沖におけるプレート境界深部の固着度は岩手県沖南部よりも大きいと考えられる。

1. 固着域, すべり量に関する検討

1.3 房総沖

第1027回審査会合(R4.1.28) 資料1-2 p12 再掲

12

- ・ 房総沖の相模トラフ周辺では,陸側のプレートの下にフィリピン海プレートが,さらに下方には太平洋プレートが沈み込み,茨城県から千葉県沿岸の南東方 向に向かってフィリピン海プレートの北東端が太平洋プレートに接している(Uchida et al.(2009), Shinohara et al.(2011)他)。
- Uchida et al.(2009)は, 地震学的見地から, 太平洋プレートの上盤側をなすプレートの違いによってカップリング率が大きく異なるとし, 茨城県沖よりも固着 が弱いとしている 。
- Shinohara et al.(2011)は、3.11地震の余震分布に関する分析から、フィリピン海プレート北東端の位置と3.11地震の破壊域が一致していることを明らかにするとともに、フィリピン海プレートは、破壊伝播のバリアとして作用する重要な役割を果たす可能性があるとしている。

<u>以上から、房総沖の固着度は宮城県沖、青森県東方沖及び岩手県沖北部、福島県沖・茨城県沖の領域の固着度と比較して小さいとともに、テクトニクス的背景</u>から茨城県沖と房総沖の間に構造境界(破壊のバリア)を想定することが可能と考えられる。

2.3.11地震に伴う津波による津波堆積物

- 2.1 津波堆積物の分布範囲
- 2.2 各地点で認められた津波堆積物

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 2.3.11地震に伴う津波による津波堆積物

2.1 津波堆積物の分布範囲

- M9クラスの巨大地震による津波堆積物の特徴を把握するため、3.11地震を対象に、地震規模(波源域、すべり量)に関する情報が得られる津波堆積物の沿岸方向の広がり、並びに陸域方向への分布範囲・層厚に着目して整理した。
- 3.11地震に伴う津波による津波堆積物は、震源域から離れた地域においても、数十cmの厚さを有することを確認した(各地域の津波堆積物の分布状況の詳細を次頁以降に示す)。

地域	内容	備考
宮城県仙台市	最大層厚は50cm程度。内陸1km範囲で数十cmの砂層が堆積。	Abe et al.(2012) 後藤•箕浦(2012)
青森県三沢市	最大層厚は30cm程度。内陸150m付近まで数十cmの砂層が堆積。	中村ほか(2011)
茨城県北茨城市	最大層厚は21cm。内陸100m付近まで数十cmの砂層が堆積。	山田·藤野(2013)
千葉県旭市	最大層厚は30cm程度。内陸200m付近まで数十cmの砂層が堆積。	山田・藤野(2013)

3.11地震に伴う津波による津波堆積物の分布状況

<u>以上から、M9クラスの巨大地震に伴う津波の場合、広域に亘って同一の特徴を有する津波堆積物を確認することができると考えられる。</u>

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 2.3.11地震に伴う津波による津波堆積物

第1027回審査会合(R4.1.28) 資料1-2 p15 再掲

3.11地震に伴っ洋波による洋波堆積物

2.2 各地点で認められた津波堆積物

■宮城県仙台市(仙台平野)(Abe et al.(2012),後藤・箕浦(2012))

津波高さ	5~10m程度
堆積物の分布範囲	3km~4km程度
最大層厚	30~50cm程度

・ 内陸1km範囲で、数十cmの砂層の堆積が見られる。

Fig. 1. Map showing the study area and locations of each transect (based on the pretsunami 10 m DEM data provided by GSI), measured points of flow height by TETJSG (2011). The solid red line shows transects with more than several sites. The dashed red line shows transects with the measurement of the inundation distance and the maximum extent of the sand.

0 0.5

1.5 2 2.5 3 3.5

Distance from shoreline (km)

1

Transects A and N are adopted from Goto et al. (2011, accepted for publication-b).

調査位置 (Abe et al.(2012))

Distance from shoreline (km) 津波堆積物の層厚変化 (Abe et al.(2012))

0 0.5 1 1.5 2 2.5

4

0

0.5

Distance from shoreline

2.3.11地震に伴う津波による津波堆積物

2.2 各地点で認められた津波堆積物

■青森県三沢市淋代(中村ほか(2011))

津波高さ	5.5m
堆積物の分布範囲	250m程度
最大層厚	30cm程度

天ヶ森

砂森

塩釜

織笠

六川目

細谷

5 km

0.5 km 0

0

森林

集落

五川目

500m 四川目の

¹²13

• 内陸150m付近まで、数十cmの砂層の堆積が見られる。

ションションを

第1027回審査会合(R4.1.28) 資料1-2 p16 再掲

16

調査位置 (中村ほか(2011))

淋代

2.3.11地震に伴う津波による津波堆積物

■茨城県北茨城市関南(山田·藤野(2013))

N

Rei

津波高さ	約6m(調査地域から約900m南の海岸付近)
堆積物の分布範囲	180m程度
最大層厚	約21.0cm

・ 内陸100m付近まで、数十cmの砂層の堆積が見られる。

17

第1027回審査会合(R4.1.28)

資料1-2 p17 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 2.3.11地震に伴う津波による津波堆積物

Elevation (m asl)

(cm)

Thickness

2.2 各地点で認められた津波堆積物

■千葉県旭市飯岡(山田・藤野(2013))

津波高さ	約8.25m(調査測線脇の川の河口付近)
堆積物の分布範囲	560m程度
最大層厚	25.0~30.0cm程度

内陸200m付近まで、数十cmの砂層の堆積が見られる。

N Survey pits
 Inundation height (m)
 Run-up height (m) Flow direction
Inundation depth (m)
Inundated limit

第1027回審査会合(R4.1.28)

資料1-2 p18 再掲

Transect IO Inundated limit ** 10 cm Mud Tsunami deposi Very fine sand 10:12 Fine sand Ø10:08 10:04 Ø10:00 VI0:10 10:03 Ø10:05 0:00 10:01 Elev 10:02 Medium sand Transect IO' /ation Coarse sand RE ו (m asl) ס Granule Agricultural soil - Parallel lamination -Tsunami deposit Grading -Caltivation Road River Road Paddy Shore Protection forest Paddy S (Seaward) N (Landward) 30 Transect IO ♦♦ Average thickness among 3 pits ···· Transect IO' Range of thicknesses measured at 3 pits 20 10 0 100 200 300 400 500 600

> Distance from shoreline (m) 地形断面と層厚変化(山田・藤野(2013))

3. 津波堆積物調査

- 3.1 調査概要
- 3.2 イベント堆積物の堆積要因の評価
- 3.3 調査結果のまとめ
- 3.4 各地点の調査結果
- 3.5 文献調査の実施プロセス

3. 津波堆積物調査

3.1 調査概要

青森県太平洋沿岸における津波堆積物及び完新世堆積物の文献調査を実施し、基礎資料とした上で空中写真判読結果、現地状況等を考慮し、津波堆積物が堆積・残存する可能性が考えられる地点を対象に、東京電力と共同(一部を除く)で津波堆積物調査を実施した。

第1027回審査会合(R4.1.28)

資料1-2 p20 再掲

20

調査地点は、発電所敷地内を含む青森県太平洋沿岸(下北郡東通村尻屋崎,下北郡東通村猿ヶ森周辺,下北郡東通村小田野沢,東京電力敷地内,東北電力敷地内,上北郡六ヶ所村尾駮老部川,上北郡六ヶ所村尾駮発茶沢,上北郡六ヶ所村平沼,三沢市六川目)とした。

3. 津波堆積物調査

第1027回審査会合(R4.1.28) 資料1-2 p21 再掲 21

3.2 イベント堆積物の堆積要因の評価:評価方針

- イベント堆積物の堆積要因(津波,高潮,洪水,土石流等)について、はじめに、後藤ほか(2017)(詳細は次頁に記載)を参考に、"津波起因の可能性があるイベント堆積物"、もしくは"津波起因の可能性が低いイベント堆積物"を評価した(評価フロー:検討1)。
- 次に、"津波起因の可能性があるイベント堆積物"について、平面的な連続性、堆積学的特徴、堆積環境に係る分析(珪藻化石分析、粒度分析、鉱物組成分析)
 を踏まえ、"津波起因の可能性が高いイベント堆積物"であるかどうかを評価した。なお、評価にあたっては、堆積環境に係る分析結果を重視した(評価フロー: 検討2)。

■評価フロー

3. 津波堆積物調査

3.2 イベント堆積物の堆積要因の評価:後藤ほか(2017)

- ・ 後藤ほか(2017)は、これまでの国内における津波堆積物研究を踏まえ、陸上から浅海にかけて堆積した津波堆積物の実用的な認定手順を示している。
- 認定手順のうちイベント堆積物の認定方法に関する内容を以下に示す。

■後藤ほか(2017):イベント堆積物の認定方法

- ✓ 調査は、イベント堆積物を選定する作業をまず行うが、効率よく見出すため、"現世の津波堆積物と類似した堆積学的特徴を有するイベント堆積物"であるかどうかを検討する。
- ✓ 現世の津波堆積物と類似した堆積学的特徴には、例えばイベント堆積物の下部の 侵食面、偽礫、上方細粒化構造、貝殻や木片の濃集等の特徴があり、津波堆積 物の一般的な特徴と考えられる。ただし、これらの構造は高潮・高波堆積物や洪水 堆積物でも観察される場合があり、津波堆積物であることを直接的に示唆するわ けではない。
- ✓ 上記のような特徴は強い水流の作用に伴う堆積現象だった可能性や地質学的に 短時間で堆積した可能性を示唆することから,津波堆積物の候補として詳細分析 を行う対象を狭めることができる。

※1: 点線と実線は、それぞれ上位に分類されるための十分条件と必要条件

津波堆積物の認定項目のうち堆積学的特徴に関する内容^{※2} (後藤ほか(2017)に一部加筆)

大分類	津波堆積物の特徴	No	項目	分類 グループ
Ι		1	イベント堆積物下端部に侵食面が認められる。	С
		2	イベント堆積物の下部に偽礫(粘土礫等)が認めら れる。	С
		3	イベント堆積物の下位層に変形が認められる。	С
		4	イベント堆積物に火炎状構造が認められる。	С
		5	当時の海岸線から連続的に追いかけて見た場合、イ ベント堆積物が陸側に薄層化する。	В
		6	当時の海岸線から連続的に追いかけて見た場合,イ ベント堆積物が陸側に細粒化する。	В
		7	イベント堆積物の内部または最上部に木・植物片が 濃集する。	С
		8	イベント堆積物の内部に貝殻、礫等が濃集する。	С
		9	イベント堆積物に級化・逆級化構造が認められる。	С
	堆積学的特徴(現地 観察・剥ぎ取り試料 からわかる情報)	10	イベント堆積物の内部に強い水流下で形成されたこ とを示す堆積構造が認められる。	С
		11	イベント堆積物の内部に海・陸両方向の流れを示す 堆積構造が周期的に認められる(潮汐堆積物との識 別ができる)。	В
		12	上下の堆積物や周辺の地形から推定される平常時の 堆積環境では形成され得ない堆積構造,包有物等が 認められる。	Х
		13	当時の海岸線から連続的に追いかけて見た場合,内 陸へ向かう流れを示す古流向が認められる(洪水堆 積物との識別のため)。	В
		14	イベント堆積物の中に長周期の波の影響下で形成さ れた証拠が認められる(侵食面や薄い泥層(マッド ドレープ)で境された複数の層がイベント層内部に ある,など)。	С
		15	海域に生息・生育する生物の遺骸が認められないも のの,上流側(砂丘や砂浜など)からの物質供給が 確認できる。	В

※2:分類グループは、認定フローのカッコ内に対応

より、そう、ちから。

※1:イベント堆積物の分布範囲は必ずしも浸水範囲とは一致しない。

○:津波起因の可能性が高い △:津波起因の可能性がある

×:津波起因の可能性が低い /:化石産出せず

※2:イベント堆積物の基底標高を確認することは出来なかったことから、確認できた下限標高を記載。

イベント堆積物 調査地点 基底標高※1 推定年代 粒度または 海水生種または海水~ の評価 有無 層相 汽水生種の珪藻化石 (年) 鉱物組成 (T.P.) Δ 尻屋崎 有 約8.1m A.D.190年頃 Ο / 下面境界が不明瞭 タテ沼付近 \cap Δ 右 約7.6m^{※2} A.D.1650年頃より後 × (No.26e) 斜交葉理発達,下面境界が明瞭 砂丘砂に類似 0 タテ沼付近 Δ 有 約11.8m A.D.50年頃 / 斜交葉理(一部平行葉理)が存在. ▲ (No.27a) 砂丘砂に類似 下面境界が明瞭 Ο 猿ヶ森川 Δ 猿ヶ森 約11.0m^{※2} 右 Ο A.D.1300年頃 斜交葉理,平行葉理が存在, (No.30d) 砂丘砂に類似 周辺 下面境界がやや明瞭 \cap 材木沢 Δ 有 約7.6m A.D.1500年頃 斜交葉理,平行葉理が存在 × 砂丘砂に類似 (No.32a) 下面境界が明瞭 Ο 大川 Δ Δ 右 約6.8m A.D.1450年頃より後 ▲ 斜交葉理が存在、偽礫を含む、 汽水生種 砂丘砂に類似 (No.35b) 下面境界が明瞭 0 小田野沢 有 約4m A.D.1700年頃 Ο / 下面境界がやや明瞭~明瞭

(イベント堆積物の評価の凡例)

●:津波起因の可能性が高い ▲:津波起因の可能性がある

×:津波起因の可能性が低い —:評価に適する堆積物が分布しない等評価できない

イベント堆積物の分析結果

東北電力敷地内のB測線を除く地点において、津波起因の可能性が高い、もしくは津波起因の可能性があるイベント堆積物が認められた。

なお、イベント堆積物の標高、推定年代及び文献調査の結果を踏まえると、特定の歴史津波と対比することは困難である。

Ⅰ.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価

イベント堆積物

3.3 調査結果のまとめ:尻屋崎から小田野沢

3. 津波堆積物調杳

(イベント堆積物の分析結果の凡例)

3. 津波堆積物調査

3.3 調査結果のまとめ:東京電力敷地内から六川目

調査地点			イベント堆利	責物	イベント堆積物の分析結果			
		有無	基底標高 [※] (T.P.) 推定年代 (年)		層相	海水生種または海水~ 汽水生種の珪藻化石	粒度または 鉱物組成	イヘント堆積物 の評価
東京電力敷地内		有	約7.4m	A.D.1400年頃	△ 下面境界が不明瞭	△ 汽水~淡水生種	/	
東北電力 敷地内	A測線	有	約6.1m	B.C.500年頃	〇 下位層の削り込み	/	△ 海浜砂に類似	•
	B測線	人工 改変	/	/	/	/	/	_
	C測線	有	約8.6m	B.C.750年頃	〇 上方細粒化, 内陸へ薄層化 下面境界が明瞭, 平滑	 汽水生種	△ 砂丘砂または段 丘砂に類似	•
	D測線	有	約8.4m	B.C.2800年頃	〇 上方細粒化, 内陸へ薄層化 下面境界が明瞭, 平滑	0	/	
尾駮老部川		有	約1.9m	B.C.2000年頃	△ 下面境界で層相が漸移	0	/	•
尾駮発茶沢		有	約6.2m	B.C.2950年頃	〇 下面境界が明瞭	/	/	•
平沼		有	約1.6m	A.D.550年頃	〇 下面境界がやや明瞭	0	/	•
六川目		有	約2.5m	B.C.4700年頃以前	〇 下面境界がやや明瞭	/	/	•
 (イベント堆積物の分析結果の凡例) (イベント堆積物の評価の凡例) (イベント堆積物の可能性が高い △:津波起因の可能性がある ●:津波起因の可能性が高い △:津波起因の可能性がある 								

×:津波起因の可能性が低い /:化石産出せず

×:津波起因の可能性が低い —:評価に適する堆積物が分布しない等評価できない

※:イベント堆積物の分布範囲は必ずしも浸水範囲とは一致しない。

資料1-2 p24 再掲

3. 津波堆積物調査

3.4 各地点の調査結果[※]

※:猿ヶ森周辺における調査結果の詳細は、本資料に記載。

- 3.4.1 尻屋崎
- 3.4.2 小田野沢
- 3.4.3 東京電力敷地内
- 3.4.4 東北電力敷地内
- 3.4.5 尾駮老部川
- 3.4.6 尾駮発茶沢
- 3.4.7 平沼
- 3.4.8 六川目

3. 津波堆積物調査 3.4 各地点の調査結果

3.4.1 尻屋崎:地点選定理由及び調査内容

■地点選定理由

• 砂丘により閉塞された谷底低地が存在しており、泥炭層や腐植質泥炭層が分布することが期待され、津波堆積物が残存する可能性がある。

凡例

砂 丘 谷底低地 標高10m

コアリング位置

■調査内容

・ 地質調査:ボーリング調査(パーカッション式,孔径86mm)

	ボーリングNo.	室内試験
既往調査	Sr-1, 2, 3	放射性炭素年代
追加調査※	Sr-4, 5, 6	放射性炭素年代,火山灰分析,珪藻化石分析

※:追加調査理由

✓ 既往調査では, ボーリング調査(3孔)により, 評価に適するイベント堆積物は認められなかったと評価。

✓ 今回, 既調査地点より海側におけるイベント堆積物の有無を確認するため, 追加のボーリング調査を実施した。

3. 津波堆積物調査 3.4 各地点の調査結果

3.4.1 尻屋崎:イベント堆積物に関する評価

【評価】 津波起因の可能性が高く, その分布最高標高を約8.1m(Sr-6孔)と評価する。

- ・ 堆積年代が一部重なり,同層準の可能性がある堆積物は,Sr-5孔及びSr-6孔で確認される。
- 層相,海水生種または海水~汽水生種の珪藻化石の有無,イベント堆積物の連続性から総合的に判断した。次頁以降に,各調査結果の詳細を示す。

現海岸線からの距離(m)

3.4.1 尻屋崎:イベント堆積物に関する評価(層相)

各孔において確認したイベント堆積物の下位層との境界については、Sr-4孔とSr-6孔は不明瞭であり、Sr-5孔については、やや不明瞭であることから、流水の影響を受けた可能性は低いと考えられる。

- ■Sr-5孔(掘削深度:0.00~1.44m) イベント堆積物
 - ✓ 細礫,炭化物片混じり中粒砂
 - ✓ 深度: 0.41~0.42m

- ■Sr-6孔(掘削深度:0.00~1.78m) イベント堆積物
- ✓ 中粒砂~細礫を含む砂質シルト
 ✓ 深度:0.56~0.62m(0.52~0.58m)
 ※:()内は, コア採取時の圧縮を補正した掘削深度

3.4.1 尻屋崎:イベント堆積物に関する評価(珪藻化石分析)

• Sr-4孔で確認したイベント堆積物は,海水生種,並びに海水~汽水生種の珪藻化石を含まない。

• Sr-5孔, Sr-6孔で確認したイベント堆積物は,海水生種,並びに海水~汽水生種の珪藻化石を含む。

海水一汽水--淡水生種産出車・各種産出車・完彩殻産出車は全体基数、淡水生種の生態性の比率は淡水生種の合計を基数として百分車で算出した。 いずれも100個体以上検出された試料について示す。なお、●は1%未満、+は100個体未満の試料について検出した種類を示す。

環境指標種

現準倍標種 4.外洋指標種 8.內清指標種 C1:海洋濃ఢ指標種 C2:汽水蒸爆指標種 D1:海水砂質干渦指標種 D2:汽水砂質干渦指標種 E1:海水肥質干渦指標種 E2:汽水溶質干渦指標種 F:淡水趁生種源(以上は小杉:1080) 6:淡水浮遊生種類 H:河口浮遊性種群 J:上流性河川指標種 K1中~下流性河川指標種 L:最下流性河川指標種群 #:湖沼浮迎性種 H:湖沼沼泥湿始指標種 0:泥泥湿地付着生種 P:高原湿原指細種群 0:陸域指標種類(以上は安藤,1990) S:好污濁怪種 F:好清水性種 U:近邁花性種(以上はAsai & Natambe,1995) R1.磁生珪葉 (RA.4課, R8.03篇:伊藤・北肉,1991) イベント堆積物

3.4.1 尻屋崎:コア写真①

1m

3.4.1 尻屋崎:コア写真②

イベント堆積物 0.69~0.74m(0.59~0.64m):細粒砂 ※:())内は、コア採取時の圧縮を補正した掘削深度

第1027回審査会合(R4.1.28)

資料1-2 p31 再掲

イベント堆積物 056~062m(052~058m

0.56~0.62m(0.52~0.58m):中粒砂~細礫 を含む砂質シルト

※:()内は、コア採取時の圧縮を補正した掘削深度

3.4.2 小田野沢:地点選定理由及び調査内容

■地点選定理由

• 浜堤・砂丘の背後に後背湿地が存在しており、泥炭層や腐植質泥炭層が分布することが期待され、津波堆積物が残存する可能性がある。

■調査内容

・ 地質調査:ボーリング調査(パーカッション式,孔径86mm)
・ 室内試験:火山灰分析,放射性炭素年代測定,珪藻化石分析

小田野沢地点の調査位置図

3. 津波堆積物調査 3.4 各地点の調査結果

3.4.2 小田野沢:イベント堆積物に関する評価

【評価】 津波起因の可能性が高く、その分布最高標高を約4m(Od-4孔)と評価する。

- ・ 同層準の堆積物はOd-2孔及びOd-4孔で確認される。
- 層相は下面境界がやや明瞭~明瞭であり、砕屑物が流水により比較的短期間に、あるいは下位層を侵食しながら運搬され堆積したものと考えられる。
- ・ また, 珪藻化石分析を実施したOd-2孔のイベント堆積物は, 海水~汽水生種の珪藻化石を含む。

第1027回審査会合(R4.1.28)

資料1-2 p33 再掲

第1027回審査会合(R4.1.28) 資料1-2 p34 再掲

3.4.3 東京電力敷地内:地点選定理由及び調査内容

■地点選定理由

• 砂丘の背後に後背湿地が存在しており、泥炭層や腐植質泥炭層が分布することが期待され、津波堆積物が残存する可能性がある。

■調査内容

- ・ 地質調査:ボーリング調査(パーカッション式, 孔径86mm)
- 室内試驗:火山灰分析,放射性炭素年代測定,珪藻化石分析

3. 津波堆積物調査 3.4 各地点の調査結果

3.4.3 東京電力敷地内:イベント堆積物に関する評価

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3.津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内

3.4.4(1) 地点選定理由及び調査内容

■地点選定理由

• 砂丘の背後に後背湿地(低地堆積物)が存在しており, 泥炭層や腐植質泥炭層が分布することが期待され, 津波堆積物が残存する可能性がある。

第1027回審査会合(R4.1.28)

資料1-2 p36 再掲

36

■調査内容

・ 地質調査:ボーリング調査(パーカッション式(孔径86mm), ハンドコアラー), ピット掘削調査(幅:2m, 長さ:2m, 深さ:1.3~2.7m), 露頭調査

・ 室内試験:火山灰分析,放射性炭素年代測定,珪藻化石分析,砂の粒度組成分析,鉱物組成分析

3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内

3.4.4(2) A測線:イベント堆積物に関する評価

【評価】津波起因の可能性が高く、その分布最高標高を約6.1m(A2孔)と評価する。

- ・ 同層準の堆積物はA1孔及びA2孔で確認される。
- 層相は、下面境界が明瞭であり、砕屑物が流水により短期間に、あるいは下位層を侵食しながら運搬され堆積したものと考えられる。 NW→
- また、粒度組成が海浜砂と類似した中粒砂の特徴を示す。

第1027回審査会合(R4.1.28)

資料1-2 p37 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3. 津波堆積物調査 3. 4 各地点の調査結果 3. 4. 4 東北電力敷地内 3. 4. 4(3) B測線: イベント堆積物に関する評価

【評価】 B1 孔に下面境界を削り込む堆積物が認められるが、その分布標高は人工改変に伴う乱れにより評価できない。

38

第1027回審査会合(R4.1.28)

資料1-2 p38 再掲

3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(4) C測線: イベント堆積物に関する評価(まとめ)①

【評価】
津波起因の可能性があり、その分布最高標高を約8.6m(C2p(ピット))と評価する。

- 同層準の堆積物はC1'孔, C1p(ピット)及びC6p(ピット)で確認される。
- 層相,海水生種または海水~汽水生種の珪藻化石の有無,粒度組成,鉱物組成の特徴及び敷地内における同堆積年代の砂層の平面的な分布から総合的に判断した。次頁以降に,各調査結果の詳細,並びにC4.2孔,C5孔で確認されたイベント堆積物に係る評価内容を示す。

第1027回審査会合(R4.1.28)

資料1-2 p39 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3. 津波堆積物調査 3. 4 各地点の調査結果 3. 4. 4 東北電力敷地内 3. 4. 4(4) C測線: イベント堆積物に関する評価(層相)

C1'孔(ボーリング)

- C1'孔(ボーリング)で確認される最上位のイベント堆積物と同層準の砂層は、下面境界が明瞭であり、砕屑物が流水により短期間に、あるいは下位層を 侵食しながら運搬され堆積したものと考えられる。
- ・ なお, C6p(ピット掘削)で確認される最上位のイベント堆積物と同層準の砂層は, 下位層と指交し, レンズ状または舌状に尖滅する。

C測線の調査位置

C6p(ピット掘削)(南面)

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3. 津波堆積物調査 3. 4 各地点の調査結果 3. 4. 4 東北電力敷地内 3. 4. 4(4) C測線: イベント堆積物に関する評価(層相)

 C1p, C6p, C2pのピット掘削面を対象に珪藻化石分析を実施した。分析は、イベント堆積物の堆積前後における環境変化の有無についても確認することを 目的に、イベント堆積物(砂層)及びその直下と直上の低地堆積物を構成する腐植質シルトも対象とした。

C2p(模式柱状図)

・ 分析の結果,淡水生種の珪藻化石を主とし,海水生種及び海水~汽水生種の珪藻化石は含まない。

■珪藻化石の産出率

第1027回審査会合(R4.1.28)

資料1-2 p42 再掲

C4 2

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(4)C測線:イベント堆積物に関する評価(砂の粒度分析)①

第1027回審査会合(R4.1.28) 資料1-2 p43 再掲

43

- イベント堆積物の堆積要因を検討するため、砂の粒度組成を分析した。
- なお,指標用として,海底堆積物,海浜堆積物,砂丘堆積物及び段丘堆積物から試料を採取し分析した。

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内

3.4.4(4) C測線:イベント堆積物に関する評価(砂の粒度分析)②

• 海浜堆積物,砂丘堆積物及び段丘堆積物に類似しているが,イベント堆積物の堆積要因を評価するのは困難であった。

44

第1027回審査会合(R4.1.28)

資料1-2 p44 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
 3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内
 3.4.4(4)C測線:イベント堆積物に関する評価(鉱物組成分析)①

第1027回審査会合(R4.1.28) 資料1-2 p45 再掲

• イベント堆積物の堆積要因を検討するため,鉱物組成を分析した。

• なお,指標用として,海底堆積物,海浜堆積物,砂丘堆積物及び段丘堆積物から試料を採取し分析した。

45

3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(4)C測線:イベント堆積物に関する評価(鉱物組成分析)②

• 分析の結果,段丘堆積物,砂丘堆積物または段丘堆積物に類似することを確認した。

■指標試料の鉱物組成分析結果

CT 022/5 C35 C8

C測線の調査位置

■各イベント堆積物の鉱物組成分析結果

第1027回審査会合(R4.1.28) 資料1-2 p46 再掲

46

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内

3.4.4(4) C測線:イベント堆積物に関する評価(敷地内における平面的な分布)

- C2pで認められた分布最高標高のイベント堆積物と同層準のイベント堆積物(c層)は、C測線上の海岸線から山側の約205mまで連続して分布するとともに、 D測線(DR1地点)にも認められる。
- なお, D測線の堆積物には, 海水生種, 海水~汽水生種の珪藻化石が含まれる。

C2pで認められた分布最高標高のイベント堆積物と同層準のイベント堆積物(c層)の分布

第1027回審査会合(R4.1.28)

資料1-2 p47 再掲

3.津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内

3.4.4(4) C測線:イベント堆積物に関する評価(C4.2孔で確認されたイベント堆積物)①

■層相

- ・ C4.2孔はハンドコアラーによる調査孔であり、2箇所において砂(C4.2-Ev1及びC4.2-Ev2)が確認された。
- ・ 上位のC4.2-Ev1は細粒~中粒砂であり、レンズ状の小塊として腐植質シルト中に混入しており、明瞭な挟在層としての産状を呈していない。
- 下位のC4.2-Ev2 は細粒砂が混じる腐植質シルトであり、他孔で認められるイベント堆積物のような、細粒~中粒砂を主体とする砂層ではない。
- C4.2孔の海側に位置するC2.5孔, C3p(ピット), C3.5孔及びC4孔では砂層が確認されておらず, さらに海側で確認されたイベント堆積物と連続性はないものと考えられる。

19、そう、ちから。 東北電力

第1027回審査会合(R4.1.28) 資料1-2 p48 再掲 48

3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内

3.4.4(4) C測線:イベント堆積物に関する評価(C4.2孔で確認されたイベント堆積物)②

■珪藻化石分析

- 上位の砂(C4.2-Ev1),下位の砂(C4.2-Ev2)及び砂の堆積前後における環境変化の有無についても確認することを目的に、その直下と直上の低地堆積物を構成する腐植質シルトも対象に珪藻化石分析を実施した。
- 上位の砂(C4.2-Ev1)から珪藻化石は産出されなかった。直下の腐植質シルトからは淡水生種の珪藻化石が産出され、海水生種及び海水~汽水生種の 珪藻化石は産出されなかった。また、直上の腐植質シルトから産出された珪藻化石は淡水生種を主とし、極めて低い産出率で海水生種を伴うが、特徴的 に認められた種は、流水不定性種の Cymbella aspera、流水不明の Cymbella spp., Diploneis spp., Pinnularia spp.等であった。これらの珪藻種から、イベン ト堆積物直上の腐植質シルトは、おおむね湿地の環境下で堆積したと推定される。
- 下位の砂(C4.2-Ev2)からは珪藻化石は産出されなかった。直下の腐植質シルト、並びに直上の腐植質シルトから産出された珪藻化石は淡水生種のみで、海水生種及び海水~汽水生種の珪藻化石は含まない。

以上から, C4.2孔で確認されたイベント堆積物の堆積要因について, 津波起因の可能性は低いと評価する。

3.津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内

3.4.4(4) C測線:イベント堆積物に関する評価(C5孔で確認されたイベント堆積物)

■層相

- ・ ボーリングによる調査孔であり、コア外周に径5mmほどの砂(C5s)が確認された。
- 砂(C5s)は細砂からなるが小塊として含まれており、その層相から、流水により短期間に運搬され堆積したものではないと考えられる。
- ・ また,同年代(BC520-380)の砂は,近接するC2.5孔,C3p(ピット),C3.4孔,C4孔及びC4.2孔で確認されていないことから,他地点と対比可能なイベント 堆積物ではないと考えられる。

- 3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内
- 3.4.4(5) D測線:イベント堆積物に関する評価(まとめ)

【評価】 津波起因の可能性があり、その分布最高標高を約8.4m(D4孔)と評価する。

- 同層準の堆積物はDR1(露頭), D1孔, D2孔, D3孔及びD4孔で確認される。
- 層相,海水生種または海水~汽水生種の珪藻化石の有無,粒度組成,鉱物組成の特徴及び敷地内における同堆積年代の砂層の平面的な分布から 総合的に判断した。次頁以降に、各調査結果の詳細、並びにD6孔で確認されたイベント堆積物に係る評価内容を示す。

資料1-2 p51 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(5) D測線:イベント堆積物に関する評価(層相)

層相は、下面境界が明瞭であり、砕屑物が流水により短期間に、あるいは下位層を侵食しながら運搬され堆積したものと考えられる。

52

第1027回審査会合(R4.1.28)

資料1-2 p52 再掲

より、そう、ちから。

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(5)D測線:イベント堆積物に関する評価(珪藻化石分析)

 DR1(露頭), D1孔, D2孔, D3孔及びD4孔を対象に珪藻化石分析を実施した。分析は、イベント堆積物の堆積前後における環境変化の有無についても確認 することを目的に、イベント堆積物(砂層)及びその直下と直上の低地堆積物を構成する腐植質シルトも対象とした。

・ 分析の結果,淡水生種の珪藻化石を主とするが,海に近いDR1(露頭),D1孔,D2孔,D3孔には,極めて低い産出率ではあるものの海水生種,海水~汽水 生種の珪藻化石が含まれる。

■珪藻化石の産出率

 D4孔で認められた分布最高標高のイベント堆積物と同層準のイベント堆積物(j層)は、D線上の海岸線から山側の約380mまで連続して分布するとともに、 C測線にも認められる。

D4孔で認められた分布最高標高のイベント堆積物と同層準のイベント堆積物(j層)の分布

第1027回審査会合(R4.1.28)

資料1-2 p54 再掲

3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内

第1027回審査会合(R4.1.28) 資料1-2 p55 再掲

55

3.4.4(5) D測線:イベント堆積物に関する評価(D6孔で確認されたイベント堆積物)

■層相

- ・ ハンドコアラーによる調査孔であり、2箇所において砂が認められた。
- ・ 上位の砂(D6-Ev1)は細粒砂からなるが、クサビ状を呈する小塊として含まれており、その層相から、流水により短期間に運搬され堆積したものではない と考えられる。また、下位の砂(D6-Ev2)はシルト及び粘性土を含み、著しく淘汰が悪い。
- ・いずれの砂も、D測線上の他地点で認められたような層状の比較的淘汰のよい砂層ではないことから、他地点と対比可能なイベント堆積物ではないと考えられる。

【コア写真】

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3. 津波堆積物調査 3. 4 各地点の調査結果 3. 4. 4 東北電力敷地内 3. 4. 4(6)断層調査関連で実施している地質調査

- 断層調査関連で実施しているボーリング調査、トレンチ調査結果について、C測線で認められた分布最高標高(約8.6m)のイベント堆積物よりも高い位置に、 イベント堆積物の可能性がある砂層が分布するかどうかを確認する。
- なお,本検討は,イベント堆積物が残存する可能性がある低地堆積物(腐植土層,粘土層等)の分布範囲を対象に実施する。

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3. 津波堆積物調査 3. 4 各地点の調査結果 3. 4. 4 東北電力敷地内 3. 4. 4(6) 断層調査関連で実施している地質調査結果の検討

・ 評価フローを以下に示す。

STEP3: ■イベント堆積物の堆積要因の評価 【ボーリング孔】
① 堆積年代に係る分析(放射性炭素年代測定,火山灰 分析),堆積環境に係る分析(注藻化石分析,粒度分 析,鉱物組成分析)を実施する。
② 上記①の分析結果を踏まえ,津波起因の可能性を 評価する。
② 上記①の分析結果を踏まえ,津波起因の可能性を 評価する。
② 比記①の分析結果を踏まえ,津波起因の可能性を 評価する。
② 印存するトレンチ
✓ ボーリング調査と同様に各分析を実施し,津波起因の可能性を評価する。

》東北電力

第1027回審査会合(R4.1.28)

資料1-2 p57 再掲

・ 地質柱状図を確認し, C測線で認められた分布 最高標高(約8.6m)よりも高い位置に, 低地堆積物(腐植土層, 粘土層等)が確認されているボーリング孔を 以下のとおり抽出した。

第1027回審査会合(R4.1.28) 資料1-2 p59 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価

59

3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(6)断層調査関連で実施している地質調査結果の検討 3.4.4(6)a. ボーリング調査:イベント堆積物の有無の確認(確認結果)(STEP2)

■まとめ

- ・ 抽出したボーリング孔について, 地質柱状図とコア写真を確認した結果, 明瞭な層形状を呈するイベント堆積物(砂層)は認められないことを確認した。
- ・ 次頁以降に、各ボーリング孔のコア写真を示す。

第1027回審査会合(R4.1.28) 資料1-2 p60 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価

60

3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(6)断層調査関連で実施している地質調査結果の検討 3.4.4(6)a. ボーリング調査:イベント堆積物の有無の確認(確認結果)(STEP2)

【K-17(孔口標高:T.P.+9.41m)】

・腐植質シルト層に、明瞭な層形状を呈するイベント堆積物は認められない。

【K-16(孔口標高:T.P.+10.05m)】

・腐植質シルト層に、明瞭な層形状を呈するイベント堆積物は認められない。

第1027回審査会合(R4.1.28)

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価

資料1-2 p61 再掲

61

3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(6)断層調査関連で実施している地質調査結果の検討 3.4.4(6)a. ボーリング調査:イベント堆積物の有無の確認(確認結果)(STEP2)

【S-28(孔口標高:T.P.+10.35m)】

・腐植土層に、明瞭な層形状を呈するイベント堆積物は認められない。

【O2-16(孔口標高:T.P.+8.70m)】

・粘土層に、明瞭な層形状を呈するイベント堆積物は認められない。

第1027回審査会合(R4.1.28)

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価

資料1-2 p62 再掲 3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(6)断層調査関連で実施している地質調査結果の検討

3.4.4(6)a. ボーリング調査:イベント堆積物の有無の確認(確認結果)(STEP2)

【K-40(孔口標高:T.P.+14.29m)】

・シルト層に、明瞭な層形状を呈するイベント堆積物は認められない。

【H25B-2i1(孔口標高:T.P.+16.44m)】

・腐植土層に、明瞭な層形状を呈するイベント堆積物は認められない。

62

第1027回審査会合(R4.1.28) 資料1-2 p63 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価

63

3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(6)断層調査関連で実施している地質調査結果の検討 3.4.4(6)a. ボーリング調査:イベント堆積物の有無の確認(確認結果)(STEP2)

【E-2"(孔口標高:T.P.+8.75m)】

・腐植土層に、明瞭な層形状を呈するイベント堆積物は認められない。

【K-41(孔口標高:T.P.+9.59m)】

・腐植質シルト層に、明瞭な層形状を呈するイベント堆積物は認められない。

第1027回審査会合(R4.1.28) 資料1-2 p64 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価

64

3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(6)断層調査関連で実施している地質調査結果の検討 3.4.4(6)a. ボーリング調査:イベント堆積物の有無の確認(確認結果)(STEP2)

【B110-j(孔口標高:T.P.+12.93m)】

シルト層, 腐植土層に, 明瞭な層形状を呈するイベント堆積物は認められない。

【C-17(孔口標高:T.P.+10.42m)】

・腐植土層, 腐植質シルト層, 腐植質粘土層に, 明瞭な層形状を呈する イベント堆積物は認められない。

第1027回審査会合(R4.1.28) 資料1-2 p65 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価

65

3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(6)断層調査関連で実施している地質調査結果の検討 3.4.4(6)a. ボーリング調査:イベント堆積物の有無の確認(確認結果)(STEP2)

掘削

深度

【B160-j(孔口標高:T.P.+12.98m)】

 シルト層, 腐植土層に, 明瞭な層形状を呈するイベント堆積物は 認められない。

3.39m~3.80m:シルト層 3.80m~4.02m:腐植土層_____

- 【E-3"(孔口標高:T.P.+13.19m)】
 - ・腐植土層,粘土層に,明瞭な層形状を呈するイベント堆積物は認められ ない。

第1027回審査会合(R4.1.28) 資料1-2 p66 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価

66

3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(6)断層調査関連で実施している地質調査結果の検討 3.4.4(6)a. ボーリング調査:イベント堆積物の有無の確認(確認結果)(STEP2)

【C-2i(孔口標高:T.P.+12.21m)】

・腐植質粘土層,砂混じり粘土層に,明瞭な層形状を呈するイベント堆積物 は認められない。

0m~0.50m: 腐植質粘土層 掘削 0.50m~0.70m:砂混じり粘土層 深度 1m

【B225-2k21(孔口標高:T.P.+12.57m)】

・シルト層、シルト混じり細粒砂層に、明瞭な層形状を呈するイベント堆積物 は認められない。

0m~1.30m:シルト層 1.30m~1.58m:シルト混じり細粒砂層

第1027回審査会合(R4.1.28) 資料1-2 p67 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価

67

3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(6)断層調査関連で実施している地質調査結果の検討 3.4.4(6)a. ボーリング調査:イベント堆積物の有無の確認(確認結果)(STEP2)

【C-2k(孔口標高:T.P.+12.26m)】

砂質シルト層に、明瞭な層形状を呈するイベント堆積物は認められない。

低地堆積物(腐植土層,粘土層等)が確認されているトレンチを抽出し,トレンチの地質観察結果(スケッチ等)を確認した結果, Tr-34トレンチにおいて,明瞭な層形状を呈するイベント堆積物(砂層)を確認した。

0(T.P.+6.0m

0.75

0(T.P.+6.0m)

1.5m

第1027回審査会合(R4.1.28) 資料1-2 p71 再掲

71

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価

3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(6)断層調査関連で実施している地質調査結果の検討 3.4.4(6)b. トレンチ調査: イベント堆積物の有無の確認(確認結果)(STEP2)

■まとめ

- Tr-34トレンチで確認された腐植質シルト層に挟在するイベント堆積物(砂層)(分布最高標高T.P.+7m)は、同トレンチ山側のボーリング(K-17, K-16, S-28)において確認された同層準と考えられる腐植土層に認められず、連続しないことを確認した(p.60, p.61を参照)。
- ・ 以上から、上記イベント堆積物(砂層)の分布標高はC測線で認められた分布最高標高(約8.6m)よりも低いことを確認した。

3. 津波堆積物調査 3.4 各地点の調査結果 3.4.4 東北電力敷地内 3.4.4(6)断層調査関連で実施している地質調査結果の検討

3.4.4(6)c.まとめ

第1027回審査会合(R4.1.28) 資料1-2 p72 再掲

- 断層調査関連で実施しているボーリング調査、トレンチ調査結果について、C測線で認められた分布最高標高(約8.6m)のイベント堆積物よりも高い位置に、 イベント堆積物の可能性がある砂層が分布するかどうかを確認した。
- 確認の結果、イベント堆積物(砂層)はTr-34トレンチで認められるものの、その分布標高はC測線で認められた分布最高標高(約8.6m)よりも低いことを確認した。

■検討結果

STEP1: ■検討対象とするボーリング孔.トレンチの抽出 ✓ 低地堆積物(腐植土層,粘土層等)の分布範囲で実施しているボーリング孔,トレンチを抽出した。 STEP2: ■イベント堆積物の有無の確認 【トレンチ】 【ボーリング孔】 (1) 地質柱状図を確認し、C測線で認められた分布最高標高(約) 1) 地質観察結果(スケッチ等)から、明瞭な層形状を呈する。 8.6m)よりも高い位置に、低地堆積物(腐植土層、粘土層等) イベント堆積物(砂層)の有無を確認した。 が確認されているボーリング孔を抽出した。 (2) 確認された場合には、C測線で認められた分布最高標高 ② 上記①で抽出したボーリング孔の地質柱状図とコア写真を確 (約8.6m)よりも高い位置に連続するかどうかを確認した。 認し、明瞭な層形状を呈するイベント堆積物(砂層)の有無を 確認した。 ⇒Tr-34トレンチで、イベント堆積物(砂層)が認められたもの の、その分布標高は、C測線で認められた分布最高標高(約 ⇒イベント堆積物(砂層)は認められないことを確認した。 8.6m)よりも低いことを確認した。

/ イベント堆積物が確認された場合

 STEP3:
 ■イベント堆積物の堆積要因の評価

 【ボーリング孔】
 ① 堆積年代に係る分析(放射性炭素年代測定,火山灰分析),堆積環境に係る分析(珪藻化石分析,粒度分析,鉱物組成分析)を実施する。
 【トレンチ】

 ① 生1①の分析結果を踏まえ,津波起因の可能性を評価する。
 ① 埋め戻しされているトレンチ

 ✓ 安全側に津波起因の可能性があるイベント堆積物と

 ② 上記①の分析結果を踏まえ,津波起因の可能性を評価する。
 ② 現存するトレンチ

 ✓ ボーリング調査と同様に各分析を実施し、津波起因の

72

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3.津波堆積物調査 3.4 各地点の調査結果

3.4.5 尾駮老部川:地点選定理由及び調査内容

■地点選定理由

- 砂丘の背後に完新世段丘面が存在しており、津波堆積物が残存する可能性がある。
- ■調査内容

尾駮老部川地点の調査位置図

3. 津波堆積物調査 3.4 各地点の調査結果

3.4.5 尾駮老部川:イベント堆積物に関する評価

74

第1027回審査会合(R4.1.28)

資料1-2 p74 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3.津波堆積物調査 3.4 各地点の調査結果

3.4.6 尾駮発茶沢:地点選定理由及び調査内容

■地点選定理由

浜堤・砂丘の背後に砂丘間低地・後背湿地が存在しており、泥炭層や腐植質泥炭層が分布することが期待され、津波堆積物が残存する可能性がある。

凡例

浜堤・砂丘

砂丘間低地

~後背湿地

標高10m コアリング位置

■調査内容

- 地質調査:ボーリング調査(パーカッション式, 孔径86mm)
- 室内試験:火山灰分析,放射性炭素年代測定,珪藻化石分析

尾駮発茶沢地点の調査位置図

3. 津波堆積物調査 3.4 各地点の調査結果

3.4.6 尾駮発茶沢:イベント堆積物に関する評価

【評価】津波起因の可能性が高く、その分布最高標高を約6.2m(Ob-10孔)と評価する。

層相は下面境界が明瞭であり、砕屑物が流水により短期間に、あるいは下位層を侵食しながら運搬され堆積したものと考えられる。

第1027回審査会合(R4.1.28)

資料1-2 p76 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3. 津波堆積物調査 3.4 各地点の調査結果

□ 尻屋崎

□ 小田野沢

□ 六川目

🛯 東京電力敷地内

東北電力敷地内

3.4.7 平沼:地点選定理由及び調査内容

■地点選定理由

砂丘・浜堤の背後に後背湿地・谷底低地が存在しており、泥炭層や腐植質泥炭層が分布することが期待され、津波堆積物が残存する可能性がある。

■調査内容

- 地質調査:ボーリング調査(パーカッション式,孔径86mm)
- 室内試験:火山灰分析,放射性炭素年代測定,珪藻化石分析

平沼地点の調査位置図

3. 津波堆積物調査 3.4 各地点の調査結果

3.4.7 平沼:イベント堆積物に関する評価

【評価】 津波起因の可能性が高く、その分布最高標高を約1.6m(Hn-3孔)と評価する。

• 層相は下面境界がやや明瞭であり、砕屑物が流水により比較的短期間に、あるいは下位層を侵食しながら運搬され堆積したものと考えられる。

• また,海水生種の珪藻化石を含む。

第1027回審査会合(R4.1.28)

資料1-2 p78 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3.津波堆積物調査 3.4 各地点の調査結果 第1027回審査会合(R4.1.28) 資料1-2 p79 再掲 79

3.4.8 六川目:地点選定理由及び調査内容

■地点選定理由

• 浜堤・砂丘の背後に後背湿地が存在しており、泥炭層や腐植質泥炭層が分布することが期待され、津波堆積物が残存する可能性がある。

■調査内容

- 地質調査:ボーリング調査(パーカッション式,孔径86mm)
- 室内試験:火山灰分析,放射性炭素年代測定,珪藻化石分析

3. 津波堆積物調査 3.4 各地点の調査結果

3.4.8 六川目:イベント堆積物の評価

【評価】 津波起因の可能性が高く、その分布最高標高を約2.5m(Mk-3孔)と評価する。

• 層相は下面境界がやや明瞭であり、砕屑物が流水により比較的短期間に、あるいは下位層を侵食しながら運搬され堆積したものと考えられる。

第1027回審査会合(R4.1.28)

資料1-2 p80 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3. 津波堆積物調査

第1027回審査会合(R4.1.28) 資料1-2 p81 再掲

3.5 文献調査の実施プロセス

• 津波堆積物調査に関する文献については、下に示す流れに沿って抽出を行っている。

81

4. 千島海溝・日本海溝沿いで発生する津波解析結果(スナップショット)

- 4.1 十勝沖・根室沖から千島前弧スリバー北東端の連動型地震
- 4.2 十勝沖・根室沖から岩手県沖北部の連動型地震
- 4.3 超巨大地震(東北地方太平洋沖型)

第1027回審査会合(R4.1.28) 資料1-2 p83 再掲 83

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 4.千島海溝・日本海溝沿いで発生する津波解析結果(スナップショット)

4.1 十勝沖・根室沖から千島前弧スリバー北東端の連動型地震

- ・ 地震発生直後(1分後)は納沙布断裂帯~千島前弧スリバー北東端, 十勝沖・根室沖の大すべり域で生じた水位変動が独立しているが, 東通発電所 への伝播途上で, 納沙布断裂帯~千島前弧スリバー北東端で生じた水位上昇部が十勝沖・根室沖~納沙布断裂帯で生じた水位低下部と重なり合い (10~22分後), 地震発生から約40分後に第一波が敷地に到達している。
- ■B領域 0 100 km 東通原子力 発電所 1分後 10分後 22分後 40分後 45分後 ■H領域 200 400 600 800 1000m 10.0 (2) 5.0 40 **F [**] 水位 0.0 m − 5.0 1 -10.0 30 60 時間(分) 5 m/s 取水口前面水位時刻歴波形 ①39.5分後 より、そう、ちから。 ②44分後 ③50分後

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
 4. 千島海溝・日本海溝沿いで発生する津波解析結果(スナップショット)

4.2 十勝沖・根室沖から岩手県沖北部の連動型地震

青森県東方沖及び岩手県沖北部,十勝沖・根室沖の位置関係から,両領域で生じた水位変動は東通発電所に伝播するまでの間にあまり干渉せず(5 ~17分),地震発生から約35分後,主に青森県東方沖及び岩手県沖北部の大すべり域で生じた水位上昇が到達している。

84

第1027回審査会合(R4.1.28)

資料1-2 p84 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 4.千島海溝・日本海溝沿いで発生する津波解析結果(スナップショット)

4.3 超巨大地震(東北地方太平洋沖型)

大すべり域で生じた水位変動は、主に岩手〜福島県沿岸に直接的に到達している(15~32分後)。一方、東通発電所へは南方から回り込むように伝播し、地震から約46分後に第一波押し波が到達している。

第1027回審査会合(R4.1.28)

資料1-2 p85 再掲

5. 波源領域の違いが津波高さに与える影響

- 5.1 検討方針
- 5.2 津波波源モデルの設定
- 5.3 検討結果

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 5. 波源領域の違いが津波高さに与える影響

5.1 検討方針

■東诵発電所の立地特性

- 発電所周辺の海岸は、三陸海岸(南部)に見られる複雑な海岸線(リアス式海岸)を呈してい ない。
- また、海底地形について、発電所の前面海域では、大陸棚の外縁が陸域に近接している 影響から、日本海溝(南北方向)と敷地までの等深線は平行に連続せず、同じ太平洋沿岸の 地域と異なる特徴を有する。

■検討方針

- 青森県東方沖及び岩手県沖北部の地震,十勝沖・根室沖から岩手県沖北部の連動型地震を対 象に数値シミュレーションを実施して、波源領域(地震規模)の違いが津波高さに与える影響を確 認する。
- なお、比較検討用に、東通発電所の陸域・海域の地形的特徴と対象的な女川発電所を対象に、 東通発電所と同規模の地震を設定して数値シミュレーションを実施し、立地特性(地形的特徴) の違いが地震規模と津波高さの関係に与える影響を確認する。

	東通発電所	女川発電所		
波源領域 (地震規模)	青森県東方沖及び岩手県沖北部 (Mw8.62)	/ 宮城県沖 (Mw8.70)		
	十勝沖・根室沖~岩手県沖北部 (Mw9.05)	青森県東方沖及び岩手県 沖北部~茨城県沖 (Mw9.13)		
	≿===== 波源領域(地震規模)の違いが 津波高さに与える影響を確認。	【比較検討用】 立地特性(地形的特徴)の違(が地震規模と津波高さの関係 に与える影響を確認。		

東日本の海底地形(岸本(2000))

資料1-2 p87 再掲

5. 波源領域の違いが津波高さに与える影響

5.2 津波波源モデルの設定

・ 広域の津波特性を考慮できる杉野ほか(2014)の知見を参考に、以下のとおり、津波波源モデルを設定した。

【東通発電所】

各地震の大すべり域・超大すべり域は、アスペリティ分布、並びに1968年十勝沖地震の震央位置、17世紀の地震のすべり量分布等を参考に設定した。

【女川発電所】

青森県東方沖及び岩手県沖北部から茨城県沖の地震については、3.11地震津波の痕跡高を再現できるモデルを設定し、宮城県沖の地震の大すべり域・ 超大すべり域は、3.11地震津波再現モデルのすべり分布を参考に設定した。

青森県東方沖及び岩手県沖 北部 十勝沖・根室沖から岩手県沖北部

	青森県東方沖及び 岩手県沖北部	+勝沖・根室沖から 岩手県沖北部	
モーメントマク゛ニチュート゛(Mw)	8.62	9.05	
断層面積(S)	40,959 (km²)	110,472(km²)	
平均すべり量(D)	4.98(m)	8.64(m)	
背景領域(0.33D)	1.64(m)	2.70(m)	
大すべり域(1.4D)	6.98(m)	11.46(m)	
超大すべり域(3D)	14.95(m)	24.56(m)	

宮城県沖

青森県東方沖及び岩手県沖北部から茨城県沖 (超巨大地震(東北地方太平洋沖型))

第1027回審査会合(R4.1.28)

資料1-2 p88 再掲

	宮城県沖	青森県東方沖及び岩手県 沖北部から茨城県沖
モーメントマク゛ニチュート゛(Mw)	8.70	9.13
断層面積(S)	48,173(km²)	129,034(km²)
平均すべり量(D)	5.59(m)	9.14(m)
背景領域(0.33D)	1.84(m)	3.02(m)
大すべり域(1.4D)	7.82(m)	12.80(m)
超大すべり域(3D)	16.76(m)	27.43(m)

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 5.波源領域の違いが津波高さに与える影響

5.3 検討結果

- 各発電所の地震規模と津波高さの関係を以下に示す。
- M8クラスの地震の津波高さは両地点で同程度であるものの, M9クラスの地震については, 女川発電所と比較して東通発電所の津波高さが小さく, 地震規模 と津波高さの関係が, 両地点で異なることを確認した。
- ・ 上記違いは、以下の要因によるものと考えられる。
 - ✓ 陸域地形:東通発電所周辺は複雑な地形(リアス式海岸)を呈しておらず,女川発電所と比較して津波が増幅しにくい。
 - ✓ 海底地形:東通発電所前面海域は、大陸棚の外縁が陸域に近接しており、日本海溝(南北方向)と敷地までの等深線が平行に連続しない影響から、 青森県東方沖及び岩手県沖北部で発生する津波は、発電所へ直線的に伝播せず、南の方向へ回折する。そのため、津波高さは、発電所(青森県北 部)よりも青森県南部の方が高くなる。次頁に津波の伝播特性の比較を示す。

■津波の伝播特性(概要)

89

第1027回審査会合(R4.1.28)

資料1-2 p89 再掲

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 5. 波源領域の違いが津波高さに与える影響

90

5.3 検討結果

■津波の伝播特性(概要)

- 波源領域毎の最大水位上昇量分布から、宮城県沖のすべりで生じた津波は、直線的に沿岸へ伝播するのに対し、青森県東方沖及び岩手県沖北部のすべりで生じた津波は、青森県南部に集中する傾向があり、青森県北部へは内浦湾や津軽海峡方向に広がるように伝わるため津波は減衰しやすい傾向にある。
- また、十勝沖・根室沖のすべりで生じた津波は、北海道沿岸に与える影響は大きいが、青森県に与える影響は小さい。

■波源領域毎の最大水位上昇量分布

6.3.11地震における広域の津波特性を考慮した特性化モデル

- 6.1 大すべり域・超大すべり域の設定
- 6.2 設定フロー
- 6.3 妥当性の確認

6.1 大すべり域・超大すべり域の設定①

- 広域の津波特性(痕跡高)を考慮するため、内閣府(2012)で示されている大すべり域・超大すべり域の面積よりも大きい面積を示している杉野ほか (2014)を参考として、特性化モデルを設定した。
 - > 大すべり域:津波断層の平均すべり量の1.4倍,全体面積の40%程度(超大すべり域を含む)
 - ▶ 超大すべり域:津波断層の平均すべり量の3倍,全体面積の15%程度
- なお、福島県沿岸には10m以上の痕跡高が多数見られることを踏まえ、設定する特性化モデルの大すべり域・超大すべり域の面積は、杉野ほか (2014)に示されている面積比率よりも大きく設定^{※1}した。
 ※1:大すべり域:43.5%(超大すべり域を含む)、超大すべり域:16.0%

杉野ほか(2014)によるMw8.9以上の規模の地震の 大すべり域・超大すべり域の設定方法 (杉野ほか(2014))

第1027回審査会合(R4.1.28)

資料1-2 p92 再掲

92

青森県北部~茨城県南部における3.11地震に伴う津波の痕跡高^{※2} (東北地方太平洋沖地震津波合同調査グループ(2012)) ※2:海岸線からの距離1000m以内, 信頼度Aのデータ(総数:2,686)

6.1 大すべり域・超大すべり域の設定②

3.11地震から得られた知見、世界のプレート境界面で発生しているM9クラスの巨大地震に係る最新の科学的・技術的知見に基づく、各領域の固着等に関する分析結果を踏まえて設定した。

6.2 設定フロー

第1027回審査会合(R4.1.28) 資料1-2 p94 再掲

94

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 6.3.11地震における広域の津波特性を考慮した特性化モデル
 - 6.3 妥当性の確認:基本方針
- 杉野ほか(2014)を参考に、3.11地震の津波波源に直接面した沿岸の青森県北部~茨城県南部の痕跡高の再現性を確認し、広域の津波の特性 を適切に考慮しているかを確認する。

青森県北部~茨城県南部における3.11地震に伴う津波の痕跡高* (東北地方太平洋沖地震津波合同調査グループ(2012))

※:原子力発電所の立地条件,津波特性を把握するために十分な痕跡数を確保 する観点から,海岸線沿いから1000m以内,信頼度Aのデータ(痕跡数:2,686地点) を用いる。

6.3 妥当性の確認:解析条件

• 再現性を確認する青森県北部~茨城県南部の最小空間格子間隔を31mに設定した。

主な計算条件

	B領域	C領域	D領域	E領域	F領域
空間格子間隔 ∆ s	2.5 km	833 m (2500/3)	278 m (2500/9)	93 m (2500/27)	31 m (2500/81)
時間格子間隔∆t	0.1秒				
基礎方程式	線形 長波式 非線形長波式(浅水理論)				
沖側境界条件	自由透過 外側の大格子領域と水位・流量を接続				
陸側境界条件	完全反射	完全」 (海底露出	反射 ¦を考慮)	小谷ほか(1998)	の遡上境界条件
初期海面変動					
海底摩擦	考慮しない マニングの粗度係数 n = 0.03m ^{-1/3} s(土木学会(2016)より)				
水平渦動粘性 係数	考慮しない				
潮位条件	T.P0.40m(地震発生時の潮位)				
計算再現時間	地震発生後4時間				

計算領域とその水深及び格子分割

6.3 妥当性の確認:痕跡高の再現性確認

- 設定した特性化モデルは、土木学会(2016)の再現性の目安を満足するとともに、津波高が大きい岩手県沿岸〜福島県沿岸の痕跡高を良好に再現しており、広域の津波特性を適切に考慮していることを確認した。
- ・ さらに、女川地点を含む宮城県周辺(北緯39°~北緯38°)については、痕跡高に対して計算値の方が大きく(K=0.86, κ=1.36, n=836), 安全側の モデルになっていることを確認した。

【広域の津波特性を考慮した特性化モデル】

すべり量分布

【痕跡高の再現性の確認結果】

基準断層モデル	к	к	n
広域の津波特性を考慮した 特性化モデル	0.98	1.39	2,686

※:再現性の目安 0.95<K<1.05, κ<1.45 (土木学会(2016))

以上から,設定した特性化モデルは,3.11地震の広域の津波特性を適切に考慮していることを確認した。

7.3.11地震における宮城県沖の大すべり域の破壊特性を考慮した特性化モデル

7.1 基本方針

- 7.2 想定波源域及び大すべり域・超大すべり域の設定
- 7.3 設定フロー
- 7.4 妥当性の確認

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 7.3.11地震における宮城県沖の大すべり域の破壊特性を考慮した特性化モデルの設定

第1027回審査会合(R4.1.28) 99 資料1-2 p99 再掲

7.1 基本方針

 宮城県沖における大すべり域の破壊特性を適切に考慮するため、杉野ほか(2013)を参考に、破壊特性が表れる地殻変動量(プレート境界の破壊)、 沖合いの観測波形(津波伝播)及び女川原子力発電所の津波水位(津波溯上)について、3.11地震の実現象を再現する特性化モデルを設定する。

より、そう、ちから。

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 7.3.11地震における宮城県沖の大すべり域の破壊特性を考慮した特性化モデルの設定

7.2 想定波源域及び大すべり域・超大すべり域の設定

■想定波源域の設定

 宮城県沖の大すべり域の破壊特性(地震特性)を特性化モデルに反映する観点から,想定波源域は,地震調査研究推進本部(2019)による超巨大 地震(東北地方太平洋沖型)の想定波源域と同様に,岩手県沖南部~茨城県沖に設定した。

■大すべり域・超大すべり域の設定

- 国内外の巨大地震の解析事例の調査に基づき大すべり域・超大すべり域のすべり量及び全体面積に占める面積比率を示している内閣府(2012)
 を参考に設定した。
 - > 大すべり域:津波断層の平均すべり量の2倍,全体面積の20%程度(超大すべり域を含む)
 - > 超大すべり域:津波断層の平均すべり量の4倍,全体面積の5%程度
- なお、設定した特性化モデルの大すべり域・超大すべり域の面積は、震源の全体的な破壊の動きを捉えていると考えられる長周期観測地震動に 基づいて推定された震源断層モデル(Wu et al.(2012))のすべり分布を参考として(杉野ほか(2013))、内閣府(2012)に示されている面積比率より も大きく設定^{※1}した。

※1:大すべり域:20.7%(超大すべり域を含む),超大すべり域:7.5%

Figure 2. Waveform comparison and slip distribution map. Left: Comparison of synthetic waveforms (red) with the observation data (black); Right: Slip distribution inferred from the long-period seismic waves (<0.1Hz).

長周期地震動に基づくすべり分布(Wu et al.(2012)に一部加筆)

宮城県沖の大すべり域の破壊特性 を考慮した特性化モデルのすべり分布

24.83 12.42 6.21

3(MPa)

8.07(m)

 $5.0 \times 10^{10} (N/m^2)$

4.33 × 10²² (Nm)

7.3.11地震における宮城県沖の大すべり域の破壊特性を考慮した特性化モデルの設定

2. 微視的波源特性の設定

7.3 設定フロー

Murotani et al.(2013)

 $16/(7\pi^{3/2}) \cdot \Lambda \sigma \cdot S^{3/2}$

 $16/(7\pi^{3/2}) \cdot \Delta \sigma \cdot S^{1/2}/\mu$

土木学会(2016)

平均応力降下量(⊿σ)

剛性率(μ)

地震モーメント(Mo)

平均すべり量(D)

 (1)大すべり域・超大すべり域の設定) 断層面積(S₂,S₄)の算定 > すべり量(D₂,D₄)の算定 > 地震モーメント(M_{o2},M_{o4})の算定 					
バノクーフ					
すべり量(D ₂)	平均すべり量(D)の2倍 内閣府(2012)	16.14(m)			
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$			
地震モーメント(M _{o2})	$\mu \cdot S_2 \cdot D_2$	1.30 × 10 ²² (Nm)			
■超大すべり域	-				
パラメータ	設定方法	設定値			
断層面積(S ₄)	断層面積(S)の5%	5,368 (km ²)			
すべり量(D 4)	平均すべり量(D)の4倍 内閣府(2012)	32.28(m)			
剛性率(µ) 土木学会(2016)		$5.0 \times 10^{10} (N/m^2)$			
地震モージント(M ₀₄) µ・S ₄ ・D ₄ 8.66×10 ²¹ (Nm) ※: 大すべり域と超大すべり域をあわせた領域の面積比率 は20%。					
 (2)地震モーメントの調整(すべり量の調整) ▼ (2)-1 基本すべり域の設定 					
パラメータ	設定方法	設定値			
断層面積(S _b)	断層面積の80%	85,885(km ²)			
すべり量(D b)	平均すべり量(D)	8.07(m)			
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$			
地震モーメント(M _{ob} ')	$\mu \cdot S_{b}' \cdot D_{b}'$	3.47 × 10 ²² (Nm)			

: 与条件 (2)-3 地震モーメントの調整(すべり量の調整) $> M_{\star}/M_{\star}' = 4.33 \times 10^{22} (Nm) / 5.63 \times 10^{22} (Nm)$ =0.77▶ 上記倍率を用いて、基準断層モデルに反映する 各領域のすべり量を一律に調整する。 調整前 調整後 基本すべり域 8.07(m) 6.21(m) 大すべり域 16.14(m) 12.42(m) 超大すべり域 32.28(m) 24.83(m) 3. 基準断層モデルの設定 断層モデルへの微視的波源特性の反映 > 設定したプレート境界面(すべり分布のブロック 割図)に微視的波源特性を反映。 モーメントマグニチュート (Mw)の算定 基本すべり域 大すべり域 超大すべり域 地殼変動量分布 すべり量分布 Eーメントマク^{*}ニチュート^{*}(Mw) 9.04 すべり量 6.21(m) 基本すべ り域 断層面積 85.165(km²) 地震発生深さ 海溝軸~深さ60km (面積比率) 79.3%) 断層面積(S) $107.357 (km^2)$ すべり量 2.42(m) 大すべり 平均応力降下量(⊿σ) 断層面積 22,192(km²) 3.13(MPa) $(=7/16 \cdot Mo \cdot (S/\pi)^{-3/2})$ (面積比率)※ 20.7%) すべり量 剛性 $x(\mu)$ 24.83(m) $5.0 \times 10^{10} (N/m^2)$ 超大すへ り域 断層面積 3,078(km²) 地震モーメントMo 4.52×10^{22} (Nm) (面積比率) 7 5%) 太平洋プレートの運動 すべり角λ 平均すべり量D 3.43(m) 方向に基づいて設定 ライズタイム τ 60(s)※:大すべり域と超大すべり域をあわせた領域の面積比率

第1027回審査会合(R4.1.28)

資料1-2 p101 再掲

101

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
 7.3.11地震における宮城県沖の大すべり域の破壊特性を考慮した特性化モデルの設定
 7.4 妥当性の確認:地殻変動量(プレート境界の破壊)の比較①

第1027回審査会合(R4.1.28) 資料1-2 p102 再掲 **102**

■3.11地震の地殻変動量(地球物理学的知見)

 Fujiwara et al.(2011)は、3.11地震前後の海底地形データの比較から、宮城県沖の海溝軸付近において、水平方向に50~56m、上下方向(水平変位 に伴う鉛直変位も含む)に11m(σ=8.53)~16m(σ=9.35)の変位が生じたとしている。

Fig. 1. Changes in sea-floor elevation between bathymetric data before and after the 2011 Tohoku-Oki earthquake. (A) Location map with bathymetric survey track shown as yellow line. Coseismic horizontal displacement is estimated over the landward slope indicated by solid portion of yellow line. Cross shows the epicenter. (B) Multibeam bathymetry collected in 2011. Red triangles mark the trench axis; the blue triangle marks the landward slope break. Change in sea-floor elevation by subtracting the 1999 bathymetric data from the 2011 data (C), the 2004 data from the 2011 data (D), and the 1999 data from the 2004 data (E). The yellow star marks location of probable submarine landslide.

調査位置図(Fujiwara et al.(2011))

陸側斜面及び海側斜面の地震時の変位 (Fujiwara et al.(2011))

Table S1.

Estimated coseismic displacements caused by the 11 March 2011 Tohoku-Oki Earthquake in the outermost landward slope area, off Miyagi in the Tohoku district.

Survey Years	Landward Slope					Scaward Slope
	Horizontal Displacement		Seafloor	Vertical	Additional	Seafloor
	Distance	Direction	(Fig. 1)	Displacement	Uplift	Elevation
2011-1999	56 m	113°	+16 m (σ=9.35)	+10 m (σ=7.50)	+6 m	±0 m (σ=5.32)
2011-2004	50 m	117°	+11 m (σ=8.53)	+7 m (σ=7.22)	+4 m	±0 m (σ=8.42)
2004-1999	20 m	235°	±0 m (σ=7.44)	+1 m (σ=7.26)	-1 m	±0 m (σ=8.17)

Fig. S1.

Contour maps showing standard deviations (~variances) of depth differences between different surveys for given shifted locations. (A) Comparison between 1999 and 2011 data, (B) comparison between 2004 and 2011 data, and (C) comparison between 2004 and 1999 data, respectively. Red and blue contours show standard deviations of the landward slope and the seaward slopes, respectively. Crosses indicate the minimum peaks of the standard deviations. Arrows show vectors of horizontal shifts from landward to seaward. (D) Schematic cross-section showing coseismic displacement. A sum of a vertical displacement and an additional uplift for a sloping seafloor correspond the observed seafloor elevation changes shown in Fig. 1. The inset is for illustrative purposes (not to scale). (E) Bathymetric cross section at the trench. Red and black indicate 2011 and 1999 data.

地震時変位の概略断面図(図:(D)) (Fujiwara et al.(2011))

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 7.3.11地震における宮城県沖の大すべり域の破壊特性を考慮した特性化モデルの設定

第1027回審査会合(R4.1.28) 資料1-2 p103 再掲 **103**

7.4 妥当性の確認:地殻変動量(プレート境界の破壊)の比較②

■3.11地震の地殻変動量(3.11地震に伴う津波の再現モデル)

・ 各機関等で提案されている3.11地震に伴う津波の再現モデルのうち, 津波波形等をインバージョンした内閣府(2012)モデル, Satake et al.(2013) 55枚モデルの地殻変動量から, 津波特性を良好に再現する最大鉛直変位は12m程度であることが確認される。

7.3.11地震における宮城県沖の大すべり域の破壊特性を考慮した特性化モデルの設定

7.4 妥当性の確認:地殻変動量(プレート境界の破壊)の比較③

■地殻変動量(プレート境界の破壊)の比較

・ 設定した特性化モデルの内閣府(2012)モデルと同様の条件下で算定される最大鉛直変位は13m程度であり、3.11地震による最大鉛直変位と整合 的であることを確認した。

【宮城県沖の大すべり域の破壊特性を考慮した特性化モデルの地殻変動量分布】

第1027回審査会合(R4.1.28) 資料1-2 p105 再掲 **105**

7.3.11地震における宮城県沖の大すべり域の破壊特性を考慮した特性化モデルの設定

7.4 妥当性の確認:沖合いの観測波形(津波伝播)の比較

 設定した特性化モデルによる計算波形は、女川原子力発電所前面海域の観測波形に見られる津波特性(津波水位、周期、津波の到達時間)と整合 的であることを確認した。

7.3.11地震における宮城県沖の大すべり域の破壊特性を考慮した特性化モデルの設定

7.4 妥当性の確認:女川原子力発電所の津波水位(津波遡上)の比較

・ 設定した特性化モデルによる女川原子力発電所敷地における最大水位上昇量分布は、実際の現象と整合的であることを確認した。

<u>以上から,設定した特性化モデルは,3.11地震時の地殻変動量(プレート境界の破壊),沖合いの観測波形(津波伝播)及び発電所の津波水位</u> (津波遡上)を良好に再現しており,宮城県沖大すべり域の破壊特性を適切に考慮していることを確認した。

8. 超大すべり域のすべり分布の設定

- 8.1 設定内容
- 8.2 3.11地震における宮城県沖の大きなすべりの発生要因
- 8.3 青森県東方沖及び岩手県沖北部の地質学的・地震学的特徴
- 8.4 まとめ

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 8. 超大すべり域のすべり分布の設定

8.1 設定内容

- 青森県東方沖及び岩手県沖北部ではM9クラスの巨大地震発生した記録が無いことから、同領域に設定する超大すべり域のすべり分布は、日本海溝沿いで発生した3.11地震における宮城県沖の大きなすべりの発生要因を分析した上で、青森県東方沖及び岩手県沖北部との地震学的・地質学的特徴の類似性から、深さ約20km~0kmの範囲(幅:約100km)に設定した。
- 次頁以降に,各検討の詳細を示す。

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 8. 超大すべり域のすべり分布の設定

8.2 3.11地震における宮城県沖の大きなすべりの発生要因(1/4)

■ダイナミックオーバーシュート(1/2)

- 3.11地震で大きなすべりを生じた要因について、長谷川(2015)は、「①プレート境界最浅部は剛性率が小さい付加体であり、この付加体の幅は 宮城県沖が最も狭いとともに(Tsuru et al.(2002))、②海底地震計による余震分布(Obana et al.(2013)、下図)等から、海溝軸から陸側に少なく とも30~35km程度までは固着は強くないと考えられる。したがって、宮城県沖の大きなすべりは、本震による断層面での食い違いに伴う弾性的な 静的応答のみでなく、その他の非弾性的な応答や動的応答も含まれたものであることを示唆する。」としている。
- また、文部科学省(2014)は、「3.11地震の際に大きく滑った海溝軸近傍のプレート境界で、本震の前後ともに小地震の活動が見られないことは、 そこで自発的な震源核形成が起こらないことを示唆する。」としている。

Fig. 1. Bathymetric map showing the locations of ocean bottom seismographs (OBSs) used in this study and total slip distribution larger than 10 m of the 2011 Tohoku-Oki earthquake (Yagi and Fukhata, 2011). The star is the initial rupture location of the Tohoku-Oki earthquake (Chu et al., 2011). The open diamonds and the open squares are the location of short-period OBS (SPOBS) and broad-band OBS (BBOBS), respectively, used in this work. The BBOBS with uncorrected clock is indicated by the solid square. The red dashed rectangle indicates the grid-search area for the hypocenter locations. The red solid line is the survey line for the crustal structure (Ito et al., 2005; Kodaira et al., 2012) and the differential topography (Fujiwara et al., 2011). The dotted line indicates the axis of the Japan Trench.

海底地震計の設置位置と3.11地震のすべり分布 (Obana et al.(2013))

Fig. 2. Hypocenters and error ellipsoids of the earthquakes. Earthquakes within the red dotted rectangle on the map were projected onto the P-wave velocity model used for locating earthquakes (Ito et al., 2005). The top of the oceanic crust is indicated by the dotted line on the cross section. Symbols are the same as Fig. 1.

3.11地震の余震分布とP波速度構造の関係 (Obana et al.(2013)に一部加筆)

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 8. 超大すべり域のすべり分布の設定

8.2 3.11 地震における宮城県沖の大きなすべりの発生要因(2/4)

■ダイナミックオーバーシュート(2/2)

- Ide et al.(2011)は、3.11地震の地震波の解析に基づき、以下の見解を示している。
 - ✓ 3.11地震は、①浅部の比較的静かなすべり、②深部における高周波を放射する破壊の2つの破壊モードからなる。
 - ✓ このうち、①のすべりは地震以前に蓄えられていたひずみを解放するだけではなく、さらにすべり過ぎたことが、地震直後に陸側プレート内で 正断層地震が発生したことから推定される。これがダイナミックオーバーシュート(動的過剰すべり)と呼ばれる現象である。
 - ✓ 浅部のダイナミックオーバーシュートは、それに先立つ深部のエネルギッシュな破壊により励起された。深部側の破壊が存在しなければ、 巨大な津波は発生しなかった。

(左図)コンター:総すべり量の分布,0309:前震(Mw7.3)のメカニズム,MS:本震のメカニズム, 0312及び0314:余震(それぞれMw6.5,Mw6.1)のメカニズム,青点:前震の震央,赤点:余震の震央, グラフ:地震モーメントの放出速度の推移 (右図)すべり速度分布のスナップショット

(Ide et al.(2011))

時間毎の破壊過程の模式図(井出(2011))

- Ⅰ.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 8. 超大すべり域のすべり分布の設定
- 8.2 3.11 地震における宮城県沖の大きなすべりの発生要因(3/4)

■付加体の幅とすべり量の関係

- ・ Kozdon and Dunham(2013)は、地震探査で得られた宮城県沖の地震波速度構造を模した沈み込みプレート境界モデルを用いた2次元動的破壊シ ミュレーションから、付加体の幅の違いがプレート境界浅部のすべり量に与える影響を検討し、付加体の幅が小さいほどプレート境界浅部のすべり 量が増大する傾向があるとしている。
- 宮城県沖の付加体の幅は、日本海溝沿いの他領域と比較して狭い(Tsuru et al.(2002))。

Figure 11. (a) Influence of horizontal extent W of shallow velocity-strengthening region on cumulative slip (plotted every 5 s). Shown for maximum effective normal stress $\bar{\sigma}_{max} = 40$ MPa and seismogenic depth D = 45 km. (b) Horizontal and (c) vertical seafloor displacement compared with various observations (dashed line). The color version of this figure is available only in the electronic edition.

動的破壊シミュレーションによる付加体の幅と 断層すべり量、水平・上下変位の関係 (Kozdon and Dunham(2013)に一部加筆)

Figure 17. Map view of the low velocity sedimentary units observed on MCS sections in the Japan Trench margin. Small dots represent background seismicity taken from JMA (Japan Meteorological Agency) HypoCatalog

日本海溝沿いにおける付加体(低速度堆積物)の分布 (Tsuru et al.(2002)に一部加筆)

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 8. 超大すべり域のすべり分布の設定

8.2 3.11地震における宮城県沖の大きなすべりの発生要因(4/4)

■まとめ

【地質学的特徴】

- 宮城県沖のプレート境界浅部には、自発的な震源核形成が起こらない付加体が分布し(文部科学省(2014))、その幅は約30kmである(Obana et al.(2013))。
- ・ また, 宮城県沖の付加体の幅は, 日本海溝沿いの他領域と比較して狭い(Tsuru et al. (2002))。

【地震学的特徴(大きなすべりの発生要因)】

 3.11地震の大きなすべりは、深部の破壊を起点としたダイナミックオーバーシュートによるものであり(長谷川(2015), Ide et al.(2011))、付加体の 幅が狭いほどすべり量は大きい(Kozdon and Dunham(2013))。

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 8. 超大すべり域のすべり分布の設定
- 8.3 青森県東方沖及び岩手県沖北部の地質学的・地震学的特徴

■地質学的特徴

- 1994年三陸はるか沖地震の震源付近のプレート境界浅部には,幅約40kmの付加体が分布する(Ito et al.(2004))。
- 同付加体の範囲では、1994年三陸はるか沖地震の余震は発生していないことから、3.11地震で大きなすべりを生じた宮城県沖の付加体と同様に 自発的な震源核形成を起こさない領域と考えられる。

Fig. 5. (a) Model with iso-velocity contours as for Fig. 3a, superimposed on focal depths of aftershocks of the 1994 earthquake [10] projected onto the vertical cross section off-eastem Aomori forearc region. The horizontal axis indicated in the upper part shows the east longitude (* E) corresponding to the position of our profile, and vertical taxis is depth below sea level (km). Yellow triangles show focal depths of the 1994 aftershocks. Black dashed circles labeled A and B denote clusters of aftershocks discussed in the text. The red thick line and the black thick vertical dashed line mark location of the plate boundary and the location of bending point revealed by this study, respectively. The blue bar in the upper part shows the location of common asperity of the 1968 and the 1994 earthquakes, from Isgarshi et al. [28]. Orange circles abeployment positions. Vertical exaggenation is 2 times, (b) Spatial distribution of repeating earthquakes from Igarshi et al. [28]. Orange circles show the repeating earthquakes for the period from April 1992 to July 2000 (*M*=3 or larger). The red line indicates the location of the seismic refraction profile and white circles are OBS locations for this study. Blue and green contours denote the large moment release areas, as in Fig. 1 [4]. Seafloor topography is contoured at 500-m intervals.

> 1994年三陸はるか沖地震の余震分布と地質構造の関係 (Ito et al.(2004))

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 8. 超大すべり域のすべり分布の設定

■地震学的特徴

・ 青森県東方沖及び岩手県沖北部で発生している既往地震の震源深さは、3.11地震の震源と同様に深さ約20kmであり、その深部にはカップリング率が ほぼ100%に近いアスペリティが分布する(Yamanaka and Kikuchi(2004)、永井ほか(2001))。

第1027回審査会合(R4.1.28)

資料1-2 p114 再掲

114

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 8. 超大すべり域のすべり分布の設定

第1027回審査会合(R4.1.28) 資料1-2 p115 再掲 **115**

8.4 まとめ

■地質学的特徴の類似性

- 青森県東方沖及び岩手県沖北部のプレート境界浅部には、宮城県沖と同様に自発的な震源核形成を起こさない付加体が存在すると考えられる。
- ・ 付加体の幅(約40km)は宮城県沖(30km)よりも広いことから、3.11地震規模のすべりを生じるためには、3.11地震以上のエネルギー(固着)が必要と 考えられる。

■地震学的特徴の類似性

 青森県東方沖及び岩手県沖北部で発生している既往地震の震源深さは宮城県沖と同様の約20kmであり、その深部にはカップリング率がほぼ100% に近いアスペリティが分布する。

 ・ 宮城県沖と青森県東方沖及び岩手県沖北部の地質学的・地震学的特徴には類似性があり、青森県東方沖及び岩手県沖北部に分布する付加体の 幅は宮城県沖よりも広いことを踏まえれば、3.11地震規模のすべりが発生するとした場合、その発生要因は、深部の破壊を起点としたダイナミック オーバーシュートによるものと考えられる。

以上から、各特性化モデルに反映する超大すべり域のすべり分布は、宮城県沖と同様に深部の破壊を含む深さ約20km~0kmの範囲(幅:約100km)
 に設定する。

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
 - 9. 十勝沖・根室沖の超大すべり域が発電所の津波高さに及ぼす影響
- 9.1 検討方針
- 9.2 超大すべり域位置の影響
- 9.3 破壊の時間差の影響
- 9.4 まとめ

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 9. 十勝沖・根室沖の超大すべり域が発電所の津波高さに及ぼす影響

9.1 検討方針

 超大すべり域位置の不確かさの考慮(概略パラメータスタディ)は、発電所の津波高さに及ぼす影響が大きい青森県東方沖及び岩手県沖北部の超 大すべり域を対象に実施しているが、特性化モデル①は、地震学的・測地学的見地から十勝沖・根室沖にも超大すべり域を設定していることから、 十勝沖・根室沖の超大すべり域が発電所の津波高さに及ぼす影響を確認するため、同領域の「超大すべり域位置(検討1)」、並びに「青森県東方 沖及び岩手県沖北部に設定した超大すべり域との破壊の時間差(検討2)」に係る検討を実施する。

第1027回審査会合(R4.1.28)

資料1-2 p117 再掲

117

なお、本検討は、基準ケース(超大すべり域※:基準位置)、並びに水位上昇側決定ケース(超大すべり域※:南へ50km移動)を対象に実施する。
 ※:青森県東方沖及び岩手県沖北部の超大すべり域

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 9. 十勝沖・根室沖の超大すべり域が発電所の津波高さに及ぼす影響

100

9.2 超大すべり域位置の影響①

■解析結果①

- ・島弧会合部における構造的特徴から(下図)、島弧会合部(基準位置よりも西側)で3,11地震時に見られた大きなすべりが発生する可能性は極め て低いと考えられるが、発電所の津波高さに与える影響を確認する観点から、津波解析を実施した。
- 検討の結果、超大すべり域を西側へ移動させると、最大水位上昇量が低減することを確認した。

資料1-2 p118 再掲

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 9. 十勝沖・根室沖の超大すべり域が発電所の津波高さに及ぼす影響
 - 9.2 超大すべり域位置の影響②

■解析結果②

- ・ 十勝沖・根室沖の超大すべり域を基準位置から西へ移動した各ケースの最大水位上昇量分布を以下に示す。
- 基準位置から西側へ移動すると、襟裳岬周辺の大陸棚(海底地形)の影響から、襟裳岬に伝播する津波が卓越し、発電所の津波高さに及ぼす影響が低減することを確認した。

十勝沖・根室沖の超大すべり域位置と最大水位上昇量分布の関係

第1027回審査会合(R4.1.28)

資料1-2 p119 再掲

119

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 9. 十勝沖・根室沖の超大すべり域が発電所の津波高さに及ぼす影響
- 9.3 破壊の時間差の影響①

■超大すべり域から発生する津波到達の時間差(破壊の時間差)の確認

 +勝沖・根室沖と青森県東方沖及び岩手県沖北部の超大すべり域から発生する津波到達の時間差(破壊の時間差)を確認するため、
 +勝沖・根室
 沖から岩手県沖北部の連動型地震の波源を以下の通り分割し、
 解析を実施した。

第1027回審査会合(R4.1.28)

資料1-2 p120 再掲

120

・ 解析の結果,十勝沖・根室沖の超大すべり域から発生する第一波のピーク発生時間(T1)は地震発生から約41分,青森県東方沖及び岩手県沖北部の超大すべり域については,基準位置(T2)で約35分,南へ50km(T2')で約40分であり,それぞれの時間差(T1-T2,T1-T2')は6分,1分である。

9. 十勝沖・根室沖の超大すべり域が発電所の津波高さに及ぼす影響

9.3 破壊の時間差の影響

②

■解析結果

- ・ 十勝沖・根室沖,青森県東方沖及び岩手県沖北部の超大すべり域から発生する津波到達の時間差(破壊の時間差)を考慮し,十勝沖・根室沖の超
 、大すべり域西端及び東端に破壊開始点(Vr=1.0km/s)を設定し,解析を実施した。
- 青森県東方沖及び岩手県沖北部の超大すべりが基準位置の場合、同領域から到達する津波の第一波と十勝沖・根室沖の超大すべり域から発生する津波が重なり合うため、同時破壊と比較して0.8m程度水位が上昇することを確認した。
- 一方,南へ50kmの場合(上昇側決定ケース),各領域の超大すべり域から発生する津波到達の時間差は約1分とほぼ時間差がないため,破壊時間 差を考慮すると,先行して千島海溝沿いで発生する津波が敷地に到達するため,津波は重なり合わず,同時破壊と比較して水位が低減することを確 認した。
 破壊開始点設定位置

敷地前面における最大水位上昇量(m)

第1027回審査会合(R4.1.28)

資料1-2 p121 再掲

121

ケース	基準位置	南へ50km	
同時破壊	7.98	10.45	
破壞開始点★	8.79	7.51	
破壊開始点★	8.28	6.91	

<u>破壊時間差を考慮することにより津波水位が上昇する超大すべり域位置の関係が存在するが、発電所の津波高さに与える影響が大きい青森県東方沖及び岩手県沖</u> <u>北部の超大すべり域の決定位置は南へ約50km位置であり、破壊の時間差を考慮すると水位が低減することを確認した(破壊の時間差は、超大すべり域位置の不確か</u> さに包含されることを確認した)。 I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 9. 十勝沖・根室沖の超大すべり域が発電所の津波高さに及ぼす影響

第1027回審査会合(R4.1.28) 資料1-2 p122 再掲 **122**

9.4 まとめ

- 特性化モデル①で設定している十勝沖・根室沖の超大すべり域位置が発電所の津波高さに及ぼす影響を確認するため、同領域の「超大すべり域 位置(検討1)」、並びに「青森県東方沖及び岩手県沖北部に設定した超大すべり域との破壊の時間差(検討2)」に係る検討を実施した。
- ・ 十勝沖・根室沖の超大すべり域の位置の影響について、
 ・ 十勝沖・根室沖の超大すべり域位置を基準位置から西側へ移動すると、
 襟裳岬周辺の大
 陸棚(海底地形)の影響から、
 襟裳岬に伝播する津波が卓越し、
 発電所の津波水位は低下することを確認した。
- 青森県東方沖及び岩手県沖北部に設定した超大すべり域と破壊時間差の影響について,破壊時間差を考慮することにより津波水位が上昇する超大すべり域位置の関係が存在するが,発電所の津波高さに与える影響が大きい青森県東方沖及び岩手県沖北部の超大すべり域の決定位置は南へ約50km位置であり,破壊の時間差を考慮すると水位が低減することを確認した(破壊の時間差は,超大すべり域位置の不確かさに包含されることを確認した)。
- 以上より、概略パラメータスタディを実施する際の十勝沖・根室沖の超大すべり域位置は、発電所に与える影響が最も大きい基準位置(現状の設定 位置)とする。

10. 基準断層モデル選定と詳細パラメータスタディ

- 10.1 検討概要
- 10.2 水位上昇側
- 10.3 水位下降側
- 10.4 まとめ

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 10. 基準断層モデル選定と詳細パラメータスタディ

10.1 検討概要

 大すべり域の位置の不確かさを考慮した概略パラメータスタディにより基準断層モデルを選定することの妥当性を確認するため、各特性化モデルを 対象に、動的破壊特性の不確かさを考慮した詳細パラメータスタディを実施した。

10. 基準断層モデル選定と詳細パラメータスタディ

10.2 水位上昇側:特性化モデル①

破壞開始点	破壊伝播 速度	ライズ タイム	最大水位上昇量 (m)	下線部∶最大ケース
	(km/s)	(s)	敷地前面	
同時破壊	∞		<u>10.45</u>	
P2			9.75	
P3	2.0	60	9.54	
P5			9.23	
P6			9.93	
	\sim			
破壞開始点	破壊伝播 速度	ライズ タイム	最大水位上昇量 (m)	
	(km/s) (敷地前面	
	1.0		7.93	
P6	1.5	60	8.64	
PO	2.0	00	9.93	
	2.5		10.26	
	\sim			
破壞開始点	破壊伝播 速度	ライズ タイム	最大水位上昇量 (m)	
	(km/s)	(s)	敷地前面	
		60	10.26	
		90	10.06	
P6	2.5	120	9.58	
		180	8.70	
		300	6.98	

第1027回審査会合(R4.1.28) 資料1-2 p125 再掲

125

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価

10. 基準断層モデル選定と詳細パラメータスタディ

10.2 水位上昇側:基準断層モデル①(特性化モデル②)

第1027回審査会合(R4.1.28) 資料1-2 p126 再掲

126

10. 基準断層モデル選定と詳細パラメータスタディ

第1027回審査会合(R4.1.28) 資料1-2 p127 再掲

揭 | 127

10.2 水位上昇側:特性化モデル③

破壞開始点	破壊伝播 速度	ライズ タイム	最大水位上昇量 (m)	下線部:最大ケース
	(km/s)	(s)	敷地前面	
同時破壊	∞		9.80	
P1			9.07	
P2			9.10	
P3	2.0	60	9.19	
P4			8.14	
P5			7.68	
P6			10.34	
	\sim			
破壞開始点	破壊伝播 速度	ライズ タイム	最大水位上昇量 (m)	
	(km/s)	(s)	敷地前面	
	1.0		10.47	
De	1.5	60	10.40	
20	2.0	60	10.34	
	2.5		10.23	
	\backslash	$\overline{}$		-
破壊開始点	破壊伝播 速度	ライズ タイム	最大水位上昇量 (m)	
	(km/s)	(s)	敷地前面	
		60	<u>10.47</u>	
		90	9.98	
P6	1.0	120	9.55	
		180	8.79	
		300	8.71	より、そう、ち

10. 基準断層モデル選定と詳細パラメータスタディ

第1027回審査会合(R4.1.28) 資料1-2 p128 再掲

128

10.2 水位上昇側:特性化モデル④

10. 基準断層モデル選定と詳細パラメータスタディ

10.2 水位上昇側:まとめ

• 基準断層モデル①が発電所全体の津波高さに及ぼす影響が最も大きいことを確認した。

■最大水位上昇量の比較

下線部:最大ケース

第1027回審査会合(R4.1.28)

資料1-2 p129 再掲

特性化モデル	大すべり域の位置	破壞開始点	破壞伝播速度(km/s)	ライズタイム(s)	敷地前面
特性化モデル①	南へ約50km移動	P6	2.5	60	10.26
基準断層モデル① (特性化モデル②)	南へ約100km移動	P6	2.0	60	<u>11.18</u>
特性化モデル③	南へ約100km移動	P6	1.0	60	10.47
特性化モデル④	南へ約40km移動	P6	2.0	60	10.82

■最大水位上昇量分布の比較

特性化モデル①

基準断層モデル① (特性化モデル②)

特性化モデル③

特性化モデル④

10.2 水位上昇側:(参考)防波堤の有無が津波水位に及ぼす影響

• 各特性化モデルの決定ケースを対象に、防波堤無し地形を用いた津波解析を実施した結果を以下に示す。

防波堤無しの条件下においても、基準断層モデル①が発電所全体の津波高さに及ぼす影響が最も大きいことを確認した。

■最大水位上昇量の比較

特性化モデル	大すべり域の位置	破壊開始点	破壊伝播速度 (km/s)	ライズタイム (s)	防波堤	敷地前面
はせんてごしつ	古。約50km移動	DG	25	60	有り	10.26
村生にてナル()	円/ 「「」」。OKIII 1 多到	PO	2.5	00	無し	9.39
基準断層モデル① (特性化モデル②)	南へ約100km移動	P6	2.0	60	有り	<u>11.18</u>
					無し	<u>11.17</u>
特性化モデル③	南へ約100km移動	P6	1.0	60	有り	10.47
					無し	10.38
特性化モデル④	古。约 40km移動	P6	2.0	60	有り	10.82
	南へ約40km移動				無し	10.88

10. 基準断層モデル選定と詳細パラメータスタディ

10.3 水位下降側:特性化モデル①

項目	解析条件		破壊開始点	破壊伝播 速度	ライズ タイム
破壊開始点	・同時破壊 ・大すべり域の周辺(P1〜P6)			(km/s)	(s)
破壊伝播	10.15.20.25 km/a		同時破壊	∞	
速度	1.0, 1.3, 2.0, 2.3km/ s		P2		
ライズタイム	60, 90, 120, 180, 300s		P3	2.0	60
			P5		
			P6		
	<pre></pre>			\sim	\nearrow
			破壞開始点	破壊伝播 速度 (km/s)	ライズ タイム (s)
				1.0	- 60 -
波源モデル			Ρ5	1.5	
				2.0	
				2.5	
				\square	\nearrow
			破壞開始点	破壞伝播 速度 (km/s)	ライ タイ (s
					60
					90
			P5	1.0	12

最大水位下降量(m) 補機冷却海水系 取水口前面 -4.59 -4.62 -4.59 -4.64 -4.58

最大水位下降量(m) 補機冷却海水系 取水口前面 -4.66 -4.63 -4.64 -4.61

 动 <u>病</u> 問 物 上	破壊伝播	ライズ	最大水位下降量 (m)
呶堟וח炻	(km/s)	(s)	補機冷却海水系 取水口前面
P5	1.0	60	-4.66
		90	-4.65
		120	-4.65
		180	-4.62
		300	-4.59

下線部:最大ケース

解析条件

·同時破壊

・大すべり域の周辺(P1~P6)

1.0, 1.5, 2.0, 2.5km/s

60, 90, 120, 180, 300s

32.75 16.37 5.12

10. 基準断層モデル選定と詳細パラメータスタディ

10.3 水位下降側:特性化モデル2)

東通原子力 発電所

0 P20 P3o

P1o

項目

破壞開始点

ライズタイム

波源モデル

破壊伝播

速度

			\sim	
				最大水位下降量(m)
	破壊開始点	呶壕IΣ馏述度 (km∕s)	(s)	補機冷却海水系 取水口前面
	Ρ4	1.0	60	-4.84
		1.5		-4.86
		2.0		-4.87
		2.5		-4.88

	古体行体并中	ニノブタノノ	最大水位下降量(m)
破壊開始点	www.km/s)	717917 (s)	補機冷却海水系 取水口前面
Ρ4	2.5	60	-4.88
		90	-4.87
		120	-4.87
		180	-4.85
		300	-4.83

第1027回審査会合(R4.1.28) 132

資料1-2 p132 再掲

10. 基準断層モデル選定と詳細パラメータスタディ

項目

破壞開始点

破壊伝播

ライズタイム

基準断層

モデル2

速度

10.3 水位下降側:基準断層モデル②(特性化モデル③)

~						
	冲持/14 /14	ニノブタノノ	最大水位下降量(m)			
破壊開始点	www.km/s)	(s)	補機冷却海水系 取水口前面			
Ρ4	1.0	60	<u>-5.101</u>			
		90	-5.10			
		120	-5.09			
		180	-5.07			
		300	-5.02			

より、そう、ちから。

10. 基準断層モデル選定と詳細パラメータスタディ

項目

破壊開始点

破壊伝播

ライズタイム

基準断層

モデル③

速度

10.3 水位下降側:基準断層モデル③(特性化モデル④)

1.0

P1

60

90

120 180

300

<u>-5.24</u> -5.20

-5.20

-5.14

-5.06

第1027回審査会合(R4.1.28) 資料1-2 p134 再掲 **134**

10. 基準断層モデル選定と詳細パラメータスタディ

10.3 水位下降側:まとめ

・ 基準断層モデル②及び基準断層モデル③が港湾内全体の津波高さに及ぼす影響が大きいことを確認した。

■最大水位下降量及び取水口敷高を下回る時間の比較

下線部:最大ケース

特性化モデル 大すべり域		域位置 破壞開始点	破壊伝播速度 (km/s)	ライズタイム (s)	補機冷却海水系取水口前面	
	大すべり域位置				最大水位下降量(m)	取水口敷高 [※] を 下回る時間(分)
特性化モデル①	南へ約60km移動	P5	1.0	60	-4.66	2.6
特性化モデル②	南へ約60km移動	P4	2.5	60	-4.88	3.6
基準断層モデル② (特性化モデル③)	南へ約100km移動	P4	1.0	60	-5.10	4.2
基準断層モデル③ (特性化モデル④)	南へ約40km移動	P1	1.0	60	<u>-5.24</u>	<u>4.4</u>

■最大水位下降量分布の比較

特性化モデル①

特性化モデル②

※:補機冷却海水系取水設備の詳細は、補足説明資料「5.3 津波水位の評価位置」に記載。

基準断層モデル② (特性化モデル③)

基準断層モデル③ (特性化モデル④)

10.3 水位下降側:(参考)防波堤の有無が津波水位に及ぼす影響

• 各特性化モデルの決定ケースを対象に、防波堤無し地形を用いた津波解析を実施した結果を以下に示す。

・ 防波堤無しの条件下においては、基準断層モデル②及が発電所全体の津波高さに及ぼす影響が最も大きいことを確認した。

■最大水位下降量の比較

特性化モデル	大すべり域の位置	破壊開始点	破壊伝播速度 (km/s)	ライズタイム (s)	防波堤	補機冷却海水系 取水口前面
特性化モデル①	南へ約60km移動	Ρ5	1.0	60	有り	-4.66
					無し	-6.22
特性化モデル②	南へ約60km移動	Ρ4	2.5	60	有り	-4.88
					無し	-6.33
基準断層モデル② (特性化モデル③)	南へ約100km移動	Ρ4	1.0	60	有り	-5.10
					無し	<u>-6.55</u>
基準断層モデル③ (特性化モデル④)	南へ約40km移動	P1	1.0	60	有り	<u>-5.24</u>
					無し	-6.15

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 10. 基準断層モデル選定と詳細パラメータスタディ

10. 4 まとめ

- 大すべり域の位置の不確かさを考慮した概略パラメータスタディにより基準断層モデルを選定することの妥当性を確認するため、各特性化モデル を対象に、動的破壊特性の不確かさを考慮した詳細パラメータスタディを実施した。
- 検討の結果,水位上昇側,水位下降側ともに,選定した基準断層モデルが発電所の津波高さに与える影響が大きいことを確認した。

11. 破壊開始点に係る知見の整理・反映

- 11.1 アスペリティと破壊開始点の位置関係に係る地震学的知見
- 11.2 破壊開始点の設定方法に係る知見
- 11.3 破壊開始点の設定

11. 破壊開始点に係る知見の整理・反映

11.1 アスペリティと破壊開始点の位置関係に係る地震学的知見

■カップリング率と破壊開始点の関係

Table 1

 Kato and Seno(2003)は、国内外で発生したMw7.5以上のプレート間地震(26地震)のカップリング率と震源位置(破壊開始点)の関係を分析し、 カップリング率が0.5よりも小さくなると、震源位置は主破壊領域の内部にも存在し、その位置はばらつく傾向があるが、カップリング率が1に近い 場合、震源位置は主破壊領域の下端付近に存在する傾向があるとしている。

プレート間地震 (Mw \geq 7.5)の相対的な震源位置 (d) とカップリング (α)

(Kato and Seno(2003))

Relative depths d of large interplate earthquakes ($M_{\rm w} \ge 7.5$) at subduction	a zones and the seismic coupling coefficient α
---	---

Event	Subduction zone	Date	$M_{\rm w}$	d	a(PS)	$\alpha(PSS)$	Reference
Tonankai	Nankai	12/07/1944	7.9	1.0	1.00 ^a		[30,31]
Nankai	Nankai	12/20/1946	8.2	0.1	1.00 ^a		[32,33]
Kamchatka	Kamchatka	11/04/1952	9.0	1.0	0.67	0.39	[14]
Andreanof Is.	Aleutian, east	03/09/1957	9.1	0.9	0.84	0.35	[14]
Guerrero	Mexico	07/28/1957	7.7	1.0	0.38	0.24	[14,34]
Chile	Chile, south	05/22/1960	9.5	1.0	1.57	_	[35]
Kuril	Kuriles, south	10/13/1963	8.3	0.9	0.36	1.45	[14]
Alaska	Alaska	03/28/1964	9.2	1.0	0.77	-	[36]
Rat Island	Aleutian, west	03/09/1965	8.7	0.7	0.31	1.12	[14]
Vanuatu	Vanuatu	08/01/1965	7.5	0.0	0.16	0.15	[37]
Oaxaca	Mexico	08/23/1965	7.5	0.95	0.38	0.24	[6]
Peru	Peru, south	10/17/1966	8.2	0.5	0.16	-	[38]
Tokachi-oki	Japan	05/16/1968	8.3	0.0	0.24	0.22	[5]
Kuril	Kuriles, south	08/11/1969	8.2	0.95	0.36	1.45	[14]
Varparaiso	Chile, central	07/08/1971	7.7	1.0	0.14	0.16	[39]
Kuril	Kuriles, south	06/17/1973	7.8	1.0	0.36	1.45	[14]
Oaxaca	Mexico	11/29/1978	7.6	0.5	0.38	0.24	[6]
Colombia	Colombia	12/12/1979	8.2	0.8	0.33		[40]
Varparaiso	Chile, central	03/03/1985	8.0	0.8	0.14	0.16	[39]
Michoacan	Mexico	09/19/1985	8.0	0.8	0.38	0.24	[14]
Andreanof Is.	Aleutian, east	05/07/1986	7.9	1.0	0.84	_	[14]
Antofagasta	Chile, central	03/05/1987	7.5	0.8	0.14	0.16	[39]
Sanriku-oki	Japan	12/28/1994	7.7	0.0	0.24	0.22	[5]
Antofagasta	Chile, central	07/30/1995	8.0	0.7	0.14	0.16	[39]
Peru	Peru, south	11/12/1996	7.7	0.3	0.16	_	[41]
Peru	Peru, south	06/23/2001	8.2	0.55	0.16		[42]

 α (PS) and α (PSS) are from Peterson and Seno [7] and Pacheco et al. [15], respectively.

References are for the moment magnitudes M_w , epicentral locations, and rupture areas of the large earthquakes. ^a α value for the Nankai subduction zone is revised. See text.

d:相対的な震源位置(=震源の破壊領域端からの距離:D/破壊領域の幅:W) α:カップリング係数

カップリング率が1に近い場合、震源は 主破壊領域の下端に位置する。 0 0.8 0.6 Peterson and Seno Pacheco et al. σ 0.4 nain shoc rupture are 0.2 1946年 trench axis 南海地震 0 0.4 0.5 0.6 0.8 0 02 α

Fig. 1. The relative hypocentral depth d versus the seismic coupling coefficient α obtained for large interplate earthquakes at subduction zones (Table 1). Solid and open circles stand for α values from Peterson and Seno [7] and from Pacheco et al. [15], respectively. When α is estimated to be greater than 1 (Table 1), it is reduced to 1. The relative hypocentral depth d is defined by D/W, where D is the distance from the trenchward edge of the rupture area to the epicenter and W is the width of the rupture area in the direction perpendicular to the trench axis (inset).

139

相対的な震源位置(d)とカップリング(α)の関係図 (Kato and Seno(2003)に一部加筆)

11. 破壊開始点に係る知見の整理・反映

第1027回審査会合(R4.1.28) 140 資料1-2 p140 再掲

11.1 アスペリティと破壊開始点の位置関係に係る地震学的知見

■破壊開始点と大すべり域の位置関係(1/2)

- Mai et al.(2005)は、国内外で発生した内陸地殻内及び沈み込み帯浅部で発生した地震(逆断層型、正断層型)(Mw4.1-8.1,50地震以上)の強震 動インバージョンモデル(80モデル以上)から破壊開始点と大すべり域等の位置関係を分析し、震源は断層上にランダムに位置するのではなく、 大すべり域内もしくはその近くに位置するとしている。
- また、走向方向(震源域全体)の震源位置について、震源は断層中心部付近に位置し、断層端部には位置しないとしている。

(Mai et al. (2005))

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 11. 破壊開始点に係る知見の整理・反映

第1027回審査会合(R4.1.28) 資料1-2 p141 再掲 **141**

11.1 アスペリティと破壊開始点の位置関係に係る地震学的知見

■破壊開始点と大すべり域の位置関係(2/2)

- Raghukanth and Sangeetha (2016)は、3.11地震を含む国内外で発生した巨大地震(Mw7-9.1、33地震)の強震動インバージョンモデル(45モデル) から、震源は地震規模に関わらず大すべり域に近傍に位置するとしている。また、走向方向の震源位置について、Mw8.5以上の地震はほぼ断層 中心に位置し、断層端部には位置しないとしている。
- Melgar and Hayes(2019)は、USGSの有限断層モデルデータベースに基づき(M7-9、192モデル)、震源位置を確率モデル化し、震源は断層中心 付近を最大とする確率分布を示し、震源は断層端部に位置しないとしている。

Figure 1. Large earthquakes used in this study (lines-plate boundaries from Bird (2003)). 検討対象とした地震(Raghukanth and Sangeetha (2016))

Figure 7. Normalized hypocentre position in (a) along-strike and (b) down-dip directions.

震源(破壊開始点)と震源域の位置関係(Raghukanth and Sangeetha(2016))

Figure 8. Hypocenter positions as a function of the (a) downdip and (b) along-strike lengths. The histogram is the observed distribution. The lines are the best-fitting PDFs; we use a normal distribution for the along-dip position; and exponential, gamma, and Weibull for the along-strike position. Kolmogorv–Smirnov statistics for the data fits is in Table 1. The color version of this figure is available only in the electronic edition.

震源(破壊開始点)と震源域の位置関係 (Melgar and Hayes(2019))

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 11. 破壊開始点に係る知見の整理・反映

11.1 アスペリティと破壊開始点の位置関係に係る地震学的知見

■まとめ

- 大すべり域(アスペリティ)に対する破壊開始点(震源)の位置について、破壊開始点位置はアスペリティのカップリング率に関係し、断層上に ランダムに位置するのではなく、大すべり域内もしくは大すべり域近傍に位置する。 (Kato and Seno(2003), Mai et al.(2005), Raghukanth and Sangeetha(2016))。
- 走向方向に対する破壊開始点(震源)の位置について,破壊開始点はほぼ断層中心部付近に位置し,少なくとものM8-9クラスの地震については,断層端部に位置しない(断層端部から破壊は開始しない)。
 (Mai et al.(2005), Raghukanth and Sangeetha (2016), Melgar and Hayes (2019))。

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 11. 破壊開始点に係る知見の整理・反映
- 11.2 破壊開始点の設定方法に係る知見

■M9クラスの巨大地震を対象とした特性化モデルに対する破壊開始点の設定方法(1/2)

 杉野ほか(2017)は、3.11地震、2004年スマトラ〜アンダマン地震及び1960年チリ地震津波の各津波波源モデルにおいて、破壊開始点がすべりの 大きい領域に近接していることを考慮し、Mw8.9以上の巨大地震については、超大すべり域の下端に破壊開始点を設定している。

【杉野ほか(2017)で引用している津波波源モデル】

(Fujii and Satake(2007))

【杉野ほか(2017)による破壊開始点の設定方法】

> 大すべり域:津波断層の平均すべり量の1.4倍

▶ 超大すべり域:津波断層の平均すべり量の3倍

1960年チリ地震 (Fujii and Satake(2013))

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 11. 破壊開始点に係る知見の整理・反映
- 11.2 破壊開始点の設定方法に係る知見

■M9クラスの巨大地震を対象とした特性化モデルに対する破壊開始点の設定方法(2/2)

- ・ 内閣府(2020a)による日本海溝(三陸・日高沖)モデル,千島海溝(十勝・根室沖)モデルともに,大すべり域周辺に破壊開始点を設定し,その深さ は約20km~30kmの位置に設定している。
- ・ 千島海溝(十勝・根室沖)モデルについて、大すべり域を波源域の南西端に配置しているが、破壊開始点は波源域の端部に設定していない。

※:内閣府(2020b)に基づき作成

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 11. 破壊開始点に係る知見の整理・反映
- 11.2 破壊開始点の設定方法に係る知見

■津波のディレクティビティ効果を考慮した(保守性を考慮した)破壊開始点の設定方法

- 土木学会(2016)は、津波のディレクティビティ効果を考慮し、大すべり域を取り囲むように破壊開始点を設定するとともに、大すべり域下端のみならず、プレート境界浅部(深さ約15km)ならびに超大すべり域内部にも破壊開始点を設定している。
- 大すべり域・超大すべり域を波源域の南西端に配置しているが、破壊開始点は波源域の端部に設定していない。

【土木学会(2016)による破壊開始点の設定方法】 【破壊開始点が津波高さに与える影響(土木学会(2016))】

比較地点(浜中町,大樹町,森町鷲の木)

同時破壊と破壊開始点を考慮した津波高さの比較結果

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 11. 破壊開始点に係る知見の整理・反映
- 11.2 破壊開始点の設定方法に係る知見

■まとめ

- M9クラスの巨大地震を対象とした特性化モデルに対する破壊開始点の設定方法について、杉野ほか(2017)、内閣府(2020a)は、超大すべり 域周辺に破壊開始点を設定している。また、土木学会(2016)、内閣府(2020a)は、大すべり域を波源域の端部に配置しているが、破壊開始点 は 波源域の端部に設定していない。
- ・ 上記知見の設定方法は、アスペリティと破壊開始点の位置関係に係る地震学的知見と整合することを確認した。
- ・ 土木学会(2016)は、津波のディレクティビティ効果を考慮し、大すべり域を取り囲むように破壊開始点を設定するとともに、大すべり域下端のみならず、プレート境界浅部(深さ約15km)ならびに超大すべり域内部にも破壊開始点を設定している。

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 11. 破壊開始点に係る知見の整理・反映

11.3 破壊開始点の設定

■設定方針

 青森県東方沖及び岩手県沖北部の地質学的・地震学的特徴を整理し、①アスペリティと破壊開始点の位置関係に係る地震学的知見、②破壊 開始点の設定方法に係る知見との比較から、保守的となる位置に破壊開始点を設定する。

【①アスペリティと破壊開始点の位置関係に係る地震学的知見】

- ・大すべり域(アスペリティ)に対する破壊開始点(震源)の位置について,破壊開始点位置はアスペリティのカップリング率に関係する。 (Kato and Seno(2003))
- ・また、断層上にランダムに位置するのではなく、大すべり域内もしくは大すべり域近傍に位置する。
 (Mai et al.(2005), Raghukanth and Sangeetha(2016))
- ・走向方向に対する破壊開始点の位置について、破壊開始点はほぼ断層中心部付近に位置し、断層端部に位置しない(断層端部から 破壊は開始しない)。

(Mai et al. (2005), Raghukanth and Sangeetha (2016), Melgar and Hayes (2019))。

【②破壊開始点の設定方法に係る知見】

- ・杉野ほか(2017),内閣府(2020a)は、超大すべり域周辺に破壊開始点を設定している。
- ・土木学会(2016),内閣府(2020a)は、大すべり域を波源域の端部に配置しているが、破壊開始点は波源域の端部に設定していない。
- ・土木学会(2016)は、津波のディレクティビティ効果を考慮し、大すべり域を取り囲むように破壊開始点を設定するとともに、大すべり域 下端のみならず、プレート境界浅部(深さ約15km)ならびに超大すべり域内部にも破壊開始点を設定している。

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 11. 破壊開始点に係る知見の整理・反映

11.3 破壊開始点の設定

■青森県東方沖及び岩手県沖北部の地震学的特徴(カップリング率)

- ・ 青森県東方沖及び岩手県沖北部では、平均発生間隔約97.0年で繰り返しM8クラスの地震が発生している(1677年, 1763年, 1856年, 1968年)
 (地震調査研究推進本部(2019))。
- Yamanaka and Kikuchi(2004), 永井ほか(2001)は, アスペリティ分布の解析から, 青森県東方沖及び岩手県沖北部のアスペリティ(右図:AとB)のうち, 1968年の地震と1994年の地震の共通アスペリティ(右図:B)のカップリング率はほぼ100%であるとしている。また, アスペリティは初期破壊から離れた位置にある傾向があるとしている。

- 春森県東方沖及び岩手県沖北部のアスペリティのカップリング率はほぼ100%であり、アスペリティと破壊開始点の位置関係に係る地震学的 知見から、破壊はアスペリティ付近(超大すべり域周辺)で開始すると考えられる。
- ただし、破壊開始点の不確かさは沿岸の津波高さに与える影響が大きいこと踏まえ、保守的に大すべり域周辺及び超大すべり域内部に破壊
 開始点を設定する。

第1027回審査会合(R4.1.28)

資料1-2 p148 再掲

148

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価

11. 破壊開始点に係る知見の整理・反映

第1027回審査会合(R4.1.28) 資料1-2 p149 再掲 **149**

11.3 破壊開始点の設定

■青森県東方沖及び岩手県沖北部の地震学的特徴(地質構造と1968年の地震, 1994年の地震の余震分布の関係)

- 1968年十勝沖地震と1994年の地震の共通アスペリティ付近のプレート境界浅部には、日本海溝軸から深さ約10kmの範囲に付加体が分布する (Ito et al.(2004))。
- 1968年の地震, 1994年の地震の震源は深さ約15km~20kmであり、両地震の余震については震源付近のほか、深さ約30km以深においても多く 発生している(永井ほか(2001), Ito et al.(2004))。
- 内閣府(2020a)による日本海溝(三陸・日高沖)モデルでは深さ約30km位置に破壊開始点を設定しており、青森県東方沖の地質学的・地震学的 知見と整合することを確認した。

<u>青森県東方沖及び岩手県沖北部のアスペリティ付近の地質学的・地震学的特徴及び内閣府(2020a)の知見を踏まえ、深さ約15km、約30kmに</u> 破壊開始点を設定する。

12. 内閣府(2020)の津波評価

- 12.1 検討方針
- 12.2 津波の伝播特性の比較
- 12.3 青森県沿岸の津波高(水位時刻歴波形)の比較
- 12.4 まとめ

12. 内閣府(2020)の津波評価

12.1 検討方針

 ・ 青森県南部における平沼から天ヶ森付近の部分的な範囲において、内閣府(2020a)の想定津波群が連動型の想定津波群を上回る要因について、
 内閣府(2020a)日本海溝(三陸・日高沖)モデルの青森県沖に破壊開始点を設定したケース、岩手県沖に破壊開始点を設定したケース及び連動型
 ・地震の想定津波群に支配的な基準断層モデル①を対象に、津波の伝播特性(スナップショット)及び青森県沿岸の津波高(水位時刻歴波形)の比較
 から分析する。

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 12. 内閣府(2020)の津波評価

12.2 津波の伝播特性の比較

地震発生1分後

地震発生10分後

地震発生2分後

地震発生25分後

第1027回審査会合(R4.1.28)

資料1-2 p152 再掲

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 12. 内閣府(2020)の津波評価

12.2 津波の伝播特性の比較

■内閣府(2020a)による津波波源モデル(2/4)

◆地震発生45分後~地震発生90分後

153

第1027回審査会合(R4.1.28)

資料1-2 p153 再掲

12. 内閣府(2020)の津波評価

第1027回審査会合(R4.1.28) 資料1-2 p154 再掲

154

12. 内閣府(2020)の津波評価

12.2 津波の伝播特性の比較

■内閣府(2020a)による津波波源モデル(4/4)

 ・ 青森県以南から北海道日高沿岸に囲まれた海域の北東ー南西方向に波長の長い(1/2波長=約200km)水位変動が繰り返し発生した要因について、 青森県から北海道沿岸の閉鎖領域の中で、青森県沖の大すべり域のすべりが発生し、同すべりによる隆起・沈降に伴う水位変動が増幅したものと 考えられる。

【内閣府(2020a)日本海溝(三陸・日高沖)モデル】

【内閣府(2020a)青森県沖破壊開始点ケース】

155

第1027回審査会合(R4.1.28)

資料1-2 p155 再掲

12. 内閣府(2020)の津波評価

12.2 津波の伝播特性の比較

内閣府(2020a)の津波波源モデルで認められた青森県以南から北海道日高沿岸に囲まれた海域の北東-南西方向の波長が長い水位変動は確認されない。

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 12. 内閣府(2020)の津波評価

第1027回審査会合(R4.1.28) 資料1-2 p158 再掲 **158**

12.3 青森県沿岸の津波高(水位時刻歴波形)の比較

■内閣府(2020a)による津波波源モデル

- 青森県北部(東通発電所,むつ小川原)の津波高は、青森県沖の大すべり域のすべりによる第1波の影響が大きいことを確認した。
- 一方,青森県南部(平沼から天ヶ森以南)の津波高については、地震発生110分後以降に見られる青森県以南から北海道日高沿岸に囲まれた海域の 北東-南西方向の波長が長い水位変動の影響が大きいことを確認した。

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 12. 内閣府(2020)の津波評価

第1027回審査会合(R4.1.28) 資料1-2 p159 再掲 **159**

- 12.3 青森県沿岸の津波高(水位時刻歴波形)の比較
- ■十勝沖・根室沖から岩手県沖北部の連動地震のうち基準断層モデル①
 - 青森県沿岸の津波高は、全域に亘って第1波の影響が大きいこと確認した。
 - なお、青森県前面海域の海底地形(水深)の影響から、沖合の津波は青森県南部へ回折し津波が集中する傾向があるため、青森県沿岸の津波高さは 北部よりも南部の方が高くなる※。
 - ※1:津波伝播特性の詳細は,「I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 5. 波源領域の違いが津波高さに与える影響」に記載。

12. 内閣府(2020)の津波評価

12.4 まとめ

- 青森県南部における平沼から天ヶ森付近の部分的な範囲において、内閣府(2020a)の想定津波群が連動型の想定津波群を上回る要因について、内閣府 • (2020a)による日本海溝(三陸・日高沖)モデル及び連動型地震の想定津波群に支配的な基準断層モデル①を対象に、津波の伝播特性(スナップショット) 及び青森県沿岸の津波高(水位時刻歴波形)の比較から分析した。

第1027回審査会合(R4.1.28)

資料1-2 p160 再掲

160

より、そう、ちから。

- 分析の結果、連動型地震は青森県沿岸全域に亘って第1波の影響が支配的であるのに対し、内閣府(2020a)については、青森県から北海道沿岸の閉鎖 領域の中で青森県沖の大すべり域のすべりが発生するため、同すべりによる降起・沈降に伴う水位変動が増幅し、平沼から天ヶ森付近の部分的な範囲で 連動型地震の水位を上回ったものと考えられる。
- なお、発電所前面においては、上記の水位増幅は認められないことを確認した。

【沿岸の津波高さに与える支配的要因】

13. 特性化モデル④の周期特性

- 13.1 検討方針
- 13.2 特性化モデル④の設定根拠(海溝側強調モデルの設定)
- 13.3 岩手県南部沖GPS波浪計で取得した3.11地震津波波形の再現解析

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 13. 特性化モデル④の周期特性

13.1 検討方針(1/2)

• 3.11地震に伴う津波波形については、東北地方沿岸の各GPS波浪計で記録されている。そのうち岩手南部沖GPS波浪計では、長周期の波と短周期の 波の重畳波形が観測※された。

第1027回審査会合(R4.1.28)

資料1-2 p162 再掲

162

杉野ほか(2013)は、岩手県南部沖GPS波浪計で取得した津波波形(以下、「岩手観測波形」という。)のうち、短周期の波の発生要因を分岐断層によるものと仮定した津波波源モデルを設定し、岩手観測波形を良好に再現している。
 ※:2011年3月11日15時01分から6分間で約2m緩やかに上昇し、続く4分間ではさらに4m以上も急に上昇(河合ほか(2011))。

13. 特性化モデル④の周期特性

13.1 検討方針(2/2)

- 岩手観測波形で確認された短周期の波の発生要因について、3.11地震後の日本海溝付近における海底調査(JAMSTEC(2012))等から分岐断層によるものではないと考えられるものの、分岐断層や海底地すべりは短周期の波を発生させる要因の1つと考えられることから、未知なる分岐断層や海底地すべり等が存在する可能性を考慮した特性化モデル④を設定した。
- 具体的には、宮城県沖の破壊特性を考慮した特性化モデルを基本として[※]、杉野ほか(2013)の津波波源モデルから得られる知見及び分岐断層により 発生する津波特性に関する知見を反映して設定した海溝側強調モデルのすべり分布を参考とした。
- 本検討では、特性化モデル④のすべり分布のベースとした海溝側強調モデルが、岩手観測波形の特徴である長周期の波に加え、短周期の波も適切に考慮できているかを確認するため、岩手観測波形の再現解析を実施した。

※:モデルの詳細は「7.3.11地震における宮城県沖の大すべり域の破壊特性を考慮した特性化モデル」に記載。

【特性化モデル④の設定フロー】

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 13. 特性化モデル④の周期特性

13.2 特性化モデル④の設定根拠(海溝側強調モデルの設定)(1/6)

- 海溝側強調モデルは、3.11地震における宮城県沖の破壊特性を考慮した特性化モデルを基本として、杉野ほか(2013)の津波波源モデル及び分岐 断層により発生する津波特性に関する知見を反映して設定した。
- 杉野ほか(2013)の津波波源モデルから得られる知見、分岐断層により発生する津波特性に関する知見及び海溝側強調モデルの設定フローを次頁 以降に示す。

	断層パラメータ	設定値	
-Ŧ	・メントマク [゛] ニチュート [゛] (Mw)	9.04	
断	層面積(S)	107,357 (km²)	
म ः	均応力降下量(⊿σ)	3.17(MPa)	
地	震モーメント(Mo)	4.58 × 10 ²² (Nm)	
岡'	性率(μ)	$5.0 \times 10^{10} (N/m^2)$	
	平均すべり量	8.53(m)	
	基本すべり域 (面積及び面積比率) ^{※1}	7.34(m) (56,675(km²), 52.8%)	
すべ	背景的領域 (面積及び面積比率)	3.67(m) (50,682(km²), 47.2%)	
くり量	大すべり域 (面積及び面積比率) ^{※2}	14.67(m) (24,875(km²), 23.2%)	
	中間大すべり域 (面積及び面積比率) ^{※3}	22.01 (m) (11,732(km²), 10.9%)	
	超大すべり域 (面積及び面積比率)	29.35(m) (6,201km²), 5.8%)	
-د	イズタイム(t)	60(s)	

※1:大すべり域,中間大すべり域及び超大すべり域をあわせた 領域の面積比率

※2:中間大すべり域,超大すべり域をあわせた領域の面積比率 ※3:超大すべり域をあわせた領域の面積比率

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 13. 特性化モデル④の周期特性

第1027回審査会合(R4.1.28) 資料1-2 p165 再掲 165

13.2 特性化モデル④の設定根拠(海溝側強調モデルの設定)(2/6)

■杉野ほか(2013)の津波波源モデルから得られる知見の反映

・ 杉野ほか(2013)は、岩手観測波形の短周期の波の発生要因を分岐断層によるものと仮定した津波波源モデルを示している。

・ 以下に、同モデルから得られる知見、並びに海溝側強調モデルの設定に反映した内容(下線部)示す。

① 宮城県沖のすべりについて、震源付近の最大すべり量(42m)は平均すべり量(11m)の約4倍に相当するが、分岐断層を仮定した範囲のすべり量は 最大78mであり、プレート境界深部から浅部にかけて段階的なすべり分布を示す。

⇒ 段階的なすべり分布を考慮するため、大すべり域、超大すべり域に加えて、中間大すべり域を設定する。

② 岩手県沖のすべり量(15~20m)は宮城県沖の最大すべり量(78m)と比較して小さいとともに、すべりの発生時間は地震発生240秒~300秒後と遅い。
 ⇒ 段階的なすべり分布を考慮すれば(上記①の知見をモデルに反映すれば), 岩手県沖に大きなすべりを考慮しなくても(単純化しても)長周期の波
 と短周期の波の重畳を考慮できる。

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 13. 特性化モデル④の周期特性

第1027回審査会合(R4.1.28) 資料1-2 p166 再掲 **166**

13.2 特性化モデル④の設定根拠(海溝側強調モデルの設定)(3/6)

■分岐断層により発生する津波特性に関する知見(1/2)

奥村・後藤(2013)は、南海トラフの熊野灘外縁部に認められる地質構造をモデル化して、①プレート境界と分岐断層が各々単独で破壊する場合を想定した断層破壊シミュレーション^{※1}を実施して両者の力学的な違いを考察するとともに、②同シミュレーションから得られる地殻変動を用いた津波伝播シミュレーション^{※2}から、津波特性の違いを以下のとおり考察している。

① プレート境界に破壊が伝播する場合の方が、相対的に大きな最終すべり量が生じる。

② 分岐断層の破壊シナリオは、大きな津波が沿岸に到達したとしても、周期が比較的短く、陸域への総流入量は大きくなりにくい。一方、プレート境界による破壊シナリオは、地殻変動がトラフ沿いの水深の深い海域まで生じるため、沿岸に到達する津波は大きく増幅され、より大きな水位変動をもたらす可能性がある。

※1:動力学モデル(断層に働く応力状態,断層面の摩擦特性をモデル化し,すべりそのものを力学に基づいて発生させる方法)を用いて実施。 ※2:非線形長波理論を用いて実施。空間格子間隔:50m,時間格子間隔:0.1秒,計算時間:1.5時間。

【地質構造モデル(奥村・後藤(2013)に一部加筆)】

[【]津波伝播シミュレーション^{※2}結果(奥村・後藤(2013))】

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 13. 特性化モデル④の周期特性

13.2 特性化モデル④の設定根拠(海溝側強調モデルの設定)(4/6)

■分岐断層により発生する津波特性に関する知見(2/2)

奥村・後藤(2013)を踏まえた南海トラフ沿いの分岐断層により発生する津波・地殻変動の特性の整理結果を以下に示す。

> 分岐断層による破壊シナリオに伴う津波は、プレート境界による破壊シナリオに伴う津波よりも周期が短い。

> これは、分岐断層による破壊シナリオの方が、周期特性が現れる海溝沿いにおける隆起域の距離が短い(断層幅が小さい)ためと考えられる。

分岐断層により発生する津波は、周期特性が現れる海溝沿いにおける隆起域の幅が狭いため、短周期の波が卓越する津波特性を有する。

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 13. 特性化モデル④の周期特性
- 13.2 特性化モデル④の設定根拠(海溝側強調モデルの設定)(5/6)

■分岐断層により発生する津波特性に関する知見の反映

- 海溝側強調モデルの地殻変動量分布と奥村・後藤(2013)に示される南海トラフ沿いにおける分岐断層の地殻変動量分布の比較を以下に示す。
- 海溝側強調モデルの海溝軸沿いの地殻変動について、分岐断層の地殻変動と同様に隆起域の幅が狭いことから、短周期の波が卓越する分岐断層の津波特性を有していることを確認した。

【海溝側強調モデルのすべり量分布と地殻変動量分布】

【南海トラフ沿いにおける分岐断層の地殻変動量分布】

I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 13. 特性化モデル④の周期特性

13.2 特性化モデル④の設定根拠(海溝側強調モデルの設定)(6/6)

第1027回審査会合(R4.1.28) 資料1-2 p169 再掲

1. 巨視的波源特性の設定

各パラメーター覧		
パラメータ	設定方法	設定値
断層面積(S)	岩手県沖南部~茨城県沖	107,357 (km ²)
地震発生深さ	地震調査研究推進本部 (2012)	海溝軸~深さ60km
平均応力降下量(⊿σ)	内閣府(2012), Murotani et al.(2013)	3(MPa)
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$
地震モーメント(Mo)	$16/(7\pi^{3/2})\cdot \varDelta \sigma \cdot S^{3/2}$	4.33 × 10 ²² (Nm)
平均すべり量(D)	$16/(7\pi^{3/2})\cdot \Delta\sigma\cdot S^{1/2}/\mu$	8.07(m)

2. 微視的波源特性の設定

- (1)大すべり域・超大すべり域・背景的領域・ 中間大すべり域の設定
- ▶ 断層面積(S₂,S₄,S_{0.5},S₃)の算定
- ▶ すべり量(D₂,D₄,D_{0.5},D₃)の算定
- ▶ 地震モーメント(M_{o2},M_{o4},M_{o0.5},M_{o3})の算定

■大すべり域

パラメータ	設定方法	設定値
断層面積(S)	断層面積(S)の10%	10,736 (km ²)
すべり量(D)	平均すべり量(D)の2倍 内閣府(2012)	16.14(m)
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$
地震モーメント(M₂)	μ • S ₂ • D ₂	8.66×10^{21} (Nm)

■超大すべり域

パラメータ	設定方法	設定値
断層面積(S)	断層面積(S)の5%	5,368(km ²)
すべり量(D₄)	平均すべり量(D)の4倍 内閣府(2012)	32.28(m)
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$
地震モーメント(M4)	μ • S₄ • D₄	8.66×10^{21} (Nm)

パラメータ	設定方法	設定値
断層面積(S _{0.5})	断層面積(S)の50%	53,678(km ²)
すべり量(D _{0.5})	平均すべり量(D)の0.5倍	4.04(m)
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$
地震モーメント(M _{o0.5})	μ • S _{0.5} • D _{0.5}	1.08 × 10 ²² (Nm)

■中間大すべり域

パラメータ	設定方法	設定値
断層面積(S ₃)	断層面積(S)の5%	5,368(km²)
すべり量(D3)	平均すべり量(D)の3倍	24.21(m)
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$
地震モーメント(M _{o3})	μ•S ₃ •D ₃	6.50 × 10 ²¹ (Nm)

(2)-1 基本すべり域の設定		
パラメータ	設定方法	設定値
断層面積(S ₁)	断層面積の30%	32,207 (km ²)
すべり量(D1)	平均すべり量(D)	8.07(m)
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$
地震モーメント(M _{o1})	$\mu \cdot S_1 \cdot D_1$	1.30×10 ²² (Nm)

> $M_{o}' = M_{o2} + M_{o4} + M_{o0.5} + M_{o3} + M_{o1}$ = 4.77 × 10²² (Nm)

(2)-3 地震モーメントの調整(すべり量の調整)

- > $M_o/M_o' = 4.33 \times 10^{22} (Nm) / 4.77 \times 10^{22} (Nm)$ =0.91
- 上記倍率を用いて、基準断層モデルに反映する 各領域のすべり量を一律に調整する。

	調整前	調整後
背景的領域	4.04(m)	3.67(m)
基本すべり域	8.07(m)	7.34(m)
中間大すべり域	16.14(m)	14.67(m)
大すべり域	24.21 (m)	22.01 (m)
超大すべり域	32.28(m)	29.35(m)

3. 海溝側強調モデルの設定

169

_____: 与条件

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 13. 特性化モデル④の周期特性
- 13.3 岩手県南部沖GPS波浪計で取得した3.11地震津波波形の再現解析(1/3)

■検討方針

岩手観測波形の特徴である長周期の波と短周期の波の重畳の再現性の確認は、以下の2ケースにより行う。

【海溝側強調モデル(ケース①)】

 大すべり域等に正対し、岩手県南部沖GPS波浪計設置位置の沿岸の距離及び水深と類似性がある宮城県中部GPS波浪計設置位置における計算 波形が、岩手観測波形の特徴を有しているかを確認する。

【海溝側強調モデルの大すべり域等を北へ約150km移動したモデル(ケース2)】

 海溝側強調モデルの大すべり域等を岩手県南部沖GPS波浪計設置位置に正対する位置に移動(北へ約150km)させたモデルを設定し、岩手県南部 沖GPS波浪計設置位置の計算波形と観測波形を比較し、岩手観測波形の再現性を確認する。

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 13. 特性化モデル④の周期特性
- 13.3 岩手県南部沖GPS波浪計で取得した3.11地震津波波形の再現解析(2/3)

■再現解析結果(1/2):海溝側強調モデル(ケース①)

- 海溝側強調モデルの計算波形(宮城県中部沖GPS波浪計設置位置)を以下に示す。
- 海溝側強調モデルの第1波は、岩手観測波形の特徴である長周期の波と短周期の波を良好に再現していることを確認した。

- I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価
- 13. 特性化モデル④の周期特性
- 13.3 岩手県南部沖GPS波浪計で取得した3.11地震津波波形の再現解析(3/3)

■再現解析結果(2/2):海溝側強調モデルの大すべり域等を北へ約150km移動したモデル(ケース②)

- ・ 岩手観測波形と海溝側強調モデルの大すべり域等を北へ約150km移動したモデルによる計算波形の比較を以下に示す。
- ・ 計算波形の第1波は岩手観測波形を良好に再現していることを確認した。

※2:地震発生時間を0分とする。

<u>以上から、海溝側強調モデルのすべり分布等を参考に設定した特性化モデル④は、正対する沿岸に対して、長周期の波に加え短周期の波も</u> 適切に考慮できるモデルであることを確認した。

