Ⅱ. 地震以外に起因する津波の評価

1. 地すべり及び斜面崩壊

- 1.1 既往津波に関する文献調査
- 1.2 陸上地すべり及び斜面崩壊に起因する津波の評価
- 1.3 海底地すべりに起因する津波の評価
- 1.4 「地すべり等」に起因する津波の評価

Ⅱ. 地震以外に起因する津波の評価 1. 地すべり及び斜面崩壊

1.1 既往津波に関する文献調査

• 文献調査の結果,敷地周辺において陸上及び海底の地すべり,並びに斜面崩壊による既往津波の記録はない。

【調査した文献】

- ① 宇佐美龍夫·石井寿·今村隆正·武村雅之·松浦律子(2013):日本被害地震総覧 599-2012, 東京大学出版会
- ② 渡辺偉夫(1998):日本被害津波総覧[第2版],東京大学出版会
- ③ 気象庁(1951~2019):地震月報ほか
- ④ 国立天文台編(2021):理科年表, 令和3年, 第94冊, 丸善出版

第1027回 案本 今 今 (D/ 1 20)	
	272
資料1-1 p35/ 再掲	512

Ⅱ. 地震以外に起因する津波の評価 1. 地すべり及び斜面崩壊

1.2 陸上の地すべり及び斜面崩壊に起因する津波の評価

 防災科学技術研究所(2009)の地すべり地形分布図データベースによれば、敷地周辺陸域の地形について、海岸付近における大規模な地すべり地形は 抽出されない。

発電所敷地周辺の地すべり地形分布※(防災科学技術研究所(2009)に一部加筆)

※:近川以外のデータについては、補足説明資料「V. 地震以外に起因する津波の評価 1. 発電所周辺陸域における 地すべり」に記載。

以上から、陸上の地すべり及び斜面崩壊に起因する津波の影響は極めて小さいと考えられる。

Ⅱ. 地震以外に起因する津波の評価

1.3 海底地すべりに起因する津波の評価

- 1.3.1 検討概要
- 1.3.2 広域的概查
- 1.3.3 局地的精查
- 1.3.4 津波解析の検討方針
- 1.3.5 下北太平洋側大陸棚外縁の海底地すべり
- 1.3.6 日高舟状海盆の海底地すべり
- 1.3.7 日本海溝付近における海山付近の海底地すべり
- 1.3.8 ハワイ付近の海底地すべり

1.3.1 検討概要

以下のとおり、過去に敷地周辺に津波を来襲させた可能性のある海底地すべりに対して評価を実施した。

1.3.2 広域的概查

- 津波伝播特性の検討結果*から、発電所の津波高さに与える影響が大きい岩手県沖北部~十勝沖の範囲を対象に、徳山ほか(2001)による地質構造図を用いて、広域的概査を実施した。
- 検討の結果,発電所に影響を及ぼすと考えられる範囲に海底地すべり地形は認められないことを確認した。
 ※:津波伝播特性の検討の詳細は、補足説明資料「WL.計算条件等 7.津波伝播特性の検討」に記載。

Ⅱ. 地震以外に起因する津波の評価
 1. 地すべり及び斜面崩壊
 1. 3 海底地すべりに起因する津波の評価
 1. 3. 3 局地的精査

海底地すべりの特徴及び海底地すべりの既往事例に関する文献調査を実施し、局地的精査範囲を設定する。

■文献調査:海底地すべりの特徴(池原(2005))

- ・ 海底の地すべりは,陸上の地すべりと比較して,その規模が大きく,移動距離も大きい。
- 海底地すべりの発生場所について、火山島や火山斜面、デルタ地形、大陸棚・大陸棚斜面上部、海溝付近の斜面で見られる。また、海底 地すべりが発生する斜面は必ずしも急傾斜面であるとは限らない。

海底地すべり地形(痕跡)の模式図(池原(2005))

Ⅱ. 地震以外に起因する津波の評価
 1. 地すべり及び斜面崩壊
 1. 3 海底地すべりに起因する津波の評価
 1. 3. 3 局地的精査

■文献調査:海底地すべりの既往事例(1/3)

【緩斜面で発生した海底地すべり(Canals et al.(2004))】

- ・ フェロー諸島で認められた海底地すべりである。
- ・ 傾斜約1°~2°の緩斜面,水深800m付近で発生。規模は,長さ10km,幅3km。海底地すべり地形の上部は馬蹄形を呈する。
- 発生要因は、地震と考えられている。

Fig. 1. Location of the studied instabilities. Gebra Slide is located off the northern tip of the Antarctic Peninsula.

Fig. 6. (A) Detailed bathymetry of the Afen Slide extracted from commercial 3D seismic data assuming a sound speed of 1500 m s⁻¹ in water. Note that the morphological expression of the main depositional lobe on the seafloor is very low (cf. Table 4). (B) Acoustic image of Afen Slide extracted from commercial 3D seismic data using the Bulk Line Shift method (for details, see Bulat 2003 and references therein). Note the small blocky area at the foot of the last failure phase depositional unit (cf. C) (modified from Bulat, 2003). (C) Interpretation of Afen Slide failure phases (1 is oldest, 4 is youngest). Image extracted from seabed picks of commercial 3D seismic data (modified from Wilson et al., 2003b).

Canals et al.(2004)

1.3.3 局地的精查

■文献調査:海底地すべりの既往事例(2/3)

【大陸斜面で発生した海底地すべり(山本(1991))】

- 福井県沖ゲンタツ瀬北方で認められた海底地すべりである。
- 大陸斜面上部水深460m付近で発生。幅約8kmにわたって崩壊し、水深1060mまで達する舌状のマウンドを形成した。 .
- ・発生要因は、斜面上部のより早い堆積速度と背斜による斜面傾斜角の増大もしくは海水準変動に伴う堆積場の移動が考えられている。

第4図 ゲンタツ瀬北方海底地すべりを北西-南東方向に切る3.5kHzSBP記録 破線は海底地すべりが起こらなかった場合に推定される海底面。

山本(1991)

Fig. 2 Map showing the bathymetric contours, geological structures and survey lines of the study area. Solid lines indicate the location of seismic profiles of Fig. 4-5. "O" mark indicate the sampling site of the core (St.6219 P.540 : Katayama and Ikehara, 1988). The pointed area indicate the submarine sediment slide area of the northern Gentatsu-se.

1.3.3 局地的精查

■文献調査:海底地すべりの既往事例(3/3)

【2011年東北地方太平洋沖地震に伴い日本海溝軸付近で発生した海底地すべり(小平ほか(2012))】

- ・ 小平ほか(2012)は、2011年東北地方太平洋沖地震前後の海底地形データの比較から、陸側海溝斜面で海底地すべりが発生していたとして いる。
- ・ 海底地すべりは長さ1kmにわたって崩落し、海溝底に東西幅1.5km、高さ50mのデブリとして堆積したとしている。
- ・ なお, 2011年東北地方太平洋沖地震に伴う巨大津波発生に大きく寄与したのは, 海溝軸付近で50mを超えた変位が生じたためとしている。

Ⅱ. 地震以外に起因する津波の評価 1. 地すべり及び斜面崩壊 1.3 海底地すべりに起因する津波の評価 1.3.3 局地的精査

【2011年東北地方太平洋沖地震に伴い日本海溝軸付近で発生した海底地すべり(Kawamura et al.(2012))】

• Kawamura et al.(2012)は,2011年東北地方太平洋沖地震による大きなプレートの運動(水平移動)によって,不安定な状態が潜在していた海底 地すべりの活動が,2011年東北地方太平洋沖地震に伴う巨大津波発生に寄与した可能性があるとしている。

Figure 3. Schematic diagram of tsunamigenic slip at the toe of the trench slope. The submarine landslide was potentially under the instable conditions before the earthquake, and it was moved with rupture propagation along the thrust. The slip at the toe is accelerated by submarine landsliding. The many normal faults at the head of the submarine landslide originated as fault bifurcations.

海溝斜面先端部におけるすべりの模式図(Kawamura et al.(2012))

- ✓ 以上より、日本海溝軸付近で発生する海底地すべりは、地震に伴うプレート運動に起因して 発生すると考えられる。
- ✓ 日本海溝軸付近の海底地すべりに起因する津波は、短周期の波を発生させる要因の1つと 考えられることから、「十勝沖・根室沖から三陸沖北部の連動型地震」のうち特性化モデル④ にて、未知なる分岐断層や海底地すべり等の存在を適切に評価へ反映している。

「十勝沖・根室沖から三陸沖北部の連動型地震」のうち 特性化モデル④

1.3.3 局地的精查

■局地的精査範囲の設定

海底地すべりの特徴及び海底地すべりの既往事例に関する文献調査結果,東通発電所前面海域の海底地形の特徴及び海底地すべりに
 伴う津波の指向性を踏まえ,局地的精査は,①下北太平洋側大陸棚外縁,②北海道胆振~日高沿岸の大陸棚外縁を対象に実施する。

局地的精査範囲

1.3.3 局地的精查

■下北太平洋側大陸棚外縁(1/2)

 日本水路協会の海底地形データM7000シリーズ,東京電力㈱,リサイクル燃料貯蔵㈱,日本原燃㈱及び当社で実施した海底地形調査結果を 用いて,海底地形判読調査を実施する。

1.3.3 局地的精查

■下北太平洋側大陸棚外縁(2/2)

- 海底地形判読を実施した結果、4箇所の海底地すべり地形を抽出した。
- 海底地すべりに起因する津波は崩壊規模の影響が大きいとともに、地すべりの移動方向(伝播方向)へのエネルギー指向性が強いことを考慮し、 最も崩壊規模が大きく、海底地すべり位置が比較的発電所に近い海底地すべり(SLS-2)を評価の対象とする。
- --->:海底地すべりの移動方向^{※1}

海底地すべり地形分布図

抽出した海底地すべりの諸元※2

諸元	SLS-1	SLS-2	SLS-3	SLS-4	備考
長さ(m)	3000	6000	1200	1000	海底地形図からの読み取り
幅(m)	5350	5000	5000	5100	海底地形図からの読み取り
比高(m)	300	300	20	100	海底地形図からの読み取り
厚さ(m)	50	50	5	20	SLS-1, SLS-2: 現地形と復元地形の差分から算定 SLS-3, SLS-4: McAdoo et al.(2000)による地すべり 諸元の算定方法を参考に算定
傾斜(°)	5.71	2.86	0.95	5.71	比高及び長さから算定
面積(km²)	15.4	36.5	3.2	3.8	海底地形図からの読み取り
体積(km³)	0.52	1.00	0.01	0.04	SLS-1, SLS-2: 現地形と復元地形の差分から算定 SLS-3, SLS-4: McAdoo et al.(2000)による地すべり 諸元の算定方法を参考に算定

※1:海底地すべりの移動方向は、海底地すべり前後の地形から推定した。海底地すべり前後の地形の詳細は、 補足説明資料「V. 地震以外に起因する津波の評価 2. 下北太平洋側大陸棚外縁の海底地すべり」に記載。 ※2:各海底地すべり諸元の算定根拠は、補足説明資料「V. 地震以外に起因する津波の評価 2. 下北太平洋 側大陸棚外縁の海底地すべり」に記載。

Ⅱ. 地震以外に起因する津波の評価
 1. 地すべり及び斜面崩壊
 1. 3 海底地すべりに起因する津波の評価
 1. 3. 3 局地的精査

S209

■北海道胆振~日高沿岸大陸棚外縁(1/3)

 産業技術総合研究所(2013)では、2004年、2006年に実施した海底調査結果を踏まえた海底表層堆積図を示しており、日高舟状海盆には、複数の 海底地すべり地形が認められ、浦河沖の大陸棚斜面に、最も規模が大きい海底地すべりが分布するとしている。

海底地すべり堆積物と脱ガス構造の分布

日高沖の海洋地質図(産業技術総合研究所(2013)に一部加筆)

S209

Ⅱ. 地震以外に起因する津波の評価 1. 地すべり及び斜面崩壊 1.3 海底地すべりに起因する津波の評価

1.3.3 局地的精查

■北海道胆振~日高沿岸大陸棚外縁(2/3)

- Noda et al.(2013),野田・片山(2014)は、大陸棚斜面を起点とした複数の海底地すべりが認められ、海底表層付近に4箇所、海底下に7箇所存在し、幅や 長さと比較して厚さが薄い(5~30m)のが特徴であるとしている。また、野田ほか(2010)は、複数の海底地すべりのうち浦河沖の大陸斜面に分布する海 底地すべりが最も規模が大きいとしている。
- → 最も規模が大きい浦河沖の海底地すべりの形態について、Noda et al.(2013)は、小規模な正断層が成層した地層を分断する上部、堆積体がすべり面上 を移動する遷移部、海盆底の堆積物を押しながら圧縮隆起する先端部に区分されるとしている。
- ・ 海底地すべりの発生要因について、Noda et al.(2013)、野田・片山(2014)は、本海域には海底下にガスの存在が示唆されていることから、それらが地層 中のある面に集中した際に生じる間隙水圧比の増加や、本海域周辺において地震が多く発生していることから、地震の可能性を指摘している。

(Noda et al.(2013)に一部加筆)

(Noda et al. (2013))

S209

Ⅱ. 地震以外に起因する津波の評価 1. 地すべり及び斜面崩壊 1.3 海底地すべりに起因する津波の評価

1.3.3 局地的精查

■北海道胆振~日高沿岸大陸棚外縁(3/3):日高舟状海盆の海底地すべり

- Noda et al. (2013)が指摘する日高舟状海盆に認められる11箇所の海底地すべりのうち評価対象とする海底地すべりについて、海底地すべりに起因する 津波は崩壊規模の影響が大きいとともに、地すべりの移動方向(伝播方向)へのエネルギー指向性が強いことを考慮し、最も崩壊規模が大きく、発電所 の方向(南西方向)に移動する浦河沖の海底地すべり(3箇所)を評価の対象とする。
- また、発電所と浦河沖の海底地すべりの間に位置する尻屋崎沖の海底地すべりについて、浦河沖の海底地すべりと比較して崩壊規模が小さいとともに、
 移動方向が東方向であり、発電所に与える影響は小さいと考えられるが、浦河沖の海底地すべりと同時活動した可能性があることを踏まえ、評価の対象とする。
- なお、海底下に認められる7箇所の海底地すべりについては、浦河沖の海底地すべりと比較して崩壊規模が小さい、もしくは移動方向が発電所方向と異なるとともに、海底表層付近に分布する海底地すべりと発生時期が明確に異なることから、評価の対象外とする。

Ⅱ. 地震以外に起因する津波の評価 1. 地すべり及び斜面崩壊	1.3 海底地すべりに起因する津波の評価	387
1.3.4 津波解析の検討方針	第1027回審査会合(R4.1.28) 資料1-1 p372 再掲	S209

- 以下の検討フローに基づき、二層流モデル(Kawamata et al.(2005))、Kinematic landslideモデル(Satake(2007)、殿最ほか(2015))を用いて津波解析を 実施する。
- 二層流モデルについては、海底地すべり前の地形(復元地形)を作成し、海底地すべり地形(現地形)もしくは海底地すべりのすべり面との差から得られる地すべり土塊(崩壊物)を用いて実施する。
- Kinematic landslideモデルについては、Satake(2007)による1741年渡島大島の山体崩壊による津波の評価方法を踏まえ、海底地すべり前後の地形の差から得られる比高変化分布を用いることを基本とする。ただし、海底地すべり堆積域の海底地形データの解像度が低いなど、海底地形データから比高変化分布を作成できない場合には、二層流モデルから得られる海底地すべりの地形変化(比高変化)を用いる。また、地すべりの伝播速度及びライズタイムについては、二層流モデルから得られる地すべり挙動に基づき、水位への影響が大きくなるよう保守的に設定する。

1.3.5 下北太平洋側大陸棚外縁の海底地すべり

■検討概要

- ・ 以下フローに基づき津波解析を実施した。
- Kinematic landslideモデルに用いる比高変化分布について、海底地すべり堆積域の海底地形データの解像度が低く、海底地形データから比高変化分布を 作成できないため、二層流モデルから得られる地すべりの挙動に基づき設定した。解析に用いる比高変化分布、地すべり伝播速度及びライズタイムについ ては、二層流モデルによる地すべり挙動に基づき、水位への影響が大きくなるように保守的に設定した。

I. 地震以外に起因する津波の評価
 1. 地すべり及び斜面崩壊
 1. 3 海底地すべりに起因する津波の評価
 1. 3. 5 下北太平洋側大陸棚外縁の海底地すべり

■海底地すべり前の地形(復元地形)の作成

• 海底地すべり地形(SLS-2)と、同地すべり地形周辺における海底地形(等深線)の関係から、海底地すべり前の地形を復元した。

1.3.5 下北太平洋側大陸棚外縁の海底地すべり

の評価 第1027回審査会合(R4.1.28)

資料1-1 p375 再掲

■津波解析(二層流モデル):パラメータの設定

- ・ 二層流モデルに用いたパラメータを下表に示す。
- 崩壊物の密度については、東京電力(株)、リサイクル燃料貯蔵(株)、日本原燃(株)及び当社で実施した海底地形調査で柱状採泥により採取した試料の室内 試験で算定した湿潤密度を用いた。

【パラメータの設定】

項目	設定値	備考
海水密度	1.03	一般値
崩壊物の密度 <i>p</i> 2(g/cm³)	1.724	共同調査結果より
上層(水)の海底摩擦(m ^{-1/3} •s)	0.03	地震に起因する津波と同様
下層(土砂)の粗度係数(m ^{-1/3} ・s)	0.40	Kawamata et al.(2005)
界面抵抗係数f _{int}	0.0	Kawamata et al.(2005)
水平渦動粘性係数	考慮しない	地震に起因する津波と同様

【崩壊物の密度の算定】

海底地すべり位置

試料番号	湿潤密度 (g/cm³)
No.2C	1.651
No.8C	1.796
No.10G	1.745
No.15B	1.703
平均值	1.724

1.3.5 下北太平洋側大陸棚外縁の海底地すべり

391

第1027回審査会合(R4.1.28) 資料1-1 p376 再掲

■津波解析(二層流モデル):解析結果

1.3.5 下北太平洋側大陸棚外縁の海底地すべり

第1027回審査会合(R4.1.28) 資料1-1 p377 再掲

■津波解析(Kinematic landslideモデル):パラメータの設定

- ・ 解析に用いる各パラメータは、二層流モデルによる地すべり挙動に基づき、水位への影響が大きくなるように保守的に設定する。
- 二層流モデルから得られる地すべり発生2分後~30分後の地すべり挙動(スナップショット)を以下に示す。これから、地すべり発生20分後~30分後で概ね 崩壊域が形成されることを踏まえ、比高変化量が大きく、地すべり伝播速度及びライズタイムが保守的となる地すべり発生20分後の比高変化分布を用いる。
- 地すべり伝播速度について、海底地すべり地形(現地形)から、海底地すべりは大陸棚斜面を滑落(Slide)して発生したと考えられることから、地震発生20 分後の海底地すべり地形の堆積開始位置と堆積フロント位置を変動伝播距離とし、4m/sに設定した。
- ライズタイムについては、地形変化量の時系列から、崩壊域、堆積域ともに約30分間変動が継続するものの、崩壊域の最上部において2分程度で変動終 了する範囲もあることから、保守的に2分(120秒)に設定した。
- ・ 崩壊域, 堆積域の破壊開始位置については, 各領域の頂部に設定した。

392

1.3.5 下北太平洋側大陸棚外縁の海底地すべり

第1027回審査会合(R4.1.28) 資料1-1 p378 再掲

■津波解析(Kinematic landslideモデル):解析結果

393

1.3.5 下北太平洋側大陸棚外縁の海底地すべり

■まとめ

• 各海底地すべりの最大水位上昇量,最大水位下降量を以下に示す。

【水位上昇側】

		最大水位上昇量(m)				
海底地すべり	モデル	敷地前面	取水口 前面	補機冷却海水 系取水口前面	放水路 護岸前面	
下北太平洋側	二層流モデル	0.84 ^{※1}	0.78	0.77	%2	
へ喹伽外核 (SLS−2)	Kinematic landslideモデル	0.74 ^{※1}	0.56	0.53	%2	

※1:敷地前面まで津波が到達しないため、敷地周辺での最大水位上昇量を記載

※2:放水路護岸前面まで津波が到達しない。

【水位下降側】

		補機冷却海水系取水口前面			
海底地すべり	モデル	最大水位下降量(m)	取水口敷高※3を下回る時間(分)		
下北太平洋側	二層流モデル	-0.63			
大陸棚外稼 (SLS−2)	Kinematic landslideモデル	-0.55	%4		
非常用海水ポンプの運	툍転可能継続時間		約35		

※3:補機冷却海水系取水設備の詳細は,補足説明資料「Ш.計算条件等 4.津波水位の評価位置」に記載。 ※4:取水口敷高(T.P.-4.0m)を下回らない。

Ⅱ. 地震以外に起因する津波の評価 1. 地すべり及び斜面崩壊 1. 3 海底地すべりに起因する津波の評価 1. 3. 6 日高舟状海谷の海底地すべり

1.3.6.1 検討概要

第1027回審査会合(R4.1.28) 資料1-1 p380 修正 395 S209

■浦河沖の海底地すべり

 Kinematic landslideモデルに用いる比高変化分布について、海底地形データから堆積域を含めた比高変化分布を作成できることから、海底地すべり前の 地形(復元地形)と海底地すべり地形(現地形)の差から得られる比高変化分布を用いた。また、解析に用いる地すべり伝播速度及びライズタイムについ ては、二層流モデルによる地すべり挙動に基づき、水位への影響が大きくなるように保守的に設定した(下記検討フロー)。

■尻屋崎沖の海底地すべり

- 海底地すべり地形の詳細判読結果(発生形態及び海底地すべりの特徴(傾斜,水深))から,海底地すべりに伴う津波はほとんど発生しておらず,発電所の津波高さに与える影響は極めて小さいと評価した。
- ・ なお、発電所の津波高さに及ぼす影響を定量的に確認することを目的に、影響検討の位置付けで津波解析(Kinematic landslideモデル)も実施した。

1.3.6.2 海底地すべり地形の詳細判読に用いたデータ

1.3.6 日高舟状海盆の海底地すべり

第1027回審査会合(R4.1.28) 資料1-1 p381 修正 **S209**

 産業技術総合研究所(経済産業省委託事業にて取得)及び産業技術総合研究所による海底地形データ・音波探査記録,並びに日本水路協会 M7000シリーズの海底地形データを用いて,海底地すべり地形の詳細判読を実施した。

- 1.3.6 日高舟状海盆の海底地すべり
 - 1.3.6.3 海底地すべり地形の詳細判読及び津波解析の対象とする海底地すべり

S209

■浦河沖の海底地すべり:海底地すべり地形の詳細判読

- Noda et al. (2013)が指摘する浦河沖の海底地すべり(3箇所)について、同海域で取得されている海底地形データ、並びに音波探査記録を用いて、 海底地すべり地形の詳細判読を実施した^{※1}。
- ・ 詳細判読の結果, 浦河沖の海底地すべりは, 地すべりⅠ, 地すべりⅠ', 地すべりⅡ及び地すべりⅡ'に区分され, 全体として複数回の活動で形成 された可能性があることを確認した。
- ・ 斜面上部の明瞭な滑落崖, 音波探査記録から推定されるすべり面の形状及び地すべり土塊内部の複雑な変形から, 発生形態は円弧すべり型であり, 海底地すべり滑落崖(上流側)の傾斜は5~15°程度, 滑落崖上部の水深は約200~400mである。

※1:詳細判読に用いた音波探査記録の詳細については,補足説明資料「V.地震以外に起因する津波の評価 第3章 3.1 浦河沖の海底地すべり」に記載。

[【]地形判読調査結果※】

- ✓「地すべりⅠ」は、最も面積が大きい 海底地すべりである。
- ✓「地すべりI」の上部には「地すべり I´」、「地すべりⅡ」が形成され、
 「地すべりⅡ」の上部には、さらに
 「地すべりⅡ´」が形成されている。
- ✓「地すべりⅡ´」の堆積部と滑落崖の対応関係は不明である。

【傾斜量※2】

- ·大陸棚:0.5°以下
- ·大陸棚縁辺斜面:2~4°程度
- ·海盆底:0.5~1°程度
- ・海底地すべり滑落崖:5~15°程度

※2:各評価は当社の解釈による

浦河沖の海底地すべり地形(傾斜量図)

第1027回審査会合(R4.1.28) 資料1-1 p383 一部修正 398

1.3.6 日高舟状海盆の海底地すべり

1.3.6.3 海底地すべり地形の詳細判読及び津波解析の対象とする海底地すべり

S209

■浦河沖の海底地すべり:津波解析の対象とする海底地すべり

- Noda et al.(2013)による浦河沖の海底地すべり地形,当社が詳細判読により求めた海底地すべり地形及び両者の重ね合わせ図を以下に示す。
 当社が判読した海底地すべり地形は, Noda et al.(2013)に示される海底地すべり形状と整合的である。
- 津波解析の対象とする海底地すべりについて、浦河沖の海底地すべりは複数回の活動で形成された可能性が考えられるが、保守的に同時活動を 考慮する。

- Ⅱ. 地震以外に起因する津波の評価 1. 地すべり及び斜面崩壊 1.3 海底地すべりに起因する津波の評価
- 1.3.6 日高舟状海盆の海底地すべり
 - 1.3.6.3 海底地すべり地形の詳細判読及び津波解析の対象とする海底地すべり

■尻屋崎沖の海底地すべり:海底地すべり地形の詳細判読(1/2)

- Noda et al.(2013)が指摘する尻屋崎沖の海底地すべりについて、同海域で取得されている海底地形データ及び音波探査記録を用いて、海底地すべり地形の詳細判読を実施した※。
- 海底地すべりの上流域には比高約20~30mの崖地形,下流域には比高約10m程度のマウンド状の微高地が認められ,全体の地形は概ね平滑で,崩落岩 塊を示唆するような小起伏郡(流れ山)は認められない。
- 中流域から下流域に認められる地すべり土塊の堆積構造(内部構造)について、中流域(上部)では成層構造が認められ、中流域(下部)には堆積構造の 乱れ、下流域では地すべり土塊の移動に伴う圧縮変形による隆起地形が見られる。
- Noda et al.(2013)は、「音波探査記録より、同地すべりは土石流(debris flow)や濁流(turbidity currents)に発展していないようである」としていることも踏まえると、尻屋崎沖の海底地すべりの発生形態は、並進すべり型であり、厚さ約15~25mの板状の地すべり土塊が、0.2~0.3°程度の極めて緩やかに傾斜した層理面をすべり面として、東~南東方向に数100~1000m程度移動した(スライドした)ものと考えられる。

※:詳細判読に用いた音波探査記録の詳細については、補足説明資料「V. 地震以外に起因する津波の評価 第3章 3.2 尻屋崎沖の海底地すべり」に記載。

尻屋崎沖の海底地すべり地形(傾斜量図)

- 1.3.6 日高舟状海盆の海底地すべり
 - 1.3.6.3 海底地すべり地形の詳細判読及び津波解析の対象とする海底地すべり

■尻屋崎沖の海底地すべり:海底地すべり地形の詳細判読(2/2)

 Noda et al.(2013)による尻屋崎沖の海底地すべり地形,当社が詳細判読した海底地すべり地形及び両者の重ね合わせ図を以下に示す。当社が 判読した海底地すべり地形は, Noda et al.(2013)に示される海底地すべり形状と整合的である。

当社詳細判読による尻屋崎沖の海底地すべり地形

Noda et al.(2013)による海底地すべり地形と当社が 詳細判読した海底地すべり地形の重ね合わせ図

Figure 5. Bathymetry and spatial distribution of MTDs on the surface (yellow) and in the subsurface (green) of the Hidaka Trough. The dotted area indicates the area in which vertically elongate features are concentrated (Figure 10).

Noda et al. (2013)による 尻屋崎沖の海底地すべり地形 (Noda et al. (2013)に一部加筆)

400

- 1.3.6 日高舟状海盆の海底地すべり
 - 1.3.6.3 海底地すべり地形の詳細判読及び津波解析の対象とする海底地すべり

■尻屋崎沖の海底地すべり:津波解析の対象とする海底地すべり

- 田近(1995)は、陸上地すべりを対象に、繰り返し滑動してきた地すべり(左下図2)と新たに滑動した地すべり(左下図1)の地すべり地形、地すべり堆積物の構成及び内部の変形構造の比較から、並進すべりの発達過程を明らかしている。それによると、上流域に崩壊域、中流域に移動体、下流域に圧縮性構造を有する地すべりは、地すべり土塊の繰り返しの移動により形成されたとしている。また、陸上地すべりと海底地すべりの形成過程には共通性があるとしている。
- 尻屋崎沖の海底地すべり地形及び内部構造は、田近(1995)が明らかにした流れ盤斜面における地すべりと概ね一致していることから、尻屋崎沖の海底 地すべりは、地すべり土塊の繰り返しの移動により形成された可能性がある。
- また、尻屋崎沖の海底地すべりのすべり面の傾斜は0.2~0.3°程度と極めて緩く、海底地すべり位置の水深は約700~1100mと深いことを踏まえれば、 尻屋崎沖の海底地すべりに伴う津波はほとんど発生していないと考えられる。

以上から, 尻屋崎沖の海底地すべりが発電所の津波高さに与える影響は極めて小さいと考えられる※。

※:発電所の津波高さに及ぼす影響を定量的に確認することを目的に,影響検討の位置付けで津波解析を実施した。 影響検討解析の詳細は補足説明資料「V. 地震以外に起因する津波の評価 第3章 3.2 尻屋崎沖の海底地すべり」に記載。

401

- Ⅱ. 地震以外に起因する津波の評価 1. 地すべり及び斜面崩壊 1.3 海底地すべりに起因する津波の評価
- 1.3.6 日高舟状海盆の海底地すべり 1.3.6.4 浦河沖の海底地すべり

第1027回審査会合(R4.1.28) 資料1-1 p384 一部修正

402

■海底地すべり前の地形(復元地形)の作成(1/2)

- 海底地すべり前の地形(復元地形)は、海上音波探査記録を用いて崩壊域、堆積域及び海底地すべりのすべり面を推定し、海底地すべり地形周辺の海底 地形(等深線)との関係、崩壊土量と堆積土量の収支のつり合いを考慮して作成した。
- 海底地すべり前後の等深線図及び海上音波探査記録を用いた崩壊域,堆積域及び海底地すべりのすべり面の推定結果※を以下に示す。
 ※:海上音波探査記録を用いた崩壊域,堆積域及び海底地すべりのすべり面の推定結果の詳細については,補足説明資料「V.地震以外に起因する津波の評価
 3.日高舟状海盆の海底地すべり」に記載。

【海底地すべり前後の等深線図及び海上音波探査記録を用いた崩壊域、堆積域及びすべり面の推定結果】

1.3.6 日高舟状海盆の海底地すべり 1.3.6.4 浦河沖の海底地すべり

■海底地すべり前の地形(復元地形)の作成(2/2)

第1027回審査会合(R4.1.28) 資料1-1 p385 再掲

・ 作成した海底地すべり前の地形(復元地形),海底地すべりのすべり面を以下に示す。

海底地すべり地形(現地形)

海底地すべり前の地形(復元地形)

海底地すべりのすべり面(着色部)

403

■Kinematic landslideモデルに用いる比高変化分布の作成

海底地すべり地形(現地形)と海底地すべり前の地形(復元地形)から作成した比高変化分布を以下に示す。

海底地すべり前の地形(復元地形)(B)

比高変化分布(A-B)

東北雷力

1.3.6 日高舟状海盆の海底地すべり 1.3.6.4 浦河沖の海底地すべり

第1027回審査会合(R4.1.28) 資料1-1 p388 再掲

406

S209

■津波解析(二層流モデル):パラメータの設定

- 二層流モデルに用いたパラメータを下表に示す。
- 崩壊物の密度については、Noda et al.(2013)による地すべり位置での密度検層結果ならびに密度と地すべり堆積厚さの関係式に基づき設定した。 【パラメータの設定】

項目	設定値	備考
海水密度ρ ₁ (g/cm³)	1.03	一般值
崩壊物の密度 ρ ₂ (g/cm³)	1.34	Noda et al.(2013)
上層(水)の海底摩擦(m ^{-1/3} ・s)	0.03	地震に起因する津波と同様
下層(土砂)の粗度係数(m ^{-1/3} ・s)	0.40	Kawamata et al.(2005)
界面抵抗係数f _{int}	0.0	Kawamata et al.(2005)
水平渦動粘性係数	考慮しない	地震に起因する津波と同様

【崩壊物の密度の算定】

(Figure 10).

ボーリングコア(GH06-1048, 1049)採取位置 (Noda et al.(2013)に一部加筆)

Figure 12. Description, porosity, bulk density, and soft X-radiographs of sediment cores GH06-1048 and 1049. The sampling locations are shown on the SBP records and Figures 2 and 5. Orange and green dashed lines in GH06-1048 are approximated from equations (2) and (3), respectively.

深度方向の密度(Noda et al.(2013))

崩壊物の密度

密度と地すべり堆積厚さの関係式(Noda et al.(2013))

$$\rho_{\rm b}(h) = 0.0203 \ln(h) + 1.2236$$

 ・地すべりIの最大堆積厚さ:h=218(m)より、 $\rho_{2}=1.34(g/cm^{3})$ に設定。

Ⅱ. 地震以外に起因する津波の評価 1. 地すべり及び斜面崩壊 1.3 海底地すべりに起因する津波の評価 407 1.3.6 日高舟状海盆の海底地すべり 1.3.6.4 浦河沖の海底地すべり 第1027回審査会合(R4.1.28)

資料1-1 p389 再掲

■津波解析(二層流モデル):解析結果

408

S209

第1027回審杳会合(R4.1.28)

資料1-1 p391 再掲

- 1.3.6 日高舟状海盆の海底地すべり
 - 1.3.6.4 浦河沖の海底地すべり

■津波解析(Kinematic landslideモデル):パラメータの設定(1/2)

- 解析に用いる地すべり伝播速度、ライズタイムは、二層流モデルによる地すべり挙動に基づき、水位への影響が大きくなるように保守的に設定する。
- ニ層流モデルから得られる地すべり発生5分後~180分後の地すべり挙動(スナップショット)を以下に示す。これから、崩壊域は地すべり発生30分後、 堆積域については地すべり発生180分後に概ね形成されることを踏まえ、堆積域の比高変化量が大きい地すべり発生30分後の比高変化分布を用い る。

5分後 10分後 30分後 20分後 制糖A 訓練A 制糖A 制制格 比高変化量 120分後 180分後 (m) 60分後 制線A 制糖A 制線A -120 -160 (参考)地形判読により求めた比高変化分布 地形判読により求めた海底地すべり範囲

【二層流モデルから得られる地すべり挙動地形変化(スナップショット)(書:崩壊域、赤:堆積域)】

409

S209

第1027回審杳会合(R4.1.28)

資料1-1 p392 再掲

1.3.6 日高舟状海盆の海底地すべり

1.3.6.4 浦河沖の海底地すべり

■津波解析(Kinematic landslideモデル):パラメータの設定(2/2)

- 地すべり伝播速度について、海底地すべり地形(現地形)から、海底地すべりは大陸棚斜面を滑落(Slide)して発生したと考えられることから、地震発生30分後の海底地すべりの堆積開始位置と堆積フロント位置を変動伝播距離とし、6m/sに設定した。
- ライズタイムについては、地形変化量の時系列から、崩壊域、堆積域ともに約30分間変動が継続するものの、地すべり発生5~10分の間に急激に変動が進行することを踏まえ、保守的に5分(300秒)に設定した。
- ・ 崩壊域, 堆積域の破壊開始位置については, 各領域の頂部に設定した。

【二層流モデルから得られる地形断面変化(測線A)】

Ⅱ. 地震以外に起因する津波の評価 1. 地すべり及び斜面崩壊 1. 3 海底地すべりに起因する津波の評価 1. 3. 6 日高舟状海盆の海底地すべり 1. 3. 6. 4 浦河沖の海底地すべり

410

S209

第1027回審査会合(R4.1.28) 資料1-1 p393 再掲

■津波解析(Kinematic landslideモデル):解析結果

1.3.6 日高舟状海盆の海底地すべり

1.3.6.4 浦河沖の海底地すべり

第1027回審査会合(R4.1.28) 資料1-1 p394 一部修正

■津波解析:まとめ

• 日高舟状海盆の海底地すべりのうち浦河沖の海底地すべりの最大水位上昇量,最大水位下降量を以下に示す。

【水位上昇側】

		最大水位上昇量(m)				
海底地すべり	モデル	敷地前面	取水口 前面	補機冷却海水 系取水口前面	放水路 護岸前面	
日高舟状海盆	二層流モデル	4.25	1.99	2.13	%2	
(浦河沖)	Kinematic landslideモデル	1.61 ^{※1}	1.55	1.58	%2	

※1:敷地前面まで津波が到達しないため、敷地周辺での最大水位上昇量を記載

※2:放水路護岸前面まで津波が到達しない。

【水位下降側】

		補機冷却海水系取水口前面			
海底地すべり	モデル	最大水位下降量(m)	取水口敷高※3を下回る時間(分)		
日高舟状海盆	二層流モデル	-2.50	*4		
(浦河沖)	Kinematic landslideモデル	-1.24	%4		
非常用海水ポンプの運	፪転可能継続時間		約35		

※3:補機冷却海水系取水設備の詳細は、補足説明資料「Ш.計算条件等 4.津波水位の評価位置」に記載。

※4:取水口敷高(T.P.-4.0m)を下回らない。

411

412

Ⅱ. 地震以外に起因する津波の評価
 1. 地すべり及び斜面崩壊
 1. 3 海底地すべりに起因する津波の評価
 1. 3. 7 日本海溝付近における海山付近の海底地すべり

第1027回審査会合(R4.1.28) 資料1-1 p395 再掲

■日本海溝付近の海山

- 日本海溝と伊豆・小笠原海溝の会合部付近には第1鹿島海山が存在し、その背後には、香取海山、第2~第5鹿島海山、磐城海山といった 一連の海山列が北東側へ続いている。
- また、日本海溝と千島海溝の島弧会合部付近には襟裳海山が存在し、その東側に広がる深海平坦面には拓洋第1海山、凌風第2海山等が 分布している(渡邊ほか(2007))。

※:赤枠は,海上保安庁が2006年9月から10月 にかけて精密地殻構造探査を実施した範囲。

413

1.3.7 日本海溝付近における海山付近の海底地すべり

第1027回審査会合(R4.1.28) 資料1-1 p396 再掲

■第1鹿島海山(1/2)

- ・ 第1鹿島海山付近には海溝軸とほぼ平行な断層がいくつか認められる。第1鹿島海山は1つの正断層により東西に二分され,西半分が海溝に沈みこんでいる(海上保安庁(1984),大島ほか(1985),藤岡・平(1987))。
- ・ 東半分山頂の平坦面の水深は約3600m, 西半分山頂の平坦面の水深は約5200mであり, その急斜面(比高:約1600m, 傾斜:30度から45度)の下部には, 断層による海山の崩壊に伴う石灰岩や玄武岩の堆積物が存在する(大島ほか(1985), 藤岡・平(1987))。

414

1.3.7 日本海溝付近における海山付近の海底地すべり

■第1鹿島海山(2/2)

第1027回審査会合(R4.1.28) 資料1-1 p397 再掲

 海上保安庁では、第1鹿島海山付近の地殻構造把握を目的とした精密地殻構造探査を実施し(2006年9月から10月)、断層により分断された西半分が海溝 へと沈み込んでいる様子を明瞭に得ている(渡邊ほか(2007)、西澤(2012))。

以上の知見から、第1鹿島海山には断層の活動に伴う小規模な崩壊が見られるが、大規模な海底地すべり地形は確認されていない。

1.3.7 日本海溝付近における海山付近の海底地すべり

■襟裳海山

第1027回審査会合(R4.1.28) 資料1-1 p398 再掲

- ・ 襟裳海山は, 頂上水深が第1鹿島海山とほぼ同じ約3700m(比高約4200m)である。
- ・ 第1鹿島海山と同様に北東方向の断層によって切られてはいるが、その規模は第1鹿島海山よりはるかに小さいものであり(飯山ほか(1984))、海上保安庁 による精密地殻構造探査結果から、海溝に沈み込みつつある様子が明瞭に得られている(渡邊ほか(2007)、西澤(2012))。
- なお, 第1 鹿島海山のような断層の活動に伴う小規模な崩壊地形は確認されていない。

Ⅱ. 地震以外に起因する津波の評価
 1. 地すべり及び斜面崩壊
 1. 3 海底地すべりに起因する津波の評価
 1. 3. 7 日本海溝付近における海山付近の海底地すべり

第1027回審査会合(R4.1.28) 資料1-1 p399 再掲

■まとめ

- 日本海溝海側には、日本海溝と伊豆・小笠原海溝の会合部付近に第1鹿島海山が存在し、その背後には、香取海山、第2~第5鹿島海山、 磐城海山といった一連の海山列が北東側へ続いている。また、日本海溝と千島海溝の島弧会合部付近には襟裳海山が存在し、その東側に 広がる深海平坦面には拓洋第1海山、凌風第2海山等が分布している(渡邊ほか(2007))。
- 上記海山のうち第一鹿島海山には、断層の活動に伴う小規模な崩壊地形が存在するが(大島ほか(1985),藤岡・平(1987))、大規模な海底 地すべりは確認されていない。
- また, 襟裳海山についても, 第1鹿島海山のような断層の活動に伴う小規模な崩壊地形は確認されていない。
- 以上から、日本海溝付近における海山付近の海底地すべりが発電所に与える影響は極めて小さいと考えられる。

417

Ⅱ. 地震以外に起因する津波の評価
 1. 地すべり及び斜面崩壊
 1. 3 海底地すべりに起因する津波の評価
 第1
 1. 3. 8 ハワイ付近の海底地すべり

第1027回審査会合(R4.1.28) 資料1-1 p400 再掲

■ハワイ諸島の概要

- ハワイ諸島は日本の南東約6,400kmの太平洋上に位置しており、ハワイ島、マウイ島、オアフ島、カウアイ島、モロカイ島、ラナイ島、ニイハウ島、 カホオラウェ島の8つの島のほか多数の島と環礁からなる。
- ・ ハワイを載せる太平洋プレートは北西方向へ年間10cm程度の速さで動いており,ハワイ諸島は北西へ行くほど古い(佐竹(1997))。

Eakins et. al.(2003)に一部加筆

418

第1027回審査会合(R4.1.28) 資料1-1 p401 再掲

1.3.8 ハワイ付近の海底地すべり

■文献調査:1975年Kalapana津波(1/2)

- 1975年にハワイ島南岸のKalapana付近で強震が発生し、日本沿岸各地で津波が観測され(羽鳥(1976))、その地震規模はMw7.7である(Nettles and Ekström(2004))。
- ・ 日本沿岸における検潮記録の全振幅の最大値は,鮎川検潮所における55cmであり(羽鳥(1976)),ハワイ沿岸では最大15m弱の津波が観測された (Day et al.(2005))。なお,発電所周辺の検潮記録としては,函館検潮所の17cmである(羽鳥(1976))。

			Initial wave					um wave
No.	Tide station	Å			В		D 11	
10000000		Arrival time, GMT	Rise	Period	Arrival time, GMT	Rise	ampl.	time, GMT
1	Hanasaki	Nov. 30 8:48	em 6	min 8	Nov. 30 7:56	em 10	cm 27	Nov. 30 13:32
2	Kushiro	?					12	13:08
3	Hiroo	7:42	15	12			23	10:06
4	Urakawa	9:00	-6	15	7:42	3	12	12:11
5	Hakodate	?					17	13:30
6	Same	8:56	2	10	7:55	2	5	11:15
7	Miyako	8:50	-8	8	7:35	6	14	9:48
8	Enoshima	8:46	-4	10				
9	Ayukawa	9:00	-6	8	7:44	4	55	10:44
10	Onahama	8:10	4				21	9:20
11	Hitachi	7:27	5	16			24	10:14
12	Mera	8:28	5	16	7:22	4	19	11:22
13	Miyake Is.	8:22	4	7			24	10:15
14	Chichijima	6:53	6	18			18	10:18
15	Minami-Izu	7:20	3				20	11:46
16	Omaezaki	7:33	4	10			14	13:50
17	Owase	9:14	8	22	7:40	2	22	10:00
18	Kushimoto	10:00	7	12			22	17:00
19	Muroto	8:50	3	8			11	11:50
20	Tosa-Shimizu	8:00	8	22			23	16:23
21	Aburatsu	?					18	15:32
22	Naha	8:35	3	18			13	16:43

A: Evident wave commences. B: Wave front is indefinite. Wave front is determined with the aid of the refraction diagram.

日本沿岸の検潮記録 (羽鳥(1976)に一部加筆)

Part of the second seco	Locati
accounting the second s	Honok Kailua Kahah
Distribution of the maximum double amplitude (unit: cm) and wave rays which are emitted from the origin subdivided into equal angles of 30 degrees. 波向線(羽鳥(1976)) →米国沿岸における水位は日本沿岸と大差なく, 指向性による影響はみられない	Keauh Napoo Honau Miloli
20.2	Kaalua Honua Punah
Honakahau Hilo 19.6 - Kahaluu Keauhou Cape Kumukahir 19.4 - Honaunau Pohoiki	Kalue Halape
19.2 - Milolii Halape Kalapana Milolii Kautue Keauhou Landing -	Apua Kamoa Kalapa
19 - Kaalualu South Point	Pohoil Cape 1
18.6-9 20 20 20 20 20 20 20 20 20 20 20 20 20	Hilo (

Location	Observed	
	(m)	
Honokahau (W)	2.1	
Kailua (W)	3.4	
Kahaluu (W)	1.8	
Keauhou (W)	2.4	
Napoopoo (W)	2.4	
Honaunau (W)	1.8	
Milolii (W)	<1.8	
South Point (W)	6.7	
Kaalualu (S)	4.0	
Honuapo (S)	6.1	
Punaluu (S)	6.1	
Kalue (S)	9.4	
Halape (S)	7.0	
Apua Point (S)	14.6	
Kamoamoa (S)	6.4	
Kalapana (S)	2.6	
Pohoiki (S)	2.4	
Cape Kumukahi (S)	3.4	
Hilo (E)	3.0	

-156.2 -156 -155.8 -155.6 -155.4 -155.2 -155 -154.8 -154.6 -154.4 -154.2

ハワイ沿岸の痕跡地点及び遡上高(Day et al.(2005))

Ⅱ. 地震以外に起因する津波の評価
 1. 地すべり及び斜面崩壊
 1. 3 海底地すべりに起因する津波の評価
 1. 3. 8 ハワイ付近の海底地すべり

第1027回審査会合(R4.1.28) 資料1-1 p402 再掲

■文献調査:1975年Kalapana津波(2/2)

• Ma et al.(1999)は、①海底地すべり、②低角逆断層のいずれでもハワイ周辺の検潮記録を説明できるとし、これらの組合せにより津波が発生したであろうとしている。

1975年Kalapana津波のメカニズムの解釈(上),地すべりの分布(左下)及び低角逆断層による初期波形(右下) (Ma et al.(1999))

→左下図のハッチ部は沈降域,白抜き部は隆起域である。数字は時間遅れ(分)を表す。

第1027回審査会合(R4.1.28) 資料1-1 p403 再掲

1.3.8 ハワイ付近の海底地すべり

■評価対象の選定

- 横瀬(2007, 2010)は,詳細なDEM データに基づきハワイ諸島の流山地域の微地形解析を実施し,ハワイ諸島で想定されている17の巨大海底地すべり 堆積物の中で巨大津波を伴った可能性があるのは、オアフ島東部のNuuanu 地すべり、ハワイ島西部のAlika-2地すべり、ハワイ島南部の東KaLae地すべ りの3つに限定されるとしている。
- ハワイ諸島で発生した海底地すべりの特徴,発生年代に関する知見も踏まえ(McMurtry et al.(2004), Moore et al.(1989)), 後期更新世以降に生じた 海底地すべりのうち, 巨大津波を伴った可能性があり, 面積が大きい「Alika-2」を評価対象として選定した。

Fig. 2. Map of southeastern Hawaiian Ridge showing major slides bounded by dashed lines identified by number in text and Table 1; compare with Figure 1. Dotted area, hummocky ground (widely spaced where subdued): hachured lines, scarps: thin, downslope-directed lines, submarine canyons and their subaerial counterparts; heavy dashed line, axis of the Hawaiian Deep: dash-dotted line, crest of the Hawaiian Arch.

TABLE 1. Hawalian Submari	ne Slides
---------------------------	-----------

No.	Name	Location	Area. km ²	Length," km	Width, ^b km	Type ^c	年代(Ma) ^{※1}
1	North Kauai	North Kauai	14,000	140	100	D (0.6-0.9)	5.0
2	South Kauai	South Kauai	6,800	100	50	D (0.6–1.2)	5.0
3	Kaena	NE Oahu	3,900	80	45	D	3.6
4	Waianae	SW Oahu	6,100	50	80	S (1.0)	2.9-3.1
5	Nuuanu	NE Oahu	23,000	235	35	D (0.8–1)	2.1-2.2
6	Wailau	North Molokai	13,000?	<195	40	D (0.7)	1.0±0.1
7	Напа	NE Maui	4,900	85	110	S	0.86
8	Clark	SW Lanai	6,100	150	30	D (0.5-1)	1.3±0.06
9	Pololu	North Hawaii	3,500	130	20	D	0.254-0.306
10	South Kona	West Mauna Loa	4,600	80	80	S	0.200-0.240
11	Alika-1	West Mauna Loa	2,300	88	15	D (0.9–1)	>0.112-0.127
12	Alika-2	West Mauna Loa	1,700	95	15	D (2–5)	>0.112-0.127
13	Ka Lae, west	South Hawaii	850	85	10	D	>0.032-0.060?
14	Ka Lae, east	South Hawaii	950	75	10	D (2)	>0.032-0.060?
15	Hilina	South Hawaii	5,200	40	100	S	>0.010-0.100
16	Papa'u	South Hawaii	200	20	6	SF	0.001~0.005*2
17	Loihi	South Hawaii	500	15	10-30	L	0.001~0.115**
Total			97,600				

Located by number in Figure 2.

^aLength of Waianae and South Kilauea landslides omits indistinct irregular topography beyond steep toe.

^bWidth at head of landslide.

^cD, Debris avalanche; (number) is average number of hummocks appearing in GLORIA images per square kilometer; S, Slump; SF, sand rubble flow; L, three unclassifeid landslides.

送期更新世よりも前に生じた地すべり
巨大津波を伴った可能性のある地すべり
:選定した地すべり

※1 McMurtry et al.(2004)

※2 Papa'u(No.16)の年代はMoore et al.(1989)の"several thousand years ago"との記述に基づく。

※3 Loihi(No.17)の年代はGuillou et al.(1997)がLoihi火山東斜面の試料から求めた5±4~102±13kaに基づく。

Moore et al.(1989)に加筆

421

1.3.8 ハワイ付近の海底地すべり

第1027回審杳会合(R4.1.28) 資料1-1 p404 再掲

■海底地形判読(1/2)

- ・ Alika-2地すべり周辺(ハワイ島西部周辺)を対象に、ハワイ大学マノア校海洋地球科学技術学部(SOEST)による海底地形デジタルデータ(50mグリッド) を用いて海底地形コンター図及び標高段彩陰影図を作成し、海底地形判読を行った。
- なお、海底地形判読にあたっては、以下の判読基準等に従って、海底地すべりの可能性のある地形を抽出した。

【海底地すべり地形の判断基準】

✓ 地すべり地形としては滑落崖とその基部にある地すべり土塊(滑落土塊)が対をな す。陸上の地すべりに比べて大規模で、薄く広がる傾向がある。薄く広がるケース では土塊は認定しにくいので滑落岸だけを認定する。

崩壊部 (滑落崖)	 ・馬蹄形,半円形,コの字形の平面形で,斜面下方へ開く急斜面。 ・急斜面は平面的に出入りがなくスムースな形状で,傾斜も一定傾向。また,地すべり土塊を囲んで側方にも連続することがある。 ・下方に地すべり土塊が対をなして存在することが重要。
堆積部 (地すべり 土塊)	 ・滑落崖の基部にある扇状地状あるいは舌状の高まり。 ・細長い舌状の場合や台地状を呈することもある。 ・典型的な場合には、土塊の表面に不規則な凸凹、低崖、凹地があり、凸形縦断の斜面形を示す。

422

1.3.8 ハワイ付近の海底地すべり

■海底地形判読(2/2)

第1027回審査会合(R4.1.28) 資料1-1 p405 再掲

- 海底地形判読の結果、「Alika-2」付近に海底地すべりと判断される地形(滑落崖,崩壊物堆積域)が認められたことから(左図)、地すべり滑落崖周辺の 現況地形から滑落崖を埋め戻し、地すべり崩壊前地形を復元した(右図)。
- ・ 復元地形と現況地形との差から地すべり体積(土量)を算定した海底地すべりの体積(土量)は約105km3である。

第1027回審杳会合(R4.1.28)

資料1-1 p406 再掲

Ⅱ. 地震以外に起因する津波の評価 1. 地すべり及び斜面崩壊 1.3 海底地すべりに起因する津波の評価

1.3.8 ハワイ付近の海底地すべり

■評価結果

- ・「Alika-2」の海底地すべりに伴う津波が発電所に与える影響を確認することを目的に、地すべり規模から津波水位を推定することを検討した。
- 津波水位の推定は、Papadopoulos and Kortekaas(2003)による20世紀以降に発生した世界の地すべり津波のデータ分析に基づく、地すべり体積と沿岸における津波の最高水位の関係が、日本沿岸でも成立すると仮定して推定した。
- Ma et al.(1999)より、1975年Kalapana津波の地すべり体積を2.5km³とし、その地すべりに伴う日本沿岸における津波水位を検潮記録最大全振幅の最大値である55cm(鮎川検潮所)(羽鳥(1976))と仮定する。
- Papadopoulos and Kortekaas(2003)による地すべり体積と津波水位の関係式から、「Alika-2」のような地すべり(地すべり体積約105km³)がハワイで発生した場合の日本沿岸における津波水位は最大で3.8m程度と推定される。

地すべり体積(m³)と沿岸における津波の最高水位の関係[※] (Papadopoulos and Kortekaas(2003)に加筆)

※:赤線は包絡線を直線近似して加筆したもの。PNG(1998パプアニューギニア) 及びIzmit(1999トルコ)は断層運動による津波への寄与が含まれる。

- ✓ 地すべり1の体積をV1,日本沿岸における津波水位をh1とする。 地すべり2の体積をV2,日本沿岸における津波水位をh2とする。
- ✓ Papadopoulos and Kortekaas (2003)の関係により,

h2 = a · log(V2) + b h1 = a · log(V1) + b 両式の差をとれば, h2 - h1 = a (log(V2) - log(V1)) よって, h2 = h1 + a · log(V2/V1)

✓ 添え字1を1975年Kalapana津波,添え字2を想定津波に対応させると,津波水位h2は以下のようになる。

1975年の日本沿岸における津波水位 h1	0.55m
Papadopoulos and Kortekaas (2003)に 基づく比例定数 a	2
1975年の地すべり体積 V1	2.5km ³
想定津波の地すべり体積 V2	105 km³
想定津波の日本沿岸における津波水位 h2	3.8m

Ⅱ. 地震以外に起因する津波の評価
 1. 地すべり及び斜面崩壊
 1. 3 海底地すべりに起因する津波の評価
 1. 3. 8 ハワイ付近の海底地すべり

第1027回審査会合(R4.1.28) 資料1-1 p407 再掲

■まとめ

- ・ ハワイ付近の海底地すべり「Alika-2」による日本沿岸における津波水位は最大で3.8m程度と推定される。
- 以上から、日高舟状海盆の海底地すべり(最大水位上昇量:4.25m)と比較して、発電所に与える影響は小さいと考えられる。

Ⅱ. 地震以外に起因する津波の評価 1. 地すべり及び斜面崩壊

1.4 「地すべり等」に起因する津波の評価

• 各評価位置における最大水位上昇量を以下に示す。

■水位上昇側

	波源モデル		最大水位上昇量(m)			
種別			敷地前面	取水口前面	補機冷却海水 系取水口前面	放水路 護岸前面
陸上の地すべり及び斜面崩壊			発電所へ与える影響は極めて小さい			
海底地すべり	下北太平洋側 大陸棚外縁 (SLS−2)	二層流モデル	0.84 ^{%1}	0.78	0.77	%2
		Kinematic landslideモデル	0.74 ^{※1}	0.56	0.53	%2
	日高舟状海盆	二層流モデル	<u>4.25</u>	<u>1.99</u>	<u>2.13</u>	%2
		Kinematic landslideモデル	1.61 ^{※1}	1.55	1.58	%2
	日本海溝付近における海山		発電所へ与える影響は極めて小さい			
	ハワイ付近		日本沿岸における津波水位は最大で3.8m程度 ^{※3}			

※1:敷地前面まで津波が到達しないため、敷地周辺での最大水位上昇量を記載。

※2:放水路護岸前面まで津波が到達しない。

※3:1975年Kalapana津波による宮城県鮎川検潮所での検潮記録(全振幅:55cm)と「Alika-2」の地すべり体積(約105km³)から, Papadopoulos and Kortekaas(2003) による地すべり体積と津波水位の関係式を用いて算定。

425

第1027回審査会合(R4.1.28) 資料1-1 p408 一部修正

Ⅱ. 地震以外に起因する津波の評価 1. 地すべり及び斜面崩壊

1.4 「地すべり等」に起因する津波の評価

• 各評価位置における最大水位下降量を以下に示す。

■水位下降側

	波源モデル		補機冷却海水系取水口前面		
種別			最大水位下降量(m)	取水口敷高※1を下回る時間(分)	
陸上の地すべり及び斜面崩壊			発電所へ与える影響は極めて小さい		
海底地すべり	下北太平洋側	二層流モデル	-0.63	*2	
	人陸棚外稼 (SLS−2)	Kinematic landslideモデル	-0.55	*2	
	日高舟状海盆	二層流モデル	<u>-2.50</u>	*2	
		Kinematic landslideモデル	-1.24	*2	
	日本海溝付近における海山		発電所へ与える影響は極めて小さい		
	ハワイ付近		発電所へ与える影響は、日高舟状海盆の海底地すべりよりも小さい ^{※3}		
非常用海水ポンプの運転可能継続時間			約35		

※1:補機冷却海水系取水設備の詳細は、補足説明資料「Ш.計算条件等 4.津波水位の評価位置」に記載。

※2:取水口敷高(T.P.-4.0m)を下回らない。

※3:Papadopoulos and Kortekaas(2003) による地すべり体積と津波水位の関係式は水位上昇側(遡上高)を算定する式であるため、水位下降側の水位を定量的に評価 することはできないが、日高舟状海盆の海底地すべりによる敷地前面の最大水位上昇量(4.25m)とハワイ付近の海底地すべりによる津波水位(日本沿岸において 最大3.8m程度)の比較から、発電所へ与える影響は、日高舟状海盆の海底地すべりの影響よりも小さいと考えられる。

426

第1027回審査会合(R4.1.28) 資料1-1 p409 一部修正

427

余白

