女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －工－B－03－0023＿改 0
提出年月日	2022 年 7 月 22 日

工事計画に係る説明資料

核燃料物質の取扱施設及び貯蔵施設

（添付書類）

2022年7月

申請範囲目録

VI 添付書類
VI－1 説明書
VI－1－1 各発電用原子炉施設に共通の説明書
VI－1－1－4 設備別記載事項の設定根拠に関する説明書
VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書（核燃料物質の取扱施設及び貯蔵施設）
VI－1－1－4－2－2 使用済燃料貯蔵槽冷却浄化設備に係る設定根拠に関する説明書
VI－1－1－4－2－2－2 燃料プール代替注水系
VI－1－1－4－2－2－2－3 燃料プール代替注水系 主配管（スプレイヘッダを含む。）（可搬型）

VI－6 図面

3．核燃料物質の取扱施設及び貯蔵施設
3.2 使用済燃料貯蔵槽冷却浄化設備
3.2 .2 燃料プール代替注水系

第3－2－2－3－1 図 燃料プール代替注水系 機器の配置を明示した図面（その1）
3．2．3 燃料プールスプレイ系
第3－2－3－3－1 図 燃料プールスプレイ系 機器の配置を明示した図面（その1）
3．2．4 放射性物質拡散抑制系
第3－2－4－2－1 図 放射性物質拡散抑制系 機器の配置を明示した図面（その1）

VI－1－1－4－2－2－2－3 設定根拠に関する説明書
（燃料プール代替注水系 主配管（スプレイヘッダを含む。）（可搬型））

名	称	取水用ホース	（250A ：5m，10m，20m）	＊
最高使用圧力	MPa		1.4	
最高使用温度	${ }^{\circ} \mathrm{C}$		50	
外 径	－		250A	
個 数	－		（予備3）	

注記＊：使用済燃料貯蔵槽冷却浄化設備（燃料プールスプレイ系，放射性物質拡散抑制系），原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系），非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系，代替水源移送系），原子炉補機冷却設備（原子炉補機代替泠却水系），原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替 スプレイ冷却系，低圧代替注水系），放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（放射性物質拡散抑制系，放射性物質拡散抑制系（航空機燃料火災への泡消火），原子炉格納容器フィルタベント系），圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用する。

【設定根拠】

（概要）
本ホースは，付属水中ポンプと大容量送水ポンプ（タイプ I ）又は大容量送水ポンプ（タイ プ II）を接続するホースであり，重大事故等対処設備として，水中ポンプにより淡水又は海水 を大容量送水ポンプ（タイプ I ）又は大容量送水ポンプ（タイプ II）に送水するために設置す る。

1．最高使用圧力の設定根拠
本ホースを重大事故等時において使用する場合の圧力は，大容量送水ポンプ（タイプ I ）又 は大容量送水ポンプ（タイプ II）の付属水中ポンプの使用圧力 0.24 MPa を上回る 1.4 MPa とす る。

2．最高使用温度の設定根拠
本ホースを重大事故等時において使用する場合の温度は，重大事故等時における大容量送水 ポンプ（タイプ I ）又は大容量送水ポンプ（タイプ II）の使用温度と同じ $50^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本ホースを重大事故等時において使用する場合の外径は，圧力損失上許容できる外径，可搬設備としての作業性及び大容量送水ポンプ（タイプI）又は大容量送水ポンプ（タイプII）の付属水中ポンプの口径に合わせて 250 A とする。

4．個数の設定根拠
本ホースは，重大事故等対処設備として，発電用原子炉等への注水に使用する場合に必要な 12 本（ $5 \mathrm{~m}: 4$ 本， $10 \mathrm{~m}: 4$ 本， $20 \mathrm{~m}: 4$ 本），重大事故等の収束に必要となる水を供給する場合に必要な 6 本（ $5 \mathrm{~m}: 2$ 本， $10 \mathrm{~m}: 2$ 本， $20 \mathrm{~m}: 2$ 本），最終ヒートシンクへ熱を輸送するために必要 な 12 本（ $5 \mathrm{~m}: 4$ 本， $10 \mathrm{~m}: 4$ 本， $20 \mathrm{~m}: 4$ 本），原子炉建屋へ放水する場合に必要な 6 本（ $5 \mathrm{~m}: 2$本， $10 \mathrm{~m}: 2$ 本， $20 \mathrm{~m}: 2$ 本）の合計 36 本に，本ホースは保守点検中にも使用可能であるため，保守点検による待機除外時のバックアップ用は考慮せずに，故障時のバックアップ用として予備 3 本（ $5 \mathrm{~m}: 1$ 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 1$ 本）を保管する。

名		称		送水用ホース $(300 \mathrm{~A}: 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m})$
最高使用圧力	MPa	1.4		
最高使用温度	${ }^{\circ} \mathrm{C}$	50		
外	径	-		
個	数	-		

注記＊：使用済燃料貯蔵槽冷却浄化設備（燃料プールスプレイ系，放射性物質拡散抑制系），原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系），非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系，代替水源移送系），原子炉補機冷却設備（原子炉補機代替泠却水系），原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替 スプレイ冷却系，低圧代替注水系），放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（放射性物質拡散抑制系，放射性物質拡散抑制系（航空機燃料火災への泡消火），原子炉格納容器フィルタベント系），圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用する。

【設定根拠】

（概要）
本ホースは，大容量送水ポンプ（タイプI）と注水用ヘッダを接続するホースであり，重大事故等対処設備として，淡水又は海水を大容量送水ポンプ（タイプ I ）により各系統の配管を介して発電用原子炉等へ送水するために設置する。

本ホースは，大容量送水ポンプ（タイプ I ）と原子炉補機代替冷却水系熱交換器ユニットを接続するホースであり，重大事故等対処設備として，海水を大容量送水ポンプ（タイプ I ）に より原子炉補機代替冷却水系熱交換器ユニットへ送水するために設置する。

本ホースは，大容量送水ポンプ（タイプ II）と放水砲を接続するホースであり，重大事故等対処設備として，海水を大容量送水ポンプ（タイプII）により原子炉建屋へ放水するために設置する。

本ホースは，重大事故等対処設備として，大容量送水ポンプ（タイプ II）から海水を淡水貯水槽（No．1）及び淡水貯水槽（No．2）へ補給するために設置する。

1．最高使用圧力の設定根拠
本ホースを重大事故等時において使用する場合の圧力は，重大事故等時における大容量送水 ポンプ（タイプ I ）又は大容量送水ポンプ（タイプII）の使用圧力 1.2 MPa を上回る 1.4 MPa と する。

2．最高使用温度の設定根拠
本ホースを重大事故等時において使用する場合の温度は，重大事故等時における大容量送水 ポンプ（タイプ I ）又は大容量送水ポンプ（タイプ II）の使用温度と同じ $50^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本ホースを重大事故等時において使用する場合の外径は，圧力損失上許容できる外径，可搬設備としての作業性及び取合ら大容量送水ポンプ（タイプ I ）又は大容量送水ポンプ（タイプ II）の口径に合わせて 300Aとする。

4．個数の設定根拠
本ホースは，重大事故等対処設備として，淡水又は海水を大容量送水ポンプ（タイプI）か ら注水用ヘッダへ供給する場合に必要な 80 本（ $2 \mathrm{~m}: 2$ 本， $5 \mathrm{~m}: 2$ 本， $10 \mathrm{~m}: 2$ 本， $20 \mathrm{~m}: 4$ 本， $50 \mathrm{~m}: 70$ 本），重大事故等の収束に必要となる水を供給する場合に必要な 35 本（ $2 \mathrm{~m}: 1$ 本， 10 m ： 1 本， $20 \mathrm{~m}: 1$ 本， $50 \mathrm{~m}: 32$ 本），最終ヒートシンクへ熱を輸送するために必要な 80 本（ $2 \mathrm{~m}: 2$本， $5 \mathrm{~m}: 4$ 本， $10 \mathrm{~m}: 4$ 本， $20 \mathrm{~m}: 6$ 本， $50 \mathrm{~m}: 64$ 本），原子炉建屋へ放水する場合に必要な 34 本 （ $2 \mathrm{~m}: 1$ 本， $5 \mathrm{~m}: 1$ 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 3$ 本， $50 \mathrm{~m}: 28$ 本）の合計 229 本に，本ホースは保守点検中にも使用可能であるため，保守点検による待機除外時のバックアップ用は考慮せずに，故障時のバックアップ用として予備 5 本（ $2 \mathrm{~m}: 1$ 本， $5 \mathrm{~m}: 1$ 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 1$ 本， $50 \mathrm{~m}: 1$本）を保管する。

名	称	注水用ヘッダ	＊
最高使用圧力	MPa	1.4	
最高使用温度	${ }^{\circ} \mathrm{C}$	50	
外 径	mm	318．5，165．2， 76.3	
個 数	－	2 （予備 1）	

注記 $* ~: ~$ 使用済燃料貯蔵槽冷却浄化設備（燃料プールスプレイ系），原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系），非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系，代替水源移送系），原子炉格納施設のうち圧力低減設備 その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替スプレイ冷却系，低圧代替注水系），放射性物質濃度制御設備及び可燃性ガ ス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系），圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用する。

【設定根拠】
（概要）
本配管は，重大事故等対処設備として，大容量送水ポンプ（タイプ I ）から送水される淡水又は海水を各系統に確実かつ容易に分岐するために設置する。

1．最高使用圧力の設定根拠
本配管を重大事故等時において使用する場合の圧力は，重大事故等時における大容量送水ポ ンプ（タイプ I ）の使用圧力 1.2 MPa を上回る 1.4 MPa とする。

2．最高使用温度の設定根拠
本配管を重大事故等時において使用する場合の温度は，重大事故等時における大容量送水ポ ンプ（タイプ I ）の使用温度と同じ $50^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，圧力損失上許容できる外径，可搬設備としての作業性及び取合うホースの口径に合わせて $318.5 \mathrm{~mm}, 165.2 \mathrm{~mm}, 76.3 \mathrm{~mm}$ とする。

4．個数の設定根拠
本配管の必要となる容量は， 1 セット 1 個であり，「 $2 n+\alpha 」 の$ 対象施設となることから， 2個が必要容量となる。これに加えて，故障時のバックアップ及び保守点検による待機除外時の バックアップを発電所全体で確保する。

また， 2 個以上同時に保守点検することのないよう運用することとした上で，故障時のバッ クアップ及び保守点検による待機除外時のバックアップとして，1個を確保する。

以上より，合計で 3 個確保する。

名		称		
最高使用圧力	MPa	送水用ホース $(150 \mathrm{~A}: 1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m})$		
最高使用温度	${ }^{\circ} \mathrm{C}$	1.6		
外	径	-		
個	数	-		

注記 $*$ ：使用済燃料貯蔵槽冷却浄化設備（燃料プールスプレイ系），原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系，代替水源移送系），原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替スプレイ冷却系，低圧代替注水系）と兼用 する。

【設定根拠】

（概要）
本ホースは，注水用ヘッダと各系統の接続口を接続するホースであり，重大事故等対処設備 として，淡水又は海水を大容量送水ポンプ（タイプ I ）により各系統の配管を介して発電用原子炉等へ送水するために設置する。

1．最高使用圧力の設定根拠
本配管を重大事故等時において使用する場合の圧力は，重大事故等時における大容量送水ポ ンプ（タイプ I ）の使用圧力 1.2 MPa を上回る 1.6 MPa とする。

2．最高使用温度の設定根拠
本ホースを重大事故等時において使用する場合の温度は，重大事故等時における大容量送水 ポンプ（タイプ I ）の使用温度と同じ $50^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本ホースを重大事故等時において使用する場合の外径は，圧力損失上許容できる外径，可搬設備としての作業性及び取合う接続口の口径に合わせて 150A とする。

4．個数の設定根拠
本ホースは，重大事故等対処設備として，注水用ヘッダから燃料プール注水接続口又は燃料 プールスプレイ接続口，使用済燃料プール，クロスデバイザー管へ供給する場合に必要な 60本（ $1 \mathrm{~m}: 2$ 本， $2 \mathrm{~m}: 6$ 本， $5 \mathrm{~m}: 12$ 本， $10 \mathrm{~m}: 14$ 本， $20 \mathrm{~m}: 26$ 本），注水用ヘッダから原子炉•格納容器下部注水接続口へ供給する場合に必要な 32 本（ $1 \mathrm{~m}: 2$ 本， $2 \mathrm{~m}: 2$ 本， $5 \mathrm{~m}: 2$ 本， $10 \mathrm{~m}: 4$本， $20 \mathrm{~m}: 22$ 本），注水用ヘッダから復水貯蔵タンク接続口へ供給する場合に必要な 19 本（ 5 m ： 1 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 17$ 本），注水用ヘッダから格納容器スプレイ接続口へ供給する場合に必要な 34 本（ $1 \mathrm{~m}: 2$ 本， $2 \mathrm{~m}: 2$ 本， $5 \mathrm{~m}: 6$ 本， $10 \mathrm{~m}: 2$ 本， $20 \mathrm{~m}: 22$ 本）の合計 145 本に，本ホー スは保守点検中にも使用可能であるため，保守点検による待機除外時のバックアップ用は考慮 せずに，故障時のバックアップ用として予備 5 本（ $1 \mathrm{~m}: 1$ 本， $2 \mathrm{~m}: 1$ 本， $5 \mathrm{~m}: 1$ 本， 10 m ： 1本，20 m：1本）を保管する。

3．核燃料物質の取扱施設及び貯蔵施設

3.2 使用済燃料貯蔵槽冷却浄化設備

3．2．2 燃料プール代替注水系

3．2．3 燃料プールスプレイ系

3．2．4 放射性物質拡散抑制系

