本資料のうち、枠囲みの内容 は、機密事項に属しますので 公開できません。

柏崎刈羽原子力発電	所第7号機 工事計画審査資料
資料番号	KK7補足-05 r0
提出年月日	2022年 4月 18日

柏崎刈羽原子力発電所 第7号機

設計及び工事計画届出書本文及び添付書類

東京電力ホールディングス株式会社

柏崎刈羽原子力発電所第7号機 設計及び工事計画届出書本文及び添付書類

目 録

- I 名称及び住所並びに代表者の氏名
- Ⅱ 工事計画
- Ⅲ 工事工程表
- IV 設計及び工事に係る品質マネジメントシステム
- V 変更の理由
- VI 添付書類
 - VI-1 発電用原子炉の設置の許可との整合性に関する説明書
 - VI-1-1 発電用原子炉の設置の許可(本文(五号))との整合性に関する説明書
 - VI-1-2 発電用原子炉の設置の許可(本文(十一号))との整合性に関する説明書
 - VI-2 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書
 - VI-3 発電用原子炉施設の蒸気タービン、ポンプ等の損壊に伴う飛散物による損傷防護に関する説明書
 - VI-4 蒸気タービンの耐震性に関する説明書
 - VI-5 蒸気タービンの強度に関する説明書
 - VI-6 蒸気タービンの基礎に関する説明書
 - VI-7 流体振動又は温度変動による損傷の防止に関する説明書
 - VI-8 蒸気タービンの制御方法に関する説明書
 - VI-9 蒸気タービンの振動管理に関する説明書
 - VI-10 常用電源設備の健全性に関する説明書
 - VI-11 設計及び工事に係る品質マネジメントシステムに関する説明書
 - VI-11-1 設計及び工事に係る品質マネジメントシステムに関する説明書
 - VI-11-2 本設工認に係る設計の実績,工事及び検査の計画
 - VI-12 図面
 - 第1図 発電用原子炉施設の熱精算図
 - 第2図 蒸気タービンの構造図
 - 第3図 蒸気タービンの構造図(低圧A円板・車軸構造図)
 - 第4図 蒸気タービンの構造図(低圧B円板・車軸構造図)
 - 第5図 蒸気タービンの構造図(低圧C円板・車軸構造図)
 - 第6図 蒸気タービンの構造図(低圧隔板・噴口構造図)
 - 第7図 蒸気タービンの構造図(低圧翼構造図)

: 今回提出範囲

Ⅱ 工事計画

Ⅱ 工事計画

- 一 発電用原子炉施設
 - 1. 発電用原子炉を設置する事業所の名称及び所在地

名 称 柏崎刈羽原子力発電所

所 在 地 新潟県柏崎市及び刈羽郡刈羽村

2. 発電用原子炉施設の出力及び周波数

出 力 8,212,000kW

1 号機 1,100,000kW

2 号機 1,100,000kW

3 号機 1,100,000kW

4 号機 1,100,000kW

5 号機 1,100,000kW

6 号機 1,356,000kW

7号機 1,356,000kW (今回申請分)

周 波 数 50Hz

3. 原子炉冷却系統施設

蒸気タービンに係るものにあっては、次の事項

- 1 蒸気タービン本体に係る次の事項
- (1) 種類, 定格出力, 気筒数, 主蒸気止め弁の入口の圧力及び温度, 組合せ中間弁入口の圧力及び温度, 抽気圧力, 抽気量, 排気圧力, 回転速度並びに被動機一体の危険速度

_	刀及い温度	,拥风压力	7,抽気量,排	凤 上刀,	四転速度』	正のに 放男	別機一件	の力し	央迷皮	
			単位	変	更	前	変	夏	E	後
種		類	_	くし刑 復水式	彡6 流排気₹ こ	F熱再生		同	左	
定	格出	出 力	kW		1, 356, 000	0		同	左	
気	筒	数	_		4 気筒			同	左	
圧	主蒸気止め	分 弁 入 口	_		68. 2kg/cr	m ² *1		6. 68	8MPa*3	
力	組合せ中間	用 弁 入 口	_							
温度	主蒸気止め	分弁 入口	$^{\circ}\!\mathbb{C}$		284			同	左	
度	組合せ中間	月弁 入口	$^{\circ}\!\mathbb{C}$							
抽	第1抽気		_							
気 圧	第2抽気		_							
力 (全	第3抽気		_							
抽気圧力(定格出力時)	第4抽気		_							
力時	第5抽気		_							
	第6抽気		_							
tota	第1抽気		kg/h							
抽気量	第2抽気		kg/h							
	第3抽気		kg/h							
(定格出力時)	第4抽気		kg/h							
力時)	第5抽気		kg/h							
	第6抽気		kg/h							

注記*1:68.1668kg/cm²を四捨五入した数値

*2 : ドレン量を含む記載となっている。

*3: S I 単位に換算したものである。

					単 位	変	更	前	変	更	後
扌	ŧ	気	圧	力	_		真空度 70	2mmHg		-93.6 kPa	a*
Ц	ī	転	速	度	rpm		1, 500			同 左	Ē
			1 次		rpm						
被動機一			2 次		rpm						
一体			3 次		rpm						
の危险			4 次		rpm						
体の危険速度			5 次		rpm						
			6 次		rpm						

注記*: S I 単位に換算したものである。

(2) 車室,円板,隔板,噴口,翼,車軸の主要寸法及び材料並びに管の最高使用圧力,最高 使用温度,外径,厚さ及び材料

a.	円	板						
		段		変更前	Î		変更後	发
		落	外 径 (mm)	材	料	外 径 (mm)	材	料
	タ	10				-		
Irr	ビビ	11						
低圧	ン	12						
A	側 /	13						
ВС	発	14						
	電機	15						
	側	16		 				

b. 隔板*

		段	変	更	前	2	<u>ن</u> ک	更	後
		落	外 径 (mm)	材	料	外 径 (mm)		材	料
	ター	10							
低	ビビ	11							
圧	ン ###	12							
A	側 /	13							
ВС	発	14							
	電機	15							
	側	16							

注記*:工事計画届出に伴う関連改造部位。

c. 噴口*

	c. +	段日	変	更	前		変	更	後
		落	平均直径 (mm)	材	料	平均直径 (mm)		材	料
		10							
	タ	11							
	1	12							
低	ビ	13							
	ン	14							
	側	15							
圧		16							
/		10							
	発	11							
	電	12							
A		13							
	機	14							
	側	15							
\\\. ⇒¬		16		1, > BB\+-1, \4.			1		

注記*:工事計画届出に伴う関連改造部位。

		段	変	更	前	多	<u> </u>	更	後
		落	平均直径 (mm)	材	料	平均直径 (mm)		材	料
		10							
	タ	11							
	1	12							
低	ビ	13							
	ン	14							
	側	15							
		16							
圧		10							
	発	11							
	電	12							
В		13							
	機	14							
	側	15							
		16							

		段	変	更	前	3	变更	後	
		落	平均直径 (mm)	材	料	平均直径 (mm)	*	才料	
		10							
	タ	11							
	1	12							
低	ビ	13							
	ン	14							
	側	15							
		16							
圧		10							
	発	11							
	電	12							
С		13							
	機	14]						
	側	15]						
		16							

d. 翼*

	cn.				変	更	育	ή					変	更		後	
	段落	有効長さ (出口側)			巾及び厚	さ (mm)			材料	有効長さ (出口側)			巾及び厚	ヹさ (mm)			材料
	1.1	(mm)	φ Α	a	a t	φВ	b	b t	121 121	(mm)	φ Α	a	a t	φВ	b	b t	121 127
B	10								•								
低しだ	11																
圧レン	12																
A 側	13																
B 発 電	14																
C 機	15																
側	16																

注記*:工事計画届出に伴う関連改造部位。

e. 車軸

	名		変	更	前		変	更	後
	全	長 (mm)							
Irt.	直 径 -	最 大 (mm)	_						
低		最 小 (mm)							-
圧	軸受部直	冝径 (mm)							1
A	軸受中心間	引距離(mm)							
	材	料							
	全	長 (mm)							
低	直径	最大 (mm) 最小 (mm)							-
圧	軸受部直	互径(mm)							
В	軸受中心間	引距離 (mm)							1
	材	料							
	全	長 (mm)							
低	直径	最大 (mm) 最小 (mm)							
圧	軸受部直	冝径(mm)							-
C	軸受中心間	引距離(mm)							
	材	料				,			

蒸気タービン本体材料の機械的性質及び化学成分(規格品を除く)

部			機	械的性	: 質				化		学	成		分	%					
品 名 称	材 料 名	材料記号	引張 強さ MPa	降状点 (耐力) MPa	伸 び %	С	Si	Mn	Р	S	Ni	Cr	Мо	Cu	A1	Sn	V	その他	備	考
低圧														1					胴部半	径方向
円 板 •																			胴中心部	長手方向
低圧																			胴中心部	半径方向
車軸	 																		端部外周音	『接線方向
隔*																				
板																		-		
噴*																			_	-
П																			_	-
選*																			_	-
異 **			-								;	;			;		;	,	_	-

注記*:工事計画届出に伴う関連改造部位。

VI-4 蒸気タービンの耐震性に関する説明書

	1.	1
	2. 適用基準	1
	2.1 耐震重要度分類	1
	3. 構造計画	2
	4. 耐震計算に使用する記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
	5. 固有周期の計算方法	5
	6. 固有周期の評価及び結果	6
	6.1 固有周期の評価	6
	6.2 結果	6
	7. 設計用地震力	7
	8. 荷重の組合せ及び許容限界	8
	9. 基礎ボルトの応力計算方法	10
	9.1 引張応力	11
	9.2 せん断応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
	10. 基礎ボルトの応力の評価	12
!	11. 設計条件	13
)	12. 機器要目	13
i	13. 計算数值	14
	14. 結論	14

1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準規則」という。)第5条及びその「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(以下「解釈」という。)に基づき、蒸気タービン設備が設計用地震力によってその安全性が損なわれるおそれがないことを説明するものである。

2. 適用基準

本評価において適用する規格,基準等を以下に示す。

- ·社団法人 日本電気協会 電気技術指針「原子力発電所耐震設計技術指針」(JEAG 4 6 0 1 · 補- 1984, JEAG 4 6 0 1 1987)
- 社団法人 日本機械学会「発電用原子力設備規格 設計・建設規格」(JSME S NC1 -2005/2007)

2.1 耐震重要度分類

設	備	名	称	機	器	名	称	重	要	度	分	類
蒸泵	子炉冷却系 気タービン は次の事項 蒸気ター	/に係るも			蒸気タ	ービン				В		

3. 構造計画

原則として、耐震上適切な剛性を有する構造とする。蒸気タービン支持構造物の配置説明図を以下に示す。

主要区分	計画の	の概要	概	略	構	造	図	摘	要
	支 持 構 造	主体構造	1994	нц	III	Æ		1161	A
蒸気タービン	蒸の置外一をボ定圧低支さ気基す部ル介ルさ内圧持れら室レてにる車部に。とは一基で、室車固に低は一基で、室車固にはは一基で、室車間が設圧ソト礎固低は室定	く気水ビタ合成れ車ボけと野水ビタ合成れで室ルられていた。 4 車上りでいる 4 車上りでいる 4 車上のでいる 4 車上のでいる 4 車上のでいる 4 車上のでいる 4 車上のでいる 5 は下りのでいる 5 は下りのでいる 5 は下りのでいる 5 はいる 5 は	軸直 中	「角方向 一> 「7 7777777777777777777777777777777777	- · 	基礎ボ <i>)</i>	注タービンC		

4. 耐震計算に使用する記号の説明

記 号*1	記号の説明 記号の説明	単位
Abi	基礎ボルトの軸断面積	mm^2
A_{si}	低圧タービンの有効せん断断面積	mm^2
Сн	水平方向設計震度	_
Ст	タービン振動による震度	_
d i	基礎ボルトの呼び径	mm
Е	縦弾性係数	MPa
Fі	J SME S NC 1-2005/2007 Φ	MPa
Fbi	基礎ボルトに作用する引張力(1本当たり)	N
fsi	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
fti	引張力のみを受ける基礎ボルトの許容引張応力	MPa
ftsi	引張力とせん断力を同時に受ける基礎ボルトの許容限界	MPa
G	せん断弾性係数	MPa
g	重力加速度 (=9.80665)	$\mathrm{m/s^2}$
$H_{\mathtt{T}}$	タービンの基礎ボルト部における最大両振幅	mm
h i	床から重心までの距離	mm
Ιi	低圧タービンの断面二次モーメント	mm^4
K _i	低圧タービンのばね定数	<mark>N/m</mark>
Q 1i	重心と基礎ボルト間の水平方向距離 *2	mm
Q 2i	重心と基礎ボルト間の水平方向距離 *2	mm
M_{Ti}	タービン回転により作用するモーメント	N·mm
mi	運転時質量	kg
N	回転速度 (タービンの定格回転速度)	rpm
n i	基礎ボルトの本数	_
n fi	評価上引張力を受けるとして期待する基礎ボルトの本数	_
Рi	タービン伝達動力	kW
Qbi	基礎ボルトに作用するせん断力	N
Sui	J SME S NC 1-2005/2007	MPa
Syi	J SME S NC 1-2005/2007	MPa
Тi	低圧タービンの固有周期	S
π	円周率	_

記	号*1		記	号	の	説	明		単	位
σ bi 基礎ボルトに作用する引張応力						MP	a			
τ bi 基礎ボルトに作用するせん断応力						MP	a			

注記*1: Abi, Asi, di, Fi, Fbi, fsi, fti, ftsi, hi, Ii, Ki, ℓ li, ℓ 2i, MTi, mi, ni, nfi, Pi, Qbi, Sui, Syi, Ti, σ bi 及び τ bi の添字 i の意味は以下のとおりとする。

i = 1 : 低圧タービンAi = 2 : 低圧タービンBi = 3 : 低圧タービンC

*2 : $\ell_{1i} \leq \ell_{2i}$

5. 固有周期の計算方法

固有周期は一般に以下の式にて計算される。

低圧タービン

$$T_i = 2 \cdot \pi \cdot \sqrt{\frac{m_i}{K_i}}$$
 (i=1, 2, 3) (5.1)

タービンは構造的に1個の大きなブロック状をしており、重心の位置がブロック状のほぼ中心にあり、かつ下面が基礎ボルトにて固定されている。変形によるばね定数Kは以下の式で求める。

低圧タービン

$$K_{i} = \frac{1000}{\frac{h_{i}^{3}}{3 \cdot E \cdot I_{i}} + \frac{h_{i}}{A_{Si} \cdot G}}$$
 (i=1, 2, 3) (5. 2)

- 6. 固有周期の評価及び結果
- 6.1 固有周期の評価

剛構造であることを以下に示す評価式で確認する。

$$T_{i} \leq 0.05^{*}$$
 (6.1)

注記*: JEAG4601-1987 6.4.3動的地震力の概要

6.2 結果

タービン固有周期の計算結果

名称	固有周期(s)
低圧タービンA (T ₁)	
低圧タービンB (T ₂)	
低圧タービンC (T ₃)	

固有周期が 0.05 秒以下のため、全てのタービンについて剛構造と判断される。

7. 設計用地震力

Ī	耐 震	適用する	地震動等	anal mukæ L
	クラス	水平	鉛直	設計用地震力
	В	静的震度* ¹ (1.8・CI* ²)	_	静的震度

注記*1:静的震度は、令和2年10月14日付け原規規発第2010147号にて認可された柏崎刈羽原子力発電所第7号機の設計及び工事の計画の「V-2-1-9 機能維持の基本方針」の設計震度を適用する。

*2: CI は標準せん断力係数を 0.2 とし、建物・構築物の振動特性および地盤の種類等を考慮して求められる値で次式に基づく。

 $C_I = R_T \cdot A_I \cdot C_0$

RT: 振動特性係数 0.8

AI: CIの<mark>高さ方向の</mark>分布係数 Co: 標準せん断力係数 0.2

ここに、CIは、建設時の層せん断力係数とする。

8. 荷重の組合せ及び許容限界

蒸気タービン設備の耐震設計において、地震力によって、支持構造物の引張応力及びせん断応力が許容限界を超えないことを確認する。荷重の組合せ及び許容限界は以下のとおりとする。

記号の説明

[荷重]

D : 死荷重

P_d: 当該設備に設計上定められた最高使用圧力による荷重

M。: 当該設備に設計上定められた機械的荷重

[地震]

SB: 耐震Bクラスの設備に適用される地震動により求まる地震力又は静的地震力

[許容応力]

ft: 引張力のみを受ける基礎ボルトの許容引張応力

fs : せん断力のみを受ける基礎ボルトの許容せん断応力

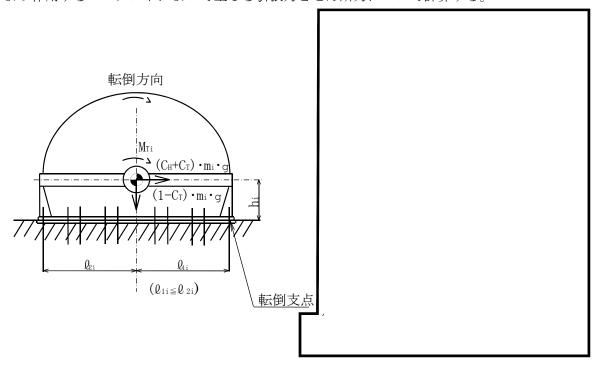
fts: 引張力とせん断力を同時に受ける基礎ボルトの許容限界

[応力]

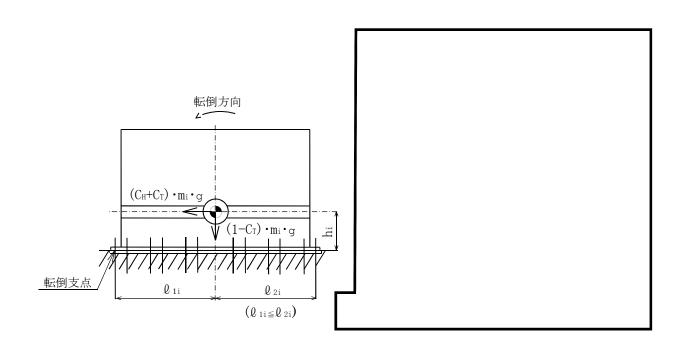
σb:基礎ボルトに作用する引張応力

τb : 基礎ボルトに作用するせん断応力

[許容応力状態]


B_AS: Bクラス設備の地震時の許容応力状態

				許容限界	(ボルト等)				
耐 で が で で で で で の で の で の に に の に の に の に の に の に の に の に の に の に の に に る に の に に る に 。 に 。 に 。 に る に る に る に る に る に る に る に る に る 。	荷重の組合せ	許容応力		一 次 応 力				範	囲
		,2.	引張り	せん断	組 合 せ (= f ts)				
В	$D+P_d+M_d+S_B$	B _A S	1.5• <mark>f</mark> t*	1.5• <mark>f</mark> s*	Min{1.5· f t, 1.5·1.4· f t-1.6· τ b} *			ービン	,


注記*: J SME S N C 1-2005/2007

9. 基礎ボルトの応力計算方法

基礎ボルトの応力は機器の自重、地震による震度、タービン振動による震度及びタービン回転 により作用するモーメントによって生じる引張力とせん断力について計算する。

第1図 計算モデル (軸直角方向転倒)

第2図 計算モデル (軸方向転倒)

9.1 引張応力

基礎ボルトに対する引張力は最も厳しい条件として,第1図及び第2図で最外列の基礎ボルトを支点とする転倒を考え,これを片側の最外列の基礎ボルトで受けるものとして計算する。

タービン振動による震度

$$C_{T} = \frac{H_{T}}{2} \cdot \left(\frac{2 \cdot \pi \cdot N}{60}\right)^{2} \cdot \frac{1}{g} \cdot \frac{1}{1000}$$
 (9. 1)

タービン回転により作用するモーメント (第1図 軸直角方向転倒のみ作用)

$$M_{Ti} = \left(\frac{60}{2 \cdot \pi \cdot N}\right) \cdot 10^6 \cdot Pi \tag{9.2}$$

第1図の引張力(軸直角方向転倒)

$$F_{bi} = \frac{(C_{H}+C_{T}) \cdot m_{i} \cdot g \cdot h_{i} + M_{T_{i}} - (1-C_{T}) \cdot m_{i} \cdot g \cdot \ell_{1i}}{n_{f_{i}} \cdot (\ell_{1i} + \ell_{2i})}$$
(9.3)

第2図の引張力(軸方向転倒)

$$F_{bi} = \frac{(C_H + C_T) \cdot m_i \cdot g \cdot h_i - (1 - C_T) \cdot m_i \cdot g \cdot \ell_{1i}}{n_{fi} \cdot (\ell_{1i} + \ell_{2i})}$$
(9.4)

引張応力

$$\sigma_{\text{bi}} = \frac{F_{\text{bi}}}{A_{\text{bi}}} \qquad (9.5)$$

ここで、基礎ボルトの軸断面積は

$$A_{bi} = \frac{\pi}{4} \cdot d_i^2 \qquad (9.6)$$

ただしFbi が負のとき,基礎ボルトには引張力が生じないため引張応力の評価は不要とする。

9.2	せん断応力
0.4	<u> </u>

基礎ボルトに対するせん断力は基礎ボルト全本数で受けるものとして計算する。

せん断力

$$Q_{\text{bi}} = (C_{\text{H}} + C_{\text{T}}) \cdot m_{\text{i}} \cdot g \qquad (9.7)$$

せん断応力

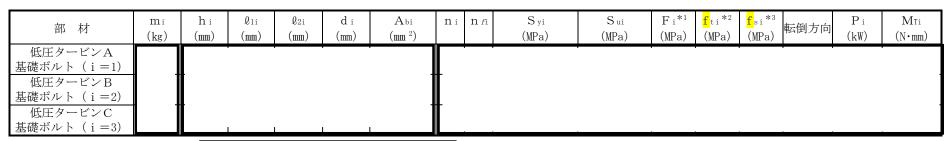
$$\tau_{bi} = \frac{Q_{bi}}{n_i \cdot A_{bi}} \tag{9.8}$$

10. 基礎ボルトの応力の評価

応力については、以下に示す評価式を満足することを確認する。

$$1.5 \cdot \mathbf{f}_{si} \ge \tau \text{ bi}. \tag{10.2}$$

注記*: ftsi=Min{1.5·f ti, 1.5·1.4·f ti-1.6·τ bi}


11. 設計条件

機器名称	耐震設計上の 重要度分類	据付場所及び床面高さ (m)	固有周期	水平方向設計震度	鉛直方向 設計震度	タービンの 定格回転速度 (rpm)	タービンの基礎 ボルト部における 最大両振幅 (mm)	タービン振動 による震度	周囲環境 温 度 (℃)
蒸気タービン	В	タービン建屋 T. M. S. L. 20.4 *1	T 1, 2, 3=	C _H =0.43	_	N=1500	Нт=	Ст=	

注記*1:基準床レベルを示す。

*2: 固有周期が 0.05 秒以下のため剛構造と判断される。(JEAG 4 6 0 1 - 1987 6.4.3 動的地震力の概要より)

12. 機器要目

注記*1 : Fi 値は,

 $*2: f_{ti} = \overline{F_{i}/2}$

*3 : $f_{si} = F_i / 1.5\sqrt{3}$

13. 計算数值

基礎ボルトに作用する力

(単位:N)

部材	F bi	Qbi
低圧タービンA基礎ボルト (i =1)		
低圧タービンB基礎ボルト (i =2)		
低圧タービンC基礎ボルト (i =3)		-

14. 結論

基礎ボルトに作用する応力の評価

(単位:MPa)

25 MC 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				(<u> 1. ini u</u>
部材	材料	応力	算出応力	許容限界
低圧タービンA基礎ボルト		引張り	σ b1=	
(i = 1)		せん断	τ b1=	∐]
低圧タービンB基礎ボルト		引張り	σ b2=	Ⅱ
(i = 2)		せん断	$\tau b_2 =$	
低圧タービンC基礎ボルト		引張り	σ b3=	<u>ll</u>
(i = 3)		せん断	τ b3=	

*2 : ftsi = 1.5·1.4·fti - 1.6·τ bi

すべて許容限界以下である。

14

VI-5 蒸気タービンの強度に関する説明書

1.	概要				 	 	 1
2.	蒸気	タービン強度	度設計の基準	本方針	 	 	 2
2.	1 基7	本方針			 	 	 2
2.	2 強厚	度評価箇所			 	 	 2
3.	強度詞	十算の方法			 	 	 3
3.	1 強馬	度評価方法			 	 	 3
	3. 1. 4	車軸強度			 	 	 34
4.	強度詞	平価結果			 	 	 38

1. 概要

本資料は「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準規則」という。)第 31 条及びその「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」に基づいて、届出範囲の機器が十分な機械的強度を有することを示すものである。

2. 蒸気タービン強度設計の基本方針

2.1 基本方針

蒸気タービンの強度設計においては、信頼性が確認され十分な実績のある設計方法、安全率等を用いる他、最新の知見を反映することにより、蒸気タービンの各部位において十分な強度を持たせることを基本方針とする。

別にせることを全	TO DE 1 00		

なお,	定格熱出力一定運転を考慮して、仮想的に蒸気加減弁が全開した運転状態	(定格蒸気
流量の	%相当)での設計最大出力(電気出力で WW:定格電気出力の	%) で評価
する。		

また振動に関する強度については、発生しうる最大の振動においても十分な強度を有しており、「VI-9 蒸気タービンの振動管理に関する説明書」にも記載の通り、設計上十分な対策を施している。

2.2 強度評価箇所

強度計算は、蒸気タービンの主要部分である円板、隔板及び噴口、翼及び車軸について実施する。

3. 強度計算の方法

3.1 強度評価方法

各構造物の評価に用いる計算式は、「発電用火力設備の技術基準の解釈(平成 25 年 5 月 17 日制定、令和 3 年 3 月 31 日一部改正)」(以下「解釈」という)及び「機械工学便覧 基礎編α 3 材料力学(2005 年 4 月 25 日発行 日本機械学会編)」(以下「便覧」という)中の式等を用いて行う。

3. 1. 1	円板強度	
	円板接線応力に対する強度 第1図に円板解析モデルと を示す。	
a.	円板接線応力の計算方法	
b.	評価	

-

(2) 翼溝部の強度

a. 遠心応力の計算式

評価箇所よりも外周側の円板翼溝部及び翼の質量,重心位置及び回転速度から,翼溝最下面に作用する遠心力を求め,翼溝部の断面積で割ることにより遠心応力を算出する。なお,翼溝最下面に作用する遠心力については,円板翼溝部及び翼が複雑な3次元形状をしているため,半径方向に幾つかの区間に分割し,数値計算により求める。以下に遠心応力の計算式を示す。第2図に翼溝部の形状及び評価箇所を示す。

$$\sigma_{c} = \frac{F_{c}}{A_{\sigma}} \qquad (3. 4)$$

σ c : 遠心応力(MPa)

Fc : 翼溝部に作用する遠心力(N)

Ag : 翼溝部の断面積(mm²)

ここで

$$F_{c} = \sum m_{ci} \cdot r_{ci} \cdot \omega^{2} \qquad (3. 5)$$

mci :区間iの円板,翼の質量(kg)

rci : 区間 i の円板, 翼の重心半径(m)

ω :角速度(1/s)

$$\omega = \frac{2 \cdot \pi \cdot N}{60} \qquad (3. 6)$$

N : 回転速度(rpm)

(3) 翼溝フック部の強度

a. 遠心応力の計算

翼溝遠心力評価箇所よりも外周側の円板翼溝部及び翼の質量,重心位置及び回転速度から,翼溝フック部に作用する遠心力を求め,翼溝フック部の断面積で割ることによりせん断応力を算出する。各翼溝フック部に作用する荷重が均等になるよう植込部の形状を設計しており,各フック部の荷重分担はほぼ均等となる。なお作用する遠心力については,翼が複雑な3次元形状をしているため,半径方向に幾つかの区間に分割し,数値計算により求める。以下にせん断応力の計算式を示す。第2図に評価箇所を示す。

$$\tau c = \frac{Fc}{nb \cdot A\sigma} \qquad \cdots \qquad (3. 14)$$

τ c: せん断応力(MPa)

Fc: 翼溝フック部に作用する遠心力(N)

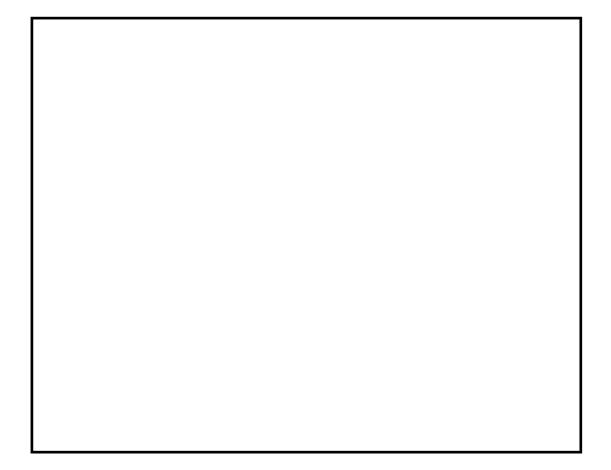
nh : 翼溝フック数

Ag : 翼溝フック部の断面積(mm²)

ここで

 $F_{c} = \sum mci \cdot rci \cdot \omega^{2} \quad \cdots \quad (3. 15)$

mci:区間iの円板,翼の質量(kg)


rci:区間iの円板,翼の重心半径(m)

ω : 角速度(1/s)

 $\omega = \frac{2 \cdot \pi \cdot N}{60} \qquad (3. 16)$

N:回転速度(rpm)

3.	1. 2	隔板及び噴口強度
	-	
	(1)	噴口の強度 a. 曲げ応力の計算方法
		ਕੋਸ਼ <i>ਜਿ</i> ਦ
	ľ	b. 評価 「

3.1.3 翼強度

(1) 翼根元の強度

a. 遠心応力の計算式

翼の質量,重心位置及び回転速度から翼根元部に作用する遠心力を求める。なお,翼根元部に作用する遠心力については,翼が複雑な3次元形状をしているため,半径方向に幾つかの区間に分割し,数値計算により求める。

算出された遠心力を翼根元部の断面積で割ることにより遠心応力を算出する。以下に 遠心応力の計算式を示す。

第4図に翼の形状及び評価箇所を示す。

$$\sigma c = \frac{F_{v}}{A_{b}} \qquad (3. 24)$$

σ c : 遠心応力(MPa)

Fv : 翼根元に作用する遠心力(N)

Ab : φ B 部の断面積 (mm²)

ここで

$$F_{v} = \sum m_{vi} \cdot r_{vi} \cdot \omega^{2} \quad \cdots \qquad (3. 25)$$

mvi :区間iの翼の質量(kg)

rvi : 区間 i の翼の重心半径(m)

ω : 角速度(1/s)

$$\omega = \frac{2 \cdot \pi \cdot N}{60} \qquad (3. 26)$$

N:回転速度(rpm)

(2) 翼フック部の強度

a. せん断応力の計算式

翼の質量、重心位置及び回転速度から翼フック部に作用する遠心力を求める。算出された遠心力を翼フック部のせん断応力が作用する断面積で割ることによりせん断応力を 算出する。

以下にせん断応力の計算式を示す。第5図に翼フック部の形状及び評価箇所を示す。

$$\tau h = \frac{Fb}{nh \cdot Ah} \qquad \cdots \qquad (3. 32)$$

τh : せん断応力(MPa)

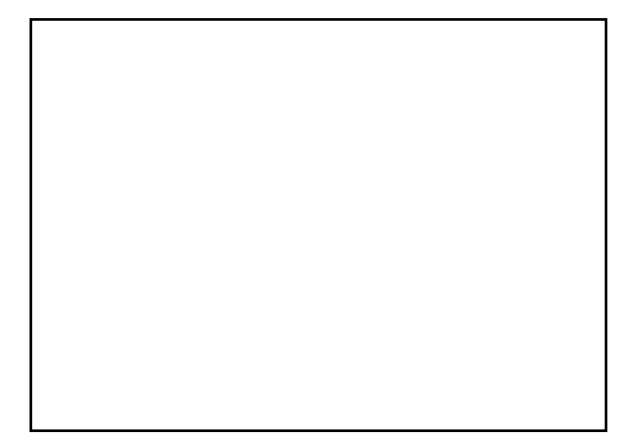
Fb: 翼フック部に作用する遠心力(N)

Ah: せん断を受ける翼フック部の断面積(mm²)

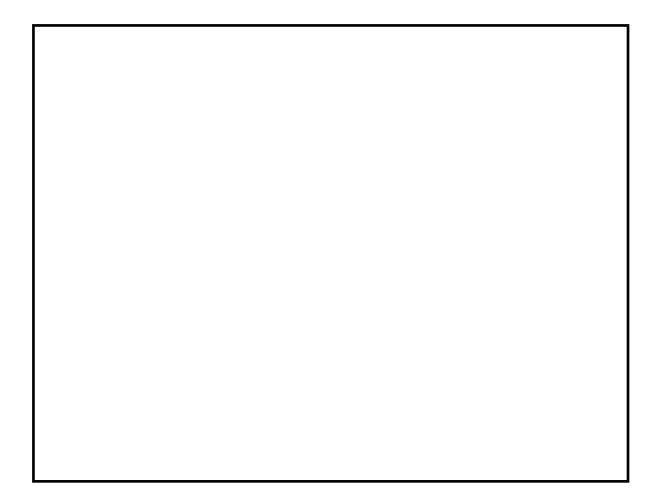
nh : 翼フック数

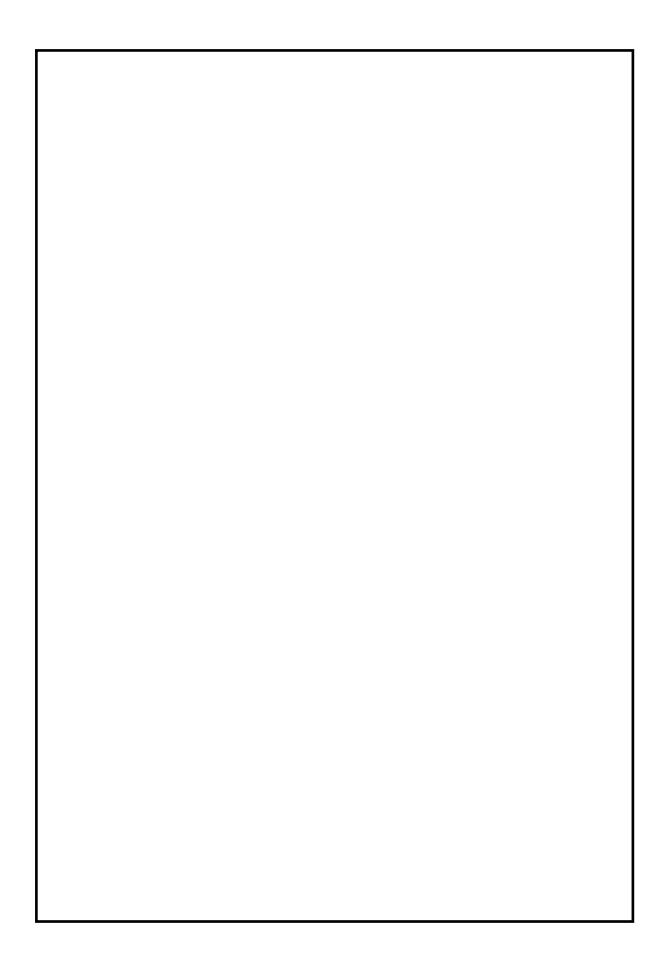
ここで

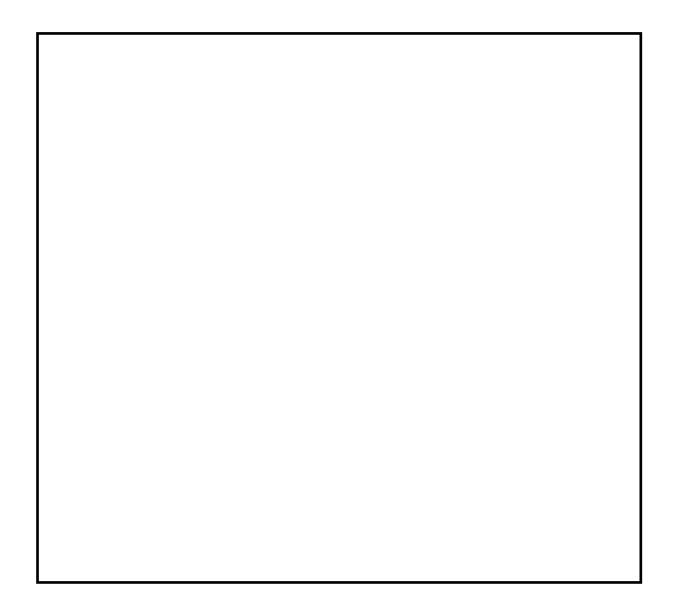
$$F_b = \sum m_b \cdot r_b \cdot \omega^2 \quad \cdots \quad (3. 33)$$

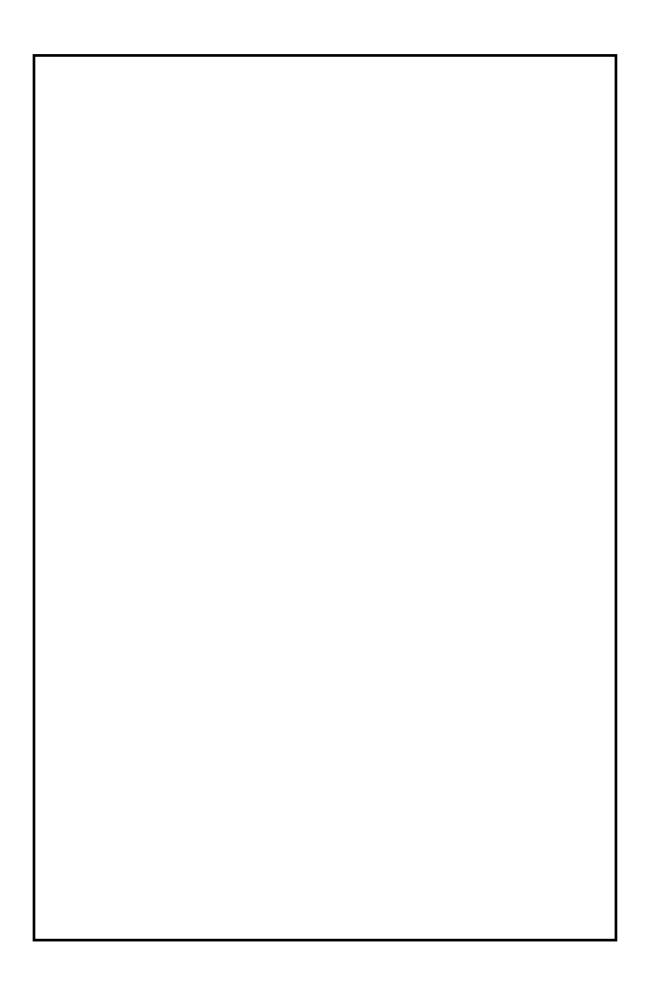

mbi:区間iの翼の質量(kg)

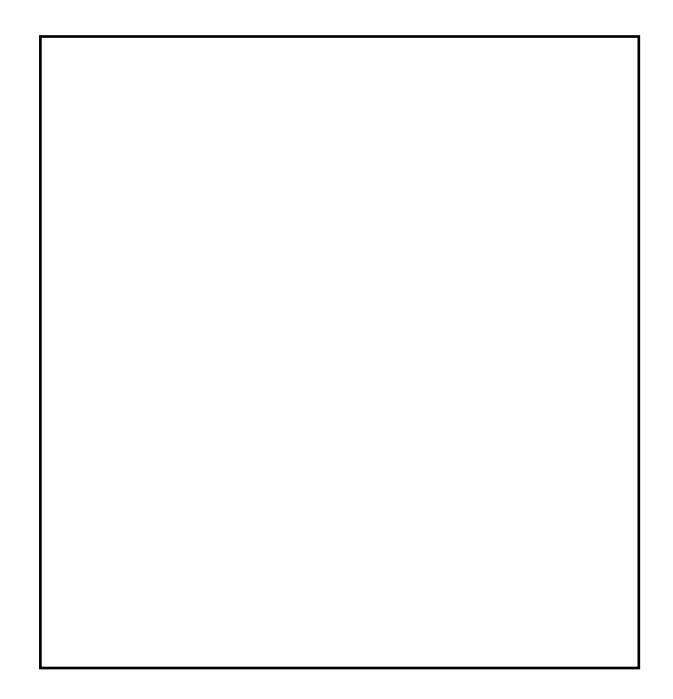

rbi:区間iの翼の重心半径(m)

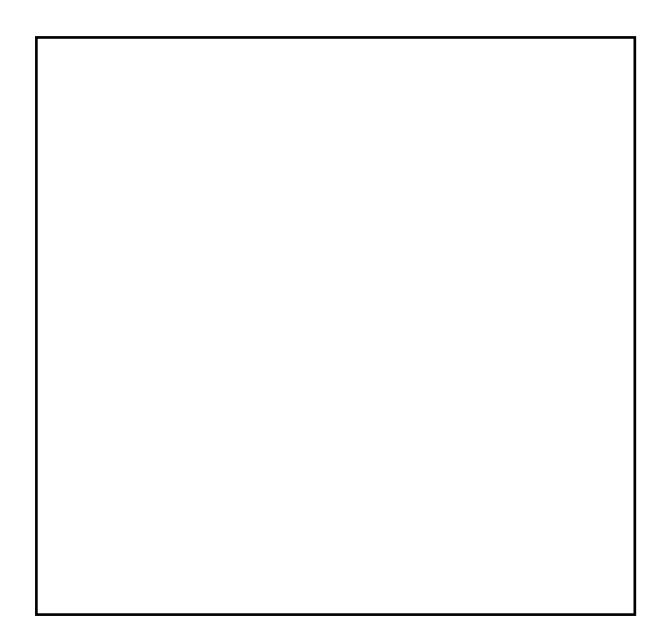

ω : 角速度(1/s)

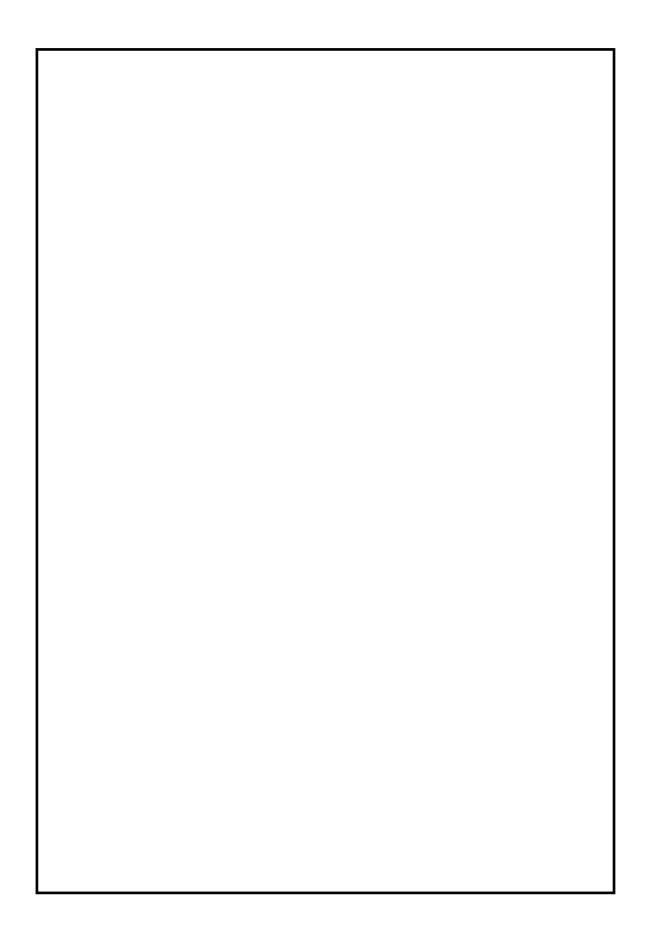

$$\omega = \frac{2 \cdot \pi \cdot N}{60} \qquad (3. 34)$$

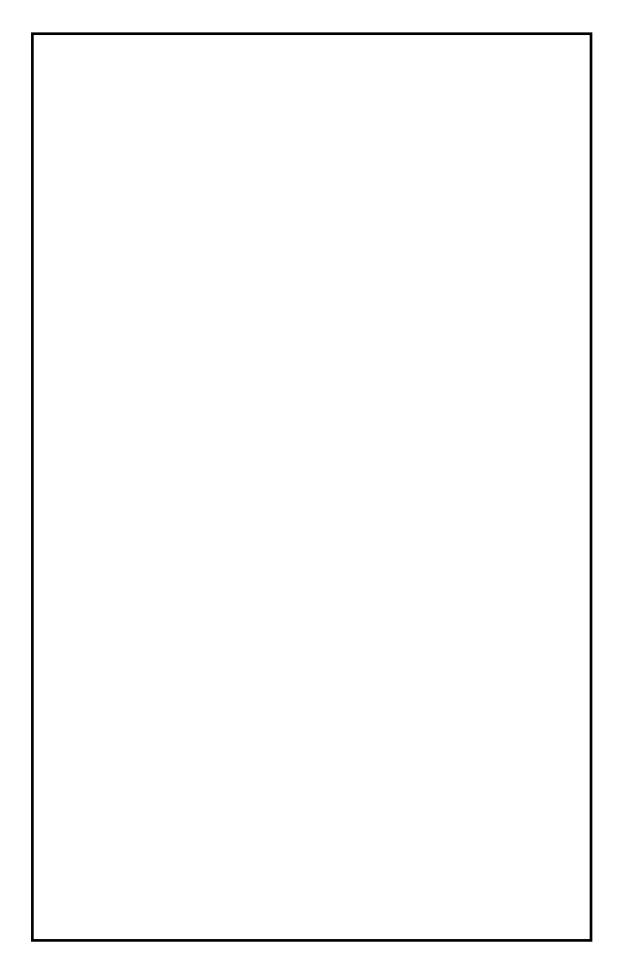

N:回転速度(rpm)











3.1.4 車軸強度

車軸について、設計最大出力運転時及び短絡時の軸捩り強度評価及びカップリング強度 評価を行う。蒸気条件は定格蒸気流量の103%相当とする。

(1) 軸捩り強度

a. 軸捩り応力の計算式

以下に示す計算式により, 捩り応力を算出する。

$$\tau to = \frac{16 \cdot D}{\pi \cdot (D^4 - d^4)} \times \frac{60 \cdot T}{2 \cdot \pi \cdot N} \times 10^6 \qquad (3. 97)$$

τ to : 捩り応力(MPa)
T : 伝達動力(kW)
N : 回転速度(rpm)
D : 軸外径(mm)

d : 軸内径(mm)

〔出典〕便覧α3編 第3章 軸

b.	評価

(2) カップリング強度

a. カップリングボルトのせん断応力の計算式 以下に示す計算式により、せん断応力を計算する。

$$\tau = \frac{F_S}{A_S} \qquad \cdots \qquad (3. 100)$$

τS: せん断応力(MPa)

Fs : ボルトにかかる全せん断力(N)

$$Fs = \frac{60 \cdot T}{\pi \cdot D \cdot N} \times 10^6 \quad \dots \qquad (3. 101)$$

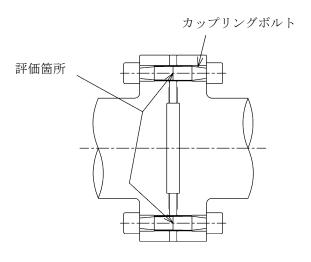
T : 伝達動力(kW)

D : ボルト中心直径(mm)

N : 回転速度(rpm)

As : 全ボルト断面積 (mm²)

$$As = Ns \times \frac{\pi}{4} \times (do^2 - di^2) \qquad \cdots \qquad (3. 102)$$

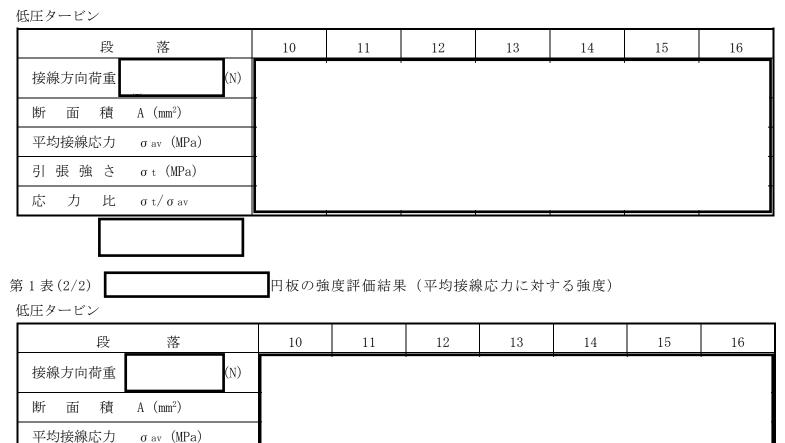

Ns : ボルト本数

do : ボルト外径(mm)

di : ボルト内径(mm)

b. 評価

第7図に示すカップリングの評価箇所において,以下に示す評価式を満足することを 確認する。


第7図 カップリングの評価箇所

4. 強度評価結果

円板の強度評価結果を第1表及び第2表に、隔板及び噴口の強度評価結果を第3表に、翼の強度評価結果を第4表から第12表に、車軸の強度評価結果を第13表及び第14表に示す。なお、円板、翼についてはA、B、Cともに同じ形状をしており評価結果に差はないため、区別をしていない。隔板及び噴口の評価については、最も厳しい評価結果となった低圧タービンCの発電機側の評価結果を代表として記載している。

表に示す通り,蒸気タービンの各部材は十分な強度を有している。

第1表(1/2) 定格回転速度における円板の強度評価結果(平均接線応力に対する強度)

σt (MPa)

引張強さ

応 力 比 σt/σav

第2表(1/4) 定格回転速度における円板の強度評価結果(翼溝部の強度) 低圧タービン

段	落	10	11	12	13	14	15
翼溝部に作用する遠	ī心力 Fc (N)			•		•	•
翼溝部に作用する曲	Hげ力 Fhn,Ffn (N)						
翼溝部の断面積	$A_{\rm g}$ (mm^2)						
翼フック数または翼	スティーク数 nh,nf						
遠心応力	σc (MPa)						
合成応力	σcd (MPa)						
引張強さ	σt (MPa)						
応 力 比	σt/σcd						

第2表(2/4) 円板の強度評価結果 (翼溝部の強度) 低圧タービン 段 落 12 13 15 10 11 14 16 翼溝部に作用する遠心力 Fc (N) 翼溝部に作用する曲げ力 Fhn, Ffn (N) 翼溝部の断面積 $A_g \text{ (mm}^2)$ 翼フック数または翼フォーク数 nh, nf 遠心応力 σc (MPa) 合成応力 σcd (MPa) 引張強さ σt (MPa) 応力比 σ t/ σ cd

段落		10	11	12	13	14
翼溝フック部に作用する遠心力	Fc (N)					
翼溝フック部に作用する曲げ力	Fh (N)					
翼溝フック部の断面積*1	$A_{\rm g}$ (mm^2)					
翼フック数	nh					
せん断応力*1	τc (MPa)					
合成応力*1	τ cd (MPa)					
せん断方向の引張強さ*2	τt (MPa)					
応力比*1	τ t/ τ cd			 	.	

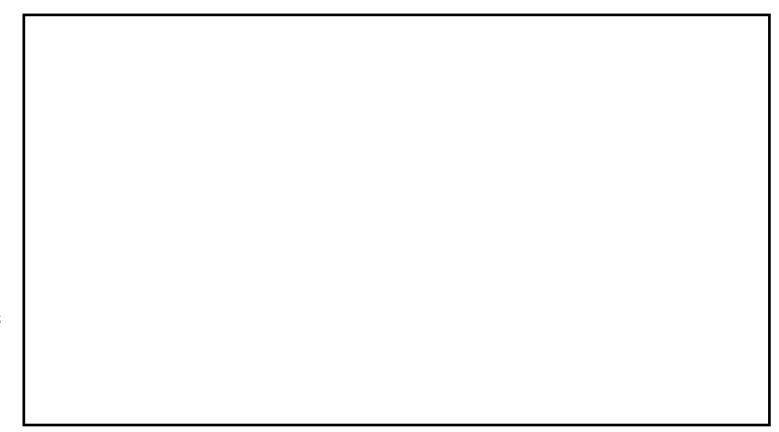
注記*1

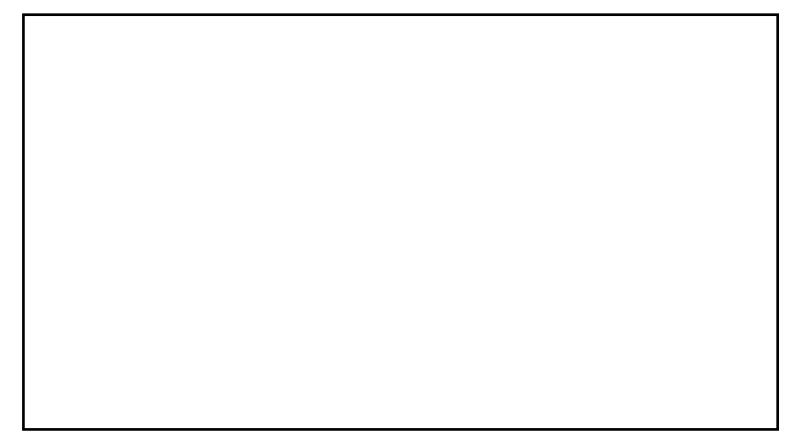
*2 : せん断方向の引張強さ=引張強さ $/\sqrt{3}$

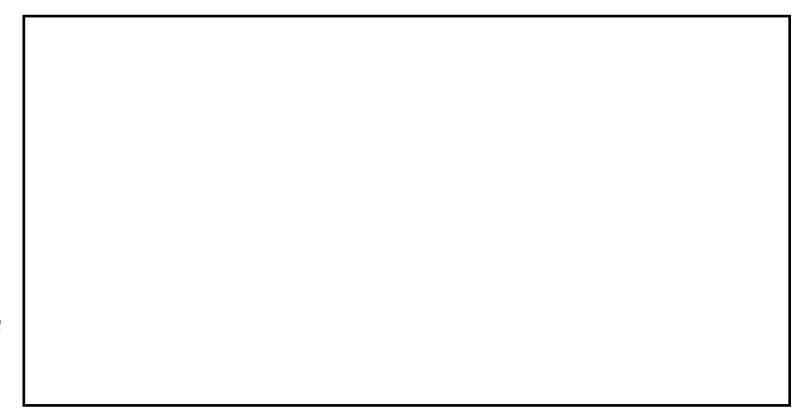
第3表 隔板及び噴口の強度評価結果

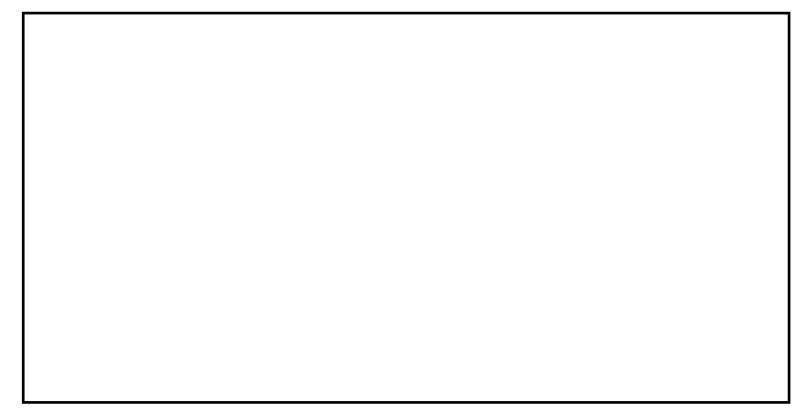
低圧タービン
(最も厳しい評価結果となった低圧タービンCの発電機側の評価結果を代表として記載する)

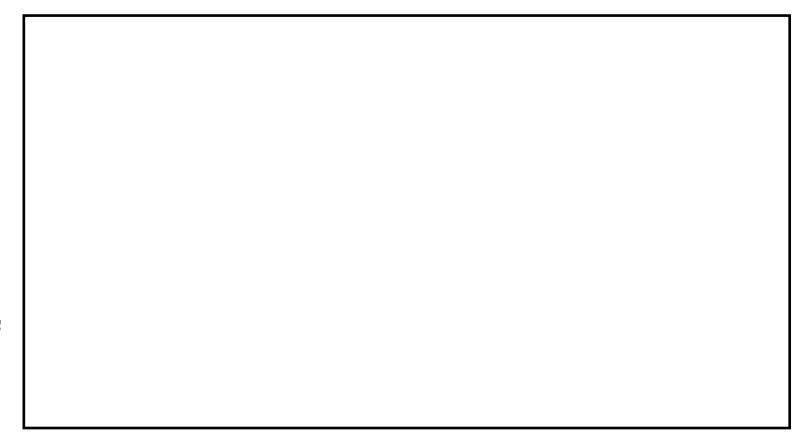
段落	10	11	12	13	14	15	16
最大応力部位	外輪部	外輪部	外輪部	外輪部	外輪部	内輪部	内輪部
				•			
噴口の断面係数* (軸方向) Zn (mm³)							
噴口の断面係数* (周方向) Zn (mm³)							
曲 げ 応 力 σb (MPa) (軸方向と周方向の合成応力)							
引張強さ σt (MPa)							
応力比 σt/σb							

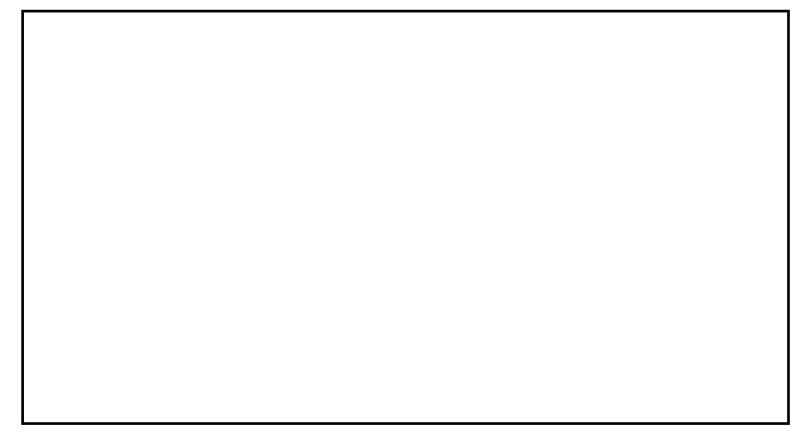

注記*	
	1

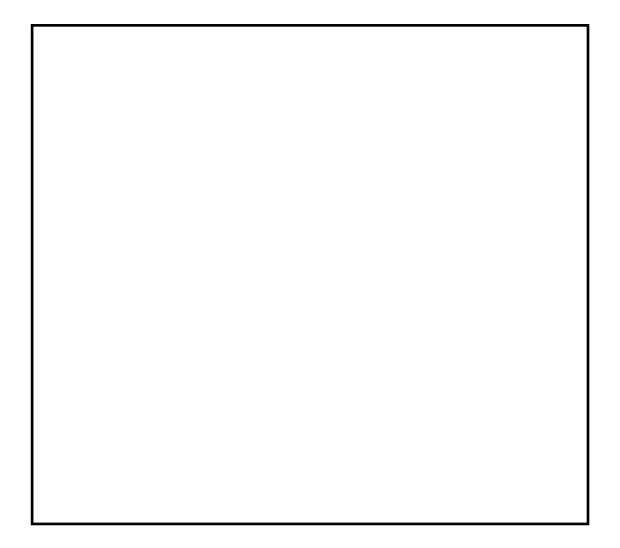

第4表(1/2) 定格回転速度における翼の強度評価結果(翼根元の強度) 低圧タービン

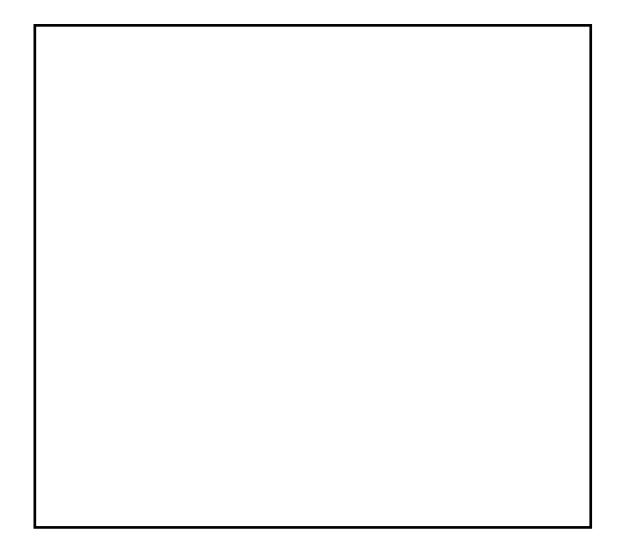

段落	10	11	12	13	14	15	16
翼根元に作用する遠心力 Fv (N)			•				
φ B部の断面積 Ab(mm²)							
遠 心 応 力 σ c (MPa)							
翼有効長さ Bh(mm)							
断面係数 (軸方向)	•						
Zb (mm ³)							
blor br W. (El lack)							
断 面 係 数 (周方向) Zb (mm³)							
合成応力 σcb (MPa)							
引 張 強 さ σt (MPa)							ļ
応力比 σt/σcb							

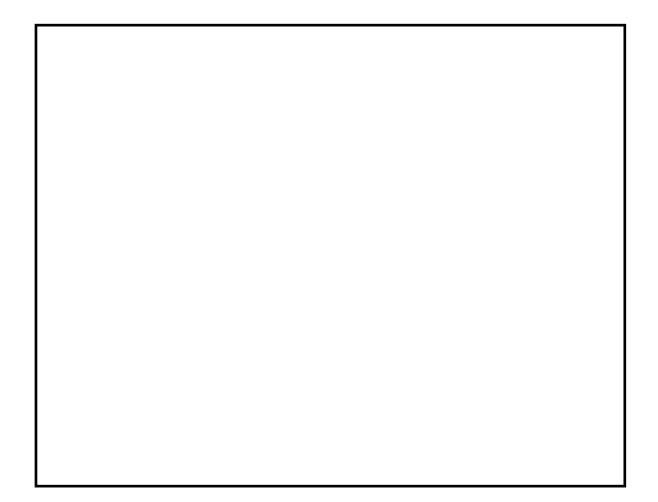

翼の強度評価結果 (翼根元の強度) 第 4 表 (2/2) 低圧タービン 段 落 10 11 12 13 14 15 16 翼根元に作用する遠心力 Fv (N) φ B部の断面積 Ab (mm²) 遠心応力 σc (MPa) 翼有効長さ Bh (mm) 断面係数 (軸方向) Z_b (mm³) 断面係数 (周方向) Z_b (mm³) 合成応力 σcb (MPa) 引張強さ σt (MPa) 応 力 比 σ t/ σ cb

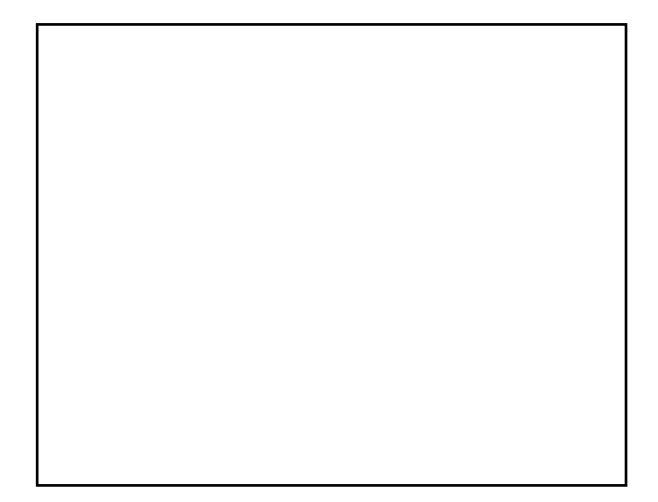

段 落		10	11	12	13	
翼フック部に作用する遠心力	*1 Fb (N)					
翼フック部の断面積*1	Ah (mm ²)					
翼フック数	nh					
せん断応力*1	τh (MPa)					
合成応力*1	τhe (MPa)					
せん断方向の引張強さ*2	τt (MPa)					
 応力比* ¹	au t/ $ au$ he					



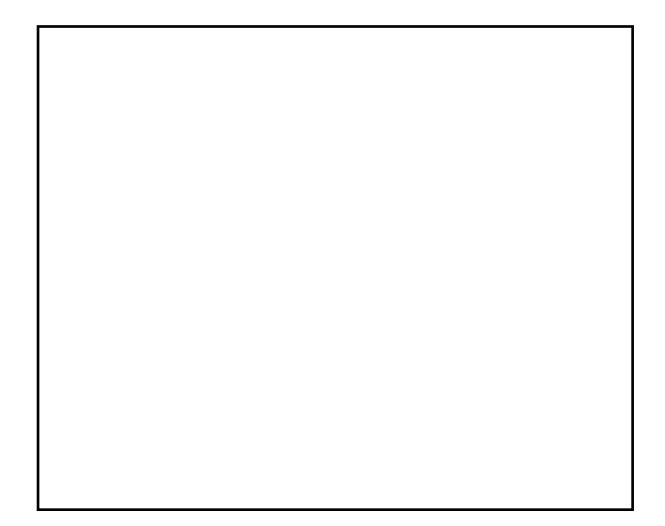












第13表(1/2) 設計最大出力運転時における車軸の強度評価結果(軸捩り強度)

		高圧~低圧A間 低圧A~低圧B間		低圧B~低圧C間		低圧C~発電機間	
部	位	第3軸受	第4軸受	第5軸受	第6軸受	第7軸受	第8軸受
伝達動力	T (kW)						
回転速度	N (rpm)	1500	1500	1500	1500	1500	1500
軸外径	D (mm)						
軸内径	d (mm)						
捩り応力	τ to (MPa)						
せん断方向の引張強	さ* τ t (MPa)						
応 力 比	τ t/ τ to		<u> </u>	.			

注記*:せん断方向の引張強さ=引張強さ $/\sqrt{3}$

第13表(2/2) 短絡時における車軸の強度評価結果(軸捩り強度)

l= 11			間 低圧A~低圧B間		低圧B~低圧C間		低圧C~発電機間
部	T.	第3軸受	第4軸受	第5軸受	第6軸受	第7軸受	第8軸受
伝達動力	T (kW)						
回転速度	N (rpm)						
軸外径	D (mm)						
軸内径	d (mm)						
捩 り 応 力	τ to (MPa)						
せん断方向の引張強さ*	τt (MPa)						
応 力 比	τ t/ τ to		ı		ı		_

注記*: せん断方向の引張強さ=引張強さ $/\sqrt{3}$

第14表(1/2) 設計最大出力運転時における車軸の強度評価結果(カップリングボルトの強度)

部	位	低圧A~低圧B間	低圧B~低圧C間	低圧C~発電機間
伝達動力	T (kW)			
回転速度	N (rpm)			
ボルト本数	Ns			
ボルト外径	do (mm)			
ボルト内径	di (mm)			
ボルト中心直径	D (mm)			
せん断応力	τs (MPa)			
せん断方向の引張強	覚さ*τt (MPa)			
応 力 比	τ t/ τ S			

注記*:せん断方向の引張強さ=引張強さ/√3

第14表(2/2) 短絡時における車軸の強度評価結果(カップリングボルトの強度)

部位		低圧A~低圧B間	低圧B~低圧C間	低圧C~発電機間
伝達動力	T (kW)		•	
回転速度	N (rpm)			
ボルト本数	Ns			
ボルト外径	d_{0} (mm)			
ボルト内径	di (mm)			
ボルト中心直径	D (mm)			
せん断応力	τs (MPa)			
せん断方向の引張強さ*	τt (MPa)			
応 力 比	τ t/ τ S			

注記*: せん断方向の引張強さ=引張強さ $/\sqrt{3}$

VI-6 蒸気タービンの基礎に関する説明書

1.	概要	1
2.	使用材料及び許容応力度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
3.	柱・はり部の構造評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
3. 1	1 荷重の種類及びその組合せ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
3. 2	2 T/G架台応力の算定方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
3. 3	3 T/G架台の断面検定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
4.	基礎スラブ部の構造評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19

1. 概要

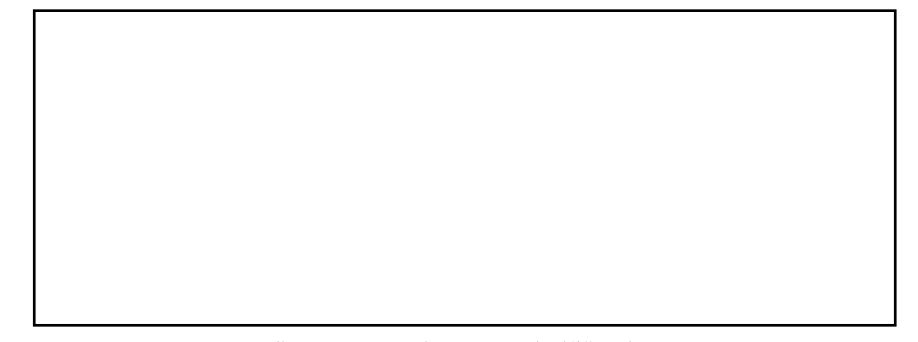
本資料は「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準規則」という。)第5条及びその「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」に基づいて、蒸気タービンの基礎が、設計用地震力に対してその安全性が損なわれるおそれがないことを示すものである。

蒸気タービンの基礎とは、タービン建屋のほぼ中央に位置するタービン発電機を支える剛性の極めて大きなはり、柱及び壁によって構成される鉄筋コンクリート造の壁付ラーメン架構(以下、T/G架台という)及びそれを支持する基礎スラブをいう。

蒸気タービン取替に伴う機器重量変化後の蒸気タービンの基礎の検討として、T/G 架台及び基礎スラブの構造健全性について検討し評価を行っている。

検討方法及び評価は、建設時第1回工事計画認可申請書(3 資庁第6675 号平成3年8月23日認可)添付書類「W-1-6蒸気タービンの基礎に関する説明書」の設計荷重条件と今回変更となる機器重量条件を考慮し、柱、はりが現状の鉄筋量で問題のないことを確認している。

基礎スラブについては作用する荷重の建設時との比較によって現状の配筋で問題のない事を確認した。接地圧は許容地耐力以下であることを確認している。


また、地震荷重については、令和2年10月14日付け原規規発第2010147号にて認可された柏崎刈羽原子力発電所第7号機の設計及び工事の計画の「V-2-1-9 機能維持の基本方針」に準拠し、建築基準法に示される震度をもとにした水平震度に基づき震度法により算出している。

なお,算定は「鉄筋コンクリート構造計算規準・同解説 一許容応力度設計法— (1999)」(日本建築学会)及び「原子力施設鉄筋コンクリート構造計算規準・同解説 (2005)」(日本建築学会)による。

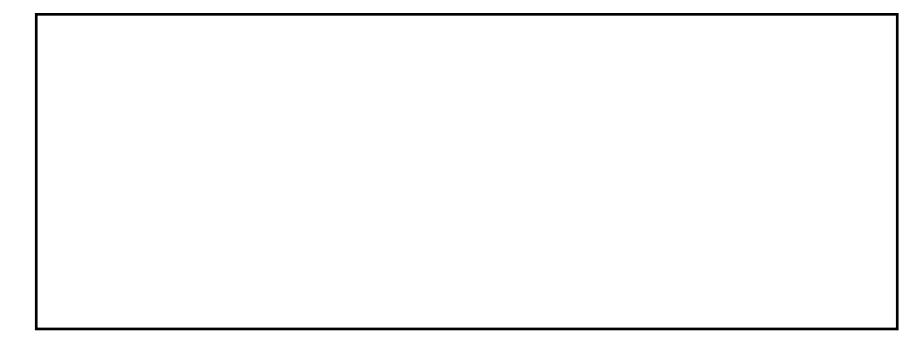
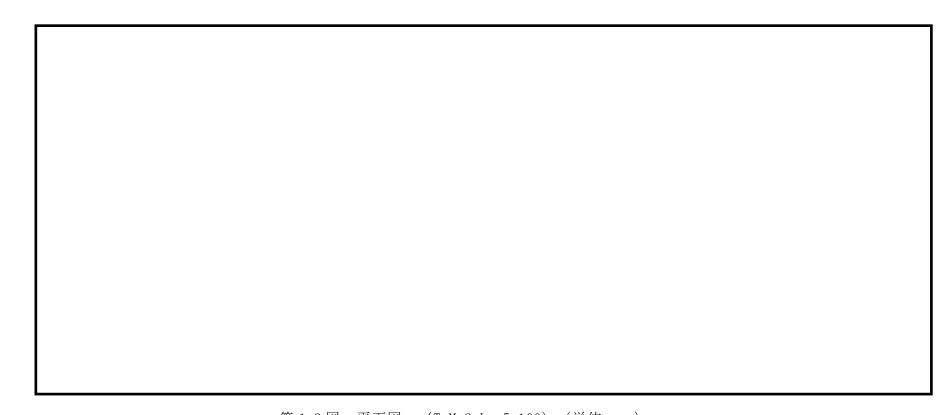
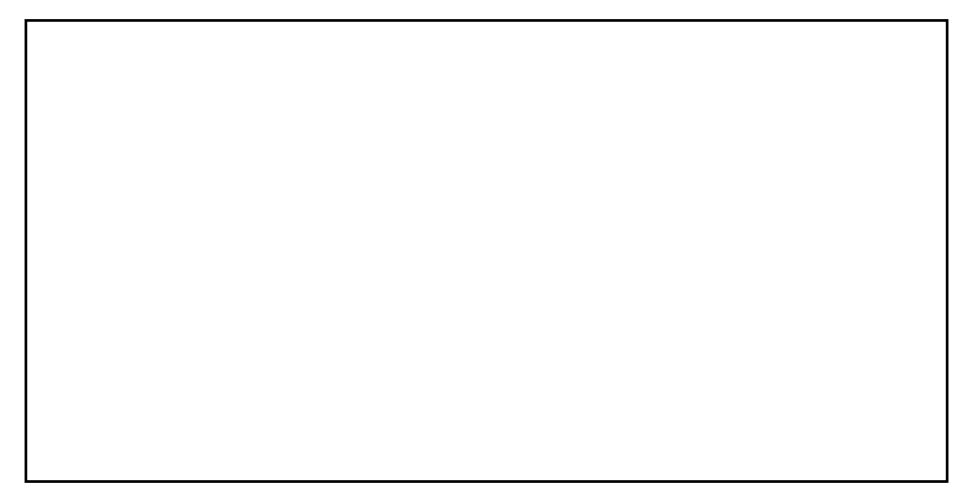

蒸気タービンの基礎の概要を表 1-1 に、蒸気タービンの基礎の状況を明示した図を第 $1-1\sim1-5$ 図に示す。

表 1-1 蒸気タービンの基礎の概要

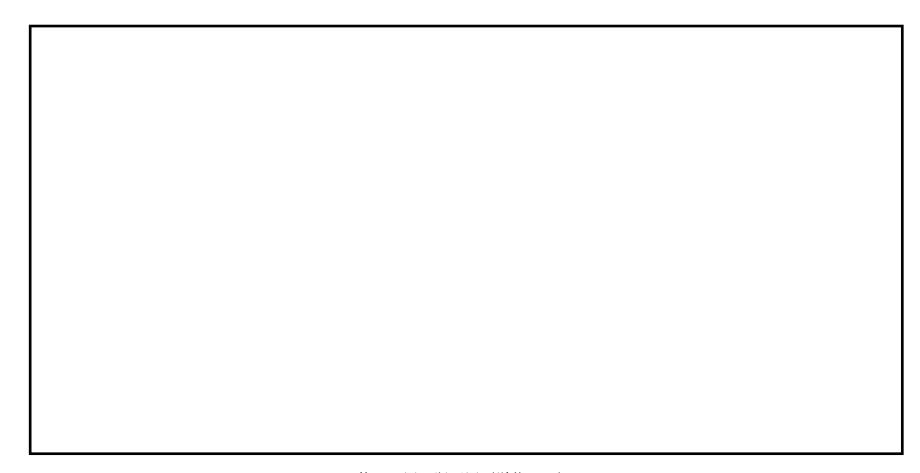
	概 要
T/G架台・ 基礎スラブの 構造及び主要 寸法	・構造 架台・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	・基礎スラブ 厚さ · · · · · · · · · · · · · · · · · · ·
重量	・T/G架台重量・・・・・・・・・・T/G架台上機器重量・・・・・・・



第 1-1 図 平面図 (T.M.S.L 20,400) (単位:mm)



第 1-2 図 平面図 (T.M.S.L 12,300) (単位:mm)


Ф

第 1-3 図 平面図 (T.M.S.L -5,100) (単位:mm)

第 1-4 図 断面図 (X2 通り) (単位:mm)

第 1-5 図 断面図 (単位:mm)

2. 使用材料及び許容応力度

T/G架台に使用したコンクリートの設計基準強度は 32.3MPa, 基礎スラブに使用したコンクリートの設計基準強度は 29.4MPa, 鉄筋は, いずれもJIS G 3 1 1 2 に規定される異形棒鋼で, T/G架台及び基礎スラブの主筋に使用したのはSD345 である。コンクリート, 鉄筋の許容応力度を表 2-1 及び表 2-2 に示す。

表 2-1 コンクリートの許容応力度

(単位:MPa)

	長期			短期		
	圧縮	引張り	せん断	圧縮	引張り	せん断
T/G架台	10.7		0.81	21.4	-	1. 21
普通コンクリート	10. 7					
基礎スラブ	9.80	_	0.78	19.6	_	1. 17
普通コンクリート						

表 2-2 鉄筋の許容応力度

(単位:MPa)

	長	期	短期		
	引張り及び圧縮	せん断補強	引張り及び圧縮	せん断補強	
S D 345	215 195*	195	345	345	

注記*: D29以上

なお、地盤の長期許容地耐力は $220t/m^2$ 、短期許容地耐力は $420t/m^2$ であり、これをそれぞれ SI 単位換算し、長期 $2,157kN/m^2$ 、短期 $4,118kN/m^2$ とする。

3. 柱・はり部の構造評価

以下の荷重条件で、構造健全性が確保されていることを以下のとおり確認している。

3.1 荷重の種類及びその組合せ

3.1.1 荷重の種類

設計として考慮する荷重の種類及びその概要を表 3.1-1 に示す。

表 3.1-1 荷重の種類

	D p	: T/G架台自重
自重	W_{M}	:機器自重
(D)	D_1	: 遮蔽板自重
	Р	: 配管荷重
	V	: 復水器真空荷重
定格回転時荷重	T t	: タービントルク荷重
(O)	Т g	: 発電機トルク荷重
	M_{e}	: 熱膨張反力
	G s c	: 発電機短絡荷重
非常回転時荷重	R	: ロータ偏心荷重
(E)	L	: 最終段羽根飛散時荷重
	Вт	: 弁トリップ荷重
地震荷重	S	. Dカニュ田原書出去
(S)	SH	: Bクラス用地震荷重
		·

3.1.2 地震荷重の算定

地震荷重については、令和 2 年 10 月 14 日付け原規規発第 2010147 号にて認可された柏崎刈羽原子力発電所第 7 号機の設計及び工事の計画の「V-2-1-9 機能維持の基本方針」に準拠し、層せん断力係数に基づき算出する。

a. 建築, 構築物 (架台)

Bクラス:層せん断力係数 1.5C₁

b. 機器,配管系(機器)

B クラス:層せん断力係数 1.8C₁

ここに、 C_I* は、建設時の層せん断力係数とする。

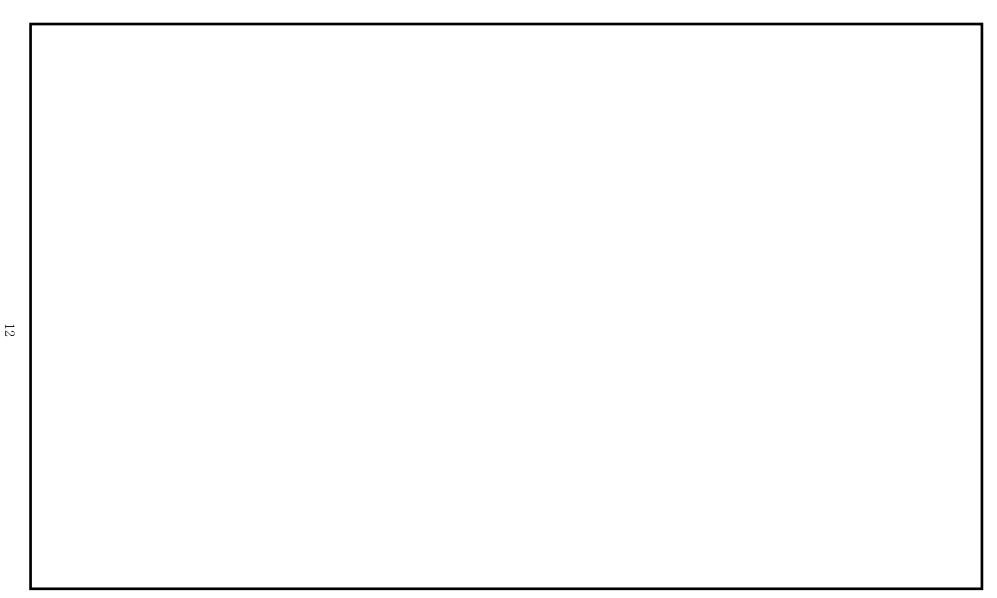
注記*: 層せん断力係数を算出する際の C_I は,標準せん断力係数を 0.2 とし,建物・構築物の振動特性,地盤の種類等を考慮して求められる値とする。

3.1.3 荷重の組合せ

荷重の組合せを表 3.1-2 に示す。

表 3.1-2 荷重の組合せ

荷重 ケース	基本の組合せ	許容限界
1	D + O	長期許容応力度
2	DIOIEIS	短期 新宏庆五座
3	D+O+E+S	短期許容応力度


D: 自重 (D_p, W_M, D_1, P)

O:定格回転時荷重(V, T_t, T_g, M_e)

E:非常回転時荷重 (G_{SC}, R, L, B_T)

S:地震荷重 (S_H)

なお、機器荷重条件を第3.1-1図に示す。

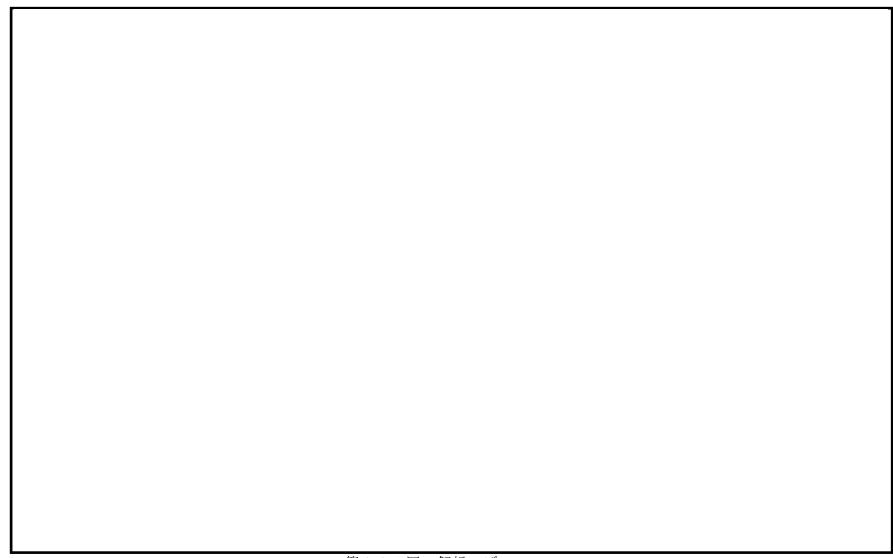
第3.1-1図 タービン発電機基礎 機器荷重分布図

3	2	Т	/G	架台	点点	$\mathcal{H}_{\mathcal{I}}$) 質	定	方	斜
υ.	4	т,	/ U	\sim L	コルル	/J V	ノ ガト	AL.	//	<u>w</u> 1

なお,評価に

用いる解析コードの検証及び妥当性確認等の概要については,別紙「計算機プログラム (解析コード)の概要」に示す。

解析に用いる材料の物性値は次のとおりである。


コンクリートのヤング係数 $E = 2.50 \times 10^4 \text{ MPa}$

コンクリートのせん断弾性係数 $G=1.04\times10^4$ MPa

コンクリートのポアソン比 0.2

鉄筋コンクリートの単位体積重量 $\gamma = 23.54 \text{ kN/m}^3$ (2.4t/m³を SI 単位換算)

応力解析モデルを第3.2-1図に示す。

第 3.2-1 図 解析モデル

3.3 T/G架台の断面検定結果

各部材の断面算定は機器荷重変更後の荷重の組合せのうち最も不利な応力について行う。

(1) はり

長方形ばりとして断面算定を行う。

(2) 柱

長方形柱として断面算定を行い、コンクリートの全断面積に対する主筋全断面積の割合は、0.8%以上とする。

例としてY4 通りの一層目及び二層目の柱断面(${}_{1}CX_{1}Y_{4}$, ${}_{2}CX_{1}Y_{4}$) 算定結果を表 3.3-1 及び表 3.3-2 に示す。同様に一層目及び二層目のは り断面(${}_{1}GY_{4}$, ${}_{2}GY_{4}$)算定結果を表 3.3-3 に示す。

各表中で使用する記号は下記の通りである。

b : 材の幅

D:材のせい

d:曲げ材の圧縮縁から引張鉄筋重心までの距離(有効せい)

j : 曲げ材の応力中心距離 (7 d/8)

N : 軸力

M : 曲げモーメント

Q : せん断力

N_D : 設計用軸力

M_D : 設計用曲げモーメント

Q_D : 設計用せん断力

P : 長方形ばり,長方形柱の引張鉄筋比

a t : 引張鉄筋の断面積

f_s:コンクリートの許容せん断応力度

α : はり又は柱のせん断スパン比M/Qdによる割増し係数

f : 鉄筋の許容引張応力度

p w : あばら筋比又は帯筋比

表 3.3-1 柱の断面検定結果(部材:₁C X₁ Y₄)

	柱	記号	9. 3 1 年 (マク西		$\frac{1 \operatorname{C} X_1}{\operatorname{C} X_1} \operatorname{Y}_4$	
	位	置	柱	頭		柱 脚
	方	向	X	Y	X	Y
Ner.	b×D	(mm)				
断面形	j	(mm)				
形	b D	$(\times 10^6 \text{mm}^2)$				
	b D ²	$(\times 10^{10} \text{mm}^3)$				
長	N	$(\times 10^3 \text{N})$				
長期荷重時	M	$(\times 10^6 \mathrm{N} \cdot \mathrm{mm})$				
時	Q	$(\times 10^3 \text{N})$				
短脚	N	$(\times 10^3 \text{N})$				
短期荷重時	М	$(\times 10^6 \mathrm{N} \cdot \mathrm{mm})$				
時	Q	$(\times 10^3 N)$				
	長 N _D	$(\times 10^3 \text{N})$				
設	$M_{\rm D}$	$(\times 10^6 \mathrm{N} \cdot \mathrm{mm})$				
設計応力	791 Q _D	$(\times 10^3 \text{N})$				
心力	短 N _D	$(\times 10^3 \text{N})$				
	加 _D	(×10 ⁶ N • mm)				
	$Q_{\rm D}$	$(\times 10^3 \text{N})$				
長	N_D/bI					
期	$M_{\rm D}/$ b I $P_{\rm t}$	O ² (MPa) (%)				
	N_D/bI					
短	$M_{\rm D}/b$ I					
期	P _t	(%)				
	a _t	(mm ²)				
,;;;;	71.75	長側鉄筋				
筋	設断面					
	C 1	o j (×10 ³ N)				
検	せん断力の 帯 W	(%)	•			
討	力帯	筋				
	帯筋	比 (%)	•			
	•					<u> </u>

表 3.3-2 柱の断面検定結果(部材:₂C X₁ Y₄)

柱 記 号			号		<u>ш</u>	₂ C X ₁ Y ₄	1 14/	
	1	位	置	柱	頭		柱	脚
	-	方	向	X	7	7	X	Y
Ner:	b	\times D	(mm)					
断面形	j		(mm)					-
形	b	D	$(\times 10^6 \mathrm{mm}^2)$					
	b	D ²	$(\times 10^{10} \mathrm{mm}^3)$					
長#	N		$(\times 10^3 \text{N})$					
長期荷重時	M	()	≺10 ⁶ N • mm)					
時	Q		$(\times 10^3 \text{N})$					
短脚	N		$(\times 10^3 \text{N})$					
短期荷重時	M	()	$\times 10^6 \mathrm{N} \cdot \mathrm{mm}$					-
時	Q	T	$(\times 10^3 \text{N})$					-
	長	N _D	$(\times 10^3 \text{N})$					-
訨	期	M_D ()	$< 10^6 \mathrm{N} \cdot \mathrm{mm})$					-
設計応力	791	Q_D	$(\times 10^3 \text{N})$					-
心力	短	N _D	$(\times 10^3 \text{N})$					-
	期	M_D ()	$\leq 10^6 \mathrm{N} \cdot \mathrm{mm})$					-
		Q_D	$(\times 10^3 \text{N})$					-
長		_D /bD	(MPa)					-
期		_D / b D ²	(MPa)					-
791	Р		(%)					-
短		D/bD	(MPa)					-
期		_D / b D ²	(MPa)					-
	Р	t	(%)					-
	a t		(mm ²)					-
配	設 計	引張側:						-
肋	計	断面積	(mm ²)					-
	せ、	f s b j	$(\times 10^3 \text{N})$					
検討	ん断力の	Pw 些 欸	(%)					-
	0	帯筋	(0/)					
		帯筋比	(%)		_			

表 3.3-3 はりの断面検定結果

は り 記 号 2GY 1GY 位 置 X1端 中 央 X2端 X1端 中 央 X2端 5 × D		標		高			20 400		л s т	7 000
位 一	-				1 . 101		20, 400	1.1		1,000
b × D					V 1 提		Vot	V 1 提	ı	Vり性
日本					A1 判	<u> </u>	A 2 単面	A 1 準間	下 大	Λ Δ 坪間
J	断而		<u> </u>		-					
日本	形	u ;			-					
M				(IIIII)	-					
M	長	M	$(\times 10^6$	N·mm)						
M	売 重	Q	(:	$\times 10^3$ N)	-					
長					-					
長	短期	М	$(\times 10^6$	N·mm)	-					
技	何重	Q	($\times 10^3$ N)						
ファイン ファイン		E		上ば	_					
期	⇒几	1 1	$(\times 10^6 \mathrm{N} \cdot \mathrm{mm})$	下ば	_					
期	設計	别	$Q_D(\times 10^3N)$		_					
期	応力	后		上ば	-					
Q _D (×10°N)			$(\times 10^6 \mathrm{N} \cdot \mathrm{mm})$	下ば	_					
期 (mm²) 下ば 短 M _D /f _t j 上ば (mm²) 下ば a t 上ば (mm²) 下ば Lば筋 下ば筋 下ば筋 断 面 積 上ば (mm²) 下ば f s b j (×10³N) Pw (%) 配 あばら筋		朔	$Q_D(\times 10^3N)$		_					
短 M _D /f _t j 上ば (mm²) 下ば a t 上ば (mm²) 下ば 上ば筋 下ば筋 断面積 上ば (mm²) 下ば 「ボボ 「	長			上ば	_					
別	刔		(mm ²)	下ば	_					
A t	短			上ば	_					
(mm²) 下ば 上ば筋 下ば筋 下ば筋 断面積 (mm²) 下ば 「下ば 「下ば 「下ば 「下ば 「下ば 「下ば 「下ば 「下ば 「下ば	别		(mm ²)	下ば	_					
上ば筋 下ば筋 下ば筋 断面積 (mm²) 下ば f s b j (×10³N) せん 断力の Pw (%) 配 あばら筋				上ば	-					
下ば筋 断面積 (mm²) 下ば 「す。b j (×10³N) せん (mm²) (×10³N) 中 (※) 配 あばら筋			(mm ²)	下ば	_					
「mm²) 下ば $f_s b_j$ $(\times 10^3 N)$ α α α $f_s b_j$ $(\times 10^3 N)$ P_w $(%)$ 配 あばら筋			上ば筋		_					
「mm²) 下ば $f_s b_j$ $(\times 10^3 N)$ α α α $f_s b_j$ $(\times 10^3 N)$ P_w $(%)$ 配 あばら筋	設計		下ば筋		_					
「mm²) 下ば $f_s b_j$ $(\times 10^3 N)$ α α α $f_s b_j$ $(\times 10^3 N)$ P_w $(%)$ 配 あばら筋	配 筋			上ば	_					
せん α α $f_s b_j$ α α $f_s b_j$ α			(mm ²)	下ば	_					
α α α f s b j α α α α f s b j α α α α α f s b j α		f s		$\times 10^3$ N)	_					
α f s b j $(\times 10^{3}N)$ P_{w} $(\%)$ ϖ	せん	α			_					
アw (%) 検討	断力	α	$f_s b j$	$\times 10^3 \text{N}$	_					
記	ハの栓	Рν	V	(%)	_					
	討	配	あばら筋		_					
		筋	あばら筋比	(%)						

4. 基礎スラブ部の構造評価

タービン建屋の機器, 土圧等の荷重には変更がなく, タービン建屋から基礎スラブ部 に作用する荷重は, 地震時を含めて建設時の値を超えることはない。

T/G架台の柱脚に作用する取替後応力と建設時応力の比較を表 4-1 に示す。なお、建設時より大きくなる部位については、現状の配筋で問題ないことを確認している。

また、接地圧についても許容地耐力以下の $4,118 \, \mathrm{kN/m^2}$ 以下であることを確認している。

表 4-1 柱脚応力の新旧比較

(a) Y1通り ₁C₁

対象柱脚	Y1通り 1C1					
応力方向	X方向标	X 方向柱脚応力 Y 方向柱脚応力		主脚応力		
応力種別	$_{\text{Max}}N_{\text{x}}(\times 10^3\text{N})$	$_{\text{Max}}\mathbf{M}_{\text{x}}$ ($ imes10^6$ Nmm)	$_{\text{Max}}N_{\text{y}}(\times 10^{3}\text{N})$	$_{\text{Max}}M_{\text{y}}$ ($ imes 10^6 \text{Nmm}$)		
取替後応力						
建設時応力						
応力比 (取替後/建設時)						

(b) Y4通り ₁C₄

対象柱脚	Y 4 通り 1 C 4						
応力方向	X 方向相	主脚応力	Y方向柱脚応力				
応力種別	$_{\text{Max}}N_{\text{x}}(\times 10^{3}\text{N})$	$_{\text{Max}}M_{\text{x}}$ ($ imes10^6$ Nmm)	$_{\text{Max}}N_{\text{y}}(imes 10^3 \text{N})$	$_{ m Max}M_{ m y}$ ($ imes10^6{ m Nmm}$)			
取替後応力							
建設時応力							
応力比 (取替後/建設時)		,					

(c) Y6通り 1C6

対象柱脚	Y 6 通り 1 C 6					
応力方向	X方向标	主脚応力	Y方向标	主脚応力		
応力種別	$_{\text{Max}}$ N $_{\text{x}}$ ($ imes 10^3$ N)	$_{\rm Max}M_{\rm x}$ ($ imes10^6{ m Nmm}$)	$_{\text{Max}}$ N $_{\text{y}}$ ($\times 10^3$ N)	$_{\rm Max}M_{\rm y}$ ($ imes10^6{ m Nmm}$)		
取替後応力						
建設時応力						
応力比 (取替後/建設時)						

VI-9 蒸気タービンの振動管理に関する説明書

目 次

1.	概要1
2.	製造工場における振動に関する管理1
2. 1	車軸の調整方法1
2. 2	2 ロータの調整方法2
3.	発電所における振動に関する管理3
3. 1	据付時の作業管理3
3. 2	定期点検時,試運転時5
3.3	3 運転時7
4.	計測装置
4. 1	横出器8
4. 2	2 記録計
4.3	16 指示計
4. 4	計測装置の使用範囲10
4. 5	5 精度11
5.	警報装置
5. 1	設定値12
5. 2	警報表示
5.3	・ 検出器との関係12
6.	停止装置
7.	安全性等に対する説明14
7. 1	軸受諸元14
7. 2	た 危険速度及び振動モード15
7.3	3 翼の固有振動数16
7.4	翼軸連成ねじり振動17
7. 5	
7.6	
7. 7	/ 流体力による影響17
0	26. / L. 551

1. 概要

本資料は「実用発電用原子炉及びその附属施設の技術基準に関する規則」第31条及びその「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」に基づき、タービンの振動管理が健全であることを説明するものである。

2. 製造工場における振動に関する管理

高速で回転する車軸が振動を発生する要因としては,

機械加工精度

車軸に翼など取付けることによるアンバランスの発生

があり、これらの要因を取り除くため、製造工場において、次のような試験調整を実施する。

2.1 車軸の調整方法

(1) 車軸振れ計測試験

機械加工後の真円性を確認するため、車軸を試験台上にてゆっくり回転させながらダイヤルゲージまたは電気式差動マイクロメータにより振れを計測する。

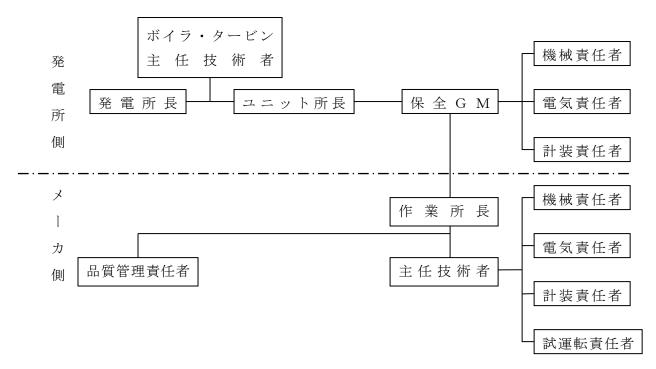
(2) 管理目標値とする。

2.2 ロータの調整方法

(1) 試験の種類及び概要

タービンロータはバランス試験装置により、必要な回転試験を行い、振動振幅、振動位相、回転速度などを測定・解析しバランスウエイトの取付位置及び重量を選定して、振動振幅が管理値以下となるよう調整する。

a.	蒸気タービン			
(i)静的バランス調整			
(ii)動的バランス試験			
(2)	振動管理値			
	危険速度域	(軸振動	,両振幅)	
	定格回転速度域		. 両振幅)	


3. 発電所における振動に関する管理

3.1 据付時の作業管理

(1) 一般方針

製作工場において綿密に設計・製作・検査された部品が、発電所において計画どおりに組立・据付復元されるよう作業体制を完備し、据付要領書、管理表などに基づいて厳重に管理しながら作業を進める。

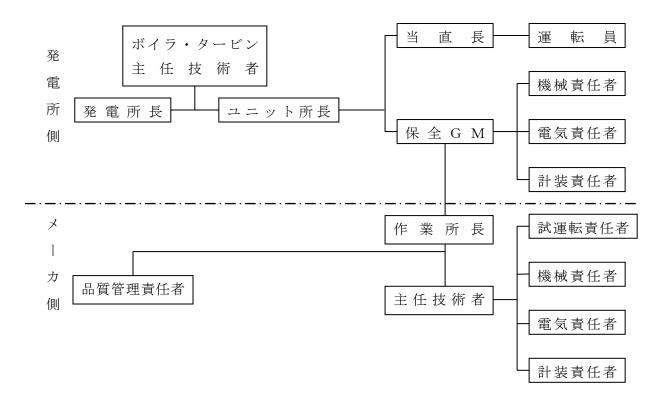
なお、据付中の指揮命令を円滑にするため、体制は次のとおりとする。

(2) 各部の計測及び調整

項目	計 測 及 び 調 整		
	軸受間隙が計画値内にあること及び軸と軸受が均一に接触 していることの確認を行う。		
軸受組立	軸受番号 間隙値(mm)		
アライメント			
回転部と静止部の間隙	回転部と静止部の間隙を計測し計画値内であることの確認 を行う。		

ゆるみ 止め方法

	項目・作業方法				
a. 軸受	をの据付方法				
<u>軸受</u>	を廻りのボルトの種	重類・ゆるみ止め	<u>方法</u>		
軸受番号	第1	第 2	第 3	第 4	第 5
用 途	1				
ボルト サイズ	1				
ッイス ×本数	1				


軸受番号	第 6	第 7	第8	第 9	第 10
用 途					
ボルト					
ボルト サイズ ×本数					
×本数					
ゆるみ 止め方法					
止め方法					

3.2 定期点検時, 試運転時

(1) 一般方針

発電所における試運転の円滑化を図るため、指揮命令系統を整えて所定の人員を配備し、 慎重に検討された試運転・調整方案に基づいて試運転を進め、重大事故の発生することのな いよう十分な配慮をする。

試運転体制は次のとおりとする。

(2) 振動調整方法

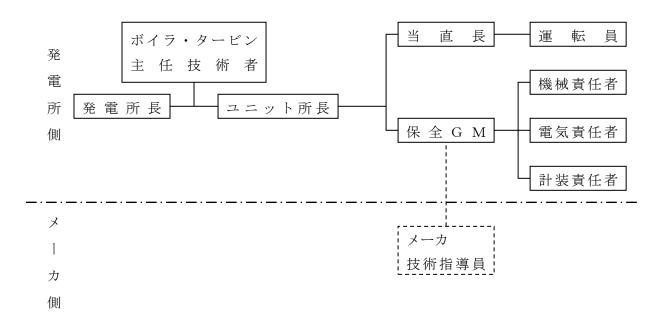
a. 試験の種類及びその概要

h	. 振動管理目標値	
υ.	・派動自座日保恒 上記バランスの調整は,振動振幅が次の	計画値を選足することを日標に行う
		(軸振動,両振幅)
		軸振動,両振幅)
		(軸振動,両振幅)
	注記*1:回転周波数とタービンローク	
	*2:通常運転時の速度域	
	*3 : 定格回転速度を超えて, オー	-バースピードする場合の速度域
(3)	異常時の対策	

(4) 据付管理

組立時には、軸振動に関係する次の項目について計測及び調整を行う。

項目		計	測	及	び	調	整		
軸受組立									
アライメント									
回転部と静止部の間隙									


3.3 運転時

(1) 一般方針

運転時は、振動に関係ある各種計測装置に基づいて振動管理を行う。

各種計測装置は定期的に点検調整を行うと同時に,必要に応じて携帯用振動計と併用して 管理を行う。

運転時の振動管理体制は次のとおりとする。

(2) 振動調整方法

3.2(2)「振動調整方法」に準じて行う。

(3) 異常時の対策

3.2(3)「異常時の対策」と同様に行う。

4. 計測装置

4.1 検出器

各検出器の形式、検出箇所、検出方向及び取付方法を下表に示す。

種類	形式	検出箇所	検出方向	取付方法	備考
振動振幅		•	•		
振動 位相角					
偏心					
回転速度					
出力					

4.2 記録計

各記録計の形式、走査数、走査周期、目盛幅、記録範囲及び設置場所を下表に示す。

種類	形式	走查数	走査 周期	最小目盛	記録範囲	設置場所	備考
偏心							
回転速度							
蒸気加減弁開度							
タービン バイパス弁 開 度							
振動振幅							
出力							

4.3 指示計

各指示計の形式、個数、最小目盛、測定範囲及び設置場所を下表に示す。

種類	形式	個数	最小目盛	測定範囲	設置場所
振動位相角					
回転速度					
出力計					

4.4 計測装置の使用範囲

各計測装置の使用範囲及び使用区分を下表に示す。

種類	使用範囲	使用区分	備考
振動計測装置			
偏心計測装置			
回転速度計測装置			
蒸気加減弁開度			
タービンバイパス弁 開 度			

4.5 精度

各計器の精度を下表に示す。

	計器	精度	
	振 動 計		
	偏 心 計		
	位相角計		
	回転速度計		
ſ			
ı			

5. 警報装置

5.1 設定値

各軸受における軸振動振幅の警報値を下表に示す。

		(単位:両振幅m
種類	検出個所	
軸振動振幅		

5.2 警報表示

タービン振動による警報の内容を下表に示す。

種類	内容	表示装置	動作時間	設置場所
注意値警報				
停止値警報				

5.3	検出器との関係

6. 停止装置

自動及び手動停止の内容を下表に示す。

種類	形式	使用範囲	設置場所
自動停止			
手動停止			

7. 安全性等に対する説明

7.1 軸受諸元

軸受の諸元を下表に、また軸受の構造を第5-1図~第5-3図に示す。

軸受	軸受	軸受	軸受	軸受	軸受	軸受	軸受力	軸受寸法 mm		軸受油圧	油膜 厚さ	軸受油	温度℃	軸との
番号	型式	直径	幅	面圧 MPa	ирд. MPa*	序 ^C	入口	出口	偏心率					
1														
2														
3														
4														
5														
6														
7														
8														
9														
10														

注記*:油圧はタービン前部軸受台のタービン軸芯位置における標準値を示す。

	7.	2	危険速度及び振動モー	F.
--	----	---	------------	----

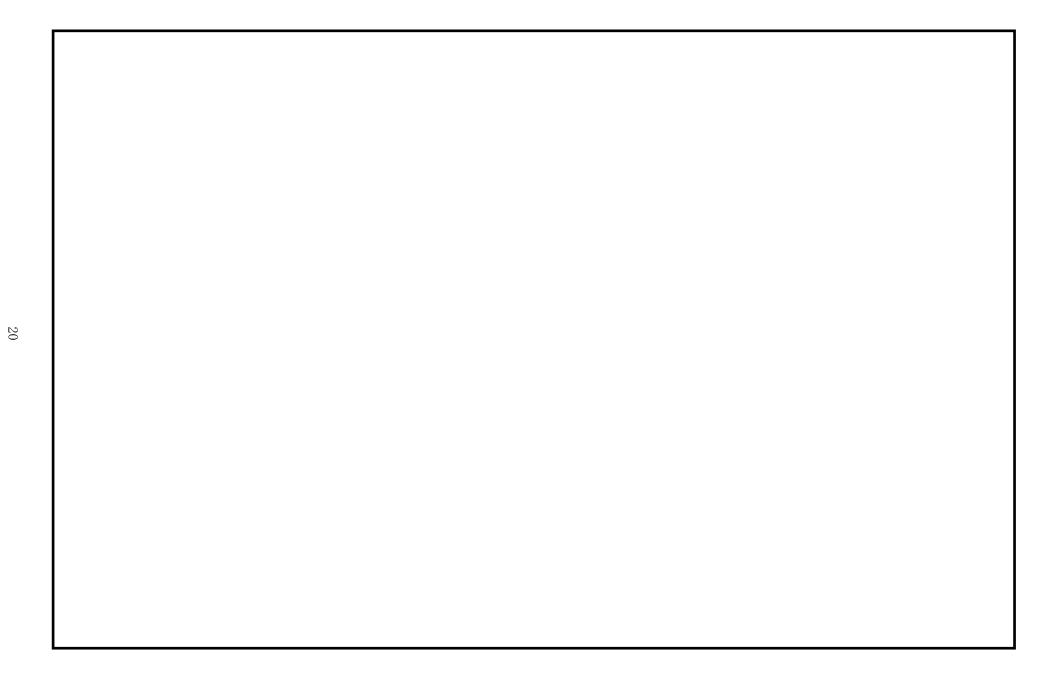
(1) 危険速度

タービン及び発電機を結合し	た場合の危険速度は次の通りである。
---------------	-------------------

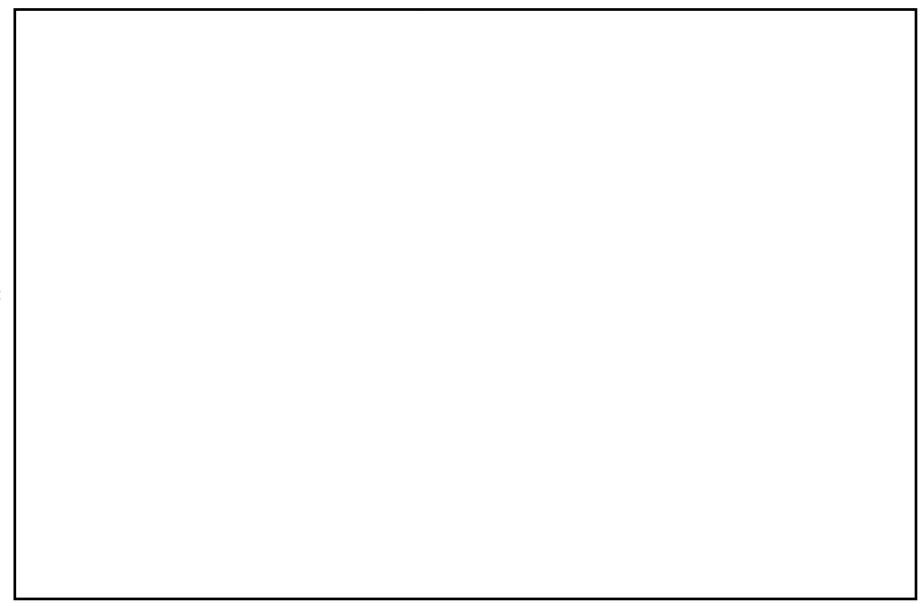
各モードの危険速度は、通常使用範囲(1455~1515 rpm)から非常調速装置が作動したときに達する回転速度 までの間とならないよう、車軸径を変更することにより剛性を変えることで、危険速度の離調を図る設計としている。なお、定格負荷を遮断した場合に達する回転速度は、非常調速装置が作動する回転速度(1665 rpm)未満である。

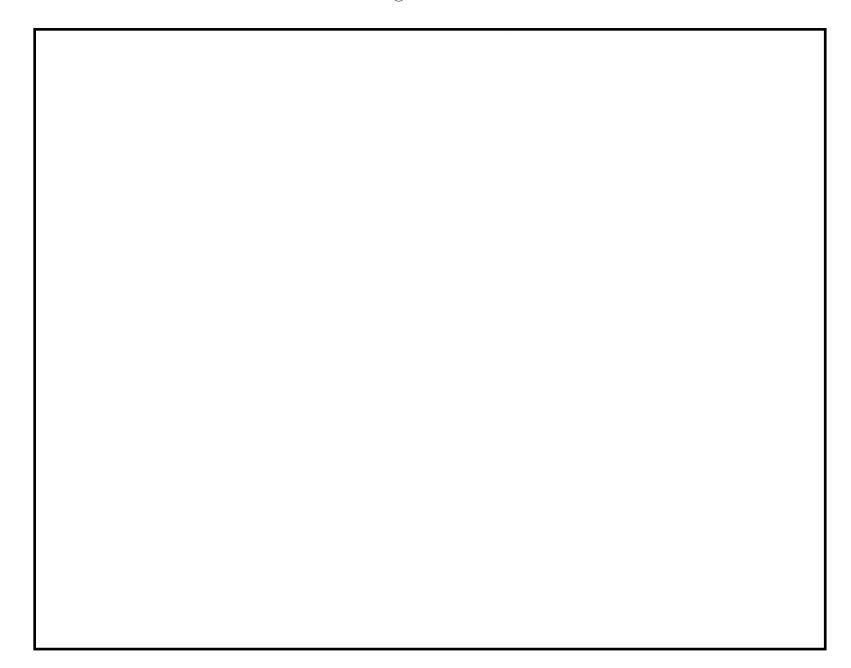
(2) 危険速度の計算方法

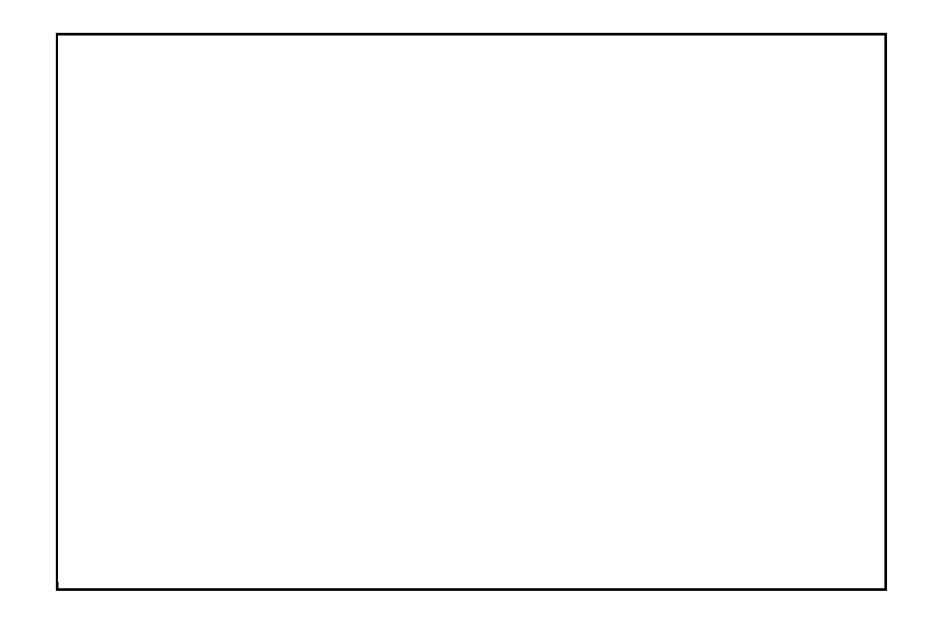
(3) 振動モード



の固有版	対数			
w H	-11-			
段	洛			
5 回	転	速	度	1500 rpm (25Hz)
長動数				
	段 回	各 回 転	段 落 答 回 転 速	段 落


7. 5	噴口の振動
	噴口については、高い剛性を保つよう、噴口の両端を円盤状の隔板(内輪・外輪)に 形状にするとともに、噴口形状の変更により流体励振力による非同期振動を考慮する
	度上安全な設計としている。
7.6	オイルホイップの対策
7. 7	流体力による影響
7. 7	流体力による影響 今回採用する長翼は、定格運転時、低負荷運転時および負荷変動時の蒸気流の乱れる


P	
I-y	
∑	
ני -	


8. 添付凶		

VI-10 常用電源設備の健全性に関する説明書

目 次

1.	評価方針 · · · · · · · · · · · · · · · · · · ·	1
2.	設備の健全性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	1 タービンミサイル評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	2 蒸気タービン設備の健全性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2.	3 電気設備の健全性評価	3
3.	評価のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3

1. 評価方針

柏崎刈羽原子力発電所第7号機(改良型沸騰水型軽水炉:ABWR)における,タービン取替後の定格熱出力一定運転の実施に先立ち,定格熱出力一定運転の実施により蒸気タービンが定格出力を超えて運転する場合の最大の出力状態における,タービンミサイル評価,蒸気タービン設備の健全性評価及び電気設備の健全性評価をそれぞれ実施するとともに,発電設備の健全性が確保できる最大の電気出力を評価する。

なお,本評価書中で用いる電気出力は定格電気出力一定運転における定格電気出力 (1356MW) を 100%とする。タービン回転速度は定格電気出力一定運転及び定格熱出力一定運転における定格 回転速度 (1500rpm) を 100%とする。また、蒸気流量は原子炉熱出力 100%時の蒸気流量を定格蒸気流量 100%とする。

2. 設備の健全性評価

2.1 タービンミサイル評価

過去の運転実績から推測される最大の電気出力を上回る条件として、タービン取替後におけ
る蒸気タービンの設計最大出力(電気出力で MW:定格電気出力の %)を用いる。
この時の蒸気流量(定格蒸気流量の %)で非常調速装置作動後のタービン回転速度を評価し
た結果,定格電気出力一定運転時のタービンミサイル評価に用いるタービン回転速度
に対し、定格回転速度の %であるとの評価結果を得た。また、タービン
取替に伴い, 定期安全レビューで想定したミサイル源であるタービンのミサイル性状が変更と
なっても、発電用原子炉施設へのタービンミサイルの影響を考慮する必要はないとするこれま
での評価結果を変更する必要はないことを確認した。

2	2	蒸気ター	トツ	診備の	健全.	性評価
4.	Δ	- X X /	/			1 T 8 T 11111

(1) 過去の運転実績から推測される最大の電気出力を上回る条件として、タービン取替後にお
ける蒸気タービンの設計最大出力(電気出力で MW:定格電気出力の %)を用い
る。蒸気タービンを構成する機器で,今回の改造範囲に係わる範囲(低圧タービンの円板・
隔板・噴口・翼・車軸・カップリングボルト・基礎ボルト)の強度を設計最大出力時の蒸気
流量(定格蒸気流量の %), 電気出力 (WW: 定格電気出力の %) 及び非常調速
装置が作動した場合に到達するタービン回転速度を上回る回転速度
結果は、以下に示すとおりである。
a. 蒸気タービンの設計最大出力時の蒸気流量(定格蒸気流量の %)で %)で
非常調速装置が作動した場合に到達する回転速度
は定格回転速度の %であるとの評価結果を得た。
が作動した場合に到達するタービン回転速度(定格回転速度の %)を上回る回転速
度 で強度評価を実施し、許容値を満足することを確認した。
b. 低圧タービンの隔板, 噴口, 翼, 車軸及びカップリングボルトについては, 蒸気タービ
ンの設計最大出力時の蒸気流量(定格蒸気流量の %)及び電気出力 MW: 定格電
気出力の %) を用いて強度評価を行い許容値を満足することを確認した。
c. 低圧タービン基礎ボルトの強度については,蒸気タービンの設計最大出力時の蒸気流量
(定格蒸気流量の %)及び電気出力 (MW:定格電気出力の %) の状態に,地
――――――――――――――――――――――――――――――――――――
(2) 蒸気タービンの調速装置については、蒸気タービンの設計最大出力時の蒸気流量(定格蒸
気流量の %)で負荷遮断した場合の瞬時最大回転速度を評価し、非常調速装置が作動する
タービン回転速度(定格回転速度の 111%)未満(定格回転速度の %)にする能力を有す
るものであることを確認した。

2.3 電気設備の健全性評価

発電機,主変圧器については、これらの構成部品各部の部材温度上昇の制限によって定められるそれぞれの運転制限曲線を全て満足する範囲内で発電機を運転することにより健全性は確保される。

確保される。
定格熱出力一定運転を行っても、適時電力計及び無効電力計により監視を行い、発電機電気出力を運転制限曲線の範囲内で運転するため、発電機、主変圧器の健全性は確保される。なお、運転制限曲線によって定まる発電機電気出力の上限値は MW(定格電気出力の ル、力率 である。

3. 評価のまとめ
(1) タービンミサイル評価結果については、蒸気タービンの設計最大出力 MW:定格電気出力の か。で運転した場合でも、発電用原子炉施設へのタービンミサイルの影響を考慮する必要はないとするこれまでの評価結果を変更する必要はないことを確認した。
(2) 蒸気タービンを構成する機器の強度及び調速装置の能力については、蒸気タービンの設計最大出力 (電気出力で MW:定格電気出力の が)で運転した場合でも安全上問題がないことを確認した。

したがって,定格熱出力一定運転の実施においては,	(1)~(3)の条件をすべて満たす, 電気
出力 MW(定格電気出力の %)を上限として適	時監視を行って運転することにより、
発電設備の健全性に問題はない。	

限曲線の範囲内で運転を行えば設備の健全性に問題がないことを確認した。