島根原子力発電所第2号機 審査資料			
資料番号 NS2-添 1-068 改 02(比)			
提出年月日	2022年5月30日		

先行審査プラントの記載との比較表 (VI-1-8-2 原子炉格納施設の水素濃度低減性能に 関する説明書)

2022年5月中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)

・・前回提出時からの変更箇所

先行審査プラントの記載との比較表 (VI-1-8-2 原子炉格納施設の水素濃度低減性能に関する説明書)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2 号機	備考

比較表において、相違理由を類型化したものについて以下にまとめて記載する。下記以外の相違については、備考欄に相違理由を記載する。

相違No.	相違理由
1	島根2号機は、放射線分解により発生する水素ガス及び酸素ガスの発生割合(G値)を設計基準事故ベースとした場合、事象発生から7日以内に原子炉格納容器内の酸素濃度が5%を上回る可能性があることから、原子炉格納容器内を不活性化し酸素濃度の上昇を抑制するため窒素ガス代替注入系を重大事故等対処設備として設置
2	島根2号機の耐圧強化ベントラインは、新規制基準施行以前にアクシデントマネジメント対策として設置しており、必要な容量を有する設備であるが、格納容器 フィルタベント系を新たに重大事故等対処設備として設置することから、最終ヒートシンクへ熱を輸送するための自主対策設備として位置付けている
3	島根2号機は、格納容器水素濃度(SA)及び格納容器酸素濃度(SA)を重大事故等対処設備として新設し、既設の格納容器水素濃度(B系)及び格納容器酸 濃度(B系)を重大事故等対処設備としても使用する設計とする
4	島根2号機は、水素爆発損傷防止対策として、静的触媒式水素処理装置を使用することとしている
5	島根2号機は、スクラビング水及び金属フィルタと銀ゼオライトフィルタは、別々の容器で構成している
6	使用する電源設備が異なる
7	静的触媒式水素処理装置型式が異なるため、1個当たりの水素処理容量が異なる
8	水素処理容量及び水素発生量の相違により静的触媒式水素処理装置の設置個数が異なる
9	島根2号機では、検出方式の異なる2種類の検出器を採用しており、計測範囲が異なる
10	漏えいを想定している箇所の相違により、原子炉建物水素濃度の個数及び設置箇所が異なる
(11)	島根2号機は,有効性評価シナリオに基づく解析条件をa.項及びb.項に記載し,設計条件に基づく解析条件をc.項に記載。なお,島根2号機は,有効性評価シナオに基づく解析条件について,残留熱代替除去系を使用する場合と使用しない場合に分けて条件を設定している
(12)	島根2号機は,KALI試験を用いて性能を確認している

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2 号機	備考
		∭-1-8-2 原子炉格納施設の水素濃度低減性能に関する説明書	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			目次	
			1. 概要	
			2. 基本方針	
			2.1 原子炉格納容器の破損を防止するための水素濃度低減設備	
			2.1.1 可燃性ガス濃度制御系・・・・・・・・・・・ 2	
			<u>2.1.2 窒素ガス代替注入系</u> ・・・・・・・・ 2	・設備の相違
				【柏崎 7】
				島根2号機は,放射線
				分解により発生する水
				素ガス及び酸素ガスの
				発生割合(G値)を設計
				基準事故ベースとした
				場合,事象発生から7日
				以内に原子炉格納容器
				内の酸素濃度が 5%を
				上回る可能性があるこ
				とから,原子炉格納容器
				内を不活性化し酸素濃
				度の上昇を抑制するた
				め窒素ガス代替注入系
				を重大事故等対処設備
				として設置
				(以下, ①の相違)
				・運用の相違
				【柏崎7】
				島根2号機の耐圧強
				化ベントラインは,新規
				制基準施行以前にアク
				シデントマネジメント
				対策として設置してお
				り,必要な容量を有する
				設備であるが,格納容器
				フィルタベント系を新
				たに重大事故等対処設
				備として設置すること
				から, 最終ヒートシンク

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
			へ熱を輸送するための
			自主対策設備として位
			置付けている
			(以下,②の相違)
		2.1.3 格納容器フィルタベント系 2	
		2.1.4 格納容器水素濃度 (SA) 及び格納容器水素濃度 (B	・設備の相違
		系)並びに格納容器酸素濃度(SA)及び格納容器酸	【東海第二,柏崎 7】
		<u>素濃度 (B系)</u> ····· 3	島根2号機は,格納容
			器水素濃度(SA)及び
			格納容器酸素濃度(S
			A)を重大事故等対処設
			備として新設し, 既設の
			格納容器水素濃度(B
			系) 及び格納容器酸素濃
			度(B系)を重大事故等
			対処設備としても使用
			する設計とする
			(以下,③の相違)
		2.2 原子炉建物等の損傷を防止するための水素濃度低減設備 4	
			・設備の相違
			【東海第二】
			島根2号機は,水素爆
			発損傷防止対策として,
			静的触媒式水素処理装
			置を使用する
			(以下, ④の相違)
		<u>2.2.1</u> <u>静的触媒式水素処理装置</u> ····· 4	
		2.2.2 原子炉建物水素濃度 4	
		3. 原子炉格納施設の水素濃度低減性能の評価・・・・・・・ 9	
		4. 原子炉格納施設の水素濃度低減設備の詳細設計・・・・・・ 9	
		4.1 原子炉格納容器の破損を防止するための水素濃度低減設備	
		9	
		4.1.1 可燃性ガス濃度制御系・・・・・・・ 9	
		<u>4.1.2 窒素ガス代替注入系</u> ····· 9	・設備の相違
			【柏崎7】
			①の相違
			・運用の相違

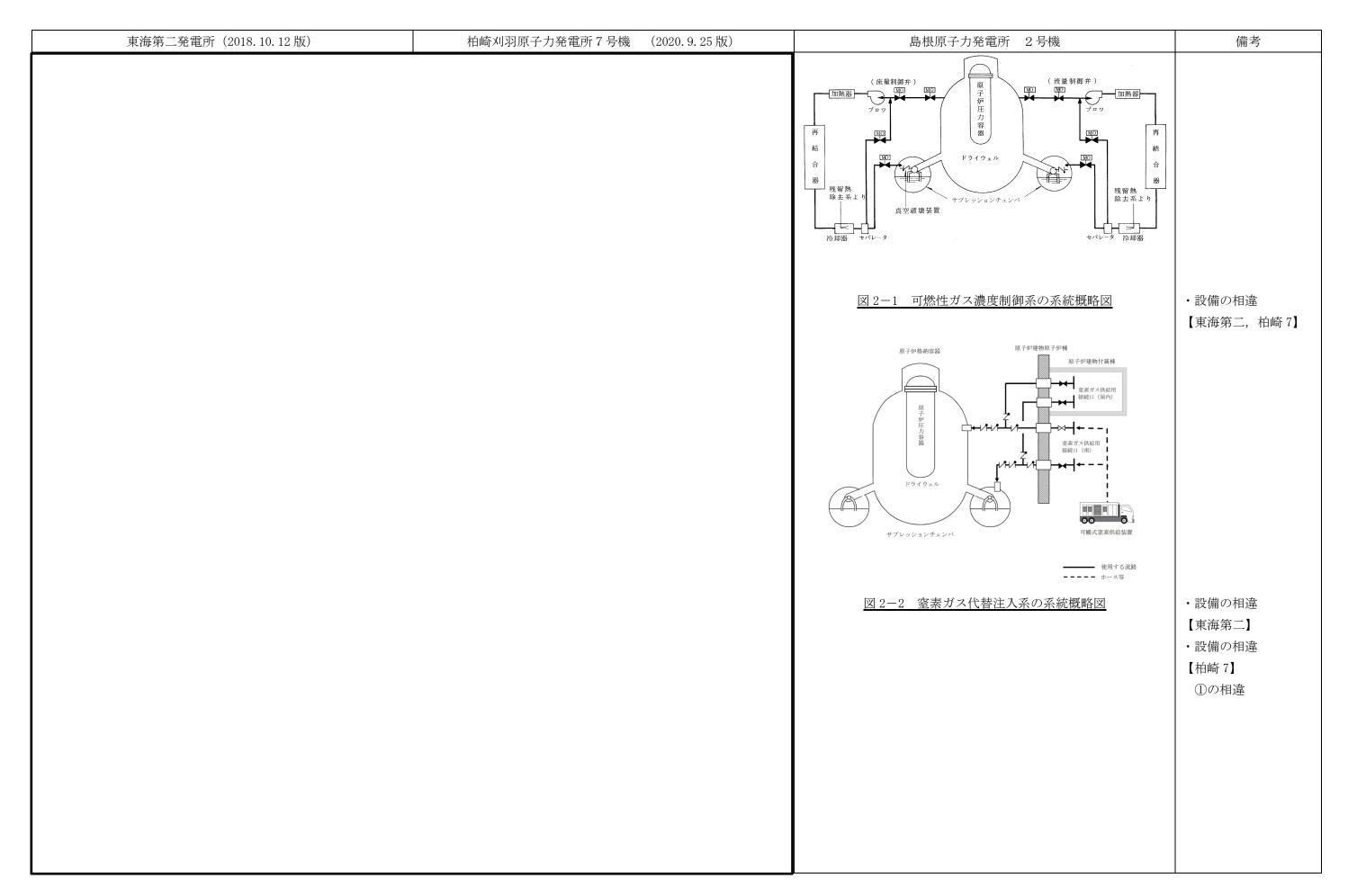
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
				【柏崎 7】
				②の相違
			4.1.3 <u>格納容器フィルタベント系</u> ・・・・・・ 10	
			4.1.4 <u>格納容器水素濃度(SA)</u> 及び <u>格納容器水素濃度(B</u>	・設備の相違
			系)並びに格納容器酸素濃度(SA)及び格納容器酸	【東海第二,柏崎 7】
			<u>素濃度(B系)</u> ······11	③の相違
			4.2 原子炉建物等の損傷を防止するための水素濃度低減設備	
				・設備の相違
				【東海第二】
				④の相違
			4.2.1 <u>静的触媒式水素処理装置</u> ······12	
			4.2.2 原子炉建物水素濃度・・・・・・・・・・15	
			4.3 水素濃度低減設備に係る電源・・・・・・・・ 15	
			4.3.1 可燃性ガス濃度制御系・・・・・・・・ 15	
			<u>4.3.2 窒素ガス代替注入系</u> ····· 16	・設備の相違
				【柏崎 7】
				①の相違
				・運用の相違
				【柏崎7】
				2の相違
			4.3.3 格納容器フィルタベント系····· 16	
			4.3.4 格納容器水素濃度 (SA) <u>及</u> び格納容器水素濃度 (B	設備の相違
			系)並びに格納容器酸素濃度(SA)及び格納容器酸	【柏崎 7】
			<u>素濃度 (B系)</u> ······ 16	③の相違
			4.3.6 原子炉建物水素濃度	
			別添 1 静的触媒式水素処理装置の設計	・設備の相違
				【東海第二】
				④の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
			・資料構成の相違
			【柏崎7】
			島根 2 号機は, VI-5
			「計算機プログラム(解
			析コード)の概要」に記
			載している。なお、使用
			しているバージョンは
			異なる
			・資料構成の相違
			【柏崎7】
			島根2号機は, VI-5
			「計算機プログラム(解
			析コード)の概要」に記
			載している。なお、使用
			している解析コードに
			差異はない
			上来(a.a.)
		<u></u>	

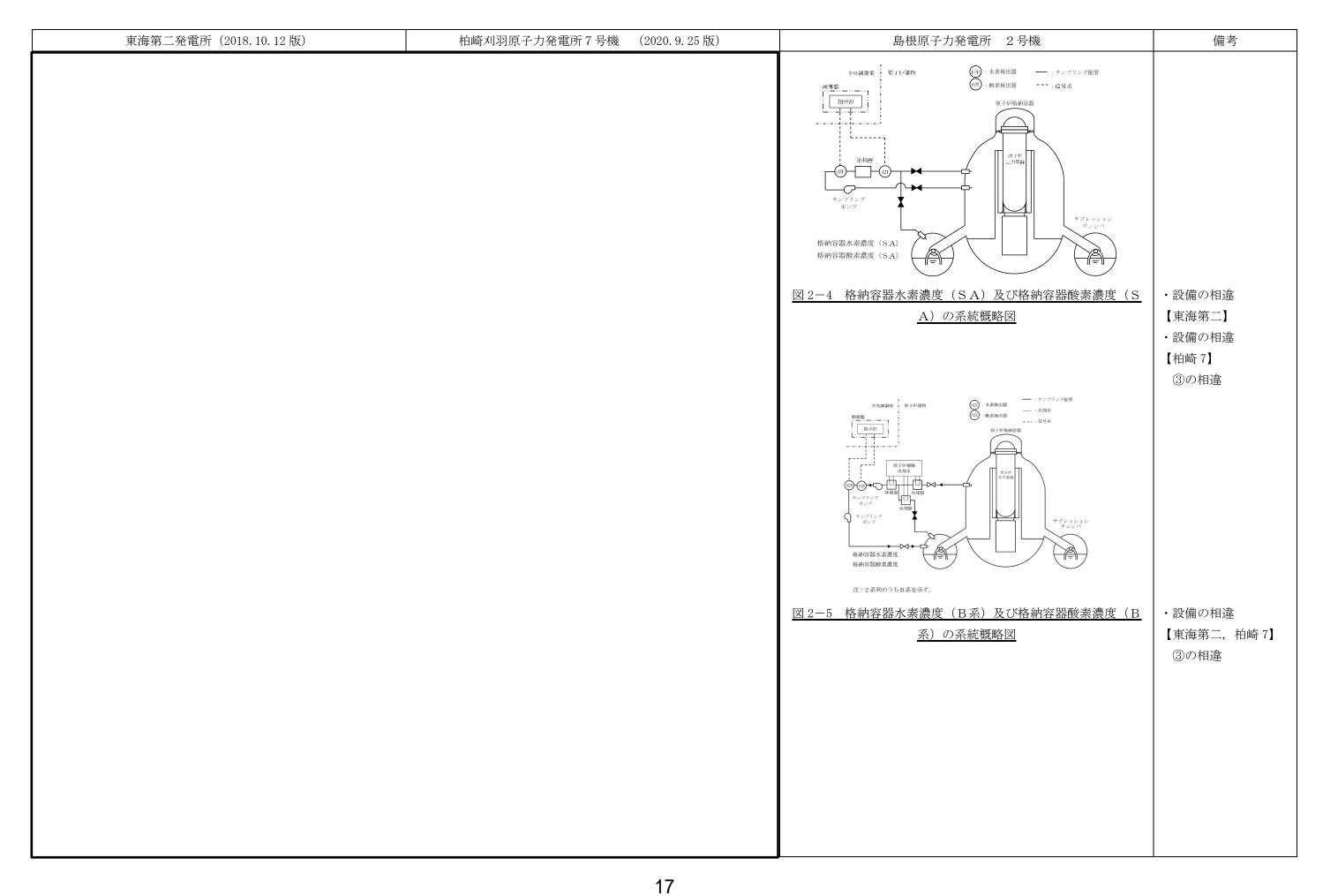
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2号機	備考
			1. 概要 本資料は、「実用発電用原子炉及びその附属施設の技術基準に関	
			する規則」第 44 条,第 67 条及び第 68 条並びにそれらの「実用発	・資料構成の相違
			電用原子炉及びその附属施設の技術基準に関する規則の解釈」の	【東海第二】
			要求に対する原子炉格納施設の水素ガスの濃度を低減するための	島根2号機は, VI-1-
			設備の性能について説明するものである。	5-1「計測装置の構成に
				関する説明書並びに計
				測範囲及び警報動作範
				囲に関する説明書」にて
				説明している
			本資料では,原子炉冷却材喪失事故時に原子炉格納容器内の水	
			素濃度及び酸素濃度を可燃限界未満に維持するための設備である	
			可燃性ガス濃度制御系, 炉心の著しい損傷が発生した場合におけ	
			る水素爆発による原子炉格納容器の破損を防止するための設備で	
			ある窒素ガス代替注入系及び格納容器フィルタベント系並びに炉	・設備の相違
			心の著しい損傷が発生した場合における水素爆発による原子炉建	【柏崎7】
			物等の損傷を防止するための設備である静的触媒式水素処理装置	①の相違
			の水素濃度低減性能並びに監視することが必要なパラメータにつ	・運用の相違
			いて、機能が要求される状態での条件を踏まえて所要の性能が発	【柏崎7】
			揮されることを説明する。	②の相違
			なお, <u>格納容器フィルタベント系</u> については, <u>W</u> -1-8-1「原子	
			炉格納施設の設計条件に関する説明書」で詳細に述べる。	
			2. 基本方針	
			原子炉格納施設の水素ガスの濃度を低減し,原子炉格納容器の	
			破損を防止するための設備として可燃性ガス濃度制御系, <u>窒素ガ</u>	・設備の相違
			ス代替注入系及び格納容器フィルタベント系を,原子炉建物等の の	【柏崎 7】
			損傷を防止するための設備として <u>静的触媒式水素処理装置</u> を設置	①の相違
			する。	• 運用の相違
				【柏崎7】
				②の相違
				・設備の相違
				【東海第二】 ④の相違
			2.1 原子炉格納容器の破損を防止するための水素濃度低減設備	
			原子炉格納容器は,原子炉冷却材喪失事故時において,水の放	
			射線分解 <u>等</u> によって発生する水素濃度及び酸素濃度が可燃限界に	・記載方針の相違
			到達しないよう、窒素ガス制御系により、通常運転時より原子炉	【東海第二】

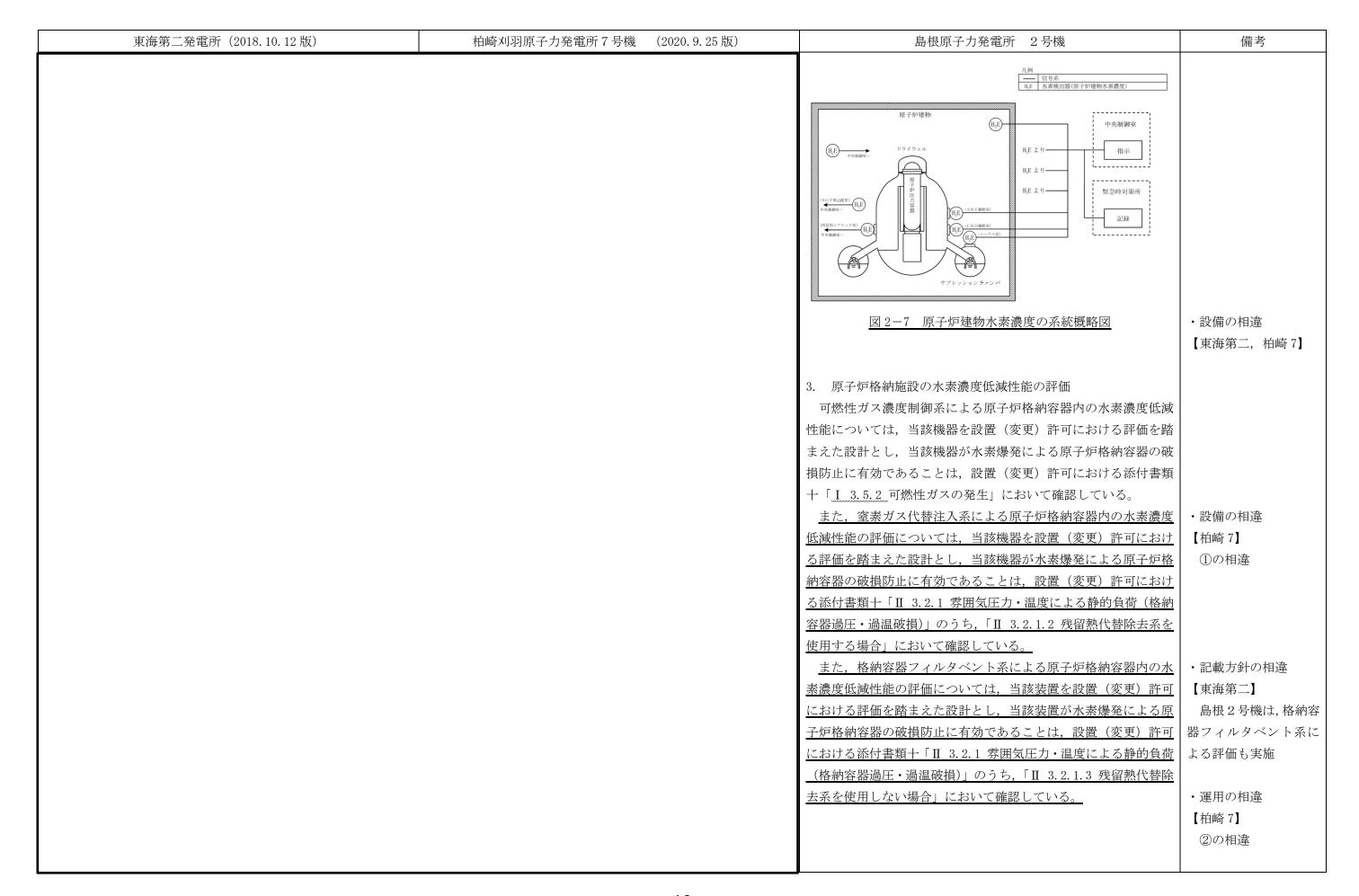
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2号機	備考
		格納容器内を不活性化する設計とする。	島根2号機は、ジルコ
			ニウム―水反応も含む
			ため,「等」を記載
		また、水素濃度及び酸素濃度が可燃限界に達するまでに遠隔操	
		作にて,可燃性ガス濃度制御系を起動することによって,水素と	
		酸素を再結合できる設計とする。	
		なお、設計基準事故である原子炉冷却材喪失事故時に蓄積される	
		水素濃度及び酸素濃度については、あらかじめ原子炉格納容器内	
		を不活性化していること及び可燃性ガス濃度制御系の処理能力に	
		よって、水素濃度及び酸素濃度が可燃限界に到達しないことを <u>設</u>	・参照図書の相違
		置(変更)許可における添付書類十「I 3.5.2 可燃性ガスの発生」	【東海第二】
		において確認している。	島根2号機は,設置
			(変更)許可にて解析を
			実施しているため,設置
			(変更) 許可を参照
		重大事故等時においては、炉心の著しい損傷が発生した場合に	
		おいて、ジルコニウムー水反応及び金属腐食によって発生する水	
		素、水の放射線分解によって発生する水素ガス及び酸素ガスによ	
		る水素爆発を防止できるよう、 <u>窒素ガス制御系</u> により、通常運転	
		時より原子炉格納容器内を不活性化する設計とするとともに、水	
		素及び酸素の濃度を低減するため、 <u>窒素ガス代替注入系</u> 及び <u>格納</u>	・設備の相違
		容器フィルタベント系を設置する。	【柏崎7】
			①の相違
			・運用の相違
			【柏崎7】
			②の相違
		<u>窒素ガス代替注入系は、原子炉格納容器に不活性ガスである窒</u>	
		素ガスを注入し、水素濃度及び酸素濃度を低減できる設計とする。	【柏崎7】
			①の相違
		格納容器フィルタベント系は、原子炉格納容器内に蓄積した水	
		素ガス及び酸素ガスを原子炉格納容器外へ排出することで、原子	
		炉格納容器内の水素濃度及び酸素濃度を継続的に低減できる設計	②の相違
		とする。	
		2.1.1 可燃性ガス濃度制御系	
		原子炉冷却材喪失事故時において,原子炉格納容器内で発生す	
		る水素ガス及び酸素ガスにより原子炉格納容器の健全性を損なわ	
		ないように、可燃性ガス濃度制御系を設置する。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	可燃性ガス濃度制御系は、図 2-1に示すとおり、ブロワ、加熱器、再結合器、冷却器等によって構成し、原子炉冷却材喪失事故時に原子炉格納容器内に存在する水素濃度を 4vol%未満又は酸素濃度を 5vol%未満に維持し、可燃限界に達しないようにすることができる設計とする。 可燃性ガス濃度制御系は、通常運転中、原子炉格納容器に窒素ガス制御系により窒素ガスを充てんすることとあいまって、原子炉冷却材喪失事故時に原子炉格納容器内の水素濃度又は酸素濃度を、可燃限界である水素濃度 4vol%未満又は酸素濃度を、可燃限界である水素濃度 4vol%未満又は酸素濃度を、可燃限界である水素濃度 4vol%未満又は酸素濃度 5vol%未満に維持できるように設計する。また、可燃性ガス濃度制御系は、原子炉格納容器内のガスを置換することなく、水素濃度及び酸素濃度を制御できる設計とする。可燃性ガス濃度制御系の電源については、非常用ディーゼル発電機から給電が可能な設計とする。	
		2.1.2 窒素ガス代替注入系 炉心の著しい損傷が発生した場合において,原子炉格納容器内 における水素爆発による破損を防止できるように,原子炉格納容 器内を不活性化するための設備として,窒素ガス代替注入系を設 置する。原子炉格納容器内の水素燃焼防止のための運用にあたっ ては,可搬式窒素供給装置により,原子炉格納容器内へ不活性ガ スである窒素ガスを注入することで,原子炉格納容器内の水素濃 度及び酸素濃度を可燃限界未満にできる設計とする。可搬式窒素 供給装置の電源については,重大事故等対処設備である可搬式窒 素供給装置用発電設備から給電が可能な設計とする。 窒素ガス代替注入系の系統概略図を図 2-2 に示す。	・設備の相違【柏崎 7】①の相違
			・運用の相違【柏崎 7】②の相違


東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
		0.1.9 枚姉宏思ファルタベントで	
		2.1.3 <u>格納容器フィルタベント系</u> 炉心の著しい損傷が発生した場合において,原子炉格納容器内	
		における水素爆発による破損を防止するための設備として、 <u>格納</u>	
		容器フィルタベント系を設置する。	
		格納容器フィルタベント系の系統概略図を図2-3に示す。 原子炉格納容器内の水素爆発防止のための運用にあたっては、	
		原子炉格納容器内で発生する水素ガス及び酸素ガスを排出するこ	・運用の相違
		とを目的とする。なお、上記設備の設置においては以下の条件を	【東海第二】
		満たす設計とする。	島根2号機は,残留熱
			代替除去系の使用時に 限らず,原子炉格納容器
			内の酸素濃度が規定値
			に到達した場合に、水素
			爆発防止のための格納
		┃ (1) 排出経路での水素爆発を防止するため、系統待機時は系統内	容器ベントを行う
		を窒素置換しておくことで、ベント実施時に排出ガスに含ま	
		れる水素ガスと酸素ガスにより系統内が可燃領域となること	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 ((2020. 9. 25 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12版)	柏崎刈羽原子力発電所7号機 (島根原子力発電所 2号機 を防止する設計とする。 (2) ベント停止後に第1ベントフィルタスクラバ容器内に蓄積した放射性物質による水の放射線分解で発生する水素ガス及び酸素ガスによって、系統内が可燃領域に達することを防止するため、外部より不活性ガスを供給することにより系統内を置換することが可能な設計とする。 (3) 排出経路に第1ベントフィルタスクラバ容器及び第1ベントフィルタ銀ゼオライト容器を設置することにより、排出ガスに含まれる放射性物質を低減することが可能な設計とする。 (4) 排出経路における線量当量率を測定し、放射性物質濃度を推定できるよう、第1ベントフィルタ出口配管に第1ベントフィルタ出口放射線モニタ(低レンジ)及び第1ベントフィルタ出口放射線モニタ(高レンジ)を設ける設計とする。 (5) 排出経路における水素濃度を測定し、監視できるよう、第1ベントフィルタ出口配管に第1ベントフィルタ出口水素濃度を設ける設計とする。	備考 ・設備変 ・設備の相違 ・設備の第二 ・ 島根 グと を みを が まままま が なままま か か まままま か か か か か か か か か か が で で で で で で で で で
			(6) 排出経路に可燃性ガスが蓄積する可能性のある箇所にはバイパスラインを設け,可燃性ガスを連続して排出できる設計とする。 (7) 格納容器フィルタベント系の電源については,重大事故等対処設備である常設代替交流電源設備,可搬型代替交流電源設備,常設代替直流電源設備又は可搬型直流電源設備から給電が可能な設計とする。	素ガスパージを行い、下流側で不活性化を確認する設計とする ・設計方針の相違 【東海第二】 島根2号機は、バイスラインを設置することで、可燃性ガスの蓄積を防止する設計 ・記載方針の相違 【柏崎7】 島根2号機は、計装設備に使用する電源設備


東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (202	0. 9. 25 版)	島根原子力発電所 2号機	備考
				も含めて記載
		水素 うち, 器内の できる <u>濃度</u> (格納容器水素濃度(SA)及び格納容器水素濃度(B系)並びに格納容器酸素濃度(SA)及び格納容器酸素濃度(B系) 素) 爆発による原子炉格納容器の破損を防止するための設備の炉心の著しい損傷が発生した場合において,原子炉格納容の水素濃度及び酸素濃度が変動する可能性のある範囲を測定。設備として,格納容器水素濃度(SA)及び格納容器水素(B系)並びに格納容器酸素濃度(SA)及び格納容器酸素濃度、SA)を設ける設計とする。	【東海第二,柏崎7】 ③の相違
		につい は可搬 <u>度(B</u> <u>備から</u> 策所よ <u>格納</u>	内容器水素濃度(SA)及び格納容器酸素濃度(SA)の電源いては、重大事故等対処設備である常設代替交流電源設備又設型代替交流電源設備から給電が可能とし、格納容器水素濃系)及び格納容器酸素濃度(B系)は、常設代替交流電源設め給電が可能な設計とする。また、中央制御室及び緊急時対はり監視できる設計とする。 内容器水素濃度(SA)及び格納容器酸素濃度(SA)並びに な器水素濃度(B系)及び格納容器酸素濃度(B系)の系統概 で図 2-4 及び図 2-5 に示す。	【東海第二,柏崎7】 使用する電源設備が 異なる (以下,⑥の相違)
		炉心 爆発に	原子炉建物等の損傷を防止するための水素濃度低減設備いの著しい損傷が発生した場合において原子炉建物等の水素による損傷を防止するために、水素濃度制御設備及び水素濃温設備として以下の設備を設置する。	 ・設備の相違 【東海第二】 ④の相違 ・設備の相違 【東海第二】 ④の相違


東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
		2.2.1 静的触媒式水素処理装置	
		水素濃度制御設備として原子炉建物原子炉棟4階に静的触媒式	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		水素処理装置を設置し、炉心の著しい損傷により原子炉格納容器	
		内で発生した水素が原子炉格納容器から原子炉建物原子炉棟内へ	
		漏えいした場合において、原子炉建物原子炉棟内の水素濃度上昇	
		を抑制し、水素濃度を可燃限界未満に制御することで、原子炉建	
		物原子炉棟での水素爆発を防止する設計とする。	
		また、静的触媒式水素処理装置は、運転員による起動操作を行	
		うことなく、水素と酸素を触媒反応により再結合させる装置とし、	
		駆動用の電源が不要な設計とする。	
		静的触媒式水素処理装置は、試験により性能及び耐環境性が確	
		認された型式品を設置する設計とする。	
		静的触媒式水素処理装置は、静的触媒式水素処理装置の触媒反	
		応時の高温ガスの排出が重大事故等時の対処に重要な計器・機器	
		に悪影響がないよう離隔距離を設ける設計とする。	
		静的触媒式水素処理装置の動作確認を行うため、静的触媒式水	
		素処理装置の入口側及び出口側に温度計を設置し、静的触媒式水	
		素処理装置の動作状態を中央制御室及び緊急時対策所から監視で	
		きる設計とする。また、静的触媒式水素処理装置入口温度及び静	
		的触媒式水素処理装置出口温度の電源については、重大事故等対	
		処設備である常設代替直流電源設備又は可搬型直流電源設備から	
		給電が可能な設計とする。	
		<u>静的触媒式水素処理装置</u> の概略設置図は図 2-6 に示す。	
		2.2.2 原子炉建物水素濃度	
		炉心の著しい損傷が発生した場合において, <u>原子炉建物等の水</u>	
		素爆発による損傷を防止するために原子炉建物原子炉棟内の水素	
		濃度が変動する可能性のある範囲にわたり測定できる設備とし	
		て、原子炉建物水素濃度を設ける設計とする。	
		原子炉建物水素濃度は、中央制御室及び緊急時対策所において	
		連続監視できる設計とする。原子炉建物水素濃度は、常設代替交 ・設備の	相違
		流電源設備又は可搬型代替交流電源設備から給電が可能な設計と 【東海第二	二,柏崎 7】
		する。 6の相対	韋
		原子炉建物水素濃度の系統概略図を図2-7に示す。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		図2-3 格納容器フィルタベント系の系統擬略図	・運用の相違 【柏崎 7】 ②の相違 ・設備の相違 【東海第二,柏崎 7】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2号機	備考
		静的触媒式水素処理装置による原子炉建物原子炉棟の水素濃度	・設備の相違
		低減性能の評価については、別添 1「静的触媒式水素処理装置の設	【東海第二】
		計」における水素濃度及び酸素濃度の評価において確認している。	④の相違
		4. 原子炉格納施設の水素濃度低減設備の詳細設計	
		4.1 原子炉格納容器の破損を防止するための水素濃度低減設備	
		4.1.1 可燃性ガス濃度制御系	
		可燃性ガス濃度制御系は,完全に独立した100%容量のもの2系	
		統から構成され,各系統はブロワ,加熱器,再結合器,冷却器等か	
		ら構成される設計とする。	
		設置(変更)許可において実施している評価を踏まえ,原子炉	
		冷却材喪失事故時 30 分以内に中央制御室より手動で起動し,約 3	
		時間のウォームアップ <u>運転後</u> に処理が開始される設計とする。	・設備の相違
			【柏崎7】
		可燃性ガス濃度制御系は、熱反応式再結合装置であるため、再	
		結合器のガス温度によって性能が決まることから, 再結合器内に	
		挿入された熱電対によりガス温度を検出し、温度指示制御器によ	
		って <u>加熱ヒータの出力</u> を制御することで, <u>再結合器出口</u> のガス温	
		度を一定温度に制御できる設計とする。	
		4.1.2 窒素ガス代替注入系	・設備の相違
			【柏崎 7】
		傷が発生した場合において、ジルコニウムー水反応、水の放射線	①の相違
		分解等により原子炉格納容器内に発生する水素濃度及び酸素濃度	
		を可燃限界未満にすることが可能な設計とする。	
		供給量としては,設置(変更)許可における評価に用いた原子	
		炉格納容器への供給量である 100m³/h を供給可能な設計とする。	・設備の相違
			【東海第二】
		の不確かさを考慮しても、水素濃度及び酸素濃度を可燃限界未満	
		に維持できる設計とする。	
		窒素ガス代替注入系の可搬式窒素供給装置は,重大事故等時に	
		おいて窒素供給に必要な容量を有するものを1台と、故障時及び	設備の相違
		保守点検による待機除外時のバックアップ用として 1 台の合計 2	
		<u>台</u> を保管する。	■NI-NI-ANIA — ■
		<u> </u>	・設備の相違
			【東海第二】
			■ ・ ・ 島根 2 号機の可搬:
			四瓜4ケ阪ツ門飯

場所の名称	東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
**				窒素供給装置の電源は,
4.1.3 格別並製アノルタベント系 が初度基プノルタベント系・ が初度基プノルタベントでは、第二ペントアイルクスクラディ策 高、第二ペントフィルを建てサンイトを携・出土軍政化。同等・・計覧が引の利 金のうち、第二ペントで、18以21 名、経確認置フィルクニン 上系のうち、第二ペントフィックスクラで連続は、スクラシンア 水、金のかった、第二ペントフィックススクラで連続は、スクラシンア				装置内に搭載している
4.1.8 投資産業アメルタベント意 を連接電子ペルクペント表は、選1ペシトフィルクスクラバ室 器、第1ペントフィルクタスクラバ室 器、第1ペントフィルクスサンバー 欠割器 上力間放牧。所怜 ・ 中年、 中旬時何記載では、かて構成する。 長が窓数となんとなっと 上売のうめ、第1ペントフィルクスクラバ室製め、スクラビング 次、金栗フィルクスクラバ室製め、スクラビング 次、金栗フィルクスウカでは取ける、よ、第1ペントフィルクスウオー				発電設備から給電する
4.1.8 投資産業アメルタベント意 を連接電子ペルクペント表は、選1ペシトフィルクスクラバ室 器、第1ペントフィルクタスクラバ室 器、第1ペントフィルクスサンバー 欠割器 上力間放牧。所怜 ・ 中年、 中旬時何記載では、かて構成する。 長が窓数となんとなっと 上売のうめ、第1ペントフィルクスクラバ室製め、スクラビング 次、金栗フィルクスクラバ室製め、スクラビング 次、金栗フィルクスウカでは取ける、よ、第1ペントフィルクスウオー				
4.1.3 接続経過フィルタベント系 整備容器フィルタベント系は、他エベントフィルクスクライ電 電 章 エイントラフィルを表す之と上容器。 圧力症症症、耐で・ 中期、計制維御に乗るによって事成する。 整備を受ったルクベン 上窓のうち、治しベントフィルクルタンパの禁化、 とかりよング 表、例れてルクラで作ぶる。 <u>たた、例</u> ・ベントフィルクルダン				・運用の相違
4.1.3 接触容器フェルクベント系 場触容器フェルクベント系は、第1ペントフェルクタクルが容 器。音にエントフェルク・電波することがあまる。 音楽 が用、計画師様象管がによってであまする。接種を第2 エクラレング 上巻、のラン、第 <u>11 に、クラレング</u> 去、 全はマインクで作ますた。 <u>2 た、第</u> エクラレング 去、 全はマインクで作ますた。 <u>2 た、第</u> エクラレング 本 発出マインクで作ますた。 <u>2 た、第</u> エクラレング 本 地間の作業				【柏崎 7】
4.1.3 接触容器フスルタベント系 場性容器フスルタベント系は、第1ペントフスルクスクラバ容 強、第1ペントフスルを重要する人と発動。 単位大動脈 前空・ デ印、計制制線制度でによって形成する。 整理を第2人の全ペン 上表のうち、第1ペントンスルクタスクラで容量は、アクラビング 次を組入りかるで構まする。 走ん、筋・パントンフルの変形な ・ 故情の作業				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 ・記載方針の相談 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ ・記載方針の相談 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 【柏崎7】 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 ・記載方針の相談 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ ・記載方針の相談 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 【柏崎7】 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 ・記載方針の相談 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ ・記載方針の相談 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 【柏崎7】 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 ・記載方針の相談 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ ・記載方針の相談 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 【柏崎7】 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 ・記載方針の相談 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ ・記載方針の相談 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 【柏崎7】 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 ・記載方針の相談 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ ・記載方針の相談 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 【柏崎7】 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 ・記載方針の相談 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ ・記載方針の相談 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 【柏崎7】 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ・設備の相違・				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ・設備の相違・				
格納容器フィルタベント系は、第1ベントフィルタスクラバ容 ・記載方針の相談 器、第1ベントフィルタ銀ゼオライト容器、圧力開放板、配管・ ・記載方針の相談 弁類、計測制御装置等によって構成する。格納容器フィルタベント系のうち、第1ベントフィルタスクラバ容器は、スクラビング 【柏崎7】 水、金属フィルタで構成する。また、第1ベントフィルタ銀ゼオ ・設備の相違				
器,第1ベントフィルタ銀ゼオライト容器,圧力開放板,配管・ 弁類,計測制御装置等によって構成する。格納容器フィルタベン ト系のうち,第1ベントフィルタスクラバ容器は、スクラビング 水,金属フィルタで構成する。また,第1ベントフィルタ銀ゼオ ・記載方針の相談			4.1.3 格納容器フィルタベント系	
弁類, 計測制御装置等によって構成する。 格納容器フィルタベン 【柏崎 7】 上系のうち, 第1ベントフィルタスクラバ容器は、スクラビング 水、金属フィルタで構成する。 また、第1ベントフィルタ銀ゼオ ・設備の相違			格納容器フィルタベント系は、第1ベントフィルタスクラバ容	
上系のうち、第1ベントフィルタスクラバ容器は、スクラビング 水、金属フィルタで構成する。 また、第1ベントフィルタ銀ゼオ ・設備の相違			器,第1ベントフィルタ銀ゼオライト容器,圧力開放板,配管・	・記載方針の相違
上系のうち,第1ベントフィルタスクラバ容器は、スクラビング 水,金属フィルタで構成する。また,第1ベントフィルタ銀ゼオ ・設備の相違			弁類、計測制御装置等によって構成する。 格納容器フィルタベン	【柏崎 7】
水、金属フィルタで構成する。 <u>また、第 1 ベントフィルタ銀ゼオ</u> ・設備の相違			<u>ト系</u> のうち, <u>第1 ベントフィルタスクラバ容器</u> は, <u>スクラビング</u>	
				・設備の相違
⑤の相違				
				記載方針の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
				【柏崎 7】
				島根2号機は、フィル
				タ機能を有する設備の
				構成を記載しており,第
				1ベントフィルタスク
				ラバ容器に加え,第1べ
				ントフィルタ銀ゼオラ
				イト容器について記載
			<u>格納容器フィルタベント系</u> は、水素及び酸素排出設備として放	
			射性物質低減機能及び水素爆発を防止する機能を有する設計とす	
			る。	
			(1) 放射性物質低減機能	
			<u>格納容器フィルタベント系</u> は、炉心の著しい損傷が発生した場	
			合において,原子炉格納容器に発生するガスを, <u>第 1 ベントフィ</u>	
			ルタスクラバ容器及び第1ベントフィルタ銀ゼオライト容器を通	・設備の相違
			して大気に逃がすことで、放出される粒子状の放射性物質(セシ	【東海第二】
			ウム等)を低減する。このため,放射性物質による環境への汚染	⑤の相違
			の視点も含め、環境への影響をできるだけ小さくとどめるものと	
			して定められている Cs-137 の放出量が 100TBq を下回ることがで	
			きる性能を有したものとする。	
			第1ベントフィルタスクラバ容器としては,上述した Cs-137 の	
			放出量制限を満足させるため、粒子状放射性物質除去効率 99.9%	
			以上の性能を有する設計とする。	
			また、無機よう素に対して除去効率 99%以上の性能を有する設計	・設備の相違
			とする。	【柏崎7】
			第1ベントフィルタ銀ゼオライト容器は、有機よう素に対して	
			除去効率 98%以上の性能を有する設計とする。	【東海第二】
				⑤の相違
			(2) 水素爆発を防止する機能	
			格納容器フィルタベント系は、可燃性ガスの爆発防止等の対策	
			として不活性ガス(窒素ガス)に置換した状態で待機し、格納容	
			器フィルタベント系の使用後には、可搬式窒素供給装置を用いて	
			系統内を不活性ガスにて置換する。これにより、排気中に含まれ	
			る可燃性ガス及び使用後に水の放射線分解により発生する可燃性	
			ガスによる爆発を防ぐことが可能な設計とする。	
			格納容器内酸素濃度をドライ条件に換算して 5vol %未満で管理	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 9. 25 版)	島根原子力発電所 2号機	備考
			することで、格納容器フィルタベント系内で可燃性ガス濃度が可	
			燃域に達することはない。	
			格納容器フィルタベント系の使用により原子炉格納容器内及び	
			スクラビング水内に捕集された放射性物質による水の放射線分解	
			によって発生する水素ガス及び酸素ガスの量は微量であること,	
			また格納容器フィルタベント系の使用を継続することから、格納	
			容器フィルタベント系内で可燃性ガス濃度が可燃域に達すること	
			はない。	
			<u>排出経路</u> で可燃性ガスが蓄積する可能性がある箇所について	
			は、バイパスラインを設置し、可燃性ガスが局所的に滞留しない	
			設計とする。	
			4.1.4 格納容器水素濃度 (SA) 及び格納容器水素濃度 (B系)	・設備の相違
			並びに格納容器酸素濃度 (SA) 及び格納容器酸素濃度 (B	【東海第二,柏崎 7】
			<u>系)</u>	③の相違
			格納容器水素濃度(SA)及び格納容器水素濃度(B系)並びに	・設備の相違
			格納容器酸素濃度 (SA) 及び格納容器酸素濃度 (B系) は、 炉心	【東海第二,柏崎 7】
			の著しい損傷が発生した場合に原子炉格納容器内の水素濃度及び	③の相違
			酸素濃度を監視する目的で、水素濃度及び酸素濃度が変動する可	
			能性のある範囲で測定できる設計とする。	
			格納容器水素濃度(SA)及び格納容器酸素濃度(SA)は,サ	・記載方針の相違
			ンプリング装置にて原子炉格納容器内の雰囲気ガスを原子炉建物	【東海第二】
			原子炉棟内へ導き,検出器で測定することで,原子炉格納容器内	島根2号機は,測定結
			の水素濃度及び酸素濃度を中央制御室及び緊急時対策所にて監視	果の監視場所について
			できる設計とする。	記載
				・設備の相違
				【柏崎7】
				島根2号機は,サンプ
				リング式の水素及び酸
				素濃度計を設置
			格納容器水素濃度(B系)及び格納容器酸素濃度(B系)は、サ	・設備の相違
			ンプリング装置にて原子炉格納容器内の雰囲気ガスを原子炉建物	【東海第二】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2号機	備考
			原子炉棟内へ導き,検出器で測定することで,原子炉格納容器内	③の相違
			の水素濃度及び酸素濃度を中央制御室及び緊急時対策所にて監視	
			できる設計とする。	
			格納容器水素濃度(SA)及び格納容器酸素濃度(SA)につい	・記載方針の相違
			ては代替電源設備による給電後に、格納容器水素濃度(SA)及	【東海第二】
			び格納容器酸素濃度(SA)を起動した時点で使用可能となるが、	島根2号機は,使用可
			有効性評価シナリオ「雰囲気圧力・温度による静的負荷(格納容)	能となる時点を記載
			■ 器過圧・過温破損)」におけるこの時点では原子炉格納容器内の酸	設備の相違
			素濃度は 5vo1%に到達しない。	【柏崎7】
				計測方式の違いによ
				り,使用可能となる時点
				が異なる
			■ ■また、格納容器水素濃度(B系)及び格納容器酸素濃度(B系)に	- ・設備の相違
			ついては原子炉補機代替冷却系が使用可能となった時点で使用可	【東海第二】
			能となるが、有効性評価シナリオ「雰囲気圧力・温度による静的	③の相違
			負荷(格納容器過圧・過温破損)」における原子炉補機代替冷却系	,
			が使用可能となる時点では原子炉格納容器内の酸素濃度は 5vol%	
			に到達しない。	
				- ・記載方針の相違
			て、計器仕様は最大±2.0vol% (ウェット) の誤差を生じる可能	【東海第二,柏崎 7】
			性があり、格納容器水素濃度 (B系) の計測範囲 0~20vo1%/0~	島根2号機は,格納容
			100vol%において、計器仕様は最大±0.64vol%/±3.2vol%(ウ	器水素濃度(SA)及び
			エット), ±0.5vo1%/±2.5vo1%(ドライ)の誤差を生じる可能性	
			があり、格納容器酸素濃度 (SA) の計測範囲 0~25vol%におい	系)並びに格納容器酸素
			て,計器仕様は最大±0.75vol% (ウェット), ±0.50vol% (ドラ	濃度(SA)及び格納容
			イ)の誤差を生じる可能性があり、格納容器酸素濃度(B系)の計	器酸素濃度 (B系) の計
			測範囲 0~10vol%/0~25vol%において,計器仕様は最大±	測範囲及び誤差を記載
			0. 32vo1%/±0. 80vo1%(ウェット), ±0. 25vo1%/±0. 63vo1%(ド	・設備の相違
			ライ)の誤差を生じる可能性があるが、この誤差があることを理	【柏崎7】
			解した上で、原子炉格納容器内の水素濃度及び酸素濃度の推移、	計測範囲及び誤差が
			傾向(トレンド)を監視していくことができる。	異なる
			また、原子炉格納容器の水素爆発を防止するための格納容器べ	
			ントの判断等に使用する(格納容器ベント基準:格納容器内酸素	
			濃度 4. 4vo1% (ドライ条件) 及び 1. 5vo1% (ウェット条件))。な	 ・運用の相違
			お、格納容器酸素濃度(B系)の最大計測誤差は、ドライ条件にお	【東海第二,柏崎 7】
			いて±0.25vo1%, 格納容器酸素濃度(SA)の最大計測誤差は,	・設備の相違
			· 、 - · · · · · · · · · · · · · · · · ·	BV NUL 27 I I AC

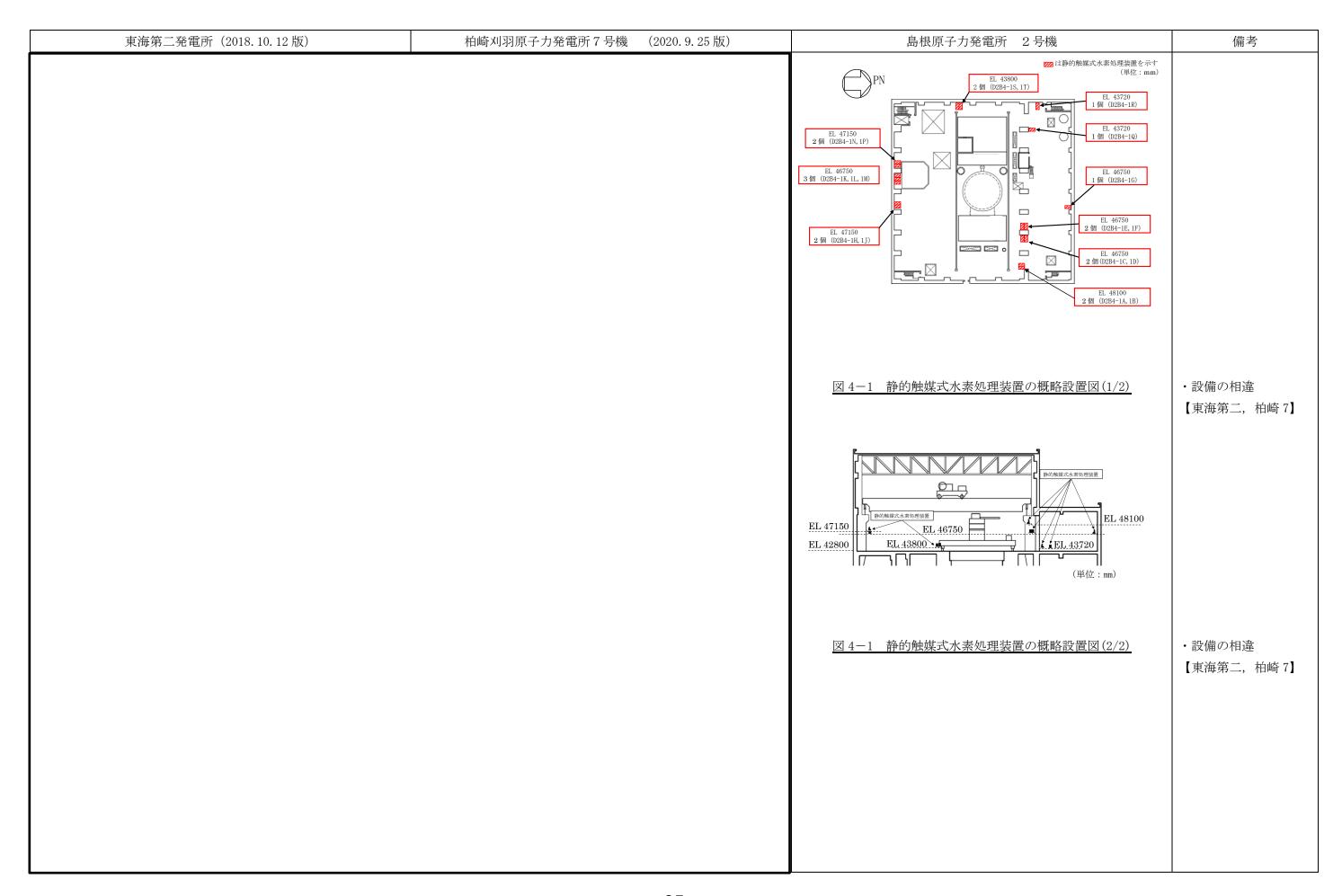
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2号機	備考
			<u>ドライ条件において±0.50vo1%であり、</u> プラス側の誤差を考慮し	【東海第二,柏崎 7】
			ても可燃限界である酸素濃度(5vol%)に対して <u>0.1vol%</u> の余裕	・設計方針の相違
			を有している。	【柏崎7】
			4.2 原子炉建物等の破損を防止するための水素濃度低減設備	
				・設備の相違
				【東海第二】
				④の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.	9. 25 版) 島根原子力発電所 2 号機	備考
		4.2.1 静的触媒式水素処理装置	
		静的触媒式水素処理装置は、評価に用いる性能と、水素を継続	
		的に低減させるための配置を考慮して以下のとおり設計する。 また、静的触媒式水素処理装置入口温度及び静的触媒式水素処	
		理装置出口温度は、静的触媒式水素処理装置の動作状況を温度上	
		昇により確認できるよう設計する。	
		仕様について表 <u>4-1</u> に、容量設定の条件を表 <u>4-2</u> に示す。	
		(1) <u>静的触媒式水素処理装置</u> の性能 a. 性能評価式	
		a. 性能評価式 <u>静的触媒式水素処理装置</u> は,水素処理容量 <u>0.50</u> kg/h(1 <u>個</u> 当た	・設備の相違
		り) (水素濃度 4. 0vol%, 大気圧, 温度 100℃において) を満足す	
		る性能評価式を持つ型式品を設置する設計とする。	静的触媒式水素処理

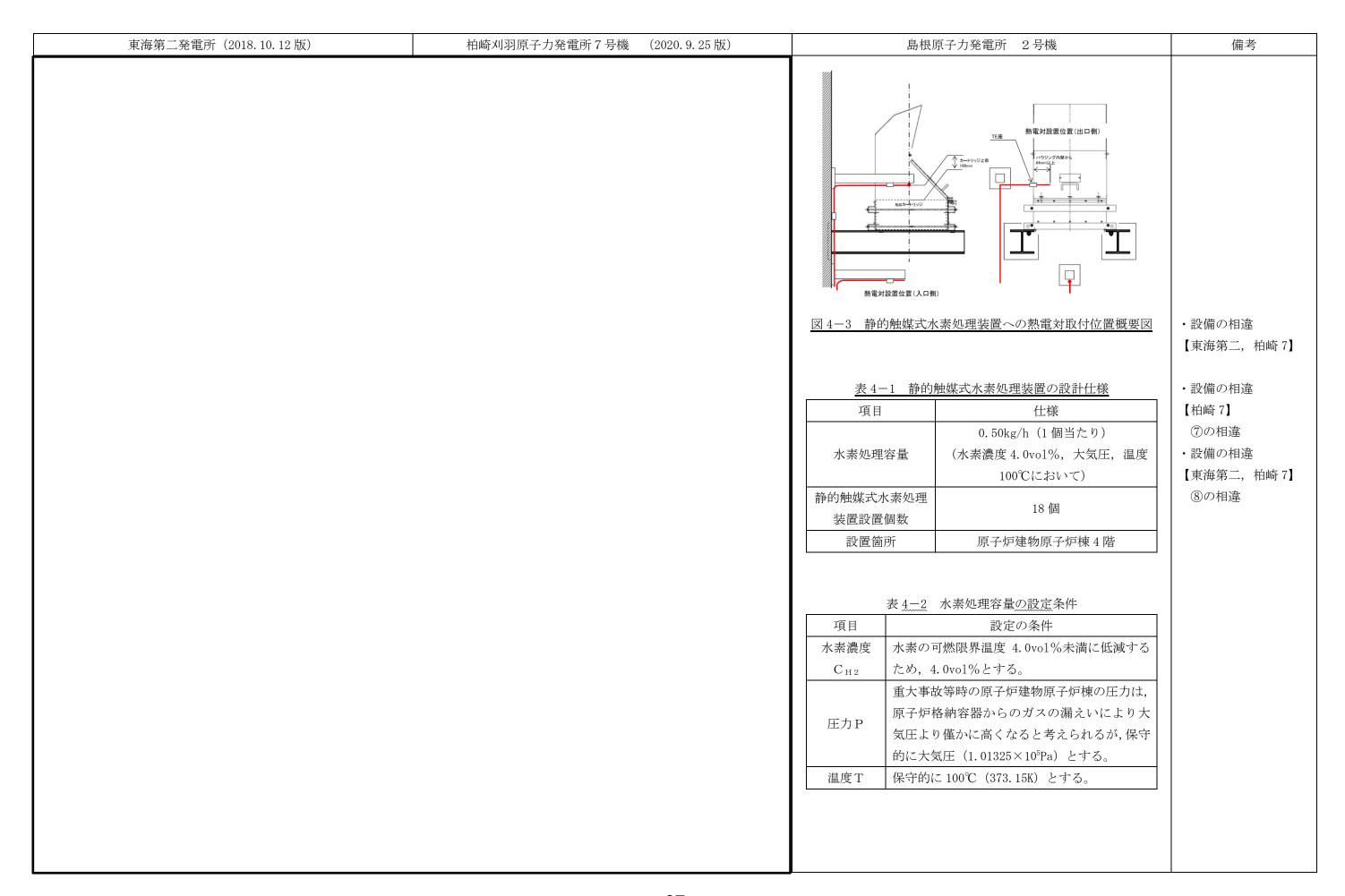
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2 号機	備考
		具体的には、メーカによる開発試験に基づく、温度、圧力、水素	装置型式が異なるため,
		濃度等の雰囲気条件をパラメータとした水素処理容量の相関式に	1個当たりの水素処理
		ついての検証を確認した仕様と同等の型式品を設置する設計とす	容量が異なる
		る。また、触媒カートリッジの寸法及び間隔を開発当時と同じ設	(以下,⑦の相違)
		計とし、開発試験時に使用された触媒カートリッジ枚数(88枚)	
		に対して、島根原子力発電所第2号機で使用する静的触媒式水素	
		<u>処理装置</u> の触媒カートリッジ枚数は、 <u>22</u> 枚であることから、スケ	・設備の相違
		ールファクタ「 <u>22/88 (=0.25)</u> 」を考慮して設置する設計とする。	【柏崎 7】
			⑦の相違のため, 触媒
		静的触媒式水素処理装置の詳細な性能評価式の検証について	カートリッジ枚数が異
		は、別添1別紙1「静的触媒式水素処理装置の性能確認試験につい	なる
		て」に示す。	
		b. 環境条件の配慮	
		炉心損傷を伴う重大事故等時において,原子炉格納容器内によ	
		う化セシウム等の粒子状放射性物質, ガス状よう素, 蒸気等が発	
		生するため、これらが原子炉建物原子炉棟4階へ漏えいした場合	
		においても、所要の性能が発揮される型式品を設置する設計とす	
		る。	
		具体的には、国際的なプロジェクト試験等での以下のような環	
		境条件への適用試験を踏まえた設計とする。	
		粒子状放射性物質については、沈着や格納容器スプレイにより	
		除去されることから,原子炉建物原子炉棟4階への漏えい量が十	
		分に小さいことに加え, 粒子状放射性物質の影響を受けても所要	
		の性能が発揮される型式品を設置する設計とする。	
		蒸気環境下による性能への影響については、国際的なプロジェ	
		クト試験により、 <u>ドライ条件と</u> 水蒸気濃度 50vo1%の条件下にお	
		ける性能比較を実施した評価試験を実施しており、性能に与える	
		影響がないことを確認している。	
		ガス状よう素による性能への影響については、開発試験により	
		性能低下が確認されているが、メーカの提示する性能評価式に対	
		して、試験で得られたガス状よう素による性能低下を考慮した反	
		応阻害物質ファクタを考慮する設計としている。	
		原子炉建物原子炉棟4階の環境は、国際的なプロジェクト等の	
		試験環境と同等以下であることから,これらの試験で有効性が確	
		認された型式品を設置する設計とする。	
		蒸気環境条件の試験については,別添1別紙1「静的触媒式水素	
		処理装置の性能確認試験について」に、ガス状よう素の影響につ	
		いては、別添1別紙2「反応阻害物質ファクタについて」に詳細を	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		示す。	
		(2) 静的触媒式水素処理装置の個数及び配置	
		静的触媒式水素処理装置は、以下の考えに基づき、設置(変更)	
		許可における個数 (18 個) を設置することとし、配置においては、	・設備の相違
		静的触媒式水素処理装置の触媒反応時の高温ガスの排出が重大事	【東海第二,柏崎 7】
		故等時の対処に重要な計器・機器に悪影響がないよう 3m 以上の離	水素処理容量及び水
		隔距離を設ける設計とする。	素発生量の相違により
		炉心の著しい損傷が発生し、原子炉格納容器内に水素が蓄積し	静的触媒式水素処理装
		た状態では、原子炉格納容器のフランジ部等を通じて水素が原子	置の設置個数が異なる
		<u>炉建物原子炉棟</u> 内に漏えいする可能性がある。 <u>原子炉建物原子炉</u>	(以下, ⑧の相違)
		棟に漏えいした水素は、比重の関係で原子炉建物原子炉棟4階ま	
		で上昇し、原子炉建物原子炉棟4階に滞留することが想定される	
		ため,原子炉建物原子炉棟4階に18個を分散して設置する設計と	・設備の相違
		する。設置箇所の概略設置図を図4-1に示す。	【東海第二,柏崎 7】
			⑧の相違
			・記載方針の相違
			【東海第二】
		静的触媒式水素処理装置の温度上昇による周辺機器への悪影響	
		について、別添1別紙3「静的触媒式水素処理装置の周辺機器に対	
		する悪影響防止について」に示す。	
		(3) 静的触媒式水素処理装置入口温度及び静的触媒式水素処理	
		装置出口温度	
		静的触媒式水素処理装置入口温度及び静的触媒式水素処理装置	
		出口温度は、中央制御室及び緊急時対策所にて動作状況を温度上	
		昇により確認できるよう, <u>原子炉建物原子炉棟4階</u> に設置されて	
		いる <u>静的触媒式水素処理装置(2個)</u> に熱電対を入口側と出口側に	
		取り付ける設計とする。	
		静的触媒式水素処理装置入口温度及び静的触媒式水素処理装置	
		出口温度の概略構成図について図4-2に示す。	
		静的触媒式水素処理装置は、触媒における再結合反応により水	
		素を除去する装置であるため、水素濃度の上昇に伴って装置の入	
		ロ側と出口側の温度差が上昇することから, <u>静的触媒式水素処理</u>	
		装置に温度計を設置することにより、水素処理の状況を把握する	
		ことができ、静的触媒式水素処理装置による水素処理が行われて	
		いることを確認することができる設計とする。図 4-3 に熱電対の	
		取付位置を示す。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		<u>静的触媒式水素処理装置</u> の動作時に想定される範囲の温度は、	
		触媒カートリッジの出入口温度を測定した試験結果より、可燃限	
		界水素濃度である水素濃度 4vol%程度で約 170K である。	
		静的触媒式水素処理装置出口温度は、これを包含する 0~400℃	・設備の相違
		とすることで、有意な温度上昇を確認できる設計とし、重大事故	【東海第二,柏崎 7】
		等時において測定可能なよう耐環境性を有した熱電対を使用す	島根2号機の静的触
		る。なお、静的触媒式水素処理装置への流路影響の観点から、水	媒式水素処理装置出口
		素濃度低減性能へ影響を及ぼさない設計とする。	温度の計測範囲は、静的
			触媒式水素処理装置作
			動時に想定される温度
			範囲を監視可能な設定
			としている
		仕様について表 4-3 に示す。	
		静的触媒式水素処理装置入口温度及び静的触媒式水素処理装置	
		出口温度の詳細について,別添1別紙4「 <u>静的触媒式水素処理装置</u>	
		入口温度及び静的触媒式水素処理装置出口温度について」に示す。	
		(4) <u>静的触媒式水素処理装置</u> の性能確認方法	
		静的触媒式水素処理装置は,設置(変更)許可における評価に	
		用いた水素処理容量 <u>0.50</u> kg/h(1 <u>個</u> 当たり)(水素濃度 4.0vol%,	・設備の相違
		 大気圧, 温度 100℃において) を満足する性能評価式を持つ型式品	【柏崎 7】
		を設置する。	⑦の相違
		<u>静的触媒式水素処理装置</u> は,重大事故等時の環境においても所	
		要の性能が発揮される型式品であることを確認する。	
		よって、静的触媒式水素処理装置は、静的触媒式水素処理装置	
		の動作性能である性能評価式が水素処理容量 <u>0.50</u> kg/h(1 <u>個</u> 当た	・設備の相違
		り)(水素濃度 4.0vo1%, 大気圧, 温度 100℃において)を満足す	【柏崎 7】
		るものであるかどうかを設計として確認し、その後、設置する静	⑦の相違
		的触媒式水素処理装置の性能に係る影響因子を確認する手段とし	
		て以下の確認を行うことで、 <u>静的触媒式水素処理装置</u> が性能評価	
		式 (<u>0.50</u> kg/h (1 <u>個</u> 当たり) (水素濃度 4.0vo1%, 大気圧, 温度 100℃	・設備の相違
			【柏崎7】
			⑦の相違
		a. 機能・性能検査	
		原子炉停止中に検査装置にて触媒カートリッジの水素処理性能	
		を確認する。	


東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			b. 外観検査	
			原子炉停止中に静的触媒式水素処理装置のハウジング設計通り	
			の外観であることを確認する。	
			触媒カートリッジは有意な変形, 傷等の有無について確認する。	
			また,員数について,規定の枚数がハウジングに収納されている	
			ことを確認する。	
			触媒カートリッジの表面に異常がないことを確認する。	
			c. 仕様確認(質量測定)	
			設置段階において,触媒充てん前後のカートリッジ質量を測定	
			し、触媒充てん量を確認する。	
			詳細な静的触媒式水素処理装置の性能確認方法について、別添	
			1別紙5「静的触媒式水素処理装置の性能維持管理について」に示	
			す。	
			4.2.2 原子炉建物水素濃度	
			原子炉建物水素濃度は,炉心損傷時に原子炉格納容器内に発生	
			する水素が原子炉建物原子炉棟に漏えいした場合に、水素濃度が	
			変動する可能性のある範囲で測定できるように,原子炉建物水素	・設備の相違
			濃度 (触媒式) では 0~10vol%,原子炉建物水素濃度 (熱伝導式)	【東海第二,柏崎 7】
			では 0~20vo1%を計測可能な範囲とする。	島根2号機では,検出
				方式の異なる2種類の
				検出器を採用しており、
				計測範囲が異なる
				(以下,⑨の相違)
			また,原子炉建物水素濃度は,水素が最終的に滞留する原子炉	
			建物原子炉棟 4 階の壁面及び天井付近,原子炉格納容器内で発生	
			した水素が漏えいする可能性のある <u>原子炉建物</u> 原子炉棟 <u>地下 1</u>	
			<u>階,1階及び2階,非常用ガス処理系吸込配管近傍</u> に設置し,水素	・設備の相違
			の早期検知及び滞留状況を把握のため <u>原子炉建物水素濃度(触</u>	【東海第二】
			媒式)では 0~10vo1%,原子炉建物水素濃度(熱伝導式)では 0	漏えいを想定してい
			~20vo1%を計測可能な範囲とする。	る箇所の相違により,原
				子炉建物水素濃度の個
				数及び設置箇所が異な
				る
				(以下, ⑩の相違)
				・設備の相違
				【東海第二,柏崎 7】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 9. 25 版)	島根原子力発電所 2号機	備考
				⑨の相違
			原子炉建物水素濃度は、触媒式及び熱伝導式であり、同一目的	
			の水素爆発による原子炉建物原子炉棟の損傷を防止するための監	
			視設備である熱電対式の静的触媒式水素処理装置入口温度及び静	
			的触媒式水素処理装置出口温度とは多様性を有した計測方式とす	
			る。	
			また,原子炉建物原子炉棟4階の壁面及び天井付近,地下1階,	
			1階,2階及び非常用ガス処理系吸込配管近傍に設置する原子炉建	・設備の相違
			物水素濃度に対して、静的触媒式水素処理装置入口温度及び静的	【東海第二】
			触媒式水素処理装置出口温度は原子炉建物原子炉棟 4 階壁面近傍	⑩の相違
			に設置することで、位置的分散を図る設計とする。	
			原子炉建物水素濃度は、原子炉建物原子炉棟の水素濃度をトレ	
			ンドにて連続的に監視できる設計とする。	・設備の相違
				【東海第二】
				④の相違
			4.3 水素濃度低減設備に係る電源	
			4.3.1 可燃性ガス濃度制御系	
			可燃性ガス濃度制御系の電源については、非常用ディーゼル発	
			電機から給電が可能な設計とする。	
			4.3.2 窒素ガス代替注入系	・設備の相違
			窒素ガス代替注入系の可搬式窒素供給装置の電源については,	【柏崎7】
			重大事故等対処設備である <u>可搬式窒素供給装置用発電設備</u> から給	①の相違
			電が可能な設計とする。	・設備の相違
				【東海第二】
				島根2号機の可搬式
				窒素供給装置の電源は
				装置内に搭載している
				発電設備から給電する
				・運用の相違
				【柏崎7】
				2の相違
				ピ /ソ/1日)


東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		7	
		4.3.3 格納容器フィルタベント系	
		格納容器フィルタベント系の電源については、重大事故等対処	
		設備である常設代替交流電源設備、可搬型代替交流電源設備、常	・記載方針の相違
		設代替直流電源設備又は可搬型直流電源設備から給電が可能な設	【柏崎 7】
		計とする。	島根2号機は、計装設
			備に使用する電源設備 も含めて記載
			もらのた記載
		可搬式窒素供給装置の電源については, 重大事故等対処設備で	 ・記載方針の相違
		ある可搬式窒素供給装置用発電設備から給電が可能な設計とす	【東海第二】
		<u>る。</u>	島根2号機は,基本設
		第1ベントフィルタ出口水素濃度の電源については、重大事故	計方針にあわせ個別に
		等対処設備である常設代替交流電源設備又は可搬型代替交流電源	給電元を記載
		設備から給電が可能な設計とする。	
		第1ベントフィルタ出口放射線モニタ(低レンジ)及び第1ベ	
		ントフィルタ出口放射線モニタ (高レンジ) の電源については、 重大東投資計算があるよる党部化株点流電源が借口は可憐刑点流	
		重大事故等対処設備である常設代替直流電源設備又は可搬型直流 電源設備から給電が可能な設計とする。	
		4.3.4 格納容器水素濃度 (SA) 及び格納容器水素濃度 (B系)	 ・設備の相違
		並びに格納容器酸素濃度(SA)及び格納容器酸素濃度(B	【東海第二,柏崎 7】
		<u>系)</u>	③の相違
		格納容器水素濃度 (SA) 及び格納容器酸素濃度 (SA) の電源	・設備の相違
		については、重大事故等対処設備である常設代替交流電源設備又	【柏崎 7】
		は可搬型代替交流電源設備から給電が可能な設計とする。	③の相違
		格納容器水素濃度(B系)及び格納容器酸素濃度(B系)の電源	・設備の相違
		については、重大事故等対処設備である常設代替交流電源設備か	【東海第二,柏崎 7】
		ら給電が可能な設計とする。	③及び⑥の相違

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2号機	備考
			・設備の相違
			【東海第二】
			④の相違
		4.3.5 静的触媒式水素処理装置	
		静的触媒式水素処理装置の電源については、水素と酸素を触媒	
		反応によって再結合できる装置であり、駆動用の電源は不要である。	
		■ る。 また、静的触媒式水素処理装置入口温度及び静的触媒式水素処	
		理装置出口温度の電源については、重大事故等対処設備である常	
		設代替直流電源設備又は可搬型直流電源設備から給電が可能な設	
		計とする。	
		4.3.6 原子炉建物水素濃度	
		原子炉建物水素濃度の電源については、重大事故等対処設備で	・設備の相違
		ある常設代替交流電源設備又は <u>可搬型代替交流電源設備</u> から給電	
		が可能な設計とする。	⑥の相違
			・運用の相違
			【柏崎 7】
			②の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2 号機	備考
			・設備の相違
			【東海第二】
			④の相違
			・設備の相違
			【東海第二】
			④の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 9. 25 版)	島根原子力発電所	2 号機	備考
	THEORY STATE TO THE PORT OF TH		熱電対 演算装置 設計基準対象施設 重大事故等対処設備	中央制御室 指 不 緊急時対策所 記 録* : 安全パラメータ表示システム (SPDS)	・記載方針の相違 【東海第二】 島根 2 号機は,図 4- 1に,下端レベルを記載 ・設備の相違 【東海第二,柏崎 7】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)		島根原一	子力発電所	2号機		備考
			表 4-3 静的角	性媒式水素	処理装置入口	1温度及で	び静的触媒式水素	・設備の相違
			処理装置出口温度の仕様	【東海第二,柏崎7】				
			名称	検出器 の種類	計測範囲	個数	取付箇所	島根2号機の静的制 媒式水素処理装置入口
			静的触媒式 水素処理装 置入口温度	熱電対	0~100℃	2	原子炉建物原子炉棟4階	温度及び静的触媒式水素処理装置出口温度の 計測範囲は,静的触媒式
			静的触媒式 水素処理装 置出口温度	熱電対	0~400℃	2	原子炉建物原子炉棟4階	水素処理装置作動時に 想定される温度範囲を 監視可能な設定として

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2 号機	備考
		VI-1-8-2-別添1 静的触媒式水素処理装置の設計	・設備の相違
			【東海第二】
			④の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020	0.9.25版)	島根原子力発電所 2 号機	備考
			目次	
			1. 概要	
			1.1 設置目的	
			2. 水素爆発による <u>原子炉建物</u> 等の損傷を防止するための設備 1	
			2.1 原子炉建物水素濃度抑制設備・・・・・・ 1	
			2.1.1 原子炉建物水素濃度抑制設備の主要仕様・・・・・・ 1	
			2.1.2 原子炉建物水素濃度抑制設備の設計方針・・・・・・ 3	
			2.1.3 原子炉建物水素濃度抑制設備の設計仕様・・・・・・ 5	-11.74 - Lev t
				設備の相違
				【東海第二】
				④の相違
			2.2 原子炉建物原子炉棟の水素挙動· · · · · 7	
			2.2.1 解析条件······10	
			2.2.2 解析結果····· 20	
			23 水素濃度監視設備 26	
			2.3.1 水素濃度監視設備の概要····· 26	
			2.3.2 水素濃度監視設備の主要仕様・・・・・・・ 26	
				・記載方針の相違
				【東海第二】
			別紙1 静的触媒式水素処理装置の性能確認試験について	
			別紙2 反応阻害物質ファクタについて	
			別紙3 静的触媒式水素処理装置の周辺機器に対する悪影響防止	
			について	
			別紙 4 静的触媒式水素処理装置入口温度及び静的触媒式水素処	
			理装置出口温度について	
			別紙 5 静的触媒式水素処理装置の性能維持管理について	
			Janes	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12版)	柏崎刈羽原子力発電所 7 号機	(2020. 9. 25 版)	島根原子力発電所 2号機 1. 概要 1.1 設置目的 炉心の著しい損傷が発生した場合において、水素爆発による原子炉建物等の損傷を防止するため、原子炉建物水素濃度抑制設備 及び水素濃度監視設備を設置する。 (1) 原子炉建物水素濃度抑制設備 原子炉建物水素濃度抑制設備 原子炉建物水素濃度抑制設備 原子炉建物水素濃度抑制設備として静的触媒式水素処理装置 (以下「PAR」という。)を設置し、原子炉建物原子炉棟内の水素濃度の上昇を抑制できる設計とする。PARは、触媒カートリッジ及びハウジングで構成し、駆動用の電源及び起動操作を必要としない設備である。 PAR の動作確認を行うため、静的触媒式水素処理装置入口温度及び静的触媒式水素処理装置出口温度を設置し、PAR の動作状態を中央制御室及び緊急時対策所から監視できる設計とする。また、静的触媒式水素処理装置入口温度及び静的触媒式水素処理装置出口温度の電源については、重大事故等対処設備である常設代替直流電源設備又は可搬型直流電源設備から給電が可能な設計とする。。	備考 ・設備の相違 【東海の相違 ・記載方針の相違 ・記載第二】 島根2号機は,使用する電源設備について詳 の相違 ・調源の相違 ・設備の相違 ・関係の相違 【東海相違 ・の相違
			(2) 水素濃度監視設備 炉心の著しい損傷が発生した場合において、水素爆発による原子炉建物等の損傷を防止するために原子炉建物原子炉棟内の水素濃度が変動する可能性のある範囲にわたり測定できる設備として、原子炉建物水素濃度を設ける設計とする。 原子炉建物水素濃度は、中央制御室及び緊急時対策所において連続監視できる設計とする。原子炉建物水素濃度は、常設代替交流電源設備又は可搬型代替交流電源設備から給電が可能な設計とする。	・設備の相違【柏崎 7】⑥の相違・記載方針の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			【東海第二】
			島根2号機は,使用す
			る電源設備について詳
			細に記載
		2. 水素爆発による原子炉建物等の損傷を防止するための設備	
		2.1 原子炉建物水素濃度抑制設備	
		2.1.1 原子炉建物水素濃度抑制設備の主要仕様	
		炉心の著しい損傷が発生した場合において、水素爆発による原	
		子炉建物等の損傷を防止するため、原子炉建物水素濃度抑制設備	
		として PAR を設置する。なお、設置する PAR は、国際的な性能試	
		験の実績があり、欧米で納入実績のある NIS 社製の PAR を採用す	
		る。	
		PAR は,触媒反応を用いて水素と酸素を再結合させて,雰囲気を	
		可燃限界未満に維持する設備であり、触媒カートリッジ及びハウ	
		ジングで構成する。	
		触媒カートリッジは、ステンレス鋼板で形成したフレームの中	
		に触媒を充てんしており、空気と触媒を接触させるために多数の	
		長穴が開けられている。触媒にはパラジウムを使用しており、表	
		面には疎水コーティングを施すことにより、高湿度な雰囲気から	
		触媒を保護し、水素、酸素を触媒に接触し易くしている。	
		ハウジングは、ステンレス鋼製であり、触媒カートリッジを内	
		部に収納し、触媒カートリッジを水素処理に適切な間隔に保持し,	
		水素処理に適切なガスの流れとなるよう設計されている。	
		PAR は、周囲の水素の濃度上昇に応じて結合反応を開始する。触	
		媒反応により水素と酸素を結合させ、その反応熱による上昇流に	
		より触媒表面のガスの流れを促し、結合反応を維持する。触媒を	
		通過したガス及び結合反応により生じた水蒸気は、PAR の上方の	
		排気口より空間内に拡散する。	
		したがって、PAR は、電源及び起動操作を必要とせず、水素と酸	
		素があれば自動的に反応を開始する設備である。	
		PAR <u>の</u> 主要仕様を表 <u>2-1</u> ,概要図を図 <u>2-1</u> に示す。	
1			

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島村	島根原子力発電所 2 号機		
			2-1 PAR の主要仕様	・設備の相違	
		(1) PAR		【柏崎7】	
		種類	触媒反応式		
			0.50kg/h(1 個当たり)		
		水素処理容量	(水素濃度 4. 0vo1%, 大気圧, 温		
			度 100℃)		
		最高使用温度	300℃		
		(2)ハウジング			
		材料 ハウジンタ			
		ブラケッ			
		全高	789mm		
		寸法 幅	460mm		
		奥行	460mm		
		(3)触媒カートリッミ			
		外装パーン			
		材料 リベット			
		小物部品	_		
		幅	-		
		寸法全高	_		
		カートリッジ枚数	22 枚(1 個当たり)		
		(4)触媒	22 仅(1 回ヨたり)		
		基盤材	酸化アルミニウム(アルミナ)		
		触媒材質	パラジウム		
		加州打兵	. , , , , , ,		

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2 号機	備考
		Methon	・設備の相違【東海第二、柏崎 7】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 9. 25 版)		島根原子力発電所	2号機	備考
			2.1.2 原子	<u>炉建物水素濃度抑制設備</u>	の設計方針	
			PAR は,炉	『心の著しい損傷が発生し	た場合において原子炉格納	
			容器から多量	の水素が原子炉建物原子	- 炉棟へ漏えいする過酷な状	
			態を想定した	場合に,原子炉建物原子	上炉棟内の水素濃度が可燃限	
			界未満となる	設計とする。		
			原子炉格約	物容器からの水素の漏えV	・量は、事故シナリオに依存	
			するが,有効	か性評価結果(炉心損傷は	2件う水素発生が想定される	
			事故シナリオ	の中で,原子炉格納容器	足力・温度が高い値で推移	
			し,原子炉格	3納容器から原子炉建物へ	の水素の漏えい量が多くな	
			る「雰囲気圧	力・温度による静的負荷	(格納容器過圧・過温破損)」	
			を選定)を路	皆まえた条件において、原	子炉建物原子炉棟内の水素	
					長条件とした上で,更に過酷	
			な条件を想定	Eして、PAR の設計を実施	する。	
			(1) 水素漏	えい条件		
			水素漏えい	条件は、表 2-2 に示する	とおり,有効性評価結果を踏	
			まえた条件よ	り十分保守的に設定して	いる。	
			表 2	2−2 PAR 設計条件におり	する水素漏えい条件	 ・設備 <mark>及び運用</mark> の相違
					(参考) 有効性評価結果	【東海第二,柏崎 7】
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	=九三1.夕/叶	(雰囲気圧力・温度によ	<mark>設計条件側は</mark> 燃料装
			項目	設計条件	る静的負荷(格納容器過	荷量の相違により、 <mark>ま</mark>
					圧・過温破損))	た,有効性評価結果側は
			水素	約 1000kg	約 200kg	上記のほか, 主に原子炉
			発生量	(AFC(燃料有効部被	(AFC 約 20%相当)	注水開始時間及び原子
			九上里	覆管) 100%相当)	(M C /N J 20 /0 / H)	炉注水に使用するポン
			原子炉			プの性能特性の相違に
			格納容器	10%/day	約1.3%/day (2Pd 時)	より,水素発生量が異な
			漏えい率			る
			a. 水素発生	E量(AFC100%)について	.	
					温度による静的負荷(格納	
					発生量は,約 200kg(AFC 約	・設備の相違
					更に過酷な条件として,約	【東海第二,柏崎 7】
			33333333333333333333333333		のとして PAR を設計する。	燃料装荷量の相違に
						より,水素発生量が異な
						る

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			b. 原子炉格納容器漏えい率について	
			重大事故等時で原子炉格納容器圧力が設計圧力を超える場合の	
			原子炉格納容器漏えい率は,以下の AEC (Atomic Energy	
			Commission) の式から設定する。重大事故等時は,原子炉格納容器	
			圧力が <u>最高使用圧力</u> の 2 倍(以下「2Pd」という。)を超えないよ	
			うに運用するため,2Pd における <u>原子炉格納容器漏えい率</u> が最大	
			漏えい率となり、事故時条件として 200℃, 2Pd, AFC100%相当の	
			水素発生量を想定した場合におけるガス組成 <u>(水素 17vo1%, 窒素</u>	・設備の相違
			更に過酷な条件として 10%/day の漏えい率を仮定し, PAR を設計	
			する。	のため、格納容器容積が
				相違すること及び水素
				発生量の相違によりガ
				ス組成が異なる。
				また,漏えい率算出式
				 には,格納容器圧力,ガ
				ス組成等を入力するが,
				これらの条件が相違す
				ることにより,漏えい率
				が異なる
			(AEC の式)	,
			$L = L_0 \cdot \sqrt{\frac{\left(P_t - P_a\right) \cdot R_t \cdot T_t}{\left(P_b - P_a\right) \cdot R_b \cdot T_b}}$	
			$\Gamma = \Gamma^0 \cdot \left(\frac{\Gamma}{\Gamma} - \frac{\Gamma}{\Gamma} \right) \cdot \frac{\Gamma}{\Gamma} \cdot \frac{\Gamma}{\Gamma}$	
			$\sqrt{\left(P_{b}-P_{a}\right)\cdot R_{b}\cdot I_{b}}$	
			L :原子炉格納容器漏えい率	
			 L ₀ :設計漏えい率	
			P t:原子炉格納容器内圧力	
			P a: 原子炉格納容器外圧力	
			P _b :原子炉格納容器設計圧力	
			R t: 事故時の気体定数	
			R _b : 空気の気体定数	
			T t:原子炉格納容器內温度	
			Ть:原子炉格納容器設計温度	
				l

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島	根原子力発電所 2号機	備考
			2.1.3 原子炉建物水	素濃度抑制設備の設計仕様	
				うき設定した PAR の設計仕様を表 2-3 に示	
			す。		
				表 2-3 PAR 設計仕様	・設備の相違
			項目	仕様	【柏崎7】
				0.50kg/h(1 個当たり)	⑦の相違
			水素処理容量	(水素濃度 4.0vol%,大気圧,温度	・設備の相違
				100℃において)	【東海第二,柏崎 7】
			PAR 設置個数	18 個	⑧の相違
			設置箇所	原子炉建物原子炉棟4階	
			(1) 水素処理容量に	ついて	
			PAR の水素処理容量	は、以下の基本性能評価式によって表され	
			る。		
			$DR = A \cdot \left(\frac{C_{H2}}{C_{H2}}\right)^{1.307}$	$\cdot \frac{P}{T} \cdot 3600 \cdot S F \cdot \cdot \cdot \cdot \cdot (2.1)$	
			100	T (2.1)	
			DR:水素処理容量[l	—	
			A : 定数		
			C _{H2} :PAR 入口水素濃	とという。 使[vol%]	
			P : 圧力[10 ⁵ Pa]		
			T :温度[K]		
			SF:スケールファク		
				かによる開発試験を通じて、温度、圧力、水	
				ドをパラメータとした水素処理容量の相関式	
				は,単位時間当たり PAR 内部を通過し,酸	
				さる水素の重量を示している。	
				は、触媒カートリッジの寸法及び間隔を開発	
				を前提とし、開発試験時に使用された触媒	
				8枚)に対して、実機で使用する PAR の触媒	
			カートリッジ枚数の比	ととして設定されている。島根原子力発電所	
				AR の触媒カートリッジ枚数は, <u>22</u> 枚であり,	・設備の相違
			スケールファクタは,	「 $22/88 (=0.25)$ 」となる。	【柏崎7】
					⑦の相違のため,触媒
					カートリッジ枚数及び
					スケールファクタが異
					なる

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 9. 25 版)		島根原子力発電所 2 号機	備考
			これらに碁	₹ <u>2−4</u> の条件を設定し, PAR の水素処理容量は,	
			<u>0.50</u> kg/h (1	<u>個</u> 当たり)(水素濃度 4.0vol%,大気圧,100℃)と	・設備の相違
			する。		【柏崎7】
					⑦の相違
				表 2-4 水素処理容量の設定条件	
			項目	設定条件	
			水素濃度	水素の可燃限界濃度 4.0vol%未満に低減する	
			C _{H2}	ため、4.0vo1%とする。	
				重大事故等時の原子炉建物原子炉棟の圧力は,	
			┃ ┃ 圧力 P	原子炉格納容器からのガスの漏えいにより大気	
				圧より僅かに高くなると考えられるが、保守的	
				に大気圧 (1.01325×10 ⁵ Pa) とする。	
			温度T	保守的に 100℃ (373.15K) とする。	
			(2) PAR 設置	量個数	
			PAR の実機	設計においては,PARの設置環境を踏まえ,式(2.1)	
			に反応阻害物	質ファクタ (F _{inhibit}) を乗じた式 (2.2) を用い	
			る。		
			反応阻害物	質ファクタとは、重大事故等時に原子炉格納容器内	
			に存在するカ	ス状よう素による PAR の性能低下を考慮したもので	
			あり, 島根原	子力発電所第2号機の実機設計における水素処理容	
			量は, PAR の	水素処理容量(<u>0.50</u> kg/h(1 <u>個</u> 当たり))に 0.5 を乗	・設備の相違
			じた <u>0.25</u> kg/	h(1 <u>個</u> 当たり)とする。	【柏崎7】
					⑦の相違
			$DR = A \cdot \left(\frac{1}{2}\right)$	$\left(\frac{C_{H2}}{100}\right)^{1.307} \cdot \frac{P}{T} \cdot 3600 \cdot S F \cdot F_{\text{inhibit}}$ • • • (2. 2)	
			DR :	水素処理容量[kg/h (1 <u>個</u> 当たり)]	
			A :	定数	
			C_{H2} :	PAR 入口水素濃度[vol%]	
			P :	圧力[10⁵Pa]	
			Т :	温度[K]	
			SF :	スケールファクタ[= <u>0.25</u>]	・設備の相違
			Finhibit	反応阻害物質ファクタ[=0.5]	【柏崎 7】
					⑦の相違により,スケ
					ールファクタが異なる

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			これに表 $2-2$ で設定した PAR 設計条件を踏まえ,PAR <u>の必要</u> ℓ	1
			<u>数 17 個以上に余裕を見込み 18 個</u> 設置する。	・設備の相違
			PAR 必要個数=水素発生量×原子炉格納容器漏えい率/	【東海第二,柏崎7】
			24[h/day]/設計水素処理容量	⑧の相違
			= <u>1000</u> [kg]×10[%/day]/24[h/day]/ <u>0.25</u> [kg/h(1 <u>個</u> 当たり)]	・設備の相違
			=16.7[個]	【東海第二,柏崎7】
				燃料装荷量の相違に
				より,水素発生量が異な
				る。また、⑦の相違
				設備の相違
				【東海第二】
				④の相違

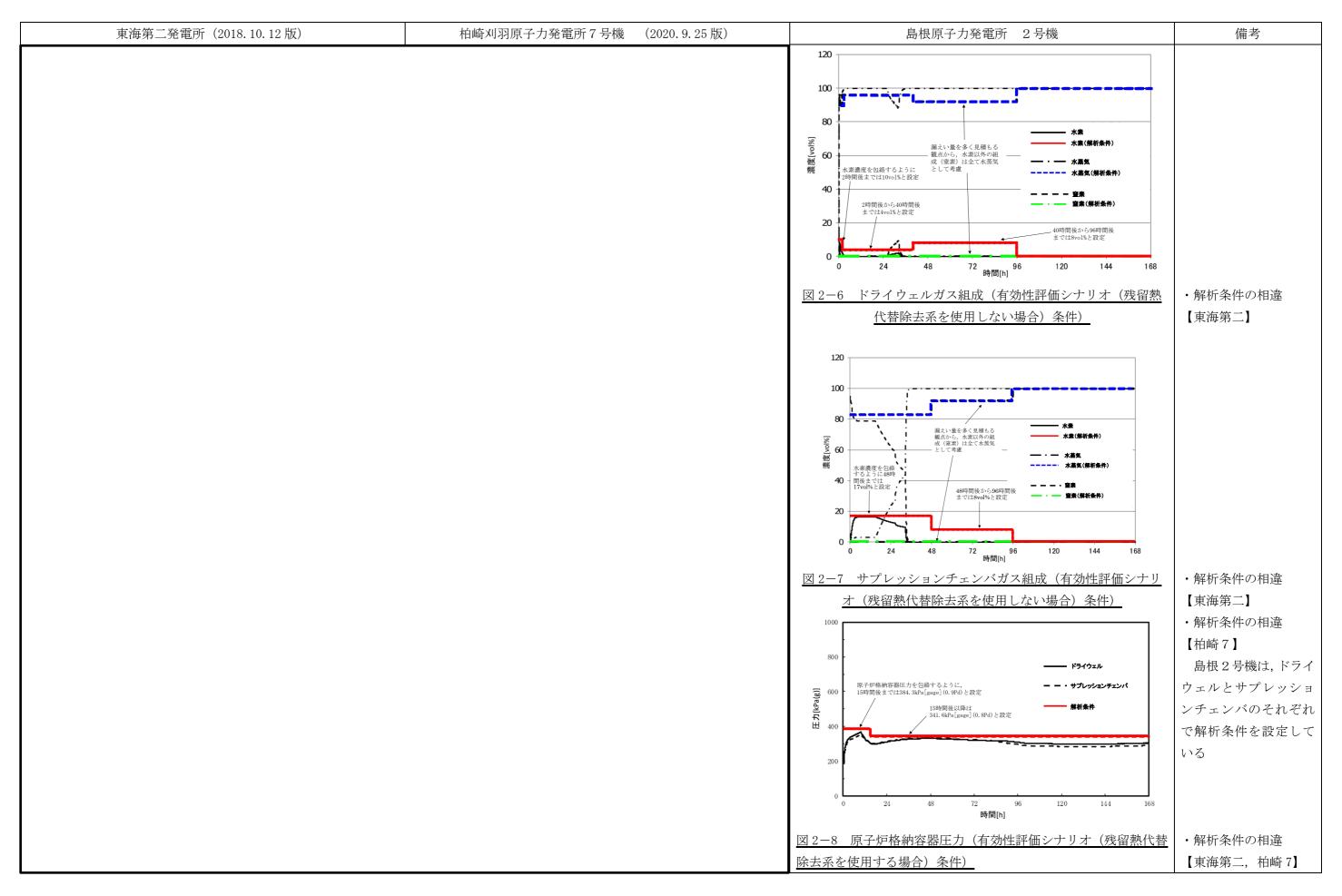
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2号機	備考
]	

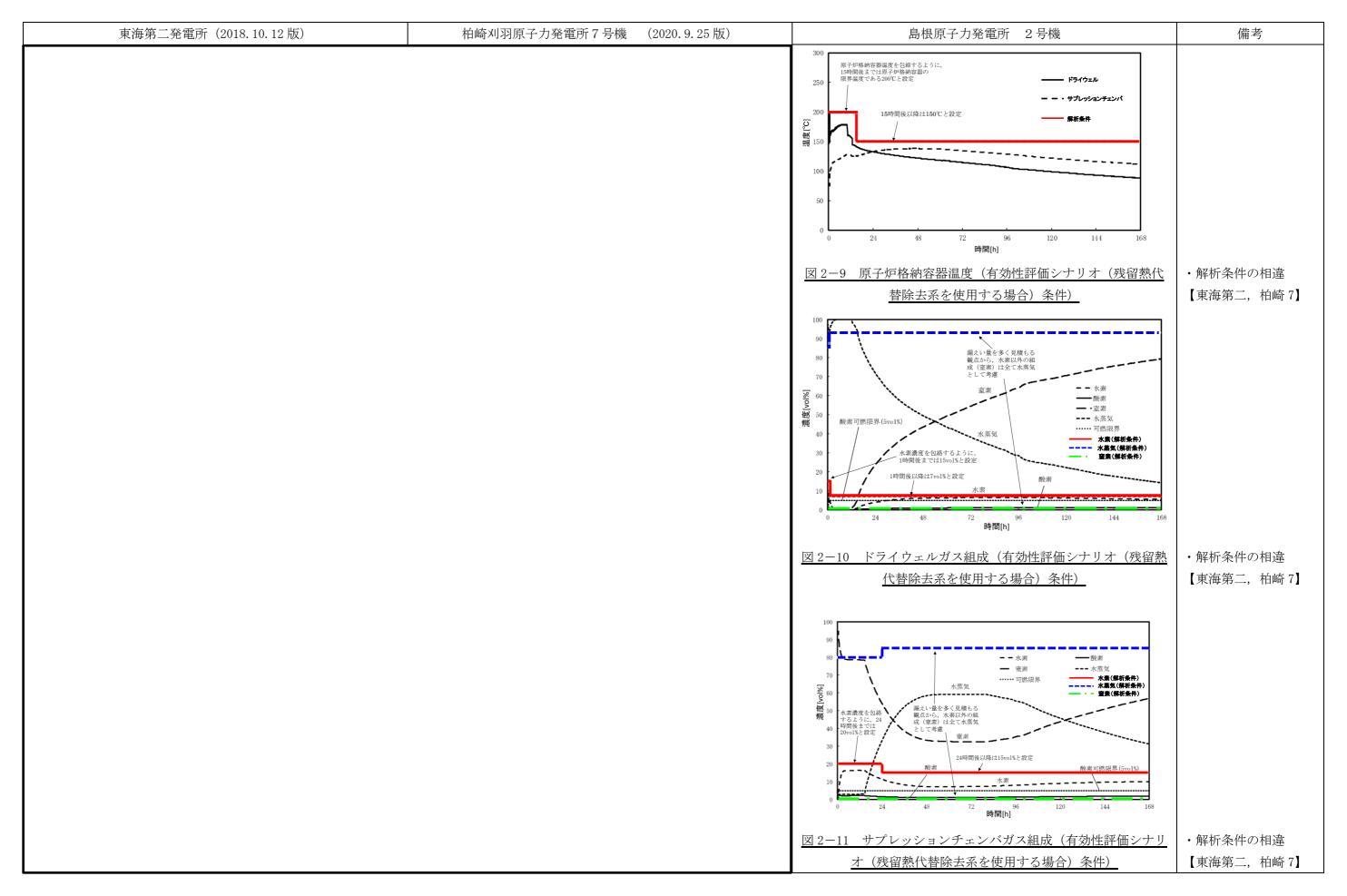
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2号機	備考
		2.2 原子炉建物原子炉棟の水素挙動	
		PAR の効果について、GOTHIC コードによる解析により <u>原子炉建物原子炉棟</u> の水素挙動を確認する。	・設備の相違 【東海第二】
		2000年期を確認する。	④の相違
		解析条件を表 2-5 及び表 2-6 に,原子炉建物原子炉棟の解析	
		モデルを図 2-2 に,解析モデルにおける原子炉建物原子炉棟 4 階	
		<u>の PAR の配置を</u> 図 <u>2-3</u> に <u>示す。</u>	
		PAR を設置している <u>原子炉建物原子炉棟4階</u> においては, <u>90個</u>	
		のサブボリュームに分割し、設置位置に該当する各ボリュームに	【東海第二,柏崎 7】
		PAR を模擬したモデルを設定している。 大物搬入口及び <u>地下ハッチ</u> 領域については、自然対流を模擬す	・解析条件の相違
		人物版八口及い <u>地下バッケ</u> 関域については、日然対価を模擬するため幾つかのサブボリュームに分割している。	【東海第二】
		C. Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	■> SIGE> V

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)		Į.	島根原子力発電所 2号機		備考
					表 2-5 PAR の解析条件		・解析条件の相違
			No	項目	説明	入力値	【東海第二,柏崎 7】
			PA	AR の性能 (NIS 製 AR-22) 1)水素処理容量 D R	$DR = A \cdot \left(\frac{C_{H2}}{100}\right)^{1307} \cdot \frac{P}{T} \cdot 3600 \cdot SF$	-	
				,,,,,,,	DR:水素処理容量[kg/h (1個当たり)] A:定数		
					C _{H2} : PAR 入口水素濃度[vo1%] P : 圧力[10 ⁶ Pa] T : 温度[K]		
					SF: スケールファクタ[-]		
				2)反応阻害物質ファ タF _{inhibit}	製造上の性能のばらつき, プラント運転中及び事故時の 劣化余裕を考慮する。	0.5 (事故初期 より一定)	
				8)低酸素ファクタ 1 ow 0 2	低酸素ファクタは、以下のとおりとする。ただし、1以上の場合は全て1とし、0未満の場合は全て0とする。	_	
					$F_{\rm lowOZ} \ = 0.7421 \left(\frac{C_{\rm O2}}{C_{\rm H2}}\right)^3 - 0.6090 \left(\frac{C_{\rm O2}}{C_{\rm H2}}\right)^2 + 0.7046 \left(\frac{C_{\rm O2}}{C_{\rm H2}}\right) - 0.026$		
					C _{O2} :酸素濃度[vol%]		
				1)起動水素濃度 _{H2 o n}	国内試験で起動が確認されている範囲に余裕を見た値	1.5vo1%	
				5)起動酸素濃度	同上	2. 5vo1%	
			(6)	i)起動遅れ	考慮しない	_	
				AR 個数	実際の設置個数	18個	
			3 PA	AR 設置位置	図 2-3 参照	_	

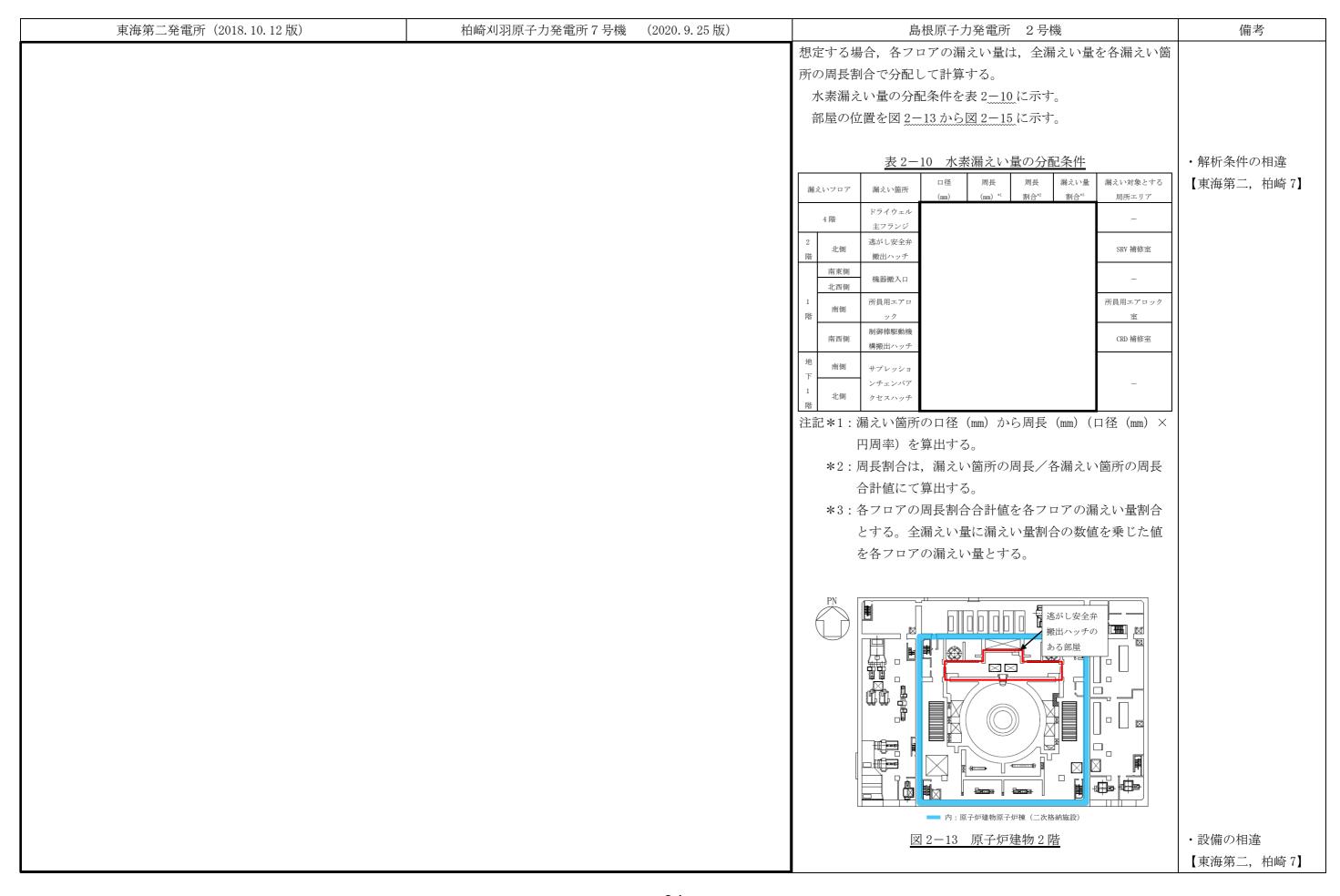
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)		島村	限原子力発電所 2-	号機	備考
				表	2-6 その他解析第	<u></u> ()	・解析条件の相違
			No	項目	入力値	備考	【東海第二,柏崎 7】
			1	原子炉建物原子炉棟の条件			-21414214-17 HBM 1
				(1)圧力(初期条件)	大気圧	4 階中心高さにおける圧力を	
						101.325kPa とし,他階は4階中心	
						高さより空気の水頭差を考慮した	
						値とする。	
				(2)温度(初期条件)	40℃	想定される高めの温度として設定	
				(3)組成(初期条件)	相対湿度 100%の空気	想定される高めの湿度として設定	
				(4)空間容積(固定)	4階: 41300m³		
					3 階: 9000m³		
					2 階: 10900m³		
					1階: 13700m³		
				(1) 開口工徒 (田克)	地下階: 18400m³		
				(5)開口面積(固定)	4階-3階:39㎡		
					3 階-2 階: 39m ² 2 階-1 階: 39m ²		
					2 階-1 階: 39m ² 1 階-地下階: 3. 24m ²		
			0	圧力境界条件	1 門 20 1 門 . 3. 2407		
				(1)圧力(固定)	101. 325kPa	大気圧	
				(2)温度(固定)	40°C	想定される高めの温度として設定	
				(3)酸素濃度(固定)	21vo1%	乾燥空気の組成	
				(4)窒素濃度(固定)	79vo1%	同上	
			3	流出条件			
				(1)位置	原子炉建物原子炉棟4階	原子炉建物原子炉棟の気密性を考	
						慮し設定	
			4	放熱条件			
				(1)內壁熱伝達率(原子炉建物	凝縮熱伝達及び自然対流熱伝	GOTHIC コード内のモデルを使用	
				原子炉棟4階壁面)	達を考慮	・凝縮熱伝達モデル: DLM-FM	
						・自然対流熱伝達モデル:垂直平	
						板(壁面),水平平板(天井)	
				(2)壁厚さ (固定)	下部壁:	躯体図より算出	
					上部壁:		
				(a) Bt ア 執 ト ソ サ / ワ ナ \	天井 :	_ \	
				(3)壁面熱伝導率(固定) (4)壁の比熱(固定)	1.5W/m/K 1kJ/kg/K	コンクリートの物性 同上	
				(5)壁の密度(固定)	1KJ/Kg/K 2400kg/m ³	同上	
				(6) 外壁熱伝達率(壁面-外	5W/m ² /K	原子炉建物原子炉棟の外壁面にお	
				気)		ける自然対流熱伝達率を想定	
					40℃	想定される高めの温度として設定	
				(7)外気温(固定)	下部壁: 478.82m²,474.37m²	躯体図より算出	
				(8) 放熱面積 (固定)	上部壁: 634.84㎡, 470.82㎡		
					天井: 2146.62㎡, 720.92㎡		
			<u> </u>				1

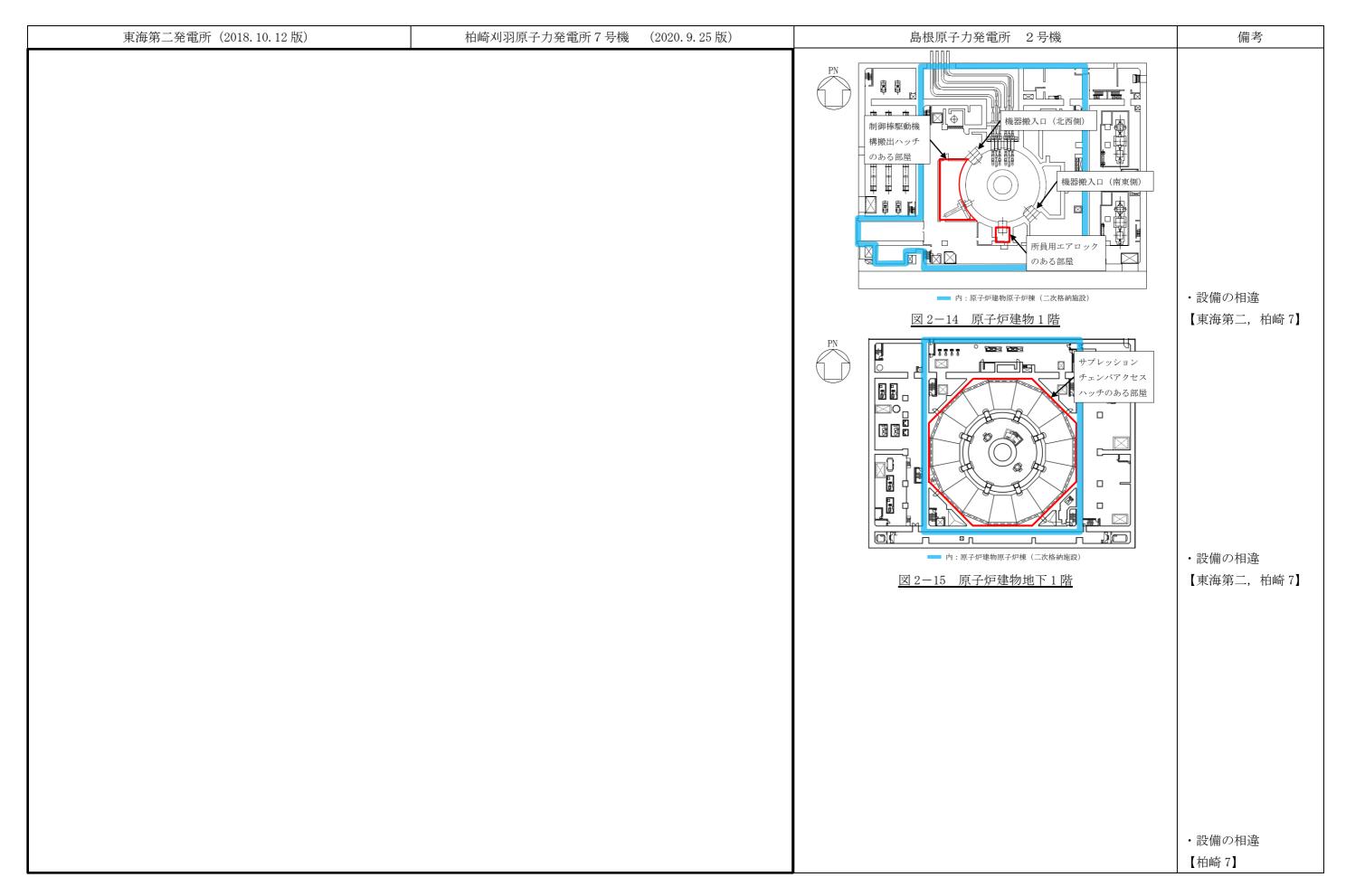
・資料構成の相違【東海第二】	東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
島根 2 号機は、表 2-6 に記載 ・解析条件の相違 【東海第二】		•		・ 資料構成の相違
6 に記載 ・解析条件の相違 【東海第二】				【東海第二】
・解析条件の相違 【東海第二】				島根2号機は,表2-
【東海第二】				6に記載
【東海第二】				
				④の相違


東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
来海第一元度[J](2010, 10, 12 度)	111mm (4)77/K 1 7 7 7 K Eq. (2) (2) (3) (2) (4)	図 2-2 GOTHIC 解析モデル	・解析モデルの相違【東海第二、柏崎7】
		図 2-3 原子炉建物原子炉棟 4 階サブボリューム分割図	・解析モデルの相違 【東海第二,柏崎7】

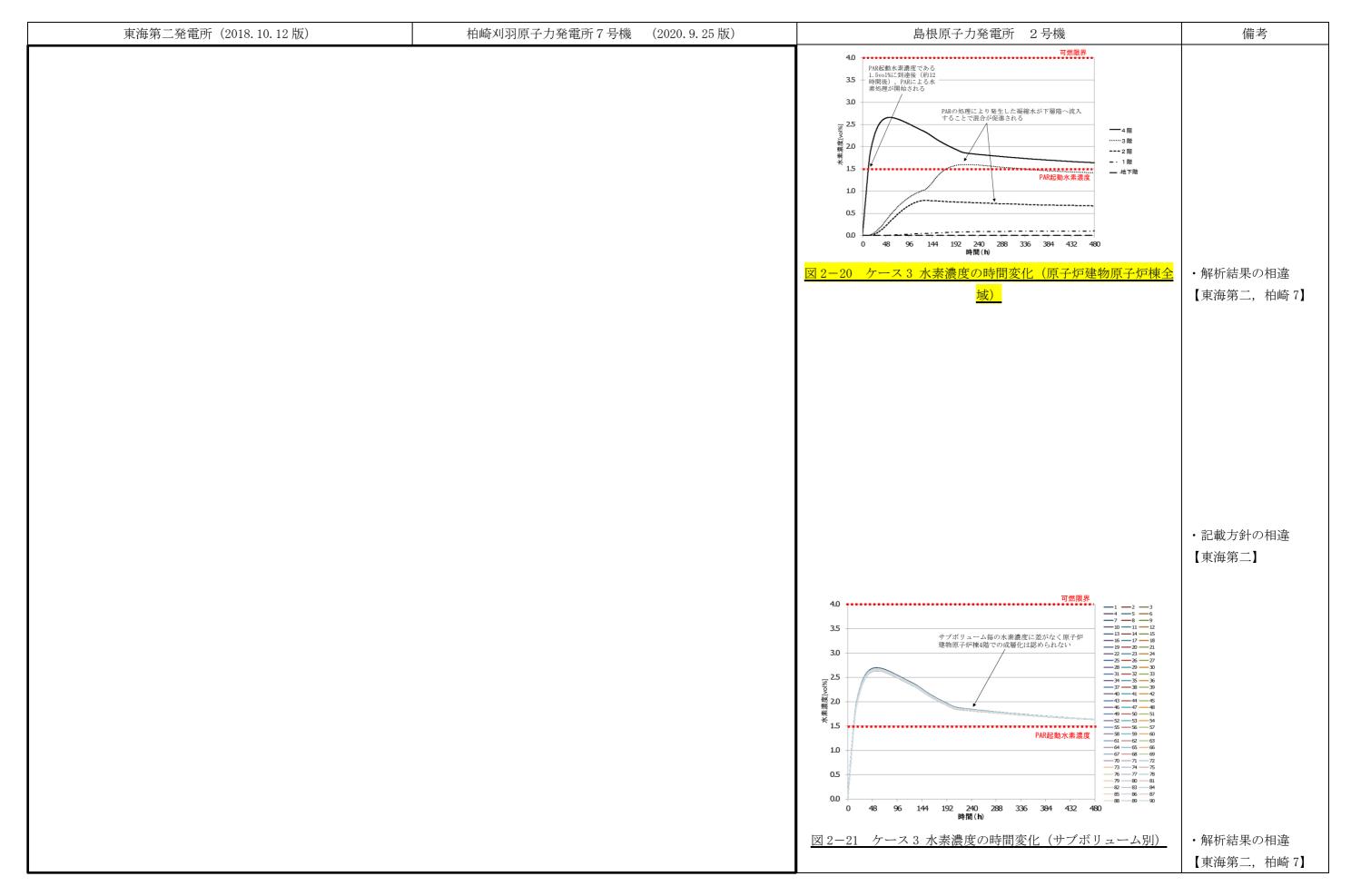

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			荷(格納容器過圧・過温破損)(残留熱代替除去系を使用しない場	
			合)」のシナリオにおける原子炉格納容器圧力,原子炉格納容器温	
			度及び原子炉格納容器ガス組成をそれぞれ以下のとおり設定す	
			る。	
			圧力については, <u>15 時間後までは原子炉格納容器の最高使用圧</u>	・解析条件の相違
			力 427kPa(1Pd), 15 時間後から解析上の格納容器ベント想定時刻	【柏崎7】
			である 96 時間後までは原子炉格納容器の限界圧力 853kPa (2Pd)	
			とする。	
				・解析条件の相違
				【柏崎7】
			解析上の格納容器ベント想定時刻以降は水蒸気のみの漏えいと	・解析条件の相違
			なり、原子炉格納容器内の水素濃度が増加することはなく、また	【柏崎 7】
			漏えい量も小さく影響は軽微であることから、原子炉格納容器の	
			<u>最高使用圧力の 0.2 倍である 85.3kPa (0.2Pd)</u> を解析条件とする。	・解析条件の相違
				【柏崎 7】
				hand a fact of the fact
			温度については、原子炉格納容器の限界温度 200℃とし、解析上	・解析条件の相違
			の格納容器ベント想定時刻以降は、原子炉格納容器の最高使用温	【柏崎 7】
			度 171℃とする。	
			ガス組成については、解析上の格納容器ベント想定時刻までは、	・解析条件の相違
			有効性評価の MAAP 解析結果を包絡するように設定し、解析上の格物容器がいた相字時刻以及は、原子原教物容器内は全て水蒸気を	【柏崎 7】
			納容器ベント想定時刻以降は、原子炉格納容器内は全て <u>水蒸気</u> と	
			仮定し、水蒸気のみの漏えいが継続するものとする。 原ス原物物容器混えい変については、トラの圧力、温度、ガス	- 細七冬小の担告
			原子炉格納容器漏えい率については、上記の圧力、温度、ガス 組成を用いてAFCのまたり質出した値を包含する値として、15時	・解析条件の相違
			組成を用いて AEC の式より算出した値を包絡する値として, 15 時 関係までは 0.59//dow 15 時間後から 06 時間後までは 1.29//dow	【柏崎 7】
			間後までは 0.5%/day, 15 時間後から 96 時間後までは 1.3%/day, 06 時間後までは 1.3%/day, late は	
			96 時間後以降は 0.5%/day とする。	
			b. 有効性評価シナリオ(残留熱代替除去系を使用する場合)条	・資料構成及び解析条
				・資料構成及い解析条件の相違
			<u>件</u>	竹切附基

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
	•	原子炉格納容器からの漏えい条件を表 2-8 に示す。漏えいする	【東海第二】
		ガスの圧力、温度、ガス組成(水蒸気分率、水素分率、窒素分率)	⑪の相違
		は、図2-8から図2-11に示す「雰囲気圧力・温度による静的負	
		荷(格納容器過圧・過温破損)(残留熱代替除去系を使用する場合)」	
		のシナリオにおける原子炉格納容器圧力,原子炉格納容器温度及	
		び原子炉格納容器ガス組成をそれぞれ以下のとおり設定する。	
		圧力については、有効性評価の MAAP 解析結果を包絡する値とし	・解析条件の相違
		て, 15 時間後までは 384.3 (0.9Pd), 15 時間後以降は 341.6kPa (0.	【柏崎7】
		8Pd) とする。	
		温度については、有効性評価の MAAP 解析結果を包絡する値とし	・解析条件の相違
		て, 15 時間後までは原子炉格納容器の限界温度 200℃とし, 15 時	【柏崎7】
		間後以降は150℃とする。	
		ガス組成については, <u>有効性評価の MAAP 解析結果を包絡するよ</u>	・解析条件の相違
		<u>うに設定する。また、漏えい量を多く見積もる観点から、水素以</u>	【柏崎7】
		外の組成を水蒸気として扱う。	
		原子炉格納容器漏えい率については、上記の圧力、温度、ガス	・解析条件の相違
		組成を用いて AEC の式より算出した値を包絡する値として, 15 時	【柏崎7】
		間後までは 0.87%/day, 15 時間後から 24 時間後までは 0.78%	
		/day, 24 時間以降は 0.76%/day とする。	
		<u>c</u> . 設計条件	
		原子炉格納容器からの漏えい条件を表2-9に示す。格納容器べ	
		ントは、想定せず、原子炉格納容器漏えい率は10%/day が一定で	
		漏えいする保守的な条件と設定する。漏えいするガスの組成は,	・解析条件の相違
		原子炉格納容器漏えい率に応じて時間とともに水素及び窒素が減	【柏崎7】
		少し、その減少分は、水蒸気に置き換わる条件とする。漏えいす	
		るガス組成の時間変化を図2-12に示す。	


東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)		島根原子力発電所	斤 2号機	備考
			表 2-7 有効性語	平価シナリオ(残留	熱代替除去系を使用しない場	・解析条件の相違
			<u>合)</u>	条件		【東海第二,柏崎 7】
			項目 0~ 2~ 15h 圧力 427kPa[g] (1Pd) 温度 2 (1Pd) 2 (1Pd) 2 (1Pd) 2 (1Pd) 2 (1Pd) 4 (1Pd)	解析条件 D/W 15~ 40~ 48~ 96h~ 40h 48h 96h 96h~ 853&Pa[g] 85.3&Pa[g] (0.2Pd) (0.2Pd) 200°C 171°C ol% 92vol% 100vol% 0vol% 0vol% 0vol% 0vol% 1.3%/day 0.5%/day 2 階及び1階の離えい条件	字 S/C 0~ 2~ 15~ 40~ 48~ 96h~ 2h 15h 40h 48h 96h 96h~ 427kPa[g] 853kPa[g] 85.3kPa[g] (0.2Pd) (0.2Pd) 200°C 177°C 83vol% 92vol% 100vol% 17vol% 8vol% 0vol% 0vol% 0vol% 0vol% 0.5%/day 1.3%/day 0.5%/day	
			条件	解析条件 D/W	S/C	解析条件の相違【東海第二】①の相違
			0~1h 1~ 384.3kPa[g] 圧力	341.6kPa[g]	0~1h 1~15h 15~24h 24h~ 384. 3kPa[g] 341. 6kPa[g]	・解析条件の相違
			(0.9Pd) 温度 200°C 水蒸気分率 85vol%	(0. 8Pd) 150°C 93vo1%	(0.9Pd) (0.8Pd) 200°C 150°C 80vo1% 85vo1%	【柏崎7】
			水素分率 15vol% 窒素分率	7vo1% 0vo1%	20vol% 15vol% 0vol%	
			原子炉格納容器 漏えい率 0.85%/day 0.829 備考 4 階, 2	%/day 0.73%/day 2階及び1階の漏えい条件	0.87%/day 0.78%/day 0.76%/day 地下陪の漏えい条件	
				-9 設計条件にお		解析条件の相違【事海第二 - 拉崎 2】
			項目	解析条件	備考	【東海第二,柏崎 7】
			圧力	853kPa[gage] (2Pd)		
			温度	200℃	原子炉格納容器漏えい率に応じ	
			水素分率 	17vo1% 16vo1%	て時間とともに水素及び窒素が	
			水蒸気分率	67vo1%	減少し、その減少分は、全て水 蒸気に置き換わる条件とする。	
			原子炉格納容器	10%/day		
			漏えい率			


東海第二発電所(2018. 10. 12 版) 柏崎刈羽原子力発電	「7号機 (2020.9.25版) 島根原子力発電所	2 号機 備考
来海第二宪电灯(2016.10.12.1度)	1000 15時間後から 原来圧力である 15時間後から 原来圧力である 15時間後 15時間後 15時間後 15時間 1	1

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2 号機	備考
		100	・解析条件の相違 【東海第二】 ・解析条件の相違 【柏崎7】 島根2号機は,原子炉 格納容器漏えい率に応 じて時間とともに水素 及び窒素が減少し,その 減少分は,全て水蒸気に
			置き換わる条件としている
		(2) 漏えい箇所 漏えい箇所は、以下のドライウェル主フランジ及び原子炉格納 容器ハッチ類の貫通部とする。・ドライウェル主フランジ(原子炉建物原子炉棟4階)	
		・逃がし安全弁搬出ハッチ(原子炉建物原子炉棟2階) ・機器搬入口(2箇所)(原子炉建物原子炉棟1階) ・所員用エアロック(原子炉建物原子炉棟1階) ・制御棒駆動機構搬出ハッチ(原子炉建物原子炉棟1階) ・サプレッションチェンバアクセスハッチ(2箇所)(原子炉建物原子炉棟地下1階) ドライウェル主フランジからの水素漏えいは、ドライウェル主フランジがある原子炉ウェル内の下層階へ通じる原子炉ウェル排気ライン吸込口の閉止及び原子炉ウェル水張りラインのドレン弁の閉運用への変更を実施することから、原子炉建物原子炉棟4階	・設備の相違 【東海第二,柏崎 7】
		(<u>ドライウェル主フランジ</u>)のみから漏えいする条件又は複数フロアから漏えいする条件を使用する。複数フロアからの漏えいを	

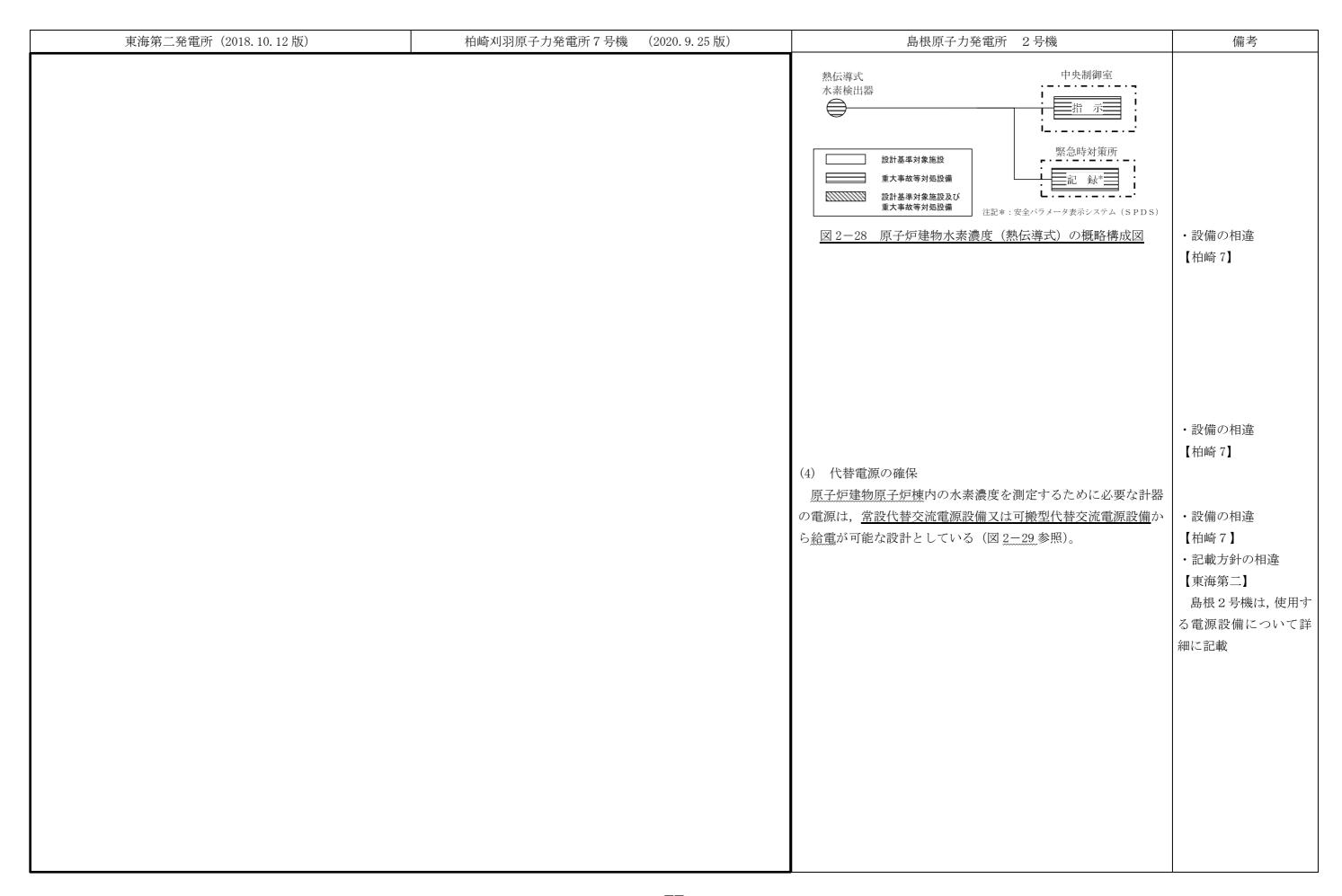

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)		島根原子力発	電所 2号機		備考
							・資料構成及び解析系
							件の相違
							【東海第二】
							⑪の相違
			2.2.2 解析約	吉果			
			2.2.1 に示	した解析条件の組合	せから、表 2-11	に示す <u>3</u> ケー	・解析条件の相違
			スを選定し,	解析を行った。			【東海第二】
				表 2-11	解析ケース		・解析条件の相違
				ケース 1	ケース 2	ケース 3	【東海第二,柏崎7】
			モデル	原子炉建物原子	炉棟 全階を模擬し	たモデル	
				有効性評価シナリ	有効性評価シナ		
				オ(格納容器過	リオ(格納容器		
			シナリオ	圧・過温)(残留	過圧・過温) (残	設計条件	
					留熱代替除去系	設計条件	
				熱代替除去系を使	を使用する場		
				用しない場合)	合)		
			》 Lean Mar	原子炉建物原子炉	原子炉建物原子	原子炉建	
			漏えい箇	棟 4 階, 2 階, 1	炉棟4階,2階,	物原子炉	
			所	階,地下1階	1階,地下1階	棟 4 階	
			原子炉格	1.00//:	0.070//:		
			納容器漏	1.3%/day	0.87%/day	10%/day	
			えい率	(最大)	(最大)		
			L	1	1		

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			ケース1:有効性評価シナリオ「雰囲気圧力・温度による静的負荷 (格納容器過圧・過温破損) <u>(残留熱代替除去系を使用しない場合)</u> 」において、各フロアに水素が漏えいした場合の建物内挙動を 確認するため、全漏えい量を原子炉建物原子炉棟4階及び下層階	
			(2 階, 1 階, 地下 1 階) に分配した条件での水素濃度の時間変化を評価する。	・設備の相違【東海第二,柏崎7】・設備の相違【東海第二】④の相違
			ケース 2: 有効性評価シナリオ「雰囲気圧力・温度による静的負荷 (格納容器過圧・過温破損)(残留熱代替除去系を使用する場合)」 において、各フロアに水素が漏えいした場合の建物内挙動を確認 するため、全漏えい量を原子炉建物原子炉棟 4 階及び下層階(2 階、1 階、地下 1 階)に分配した条件での水素濃度の時間変化を評 価する。	・解析条件の相違 【東海第二】 島根2号機は,有効性 評価シナリオに基づく 解析条件について,残留 熱代替除去系を使用す る場合と使用しない場 合に分けて条件を設定 している
			ケース 3: PAR の設計裕度の確認を行うため、ケース 1 <u>及びケース</u> 2 のシナリオに対して十分保守的に設定した PAR 設計条件(10% /day)を用いて、全漏えい量が原子炉建物原子炉棟 4 階から漏えいする場合の水素濃度の時間変化を評価する。	・解析条件の相違【東海第二】・設備の相違【東海第二】
			(1) ケース 1 有効性評価シナリオ「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(残留熱代替除去系を使用しない場合)」において、各フロアに水素が漏えいした場合の建物内挙動を確認するため、原子炉建物原子炉棟4階及び下層階から漏えいした場合の水素濃度の時間変化を評価した。解析結果を図2-16に示す。また、原子炉建物原子炉棟4階における水素の成層化を確認するため、原子炉建物原子炉棟4階を90個のノードに区切ったサブボリューム別の水素濃度の時間変化を図2-17に示す。	・解析条件の相違 【東海第二,柏崎 7】
			下層階から漏えいした水素は、大物搬入口及び <u>トーラス室上部</u> ハッチ領域を通じて原子炉建物原子炉棟全域で水素濃度が均一化	・設備の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020.9.25版)	島根原子力発電所 2号機	備考
			される。また、事故発生後96時間で解析上の格納容器ベントが行	・設備の相違
			われ,原子炉建物原子炉棟の水素濃度は,PAR 起動水素濃度である	【東海第二】
			1.5vo1%未満となる結果となった。	④の相違
				・解析条件の相違
				【柏崎 7】
			可燃限界	
			3.5	
			33	
			3.0	
			2.5	
			2.5	
			照 PAR起動水素濃度	
			1.0	
			水素濃度は、解析上の格納容器ペントの排出効果によって、 PAR起動水素濃度である1.5vol%未満で推移	
			0.5	
			0.0	
			図 2-16 ケース 1 水素濃度の時間変化(原子炉建物原子炉棟全	・解析結果の相違
			<u> </u>	【東海第二,柏崎 7】
			<u>域)</u>	【水/毋尔—,们啊(】
			PAR起動水素濃度	
			1.5 ————————————————————————————————————	
			— 19 — 20 — 21 — 22 — 23 — 24 — 25 — 26 — 27	
			1.0 ————————————————————————————————————	
			W	
			###	
			61 —62 —63	
			73 - 74 - 75 - 76 - 77 - 78 - 79 - 80 - 81	
			0.0 = \$2 - 83 - 84 - 85 - 86 - 87 - 88 - 89 - 90	
			0 24 48 72 96 120 144 168 時間(h)	
			図 2-17 ケース 1 水素濃度の時間変化(サブボリューム別)	・解析結果の相違
				【東海第二,柏崎 7】
			<u>(2) ケース 2</u>	・解析条件の相違
			有効性評価シナリオ「雰囲気圧力・温度による静的負荷(格納	【東海第二】
			容器過圧・過温破損) (残留熱代替除去系を使用する場合)」にお	島根2号機は,有効性
			いて、各フロアに水素が漏えいした場合の建物内挙動を確認する	評価シナリオに基づく
			ため,原子炉建物原子炉棟4階及び下層階から漏えいした場合の	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2号機	備考
			水素濃度の時間変化を評価した。解析結果を図 2-18 に示す。	熱代替除去系を使用す
			また,原子炉建物原子炉棟4階におけるサブボリューム別の水	る場合と使用しない場
			素濃度の時間変化を図 2-19 に示す。	合に分けて条件を設定
				している
				And the Advent
			残留熱代替除去系を使用する事故発生後 10 時間以降において	
			も、原子炉格納容器内に水素を保有しているため、漏えいが継続 するが、原子炉枠物原子炉枠の水素濃度は DAR お野水素濃度でき	【柏崎 7】
			するが,原子炉建物原子炉棟の水素濃度は PAR 起動水素濃度である 1.5vo1%未満となる結果となった。	
			<u> 3 1. 5001 /0 不何 こ な る </u>	
			4.0 可燃限界	
			3.5	
			3.0	
			4階	
			機 W	
			1.0	
			水素濃度は、PAR起動水素濃度で ある1.5vol%末満で推移	
			0.0	
			0 24 48 72 96 120 144 168 時間(h)	Andrews III or least
			図 2-18 ケース 2 水素濃度の時間変化(原子炉建物原子炉棟全	・解析結果の相違
			<u>城)</u> PAR起動水素濃度	【柏崎 7】
			15 —1 —2 —3 —4 —5 —6 —7 —8 —9	
			-10 -11 -12 -15 -15 -16 -17 -18	
			1.0 = -19 - 20 - 21 - 22 - 24 - 25 - 26 - 27 - 28 - 29 - 30	
			21 - 22 - 22	
			1	
			照	
			-70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81	
			0.0 = 82 = 83 = 94 - 85 = 86 = 87 - 88 = 99 = 90	
			0 24 48 72 96 120 144 168 時間[h]	
			図 2-19 ケース 2 水素濃度の時間変化(サブボリューム別)	・解析結果の相違
				【柏崎7】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2号機	備考
		(3) ケース 3 設計裕度の確認を行うため、有効性評価シナリオに対して十分 保守的に設定した仮想的な条件である PAR 設計値(水素発生量 AFC100%相当及び原子炉格納容器漏えい率 10%/day)を用いて評価した水素が全量 PAR 設置エリアである原子炉建物原子炉棟 4 階のみから漏えいすると仮定して、水素濃度の時間変化を評価した。解析結果を図 2-20 に示す。	
		また、原子炉建物原子炉棟4階におけるサブボリューム別の水素濃度の時間変化を図2-21に示す。 図2-20に示すとおり、設計条件の水素発生量に対してPARによる水素処理が効果を発揮し、原子炉建物原子炉棟内の水素濃度上昇が抑制され、可燃限界に至ることはない。	【東海第二】
		さらに、解析上は格納容器ベントを考慮していないが、原子炉建物水素濃度が 2.5vol%に到達した場合、原子炉格納容器から異常な漏えいが発生しているものと判断し、格納容器フィルタベント系による格納容器ベントを実施する運用としており、格納容器ベント実施によって、原子炉格納容器からの漏えい量は減少することから、水素濃度が可燃限界に到達することはない。原子炉格納容器からの想定を超える水素漏えい時の対応フローを図 2-22に示す。	
		一化されており、成層化しない。	


東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
東海第二発電所 (2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	# 2	・運用の相違 【東海第二、柏崎 7】
		原子炉建物水素濃度を設ける設計とする。 原子炉建物水素濃度は、中央制御室及び緊急時対策所において 連続監視できる設計とする。	
		原子炉建物水素濃度は、常設代替交流電源設備又は可搬型代替 交流電源設備から給電が可能な設計とする。	・設備の相違【柏崎 7】⑥の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
				・記載方針の相違
				【東海第二】
				島根2号機は,使用す
				る電源設備について詳
				細に記載
			原子炉建物原子炉棟内に漏えいした水素は,比重の関係で原子	
			炉建物原子炉棟4階まで上昇し、滞留することが予想される。PAR	
			は、水素を処理する際の熱でガス温度が上昇するため、PARにより	
			上昇気流が発生し、原子炉建物原子炉棟4階の水素は、自然対流	
			により拡散される。これらを考慮し、設置位置は、水素が最終的	
			に滞留する <u>原子炉建物原子炉棟 4 階</u> の <u>壁面及び</u> 天井付近とする	・設計方針の相違
			(図 <u>2-23</u> 参照)。	【東海第二,柏崎 7】
			なお,局所エリア <u>及びトーラス室</u> に漏えいした水素を早期検知	・設備の相違
			及び滞留状況を把握することは、水素爆発による原子炉建物原子	【東海第二,柏崎 7】
			<u>炉棟の損傷を防止するために有益な情報になることから</u> ,局所エ	⑩の相違
			リア <u>及びトーラス室</u> に漏えいした水素を <u>測定</u> するため <u>原子炉建物</u>	・設備の相違
			水素濃度を設置し、事故時の監視性能を向上させる(図 2-24 か	【東海第二,柏崎 7】
			<u>ら図 2-26</u> 参照)。	⑩の相違
			また, 非常用ガス処理系を使用する場合, 水素が非常用ガス処	・記載方針の相違
			理系に流入する可能性があることから,非常用ガス処理系の吸込	【東海第二,柏崎 7】
			配管近傍に原子炉建物水素濃度を設置する(図 2-24 参照)。	
			これにより、原子炉格納容器内にて発生した水素が漏えいする	
			可能性のある箇所での水素濃度と、水素が最終的に滞留する原子	
			<u>炉建物原子炉棟4階</u> での濃度の両方が監視できることとなり、原	
			<u>子炉建物原子炉棟</u> 全体での水素影響を把握することが可能とな	
			る。	
			2.3.2 水素濃度監視設備の主要仕様	
			(1) 機器仕様	
			a. 原子炉建物水素濃度(原子炉建物原子炉棟地下1階)	・設備の相違
			種類 : 触媒式水素検出器	【東海第二】
			計測範囲:0~10vo1%	⑩の相違
			個数 : 1 個	・設備の相違
				【柏崎 7】
				9及び⑩の相違
			b. 原子炉建物水素濃度(原子炉建物原子炉棟4階,2階,1階)	, <u>.</u>
			種類 : 熱伝導式水素検出器	
			計測範囲:0~20vo1%	
			HIDAPORT CO BOLOT / O	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
東海第二発電所 (2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 9. 25 版)	高根原子力発電所 2 号機 (2) 配置場所 水素濃度検出器の配置場所を図 2-23 から図 2-26 に示す。 (2) 配置場所 水素濃度検出器の配置場所を図 2-23 から図 2-26 に示す。 (3) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	・設備の相違 【東海第二、柏崎 7】
			図 2-24 原子炉建物水素濃度検出器配置図(原子炉建物原子炉 棟中 2 階)	・設備の相違 【東海第二,柏崎 7】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		Mill® CRD 機能器 REPERDELISION REPERDEL	・設備の相違 【東海第二,柏崎 7】
		N	・設備の相違 【東海第二,柏崎 7】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
		(3) システム構成	
		原子炉建物水素濃度は、重大事故等対処設備の機能を有しており、原子炉建物水素濃度の検出信号は、触媒式水素検出器又は熱 伝導式水素検出器からの電流信号を演算装置を経由又は直接中央 制御室の指示部にて水素濃度信号へ変換する処理を行った後、原 子炉建物水素濃度を中央制御室に指示する。また、安全パラメー タ表示システム(SPDS)にて記録及び保存する。概略構成図 を図 2-27 及び図 2-28 に示す。	・設備の相違 【柏崎 7】 ⑨の相違
		無媒式 水素検出器	・設備及び資料構成の 相違 【東海第二】 島根2号機は,検出方 式の異なる検出器の図 を分けて記載している ・設備の相違 【柏崎7】 ⑨の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020	20.9.25 版) 島根原子力発電所 2 号機	備考
		高圧発電線車	
		高圧発電機車接続 プラグ以前宿 2D-M/C (百月)	
		2D-L/C 2SA-L/C 2D3-C/C 2D3-C/C 月間 逆断器 逆形器 逆形器	
		正大亨政共康矢炎 位 駅 日 使 年 新 生 報 日 連 年 新 生 報 日 連 年 本 生 学 と 2 年 本 生 学 と 3 年 本 生 学 と 3 年 本 生 学 と 3 年 本 生 学 と 4 年 本 生 全 年 本 生 学 と 4 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 全 年 本 生 年 年 本 生 年 年 年 年	
		図 2-29 単線結線図	・設備の相違 【東海第二,柏崎 7】 電源構成の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
			・記載方針の相違
			【東海第二】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		別紙 1	
		静的触媒式水素処理装置の性能確認試験について	
		メーカによる開発試験により静的触媒式水素処理装置(以下	
		「PAR」という。) の基本性能評価式が設定され、様々な環境下で	
		の PAR の性能確認のため,国際的な実証試験が実施されている。	
		以下に性能評価式の導出,様々な環境下における PAR の性能評価	
		等を示す。	
		1. 基本性能評価式の設定	
		基本性能評価式の設定, PAR 設置位置の違いによる性能評価を	
		目的とし、PAR 開発試験として、Battelle MC 試験が実施されてい	
		る。	
		試験条件を表 1-1, 試験体概要を図 1-1 に示す。複数の部屋	
		に区画された試験装置内に PAR を設置したのち、水素を注入し、	
		各部屋での水素濃度等を測定している。	
		図 1-2 は,R5 の部屋に PAR を設置し,雰囲気を蒸気条件にし	
		たのちに R5 の部屋へ水素を注入したケースの試験概要を示して	
		いる。この試験ケースにおける各部屋の水素濃度変化を図 1-3 に	
		示す。触媒反応によって生じる対流等の効果により, 水素濃度分	
		布はほぼ均一になっていることが分かる。	
		得られた試験結果をもとに、PAR の入口・出口における水素濃	
		度の差より算出した再結合効率を図1-4に示す。再結合効率は、	
		約85% (0.846) となっている。	
		基本性能評価式は、この試験を通じて設定されており、以下に	
		導出過程を示す。	
		メーカにおいて、PAR への流入量と水素濃度の相関は,以下の	
		式で表されると仮定している。	
		$\left(C_{H2}\right)^{b}$	
		$Q = a \cdot \left(\frac{C_{H2}}{100}\right)^{b} \cdot \cdot$	
		Q : PAR への流入量[m³/s]	
		C _{H2} :水素濃度[vol%]	
		a : 定数	
		b : 定数	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 9. 25 版)	島根原子力発電所 2号機	備考
			単位時間当たりの水素処理容量は、単位時間当たりに PAR へ流	
			入する水素量と PAR の性能を示す再結合効率により表され、以下	
			となる。	
			$DR = Q \cdot \left(\frac{C_{H2}}{100}\right) \cdot \gamma \cdot \eta \qquad (1.2)$	
			DR : 水素処理容量[kg/s]	
			γ : 水素密度[kg/m³]	
			η : 再結合効率	
			試験における測定値による水素処理容量は、以下となる。	
			$DR = \frac{dC_{H2}}{dt} \cdot V_{C} \cdot \gamma$ (1.3)	
			dC _{H2} /dt: 水素濃度変化率	
			Vc :試験容器体積 [m³]	
			式 (1.2) 及び式 (1.3) より、試験における PAR への流入量は、	
			水素濃度変化の測定値から求まる。	
			$Q = \frac{d C_{H2}}{d t} \cdot V_{C} \left(\frac{C_{H2}}{100} \cdot \eta \right) \dots $	
			式 (1.4) による流入量と、その時の水素濃度のデータより、式	
			b = 0.307	
			式 (1.1), 式 (1.2) より水素処理速度は,以下のように表される。	
			$DR = a \cdot \left(\frac{C_{112}}{100}\right)^{b+1} \cdot \gamma \cdot \eta$	
			ここで、水素密度は気体の状態方程式に従い、次式で表される。	
			ここで、小糸面皮は刈件の小窓力性八に促い、介入で収される。	
			$\gamma = \frac{P}{T \cdot R_{H2}} \dots \dots \underbrace{(1.6)}_{}$	
			P : 圧力[10 ⁵ Pa]	
			T:温度[K]	
			T : 温浸[K] R _{H2} : 水素の気体定数[10 ⁵ J/kg・K]	
			TILL AND ANTITIC MALEY JAMES IN	

式 (1.5) 、式 (1.6) により、PAR の水素処理容量は、次式で表される。 $DR = \frac{\mathbf{a} \cdot \eta}{R_{H2}} \cdot \left(\frac{\mathbf{C}_{H2}}{100}\right)^{b+1} \cdot \frac{\mathbf{P}}{\mathbf{T}}$ (1.7) $\frac{\mathbf{a} \cdot \eta}{R_{H2}} = \mathbf{A} = \mathbf{I}$, $\mathbf{b} + 1 = 1.307$ 式 (2.1) にスケールファクタを乗じたものが別添 1 $(2.1.3)$ の式 (2.1) に示す PAR の基本性能評価式となる。 $\mathbf{E}_{\mathbf{A}} = \mathbf{I}$ 表 $\mathbf{I} = \mathbf{I}$ 対験条 \mathbf{M}

東海第二	発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
				図 1-4 試験結果 (再結合効率の算出) 2. 雰囲気の違いによる PAR の性能影響 EPRI (米国電力研究所) と EDF の合同により, CEA (フランス原子力庁) の Cadarache 研究所の KALI 施設を用い, 圧力, 温度, 蒸気等の雰囲気条件の違いによる影響の有無を確認するため, KALI 試験が実施されている。試験条件を表 2-1 に, 試験体の概要を図 2-1に, 試験体の概要を図 2-1に, 試験条件 試験名称 試験名称 試験名称 試験体 本件 EED 水素気濃度 水素濃度 図 2-1 試験体概要 図 2-2 試験装置概要 図 2-2 試験装置概要	・参照試験の相違
					【柏崎7】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
	·	2.1 蒸気環境下での影響 蒸気環境下での影響について確認した試験条件を表 2-2 に, 試	
		験結果を図 <u>2-3</u> に示す。 <u>ドライ条件下と比べて,</u> 水蒸気濃度	・参照試験の相違
		50vo1%の条件下において、PARの性能は、同等であり、蒸気によ	【柏崎 7】
		る影響はないと考えられる。	②の相違
		まり り 計験を併 (芸/戸理(本) z トフ見(郷)	・お四針野の扣告
		表 2-2 試験条件 (蒸気環境による影響)	・参照試験の相違 【柏崎 7】
		温度 圧力 水素濃度 蒸気濃度	②の相違
		N8/2	60/11座
		N9/2	
		1107 2	
		図 2-3 試験結果 (蒸気環境下での影響)	参照試験の相違
			【柏崎7】
			⑫の相違
			・記載方針の相違
			【東海第二】
		重大事故等時に原子炉格納容器から 10%/day でガスが <u>原子炉</u>	
		建物原子炉棟に漏えいした場合の原子炉建物原子炉棟の水蒸気濃	
		度を図 <u>2-4</u> に示す。	
		図 2-4 のとおり,重大事故等時において,水蒸気濃度は,	
		50vo1%に達することなく,水蒸気による影響はない。	
		また、燃料プールの沸騰により大量の蒸気が発生した場合、蒸気	
		により水素は、希釈され、 <u>原子炉建物原子炉棟 4 階</u> の水素濃度及	

び酸素濃度は低下し、可燃限界に達することはないと考えられる。
200 180 180 180 180 180 180 180 180 180 1

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
		表 2-3 に示すとおり、PAR-8R については、1/8 スケール、高水	
		蒸気濃度環境及び疎水コーティングを施してしない状態での試験	
		であるが、図 $2-5$ に示すとおり、 0.5 kg/h 以上の処理容量を有し	・設備の相違
		ている。なお,図 <u>2-5</u> に示す試験のうち,PAR-12 及び PAR-13 に	【柏崎7】
		ついては、疎水コーティングを施した状態での試験である。	⑦の相違
		以上のことから、高水蒸気濃度環境下における疎水コーティン	
		グの有無が PAR による水素処理に与える影響はない。	
		2.2 低酸素環境下での影響	
		KALI 試験において、低酸素濃度条件下での影響について確認さ	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		れており、試験条件を表 2-4 に、試験結果を図 2-6 に示す。試験条件としては、初期水素濃度及び酸素濃度以外は同じ雰囲気条	
		供としており、図 2-6 に示すように、酸素濃度が低い場合、水素	
		と酸素による再結合反応が進まなくなることから、PARの性能が	
		低下していることが分かる。また、N4/2の試験ケースで酸素が十	
		分にあると想定して基本性能評価式を用いて水素処理容量を算出	
		した場合, N6/22 及び N13/7 の試験結果と相違ないことからも,	
		低酸素環境下では PAR の性能が低下するといえる。	
		島根原子力発電所第2号機の場合、水素発生量に比べて十分な酸	
		素量を有しており、酸素濃度による影響はない。	
		表 2-4 試験条件(酸素濃度による影響)	
		試験ケース 温度 圧力 初期水素濃度 初期酸素濃度	
		N4/2	
		N6/22	
		N13/7	
		図 2-6 試験結果 (酸素濃度による影響)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2 号機	備考
		3. スケールファクタの妥当性	
		触媒カートリッジ 88 枚相当の試験体(1/1 スケール)を用いた	
		Battelle MC 試験結果に基づき基本性能評価式が設定され,その	
		後、触媒カートリッジの寸法及び設置間隔を保ったままカートリ	
		ッジ枚数が 44 枚 (1/2 スケール), 22 枚 (1/4 スケール), 11 枚 (1/8	
		スケール)である小型化された PAR が開発された。	
		これらの小型 PAR は,単位流路面積当たりの触媒カートリッジ	
		表面積が同一となるよう, ハウジングの開口面積の比も 1/2, 1/4,	
		1/8 としていることから,水素処理容量がカートリッジ枚数に比	
		例するものとして、スケールファクタが設定されている。また、	
		試験等のために触媒カートリッジの高さ以外の寸法を変更してい	
		る場合でも、触媒カートリッジの設置間隔を同じにすることで、	
		同様にスケールファクタは、ハウジングの開口面積の比で整理で	
		きる。基本性能評価式(式(1.7))にこのスケールファクタを乗	
		じたものが小型 PAR の基本性能となる。	
		KALI 試験では,小型 PAR よりも更に流路面積の小さい試験体で	参照試験の相違
		性能が確認されている。試験結果とスケールファクタを考慮した	【柏崎 7】
		基本性能評価式との比較を図3-1に示す。図中の点線は、基本性	12の相違
		能評価式を用いて試験条件及び水素濃度から算出し、スケールフ	<i>-</i>
		ァクタ (1/40) を考慮したものである。実機において使用される	
		水素濃度の範囲において、試験結果と基本性能評価式(点線)は	
		よく合っており、スケールファクタが妥当であることを示してい	
		<u>5.</u>	
		Battelle MC 試験,KALI 試験及び島根原子力発電所第2号機で	
		使用する PAR の仕様の比較を表 3-1 に示す。 触媒カートリッジ部	
		やチムニ部のハウジングの高さは同じであり、違いは触媒カート	
		リッジ枚数又はハウジング開口面積であることから、スケールフ	
		アクタとしては 0.025~1 の範囲であれば適用可能と考える。島根	
		原子力発電所第2号機で使用する PAR は, 1/4 スケールでこの範	
		囲内にあることから、スケールファクタ及び基本性能評価式は適	
		用可能である。	
		711 1110 (20 0 0	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2 号機	備考
		図3-1 KALT 試験結果と基本性能評価式との比較	 ・参照試験の相違 【柏崎 7】 ②の相違 【柏崎 7】 ③の相違

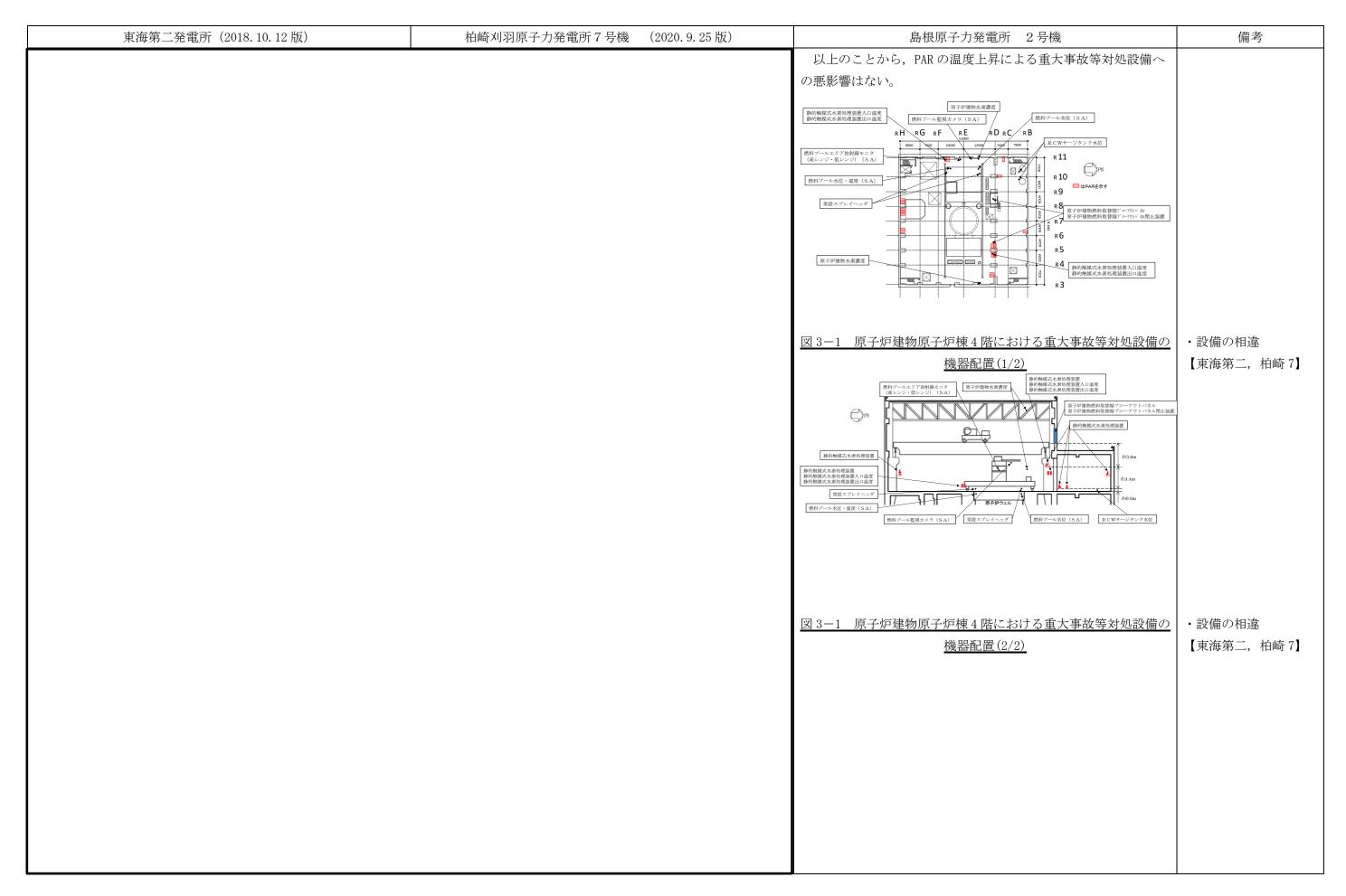
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)			島根原子	力発電所	2 号機		備考
			表	4-1 SNI	L試験の記	式験条件及	び反応開	始水素濃度	
			試験番号	圧力 (bar)	温度 (℃)	水蒸気濃度		反応開始水素 濃度(vo1%)	
			PAR-1	2	22	(%)	91	0.3	
			PAR-1	2	22 22	0	21	0. 3	
			PAR-3	2	102	52	10	0.4	
			てのた てる温 上さ入各る わ各反遅 て水い THY 験 5 り スを 験さ,水の 験ずの熱る 5 る濃。 PIで 2 年間 2 年	最IHAOあり、AR 変慮はたと農度 始度容低句及定低の高AI IECT。 示のす,後各度履 かは量下に及点下て使試に武 す最ち。入水の各を 11化のるる図35にA開験に懸 と高, 「秀温音を 111 に累え。594R	置は、TF CECD/ は、OECD/ は、OECD/ は、OECD/ は、OECD/ をという。 は、のという。 は、のという。 は、のという。 は、のは、のは、のは、のは、のは、のは、のは、のは、のは、のは、のは、のは、のは	NEA(NEA)(AI を 反	協の概は3、味 て験忍示に ぎ昇は等 の素の力性を PAR はれ 験置いたし が時遅の 中濃て開能図 各よる 装内をして 定反れ器 で度いる	き 300℃に大力機器のでに、 一 1 2 300℃に大力機器ので、 一 2 300℃に大力機器ので、 一 3 300℃に大力機器ので、 は 3 300℃に大力機器ので、 は 3 300℃に大力機器ので、 は 3 300℃に大力を下低ので、 は 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		図 5-1 試験装置及び試験体の概要	
		図 5-2 試験体の温度計測点	
		図 5-3 温度及び PAR 入口水素濃度の時間変化	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			図 5-4 温度及び PAR 入口水素濃度の関係	
			凶 0 ⁻ 4 - 血及及い FAK 八日小系侲及り関係	
			6. チムニの影響について	
			水素低減性能試験において、PAR にチムニ(煙突)を取り付け	
			ることにより, 水素低減性能が大きくなることが確認されている。	
			煙突が取り付けられていない場合, 高さ 500mm の煙突が取り付け	
			られた場合、高さ 1000mm の煙突が取り付けられた場合の水素低減	
			性能の係数について、製造メーカ社内の試験プログラムの中で確	
			認されており、煙突が取り付けられていない場合と比較して高さ 500mm の煙突が取り付けられた場合は 1.15 程度, 高さ 1000mm の	
			煙突が取り付けられた場合は 1.25 程度という数字が報告されて	
			いる。	
			島根原子力発電所第2号機に設置する PAR の水素処理容量は,	・参照試験の相違
			表 3-1 に示すとおり, 延長チムニなしと同じ条件であると設定し	【柏崎 7】
			ている。このため、チムニの影響がないことを確認している。	⑫の相違

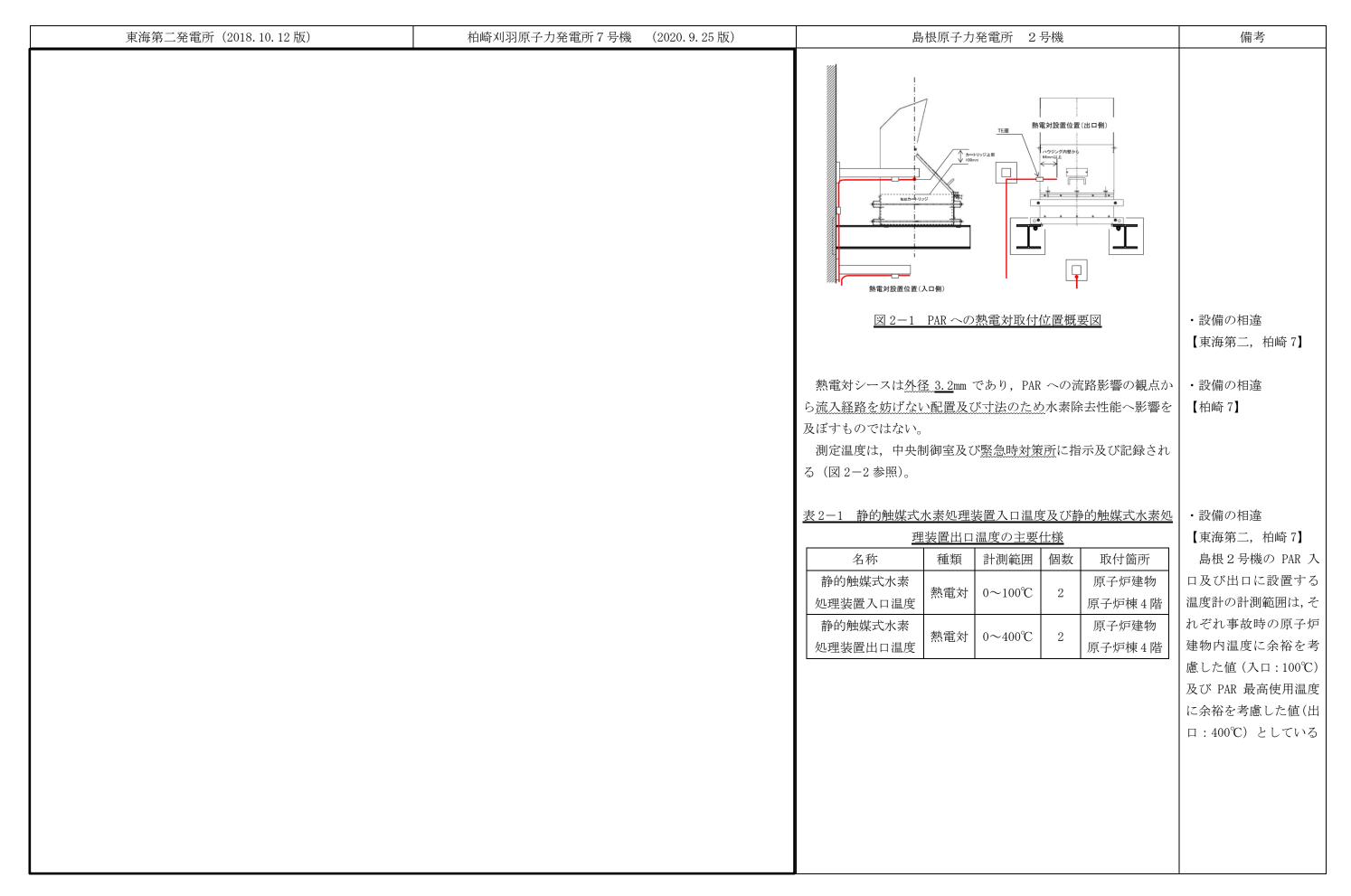
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020.9.25版)	島根原子力発電所 2 号機	備考
			7. 引用文献	・引用文献の相違
			(1) Experimentelle Untersuchungen zum Verhalten des von NIS e	【東海第二,柏崎 7】
			ntwickelten Katalysator-Modellmoduls im 1:1 Massstab bei	
			versuchiedenen Systemzustaenden im Model-Containment, Ba	
			ttelle-Europe (1991)	
			(2) Generic tests of Passive autocatalytic Recombiners(PARs)	
			for combustible Gas Control in Nuclear Power Plants Vol.1	
			Program Description, EPRI (1997)	
			(3) Generic tests of Passive autocatalytic Recombiners(PARs)	
			for combustible Gas Control in Nuclear Power Plants Vol.2	
			Test Data for NIS PARs, EPRI (1997)	
			(4) TI	
			(4) Thomas K. Blanchat, Asimios C. Malliakos, "TESTING A PAS	
			SIVE AUTOCATALYTIC RECOMBINER IN THE SURTESY FACILITY", Nuclear Technology Vol. 129 March 2000	
			(5) K. Fischer, "Qualification of a Passive Catalytic Module	
			for Hydrogen Mitigation", Nuclear Technology vol. 112, (19	
			95)	
			(6) OECD-NEA THAI Project "Quick Look Report Hydrogen Recomb	
			iner Tests HR-14 to HR-16", Becker Technologies GmbH (20 09)	
			09)	

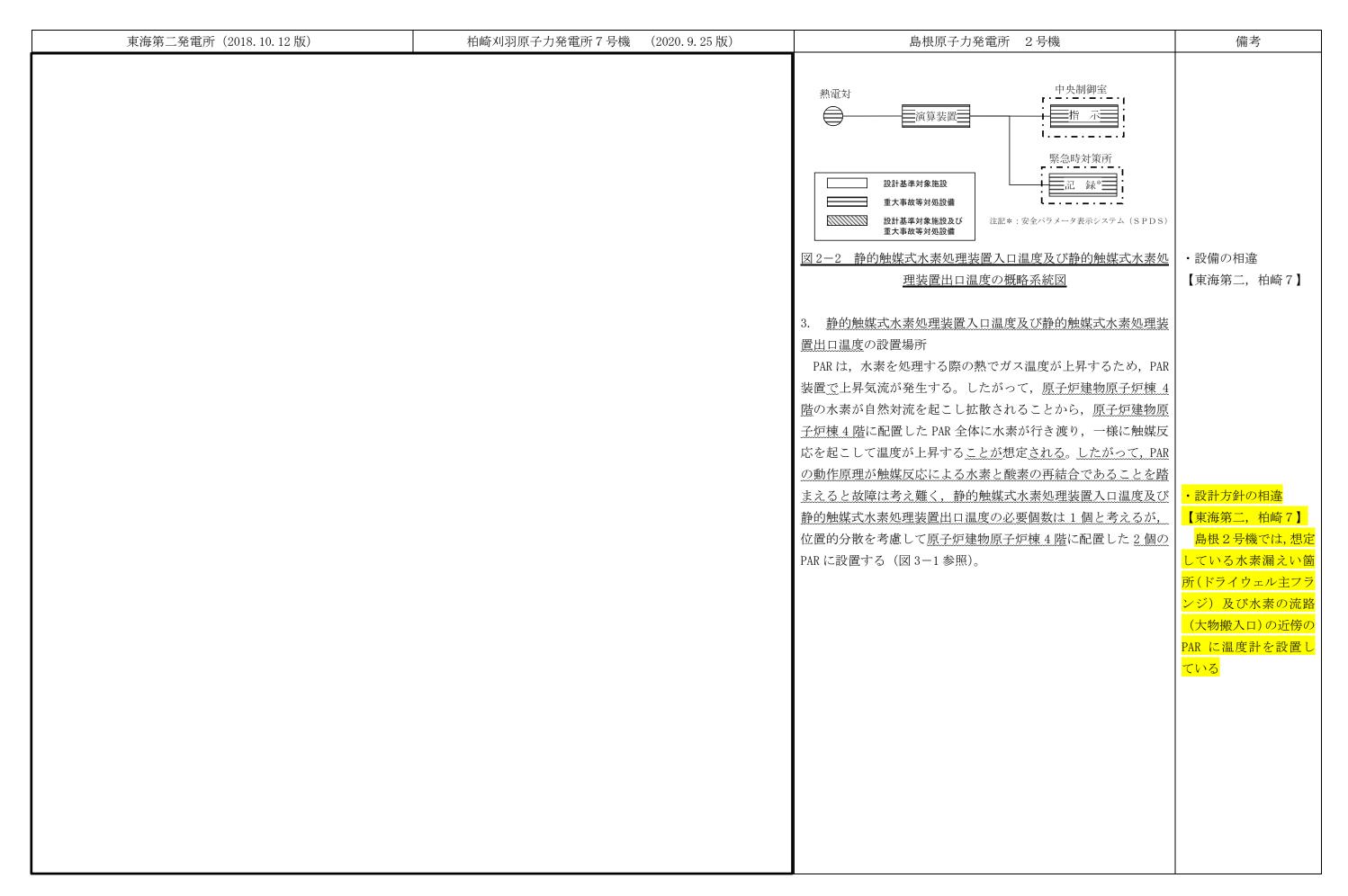
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		別紙 2	
		反応阻害物質ファクタについて	
		炉心損傷を伴う重大事故 <u>等</u> 時において,原子炉格納容器内によ	
		う化セシウム等の粒子状放射性物質、ガス状よう素、蒸気等が発	
		生する。これらが <u>原子炉建物原子炉棟4階</u> へ漏えいした場合,PAR	
		の性能に影響を与える可能性があるため、影響評価を行う必要が	
		ある。	
		粒子状放射性物質については、沈着や格納容器スプレイにより	
		除去されることから,原子炉建物原子炉棟4階への漏えい量は十	
		分小さく、PAR に対する放射線量が上昇する等の影響はないと考	
		えられる。なお,PAR は Gy の線量下においても所要の性	
		能を発揮できる設計としており、重大事故等時における原子炉建	
		物原子炉棟の 4.7×10 ² Gy/7 日間程度の環境において, 性能が低下	・環境条件の相違
		することはない。	【東海第二,柏崎 7】
		また、別紙1に示したように、蒸気環境下による性能への影響	
		<u>は</u> ないと考えられる。	
		したがって、影響因子としてはガス状よう素を対象とし、以下	
		のとおり PAR の性能への影響を評価する。	
		1. ガス状よう素による影響	
		事故時に炉内に内蔵されるよう素元素量は、約 18.1kg であり、	・評価結果の相違
		NUREG-1465 に基づき,原子炉格納容器内へのよう素の放出割合を	【東海第二,柏崎7】
		<u>61%</u> , Regulatory Guide 1.195 に基づき, 無機よう素生成割合を	・評価条件の相違
		91%, 有機よう素生成割合を 4%とする。また, 原子炉格納容器	【柏崎7】
		の自然沈着による除去効果については、CSE での実機の実験結果	・評価条件の相違
		に基づき事象発生後2時間までは除去効果を考慮せず,2時間以	【東海第二,柏崎 7】
		降は DF200 を考慮する。	-21 m + 217 - 1 m + 4
		このとき,原子炉格納容器漏えい率を一律 10%/day として原子	・評価結果の相違
		炉建物原子炉棟 4 階へ全量漏えいすると仮定した場合, ガス状よ	【東海第二,柏崎 7】
		う素は約 11mg/m³ となる。	
		よう素による影響を確認するために行われた Battelle MC 試験	
		の試験条件を表 1-1 に、試験結果を図 1-1 に示す。試験は、蒸	
		気環境下において空間に対するよう素割合約300mg/m³で実施され	
		ており約 25%性能低下していることが確認されている。	・評価結果の相違
		試験条件と比べて <u>島根原子力発電所第2号機</u> で想定されるガス	【柏崎 7】
		状よう素濃度は、十分に小さく、影響は小さいと考えるが、よう	
		素環境下での PAR の性能低下を考慮し、反応阻害物質ファクタと	


		島根原子力発電	77 2 7 100		備考
 して「0.	5」を設定	 ごする。			
なお, 反	応阻害は	よう素が触媒に	付着すること	で起こるもので	
あり、ス	ケールフ	アクタが変わって	も、PAR 内部	の流速は一律で	
あり、付	着するよ	う素割合は変わら	ないため、カ	ブス状よう素によ	
る影響評	価にスケ	ールファクタを考	ぎ慮する必要は	はない。	
	表 1	-1 試験条件(よう素の影響)	
温度	圧力	初期水素濃度	蒸気濃度	よう素濃度	
120℃	2 bar	4 vo1%	50~	$300 \mathrm{mg/m^3}$	
			70vo1%		
	-	•	1		
_ I					
	図 1	-1 試験結果(よう素の影響)	
). L = + 1	1)7二十月14~	L > = 1 - L - Z &		
	•				
			//N:常XI候发,	1皿/又/入〇:/二/10/	
				この四生にトーナー	
ジウム原	子の物理に	的な閉塞により発	性する(図 1	-2 参照)。 <u>水</u> 蒸	
気濃度及	び圧力は	パラジウム表面	ቨに結合してレ	いるよう素の状態	
を変える	ことがで	きないため、基本	×的には水蒸気	気濃度と圧力は,	
よう素に	よる被毒	効果に与える影響	賢はないと考え	とられる。なお,	
	あり、付名を響評 温度 120℃ 本では、 120℃ 本では、 120℃ 本では、 120℃ 変更な、 120	あり、スケールフ あり、付着するよ る影響評価にスケー 表 1 温度 圧力 120℃ 2 bar 本試験は、表 1一 響を確認している。 記するために、本 影響について示す。 触媒の被毒は、。 発生する。したが埋 気濃度及び圧力は、 を変えることがで よう素による被毒 水蒸気については、 媒性能低下の影響 然気環境下での影響	あり、スケールファクタが変わって あり、付着するよう素割合は変わら る影響評価にスケールファクタを考 表 1-1 試験条件(温度 圧力 初期水素濃度 120℃ 2 bar 4 vol% 本試験は、表 1-1に示す条件で 響を確認しているが、本試験結果における 影響についています。 触媒の検索は、強力な化学吸着に 発生する。したがって、よう素に よジウム原子の物理的な閉塞により 気流震度が圧力は、バラジウム表面 を変えることができないため、基本 よう素による被毒効果に与える影響 水蒸気については、触数に被検防な 媒性能低下の影響が考えられるが、蒸気環境下の影響」のとおり、イ	あり、スケールファクタが変わっても、PAR内部 あり、付着するよう素制合は変わらないため、える影響評価にスケールファクタを考慮する必要は 変1-1 試験結果(よう素の影響 温度 圧力 初期水素濃度 蒸気濃度 120℃ 2 bar 4 vo1% 50~ 70vo1% 本試験は、表 1-1 に示す条件でよう素による情響を確認しているが、本試験結果に実はつる水蒸気濃度、影響について示す。 動媒の被毒は、鬼力な化学吸音による触媒反の発生する。したがって、よう素による被毒は、強力な化学吸音による被毒は、強力な化学の音による被毒は、違うカス原子の物理的な関塞により発生する(図1 気濃度及び肝力は、パラジウム表面に結合していを変えることができないため、基本的には水煮らよう素による被毒効果に与える影響はないと考え水蒸気については、触媒に被膜ができること等に実性能能下の影響が考えられるが、それについて、機気環境ドでの影響」のとおり、有意な影響はない	120℃ 2 bar 4 vo1% 50~ 300mg/m³ 70vo1% 300mg/m³ 70vo1% 300mg/m³ 70vo1% 300mg/m³ 70vo1% 70vo1

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		とから、水蒸気による性能低下を防ぐ設計考慮がなされている。	
		また、本試験条件は、 <u>島根原子力発電所第2号機</u> の事故時に想	
		定される環境と比較し、よう素濃度、水蒸気濃度は保守的な条件	
		となっている。これらを踏まえ,本試験結果における水蒸気濃度,	
		圧力が与える大きな影響はない。	
		Pd P	
		一方,温度については,触媒周りの温度が 200℃付近の高温に	
		なると、吸着されたパラジウムとよう素が分離し、パラジウムは	
		触媒機能を回復する知見が既往研究により確認されている(図 1	
		-3 参照)。これは、温度が上がったことにより化学結合状態が壊	
		れてパラジウムとよう素が分離する状況になったことによるもの	
		と考えられる。	
		ころんりれいる。	
		図 1-3 再結合効果と温度の関係	
		PAR は,再結合反応を始めると,触媒温度が上昇し触媒自体は	
		200℃を超える高温状態になる。NIS 社製 PAR 触媒は、粒型の触媒	
		粒をカートリッジに敷き詰めた構造になっており、被毒物質に全	
		ての触媒が覆われることを防ぐことが設計上配慮されている。よ	
		って、被毒されていない部分は、再結合反応が始まり、それに伴	
		い触媒粒の温度が上昇することで、被毒された部分の吸着された	
		パラジウムとよう素が分離することで触媒機能が回復する傾向に	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2 号機	備考
		なると考えられる。すなわち、よう素による被毒は、再結合反応	
		開始時に影響するものであるが、反応が開始すると、触媒温度上	
		昇が支配的となり、試験条件としての温度は、影響を無視できる	
		ものと考えられる。よって、本試験結果に示す触媒性能低下評価	
		において、温度条件は大きな影響を与えるものではない。	
		2. 引用文献	
		(1) "EFFECTS OF INHIBITORS AND POISONS ON THE PERFORMANCE OF	
		PASSIVE AUTOCATALYTIC RECOMBINERS (PARs) FOR COMBUSTIBLE GAS	
		CONTROL IN ALWRs", the EPRI ALWR Program, May 1997	


東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		別紙 3	
		静的触媒式水素処理装置の周辺機器に対する悪影響防止について	
		静的触媒式水素処理装置(以下「PAR」という。)は,水素処理	
		が始まると触媒温度が上昇するため、PAR の温度上昇が周辺機器	
		に悪影響を与えないための PAR の設置方針を検討した。 PAR の温	
		度上昇が周辺機器に悪影響を与える項目としては,「1. PAR ハウ	
		ジングからの熱輻射による熱影響評価」及び「2. PAR 排気ガスに	
		よる熱影響評価」があり、それらの検討結果を以下に示す。	
		1. PAR ハウジングからの熱輻射による熱影響評価	
		PAR ハウジングが最高使用温度である 300℃の状況で, ハウジン	
		グからの熱輻射による温度と距離の関係を評価した。	
		周辺機器の温度は,原子炉建物原子炉棟4階の熱伝達率により	
		異なる。熱伝達率は、以下のユルゲスの式より計算する。	
		h=5.6+4.0u	
		ここで, u[m/s]は, 気流速度である。PAR <u>の</u> 設計条件 <u>である</u> 10%	
		/day のケースにおける <u>原子炉建物原子炉棟4階の</u> 気流速度の最大	・設備の相違
		値が約 <u>0.35</u> m/s であることを踏まえて, 想定する気流速度の範囲	【東海第二,柏崎 7】
		を 0~1.5m/s と仮定し、熱伝達率を計算すると 5.6~11.6W/(m²・	
		K)となる。したがって,熱伝達率は5.6W/(m²・K)及び11.6W/(m²・	
		K)の2ケースで評価を行った。	
		評価結果を図1-1に示す。いずれのケースも PAR から 0.1m 離	
		れると周辺機器の表面温度は、最高使用温度である300℃を十分	
		下回ることから、隣接する PAR に対して悪影響を与えることはな	
		い。また、周辺機器の温度が100℃となるのは、熱伝達率が	・評価結果の相違
		<u>5.6W/(m²・K)の場合0.8m,11.6W/(m²・K)の場合0.6mの地点であ</u>	【東海第二,柏崎 7】
		<u>ることから、PAR より 1m 離すことで熱影響は 100℃以下となる</u> 。	
		さらに、2mの地点でPARの輻射熱の影響はほぼなくなることから、	
		重大事故等の対処に重要な計器・機器に悪影響がないように, PAR	
		周囲(排気口方面除く)には、2m以上の離隔距離を設けることと	
		する。なお、PAR 同士の離隔については、上記のとおり、隣接す	
		る PAR への悪影響は考えられないこと及び原子炉格納容器から	
		10%/day の漏えいを考慮した GOTHIC コードによる解析において	
		も,原子炉建物原子炉棟4階の水素濃度は4.0vo1%に到達しない	
		ことから、PARの最高使用温度300℃を超えるおそれがないため、	
		離隔を設ける対象外とする。	


東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2 号機	備考
		**5.6W/m2/K	・評価結果の相違 【東海第二,柏崎 7】
		機能を損なう設備がないことを確認する。 3. 原子炉建物原子炉棟 4 階に設置する重大事故等対処設備及び影響評価 原子炉建物原子炉棟 4 階に設置する重大事故等対処設備のうち,配管を除く重大事故等対処設備の配置図について,図 3-1に示す。静的触媒式水素処理装置入口温度及び静的触媒式水素処理装置出口温度を除く計装設備について,排気口から 4m以上離れているため、PAR の温度上昇による機能への悪影響はない。また、原子炉建物燃料取替階ブローアウトパネル及び原子炉建物燃料取替階ブローアウトパネル及び原子炉建物燃料取替階ブローアウトパネル関止装置については、原子炉建物燃料取替階ブローアウトパネル閉止装置下端位置がPARから3m以上離れているため、PARの温度上昇による機能への悪影響はない。	【東海第二,柏崎7】 ・設備の相違

東海第二発電所(2018. 10. 12 版) 柏崎刈羽原子力発電所 7 号	号機 (2020. 9. 25 版) 島根原子力発電所 2 号機	備考
東海第二発電所 (2018, 10, 12 版) 柏崎刈羽原子力発電所 7 号	別紙 4 静的触媒式水素処理装置入口温度及び静的触媒式水素処理装置出口温度について 1. 目的 静的触媒式水素処理装置(以下「PAR」という。)は、原子炉建物原子炉棟 4 階内の水素濃度上昇に伴い自動的に作動する装置であり、電源や運転員による操作の不要な設備である。 PAR は、触媒における再結合反応により水素を除去する設備であるため、水素濃度の上昇に伴って装置の入口側と出口側の温度差が上昇する(図1-1、図1-2参照)ことから、PARに温度計を設置することにより、水素処理の状況を把握することができ、PARによる水素処理が行われていることを確認することができれば、重大事故対処時に有効な情報となると考えられる。 このことから、原子炉建物原子炉棟 4 階に設置されている PAR	・記載方針の相違 【東海第二】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			図 1-2 SNL で行われた試験結果 (PAR 温度と水素濃度の関係)	
			2. 設備概要	
			2. 成開祝安 PAR2 個に対して入口側及び出口側に熱電対を取り付け,事故時	
			の PAR の測定温度を中央制御室及び緊急時対策所にて監視できる	
			設計とする (主要仕様は表 2-1 参照)。	
			熱電対の設置位置は,PAR 入口近傍及び触媒カートリッジ上方	
			<u>に</u> 熱電対シースを <u>取付け</u> ,ガス温度を測定できる <u>設計と</u> する。	
			試験結果(図 1-2)において,触媒部での水素再結合反応に伴	
			い,水素濃度 1.0vol%程度で PAR 入口と出口のガス温度差は約	
			40K, 水素濃度 4.0vo1%程度で PAR 入口と出口のガス温度差は約 170K になっており, PAR の入口側と出口側の温度差が明確である	
			ことから, PAR 動作を把握することができる。なお, 図 1-2 に示	
			す試験のうち, PAR-4, PAR-7 及び PP-2 について環境温度は 100℃	
			以上であり、それ以外の試験については常温での試験であるが、	
			図 1-2 に示すとおり、環境温度による PAR 入口と出口のガス温度	
			差に有意な差異はないことから,環境温度に関わらず,PAR 動作を監視することが可能である。	
			PAR への熱電対取付位置は、サポートとの干渉を考慮した PAR	
			付近への取付性,固定性,保守性等を考慮して PAR 入口側及び出	
			口側のガス温度が測定可能な位置とする(図 2-1 参照)。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		PN	・設備の相違 【東海第二、柏崎 7】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)		島根原子力発電所	2号機	備考
				静的触媒式水素処理装置の性	別紙 5 能維持管理について	
				段階及び供用開始以降の <u>静的</u> という。)の性能を維持する7		
			点検を	***************************************	_ 07, 以下のよ / な恢直及い	
			PAR	R の性能確保の考え方 の性能評価式は,PAR 内部を通 再結合効率(触媒反応)の関係		
				び触媒反応に影響を与える各人		
				時に確認することで PAR の性能		
			PAR Ø	性能確保に必要となるパラメー	タとその確認項目を示す。	
				表 1-1 PAR の性能確保	こ必要な確認項目	
			性能因子	影響因子	確認項目	
				水素濃度	対象外(雰囲気条件)	
			流量	圧力,温度 PARハウジング部の幾何学的構造 ・ハウジング構造	対象外 (雰囲気条件) ・外観確認及び寸法確認	
				触媒カートリッジの幾何学的仕様 ・触媒カートリッジの枚数 ・触媒カートリッジ寸法	・外観確認及び員数確認 ・寸法確認	
			触媒	触媒の品質管理	・製作時の仕様確認 (材料確認含む)	
				触媒の性能・触媒の健全性・触媒の欠落・触媒の汚れ	・機能確認 ・外観確認	
			1.の で, PA	査及び点検内容 考え方を踏まえ,以下に示すれ R の性能を確保する。設置段階 用開始以降の点検内容を表 2-	における検査内容を表 2-1	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)		島村	R原子力発電所 2 号機	備考
			表 2-1	設置段階における検査内容	
		対象部位	分類	検査内容	
		触媒	仕様確認	比表面積,直径,パラジウム含有量に ついて,管理値を満足することを確認 する。	
			外観検査	有意な変形,傷等の有無について,目 視により確認する。	
			仕様確認	触媒充てん量について,管理値を満足 することを確認する。	
		触媒力	外観検査	有意な変形,傷等の有無について,目 視により確認する。	
		ートリーッジ	寸法検査	員数についても確認する。 主要な寸法について、実測により確認 する。	
			機能検査	健全性確認として検査装置により結合 反応時の温度上昇率を測定し,管理値 を満足することを確認する。	
		本体 (ハウ	外観検査	有意な変形,傷等の有無について,目 視により確認する。	
			寸法検査	主要な寸法について、実測により確認する。	
		9)	材料検査	ミルシートにより確認する。	
			表 2-2	供用開始以降の点検内容	
		対象部位	分類	検査内容	
		触媒	外観 検査	有意な変形,傷等の有無について,目 視により確認する。	
		触媒力一	外観検査	有意な変形,傷等の有無について,目 視により確認する。 員数についても確認する。	
		リッジ	機能	使全性確認として検査装置により結合 反応時の温度上昇率を測定し、管理値 を満足することを確認する。	
		本体 (ハウ ング)		有意な変形,傷等の有無について,目 視により確認する。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)		島根原子/	力発電所 2号機	備考
		3. 触媒の品	品質管理		
		触媒は,			
			で	製作され、その触媒の比表面積、直	
		径及びパラミ	ジウム含有量につ	いて,表3-1に示す管理値を満足し	
		ていることを	を確認しているた	め, ロットで製作された触媒につい	
		て、大きなに	ばらつきはない。	品質管理された触媒を触媒カートリ	
		ッジへ充てA	レする際には , 規	定量が充てんされていることを全て	
		の触媒カー	トリッジに対して	確認するため、同じロットで製作さ	
		れた触媒がす	でてんされた触媒	カートリッジの性能は同様である。	
		また, 触媒	某カートリッジを	試験装置にセットし、所定の水素濃	
		度の試験ガス	スを通気した際の	結合反応による温度上昇率を確認す	
				る触媒の健全性を担保することとし	
				所定の品質管理を行うことを踏まえ	
		ると,触媒の	の健全性確認の抜	取り数としては、1 ロット当たり触	
		媒カートリッ	ッジ1枚を確認す	ることで十分である。	
			表 3-1 触媒製(作段階における管理項目	
		対象	項目	管理値	
		触媒カート	触媒充てん量		
			比表面積		
			直径		
			パラジウム含	1	
		触媒	有量		
				水素を含む試験ガスを通気後,	
			健全性	20 分以内に 10℃以上上昇又は	
				30 分以内に 20℃以上上昇	
			•		
		4. 触媒の例			
				一つとして触媒の健全性確認を行う	
				AR の性能担保の観点から同様に健全	
				R を設置する原子炉建物原子炉棟 4	
		3333		条件であり、化学薬剤等の触媒の活	
				ないことから、触媒にとって良好な	
				後の経年劣化の有無を評価するため、	
			生を確認する必要		
		無媒力一	トリツンを試験装	置にセットし、所定の水素濃度の試	

及び供用開始以降の試験条件、判定基準 概要を図 4-1 に示す。 工場製作時においては、メーカ標準の 3vo1%の試験ガスを通気するが、国内で 用開始後の健全性確認は、国内で一般的 (水素濃度:1.3vo1%)を用いて実施す。 低い水素濃度条件で行うため、水素処理 小さい状態となるが、工場製作時と同じ 保守的な性能管理となる。 なお、使用開始前及び供用開始後の健 については、検査要價を定める際に適切 表 4-1 触媒の健全性確認 項目 工場製作時 使用開始前 試験 水素流度:3vo1% 水素濃度:1.3v 条件 試験流量:1500Lh 試験流彙:1500 判定 又は 又は 又は 又は 又は 又は 又は	2万機	子力発電所 2号機		(2020. 9. 25 版)	柏崎刈羽原子力発電所 7 号機	東海第二発電所(2018. 10. 12 版)
無媒の健全性を確認する。工場製作時、 及び供用開始以降の試験系件、判定基準 概要を図 4-1 に示す。 工場製作時においては、メーカ標準の 3vo1%の試験が入るが、	芯のよる温度上昇率を測定	素の結合反応のよる温	を供給し、水素と西			
及び供用開始以降の試験条件、判定基準 振要を図 4-1 に示す。 工場製作時においては、メーカ標準の 3vo1%の試験ガスを通気するが、国内で一般的 (本素濃度:1.3vo1%)を用いて実施す・ 低い本素濃度条件で行うため、水素処理 小さい状態となるが、工場製作時と同じ 保守的な性能管理となる。 なお、使用開始前及び供用開始後の健 については、検査要領を定める際に適切 表 4-1 触媒の健全性確認 度且 工場製作時 使用開始前 試験 水素濃度:3vo1% 水素濃度:1.3v 条件 試験液量:1500L/h 試験流報:1500 判定 国 20℃以上/20分以内 10℃以上/20分 又は 又は 又は 又は 20℃以上/30分以内 20℃以上/30分以上/30√以上/3	i 足していることを評価し,	判定基準を満足している	とで,メーカ推奨の			
概要を図 4-1 に示す。 工場製作時においては、メーカ標準の 3vo1%の試験ガスを通気するが、国内で一般的 (水素濃度:1.3vo1%)を用いて実施す・ 低い水素濃度条件で行うため、水素処理 小さい状態となるが、工場製作時と同じ 保守的な性能管理となる。 なお、使用開始前及び供用開始後の鍵 については、検査要額を定める際に適切 表 4-1 触媒の健全性確認 項目 工場製作時	触媒の健全性を確認する。工場製作時,使用開始前(現地据付時) 及び供用開始以降の試験条件,判定基準を表 4-1 に,試験装置の					
工場製作時においては、メーカ標準の3vo1%の試験ガスを通気するが、国内で一般的 (水素濃度:1.3vo1%)を用いて実施する 低い水素濃度条件で行うため、水素処理 小さい状態となるが、工場製作時と同じ保守的な性能管理となる。 なお、使用開始前及び供用開始後の健については、検査要領を定める際に適切 表 4-1 触媒の健全性確認 項目 工場製作時 使用開始						
3vo1%の献験ガスを通気するが、国内で一般的 (水素濃度:1.3vo1%)を用いて実施す 低い水素濃度(生で行うため、水素処理 小さい状態となるが、工場製作時と同じ 保守的な性能管理となる。 なお、使用開始前及び使用開始後の健 については、検査要領を定める際に適切 麦 4-1 触媒の健全性確認 項目 工場製作時 使用開始前 試験 水素濃度:3vo1% 水素濃度:1.3v 条件 試験流量:1500L/h 判定 又は 又は			図 4-1 に示す。			
用開始後の健全性確認は、国内で一般的 (水素濃度:1.3vo1%)を用いて実施す 低い水素濃度条件で行うため、水素処理 小さい状態となるが、工場製作時と同じ 保守的な性能管理となる。 なお、使用開始前及び供用開始後の健 については、検査要領を定める際に適切 表 4-1 触媒の健全性確認 項目 工場製作時 使用開始前 試験 水素濃度:3vo1% 水素濃度:1.3v 条件 試験流量:15001/h 試験流量:1500 判定 又は 又は 基準 20℃以上/30分以内 20℃以上/30分	の試験条件として水素濃度	メーカ標準の試験条件	製作時においては、			
(水素濃度:1.3vo1%)を用いて実施子・低い水素濃度条件で行うため、水素処理小さい状態となるが、工場製作時と同じ保守的な性能管理となる。 なお、使用開始前及び供用開始後の健については、検査要領を定める際に適切表 4-1 触媒の健全性確認項 「項目 工場製作時 使用開始前談験 水素濃度:3vo1% 水素濃度:1.3v 条件 試験流量:1500L/h 試験流量:1500L/h 試験流量:1500L/h 試験流量:1500L/h 式 20で以上/20分以内 10で以上/20分以内 20で以上/30分以内 20で以上/30分以内 20で以上/30分以内 20で以上/30分	で実施する使用開始前,供	るが、国内で実施する	の試験ガスを通気で			
低い水素濃度条件で行うため、水素処理小さい状態となるが、工場製作時と同じ保守的な性能管理となる。なお、使用開始前及び供用開始後の健については、検査要領を定める際に適切 表 4-1 触媒の健全性確調 項目 工場製作時 使用開始前 試験 水素濃度:3vo1% 水素濃度:13v01% 水素濃度:1500L/h 試験流量:1500L/h 試験流量:1500L/h 試験流量:1500L/h	的に手配可能な水素ボンベ	国内で一般的に手配可	後の健全性確認は,			
小さい状態となるが、工場製作時と同じ保守的な性能管理となる。 なお、使用開始前及び供用開始後の健 については、検査要領を定める際に適切	る。工場製作時に比べて,	用いて実施する。工場類	濃度:1.3vo1%)を			
保守的な性能管理となる。 なお、使用開始前及び供用開始後の健 については、検査要領を定める際に適切 表 4-1 触媒の健全性確語 項目 工場製作時 使用開始前 試験 水素濃度:3vo1% 水素濃度:1.3v 条件 試験流量:1500L/h 試験流量:1500 判定 基準 10℃以上/20分以内 10℃以上/20分 又は 又は 又は 又は 20℃以上/30分以内 20℃以上/30分	理能力が低く,温度上昇も	め、水素処理能力が低	素濃度条件で行うだ			
なお、使用開始前及び供用開始後の健については、検査要領を定める際に適切 表 4-1 触媒の健全性確認 項目 工場製作時 使用開始前 試験 水素濃度:3vo1% 水素濃度:1.3v 水素濃度:1.3v 水素濃度:1500L/h 試験流量:1500L/h 対験流量:1500 スは 又は 又は 又は 又は ユロースは 20℃以上/30分以内 20℃以上/30分	じ判定基準を用いるため,	製作時と同じ判定基準	状態となるが,工場			
表 4-1 触媒の健全性確認 項目 工場製作時 使用開始前 試験 水素濃度:3vol% 水素濃度:1.3v 条件 試験流量:1500L/h 試験流量:1500L/h 対験流量:1500L/h 対象流量:20℃以上/20分以内 10℃以上/20分以内 20℃以上/30分以内 20℃以上/30分			な性能管理となる。			
表 4-1 触媒の健全性確認 項目 工場製作時 使用開始前 試験 水素濃度:3vo1% 水素濃度:1.3v 条件 試験流量:1500L/h 試験流量:1500L/h 試験流量:1500L/h 対験流量:1500 分以内 10℃以上/20 分以内 10℃以上/20 分以内 又は 又は 又は 20℃以上/30 分以内 20℃以上/30 分	建全性確認試験の抜取り数	用開始後の健全性確認	,使用開始前及びは			
項目 工場製作時 使用開始前 試験 水素濃度:3vol% 水素濃度:1.3v 条件 試験流量:1500L/h 試験流量:1500 判定 フは フは フは 基準 20℃以上/30 分以内 20℃以上/30 分	刃に設定する。	める際に適切に設定す	ては、検査要領を気			
項目 工場製作時 使用開始前 試験 水素濃度:3vol% 水素濃度:1.3v 条件 試験流量:1500L/h 試験流量:1500 判定 フは フは フは フは 20℃以上/30 分以内 20℃以上/30 分						
試験 水素濃度:3vol% 水素濃度:1.3v 条件 試験流量:1500L/h 試験流量:1500L/h 10℃以上/20分以内 10℃以上/20分以内 又は 又は 又は 20℃以上/30分以内 20℃以上/30分	超試験条件	媒の健全性確認試験条件	表 4-1 触			
条件 試験流量:1500L/h 試験流量:1500 10℃以上/20 分以内 10℃以上/20 分 判定 又は 又は 又は 基準 20℃以上/30 分以内 20℃以上/30 分	前 供用開始後	使用開始前	工場製作時			
判定 基準	3vol% 水素濃度:1.3vol%	水素濃度:1.3vol% 水素	水素濃度:3vo1%			
判定 基準	500L/h 試験流量:1500L/h	試験流量:1500L/h 試験	試験流量:1500L/h			
基準 又は 又は 20℃以上/30 分以内 20℃以上/30 分	分以内 10℃以上/20 分以内	10℃以上/20分以内 10%	10℃以上/20 分以内			
20℃以上/30 分以内 20℃以上/30 分	又は	又は	又は			
	分以内 20℃以上/30分以内	20℃以上/30分以内 20%	20℃以上/30分以内			
	他媒カートリッジ Washington as to be for finding Washington to be finding Washington to be for finding Washington to be for find	他媒カートリッ Windows Performance Transplanter - Trans				
図 4-1 試験装置概	titi	1	₩ 4			

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
			・資料構成の相違
			【柏崎7】
			島根2号機は, VI-5
			「計算機プログラム(解
			析コード)の概要」に記
			載している。なお、使用
			しているバージョンは
			異なる

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
			・資料構成の相違
			【柏崎7】
			島根2号機は, VI-5
			「計算機プログラム(解
			析コード) の概要」に記
			載している。なお、使用
			している解析コードに
			差異はない
			222(13/4)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2号機	備考