島根原子力発電所第2号機 審査資料				
資料番号	NS2-添 1-075 改 02(比)			
提出年月日	2022年5月30日			

先行審査プラントの記載との比較表

(VI-1-9-3-1 緊急時対策所の機能に関する説明書)

2022年5月

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)

・・前回提出時からの変更箇所

先行審査プラントの記載との比較表 (VI-1-9-3-1 緊急時対策所の機能に関する説明書)

東海第	二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2 号機	
応表に おい	て 相違理由を粗刑ルしたものについてじ	♪ 以下にまとめて記載する。下記以外の相違については,備考欄に相違理由を記載する。	7	
	一		√°	
相違No.		相違理由		
1	島根2号機は、可動源については、対象発生源として対策を実施する。			

島根原子力発電所 2 号機	備考
<u>VI-1-9-3-1</u> 緊急時対策所の機能に関する説明書	
	・記載構成の相違 【東海第二】 島根2号機は,有毒がスロンのいて明記 ・設備の相違 の相違 ・設備の相違 ・設備を受けるといるのである。 ・設備の相違 ・設備の相違 ・設備の相違 ・のいて明記

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		1. 概要 本資料は、「実用発電用原子炉及びその附属施設の技術基準に 関する規則」(以下「技術基準規則」という。)第 46 条及び第 76 条並びにそれらの「実用発電用原子炉及びその附属施設の技 術基準に関する規則の解釈」(以下「解釈」という。)に基づき、 緊急時対策所の機能について説明するものである。併せて技術 基準規則第 47 条第 4 項のうち通信連絡設備及び第 5 項、第 77 条並びにそれらの解釈に係る緊急時対策所の通信連絡設備につ いて説明する。	
		2. 基本方針2.1 緊急時対策所は、重大事故等が発生した場合においても当該事故等に対処するため以下の設計とする。	・設備の相違 【東海第二,柏崎7】 島根2号機は単号機 申請。島根2号機は専用 の建物を新規設置して いる
		(1) 緊急時対策所は、基準地震動Ssによる地震力に対し緊急時対策所の機能を喪失しないようにするとともに、基準津波(EL11.9m)の影響を受けない設計とする。また、緊急時対策所は、敷地高さEL50mに設置することにより、津波による影響を受けない設計とする。	・環境条件の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		耐震性に関する詳細は、 <u>VI-2-2-12</u> 「緊急時対策所の耐震	
		性 <u>についての</u> 計算書」及びVI-1-1-7「安全設備及び重大事	
		故等対処設備が使用される条件の下における健全性に関す	
		る説明書」,自然現象への配慮等の詳細は, <u>VI-1-1-3</u> 「発電	
		用原子炉施設の自然現象等による損傷の防止に関する説明	
		書」に示す。	
		(2) 緊急時対策所は, <u>緊急時対策所の</u> 機能に係る設備を含め,	
		共通要因により中央制御室(「1,2号機共用」(以下同じ。))	・設備の相違
		と同時に機能喪失しないよう, 中央制御室に対して独立性	【東海第二】
		を有する設計とするとともに,中央制御室から離れた位置	共用設備の相違
		に設ける設計とする。	
		位置的分散に関する詳細は、 11-1-1-7 「安全設備及び重	
		大事故等対処設備が使用される条件の下における健全性に	
		関する説明書」に示す。	
		(3) 緊急時対策所は、代替電源設備からの給電を可能な設計	
		とし、1 台で緊急時対策所に給電するために必要な発電機	
		容量を有する緊急時対策所用発電機(「屋外に設置」(以下	・設備の相違
		同じ。))を <u>燃料補給時の切替えを考慮して,合計2</u> 台を配	【東海第二】
		<u>備</u> することで多重性を確保する設計とする。 <u>また,故障時</u>	島根2号機の緊急時
		のバックアップ及び保守点検による待機除外時のバックア	対策所用発電機(可搬型
		ップとして予備機を2台保管する。	設備)を屋外に設置する
			【東海第二,柏崎 7】
			島根2号機は単号機
			申請。島根2号機の緊急
			時対策所用発電機(可搬
			型設備) は,燃料補給時
			の切替え,故障対応時及
			び保守点検時のバック
			アップの予備機を含め
			て4台配備している
		なお、緊急時対策所用発電機は、希ガス等の放射性物質	・設備の相違
		の放出時に緊急時対策所の外側で操作及び作業を行わない	【東海第二】
		設計とする。	島根 2 号機の緊急時
			対策所用発電機(可搬型
			設備)を屋外に設置す
			る。島根2号機は、希ガ

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
				ス等の放射性物質の放 出時に緊急時対策所の 外側で操作及び作業を 行わない
				・設備の相違
				【柏崎7】 島根2号機は単号機
				申請
			2.2 緊急時対策所は,以下の機能を有する設計とする。 (1) 居住性の確保に関する機能	
			原子炉冷却系統に係る発電用原子炉施設の損壊その他の	
			異常(以下「原子炉冷却材喪失事故等」という。)が発生し た場合において,当該事故等に対処するために必要な指示	
			を行う要員がとどまることができ、必要な期間にわたり滞	
			在できるものとする。また,重大事故等が発生した場合に おいても,当該事故等に対処するために必要な指示を行う	
			要員に加え、原子炉格納容器の破損等による発電所外への	
			放射性物質の拡散を抑制するための対策に対処するために 必要な数の要員を含め、重大事故等に対処するために必要	
			な数の要員を収容することができるものとする。	
			緊急時対策所は、重大事故等時において、緊急時対策所	
			内への希ガス等の放射性物質の侵入を低減又は防止するた め適切な換気設計を行い,緊急時対策所の気密性及び緊急	
			<u>時対策所遮蔽</u> の性能とあいまって,居住性に係る判断基準	【柏崎 7】
			である緊急時対策所にとどまる要員の実効線量が事故後 7 日間で 100mSv を超えないものとする。	・設備の相違 【東海第二,柏崎7】 島根2号機は単号機
				申請

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
		また、緊急時対策所内への希ガス等の放射性物質の侵入	
		を低減又は防止するための確実な判断ができるよう, 放射	
		線管理施設のうち、放射線量を監視、測定するための可搬	
		式エリア放射線モニタ及び可搬式モニタリングポストを保	
		管することができるものとする。	
		原子炉冷却材喪失事故等及び重大事故等が発生した場合	
		において、緊急時対策所内の酸素濃度及び二酸化炭素濃度	
		が活動に支障がない範囲にあることを把握できるものとす	
		る。	
		(2) 情報の把握に関する機能	
		原子炉冷却材喪失事故等が発生した場合において、中央	
		制御室の運転員を介さずに事故状態等を正確かつ速やかに	
		把握できるとともに、重大事故等が発生した場合において	
		も、当該事故等に対処するために必要な情報を把握できる	
		よう、必要なパラメータ等を収集し、緊急時対策所内で表	
		示できるものとする。	
		(3) 通信連絡に関する機能	
		原子炉冷却材喪失事故等及び重大事故等が発生した場合	
		において,発電所内の関係要員に指示や発電所外関連箇所	
		との通信連絡等、発電所内外の通信連絡をする必要のある	
		場所と通信連絡を行うとともに、発電所内から発電所外の	
		緊急時対策支援システム (ERSS) <u>等</u> へ必要なデータを	設備の相違
		 伝送することができるものとする。	【東海第二】
			島根2号機はSPD
			S伝送サーバからER
			SSデータセンター及
			び本社へ伝送する
		3. 緊急時対策所の機能に係る詳細設計	
		緊急時対策所は,基準地震動Ssによる地震力に対し,耐震	
		構造として緊急時対策所の機能を喪失しない設計とすることに	
		より,以下の設備の性能とあいまって十分な気密性を確保する	
		とともに, 遮蔽機能が喪失しない設計とする。	
			・記載構成の相違
			【東海第二】
			東海第二は 3.項に記
			載

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
		a. 緊急時対策所換気空調系	・記載方針の相違
		(a) 緊急時対策所空気浄化装置	【東海第二】
			島根2号機は換気空
		イ. 緊急時対策所空気浄化送風機(第 1 保管エリア, 第 4 保管エリアに保管)	調系の設備概要を記載
		<u>第4保管エリアに保管)</u>	
		口. 緊急時対策所空気浄化フィルタユニット(第 1 保	
		管エリア,第4保管エリアに保管)	
		ハ. 緊急時対策所空気浄化装置用可搬型ダクト(第 1	
		保管エリア、第4保管エリアに保管)	
		<u>二. 緊急時対策所空気浄化装置用配管・弁(緊急時対</u>	
		<u>二、 </u>	
		<u>/N// (= </u>	 ・設備の相違
			【柏崎 7】
		(1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		(b) 空気ボンベ加圧設備	・記載方針の相違 【東海第二】
		<u>イ. 空気ボンベ加圧設備(空気ボンベ)(第1保管エリ</u>	島根2号機は換気空
		ア,第4保管エリアに保管)	調系の設備概要を記載
		ロ. 空気ボンベ加圧設備用可搬型配管・弁(第1保管	
		エリア、第4保管エリアに保管)	
		カー 売与ボンベ加圧乳借用配体・会(取名吐基体式)を	
		<u>ハ. 空気ボンベ加圧設備用配管・弁(緊急時対策所に</u> <u>設置)</u>	
		<u>以戶/</u>	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2号機	備考
			・設備の相違 【柏崎 7】
		また、緊急時対策所の機能に係る設備についても、基準地震動Ssによる地震力に対し、機能を喪失しないよう、可搬型設備に関しては、固縛等の措置を施す。 緊急時対策所は、図3-1に示すとおり、基準津波(EL11.9m)の影響を受けない設計とする。また、中央制御室から離れた場所の敷地高さ EL50m に設置することにより、津波による影響を受けない設計とする。	【東海第二】 東海第二は 3. 項に記載 ・環境条件の相違 【東海第二,柏崎7】 島根2号機における 基準津波の最高水位を 記載する ・設備の相違 【東海第二,柏崎7】
		緊急時対策所の機能に係る設備は、緊急時対策所内に設置することにより、図3-1に示すとおり、中央制御室に対して独立性を有した設計とするとともに、予備も含め中央制御室から離れた位置に設置又は保管する。緊急時対策所は、図3-3に示すとおり、通常時の電源を非常用所内電気設備より受電可能とし、非常用所内電気設備からの受電が喪失した場合、緊急時対策所用発電機から緊急時対策所の機能を維持するために必要となる電源の供給が可能な設計とする。	島根2号機の緊急時 対策所は、敷地高さ 配50mの高台に新規設 置している ・設備の相違 【東海第二】 島根2号機は非常用 所内電気設備から緊急 時対策所に電源供給を 行う

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			緊急時対策所用発電機は 1 台で緊急時対策所に給電するため	
			に必要な容量を有するものを、1 台故障による機能喪失の防止	・設備の相違
			と燃料補給のために停止する際にも給電を継続するため合計 2	【東海第二,柏崎7】
			<u>台を配備</u> する設計とする。	島根 2 号機の緊急時
			また、故障時のバックアップ及び保守点検による待機除外時	対策所用発電機(可搬型
			のバックアップとして予備機を第4保管エリアに2台を保管す	設備) は,燃料給補給時
			<u>る。</u>	の切替え,故障対応時及
				び保守点検時のバック
				アップの予備機を含め
				て4台配備している
			緊急時対策所の運用に必要となる電源容量は,表3-1に示す	
			緊急時の指揮命令に必要とされる負荷内訳から,約 <u>80kW</u> であ	・設備の相違
			る。	【東海第二,柏崎 7】
				設備構成の相違
			また、緊急時対策所用燃料地下タンクからタンクローリ及び	・設備の相違
			ホースを用いて、軽油を補給することにより、7 日以上緊急時	【東海第二】
			対策所用発電機を運転可能としている。	設備構成の相違
			緊急時対策所用発電機は燃料タンク (990L) を内蔵しており,	
			表 3-1 に示す負荷に対して 39 時間以上連続給電が可能であり,	・設備の相違
			18 時間毎に待機予備に切り替えて運転を行う設計とする。格納	【東海第二】
			容器ベント実施前に予め補給を行うことにより、格納容器ベン	島根2号機の緊急時
			ト実施後早期に補給が必要となることはない。	対策所用発電機は可搬
				型設備
				【柏崎7】
				島根2号機は必要負
				荷と燃料による運転時
				間を記載。また切り替え
				時間を記載
			なお、格納容器ベント実施前に負荷運転中の緊急時対策所用	・設備の相違
			発電機1台に加えて、もう1台の制御回路に電源を供給した状	【東海第二】
			態で待機しておくことで、緊急時対策所内でも操作が可能とな	島根2号機の緊急時
			り、万一、負荷運転中の緊急時対策所用発電機が停止した場合、	対策所用発電機は可搬
			待機中の緊急時対策所用発電機へ切替えることによりプルーム スススススススススススススススススススススススススススススススススススス	型設備
			通過時間である 10 時間以上給電可能とする。	・運用及び設備の相違
				【柏崎 7】
				島根2号機は運転せ

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
				ずに待機する。また緊急
				時対策所内からも操作
				が可能
			緊急時対策所は,二以上の発電用原子炉施設において共用し	・設備の相違
			ない設計とする。情報の把握に関する機能及び通信連絡に関す	【柏崎7】
			る機能は、必要な情報(相互のプラント状況、運転員、緊急時	島根2号機は単号機
			対策要員及び自衛消防隊の対応状況等)を共有・考慮しながら	申請。情報の把握に関す
			総合的な管理(事故処理を含む。)を行うことができ、また、端	る機能及び通信連絡に
			末を変更する場合に生じる情報共有の遅延を防止することで,	関する機能は共用する
			安全性を損なわない設計とするとともに,安全性の向上が図れ	
			ることから、1、2、3号機で共用する設計とする。	
			また,情報の把握に関する機能及び通信連絡に関する機能は,	
			<u>共用により悪影響を及ぼさないよう,号機の区分けなく使用で</u>	
			きる設計とする。	
			緊急時対策所の機器配置図を図3-2に示す。	
			3.1 居住性の確保	
			緊急時対策所は,原子炉冷却材喪失事故等が発生した場合	
			において、原子炉冷却材喪失事故等に対処するために必要な	
			指示を行うための要員がとどまることができ、また、重大事	
			故等が発生した場合においても、重大事故等に対処するため	
			に必要な指示を行う要員に加え、原子炉格納容器の破損等に	
			よる発電所外への放射性物質の拡散を抑制するための対策に	
			対処するために必要な要員を含め、重大事故等に対処するた	
			めに必要な数の要員を収容することができる設計とする。	
			緊急時対策所は、図 3-4 及び図 3-5 に示すとおり、地上	・設備の相違
			1 階建の鉄筋コンクリート造の建物であり、延べ床面積約	
			650m ² , 緊急時対策本部として約240m ² を有している。	島根2号機の緊急時
				対策所は,敷地高さ
			緊急時対策所には、重大事故等に対処するために必要な指	EL50m の高台に新規設
			示を行う要員 46 名及び原子炉格納容器の破損等による発電	置している
			所外への放射性物質の拡散を抑制するために必要な要員 23	
			名のうち中央制御室待避室にとどまる運転員5名を除く18名	
			の合計 <u>64 名</u> を上回る <u>最大 150 名</u> を収容できる設計とする。	・設備の相違
				【東海第二,柏崎7】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			なお、緊急時対策所の配置に当たっては、図3-5に示すと	・設備の相違
			おり要員の活動に必要な広さを有した設計とする。	【柏崎7】
			緊急時対策所は、重大事故等において、緊急時対策所の気密性、緊急時対策所遮蔽、緊急時対策所空気浄化送風機、緊急時対策所空気浄化之イルタユニット及び空気ボンベ加圧設備の性能とあいまって、居住性に係る判断基準である緊急時対策所にとどまる要員の実効線量が事故後7日間で100mSvを超えない設計とする。	・設備の相違 【柏崎 7】
			3.1.1 換気空調系設備等 緊急時対策所内への放射性物質の侵入を低減するため、 重大事故等時においては、緊急時対策所空気浄化送風機を 起動し、外気を緊急時対策所空気浄化フィルタユニットに より浄化させ、浄化された空気を送気し緊急時対策所内を 正圧化することで、緊急時対策所内への放射性物質の侵入 を低減する設計とする。	・設備の相違 【柏崎 7】
			プルーム通過時には、緊急時対策所空気浄化送風機から 空気ボンベ加圧設備に切替え、緊急時対策所を正圧化する ことで、屋外より高い圧力とし、緊急時対策所内への希ガ ス等の放射性物質の侵入を防止する設計とする。	

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2 号機	備考
			・運用の相違
			【柏崎7】
			プルーム通過後の吸
			気場所雰囲気改善に関
			する運用の相違
		プルーム通過後には、空気ボンベ加圧設備から緊急時対	・運用の相違
		策所空気浄化送風機及び緊急時対策所空気浄化フィルタユ	【東海第二】
		ニットに切替え、緊急時対策所を正圧化することで、フィ	
		<u>ルタを介さない外気の流入を防止する設計とする。</u>	ム通過後には,プルーム
			通過前の換気系統に原
		緊急時対策所内への希ガス等の放射性物質の侵入を低減	す運用・設備の相違
		又は防止するための判断が確実に行えるよう,放射線管理	
		施設のうち緊急時対策所内外の放射線量を監視、測定する	I Harry V
		ための可搬式エリア放射線モニタ及び可搬式モニタリング	
		ポストを保管する設計とする。	
		また,正圧化された緊急時対策所内と屋外との差圧を監	・記載方針の相違
		視できる計測範囲として 0~500Pa を有する差圧計を設置	【東海第二】
		する設計とする。	島根2号機は差圧計
			について記載
		緊急時対策所換気空調系の設備構成図を <u>図 3-6</u> に示す。	
		換気設備の機能については、 <u>Ⅵ-1-9-3-2</u> 「緊急時対策所	
		の居住性に関する説明書」、放射線管理計測装置の仕様等	
		は, VI-1-7-1 「放射線管理用計測装置の構成に関する説明	
		書並びに計測範囲及び警報動作範囲に関する説明書」に示	
		す。	

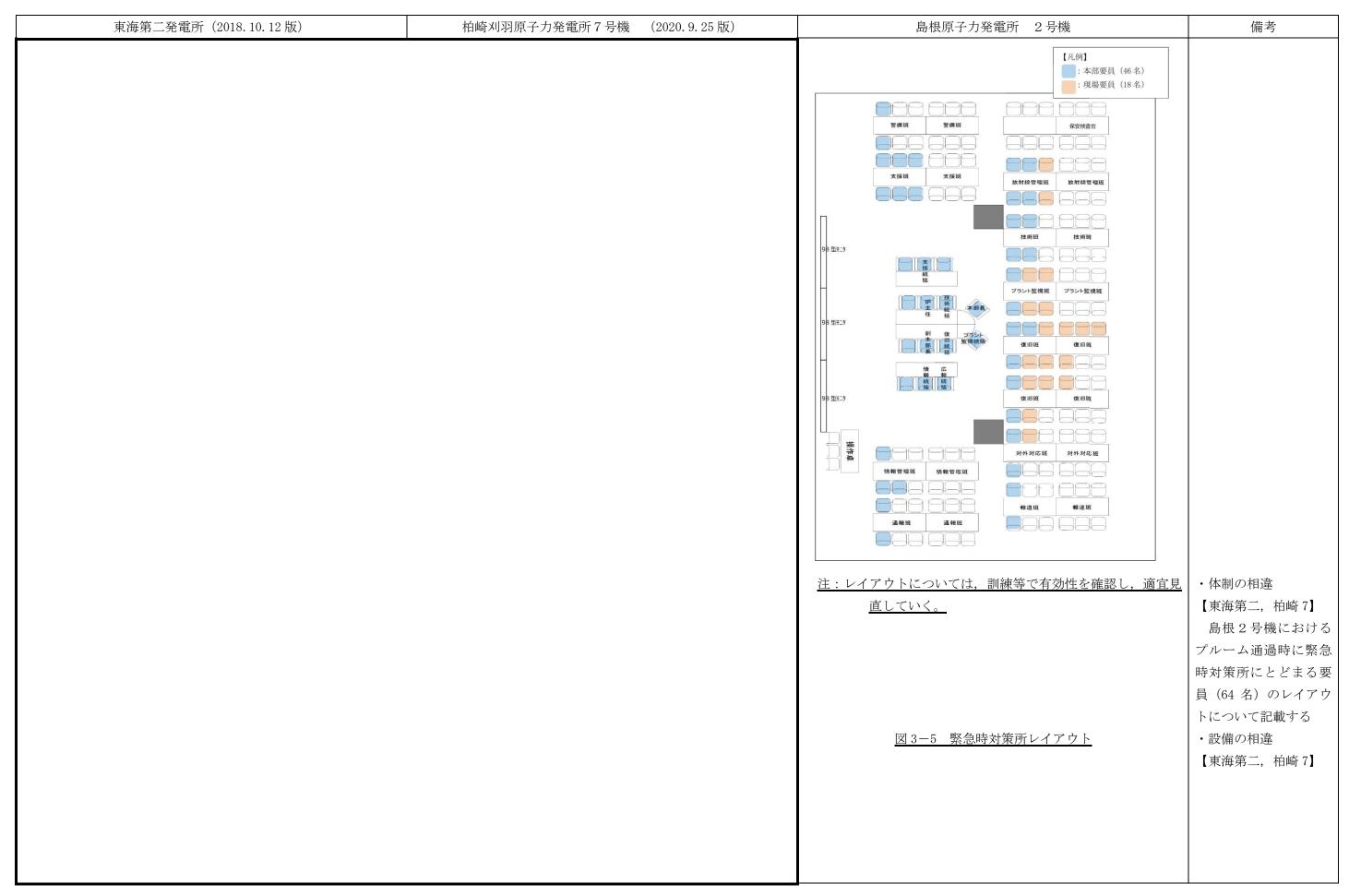
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
		3.1.2 生体遮蔽装置	
		緊急時対策所遮蔽は,居住性に係る被ばく評価の判断基	・設備の相違
		準を超えない設計とする。	【柏崎7】
		遮蔽設計の詳細は, <u>VI-4-2-2「緊急時対策所の</u> 生体遮蔽	
		装置の放射線の遮蔽及び熱除去についての計算書」及びVI	
		-1-9-3-2「緊急時対策所の居住性に関する説明書」に示す。	
		1932、米心時外水がの治口に関する肌が盲」にかす。	
		3.1.3 酸素濃度計及び二酸化炭素濃度計	
		設計基準事故時及び重大事故等が発生した場合の対応と	
		して、緊急時対策所内の酸素及び二酸化炭素濃度を確認す	
		る電池式の可搬型の酸素濃度計及び二酸化炭素濃度計は,	・設備の相違
		活動に支障がない範囲にあることを把握できる設計とす	【東海第二,柏崎 7】
		る。	島根2号機は単号機
			申請
			・設備の相違
			【柏崎 7】
		また,酸素濃度計 <u>及び</u> 二酸化炭素濃度計は,汎用品を用	
		い容易,かつ確実に操作ができるものを保管する。	・設備の相違
			【柏崎 7】
		酸素濃度計及び二酸化炭素濃度計の仕様を表 3-2 に示	
		वे .	・設備の相違
		By 在叶上/林二十一个工人才冲 中, T 2 2 2 2 7 7 1 1 1 1 2 2 2 2 2 2 2 2 2 2	【柏崎 7】
		緊急時対策所内の酸素濃度及び二酸化炭素濃度評価については、W. 1.0.2.2.「緊急時対策形の民体地に関する説明	
		いては、 <u>VI-1-9-3-2</u> 「緊急時対策所の居住性に関する説明	
		書」に示す。	
		3.1.4 チェンジングエリア	
		重大事故等が発生し、緊急時対策所の外側が放射性物質	
		により汚染したような状況下において、要員が緊急時対策	
		所の外側から緊急時対策所内に放射性物質による汚染を持	
		込むことを防止するため,図 3-7 に示すとおり,身体の汚	
		染検査及び作業服の着替え等を行うための区画(以下「チ	
		ェンジングエリア」という。)を設置する設計とする。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2 号機	備考
		チェンジングエリアの詳細は, <u>VI-1-7-2</u> 「管理区域の出	
		入管理設備及び環境試料分析装置に関する説明書」及び∭	
		-1-9-3-2「緊急時対策所の居住性に関する説明書」に示す。	
		3.2 情報の把握	
		3.2 情報の記述 緊急時対策所において,原子炉冷却材喪失事故等に対処す	
		るために必要な情報及び重大事故等に対処するために必要な	
		指示ができるよう、重大事故等に対処するために必要な情報	
		を、中央制御室内の運転員を介さずに正確かつ速やかに把握	
		できるよう、情報収集設備として、SPDSデータ収集サー	
		バ、SPDS伝送サーバ及びSPDSデータ表示装置で構成 オスなみパラス、クまランスラス(SPDS)(「1、0、0)	乳供の担害
		する安全パラメータ表示システム (SPDS) (「1, 2, 3	・設備の相違
		号機共用」 <mark>、SPDSデータ収集サーバは1、2号機共用</mark> (以	【東海第二,柏崎 7】
		下同じ。))を設置する。	共用する設備の相違
			・資料構成の相違
		安全パラメータ表示システム(SPDS)の概略構成を図	【東海第二】
		3-8に示す。	
		安全パラメータ表示システム(SPDS)のうちSPDS	
		データ収集サーバは、廃棄物処理建物内に設置し、SPDS	
		伝送サーバ及びSPDSデータ表示装置は、緊急時対策所に	
		設置する。	
		SPDSデータ表示装置は、プラントの状態確認に必要な	
		主要パラメータ及び主要な補機の作動状態を確認することが	
		できるようにする。緊急時対策所で確認できるパラメータは、	・記載構成の相違
		<u>Ⅵ-1-1-11</u> 「通信連絡設備に関する説明書」に示す。	【東海第二】
			島根2号機は, V
			-1-1-11 に記載

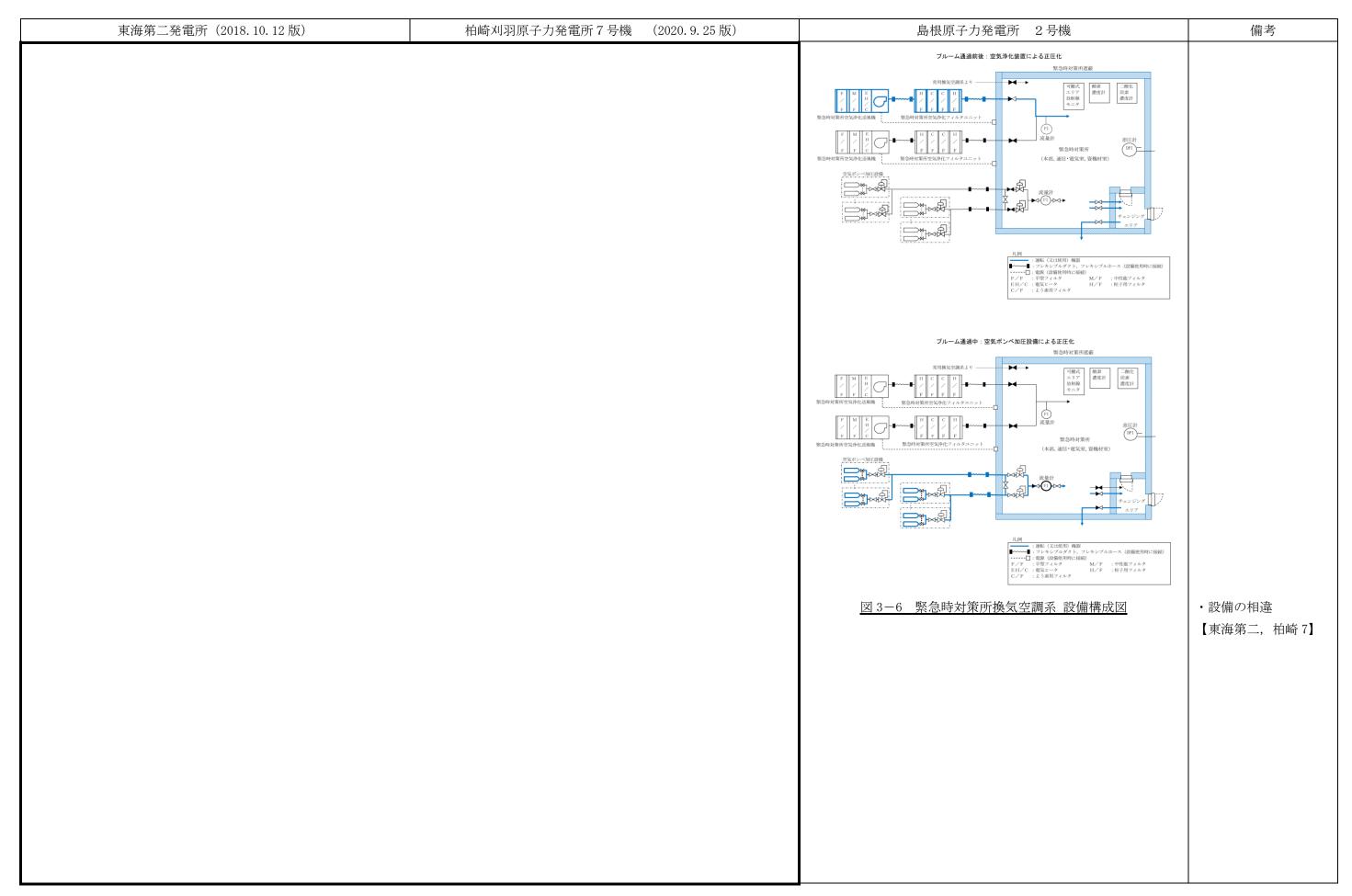
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2 号機	備考
		3.3 通信連絡	
		3.3.1 通信連絡設備	
		緊急時対策所には、原子炉冷却材喪失事故等が発生した	
		場合において,原子炉冷却材喪失事故等に対処するため,	
		発電所内の要員への指示を行うために必要な通信連絡設備	
		<u>(発電所内)</u> 及び発電所外関係箇所と専用であって有線系 <u>,</u>	・設備の相違
		無線系又は衛星系回線による通信方式の多様性を備えた通	【東海第二,柏崎7】
		信回線にて連絡できる <u>通信連絡設備(発電所外)</u> により、	島根2号機は通信連
		発電所内外の通信連絡をする必要のある場所と通信連絡で	絡設備 (発電所外) に無
		きるようにする。	線系回線を使用する
		また、重大事故等が発生した場合においても、緊急時対	
		策所から中央制御室、発電所内の作業場所、本社、国、地	
		方公共団体、その他関係機関の発電所の内外の通信連絡を	
		する必要のある場所と通信連絡を行う <u>通信連絡設備(発電</u>	
		<u>所内)及び通信連絡設備(発電所外)</u> により,発電所 <u>の</u> 内	
		外の通信連絡をする必要のある場所と通信連絡できるよう	
		にする。	
		緊急時対策所の通信連絡設備として、所内通信連絡設備	
		(警報装置を含む。),電力保安通信用電話設備(固定電話	
		機, PHS端末及びFAX) <u>(「1号機設備, 1, 2, 3号</u>	・設備の相違
		機共用」(以下同じ。)),衛星電話設備(固定型)(「1,2,	【東海第二,柏崎 7】
		3号機共用」(以下同じ。)),衛星電話設備(携帯型)(「1,	共用する設備の相違
		2, 3号機共用」(以下同じ。)), 無線通信設備(固定型)	・設備の相違
		(「1号機設備,1,2,3号機共用」(以下同じ。)), 無線	【東海第二,柏崎7】
		通信設備 (携帯型) (「1号機設備, 1, 2, 3号機共用」	設備構成の相違
		(以下同じ。)), 局線加入電話設備 (固定電話機及びFAX)	
		(「1号機設備, 1, 2, 3号機共用」(以下同じ。)), テレ	
		ビ会議システム(社内向), 専用電話設備 (専用電話設備 (ホ	
		ットライン)(地方公共団体他向))(「1,2,3号機共用」	
		(以下同じ。)), 衛星電話設備(社内向)(衛星テレビ会議	
		システム(社内向)及び衛星社内電話機)及び統合原子力	
		防災ネットワークに接続する通信連絡設備(テレビ会議シ	
		ステム, <u>I P-電話機</u> 及び I P-FAX) <u>(「1,2,3号</u>	
		機共用」(以下同じ。))を設置又は保管する。	
		なお、緊急時対策所の通信連絡設備は、計測制御系統施	・運用の相違
		設の設備を緊急時対策所の設備として兼用する。	【東海第二】
		<u>通信連絡設備</u> の詳細は, <u>VI-1-1-11</u> 「通信連絡設備に関す	島根2号機は緊急時
		る説明書」に示す。	対策所の通信連絡設備

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			を緊急時対策所の設備
			として兼用する
		3.3.2 緊急時対策支援システム (ERSS) <u>等</u> へのデータ伝	・設備の相違
		送設備	【東海第二】
			島根2号機はSPD
			S伝送サーバからER
			SSデータセンター及
			び本社へ伝送する
		原子炉冷却材喪失事故等が発生した場合において、有線	
		系 <u>無線系</u> 又は衛星系回線による通信方式の多様性を備え	・設備の相違
		た構成の専用通信回線により、発電所内から発電所外の緊	【東海第二,柏崎 7】
		急時対策支援システム(ERSS) <u>等</u> へ必要なデータを伝	島根2号機は通信連
		送できるデータ伝送設備(「1,2,3号機共用」(以下同	絡設備(発電所外)に無
		<u>じ。))</u> として、 <u>SPDS伝送サーバ</u> を緊急時対策所内に設	線系回線を使用する
		置する。	【東海第二】
			島根2号機はSPD
			S伝送サーバからER
			SSデータセンター及
			び本社へ伝送する
			・設備の相違
			【東海第二,柏崎 7】
			共用する設備の相違
		緊急時対策支援システム(ERSS) <u>等</u> へのデータ伝送	
		の機能に係る設備については、重大事故等が発生した場合	【東海第二】
		においても必要なデータを伝送できる設計とする。	島根2号機はSPD
		なお, データ伝送設備は, 計測制御系統施設の設備を緊	
		急時対策所の設備として兼用する。	SSデータセンター及
			び本社へ伝送する
			・運用の相違
			【東海第二】
			島根2号機は緊急時
			対策所の通信連絡設備
			を緊急時対策所の設備
			として兼用する
		<u>SPDS伝送サーバ</u> の詳細は, <u>VI-1-1-11</u> 「通信連絡設備	
		に関する説明書」に示す。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)		島相	限子力発電所 2	号機	備考
		表 3-	1 緊急時	の指揮命令に必要	とされる負荷内訳	・設備構成の相違
			負荷	:	負荷容量(kW)	【東海第二,柏崎7】
		換気空調設備			48. 54	設備構成の相違
		必要な情報を把		通信連絡設備	9. 27	1940114114794
		放射線管理設備			2. 04	
		その他設備(照	明設備等) 合計		19. 28 79. 13	
					19.10	
						・設備構成の相違
						【柏崎7】
		<u></u>	₹3−2 酸	素濃度計及び二酸	化炭素濃度計	・設備の相違
		名称		仕様	等	【東海第二,柏崎7】
		酸素濃度計	検知原理	ガルバニ電池式		採用する計器の相談
			測定範囲	0.0~25.0vo1%*		による仕様の相違
			電源	±0.5vo1%		
			电你	電池式(交換により名) 測定可能時間:約150	容易に電源が確保できるもの) 000 時間	
			個数	1個(予備1個)		
		二酸化炭素濃度	検知原理	赤外線式		
		計	測定範囲	0~10000ppm*		
			精度	±500ppm		
			電源	電池式(交換により名) 測定可能時間:約7日	容易に電源が確保できるもの) 時間	
			個数	1個(予備1個)		
		<u>基準</u> がた <u>変</u> :	原時対策所 連事故時及 ない範囲(1個 (予備 1 個) 内の酸素濃度及び び重大事故等時の 酸素濃度: 18vol	二酸化炭素濃度が,設計 対策のための活動に支障 %以上,二酸化炭素濃 であることが把握できる	【東海第二,柏崎7】 島根2号機は酸素

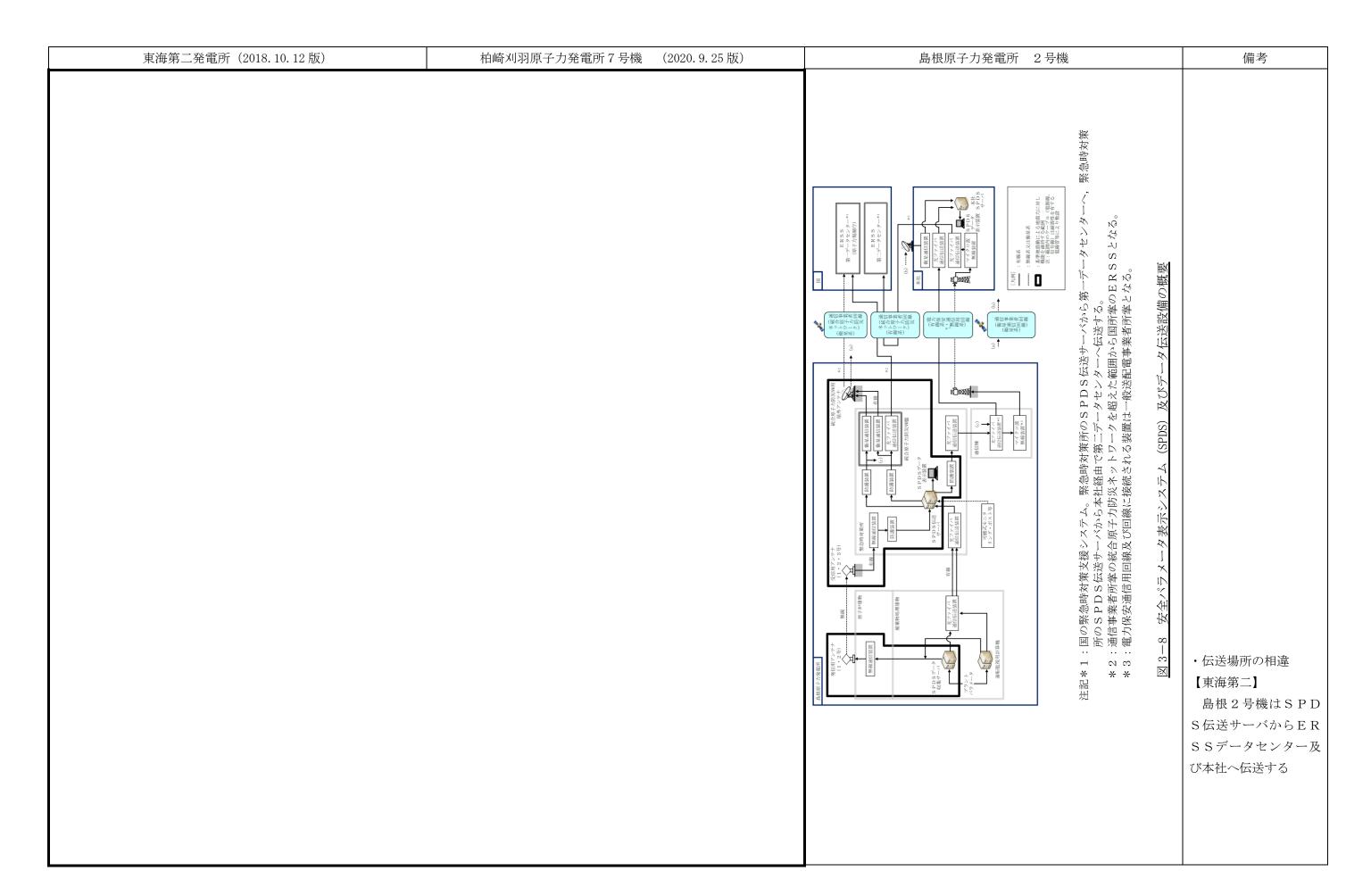

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		図 3-1 緊急時対策所 配置図	・設備の相違 【東海第二、柏崎 7】
			・記載場所の相違 【東海第二】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
		【凡何】	C. UIN
		図3-2 緊急時対策所 機器配置図 (1/3)	・設備の相違【東海第二、柏崎 7】


東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			緊急時対策所空気浄化ブイルタユニット 空気ボンベ加圧設備(空気ボンベ) 緊急時対策所空気浄化芝風機 緊急時対策所空気冷化ブイルタユニット 空気ボンベ加圧設備(空気ボンベ)	
			図3-2 緊急時対策所 機器配置図 (2/3)	・設備の相違 【東海第二,柏崎 7】
			図 3-2 緊急時対策所 機器配置図 (3/3)	・設備の相違 【東海第二,柏崎 7】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			TOTAL COLUMN TO THE PARTY OF T	・設備の相違 ・設備の相違 ・設備の第二、柏崎7】 ・設備の第二、柏崎7】 ・設庸を見る。 ・設備を見る。 ・設備を見る。 ・記事を ・記事のを ・記事のの相違 ・記事のの相違 ・記事のの相違 ・記事のの相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			図3-4 緊急時対策所の概要(概要図)	・設備の相違
				【東海第二,柏崎 7】



東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			・設備の相違
			【柏崎7】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			(A例)	・設備の相違 【東海第二,柏崎7】 ・設備の相違 【柏崎7】 島根2号機は,緊急時 対策がエリアを設け、を 数のアクセスルートを 使用しない
				【柏崎7】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			・資料構成の相違
			【東海第二】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.	25 版) 島根原子力発電所 2 号機	備考
		(2) 緊急時対策所の機能に関する説明書	・記載構成の相違
		(緊急時対策所の有毒ガス防護について)	【東海第二】
			島根2号機は,有毒ガ
		目次	スに対する防護措置に
		1. 概要	ついて明記
		2. 基本方針 · · · · · · · · · · · · 1	
		2.1 有毒ガスに対する防護措置1	
		2.2 適用基準及び適用規格等 … 1	
		3. 緊急時対策所の機能に係る詳細設計 … 2	
		3.1 有毒ガスに対する防護措置 2	
		3.1.1 固定源に対する防護措置 2	
		3.1.2 可動源に対する防護措置 3	
		4. 緊急時対策所の有毒ガス濃度評価 … 3	
		4.1 評価条件	
		4.1.1 評価の概要 ・・・・・・・・・・・・・・・・ 4	
		4.1.2 評価事象の選定 ・・・・・・・・・・・・・・ 4	
		4.1.3 有毒ガス到達経路の選定 4	
		4.1.4 有毒ガス放出率の計算	
		4.1.5 大気拡散の評価 ············ <mark>6</mark>	
		4.1.6 有毒ガス濃度評価 ··········· 8	
		4.1.7 有毒ガス防護のための判断基準値 9	
		4.1.8 有毒ガス防護のための判断基準値に対する割合 ···· 9	
		4.1.9 有毒ガス防護のための判断基準値に対する割合	
		の合算及び判断基準値との比較 · · · · · · · · · · 9	
		4.2 評価結果····································	
		4.3 有毒ガス濃度評価のまとめ10	

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2 号機	備考
		1. 概要	
		本資料は、「実用発電用原子炉及びその附属施設の技術基準に	
		関する規則」(以下「技術基準規則」という。)第46条及び第76	
		条並びにそれらの「実用発電用原子炉及びその附属施設の技術	
		基準に関する規則の解釈」(以下「解釈」という。)に基づき,緊	
		急時対策所の機能について説明するものである。	
			九寺然田の担告
			・申請範囲の相違
			【柏崎 7】
			申請範囲の相違
		本資料は、緊急時対策所の機能のうち、有毒ガスに対する防	
		護措置について説明する。	
		2. 基本方針	
		2.1 有毒ガスに対する防護措置	
		緊急時対策所は、有毒ガスが重大事故等に対処するために	
		必要な指示を行う要員(以下「指示要員」という。)に及ぼす	
		影響により、指示要員の対処能力が著しく低下し、安全施設	
		の安全機能が損なわれることがないよう、緊急時対策所内に	
		とどまり必要な指示、操作を行うことができる設計とする。	
		敷地内外において貯蔵施設に保管されている有毒ガスを発	
		生させるおそれのある有毒化学物質(以下「固定源」という。)	
		及び敷地内において輸送手段の輸送容器に保管されている有	
		毒ガスを発生させるおそれのある有毒化学物質(以下「可動	
		源」という。) それぞれに対して有毒ガスが発生した場合の影	
		響評価(以下「有毒ガス防護に係る影響評価」という。)を実	
		施する。	
		有毒ガス防護に係る影響評価に当たっては、「有毒ガス防護	
		に係る影響評価ガイド」(以下「有毒ガス評価ガイド」という。)	
		を参照して評価を実施し、有毒ガスが大気中に多量に放出さ	
		れるかの観点から,有毒化学物質の性状,貯蔵状況等を踏ま	
		え固定源及び可動源を特定する。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2 号機	備考
		固定源に対しては, 固定源の有毒ガス防護に係る影響評価	・有毒ガス防護評価方
		に用いる <u>防液堤等の設置</u> 状況を踏まえ評価条件を設定し、指	針の相違
		示要員の吸気中の有毒ガス濃度の評価結果が有毒ガス防護の	【柏崎 7】
		ための判断基準値を下回ることにより、指示要員を防護でき	島根2号機は,可動源
		る設計とする。	については,対象発生源
		可動源に対しては,緊急時対策所換気設備の隔離等の対策	として対策を実施する
		により、指示要員を防護できる設計とする。	(以下, ①の相違)
		2.2 適用基準及び適用規格等	
		緊急時対策所の機能に適用する基準及び規格等は、以下の	
		とおりとする。	
		・実用発電用原子炉及びその附属施設の技術基準に関する	
		規則の解釈 (平成 25 年 6 月 19 日原規技発第 1306194 号)	
		・有毒ガス防護に係る影響評価ガイド (平成 29 年 4 月 5 日	
		原規技発第 1704052 号)	
		・原子力発電所中央制御室の居住性に係る被ばく評価手法	
		について(内規)(平成 21・07・27 原院第 1 号(平成 21	
		年8月12日原子力安全・保安院制定))	
		・発電用原子炉施設の安全解析に関する気象指針(昭和 57	
		年1月28日原子力安全委員会決定)	
		・毒物及び劇物取締法(昭和25年法律第303号)	
		・消防法(昭和 23 年法律第 186 号)	
		・高圧ガス保安法(昭和 26 年法律第 204 号)	
		3. 緊急時対策所の機能に係る詳細設計	
		3.1 有毒ガスに対する防護措置	
		原子炉冷却系統に係る発電用原子炉施設の損壊又は故障そ	
		の他の異常が発生した場合に発電用原子炉の運転の停止その	
		他の発電用原子炉施設の安全性を確保するための措置をとる	
		ため、次のような対策により緊急時対策所内の指示要員に対	
		し、有毒ガスによる影響により、対処能力が著しく低下する	
		ことがないように考慮し、指示要員が緊急時対策所内にとど	
		まり,事故対策に必要な指示を行うことができる設計とする。	
		緊急時対策所は、固定源に対しては、貯蔵容器すべてが損	
		傷し、有毒化学物質の全量流出によって発生した有毒ガスが	
		大気中に放出される事象を想定し、指示要員の吸気中の有毒	
		ガス濃度の評価結果が,有毒ガス防護のための判断基準値を	
		下回る設計とする。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2 号機	備考
		可動源に対しては、通信連絡設備による連絡、緊急時対策	・有毒ガス防護評価方
		<u>所換気設備の隔離、防護具の着用等により</u> 指示要員を防護で	針の相違
		きる設計とする。	【柏崎7】
			①の相違
		かい 大夫ル労場所は 大夫ギュ部無ばノドナギのレマ 大	
		なお、有毒化学物質は、有毒ガス評価ガイドを参照して、有	
		毒ガス防護に係る影響評価を実施し、有毒ガスが大気中に多	
		量に放出されるかの観点から、有毒化学物質の揮発性等の性	
		状, 貯蔵量, 建物内保管, 換気等の貯蔵状況等を踏まえ, 敷地 内及び緊急時対策所から半径 10km 以内にある敷地外の固定	
		源並びに敷地内の可動源を特定し、特定した有毒化学物質に	
		対して有毒ガス防護のための判断基準値を設定する。固定源 及び可動源の特定方法及び特定結果については, VI-1-5-4「中	
		央制御室の機能に関する説明書」別添「固定源及び可動源の	
		特定について」に示す。	
		13,212 1 1 2 7 0	
		3.1.1 固定源に対する防護措置	
		固定源に対しては、貯蔵容器すべてが損傷し、有毒化学	
		物質の全量流出によって発生した有毒ガスが大気中に放	
		出される事象を想定し、指示要員の吸気中の有毒ガス濃度	
		の評価結果が, 有毒ガス防護のための判断基準値を下回る	
		ことで、技術基準規則別記-9で規定される「有毒ガスの発	
		生」はなく、同規則に基づく有毒ガスの発生を検出するた	
		めの装置及び当該装置が有毒ガスの発生を検出した場合	
		に自動的に警報するための装置の設置を不要とする設計	
		とする。	
		固定源の有毒ガス影響を軽減することを期待する防液	・設備の相違
		堤は、構造上更地となるような壊れ方はしないことから、	【柏崎7】
		現場の設置状況を踏まえ、評価条件を設定する。	島根2号機の敷地内
		指示要員の吸気中の有毒ガス濃度が, 有毒ガス防護のた	
		めの判断基準値を下回ることの評価については,「4. 緊急	る
		時対策所の有毒ガス濃度評価」に示す。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2 号機	備考
		3.1.2 可動源に対する防護措置	
		可動源に対しては、立会人の随行、通信連絡設備による	・有毒ガス防護評価方
		連絡,緊急時対策所換気設備の隔離,防護具の着用等によ	針の相違
		り指示要員を防護することで、技術基準規則別記-9 に基	【柏崎7】
		づく有毒ガスの発生を検出するための装置及び当該装置	①の相違
		が有毒ガスの発生を検出した場合に自動的に警報するた	
		めの装置の設置を不要とする設計とする。	
		また, 可動源から有毒ガスが発生した場合においては,	・有毒ガス防護評価方
		漏えいに対する希釈等の終息活動により有毒ガスの発生	針の相違
		を低減するための活動を実施する。	【柏崎7】
			①の相違
		3.1.2.1 立会人の随行	・有毒ガス防護評価方
		発電所敷地内に可動源が入構する場合には,立会人	
		を随行させることで、可動源から有毒ガスが発生した	【柏崎 7】
		場合に認知可能な体制を整備する。	①の相違
		3.1.2.2 通信連絡	・有毒ガス防護評価方
		可動源から有毒ガスが発生した場合において、発電	針の相違
		所内の通信連絡をする必要のある場所との通信連絡設	【柏崎7】
		備(発電所内)による連絡体制を整備する。	①の相違
		具体的な通信連絡設備については, VI-1-1-11 「通信	
		連絡設備に関する説明書」に従う。	
		3.1.2.3 換気設備	・有毒ガス防護評価方
		可動源から発生した有毒ガスに対して、緊急時対策	針の相違
		所換気設備の外気取入れを手動で遮断することによ	【柏崎 7】
		り、外部雰囲気から隔離できる設計とする。	①の相違
		具体的な換気設備の機能については, VI-1-9-3-2「緊	
		急時対策所の居住性に関する説明書」に従う。	
		3.1.2.4 防護具の着用	・有毒ガス防護評価方
		可動源から発生した有毒ガスから指示要員を防護す	針の相違
		るため、全面マスクを配備する。全面マスクの配備予	【柏崎7】
		定場所を図3-1に示す。可動源から有毒ガスが発生し	①の相違
		た場合には、緊急対策本部長の指示により、緊急時対	
		策本部要員(指示要員)は全面マスクを着用する。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2 号機	備考
		4. 緊急時対策所の有毒ガス濃度評価	
		4.1 評価条件	
		緊急時対策所の有毒ガス濃度評価に当たって,評価手順及	
		び評価条件を本項において示す。	
		4.1.1 評価の概要	
		固定源から放出される有毒ガスにより, 緊急時対策所に	・有毒ガス防護評価方
		とどまる指示要員の吸気中の有毒ガス濃度が, 有毒ガス防	針の相違
		護のための判断基準値を下回ることを評価する。	【柏崎 7】
			①の相違
		評価に当たっては,受動的に機能を発揮する設備とし	・有毒ガス防護評価方
		て,固定源の有毒ガス影響を軽減することを期待する防液	針の相違
		堤の開口部を評価上考慮する。	【柏崎7】
		具体的な手順は以下のとおり。	①の相違
		(1) 評価事象は、評価対象となる固定源から有毒化学物質が	
		<u>防液堤内に流出し、有毒ガスが発生すること</u> を想定する。	【柏崎 7】
			島根2号機の有毒ガ
			ス評価においては防液
			堤を考慮する
		なお、固定源について、緊急時対策所にとどまる指示要	・有毒ガス防護評価方
		員の吸気中の有毒ガス濃度の評価結果が厳しくなるよう	
		評価条件を選定する。	【柏崎 7】
		(2) 評価事象に対して,固定源から発生した有毒ガスが,緊	①の相違
		急時対策所の外気取入口に到達する経路を選定する。	
		(3) 発電所敷地内の気象データを用いて,有毒ガスの放出源	
		から大気中への蒸発率及び大気拡散を計算し、緊急時対策 所の外気取入口における有毒ガス濃度を計算する。	
		がいかXXX人口における自母ルへ低度を計算する。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2 号機	備考
		4.1.2 評価事象の選定	
		評価対象とする貯蔵容器から防液堤内に有毒化学物質	・有毒ガス防護評価方
		<u>の全量が流出し、有毒ガスが発生すること</u> を想定する。	針及び設備の相違
			【柏崎 7】
			①の相違及び島根 2
			号機の有毒ガス評価に
			おいては防液堤を考慮
			する
		4.1.3 有毒ガス到達経路の選定	
		固定源から発生した有毒ガスについては、緊急時対策所	・有毒ガス防護評価方
		の外気取入口に到達する経路を選定する。	針の相違
		有毒ガス到達経路を図4-1に示す。	【柏崎 7】
			①の相違
		4.1.4 有毒ガス放出率の計算	
		評価対象とする貯蔵容器すべてが損傷し, 貯蔵されてい	・有毒ガス防護評価方
		る有毒化学物質が全量 <u>防液堤内に</u> 流出することによって	針及び設備の相違
		発生した有毒ガスが大気中に放出されることを想定し, 大	【柏崎7】
		気中への有毒ガスの放出率を評価する。	①の相違及び島根 2
			号機の有毒ガス評価に
		この際, 指示要員の吸気中の有毒ガス濃度への影響を考	おいては防液堤を考慮
		慮して、固定源の物性、保管状態、放出形態及び気象デー	する
		タ等の評価条件を適切に設定する。	
		具体的には、 <u>気体の</u> 有毒化学物質については、容器に貯	・記載方針の相違
		蔵されている有毒化学物質が 1 時間かけて全量放出され	
		るものとして評価する。また、 <u>液体の</u> 有毒化学物質の単位	2 号機の敷地外固定
		時間当たりの大気中への放出率は、文献「Modeling	源は気体のみ,敷地内固
		Hydrochloric Acid Evaporation in ALOHA」及び「伝熱工	定源は液体のみである
		学資料 改訂第5版 日本機械学会」に従って,「(2) 有毒	が,評価手法に相違はな
		ガス放出率評価式」により計算する。	<i>\\</i> \
		固定源の評価条件を表 4-1 に,有毒化学物質に係る評	・有毒ガス防護評価方
		価条件を <u>表 4-2</u> 及び図 4-2 にそれぞれ示す。	針の相違
			【柏崎7】
		(1) 事象発生直前の状態	①の相違
		事象発生直前まで貯蔵容器に有毒化学物質が貯蔵され	
		ているものとする。	針の相違
			【柏崎7】
			①の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		(2) 有毒ガス放出率評価式	
		a. 蒸発率 E	
		$E = A \cdot K_{M} \cdot \left(\frac{M_{Wm} \cdot P_{v}}{R \cdot T}\right) (kg/s)$	
		b.物質移動係数K _M	
		$K_{M} = 0.0048 \cdot U^{\frac{7}{9}} \cdot Z^{-\frac{1}{9}} \cdot S_{c}^{-\frac{2}{3}} (m/s)$	
		$S_C = \frac{v}{D_M}$	
		$D_{M} = D_{H_2O} \cdot \sqrt{\frac{M_{WH_2O}}{M_{Wm}}} (m^2/s)$	
		$D_{H_2O} = D_0 \cdot \left(\frac{T}{273.15}\right)^{1.75}$ (m ² /s)	
		c. 補正蒸発率E _C	
		$E_{C} = -\left(\frac{P_{a}}{P_{v}}\right) \ln\left(1 - \frac{P_{v}}{P_{a}}\right) \cdot E (kg/s)$	
		ここで、	
		E : 蒸発率(kg/s)	
		E _C :補正蒸発率(kg/s)	
		A: 防液堤開口部面積(m²)	・設備の相違
		K _M : 化学物質の物質移動係数(m/s)	【柏崎7】
		M _{Wm} : 化学物質の分子量(kg/kmol)	島根2号機の有毒ガ
		P _a : 大気圧(Pa)	ス評価においては防液
		P _v : 化学物質の分圧(Pa)	堤を考慮する
		R : ガス定数(J/kmol・K)	
		T : 温度(K)	
		U : 風速(m/s)	
		\mathbf{Z} : 防液堤開口部面積の等価直径(m) (= $\sqrt{(4\mathrm{A}/\pi)}$)	・設備の相違
		S _c : 化学物質のシュミット数	【柏崎7】
		ν : 動粘性係数 (m²/s)	島根2号機の有毒ガ
		D _M : 化学物質の分子拡散係数(m²/s)	ス評価においては防液
		D_{H_2O} : 温度 $T(K)$ 、圧力 P_v (Pa) における水の分子拡散係数(m^2/s)	堤を考慮する
		M _{WH₂O} : 水の分子量(kg/kmol)	
		D ₀ : 水の拡散係数 (=2.2×10 ⁻⁵ m ² /s)	

有電が実際的が下に促って電性に介護地域を発送する。 本の	東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
				(3) 評価の対象とする固定源	・有毒ガス防護評価方
第を持る -3 次保护権の担任				有毒ガス評価ガイドに従って選定した敷地内外におけ	針及び設備の相違
# 4.1.5 大気は改か評価 報用機能やの気機が、クを用い、大気は改を計画して 相対機能となる。。 同に張かた気化と対して再番メスが、大気中を地及して評価 「相対に対してあまっての計算は、ガウスブルースモデルを進 用する。このは原理したであるの気を使用と安勢的な状態が時間 関心をして、評価点ごとで表えのとおり計論する。 $2Q_{-1} = \frac{1}{\pi - g_{\mu} - g_{\alpha} - 1}$ 、中間($-\frac{B^{2}}{2G_{\mu}^{2}}$)(維和製を含まするよう) $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - g_{\alpha} - 1}$ 、中間($-\frac{B^{2}}{2G_{\mu}^{2}}$)(維和製を含まするよう) $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - g_{\alpha} - 1}$ (維和製を含まするよう) $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - g_{\alpha} - 1}$ (維和製を含まするよう) $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - g_{\alpha} - 1}$ (維和製を含まするよう) $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$ (維和製を含まするよう) $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$ (維和製を含まするよう) $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$ (維和製と含まするよう) $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$ (維和製を含まするよう) $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$ (維和製を含まするよう。 $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$ (維和製を含まするよう。 $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$ (基本製作 $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$) $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$ (基本製作 $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$) $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$ (基本製作 $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$) $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$ (基本製作 $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$) $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$ (基本製作 $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$) $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$ (基本製作 $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$) $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$ (基本製作 $Q_{-1}Q_{-1} = \frac{1}{\pi - g_{\mu} - 1}$				る固定源を対象とする。評価の対象とする敷地 <u>内</u> 外の固定	【柏崎 7】
4.1.5 大気が強いが年 報意が表現がの大気を関いて、大気を設定する。 1.1 大気を素部性でデル 固定部の大気を観いする。大気中を拡張しては がたっ。 (1.1 大気を素部性でデル 固定部の大気が動いする。大気中を拡張しては では、大気を素部性でデル 一面には対するとでの対策は、がりスフルースをデルを重 用する。 相対策定は、毎時初の名象表はと実験的な故事能等等 対をもとに、新価度ごとは表式のとおり可能する。 2/2 - デースのの。 1 (2007) (通常が変を考慮しない場合) (2/20) - 1 (2007) (20				源を図 4-3 <u>及び図 4-4</u> に示す。	①及び敷地内固定源
報題所数地内の気象データを用い、大気試験を計算して 担対高度をおめる。 国が流の大気拡散計画でデル 画度減つる放出された有声ガスが、大気中を拡散して評 他点に到達するまでの計算は、ガウスブルームモデルと画 用する。 相談談談は、臨時刻の気象引した状态のとおり計算する。 が $0 = \frac{1}{12} (349)$ 、。。。 $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (体影響を考慮しない場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (体影響を考慮しない場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮しない場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影響を考慮しな場合) $(270) = \frac{1}{\pi \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影響を考慮しな場合) $(270) = \frac{1}{\pi \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影響を考慮しな場合) $(270) = \frac{1}{\pi \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right)$ (はいまるとならならならならならならならならならならならならならならならないといまるとならないといまるとならないといまるとならないといまるとならないといまるとならないといまるとないといまるとないといまるとないといまるとないといまるとないといまるとないといまるとないといまるとないといまるとないといまるとないまるとな					調査結果の相違
報題所数地内の気象データを用い、大気試験を計算して 担対高度をおめる。 国が流の大気拡散計画でデル 画度減つる放出された有声ガスが、大気中を拡散して評 他点に到達するまでの計算は、ガウスブルームモデルと画 用する。 相談談談は、臨時刻の気象引した状态のとおり計算する。 が $0 = \frac{1}{12} (349)$ 、。。。 $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (体影響を考慮しない場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (体影響を考慮しない場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮しない場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H} \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影響を考慮する場合) $(270) = \frac{1}{\pi \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影響を考慮しな場合) $(270) = \frac{1}{\pi \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影響を考慮しな場合) $(270) = \frac{1}{\pi \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right))$ (は影響を考慮しな場合) $(270) = \frac{1}{\pi \cdot 2_{H}} (1 + \exp\left(-\frac{12}{2_{L}}\right)$ (はいまるとならならならならならならならならならならならならならならならないといまるとならないといまるとならないといまるとならないといまるとならないといまるとならないといまるとないといまるとないといまるとないといまるとないといまるとないといまるとないといまるとないといまるとないといまるとないといまるとないまるとな				4.1.5 大気状数の証価	
一個対象変を求める。					
国立版の大気放散評価できた。					
(1) 大気性既評価モアル					・有毒ガス防護評価方
(1) 大気拡散が値でアル 国定版から放出された有端ガスが、大気中を拡散して評価なに到達するまでの計算は、ガウスプルームモデルを追用する。 相対認度は、					
固定網から放出された有電ガスが、大気中を拡散して評価無法(到達するまでの計算は、ガウスブルームモデルを適用する。 相対機度は、毎時刻の気象項目と実効的な放出継続時間をもとに、評価点ごとに次式のとおり計算する。 $x/Q = \frac{1}{T_{\rm ext}} \left(x/U_0 \right), a_0 \in \frac{1}{T_$				(1) 大気拡散評価モデル	
価点に利益するまでの計算は、ガウスプルームモデルを適用する。 相対機関は、毎時刻の気象項目と実効的な放出継続時間をもとに、評価点ごとに次式のとおり計算する。 $\chi/Q = \frac{1}{\pi} \sum_{i=1}^{\pi} (\chi/Q_1)_{i=i}^{i} d_i$ $(\pi/Q_1) = \frac{1}{\pi \cdot \sigma_{g_1} \cdot \sigma_{g_1} \cdot \sigma_{g_1}} \cdot \exp\left(-\frac{H^2}{2\sigma_{g_1}^2}\right) \cdot (津晩整置を考慮しない場合)$ $(\chi/Q_1) = \frac{1}{\pi \cdot \Sigma_{g_1} \cdot \Sigma_{g_1} \cdot \Gamma_{g_1}} \cdot \exp\left(-\frac{H^2}{2\sigma_{g_1}^2}\right) \cdot (津晩整置を考慮しない場合)$ $\chi/Q \cdot 実効放出継続時間中の和対議度(s/m')$ $T \cdot 実効放出継続時間(g)$ $(\chi/Q_1) \cdot 博動1における相対設度(s/m')$ $a_0 \cdot i 博動1におけてる相対設度(s/m')$ $a_1 \cdot i i i i i i i i i i i i i i i i i i $					
相対認度は、何時刻の気象項目と実効的な放出総能時間をもとに、評価点ごとに次式のとおり計算する。 $x/Q = \frac{1}{\pi} \sum_{i=1}^{V} (G_i/Q_i) \cdot d_{i}$ $(\chi/Q_i) = \frac{1}{\pi \cdot O_{g_i} \cdot O_{g_i} \cdot U_i} \cdot \exp\left(-\frac{H^2}{2O_{g_i}^2}\right)$ (建物影響を考慮する場合) $(\chi/Q_i) = \frac{1}{\pi \cdot \sum_{i=1}^{V} U_i} \cdot \exp\left(-\frac{H^2}{2D_{ii}^2}\right)$ (建物影響を考慮する場合) $x/Q : $				価点に到達するまでの計算は、ガウスプルームモデルを適	
関をもとに、評価点ごとに次式のとおり計算する。 $\chi/Q = \frac{1}{T}\sum_{i=1}^{T}(\chi/Q_i) \cdot a_i \delta_i$ $(\chi/Q_i) = \frac{1}{\pi \cdot \Sigma_{y_1} \cdot \Sigma_{x_2} \cdot U_i} \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (建物影響を考慮する場合)$ $(\chi/Q_i) = \frac{1}{\pi \cdot \Sigma_{y_1} \cdot \Sigma_{x_2} \cdot U_i} \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (建物影響を考慮する場合)$ $\chi/Q : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (建物影響を考慮する場合)$ $\chi/Q(j) : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (2\pi)^{N}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (2\pi)^{N}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (2\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (2\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (2\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (2\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (2\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (2\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (2\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (2\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (2\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (2\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (2\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (2\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (3\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (3\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (3\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (3\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (3\pi)^{N} = \frac{1}{\chi}$ $(3\pi)^{N} : = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (3\pi)^{N} = \frac{1}{\chi} \sum_{j=1}^{N} U_j \cdot \exp\left(-\frac{H^2}{2\Sigma_{x_2}}\right) (3\pi)^{$				用する。	
$\chi/Q = \frac{1}{T} \sum_{i=1}^{T} (\chi/Q)_i \cdot _d \delta_i$ $(\chi/Q)_i = \frac{1}{\pi \cdot \sigma_{yi} \cdot \sigma_{xi} \cdot U_i} \cdot \exp\left(-\frac{H^2}{2\sigma_{xi}^2}\right)$ (建物影響を考慮しない場合) $(\chi/Q)_i = \frac{1}{\pi \cdot \Sigma_{yi} \cdot \Sigma_{xi} \cdot U_i} \cdot \exp\left(-\frac{11^2}{2 \cdot \Sigma_{xi}^2}\right)$ (建物影響を考慮する場合) χ/Q : 実効放出機統時間中の相対議度 (s/m^i) T : 実効放出機統時間 (h) $(\chi/Q)_i$: 時刻iにおける相対機度 (s/m^i) $d\delta_i$: 時刻iにおけいて風向が当該方位はこあるとき $_d\delta_i = 1$ 時刻iにおけいて風向が当該方位はないとき $_d\delta_i = 0$ $_d\delta_{yi}$: 時刻iにおける演奏分布の $_y$ 方向の拡がりのパラメータ $_z$ ($_i$ 時刻iにおける演奏分布の $_y$ 方向の拡がりのパラメータ $_z$ ($_i$) $_i$: 時刻iにおける風速 $_i$ ($_i$) $_i$: $_i$ 大夕 $_i$) $_i$: $_i$ 大夕 $_i$ ($_i$) $_i$: $_i$ 大夕 $_i$ ($_i$) $_i$: $_i$ 大夕 $_i$) $_i$: $_i$ 大夕 $_i$ ($_i$) $_i$: $_i$ 大夕 $_i$) $_i$: $_i$ 大夕 $_i$: $_i$ + $_i$: $_i$ 大夕 $_i$: $_i$: $_i$ + $_i$ + $_i$: $_i$ + $_i$ + $_i$ + $_i$: $_i$ + $_$				相対濃度は、毎時刻の気象項目と実効的な放出継続時	
$(\chi/Q_i) = \frac{1}{\pi \cdot \sigma_{yi} \cdot \sigma_{zi} \cdot U_i} \cdot \exp\left(-\frac{\Pi^2}{2\sigma_{zi}^2}\right)$ (建物影響を考慮しない場合) $(\chi/Q_i) = \frac{1}{\pi \cdot \Sigma_{yi} \cdot \Sigma_{zi} \cdot U_i} \cdot \exp\left(-\frac{H^2}{2\Sigma_{zi}^2}\right)$ (建物影響を考慮する場合) χ/Q : 実効放出継続時間中の相対濃度 (s/m^2) T : 実効放出継続時間 (h) $(\chi/Q)_i$: 時刻における相対濃度 (s/m^2) $(x/Q)_i$: 時刻におけて風向が当該方位はたあるとき $(x/Q)_i$: 時刻におけて風向が当該方位はたあるとき $(x/Q)_i$: 時刻におけて風向が当該方位はたかいとき $(x/Q)_i$: 時刻における濃度分布の $(x/Q)_i$ の $(x/Q)_i$: $(x/$				間をもとに、評価点ごとに次式のとおり計算する。	
$(\chi/Q)_i = \frac{1}{\pi \cdot \sigma_{yi} \cdot \sigma_{zi} \cdot U_i} \cdot \exp\left(-\frac{H^2}{2\sigma_{zi}^2}\right)$ (建物影響を考慮しない場合) $(\chi/Q)_i = \frac{1}{\pi \cdot \Sigma_{yi} \cdot \Sigma_{zi} \cdot U_i} \cdot \exp\left(-\frac{H^2}{2\Sigma_{zi}^2}\right)$ (建物影響を考慮する場合) $\chi/Q : = \frac{1}{xyb}$ 放出継続時間中の相対濃度 (s/m^2) $T : = \frac{1}{xyb}$ 放出継続時間 (h) $(\chi/Q)_i : = \frac{1}{xyb}$ 或引 $(x) \times T$ 图 $(x) \times T$ $(x) \times $				$y/0 = \frac{1}{2} \sum_{i=1}^{T} (y/0) \cdot S_{i}$	
$ (x/Q)_i = \frac{1}{\pi \cdot \Sigma_{yi} \cdot \Sigma_{zi} \cdot U_i} \cdot \exp\left(-\frac{H^2}{2\Sigma_{zi}}^2\right) (建物影響を考慮する場合) $ χ/Q : 実効放出継続時間中の相対濃度 (s/m^2) T : 実効放出継続時間 (h) $(\chi/Q)_i$: 時刻 i における相対濃度 (s/m^2) $d\delta_i$: 時刻 i において風向が当該方位 d にあるとき $d\delta_i = 1$				$T = T \sum_{i=1}^{C} (V_i V_i)^{i-1} d^{O_i}$	
χ/Q :実効放出継続時間中の相対濃度 (s/m^2) T :実効放出継続時間 (h) $(\chi/Q)_i$:時刻 i における相対濃度 (s/m^2) $d\delta_i$:時刻 i において風向が当該方位 d にあるとき $d\delta_i$ = 1 時刻 i において風向が当該方位 d にないとき $d\delta_i$ = 0 σ_{yi} :時刻 i における濃度分布の y 方向の拡がりのパラメータ (m) σ_{zi} :時刻 i における濃度分布の z 方向の拡がりのパラメータ (m) U_i :時刻 i における風速 (m/s) H :放出源の有効高さ (m)				$(\chi/Q)_i = \frac{1}{\pi \cdot \sigma_{yi} \cdot \sigma_{zi} \cdot U_i} \cdot \exp\left(-\frac{H^2}{2\sigma_{zi}^2}\right)$ (建物影響を考慮しない場合)	
χ/Q :実効放出継続時間中の相対濃度 (s/m^2) T :実効放出継続時間 (h) $(\chi/Q)_i$:時刻 i における相対濃度 (s/m^2) $d\delta_i$:時刻 i において風向が当該方位 d にあるとき $d\delta_i$ = 1 時刻 i において風向が当該方位 d にないとき $d\delta_i$ = 0 σ_{yi} :時刻 i における濃度分布の y 方向の拡がりのパラメータ (m) σ_{zi} :時刻 i における濃度分布の z 方向の拡がりのパラメータ (m) U_i :時刻 i における風速 (m/s) H :放出源の有効高さ (m)				$(\chi/Q)_i = \frac{1}{\pi \cdot \Sigma \cdot \Sigma \cdot \Sigma \cdot \Pi} \cdot \exp\left(-\frac{H^2}{2\Sigma \cdot 2}\right)$ (建物影響を考慮する場合)	
T : 実効放出継続時間 (h) $(\chi/Q)_i$: 時刻iにおける相対濃度 (s/m^2) $d\delta_i$: 時刻iにおいて風向が当該方位dにあるとき $d\delta_i$ = 1 時刻iにおいて風向が当該方位dにないとき $d\delta_i$ = 0 σ_{yi} : 時刻iにおける濃度分布のy方向の拡がりのパラメータ (m) σ_{zi} : 時刻iにおける濃度分布のz方向の拡がりのパラメータ (m) U_i : 時刻iにおける風速 (m/s) H : 放出源の有効高さ (m) Σ_{yi} : $\left(\sigma_{yi}^2 + \frac{c\Delta_i}{\pi}\right)^{\frac{1}{2}}$					
$(\chi/Q)_i$: 時刻 i における相対濃度 (s/m^s) $d\delta_i$: 時刻 i において風向が当該方位dにあるとき $d\delta_i$ = 0 時刻 i において風向が当該方位dにないとき $d\delta_i$ = 0 σ_{yi} : 時刻 i における濃度分布の y 方向の拡がりのパラメータ (m) σ_{zi} : 時刻 i における濃度分布の z 方向の拡がりのパラメータ (m) U_i : 時刻 i における風速 (m/s) H : 放出源の有効高さ (m)					
$d\delta_i$: 時刻 i において風向が当該方位 d にあるとき $d\delta_i$ = 1 時刻 i において風向が当該方位 d にないとき $d\delta_i$ = 0 σ_{yi} : 時刻 i における濃度分布の y 方向の拡がりのパラメータ m の u に 時刻 i における濃度分布の u 方向の拡がりのパラメータ m の u に は は に は は に は は に は は に は は に は は に が は は に が は に は に					
時刻iにおいて風向が当該方位dにないとき $_{\mathbf{d}}\mathbf{\delta}_{\mathbf{i}} = 0$ $\sigma_{\mathbf{y}\mathbf{i}}$: 時刻iにおける濃度分布のy方向の拡がりのパラメータ (m) $\sigma_{\mathbf{z}\mathbf{i}}$: 時刻iにおける濃度分布のz方向の拡がりのパラメータ (m) $U_{\mathbf{i}}$: 時刻iにおける風速 (m/s) H : 放出源の有効高さ (m) $\sum_{\mathbf{y}\mathbf{i}}$: $\left(\sigma_{\mathbf{y}\mathbf{i}}^2 + \frac{\mathbf{c}\mathbf{A}}{\pi}\right)^{\frac{1}{2}}$					
σ_{zi} : 時刻 i における濃度分布の z 方向の拡がりのパラメータ (m) U_i : 時刻 i における風速 (m/s) H : 放出源の有効高さ (m) Σ_{yi} : $\left(\sigma_{yi}{}^2 + \frac{cA}{\pi}\right)^{\frac{1}{2}}$					
U_i : 時刻 i における風速 (m/s) H : 放出源の有効高さ (m) \sum_{yi} : $\left(\sigma_{yi}{}^2 + \frac{cA}{\pi}\right)^{\frac{1}{2}}$				σ_{yi} :時刻 i における濃度分布の y 方向の拡がりのパラメータ (m)	
H : 放出源の有効高さ(m) Σ_{yi} : $\left(\sigma_{yi}{}^2 + \frac{cA}{\pi}\right)^{\frac{1}{2}}$				σ_{zi} :時刻 i における濃度分布の z 方向の拡がりのパラメータ (m)	
Σ_{yi} : $\left(\sigma_{\mathrm{yi}}^{2} + \frac{\mathrm{cA}}{\pi}\right)^{\frac{1}{2}}$				U _i : 時刻iにおける風速(m/s)	
				H : 放出源の有効高さ(m)	
1				\sum_{yi} : $\left(\sigma_{yi}^2 + \frac{cA}{\pi}\right)^{\frac{1}{2}}$	
$\sum_{\mathrm{zi}} \qquad : \ \left(\sigma_{\mathrm{zi}}^{\ 2} + rac{\mathrm{cA}}{\pi} ight)^{\!rac{1}{2}}$				\sum_{zi} : $\left(\sigma_{zi}^2 + \frac{cA}{\pi}\right)^{\frac{1}{2}}$	
${f A}$: 建物等の風向方向の投影面積 $({f m}^2)$					
C : 形状係数					

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2号機	備考
		上記のうち, 気象項目 (風向, 風速及び σ yi, σ zi を求め	
		るために必要な大気安定度)については「(2) 気象デー	
		タ」に示すデータを <u>,建物の投影面積については「(5)</u> 建	・設備の相違
		物投影面積」に示す値を、形状係数については「(6) 形状	【柏崎 7】
		<u>係数」に示す値を</u> 用いることとする。	島根2号機は大気拡
		σyi及びσziについては,「発電用原子炉施設の安全解析	散評価において建物巻
		に関する気象指針」(昭和 57 年 1 月 28 日原子力安全委員	き込みを考慮する
		会決定)における相関式を用いて計算する。	
		(2) 気象データ	
		<u>2009年1月~2009年12月</u> の1年間における気象データ	・使用する気象データ
		- を使用する。なお、当該データの使用に当たっては、風向	の相違
		風速データが不良標本の棄却検定により,10年間(<u>2008年</u>	【柏崎7】
		1月~2008年12月,2010年1月~2018年12月)の気象	検定年及び統計年の
		状態と比較して特に異常でないことを確認している。	相違
		(3) 相対濃度の評価点	
		相対濃度の評価点は、緊急時対策所の外気取入口とす	
		る。	
		(4) 評価対象方位	
		固定源について、放出点から比較的近距離の場所では、	・設備の相違
		建物の風下側における風の巻き込みによる影響が顕著と	【柏崎 7】
		なると考えられる。巻き込みを生じる代表建物としては、	①の相違
		巻き込みの影響が最も大きいと考えられる一つの建物を	
		選定する。そのため、評価対象とする方位は、放出された	
		有毒ガスが巻き込みを生じる代表建物の影響を受けて拡	
		散すること,及び巻き込みを生じる代表建物の影響を受け	
		て拡散された有毒ガスが評価点に届くことの両方に該当	
		する方位とする。具体的には,全 16 方位のうち以下の a.	
		~c. の条件に該当する方位を選定し, すべての条件に該当	
		する方位を評価対象とする。	
		a. 放出点が評価点の風上にあること。	
		b. 放出点から放出された有毒ガスが,巻き込みを生じる	
		代表建物の風下側に巻き込まれるような範囲に評価点	
		が存在すること。	
		c. 巻き込みを生じる代表建物の風下側で巻き込まれた	
		大気が評価点に到達すること。	

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2号機	備考
		評価対象とする方位は、巻き込みを生じる代表建物の周辺に 0.5L (L:建物の風向に垂直な面での高さ又は幅の小さい方) だけ幅を広げた部分を見込む方位を仮定する。 上記選定条件 b. に該当する方位の選定には、放出点が評価点の風上となる範囲が対象となるが、放出点が巻き込みを生じる代表建物に近接し、0.5L の拡散領域の内部にある場合は、放出点が風上となる 180°を対象とする。その上で、選定条件 c. に該当する方位の選定として、評価点から巻き込みを生じる代表建物+0.5L を含む方位を選択する。 以上により、固定源が選定条件 a. ~c. にすべて該当する方位を評価対象方位と設定する。 具体的な固定源の評価対象方位は、図 4-3 及び図 4-4に示す。	針及び設備の相違 【柏崎 7】 ①の相違及び島根 2 号機は建物巻き込みを
		(5) 建物投影面積 建物投影面積は小さい方が厳しい結果となるため、表 4 -3に示すとおり建物投影面積を保守的に設定するものと する。 (6) 形状係数 建物の形状係数は 1/2*とする。 注記*:「発電用原子炉施設の安全解析に関する気象指	考慮する ・設備の相違 【柏崎7】 島根2号機は建屋巻 き込みを考慮する ・設備の相違 【柏崎7】 島根2号機は建屋巻
		針」昭和57年1月28日原子力安全委員会決定 4.1.6 有毒ガス濃度評価 有毒ガス濃度評価においては、緊急時対策所の外気取入口における濃度を用いる。緊急時対策所の外気取入口に到達する有毒ガスの濃度は、「4.1.4 有毒ガス放出率の計算」及び「4.1.5 大気拡散の評価」の結果を用いて、次式を用いて算出する。	き込みを考慮する

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
不同時 27 一 7 日 日 2 月 1 (2010・10・12 月 以)		$C_{ppm(out)} = \frac{C}{M} \cdot 22.4 \cdot \frac{T}{273.15} \cdot 10^6 (ppm)$ $C = E \cdot \frac{\chi}{Q} (kg/m^3) (液体状有毒化学物質の評価)$ $C = q_{GW} \cdot \frac{\chi}{Q} (kg/m^3) (ガス状有毒化学物質の評価)$ $C_{ppm(out)} : 外気濃度 (ppm)$ $C : 外気濃度 (kg/m^3) = (g/L)$ $M : 物質の分子量 (g/mo1)$ $T : 気温 (K)$ $E : 蒸発率 (kg/s)$ $q_{GW} : 質量放出率 (kg/s)$ $\frac{\chi}{Q} : 相対濃度 (s/m^3)$	・有毒ガス防護評価方 針及び設備の相違 【柏崎 7】 ①の相違及び島根 2 号機は換気率を考慮し ない
		4.1.7 有毒ガス防護のための判断基準値 有毒ガス防護のための判断基準値については,有毒ガス 評価ガイドの考え方に従い,NIOSH(米国国立労働安全衛 生研究所)で定められている IDLH値(急性の毒性限度), 日本産業衛生学会が定める最大許容濃度等を用いて,有毒 化学物質ごとに設定する。 固定源の有毒ガス防護のための判断基準値を表 4-4 に 示す。	・有毒ガス防護評価方 針の相違 【柏崎 7】 ①の相違

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			4.1.8 有毒ガス防護のための判断基準値に対する割合 固定源について,「4.1.6 有毒ガス濃度評価」の計算結果を「4.1.7 有毒ガス防護のための判断基準値」で除して求めた値について,毎時刻の濃度を年間について小さい方から順に並べた累積出現頻度 97%*に当たる値を用いる。 注記*:「発電用原子炉施設の安全解析に関する気象指針」昭和57年1月28日原子力安全委員会決定	針の相違
			4.1.9 有毒ガス防護のための判断基準値に対する割合の合算 及び判断基準値との比較 固定源と評価点とを結んだラインが含まれる 1 方位及 びその隣接方位に固定源が複数ある場合,隣接方位の固定 源からの有毒ガス防護のための判断基準値に対する割合 も合算し,合算値が1を超えないことを評価する。	
			有毒ガス防護のための判断基準値に対する割合 = $\frac{C_1}{T_1}$ + $\frac{C_2}{T_2}$ + \cdots + $\frac{C_i}{T_i}$ + \cdots + $\frac{C_n}{T_n}$ C _i : 有毒ガスiの濃度 T_i : 有毒ガスiの有毒ガス防護のための判断基準値	・有毒ガス防護評価方 針の相違 【柏崎 7】 ①の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
		4.2 評価結果	
		緊急時対策所の外気取入口における、固定源から放出され	・有毒ガス防護評価方
		る有毒ガスによる有毒ガス防護のための判断基準値に対する	針の相違
		割合の計算結果を表4-5に示す。	【柏崎 7】
			①の相違
		なお、各固定源と評価点とを結んだラインが含まれる1方	
		位及びその隣接方位に固定源は複数存在しないため、各固定	
		源の評価においては、有毒ガス防護のための判断基準値に対	島根2号機は,各固定
		する割合は合算しない。	源と評価点の位置関係
			を考慮し,有毒ガス防護
			のための判断基準値を
			合算しない
		有毒ガス防護のための判断基準値に対する割合の最大値は	
		(1.13) であり、判断基準値である1を下回る。	・有毒ガス防護評価方
		<u>0.10</u> (3) / , 内的基本框(3) 3 1 2 1 四 3。	針及び評価結果の相違
			【柏崎 7】
			①及び設備の違いに
			よる評価結果の相違
		4.3 有毒ガス濃度評価のまとめ	
		有毒ガスに対する防護措置を考慮して、指示要員の吸気中	
		の有毒ガス濃度の評価を行い,固定源に対して有毒ガス防護	・有毒ガス防護評価方
		のための判断基準値を下回ることを確認した。	針の相違
			【柏崎7】
			①の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)		島根原	京子力発電所 :	2 号機	備考
				表 4-1	固定源の評価条	件 (1/2)	・設備の相違
			項目	評価条件	選定理由	備考	【柏崎 7】
						有毒ガス評価ガイド 3.1 固定源及び可動源の調	島根2号機は敷地内 固定源がある
			固定源の種類(設備名)	(排水中和用	設であり、大気中 に有毒ガスを多量 に放出させるおそ	(3) 調査対象としている固定源及び可動源に対して,次	回人がから
			有毒化学物質	塩酸	有毒化学物質濃度	- 原子炉制御室等及び重要	
			の種類(濃度)	(35%)	の運用値	操作地点と有毒ガスの発生源との位置関係(距離, 高さ,方位を含む。) - 防液堤の有無(防液堤があ	
			防液堤開口部面積	$16.5 \mathrm{m}^2$	有毒化学物質の貯 蔵施設が設置され た防液堤の開口部 面積に余裕を見込 んだ値として設定	短距離, 防液堤の内面積及 び廃液処理槽の有無)(解	
			16日		固定源の評価条		・発電所所在地の違いによる相違
			項目	評価条件	選定理由	備考 有毒ガス評価ガイド	
			固定源の種類 (設備名)		るおそれのある有 毒化学物質である アンモニアを貯蔵 する施設であり, 大気中に有毒ガス を多量に放出させ	3.1 固定源及び可動源の調	【柏崎 7】 敷地外固定源調査結 果の相違
			有毒化学物質 の種類 (濃度)	アンモニア (100%)	情報が得られなかったことから保守 的に設定	操作地点と有毒ガスの発 生源との位置関係(距離,	
			防液堤開口部面積	_	敷地外固定源は,1 時間で全量放出されるとしているため,防液堤開口部面積の設定は不要	び廃液処理槽の有無)(解 説-5) 一電源,人的操作等を必要と	

による相違 【和母で】 ・発電所所在地の違い による相違 【和母で】	東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
【和岭7】 敷型外閣定源調査結 果の相談 ・発電所所在地の次い による相違 【和伸7】 敷地外閣定源調査結				・発電所所在地の違い
要地外固定認測查結 果の相连 - 発電所所在地の違い による和強 【粉晦 7】 ・ 敷地外固定源調査結				
果の相違 ・発電所所在地の違い による相違 【和崎で】 敷地外間定願調査結				
・発電所所在地の違い による和達 【柏崎で】 敷地外届定源調査結				
による相違 【柏崎 7】 敷地外固定源調査結				果の相違
による相違 【柏崎 7】 敷地外固定源調査結				
【柏崎 7】 敷地外固定源調査結				・発電所所在地の違い
敷地外固定源調査結				による相違
				【柏崎 7】
果の相逢				敷地外固定源調査結
				果の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			・発電所所在地の違い
			による相違
			【柏崎7】
			敷地外固定源調査結
			果の相違
			・発電所所在地の違い
			による相違
			【柏崎7】
			敷地外固定源調査結
			果の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
			・発電所所在地の違い
			による相違
			【柏崎7】
			敷地外固定源調査結
			果の相違
			・発電所所在地の違い
			による相違
			【柏崎7】
			敷地外固定源調査結
			果の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			・発電所所在地の違い
			による相違
			【柏崎7】
			敷地外固定源調査結
			果の相違
			・有毒ガス防護評価方
			針の相違
			【柏崎7】
			①の相違

		表 4-2 有毒化学物質に係る評価条件	・ 気象条件及び参照文
	項目	評価条件 選定理由 備考	献の相違
	動粘性係数	文献と気象条件 (温度) に基づき設定 Hydrochloric Acid Evaporation in ALOHA 出の評価	代表気象年及び化学
	分子拡散係数	文献と気象条件 (温度) に基づき設定 Modeling Hydrochloric Acid Evaporation in ALOHA 性状, 放出形態に応	る参照文献の相違
	化学物質の分圧*	文献と気象条件 (温度) に基づき設定 Modeling Hydrochloric Acid Evaporation in ALOHA じて, 有毒ガスの放 出量評価モデルが適 切に用いられている こと。 一有毒化学物質の漏 えい量	
	気象資料	島根原子力発電所における1年間の気象資料(2009.1~2009.12) ・地上風を代表する観測点(標高約28.5m)の気象データ・露場の温度・の場所において観測された1年間の気象データを使用・の多を使用・有毒がこの物性値ではないことが確認された発電所において観測された1年間の気象データを使用・である。	
		用いた化学物質の分圧の詳細については、図 4-2 に示す。	

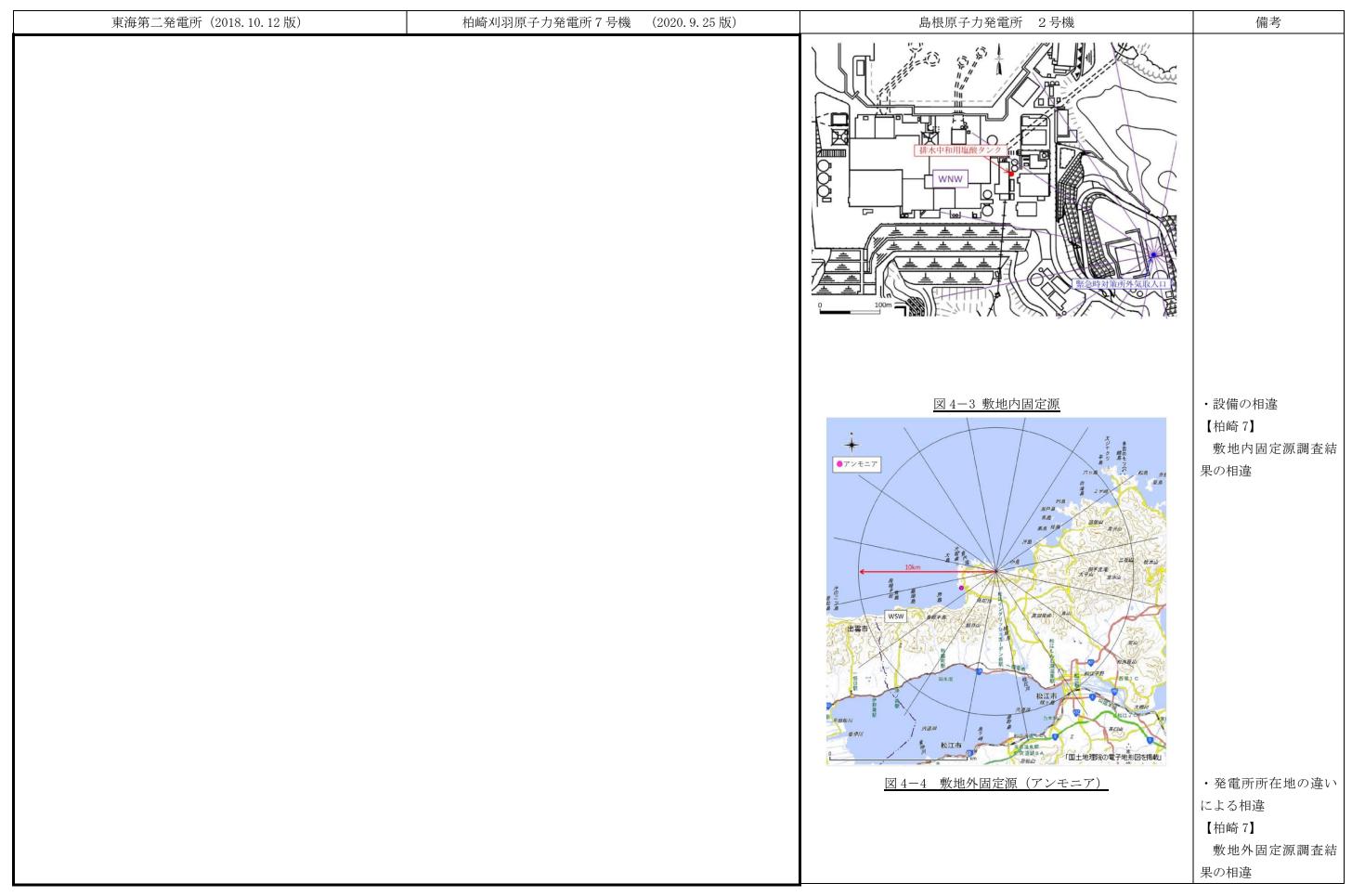
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.2)	版) 島根原子力発電所 2号機	備考
		表 4-3 大気拡散計算の評価条件(1/6)	・気象条件の相違
		項目 評価条件 選定理由 備考 有毒ガス評価ガイド 4.4.2 原子炉制御室等外評価点及び重要 操作地点での濃度評価 2) 次の項目から判断して、有毒ガスの性 状、放出形態に応じて、大気拡散モデルが適切に用いられていること。 一大気拡散の解析モデルは、検証された ものであり、かつ適用範囲内で用いら	【柏崎 7】 代表気象年の相違
		ル プルームモデルを適用	

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)			島根原	原子力発電所 2号機	備考
			表	4-3 大気	気拡散計算の評価条件(2/6)	・記載方針の相違
		項目	評価条件	選定理由	備考	【柏崎7】
		実効放出継続時間	1 時間	保果 よう は と は を は え ら か き ら が ま ら か ま か 散 間 時間 の 1 時間 定	被ばく評価手法 (内規) 解説5.13(3) 実効放出継続時間(T)は, 想定事故の種 類によって放出率に変化があるので,放出モードを考 慮して適切に定めなければならないが,事故期間中の 放射性物質の全放出量を1時間当たりの最大放出量で	島根2号機は注記を 記載しているが,実質的 な相違はない
		累積出現頻度	から 97%	気参年ガた基す昇替現の筋の値割に累度に設定する 関スめ準る順え頻に設定する順え頻に設定する値をできます。	の濃度評価 6) 原子炉制御室等外評価点及び重要操作地点での濃度は、年間の気象条件を用いて計算したもののうち、厳しい値が評価に用いられていること(例えば、毎時刻の原子炉制御室等外評価点での濃度を年間について小さい方から累積した場合、その累積出現頻度が97%に当たる値が用いられていること等。)。 被ばく評価手法(内規)	
		項目	表評価		気拡散計算の評価条件(3/6) E理由 備考	・有毒ガス防護評価方
		理を	(敷地内屋 ・排水中和 タンク:	定源 用塩酸 放ら及 所1号 がまる はは、よみ 明 に で :	有毒ガス評価ガイド 4.4.2 原子炉制御室等外評価点及び重要操作地点での濃度評価 3) 地形及び建屋等の影響を考慮する場合には、そのモデル化の妥当性が示されていること(例えば、三次元拡散シミュレーションモデルを用いる場合等)。 を受し場合とは、三次元拡散シミュレーションモデルを用いる場合等)。 被ばく評価手法(内規) 5.1.2(1)a) 中央制御室のように、事故時の放射性物質の放出点から比較的近距離の場所では、建屋の風下側における風の巻き込みによる影響	針,設備及び発電所所在地の違いによる相違【柏崎7】 ①,建物巻き込み評価結果及び固定源調査結果の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)		Į.	島根原子力発電	重所 2号機	備考
				表 4-3	大気拡散計算	草の評価条件(4/6)	·大気拡散条件, 設備及
			項目	評価条件	選定理由 巻き込みの影響	備考 被ばく評価手法(内規)	び発電所所在地の違い
			巻き込		が最も大きいと 考えられる 1 つ	5.1.2(3)a)3) 巻き込みを生じる代表的な 建屋として,表 5.1に示す建屋を選定する ことは適切である。	による相違 【柏崎 7】
			みを生	管理事務所 1 号館	の建物として選定	表 5.1 放射性物質の巻き込みの対象とす	島根2号機は建物巻
			じる代	日在事份// 1 万届	面積が小さい方 が保守的な結果	る代表建屋の選定例 原子学組数 思定事故 思定事故 即は知用子学組数 用子学組数(編集等 15人を得合) 主教後報報 用子学組及(編集等 15人を得合) 主教後報報 用子学組及(編集等 15人を得合)	き込みを考慮する。ま
			表建物		を与えるため, 単独建物として 選定	Pint 型原子が施設 原子が成功的表 原子が成功容器(原子が指導型)。 原子が成功容器(原子の格が施設)。 原子が成功容器(原子の格が施設)。 原子が成功容器(原子の格が施設)。 原子が成功容器(原子の格が施設)。 原子が成功容器(原子の格が施設)。 原子が成功容器(原子の格が施設)。	た,固定源調査結果の相
			1000000		評価対象は緊急時対策所内の指	第二十分の表示というできませんが、 第二十分の意	違
			評	緊急時対策所	示要員の有毒ガ ス防護のための	有毒ガス評価ガイド 4.4.1 原子炉制御室等外評価点	
			評価点	外気取入口		原子炉制御室等の外気取入口が設置され ている位置を原子炉制御室等外評価点と していることを確認する。	
					口の設置位置を 評価点と設定		
						有毒ガス評価ガイド 3.1 固定源及び可動源の調査 (3) 調査対象としている固定源及び可動	
			発生	(敷地内固定源) ・排水中和用塩酸		源に対して,次の項目を確認する。 - 有毒化学物質の名称 - 有毒化学物質の貯蔵量	
			生源と評	タンク: 約 260m	固定源と評価点	- 有毒化学物質の貯蔵方法 - 原子炉制御室等及び重要操作地点と有	
			価点の	(敷地外固定源)	の位置から保守 的に設定	毒ガスの発生源との位置関係(距離,高 さ,方位を含む。) 一防液堤の有無(防液堤がある場合は,防	
			距離	・アンモニア: 約2760m		液堤までの最短距離,防液堤の内面積及 び廃液処理槽の有無)(解説-5)	
						一電源,人的操作等を必要とせずに,有毒ガス発生の抑制等の効果が見込める設備(例えば,防液堤内のフロート等)(解	
					~	説-5)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020). 9. 25 版)	島	品根原子力発電所 2	号機	備考
						・有毒ガス防護評価方 針の相違 【柏崎 7】 ①の相違
		項目 着目方位*	評価条件	〜iii)の条件に該当する方位を選定し、建物の後流側の拡がりの影響が評価点に及ぶ可能性のある複数の方位を選定i)放出点が評価点の風上にあることii)放出点から放出された有毒ガスが、建物の風下側に巻き込まれるような範囲に評価点が存在することiii)建物の風下側で巻き込ま	備考	・有毒ガス防護評価方針,大気拡散条件,設備, 発電所所在地の違いによる相違 【柏崎7】 ①及び固定源抽出結果の相違。島根2号機は建物巻き込みを考慮する
			1:着目方位は,固定 向きが異なる。	・建物の影響がない場合には,放出点から評価点を結ぶ	5.1.2(4)b) 建屋の影響がない場合は、放出点から評価点を結ぶ風向を含む 1 方位のみについて計算を行う。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)		島根原子	力発電所 2号	機	備考
			表 4-3 大気拡散	数計算の評価条件	件 (6/6)	・大気拡散条件の相違
		項目	評価条件	選定理由	備考	【柏崎 7】
			・排水中和用塩酸 タンク	保守的に巻き込み よる影響が最もないと考えられる」	みに 被ばく評価手法 (内	島根2号機は建物巻き込みを考慮する
		建物投影面積	管理事務所 1 号館 ESE (850m²) SE (850m²)	な投影面積のうち	垂直 影面積を求め、放射性 お最 物質の濃度を求める 许的 ために大気拡散式の こ設 入力とする。	
		形 状 係 数	1/2	気象指針*を参え して設定	被ばく評価手法(内規)5.1.1(2)b) 形状係数cの値は、特に根拠が示されるもののほかは原則として 1/2 を用いる。	
						・評価方針の相違 【柏崎 7】
						島根2号機では換気率 を考慮しない
			表 4-4 有毒ガス			島根2号機では換気率 を考慮しない ・調査対象物質の相違
		項目塩酸	表 4-4 有毒ガス 評価条件 50 ppm	選定理由 :	刊断 <u>基準値</u> 備考 有毒ガス評価ガイド 3.2 有毒ガス防護判断基準 値の設定	島根2号機では換気率 を考慮しない


東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)			島根原	子力発電所	2号機			備考
			表 4-	-5 固定源	 による有	― 毒ガス防護	のための	判断基準	値に対す	・計算結果の相違
					る割合	の計算結果	: (1/2)			【柏崎7】
							評価結果			評価対象物質の相違
				固定源	外気取入口	有毒ガス防護	対日 公共 A屋 14.	放出率	放出継続	による計算結果の相違
					濃度 (ppm)	判断基準値に 対する割合	(s/m³)	(kg/s)	時間 (h)	
			敷地内	排水中和用 塩酸タンク	6. 1×10°	0.13	1.8×10 ⁻⁴	5. 3×10 ⁻²	1.8×10°	
			敷地外	アンモニア (冷媒)	2. 2×10 ⁻¹	< 0.01	3. 6×10^{-7}	4. 2×10 ⁻¹	1. 0×10°	
					1			1		
			<u> </u>							

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)		島	根原子力発電所 2	号機		備考
		表 4-	表 4-5 固定源による有毒ガス防護のための判断基準値に対す				計算結果の相違
		<u>る割合の計算結果(2/2)</u>			【柏崎 7】		
				が最大となる着目力			評価対象物質の相違
					評価結果		による計算結果の相違
			固定源	着目 外気取入口		評価	
			III L L A M	濃度 (ppm)	との比	рт Іш	
		敷地内	排水中和用 塩酸タンク	ESE 5. 1×10^{0} SE 6. 1×10^{0}	0.11		
		敷地外	アンモニア			影響なし	
		数地外	(冷媒)	ENE 2.2×10^{-1}	< 0.01		
							1

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2 号機	備考
			・有毒ガス防護評価方
			針の相違
			【柏崎7】
			①の相違
			・有毒ガス防護評価方
			針の相違
			【柏崎7】
			①の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2号機	備考
		緊急時対策所 全面マスク 配備予定場所 図3-1 全面マスク配備予定場所 (緊急時対策所)	・有毒ガス防護評価方 針の相違 【柏崎 7】 ①の相違
		固定源からの有毒化学物質の漏えい	・有毒ガス防護評価方
			針の相違 【柏崎 7】 ①の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所 2号機	備考
		3.0E+04 2.0E+04 3.0E+04 3.0E+04 3.0E+04 4.1.0E+04 4.1.0E+04 5.520 4.1.0E+04 5.520	・設備の相違 【柏崎7】 化学物質の濃度の違いによる評価条件及び 参照文献の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所 2号機	・発電所所在地の違い による相違 【柏崎 7】 敷地外固定源調査結 果の相違
			・発電所所在地の違い による相違 【柏崎7】 敷地外固定源調査結 果の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所 2号機	備考
果(海弗————————————————————————————————————	相畸刈羽原于刀発電所で号機 (2020.9.25 版)	局银原子刀発電所 2 芳磯	・有毒ガス防護評価方針の相違 【柏崎 7】 ①の相違