島根原子力発電所第2号機 審査資料			
資料番号	NS2-添 1-074 改 02		
提出年月日	2022年5月12日		

VI-1-9-2-1 常用電源設備の健全性に関する説明書

2022年5月

中国電力株式会社

目 次

1.	7	概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.		基本方針	1
2	. 1	発電所構内における電気系統の信頼性確保 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	2.	.1.1 機器の損壊,故障その他の異常の検知と拡大防止 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	2.	.1.2 1相の電路の開放に対する検知及び電力の安定性回復 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2	. 2	電線路の独立性及び物理的分離 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2	. 3	発電用原子炉施設の電力供給確保 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2	. 4	電気設備の異常の予防等に関する設計事項 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3.	7	施設の詳細設計方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.	. 1	外部電源に関する設計	4
	3.	. 1. 1 電力系統の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
	3.	.1.2 独立性が確保された電線路からの受電 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
	3.	.1.3 物理的分離が施された電線路からの受電 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
		3.1.3.1 送電線の物理的分離 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
		3.1.3.2 鉄塔基礎の安定性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
		3.1.3.3 送電線の強風対策 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
	3.	.1.4 機器の損壊,故障その他の異常の検知と拡大防止 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
	3.	.1.5 1相の電路の開放に対する検知及び電力の安定性回復	18
3.	. 2	発電機に関する設計 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
	3.	.2.1 機器の損壊,故障その他の異常の検知と拡大防止 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
	3.	.2.2 電気設備の異常の予防等に関する設計事項	19
3	3. 3	3 ガス絶縁開閉装置及び変圧器等に関する設計 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
	3.	.3.1 発電用原子炉施設の電力供給確保 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
		3.3.1.1 2回線喪失時の電力供給継続 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
		3.3.1.2 開閉所等の基礎	24
		3.3.1.3 碍子及び遮断器等の耐震性	31
		3.3.1.4 碍子及び遮断器等への津波の影響	32
		3.3.1.5 碍子及び遮断器等の塩害対策	33
	3.	.3.2 機器の損壊,故障その他の異常の検知と拡大防止 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
	3.	.3.3 1相の電路の開放に対する検知及び電力の安定性回復	37
	3.	.3.4 電気設備の異常の予防等に関する設計事項	39
3.	. 4	所内電源設備に関する設計 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
	3.	.4.1 機器の損壊,故障その他の異常の検知と拡大防止 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
	3.	.4.2 電気設備の異常の予防等に関する設計事項	41

1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準規則」という。)第45条第3項、第4項、第5項、第6項、第48条並びにそれらの「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(以下「解釈」という。)に基づく常用電源設備の健全性について説明するものである。

今回,常用電源設備に関し,機器の損壊,故障その他の異常の検知と拡大防止を図ること,物理的分離,独立性が確保された電線路から受電できること及び電力系統からの電力の供給が同時に停止しないことに関する適合状況を説明する。また,電気設備は「原子力発電工作物に係る電気設備に関する技術基準を定める命令」(平成24年経済産業省令第70号)を準用する設計であることについて説明する。

なお、常用電源設備の冷却能力等を踏まえた運転制限等の評価により設備の健全性を維持するための電気出力上限については、平成15年10月3日に提出した「定格熱出力一定運転実施に伴う発電設備の健全性評価書」からの変更はない。

2. 基本方針

- 2.1 発電所構内における電気系統の信頼性確保
 - 2.1.1 機器の損壊,故障その他の異常の検知と拡大防止

安全施設へ電力を供給する保安電源設備は、電線路、発電用原子炉施設において常時使用される発電機、外部電源系及び非常用所内電源系から安全施設への電力の供給が停止することがないよう、発電機、送電線、変圧器、母線等に保護継電器を設置し、機器の損壊、故障その他の異常を検知するとともに、異常を検知した場合は、ガス絶縁開閉装置あるいはメタルクラッド開閉装置等の遮断器が動作することにより、その拡大を防止する設計とする。

特に重要安全施設に給電する系統においては,多重性を有し,系統分離が可能 である母線で構成し,信頼性の高い機器を設置する。

常用高圧母線(メタルクラッド開閉装置で構成)は、2 母線で構成し、通常運転時に必要な負荷を各母線に振り分け給電する。それぞれの母線から動力用変圧器を通して降圧し、常用低圧母線(ロードセンタ及びコントロールセンタで構成)へ給電する。

また,高圧及び低圧母線等の故障による電気系統の機器の短絡や地絡,母線の低電圧や過電流を検知し,遮断器により故障箇所を隔離できる設計とし,故障による影響を局所化できるとともに,他の安全機能への影響を限定できる設計とする。

常用の直流電源設備は,直流230V 1系統の非常用低圧母線に接続される蓄電池, 充電器,直流盤等で構成し,非常用軸受油ポンプ,非常用密封油ポンプ,給水ポ ンプ・タービン非常用油ポンプ等へ給電する設計とする。 常用の計測制御用電源設備は、一般計装母線 1 母線及び計算機用無停電交流電源装置で構成する。母線電圧は 105V 及び 210V である。

常用電源設備の動力回路、制御回路、計装回路のケーブルは、負荷の容量に応じたケーブルを使用する設計とする。また、それぞれ相互に分離したケーブルトレイ、電線管を使用して敷設し、多重化した非常用電源設備のケーブルの系統分離対策に影響を及ぼさない設計とするとともに、電気的影響を考慮した設計とする。

2.1.2 1相の電路の開放に対する検知及び電力の安定性回復

変圧器一次側において3相のうちの1相の電路の開放が生じた場合に検知できるよう,変圧器一次側の電路は,電路を筐体に内包する変圧器やガス絶縁開閉装置等により構成し,3相のうちの1相の電路の開放が生じた場合に保護継電器にて検知し,自動で故障箇所の隔離及び非常用母線の受電切替ができる設計とし,電力の供給の安定性を回復できる設計とする。

送電線において3相のうちの1相の電路の開放が生じた場合,220kV送電線(「1,2,3号機共用」(以下同じ。))は1回線での電路の開放時に,安全施設への電力の供給が不安定にならないよう,多重化した設計とする。また,電力送電時,保護装置による3相の電流不平衡監視にて常時自動検知できる設計とする。さらに保安規定に定めている巡視点検を加えることで,保護装置による検知が期待できない場合の1相開放故障や,その兆候を早期に検知できる設計とする。

66kV 送電線(「1,2号機共用」(以下同じ。))は,各相の不足電圧継電器にて常時自動検知できる設計とする。さらに保安規定に定めている巡視点検を加えることで、保護継電器による検知が期待できない場合の1相開放故障や、その兆候を早期に検知できる設計とする。

220kV 送電線及び 66kV 送電線において 1 相の電路の開放を保護継電器にて検知 した場合は、自動又は手動で、故障箇所の隔離又は非常用母線の受電切替ができ る設計とし、電力の供給の安定性を回復できる設計とする。

2.2 電線路の独立性及び物理的分離

発電用原子炉施設は、重要安全施設がその機能を維持するために必要となる電力を 当該重要安全施設に供給するため、電力系統に連系した設計とする。

設計基準対象施設は、送受電可能な回線として 220kV 送電線(中国電力ネットワーク株式会社第二島根原子力幹線)1ルート 2 回線(「1, 2, 3号機共用」(以下同じ。))及び受電専用の回線として 66kV 送電線(中国電力ネットワーク株式会社鹿島線を分岐した鹿島支線)1ルート 1 回線(「1, 2号機共用」(以下同じ。))の合計 2ルート 3 回線にて、電力系統に接続する設計とする。

220kV 送電線 2 回線は、中国電力ネットワーク株式会社北松江変電所に連系する設計とする。また、66kV 送電線 1 回線は、中国電力ネットワーク株式会社津田変電所に連系する設計とする。

上記 2 ルート 3 回線の送電線の独立性を確保するため, 万一, 送電線の上流側接続 先である中国電力ネットワーク株式会社北松江変電所が停止した場合でも, 外部電源 からの電力供給が可能となるよう, 中国電力ネットワーク株式会社の広島変電所から 松江変電所及び津田変電所を経由するルートで本発電所に電力を供給することが可能 な設計とする。

また、中国電力ネットワーク株式会社津田変電所が停止した場合には、外部電源からの電力供給が可能となるよう、中国電力ネットワーク株式会社北松江変電所を経由するルートで本発電所に電力を供給することが可能な設計とする。

設計基準対象施設は、電線路のうち少なくとも1回線が、同一の送電鉄塔に架線されていない、他の回線と物理的に分離された送電線から受電する設計とする。

また、大規模な盛土の崩壊、大規模な地すべり、急傾斜地の崩壊に対し鉄塔基礎の 安定性が確保され、台風等による強風発生時の事故防止対策が図られ、さらに送電線 の近接箇所においては、線路の張力方向に倒壊することを考慮すると互いの架渉線に 影響を与える可能性はなく、万一、影響があったとしても、近接していない健全な他 の送電線から外部電源の確保が可能である。

2.3 発電用原子炉施設の電力供給確保

設計基準対象施設に接続する電線路は、いずれの2回線が喪失した場合においても電力系統から発電用原子炉施設への電力の供給が停止しない設計とし、220kV送電線2回線は起動変圧器を介して接続するとともに、66kV送電線1回線は予備変圧器を介して接続する設計とする。

開閉所から主発電機側の送受電設備は、十分な支持性能を持つ地盤に設置するとと もに、耐震性の高い、可とう性のある懸垂碍子並びに重心の低いガス絶縁開閉装置及 びガス絶縁複合開閉装置を設置する設計とする。

さらに、津波の影響を受けない敷地高さに設置するとともに、塩害を考慮し、送電線引留部の碍子に対しては、碍子洗浄できる設計とし、遮断器等に対しては、電路がタンクに内包されているガス絶縁開閉装置を設置し、ガス絶縁複合開閉装置の架線部については屋内に設置する。

2.4 電気設備の異常の予防等に関する設計事項

設計基準対象施設に施設する常用電源設備は、「原子力発電工作物に係る電気設備に関する技術基準を定める命令」第 4 条から第 16 条まで、第 19 条から第 28 条まで及び第 30 条から第 35 条までのうち関連する事項に対する技術的要件を満たす設計と

する。

電気設備における感電,火災等の防止,電路の絶縁,電線等の断線の防止,電線の接続,電気機械器具の熱的強度,高圧又は特別高圧の電気機械器具の危険の防止,電気設備の接地,電気設備の接地の方法,発電所等へ取扱者以外の者の立入の防止及び架空電線等の高さについて各事項を準用し,感電,火災等の防止を講じた設計とする。

特別高圧電路等と結合する変圧器等の火災等の防止,過電流からの電線及び電気機械器具の保護対策並びに地絡に対する保護対策について各事項を準用し,異常の予防及び保護対策を講じた設計とする。

電気設備の電気的,電磁的障害の防止について準用し,電気的,電磁的障害の防止 を講じた設計とする。

ガス絶縁機器の危険の防止及び水素冷却式発電機の施設について各事項を準用し, 高圧ガスによる危険の防止を講じた設計とする。

発変電設備の損傷による供給支障の防止、発電機の機械的強度並びに高圧及び特別 高圧の電路の避雷器の施設について各事項を準用し、供給支障の防止を講じた設計と する。

なお、所内には常用電源設備として高周波利用設備、低圧、高圧の架空電線、中国電力ネットワーク株式会社以外の他事業者が設置した架空電線及び電力保安通信設備に関する該当設備はない。

3. 施設の詳細設計方針

常用電源設備は、外部電源、発電機、ガス絶縁開閉装置、ガス絶縁複合開閉装置、変 圧器及び常用系の所内電源設備等にて構成する設計とする。

本章では、基本方針に示す内容に対する各設備の詳細設計方針を「3.1 外部電源に関する設計」、「3.2 発電機に関する設計」、「3.3 ガス絶縁開閉装置及び変圧器等に関する設計」及び「3.4 所内電源設備に関する設計」にて説明する。なお、系統の詳細については、添付図面「第 1-1-1 図 送電関係一覧図(その1)」及び添付図面「第 1-4-1 図 単線結線図(その1)交流電源」に示す。

3.1 外部電源に関する設計

3.1.1 電力系統の概要

設計基準対象施設に連系する外部電源である送電線は、送受電可能な回線として、220kV 送電線1ルート2回線及び受電専用の回線として66kV 送電線1ルート1回線の合計2ルート3回線で電力系統に連系する。220kV 送電線2回線は、約16km離れた中国電力ネットワーク株式会社北松江変電所に接続する。また、66kV 送電線1回線は、約13km離れた中国電力ネットワーク株式会社津田変電所に接続する。

詳細は添付図面「第1-1-1図 送電関係一覧図(その1)」に示す。

3.1.2 独立性が確保された電線路からの受電

送電線の独立性を確保するため、万一、送電線の上流側接続先である中国電力ネットワーク株式会社北松江変電所が停止した場合でも、外部電源系からの電力供給が可能となるよう、中国電力ネットワーク株式会社の広島変電所から松江変電所を経由して津田変電所から受電できる設計とする。また、津田変電所が停止した場合には、北松江変電所を経由するルートで受電できる設計とする。

なお、津田変電所からの 66kV 送電線(鹿島線)は、島根原子力発電所から約 1km 離れた鹿島変電所に鹿島線 2 回線(1L, 2L)で連系しており、鹿島支線として鹿島線 2L を分岐して島根原子力発電所と連系しているため、鹿島線 2L の点検時又は事故時に鹿島線 1L から鹿島変電所を経由して連系することが可能である。

島根原子力発電所周辺の主な電力系統を図 3-1 に示し、中国電力ネットワーク株式会社北松江変電所全停電時の供給系統を図 3-2、中国電力ネットワーク株式会社津田変電所全停電時の供給系統を図 3-3、鹿島線 2L 点検時又は異常時の供給系統を図 3-4 に示す。

これらの電力系統は、それぞれ1回線で島根原子力発電所の重要安全施設がその機能を維持するために必要となる非常用ディーゼル発電機1台相当の約7.3MVAが供給できる容量を有した設計とするため、表3-1のとおり、中国電力ネットワーク株式会社北松江変電所から受電する場合、220kV送電線は1回線当たりの容量が約1327MWの設備容量を有した設計とする。また、中国電力ネットワーク株式会社津田変電所から受電する場合、66kV送電線において約36MWの設備容量を有した設計とする。

また、中国電力ネットワーク株式会社北松江変電所が停止した場合の、中国電力ネットワーク株式会社広島変電所から本発電所への電力供給については、あらかじめ定められた手順、体制等に基づき、昼夜を問わず、30分以内に確実に実施する。

電線仕様 送電線名称 電圧 線種(導体数) 設備容量 220kV 第二島根原 RS-TACSR/AC610 220kV 約 1327MW×2 回線 子力幹線 (2 導体) ACSR/AC97(1導 66kV 鹿島支線 約 36MW×1 回線 66kV 体) 変圧器仕様 変電所名称 電圧 設備容量 北松江変電所 500kV/220kV 1000MVA×2 台 津田変電所 110kV/66kV 60MVA×2 台

表 3-1 送変電設備一覧

図 3-1 島根原子力発電所周辺の主な電力系統

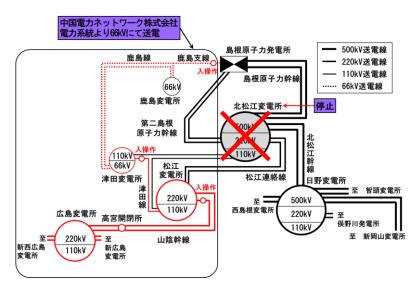


図 3-2 北松江変電所全停電時の供給系統

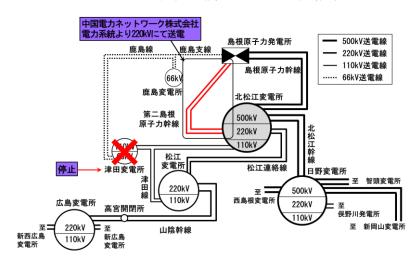


図 3-3 津田変電所全停電時の供給系統

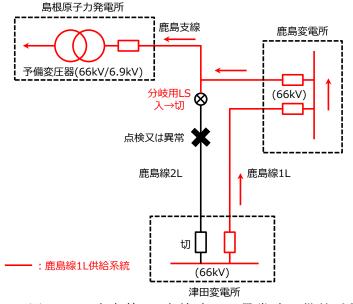


図 3-4 鹿島線 2L 点検時又は異常時の供給系統

3.1.3 物理的分離が施された電線路からの受電

3.1.3.1 送電線の物理的分離

設計基準対象施設に連系する 220kV 送電線 (220kV 第二島根原子力幹線) 2 回線と 66kV 送電線 (66kV 鹿島線・鹿島支線) 1 回線は, 異なるルートを通過し, 同一の送電鉄塔に架線しないよう, 220kV 第二島根原子力幹線及び 66kV 鹿島線・鹿島支線それぞれに送電鉄塔を備える設計とする。

220kV 第二島根原子力幹線及び 66kV 鹿島線・鹿島支線は、いずれも 1 回線で島根原子力発電所の停止に必要な電力を受電し得る容量があり、島根原子力発電所の外部電源系は、いずれの 2 回線が喪失しても、原子炉を安全に停止するための電力を他の 1 回線から受電できる構成とする。

島根原子力発電所に接続する 220kV 第二島根原子力幹線, 66kV 鹿島支線, 66kV 第2-66kV 開閉所線, 500kV 島根原子力幹線の近接箇所, 交差箇所の状況を図 3-5 に示す。

なお、66kV 第2-66kV 開閉所線は発電所構内において、66kV 鹿島支線より 分岐した送電線であり、また、500kV 島根原子力幹線は島根2号機の申請対 象ではないが、悪影響防止の観点からそれぞれ交差箇所及び近接箇所の評価 対象としている。

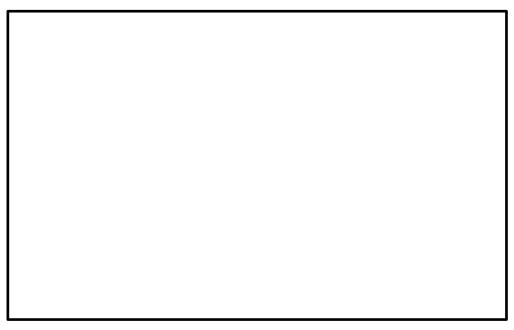


図 3-5 送電線の交差及び近接箇所

図 3-6 に示すとおり,220kV 第二島根原子力幹線と500kV 島根原子力幹線の近接箇所については,仮に1つの鉄塔が倒壊しても,線路の張力方向に倒壊することを考慮するとお互いの架渉線に影響を与える可能性はなく,万一,

500kV 島根原子力幹線が 220kV 第二島根原子力幹線側に倒壊したとしても, 仮復旧も含めて近接していない 66kV 鹿島支線 1 回線にて外部電源の確保が可能である。

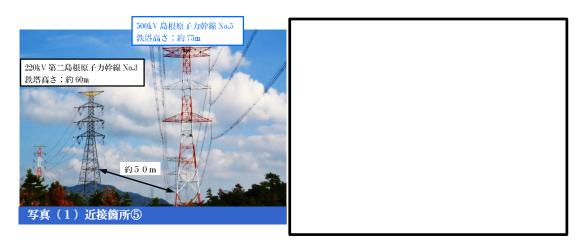
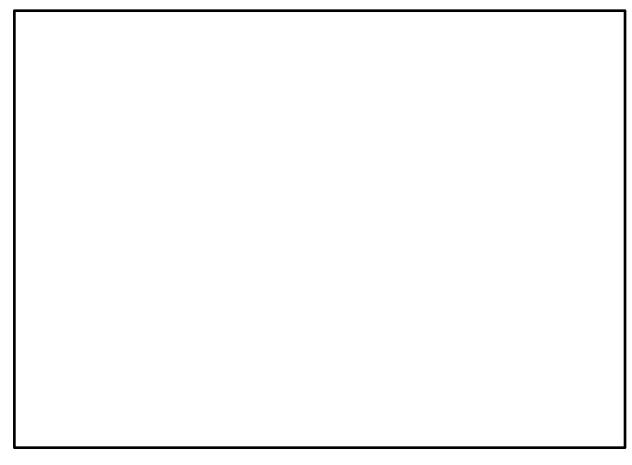



図 3-6 島根原子力発電所付近の送電線の近接箇所

島根原子力発電所に接続する 220kV 第二島根原子力幹線, 66kV 鹿島支線, 66kV 第 2-66kV 開閉所線, 500kV 島根原子力幹線の交差箇所の状況を図 3-7 に, 送電線交差箇所異常発生時の評価について表 3-2 に示す。

図 3-7 島根原子力発電所に接続する送電線の交差箇所 (1/2)

④220kV 第二島根原子力幹線(上部)と 66kV 第 2 -66kV 開閉所線(下部)の詳細図 図 3-7 島根原子力発電所に接続する送電線の交差箇所 (2/2)

表 3-2 送電線交差箇所異常発生時の評価

	我 5					
No.	交差の状況	交差箇所での異常発生時の 評価				
1	220kV 第二島根原子力幹線(下部)と 500kV 島根原子力幹線(上部)	66kV 鹿島線・鹿島支線が健全				
2	220kV 第二島根原子力幹線(上 部)と 66kV 鹿島支線(下部)	非常用ディーゼル発電機の燃料 容量の7日以内に66kV 鹿島支 線を仮復旧				
3	66kV 鹿島支線 (下部) と 500kV 島根原子力幹線 (上部)	220kV 第二島根原子力幹線が健 全				
4	220kV 第二島根原子力幹線(上部)と66kV 第2-66kV 開閉所線(下部)	66kV 鹿島支線が健全				

220kV 第二島根原子力幹線,66kV 鹿島支線,500kV 島根原子力幹線の交差 箇所においては、上部の送電線の異常発生時に下部の送電線に影響を与える 可能性は否定できないが、交差箇所①,③の交差箇所で異常があっても、他 のルートにより外部電源の確保が可能である。

また、交差箇所②の220kV 第二島根原子力幹線と66kV 鹿島支線の交差箇所において、送電線に異常があっても、災害時の復旧体制を整備しており、非常用ディーゼル発電機の燃料容量の7日以内に66kV 鹿島支線を復旧することにより発電所への電源供給を確保する。

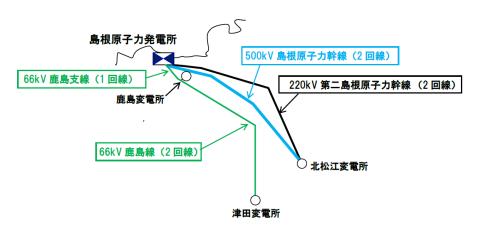
なお, ④の220kV 第二島根原子力幹線と66kV 第2-66kV 開閉所線の交差箇所は,上部の送電線である220kV 第二島根原子力幹線No.1, No.2鉄塔の設計基準地震動での耐震性を評価しており,66kV 鹿島支線に影響を与えることはない。

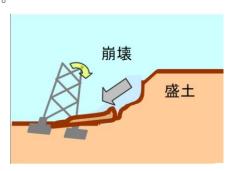
3.1.3.2 鉄塔基礎の安定性

設計基準対象施設に連系する 220kV 送電線 (220kV 第二島根原子力幹線 2回線) と 66kV 送電線 (66kV 鹿島線 2回線及び鹿島支線 1回線) を鉄塔基礎の安定性評価対象線路とし、図 3-8 に示す。

これらの線路は,極力,地すべり危険箇所等を回避するルートを選定する とともに,個別に現地の地質や地形に応じた基礎形状を選定するなど鉄塔基 礎の安定性を確保した設計とされていることを確認している。

さらに、対象送電線の全鉄塔について鉄塔敷地周辺において、大規模な盛 土の崩壊、大規模な地すべり、急傾斜地の崩壊の危険性がないことを確認し、 地震による二次的被害を受けない設計とされていることを確認している。具 体的な評価項目、評価方法及び評価結果については以下のとおり。




図 3-8 基礎の安定性評価対象線路

(1) 評価項目

鉄塔敷地周辺で基礎の安定性に影響を与える3つの事象について評価する。

a. 大規模な盛土の崩壊

対象鉄塔周辺には盛土崩壊時に基礎の安定性に影響を与えるような大規模な盛 土は存在しないこと。

【大規模な盛土崩壊】

b. 大規模な地すべり

大規模な地すべりを誘発する地盤の亀裂及び切土等の地形改変がないこと。

【大規模な地すべり】

c. 急傾斜地の崩壊

急傾斜地の崩壊を誘発する地盤の亀裂及び切土等の地形改変がないこと。

【急傾斜地の崩壊】

(2) 評価方法及び評価結果

・大規模な盛土の崩壊

a. 評価方法

実測平面図や国土地理院発行の地形図等を使用し、人工的に土地の改変が加えられた箇所等を抽出する。また、送電線路周辺で発生した盛土に関する送電線の保守記録等の確認とともに、徒歩による巡視で直接現地状況の確認を行い、漏れのないよう盛土箇所を抽出する。

上記から現地踏査が必要と判断された鉄塔について、地質の専門家による現地踏査を実施し、詳細な地形、地質変状等を調査し、基礎の安定性を評価する。

b. 評価結果

抽出の結果, 鉄塔 147 基のうち, 2 基が抽出された。対象 2 基について, 当該盛 土の立地状況や形状及び規模, 鉄塔との距離等を確認した結果, 鉄塔脚から盛土ま での距離が十分離れており, 仮に崩壊したとしても当該鉄塔への土砂流入はない と判断した。その後毎年巡視点検にて前年と変化がないことを確認している。

・大規模な地すべり

a. 評価方法

地すべり防止区域,地すべり危険箇所,地すべり地形分布図に示される範囲,及びその近傍に設置されている鉄塔を抽出する。

抽出された鉄塔について,地質の専門家による現地踏査を実施し,詳細な地形, 地質変状等を調査し,基礎の安定性を評価する。

b. 評価結果

抽出の結果,鉄塔 147 基のうち,8 基について現地踏査が必要な箇所が該当した。 抽出された 8 基について,地質専門家による現地踏査等により,地すべりによる変 状はないため,保全対策の必要性がないと判断された。その後毎年巡視点検にて前 年と変化がないことを確認している。

・急傾斜地の崩壊

a. 評価方法

国土地理院発行の地形図等を使用し、鉄塔周辺の傾斜の最大傾斜角が 30 度以上かつ逆T字基礎の鉄塔を抽出する。

抽出された鉄塔について,地質の専門家による現地踏査を実施し,詳細な地形, 地質変状等を調査し,基礎の安定性を評価する。

b. 評価結果

抽出の結果, 鉄塔 147 基のうち, 105 基について現地踏査が必要な箇所が該当した。抽出された 105 基について地質専門家による現地踏査等により, 土砂崩壊時に鉄塔基礎の強度不足が想定されるようなものはなく, 鉄塔基礎の安定性には問題ないことを確認した。その後毎年巡視点検にて前年と変化がないことを確認している。

以上より,評価対象線路について,鉄塔基礎の安定性が確保されていることを確認した。対象線路ごとの評価結果について表 3-3 に示す。

現地踏査基数 対策工事対応 線路名 鉄塔基数 地す 急傾 盛土 必要基数 べり 斜地 220kV 第二島根原子力幹線 44 基 0 基 2 基 41 基 0 基 66kV 鹿島線 54 基 2 基 2基 39 基 0 基 0 基 0 基 66kV 鹿島支線 3 基 1 基 3 基 500kV 島根原子力幹線 46 基 0 基 3 基 22 基 0基 105 4 線路 147 基 8 基 0基 2 基 基

表 3-3 対象線路ごとの評価結果

(経済産業省原子力安全・保安院報告「原子力発電所及び再処理施設の外部電源における 送電鉄塔基礎の安定性評価について(平成24年2月17日,中国電力株式会社)」)

(3) 送電鉄塔基礎安定性評価の追加実施

経済産業省原子力安全・保安院指示文書「原子力発電所の外部電源の信頼性確保について(指示)」(平成23・04・15原院第3号)に基づく調査以降に,鉄塔移設等により新たに対象となった2基についても同様の手法により評価し,鉄塔基礎の安定性に影響がないことを確認した。

評価追加実施鉄塔を表 3-4 に, 追加実施した基礎の安定性評価結果を表 3-5 に示す。

評価対象追加鉄塔	工事概要	
66kV 鹿島支線№.2-1	発電所構内「第2-66kV 開閉所」設置に伴う鉄塔の追	
	加(平成 26 年 5 月運転開始)	
500kV 島根原子力幹線No.2	発電所構内「敷地造成」に支障となる鉄塔の移設	
	(平成 29 年 4 月運転開始)	

表 3-4 評価追加実施鉄塔

表 3-5 追加実施した基礎の安定性評価結果

線路名	鉄塔	鉄塔 現地踏査基数			対策工事等
	基数	盛土	地すべり	急傾斜地	対応必要基数
66kV 鹿島支線	1 基	1 基	0 基	1 基	0 基
500kV 島根原子幹線	1 基	0 基	0 基	1 基	0 基
2線路	2 基	1 基	0 基	2 基	0 基

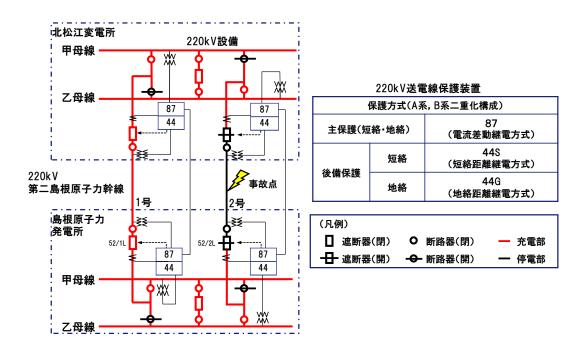
3.1.3.3 送電線の強風対策

送電線の強風対策については、電気設備技術基準に基づき、風速 40m/s の 風圧荷重、各種想定荷重に対し、強度を有する設計とする。

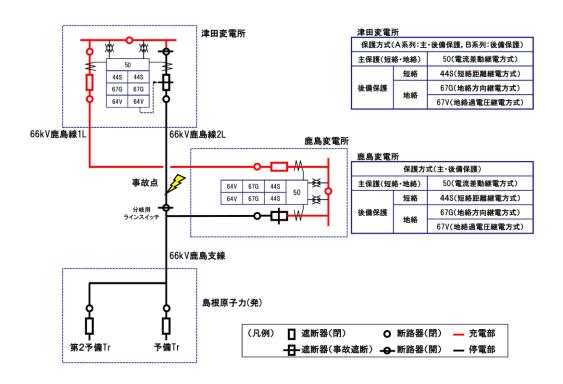
過去の大型台風による鉄塔損壊事故等を踏まえた国の検討結果や民間規格 (送電用支持物設計標準「JEC-127」,架空送電規程「JEAC60 01」)に基づき,送電線施設箇所の気象条件や地形条件等を考慮した設計 とする。

また、送電線の着氷雪対策についても、電気設備技術基準に適合するとともに、送電用支持物設計標準「JEC-127」に基づいた設計とする他、架渉線への着氷雪対策として難着雪リング等が設置されている。

3.1.4 機器の損壊,故障その他の異常の検知と拡大防止


送電線は、各保護対象設備に応じた保護継電器を設ける設計とする。表 3-6 に 故障要因、検知する保護継電器及び異常の拡大防止のために動作する遮断器を示 す。また、主な保護の概要を図 3-9 に示す。

異常を検知した場合は、送電線の引込部に設置するガス絶縁開閉装置又はガス 絶縁複合開閉装置の遮断器が自動的に開放されることにより、故障等の拡大を防 止する設計とする。


送電線は、重要安全施設の機能を維持するために必要となる電力の供給が停止することがないよう、多重化した設計とし、1 系統の故障が発生した場合、遮断器にて系統分離が可能な設計とする。

設備名	故障要因	保護継電器	動作する遮断器	
	短絡•地絡	電流差動継電器 (87)	52/1L, 52/2L (線路用 220kV 遮断器)	
220kV 送電線	短絡	短絡距離継電器 (44S)		
	地絡	地絡距離継電器 (44G)		
	短絡•地絡	回線選択継電器 (50)		
CC1 以 >	短絡	短絡距離継電器 (44S)		
66kV 送電線	地絡	地絡方向継電器 (67G)	_	
		地絡過電圧継電器 (64V)		

表 3-6 保護継電装置の機能について

(a) 220kV 第二島根原子力幹線 2 号故障時 図 3-9 送電線保護装置 (1/2)

(b) 66kV 鹿島支線故障時

図 3-9 送電線保護装置 (2/2)

3.1.5 1相の電路の開放に対する検知及び電力の安定性回復

外部電源に直接接続している変圧器の一次側において 3 相のうちの 1 相の電路の開放が生じた場合にあっては、安全施設への電力の供給が不安定になったことを検知し、故障箇所の隔離又は非常用母線の受電切替その他の異常の拡大を防止する対策(手動操作による対策を含む。)を行うことによって、安全施設への電力の供給が停止することがないように、電力供給の安定性を回復できる設計とする。

220kV 送電線において、3 相のうち 1 相の電路の開放が生じた場合、電力送電時においては、送電線保護装置による 3 相の電流不平衡監視にて常時自動検知できる設計とする。さらに保安規定に定めている巡視点検を加えることで、保護装置による検知が期待できない場合の 1 相開放故障の発見や、その兆候を早期に発見できる可能性を高めることとしている。

66kV 送電線で 1 相開放故障が発生した状況においては,各相の不足電圧継電器に て常時自動検知できる設計とする。さらに保安規定に定めている巡視点検を加える ことで,保護継電器による検知が期待できない場合の 1 相開放故障や,その兆候を早 期に検知できる設計とする。

また,220kV 送電線は多重化した設計であるため,1回線で1相の開放故障が発生 した場合においても,残りの健全な回線で正常な電力が供給可能であり,安全施設へ の電力の供給が不安定になることはない。

保安規定により,送電線の故障発生時の対応として,外部電源数の運用上の制限等 について定め管理する。

3.2 発電機に関する設計

3.2.1 機器の損壊,故障その他の異常の検知と拡大防止

発電機は、機器の損壊、故障その他の異常を検知するため、保護対象設備に応じた保護継電器を設ける設計とする。表 3-7 に故障要因、検知する保護継電器及び異常の拡大防止のために動作する遮断器を示す。また、主な保護の概要を図 3-10 に示す。

設備名	故障要因	保護継電器	動作する遮断器
	短絡, 地絡	発電機比率差動継 電器(87)	52/2M, 52H
	逆相,不平衡電流	発電機逆相過電流 継電器(46)	
	界磁喪失	発電機界磁喪失継 電器(40)	
発電機	地絡	発電機接地過電圧 継電器(64)	
	事故後継続分離	距離継電器(44)	
	電力方向,地絡方向	発電機逆電力継電器 (67)	
	過励磁	低周波過励磁継電器(V/F)	

表 3-7 保護継電装置の機能について

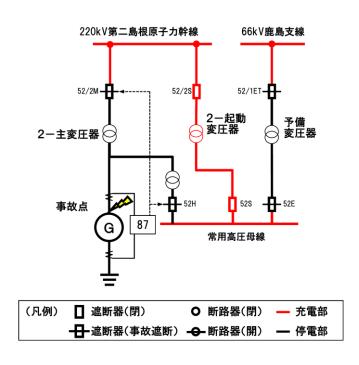


図 3-10 発電機保護

3.2.2 電気設備の異常の予防等に関する設計事項

発電機は、原子力発電工作物に係る電気設備に関する技術基準を準用する設計とし、電気学会電気規格調査会にて定められた規格(JEC)等で定められた適切な仕様のものを設置し、具体的には以下の設計とする。

(1) 感電,火災等の防止

感電,火災等の防止のため,発電機及び電路は,充電部分が筐体内に内包され, 露出箇所がない設計とする。 電路の絶縁のため、発電機の電路は、相分離母線構造を採用し、大地から絶縁 する設計とする。

電線の接続箇所は、端子台等により接続することで電気抵抗を増加させないと ともに、絶縁性能の低下及び期待される使用状態において断線のおそれがない設計とする。

発電機の冷却方法は固定子コイルを水冷却,回転子コイルを水素直接冷却する 設計とし,「JEC-114」に規定する熱的強度に適合する設計とする。

発電機あるいは発電機の鉄台等の接地及び接地の方法については、A 種接地工事等適切な接地工事を施す設計とする。

取扱者以外の者が容易に立入らないよう,発電所の周りには,フェンスを設ける設計とする。

(2) 異常の予防及び保護対策

異常の予防及び保護対策のため、過電流を保護継電器にて検出し、遮断器を開放する設計とし、その作動に伴い動作する遮断器の開放状態を表示する装置を有する設計とする。

また、地絡が発生した場合に発電機を電路から遮断するための遮断器を施設する設計とする。

(3) 電気的,磁気的障害の防止

閉鎖構造(金属製の筐体),接地の実施等により,電気設備その他の物件の機能に電気的又は磁気的な障害を与えない設計とする。

(4) 高圧ガス等による危険の防止

発電機は、水素の漏えい又は空気が混入するおそれのないよう、全閉自己通風 方式を採用し、空気と接触する可能性がある軸封部には密封油装置による密封機 構を設ける設計とする。また、設備の点検等の作業のために水素ガスを安全に放 出できる設計とする。

軸封部から水素が漏えいした場合には、置換ガスとして軸封部に窒素ガスを封入することができる装置を設ける設計とする。また、水素が大気圧で爆発する場合に生じる圧力に耐える強度を有する設計とする。

発電機内の水素の純度,圧力及び温度を計測し,異常を検知した場合は警報を 発信する設計とする。

(5) 供給支障の防止

発電機に過電流等の異常が生じた場合、自動的に発電機を電路から遮断するため遮断器を設ける設計とする。発電機は、短絡電流及び非常調速装置が動作した際に達する回転速度に対して、十分な機械的強度を有する設計とする。また、発電機は、軸受又は軸に発生しうる最大の振動に対して構造上十分な機械的強度を有した設計とする。

発電所には発電機の運転に必要な知識を有する者が常時駐在することにより, 常時監視しない発電所は施設しない設計とする。

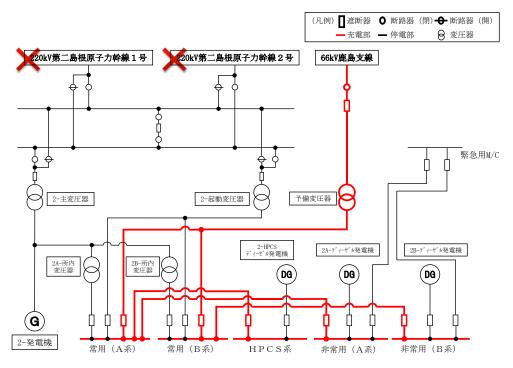
- 3.3 ガス絶縁開閉装置及び変圧器等に関する設計
 - 3.3.1 発電用原子炉施設の電力供給確保
 - 3.3.1.1 2回線喪失時の電力供給継続

220kV 送電線 2 回線は,220kV ガス絶縁開閉装置と連系し,起動変圧器を介して電力を島根原子力発電所へ供給する設計とする。

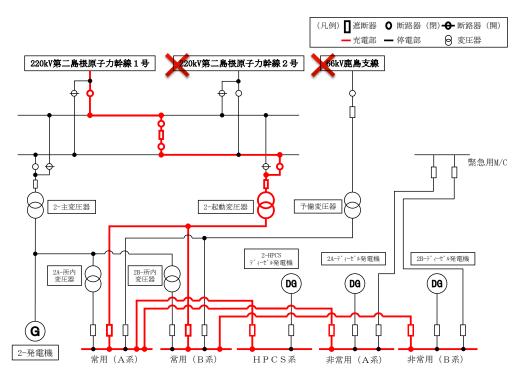
66kV 送電線 1 回線は,66kV ガス絶縁複合開閉装置と連系し,予備変圧器を介して接続し、電力を島根原子力発電所へ供給する設計とする。

ガス絶縁開閉装置及びガス絶縁複合開閉装置は、遮断器を含んでおり、これらの多重化した電力系統は、遮断器の開閉操作により系統切替又は隔離を行うことが可能な設計とし、外部電源のいずれの2回線が喪失しても、発電用原子炉施設が外部電源喪失に至らない設計とする。

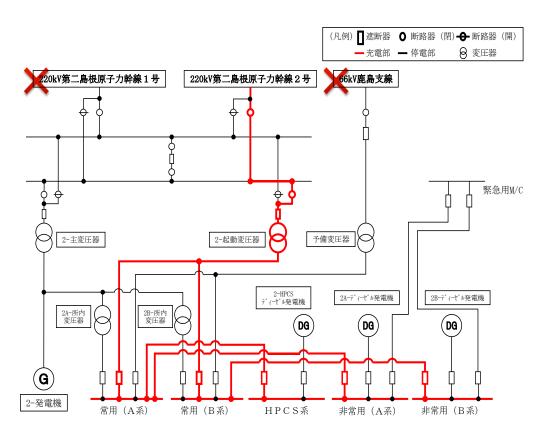
これらの詳細な系統を,添付図面「第 1-4-1 図 単線結線図(その 1)交流電源」に示す。また,ガス絶縁開閉装置等を設置する 220kV 開閉所,ガス 絶縁複合開閉装置を設置する 66kV 開閉所(屋内)の外観を図 3-11 に示し,2 回線喪失時における電力供給の継続について非常用母線への供給を例に図 3-12 に示す。



(a) 220kV 開閉所



(b) 66kV 開閉所 (屋内)


図 3-11 開閉所の外観

(a) 220kV 第二島根原子力幹線 2 回線停電時

(b) 220kV 第二島根原子力幹線 2 号及び 66kV 鹿島支線停電時 図 3-12 2 回線電源喪失時の電源供給例 (1/2)

(c) 220kV 第二島根原子力幹線 1 号及び 66kV 鹿島支線停電時 図 3-12 2 回線電源喪失時の電源供給例 (2/2)

3.3.1.2 開閉所等の基礎

220kV 開閉所及び 66kV 開閉所から発電機側の送受電設備であるガス絶縁開閉装置,ガス絶縁複合開閉装置,主変圧器,起動変圧器,予備変圧器及びケーブル洞道は,不等沈下又は傾斜等が起きないよう十分な支持性能を持つ地盤に設置する設計とする。

220kV 開閉所に設置されているガス絶縁開閉装置は直接基礎構造とし, 1.0 Ciの地震力に対し十分な支持性能を確保した設計とする。

66kV 開閉所に設置されているガス絶縁複合開閉装置及び予備変圧器は直接基礎構造とし,1.0 C i の地震力に対し十分な支持性能を確保した設計とする。

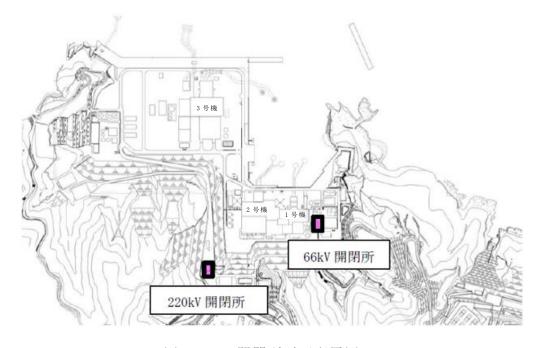
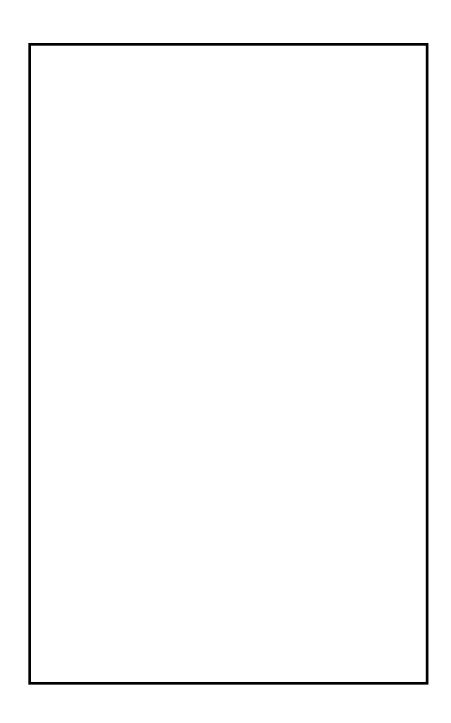
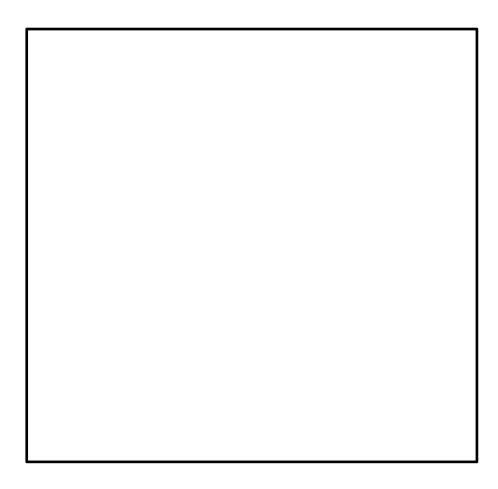
開閉所平面配置図を図3-13に、開閉所基礎図を図3-14に示す。

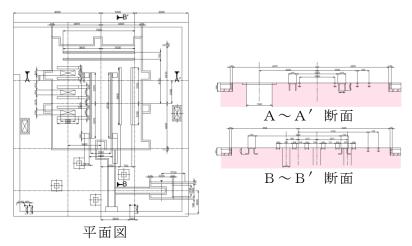
主変圧器,起動変圧器の基礎は,タービン室基礎屋上とし,1.0Ciの地震力に対し十分な支持性能を確保した設計とする。予備変圧器の基礎は,杭基礎構造とし,1.0Ciの地震力に対し十分な支持性能を確保した設計とする。

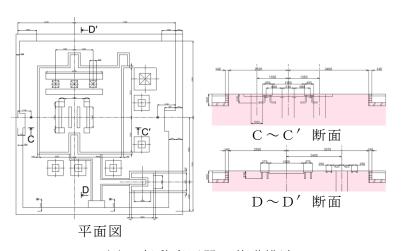
各種変圧器の基礎構造図を図3-15に示す。

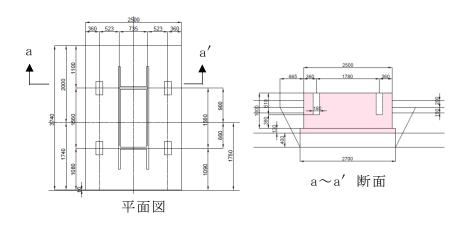
ケーブル洞道は,220kV 開閉所から主変圧器及び起動変圧器までを連絡している。基礎は直接基礎構造とし,1.0Ciの地震力に対し十分な支持性能を確保した設計とする。

ケーブル洞道平面図を図 3-16 に、ケーブル洞道基礎構造図を図 3-17 に示す。ケーブル洞道は開閉所から建物基礎部のダクトに連結されるまでを示しており、220kV 0F ケーブルは主変圧器及び起動変圧器に接続されている。


図 3-13 開閉所平面配置図

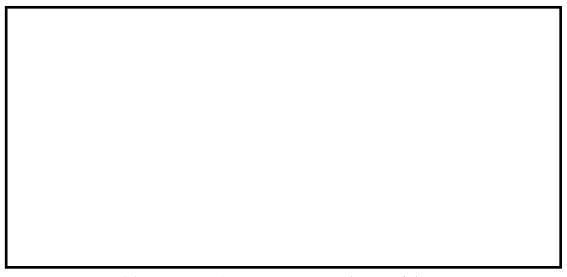

(a) 220kV 開閉所基礎構造図 図 3-14 開閉所基礎図 (1/2)


(b) 66kV 開閉所基礎構造図 図 3-14 開閉所基礎図 (2/2)

(a) 主変圧器の基礎構造

(b) 起動変圧器の基礎構造

(c) 予備変圧器の基礎構造 図 3-15 各種変圧器の基礎構造図

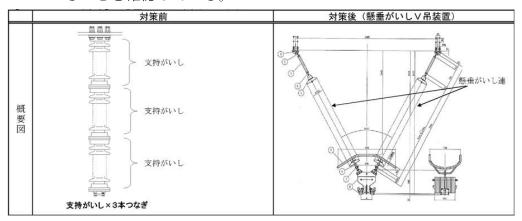

図 3-16 ケーブル洞道平面図

(a) 220kV 開閉所〜埋設エリア (岩盤部) ケーブル洞道位置図・断面図

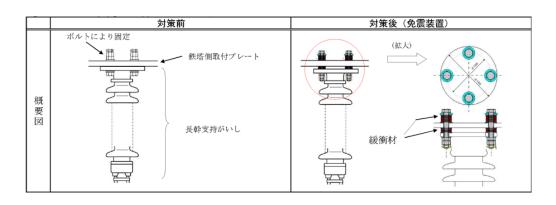
(b) 220kV 開閉所~法面小段エリア ケーブル洞道位置図・断面図 図 3-17 ケーブル洞道基礎構造図 (1/2)

(c) 220kV 開閉所~埋設エリア(埋戻土部)ケーブル洞道位置図・断面図図 3-17 ケーブル洞道基礎構造図(2/2)

3.3.1.3 碍子及び遮断器等の耐震性


220kV 開閉所及び 66kV 開閉所から発電機側の送受電設備は耐震性の高い ものを使用する。

220kV 第二島根原子力幹線の碍子については、長幹支持碍子に比べ、可と う性のある懸垂碍子を使用する。


66kV 鹿島線・鹿島支線の長幹支持碍子については,鉄塔と支持碍子の間に 免震金具を取り付け,耐震性を強化している。

長幹支持碍子及び懸垂碍子の外観並びに免震金具について図 3-18 に示す。 遮断器等は、気中遮断器に比べ、重心が低く耐震性の高いガス絶縁開閉装 置又はガス絶縁複合開閉装置を使用する。

なお、220kV 開閉所の送電線上流側接続先である中国電力ネットワーク株式会社北松江変電所までの碍子について長幹支持碍子が使用されていないことを確認しており、66kV 開閉所の送電線上流接続先である中国電力ネットワーク株式会社津田変電所までの碍子については、免震金具を耐震対策としていることを確認している。

(a) 220kV 第二島根原子力幹線の対策

(b) 66kV 鹿島線・鹿島支線の対策

図 3-18 長幹支持碍子及び懸垂碍子の外観並びに免震金具の例

3.3.1.4 碍子及び遮断器等への津波の影響

碍子及び遮断器等は、基準津波の影響を受けない敷地高さとなる 220kV 開閉所及び 66kV 開閉所に設置する。

なお,2号機の外部電源受電用の起動変圧器は,EL8.5mの高さに設置されているが,前面海域に EL15mの防波壁及び変圧器の周囲に EL15mの防水壁で防護している。

基準津波による発電所周辺の最高水位分布を図3-19に示す。

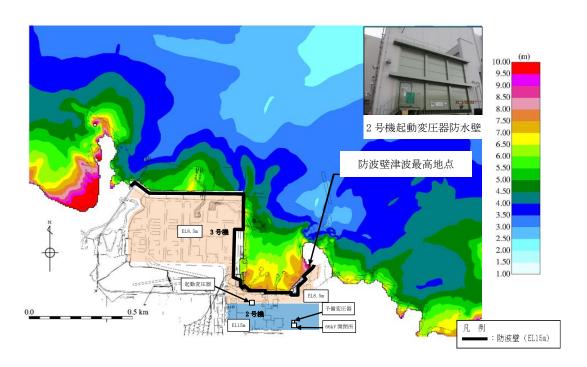
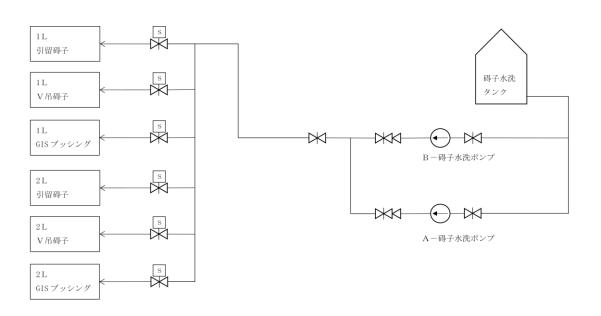
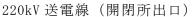



図 3-19 基準津波の最高水位分布

3.3.1.5 碍子及び遮断器等の塩害対策

220kV 送電線及び 66kV 送電線引留部の碍子に対しては,塩分等が碍子表面に付着することにより絶縁性能が著しく低下することを防止するため,活線状態で洗浄を実施できる碍子洗浄装置を設置する。碍子洗浄装置の系統及び外観を図 3-20,図 3-21 に示す。

遮断器等の塩害対策としては、電路がタンクに内包されているガス絶縁開 閉装置を採用する又は屋内に設置する。



(a) 220kV 送電線引留部の碍子

(b) 66kV 送電線引留部の碍子 図 3-20 碍子洗浄装置の系統

66kV 送電線 (開閉所出口)

図 3-21 碍子洗浄装置外観

3.3.2 機器の損壊、故障その他の異常の検知と拡大防止

保安電源設備は、機器の損壊、故障その他の異常を検知するため、変圧器、母線等の各保護対象設備に応じた保護継電器を設ける設計とする。表 3-8 に故障要因、検知する保護継電器及び異常の拡大防止のために動作する遮断器を示す。また、主な保護の概要を図 3-22、図 3-23 に示す。

ガス絶縁開閉装置の遮断器は、送電線の引込口及び主変圧器、起動変圧器とガス絶縁開閉装置の区分箇所に設置し、メタルクラッド開閉装置の遮断器は、各変圧器の受電口、各母線間の区分箇所及び各負荷への送電口に設置する設計とする。

保安電源設備は,重要安全施設の機能を維持するために必要となる電力の供給 が停止することがないよう,母線,変圧器のそれぞれを多重化し,1 系統の故障 が発生した場合,遮断器にて系統分離が可能な設計とする。

モニタリングポスト用発電機(1号機設備、1,2,3号機共用)及びモニタリングポスト用無停電電源装置(1号機設備、1,2,3号機共用)は、機器の過電流を検知し、機関及び装置を停止し故障箇所を隔離することによって、故障による影響を局所化できるとともに、他の安全機能へ影響のない設計とする。

表 3-8 保護継電装置の機能について

次 0 0 体 6 極 电表 色 ツ 1 機 化 に フ			
設備名	故障要因	保護継電器	動作する 遮断器
主変圧器	短絡,地絡	比率差動継電器 (87)	52/2M, 52H
所内変圧器	短絡,地絡	比率差動継電器 (87)	52/2M, 52H
	過電流	過電流継電器 (51)	
起動変圧器	短絡,地絡	比率差動継電器 (87)	52/2S, 52S
	過電流	過電流継電器 (51)	
予備変圧器	短絡,地絡	比率差動継電器 (87)	52/1ET, 52E
	過電流	過電流継電器 (51)	
220kV 母線	短絡,地絡	比率差動継電器 (87)	52/1L, 52/2L, 52/B, 52/1MS, 52/2M, 52/2S, 52/3AT

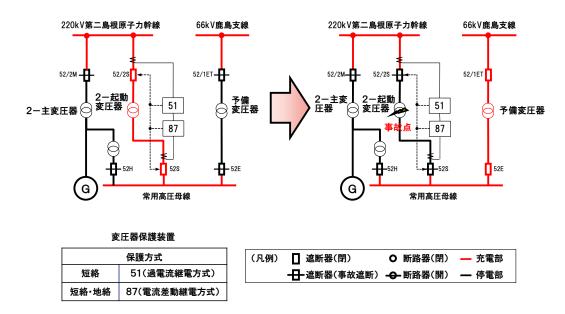
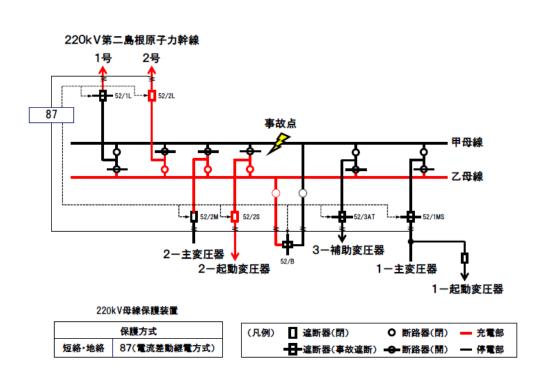



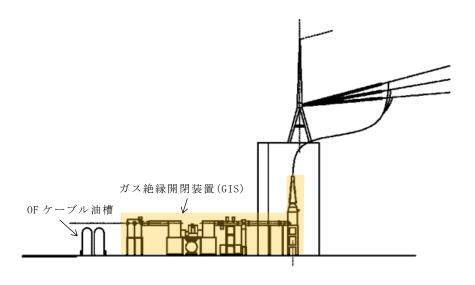
図 3-22 変圧器保護 (起動変圧器故障時)

220kV 開閉所甲母線故障時 図 3-23 母線保護

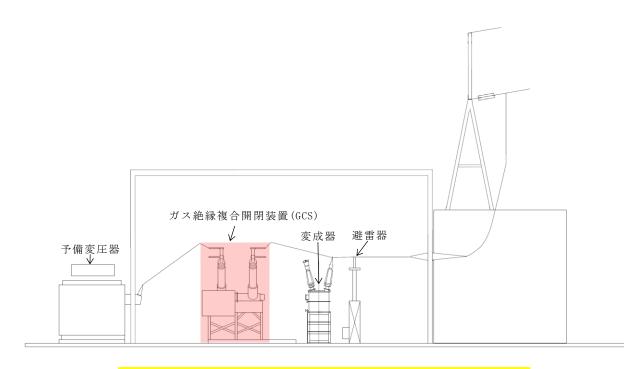
3.3.3 1相の電路の開放に対する検知及び電力の安定性回復

外部電源に直接接続する変圧器として,起動変圧器及び予備変圧器を設置する 設計とする。変圧器の一次側において3相のうちの1相の電路の開放が生じ,安 全施設への電力の供給が不安定になった場合においては,自動(地絡や過電流に よる保護継電器の動作により)又は手動で,故障箇所の隔離又は非常用母線の健 全な電源からの受電切替が行われることにより,安全施設への電力供給の安定性 を回復できる設計とする。

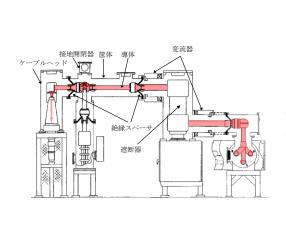
220kV 送電線の引込口から起動変圧器一次側は、電路が露出せず接地された筐体内に内包する設計とする。また、66kV 送電線の引込口から予備変圧器一次側については、気中に露出した電路を有する設計とする。

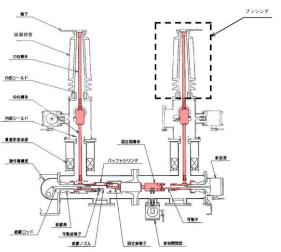

起動変圧器は、変圧器一次側の接続部位に架線の碍子を用いず、接地された筐体内に設置するとともに、断線が発生しにくい設計とする。また、予備変圧器一次側の架線は屋内に設置する設計とする。

遮断器等はガス絶縁開閉装置を採用し、導体を気中部に露出させず、接地された筐体内に内包する設計とする。また、絶縁スペーサで導体を支持する構造とし、導体の断線が発生しにくい構造とする。また、予備変圧器一次側はガス絶縁複合開閉装置を採用し、ガス絶縁開閉装置同様ブッシングを通じて気中部と接続する設計とする。ブッシングは磁器碍管に導体が収納された構造とし、導体の損壊は磁器碍管の損壊がない限り考えにくい。ガス絶縁開閉装置、ガス絶縁複合開閉装置の外観及び内部構造概要図を図 3-24、図 3-25 に示す。


変圧器の内部において断線した場合,アークの発生により接地された筐体を通じ地絡が生じることで,中性点過電流継電器(51G)あるいは比率差動継電器(87)が動作する等,保護継電器にて異常の検知が可能な設計とする。異常を検知した場合は,遮断器の自動動作により故障箇所が隔離され,非常用母線への供給は,自動的に健全な電源からの受電へ切り替わることができるインターロック回路を有する設計とする。

ガス絶縁開閉装置において断線が発生した場合,アークの発生により接地された筐体を通じ地絡が生じることで,中性点過電流継電器(51G)あるいは比率差動継電器(87)が動作する等,保護継電器にて異常の検知が可能な設計とする。


ガス絶縁複合開閉装置において磁器碍管損壊による故障が発生した場合,導体と筐体間で地絡が生じることで,過電流継電器(51)あるいは比率差動継電器(87)が動作する等,保護継電器にて異常の検知が可能な設計とする。電路の開放故障を検知した場合は,遮断器の自動動作により故障箇所が隔離され,非常用母線への供給は,自動的に健全な電源からの受電へ切り替わることができるインターロック回路を有する設計とする。



(a) 220kV 系統イメージ図(引留鉄構からガス絶縁開閉装置まで)

(b) 66kV 系統イメージ図 (引留鉄構から予備変圧器まで) 図 3-24 各設備の外観

(a) 220kV ガス絶縁開閉装置

(b) 66kV ガス絶縁複合開閉装置

図 3-25 ガス絶縁開閉装置及びガス絶縁複合開閉装置の内部構造概要図

3.3.4 電気設備の異常の予防等に関する設計事項

特別高圧設備は、原子力発電工作物に係る電気設備に関する技術基準を準用する設計とし、電気学会電気規格調査会にて定められた規格(JEC)等で定められた適切な仕様のものを設置し、具体的には以下の設計とする。

(1) 感電,火災等の防止

感電,火災等の防止のため,ガス絶縁開閉装置,変圧器及び電路等の特別高圧 設備は,充電部分が筐体内に内包され,充電部分に容易に接触できない設計とす る。

電路の絶縁のため、変圧器内の電路は、絶縁油内に設置する設計とし、ガス絶縁開閉装置及びガス絶縁複合開閉装置内の電路は、SF6 ガスを充てんしたタンク内に設置することで、電路の絶縁を確保する設計とし、「JEC-204」、「JEC-181」等に規定する耐電圧試験により絶縁耐力が確保された設計とする。

電線の接続箇所は、端子台等により接続することで電気抵抗を増加させないとともに、絶縁性能の低下及び期待される使用状態において断線のおそれがない設計とする。「JEC-204」、「JEC-181」等に規定する熱的強度に適合する設計とする。

電気機械器具の危険防止のため、特別高圧の遮断器は、火災のおそれがないよう、閉鎖された金属製の外箱に収納し、隔離する設計とする。

電気設備の接地及び接地の方法については、A 種接地工事等適切な接地工事を 施す設計とする。

また,取扱者以外の者が容易に立入らないよう,発電所及び特別高圧設備の周りには,フェンスを設ける設計とする。

(2) 異常の予防及び保護対策

異常の予防及び保護対策のため、過電流を保護継電器にて検出し、遮断器を開放する設計とし、その作動に伴い動作する遮断器の開放状態を表示する装置を有する設計とする。また、地絡が発生した場合に開放するよう、発電所の送電線引出口に遮断器を施設する設計とする。

変圧器によって特別高圧電路に結合される高圧電路の母線には,特別高圧の電 圧の侵入による高圧側の電気設備の損傷,感電又は火災のおそれがないよう,避 電器を施設する設計とする。

(3) 電気的,磁気的障害の防止

閉鎖構造(金属製の筐体),接地の実施などにより,電気設備その他の物件の機能に電気的又は磁気的な障害を与えない設計とする。

(4) 高圧ガス等による危険の防止

ガス絶縁開閉装置に使用するガスは、可燃性、腐食性及び有毒性のない SF6 ガスを使用する設計とする。ガスの圧力低下により絶縁破壊を生じるおそれのあるものは、絶縁ガスの圧力低下を警報する装置を設ける設計とする。

開閉器又は断路器の動作に使用する圧縮空気装置は最高使用圧力に耐え,かつ,漏えいがなく,異常な圧力を検知するとともに,圧力が上昇した場合に最高使用 圧力に到達する前に圧力を低下させ,空気タンクの圧力が低下した場合に圧力を 自動的に回復できる機能を有し,空気タンクは耐食性を有する設計とする。

(5) 供給支障の防止

変圧器は、内部故障を検知し動作する保護装置を施設し、検知した場合、自動 遮断及び警報を発報する設計とする。

なお,変圧器の冷却ファンの故障等が発生し変圧器温度が著しく上昇した場合は,警報を発報する設計とする。

発電所には特別高圧設備の運転に必要な知識及び技能を有する者が常時駐在することにより、常時監視しない発電所は施設しない設計とする。

3.4 所内電源設備に関する設計

- 3.4.1 機器の損壊,故障その他の異常の検知と拡大防止
 - (1) 所内高圧系統及び所内低圧系統

発電機からの発生電圧(15.5kV)は主変圧器にて220kV へ昇圧されガス絶縁開閉装置を介し送電されるとともに,所内変圧器にて6.9kV へ降圧し,所内高圧系統として常用高圧母線(2A,2B:メタルクラッド開閉装置で構成)へ給電する。常用高圧母線及び所内低圧系統として常用低圧母線(2A1,2A2,2B1,2B2:ロードセンタ及びコントロールセンタで構成)の構成に関して,添付図面「第1-4-1図 単線結線図(その1)交流電源」に示す。

常用高圧母線は、2 母線で構成し、通常運転時に必要な負荷を各母線に振り分け給電する。また、常用高圧母線から動力変圧器を通して降圧し、常用低圧母線へ給電する。過電流等の故障が発生した際、故障箇所を隔離できる設計とし、故障による影響が母線全体に波及することなく局所化できるとともに、他の安全施設への影響を限定できるように、高圧及び低圧母線は、母線から各負荷への引出口に開閉装置を設ける設計とする。

(2) 直流電源設備

直流電源設備の構成に関して、図 3-26「直流電源単線結線図」に示すように、非常用として直流 115V 3 系統(区分 I の A-115V 系、区分 II の B-115V 系、B1-115V 系、区分 II の高圧炉心スプレイ系)、直流 230V 1 系統(区分 II の 230V 系 (RCIC))及び直流 24V 2 系統(区分 I の A-原子炉中性子計装用及び区分 II の B-原子炉中性子計装用)の蓄電池、充電器、直流盤等で構成する。また、常用として直流 230V 1 系統(230V 系 (常用))の蓄電池、充電器、直流母線等で構成する。常用の直流電源設備は、非常用軸受油ポンプ、非常用密封油ポンプ、給水ポンプ・タービン非常用油ポンプ等へ給電する設計とする。また、必要箇所には配線用遮断器を設置し、異常の拡大防止を行う設計とする。

(3) 計測制御用電源設備

常用の計測制御用電源設備は、図 3-27「計測制御用電源設備単線結線図」に示すように、一般計装母線 1 母線及び計算機用無停電交流電源装置で構成する。母線電圧は 105V 及び 210V である。また、必要箇所には配線用遮断器を設置し、異常の拡大防止を行う設計とする。

(4) ケーブル

常用電源設備の動力回路のケーブルは、許容電流を考慮したケーブルサイズを選定する等、負荷の容量に応じたケーブルを使用する。また、動力回路、制御回路、計装回路のケーブルは、それぞれ相互に分離したケーブルトレイ、電線管を使用して敷設する。

また、ケーブルは、補機や電路での過電流や地絡による損傷、感電、火災等の発生を防止できるよう遮断器等に接続し、遮断器等の端子部との接続については、ネジ止め等により電気抵抗を増加させない設計とする。

3.4.2 電気設備の異常の予防等に関する設計事項

所内電源設備は、原子力発電工作物に係る電気設備に関する技術基準を準用する設計とし、電気学会電気規格調査会にて定められた規格(JEC)等で定められた適切な仕様のものを設置し、具体的には以下の設計とする。

(1) 感電,火災等の防止

感電,火災等の防止のため,電線路等その他の所内電源設備は,電線の接続

箇所において電線の電気抵抗を増加させないようネジ止め等により接続する 設計とし、絶縁性能の低下及び期待される使用状態において断線のおそれが ない設計とする。所内電源設備に属する電路の接続箇所等は、筐体内やアクリ ルカバー等により充電部分に容易に接触できない設計とする。熱的強度につ いては、期待される使用状態において、その電気機械器具に発生する熱に耐え る設計とする。必要箇所には、異常時の電圧上昇等による影響を及ぼさないよ う適切な接地を施す設計とする。

取扱者以外の者が容易に立入らないよう,発電所の周囲にはフェンス等を 設ける設計とし,各電源設備の操作,点検等のために使用する扉等は施錠でき る設計とする。

(2) 異常の予防及び保護対策

高圧電路と低圧電路とを結合する動力変圧器は,異常の予防及び保護対策 のため,電気設備の損傷,感電又は火災のおそれがないよう,接地を施す設計 とする。

所内電源設備から電力供給を行う各補機には、過電流を検知できるよう保護継電器を設置し、過電流を検出した場合は、自動的に遮断器を開放する設計とすることにより、電気機械器具の損傷並びに火災の発生を防止する設計とする。

(3) 電気的,磁気的障害の防止

閉鎖構造(金属製の筐体),接地の実施等により,電気設備その他の物件の機能に電気的又は磁気的な障害を与えない設計とする。

(4) 供給支障の防止

発電所構内に,所内電源設備の運転に必要な知識を有する者が常時駐在することにより,常時監視しない発電所は施設しない設計とする。

S2 補 VI-1-9-2-1 R0

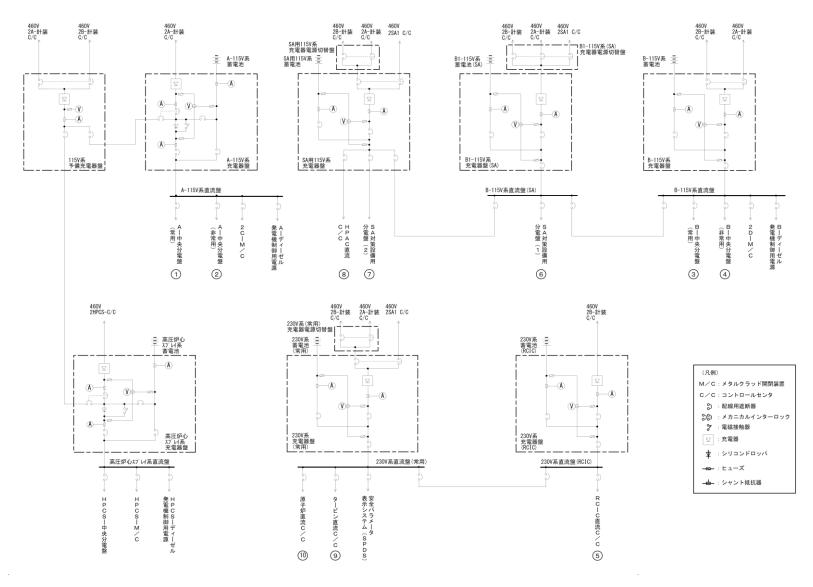
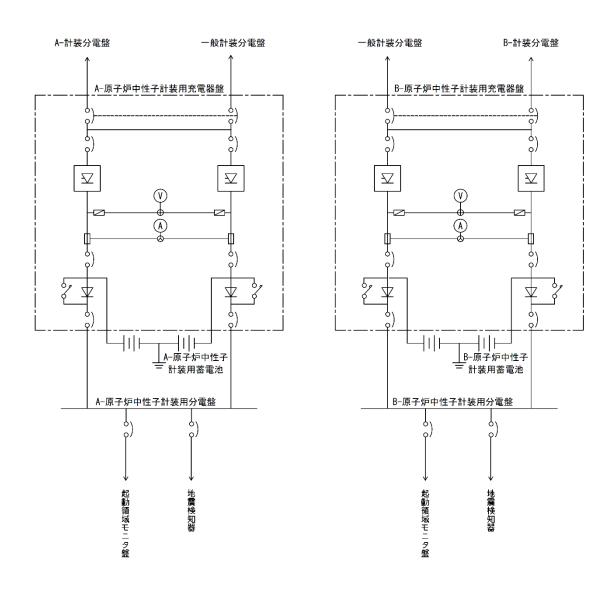



図 3-26 直流電源単線結線図 (1/2)

表 3-9 直流電源単線結線図 (1/2) 負荷リスト

供給元	負荷
① A-中央分電盤(常用)	・計装設備等
② A-中央分電盤(非常用)	・ATWS緩和設備(代替制御棒挿入機能)・ATWS緩和設備(代替原子炉再循環ポンプトリップ機能)・代替自動減圧ロジック(代替自動減圧機能)・計装設備等
③ B-中央分電盤(常用)	• 計装設備 等
④ B-中央分電盤(非常用)	・ATWS緩和設備(代替制御棒挿入機能)・ATWS緩和設備(代替原子炉再循環ポンプトリップ機能)・代替自動減圧ロジック(代替自動減圧機能)・計装設備等
⑤ RCIC 直流 C/C	・RCIC タービン真空ポンプ ・RCIC タービン復水ポンプ 等
⑥ SA 対策設備用分電盤 (1)	• 計装設備 等
⑦ SA 対策設備用分電盤 (2)	・計装設備等
⑧ HPAC 直流 C/C	・HPAC 注水弁 ・RCIC HPAC タービン蒸気入口弁 等
⑨ タービン直流 C/C	・非常用軸受油ポンプ・非常用密封油ポンプ・給水ポンプ・タービン非常用油ポンプ 等
⑩ 原子炉直流 C/C	・A-再循環ポンプ MG セット非常用潤滑油ポンプ ・B-再循環ポンプ MG セット非常用潤滑油ポンプ 等

注: C/C はコントロールセンタの略称

(凡例)

C/C:コントロールセンタ

c) : 配線用遮断器

%:電磁接触器

३冷 :メカニカルインターロック

☑ :充電器

車 :シリコンドロッパ

-ns- :ヒューズ

由 : シャント抵抗器

図 3-26 直流電源単線結線図 (2/2)

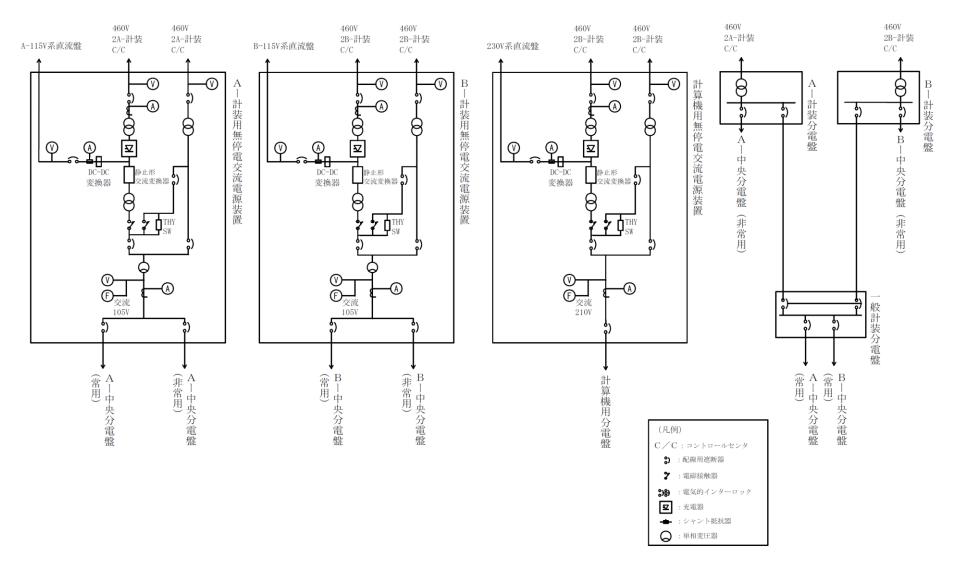


図 3-27 計測制御用電源設備単線結線図