2022.5.11 日本原子力研究開発機構 大洗研究所 高速実験炉部

即発臨界超過からプラグ間隙を通したナトリウム漏洩に至る事象の 簡易評価に関する検討

0. はじめに

「常陽」のULOF 事象での①即発臨界超過による熱エネルギー発生から、②炉心物質の 膨張とUCS(炉心上部構造)を通した流出、③上部プレナム下部でのFCI と CDA 気泡の 成長による機械的エネルギー発生、④カバーガスの圧縮による圧力上昇、⑤遮へいプラグ の間隙を通したナトリウム漏洩、までの一連の現象を簡易的な手法で解析し、SIMMER な どの解析コードによる解析結果の妥当性を確認することに関する検討を行った。

基本的には①から⑤までの現象について各段階での簡易評価を行うことで、これに対応 する SIMMER による解析結果の妥当性を確認する方針とした。これは解析コードを用い た評価における基本方針、即ち ULOF 事象のような BDBA については、最確評価を基本 として不確かさが大きい(かつ影響の大きい)現象の不確かさの影響評価を行うものの、 不確かさの重ね合わせは行わないとの方針を、簡易的な手法についても適用するべきと考 えるためである。特に、簡易モデルを用いた解析ではその保守性を担保するために、解析 コードによる解析よりも大きな不確かさを想定する必要があり、①から⑤の一連の現象に ついて、その前の現象の簡易解析の結果を受け継ぐ方法で解析を実施すると、大きな不確 かさを重ね合わせることになることに留意する必要がある。

1. ①即発臨界超過による熱エネルギー発生

炉心物質のスロッシング挙動モデルから評価される反応度挿入率を用いて、一点炉動特 性近似モデルと炉心物質の組成の空間分布等を考慮した各種の反応度フィードバック挙 動によって発生エネルギーを評価し、SIMMERコードによる発生エネルギーの妥当性を確 認するとの方針が適切と考えられる。この場合は、簡易モデルで考慮可能な反応度フィー トバック機構と物理状況を考慮した上で、簡易モデルによる解析結果と解析コードによる 結果解析を比較検討し、解析コードによる結果の妥当性を議論することとなる。

2. ②炉心物質の膨張と UCS を通した流出、および③上部プレナム下部での FCI による機 械的エネルギー発生

ここでは、SIMMER による即発臨界超過による出力逸走の解析で発生した熱エネルギー

が最も大きなケースである、不確かさ影響評価ケース2の炉心状態に基づいて簡易モデル による解析を行い、SIMMER によって解析された機械的エネルギーの妥当性を確認する。 ②の時間スケールはおおよそ数 10ms であり、その初期の数 ms の時間スケールでは、炉 心内での温度分布及び燃料蒸気圧分布による炉心内の圧力勾配による炉心内の急速な撹 拌、均温化、溶融燃料から溶融スティールへの伝熱が生じる。 ここでは簡易モデルという ことで、温度や物質の分布を考慮せず炉心と UCS を一点で近似する。炉心を高温の炉心 物質 (燃料とスティール)がある体積割合で均一に混合した領域、UCS は圧損を与えてそ こを通過する物質から伝熱を受ける一点のノードとして扱い、上部プレナムに流出する炉 心物質の質量と温度を求める。

まず、実際の SIMMER-IV 解析における炉心の状態変化を調査した結果を第1図~第5 図に示す。これらのグラフは SIMMER-IV による PDE 解析結果の炉心内状態の平均物理 量を求める後処理ツール (BFCAL)の結果をまとめた表とグラフである。第1図の平均蒸 気圧力は各成分の蒸気圧力の炉心平均値(1:燃料、2:スティール、3:ナトリウム、4:FP ガ ス)で、全圧力は単相圧力を除いたこれらの圧力値の合計値の空間平均である。これに対 して、第4図の平均液体燃料・スティール温度から求めた飽和圧力は明らかに低く、PDE 過程の初期数 10msの間は炉心物質には温度分布が存在し、その局所的な蒸気圧が炉心全 体の圧力に影響を与えていることがわかる。このことは第1図の蒸気圧に対する各物質の 飽和温度(第5図)が第2図の平均温度に比べておおよそ 1000K ほど高く推移することか らも確認できる。しかしながら、これらの空間分布の効果は簡易モデルでは扱えないため、 燃料やスティールの質量・温度はそれぞれ一点で代表するモデルとする必要があり、これ らの情報を参考にして、機械的エネルギーの解析を行う炉心の初期状態を設定する。

UCS を流出する炉心物質の流速を Lockhart-Martinelli パラメータを用いた二相圧損¹を 用いて求め、これが UCS を通過する際の熱損失を計算して流出する炉心物質の量とそれ が持つ熱エネルギーを求めた。炉心物質から UCS への伝熱は、燃料は Dittus-Boelter 相関 式、スティールは Seban-Shimazaki の相関式を用いる。この簡易解析は EXCEL 上で必要 とされる物理諸量と相関式を記述することで実施した。この EXCEL シートを添付1に示 す。

SIMMER-IV による PDE 解析の結果(第6図)から、機械的エネルギーは約 10ms~約 50ms の約 40ms の間に上部プレナム底面(燃料集合体出口近傍)で発生する FCI 圧力に よる CDA 気泡の成長によって生じると考えられる。このため、今回の簡易解析では UCS 内を炉心物質が通過して上部プレナム底部に達し、そこからさらに 40ms の間に UCS から上部プレナムに流出する炉心物質の量と熱エネルギーを FCI に寄与出来る炉心物質の量および熱エネルギーとして求めることとする。なお、SIMMER 解析で 50ms の時点では

¹ 機械工学大系 11 気液二相流、赤川浩爾、1973

CDA 気泡体積の初期値からの変化は約 1.5m³、上部プレナムに流出する炉心物質の質量は 燃料とスティールそれぞれ約 300kg、体積にして約 0.09m³であり、CDA 気泡は炉心物質 の体積の約 16 倍まで成長しており、これ以後に流出する炉心物質は CDA 気泡を成長させ る FCI に大きく寄与できないと想定することは適切と考えられる。

駆動圧力を SIMMER 計算値の炉心圧力の平均値の初期値である 6.609MPa とすると、 流出量は燃料が約 308kg、スティールが約 97.4kg、これらの物質が持つ熱エネルギーの和 は約 791MJ となった。FCI の変換効率は多くの実験で 1%をかなり下回ることが示されて いる²とされるが、ここでは PDE の体系に近い、ナトリウムプールの底面から高温物質を 噴出させた THINA 試験³における変換効率約 0.3%を用いると、発生する機械的エネルギ ーは約 2.3MJ となる。

3. ④カバーガスの圧縮による圧力上昇

この現象については、カバーガスのポリトロープ圧縮挙動と上部プレナム内のナトリウ ムスラグの運動方程式、および気泡を1次元としてモデル化した Slug モデル、あるいは半 球形の気泡として Rayleigh-Plesset 方程式を連立するモデルを作成した。簡易モデルの基 礎式を添付2に、有限距離の Rayleigh-Plesset 方程式の導出を添付3に示す。これらの基 礎式を Runge-Kutta 法で数値積分することでナトリウムスラグの運動、カバーガスの圧縮 挙動を求めた。

圧力源としては、カバーガス体積 7.3m³で1気圧となるポリトロープ変化を想定し、か つ圧力が燃料とナトリウムの接触境界面温度から定まる飽和蒸気圧約 2MPa を超える体積 以下では圧力を 2MPa に維持するようにした。スラグモデル及び Rayleigh モデルについ て、ポリトロープ指数 n を n=1.01, 1.4, 1.66 として解析を行った結果を第7図から第10 図に示す。第7図と第8図はスラグモデルによる機械的エネルギー(ナトリウムの運動エ ネルギーとカバーガス圧縮エネルギーの和)とカバーガス圧力の時間変化、第9図と第1 0図は Rayleigh モデルによる機械的エネルギーとカバーガス圧力の時間変化である。な お、両モデルともに圧力源の PdV を数値的に積分した仕事量と解析的に求めた機械的エ ネルギーが一致していることから、モデルは適切に作成されていると考えられる。解析結 果を表1に示す。

²秋山守、溶融燃料と冷却材の熱的相互作用、日本原子力学会誌、p.3-8,Vol.20, No.6, 1978

³ Huber, F., et al, "Experiments to the Behaviour of Thermite Melt Injected into a Sodium Pool," Proc. Int. Fast Reactor Safety Meeting, Vol.II, p.407-416, 1990.

ポリトロープ	スラグ	モデル	Rayleigh	n モデル
	機械的エネルギ	カバーガス圧力	機械的エネルギ	カバーガス圧力
1日女人	ー最大値(MJ)	ピーク値(MPa)	ー最大値(MJ)	ピーク値(MPa)
1.01	2.9	5.3	2.9	5.3
1.4	4.1	6.3	4.1	6.3
1.66	4.9	7.0	4.9	6.9

表1 カバーガス圧縮簡易モデル解析結果

両モデルで機械的エネルギーの最大値、カバーガス圧力のピーク値はほぼ一致している。 ただし、これらの値が最大値をとるのはスラグモデルでは約 60ms~80ms、Rayleigh モデ ルで約 30ms~50ms の間であり、Rayleigh モデルのほうが気泡の成長と収縮のサイクルを 早く評価する。カバーガス圧力のピーク値はポリトロープ指数を下げると同様に低下する 傾向となっているが、これは圧力源部も非凝縮性ガスのポリトロープ変化を想定している ためであると考えられる。各ケースで圧力源部の PV 関係をポリトロープ指数に依存しな いように固定すれば、ポリトロープ指数の低下とともにカバーガス圧力のピーク値は上昇 すると考えられる。表1に示すように、発生する機械的エネルギーは高々約 5MJ 以下であ るが、ここで大きな機械的エネルギーが発生するように n=1.4 の Rayleigh モデルにおい て圧力源の圧力の上限を 2MPa から増加させるパラメータ解析を実施した。その場合のカ バーガス圧力のピーク値を表2に、カバーガス圧力の時間変化を図11に示す。

表2 Rayleigh モデル (n=1.4) による機械的エネルギーとカバーガスピーク圧力の関係

機械的エネルギー (MJ)	4.1	7	10
カバーガスピーク圧力(MPa)	5.5	25.3	68.0

4. ⑤遮へいプラグの間隙を通したナトリウム漏洩

図11に示したカバーガス圧力の最初の圧力ピークの時間変化を PLUG コードに入力 して遮へいプラグ、固定ボルト、及びプラグ間隙に流入するナトリウム量の解析を実施し た。その結果、いずれのケースでもプラグを固定するボルトのひずみは最大で約1.3% (UIS 固定ボルト)で破断伸びである15%より十分小さく、ボルトの健全性は維持され、またプ ラグ間隙へのナトリウムの流入量は最大でも約50kg弱(大回転プラグ間隙を満たすナト リウムは約500kg以上)でナトリウムの格納容器床上への噴出も生じない結果を得た。

第3図 炉心内質量

第4図 平均温度に対する飽和圧力

第5図 平均蒸気圧力に対する飽和温度

第6図 SIMMER 解析における CDA 気泡の平均圧力と体積

第7図 Slug モデルによる機械的エネルギー過渡挙動

第9図 Rayleigh モデルによる機械的エネルギー過渡挙動

第10図 Rayleigh モデルによるカバーガス圧力過渡挙動

第11図 機械的エネルギーに対するカバーガスピーク圧力の変化

添付1a UCSを通した炉心物質の流出挙動(PGAV)

即発臨界超過											
	時の状態(遷移	3過程解析t=24.7909、	PDE解析t=0)						LM二相圧損計算		
溶融燃料 α	ALPLF	5.170E-01	燃料体積率	5.214E-01		平均液体密度	6.91E+03	流速	14.51 ←こオ	ıを調節して圧損とPG	GSATが一致するようにする
燃料粒子 α	ALPPF	2.911E-03	〃密度	6.809E+03				流路等価直径	2.4800E-03		
燃料チャンクα	ALPCF	1.505E-03						液単相Re	1.6506E+05		
溶融スティールα	ALPLS	1.441E-01	スティール体積率	1.552E-01				液単相f	3.9194E-03		
スティール粒子α	ALPPS	1.112E-02	〃密度	7.251E+03				液単相圧損	3.2862E+06		
が作率	ALPG	2.855E-01	蒸気密度	2.272E+01	lpha:体積率	Ś		気体単相Re	7.6872E+03		
								気体単相f	8.4369E-03		
即発臨界超過	時の状態(遷移	8過程解析t=24.7909、	PDE解析t=0)					気体単相圧損	9.2952E+03		
				粘性率	熱伝導率 比内部工祉	前比熱	プラントル数	Xtt	1.8802E+01		
溶融燃料温度	TMPF3	5.415E+03	燃料粘性	2.319E-03	3.150E+00 2.545E+06	6 3.325E+02	2.448E-01	Φ L^2	2.1197 (Chi	sholmによる相関)	
溶融スティール温厚	度 TMPS3	3.072E+03	スティール粘性	6.921E-04	2.086E+01 2.217E+06	5 7.427E+02	2.465E-02	二相圧損	6.9657E+06		
ガス温度	TMPG	5.269E+03	液体平均值	1.507E-03	3.912E+00	4.266E+02	1.643E-01	UCS流路長さ	0.92726		
								圧損	6.4590E+06		
即発臨界超過	時の状態(遷移	多過程解析t=24.7909、	PDE解析t=0)								
燃料質量	MASF	8.864E+02						流路面積	0.001754411		
、ティール質量	MASS	2.810E+02						集合対数	85 (CR	GT、照射集合体などを	を燃料集合体に置き換え)
ガス質量	MASG	1.620E+00	気体混合粘性率	1.064E-04							
燃料蒸気〃	MASF5	1.007E+00						CDA気泡への流出時間	4.00E-02		
スティール蒸気〃	MASS5	1.939E-01						燃料流出量	3.073E+02	燃料体積	4.513E-02
ナトリウム蒸気〃	MASN2	1.416E-01						スティール流出量	9.741E+01	スティール体積	1.343E-02
FPガス〃	MASFPG	2.771E-01								合計体積	5.857E-02
								ゴールシーク用セル	0.0000E+00		
炉心蒸気圧総	和PGAV	6.609E+06									
	PGAV-上部7 [°]	レナム <mark>6.459E+06</mark>									
炉心体積	VOLUME	2.497E-01									
炉心物質から	の熱損失計算										
上部プレナム圧フ	5	1.500E+05						UCS通過時間	0.063898238 ←UC	S出口に融体が達したF	時のUCS軸方向温度分布を考慮し、伝熱時間はこの!
上部プレナム圧ノ 〃ナトリウム飽和温	力	1.500E+05 1.199E+03						UCS通過時間 伝熱時間=〃/2+流出時間	0.063898238 ←UC 7.19E-02	S出口に融体が達したE	時のUCS軸方向温度分布を考慮し、伝熱時間はこの!
上部プレナム圧ノ 〃ナトリウム飽和湿	力	1.500E+05 1.199E+03						UCS通過時間 伝熱時間=〃/2+流出時間	0.063898238 ←UC 7.19E-02	S出口に融体が達したF	時のUCS軸方向温度分布を考慮し、伝熱時間はこのS
上部プレナム圧フ 〃ナトリウム飽和湿	力	1.500E+05 1.199E+03						UCS通過時間 伝熱時間=〃/2+流出時間 燃料が単相で上記流速で流	0.063898238 ←UC 7.19E-02 れる状況の熱伝達係数	S出口に融体が達した 数に体積率を乗ずるこ	時のUCS軸方向温度分布を考慮し、伝熱時間はこの! とで熱伝達係数を評価。
上部プレナム圧フ 〃ナトリウム飽和湿 集合体ラッパ	力 温度 管断面積	1.500E+05 1.199E+03 5.100E-04						UCS通過時間 伝熱時間=〃/2+流出時間 燃料が単相で上記流速で流 Re	0.063898238 ←UC 7.19E-02 れる状況の熱伝達係数 1.057E+05	S出口に融体が達した 数に体積率を乗ずるこ	時のUCS軸方向温度分布を考慮し、伝熱時間はこの! とで熱伝達係数を評価。
上部プレナム圧フ 〃ナトリウム飽和湿 集合体ラッパ 集合体被覆管	り 温度 管断面積 断面積	1.500E+05 1.199E+03 5.100E-04 8.092E-04						UCS通過時間 伝熱時間=〃/2+流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式	0.063898238 ←UC 7.19E-02 れる状況の熱伝達係数 1.057E+05 1.369E+02	S出口に融体が達した めに体積率を乗ずるこ	時のUCS軸方向温度分布を考慮し、伝熱時間はこの! とで熱伝達係数を評価。
上部プレナム圧フ 〃ナトリウム飽和溢 集合体ラッパ 集合体被覆管 集合体数	力 温度 管断面積 断面積	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01						UCS通過時間 伝熱時間=〃/2+流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数	0.063898238 ←UC 7.19E-02 れる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05	S出口に融体が達した 数に体積率を乗ずるこ	時のUCS軸方向温度分布を考慮し、伝熱時間はこの とで熱伝達係数を評価。
上部プレナム圧フ ッナトリウム飽和湿 集合体ラッパ 集合体被覆管 集合体数 UCS構造材体	力 温度 管断面積 断面積	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01						UCS通過時間 伝熱時間=〃/2+流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効〃	0.063898238 ←UC 7.19E-02 れる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04	S出口に融体が達した 数に体積率を乗ずるこ	時のUCS軸方向温度分布を考慮し、伝熱時間はこの とで熱伝達係数を評価。
上部プレナム圧フ ッナトリウム飽和溢 集合体ラッパ 集合体被覆管 集合体数 UCS構造材体 350°C	力 温度 管断面積 断面積 積	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02						UCS通過時間 伝熱時間=〃/2+流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効 <i>ッ</i> 除熱量	0.063898238 ←UC 7.19E-02 れる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04 6.691E+07 ←構造	S出口に融体が達した 数に体積率を乗ずるこう	時のUCS軸方向温度分布を考慮し、伝熱時間はこのS とで熱伝達係数を評価。 構造材表面の接触境界面温度を適用
上部プレナム圧フ ッナトリウム飽和 編合体ラッパ 集合体被覆管 集合体数 UCS構造材体 350°C ッ比内部エシルキ	カ 温度 管断面積 断面積 積	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02 1.707E+05						UCS通過時間 伝熱時間=〃/2+流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効 <i>ル</i> 除熱量 温度低下	0.063898238 ←UC 7.19E-02	S出口に融体が達した 数に体積率を乗ずるこう	時のUCS軸方向温度分布を考慮し、伝熱時間はこの とで熱伝達係数を評価。 構造材表面の接触境界面温度を適用
上部プレナム圧 <i>ッ</i> ナトリウム 飽和 編合体ラッパ 集合体被 て 集合体数 UCS構造材体 350°C <i>ッ</i> 比内部 エネルキ UCS構造材質	カ 温度 管断面積 断面積 ・ - : -	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02 1.707E+05 8.093E+02						UCS通過時間 伝熱時間= //2 + 流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効 // 除熱量 温度低下 CDA気泡流入熱エネレギ-	0.063898238 ←UC 7.19E-02 5れる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04 6.691E+07 ←構築 6.549E+02 5.965E+08 ←ナ	S出口に融体が達した 数に体積率を乗ずるこう き材表面温度に燃料と様	時のUCS軸方向温度分布を考慮し、伝熱時間はこの とで熱伝達係数を評価。 構造材表面の接触境界面温度を適用 融体熱エネルギー
上部プレサム圧 <i>ッ</i> ナトリウム飽和 編合体ラッパ 集合体被 て 集合体被 で し CS構造材体 350°C <i>ッ</i> 比内部 エネルキ U CS構造材 額 し て の の の の の の の の の の の の の	り 温度 管断 断面積 満 二 量 川 調 二 二 二 二 二 二 二 二 二 二 二 二 二	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02 1.707E+05 8.093E+02 5.500E+02						UCS通過時間 伝熱時間=〃/2+流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効〃 除熱量 温度低下 CDA気泡流入熱エネレギー	0.063898238 ←UC 7.19E-02 5れる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04 6.691E+07 ←構築 6.549E+02 5.965E+08 ←ナ	S出口に融体が達した 数に体積率を乗ずるこう も材表面温度に燃料と トリウムの沸点以上の	時のUCS軸方向温度分布を考慮し、伝熱時間はこの とで熱伝達係数を評価。 構造材表面の接触境界面温度を適用 融体熱エネルギー
上部プレサム圧 <i>ッ</i> ナトリウム飽和 集合体 、 本 、 、 、 、 、 、 、 、 、 、 、 、 、		1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02 1.707E+05 8.093E+02 5.500E+02 7.145E+02 ← 5	れを調節して総除		3エネルギー変化が一致するよ	うにする。		UCS通過時間 伝熱時間= //2 + 流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効 // 除熱量 温度低下 CDA気泡流入熱エネルギー	0.063898238 ←UC 7.19E-02 たれる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04 6.691E+07 ←構築 6.549E+02 5.965E+08 ←ナ↓	S出口に融体が達した 数に体積率を乗ずるこ ちりウムの沸点以上の 数に体積率を乗ずるこ	時のUCS軸方向温度分布を考慮し、伝熱時間はこのS とで熱伝達係数を評価。 構造材表面の接触境界面温度を適用 融体熱エネルギー
上部プレサム圧 <i>ッ</i> ナトリウム飽和 2 集合体 、 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	力 量 度 断 面 積 二 量 期 温 後 ギ 一 量 調 遥 光 二 二 二 二 二 二 二 二 二 二 二 二 二	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02 1.707E+05 8.093E+02 5.500E+02 7.145E+02 ← 3 7.905E+07	これを調節して総除	熱量とUCS内音	3エネルギー変化が一致するよ	うにする。		UCS通過時間 伝熱時間= //2 + 流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効 // 除熱量 温度低下 CDA気泡流入熱エネレギ- スティーレが単相で上記流速でえ Re	0.063898238 ←UC 7.19E-02 れる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04 6.691E+07 ←構築 6.549E+02 5.965E+08 ←ナ↓ 充れる状況の熱伝達係 3.770E+05	S出口に融体が達した 数に体積率を乗ずるこう と材表面温度に燃料と 、リウムの沸点以上の 数に体積率を乗ずるこう	時のUCS軸方向温度分布を考慮し、伝熱時間はこのS とで熱伝達係数を評価。 離体熱エネルギー こ とで熱伝達係数を評価。
上部プレサム圧 <i>ッ</i> ナトリウム飽和 温 集 合 体 で	力 置 一 置 期 温 後 二 量 期 温 後 二 量 期 温 後 二 二 量 期 温 後 二 一 二 量 期 温 後 二 一 二 量 調 温 後 ギ 一 二 こ し 後 温 後 半 一 一 二 し 後 温 後 ギ 一 一 二 し 後 二 一 二 し 後 二 一 二 一 に う 二 一 に う 二 一 に う 二 一 二 し 後 二 一 一 二 し 後 二 一 一 二 し 後 二 一 一 一 一 一 一 一 一 一 一 一 一 一	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02 1.707E+05 8.093E+02 5.500E+02 7.145E+02 ← 3 7.905E+07	これを調節して総除	熱量とUCS内音	3エネルギー変化が一致するよ	うにする。		UCS通過時間 伝熱時間= //2 + 流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効 // 除熱量 温度低下 CDA気泡流入熱エネルギー スティールが単相で上記流速でえ Re Seban-Shimazaki=t	0.063898238 ←UC 7.19E-02 れる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04 6.691E+07 ←構築 6.549E+02 5.965E+08 ←ナ↓ 充れる状況の熱伝達係 3.770E+05 3.736F+01	S出口に融体が達した 数に体積率を乗ずるこう も材表面温度に燃料と 、リウムの沸点以上の 数に体積率を乗ずるこ	時のUCS軸方向温度分布を考慮し、伝熱時間はこの とで熱伝達係数を評価。
上部プレナム圧 <i>ッ</i> ナトリウム飽和 編合体本 してS構造材体 350°C の してS構造材材 してS構造材 してS構造す が してS内部エネト してS内部エネト してS内部エネト してS内部エネト してS内部エネト	カ 自度	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02 1.707E+05 8.093E+02 5.500E+02 7.145E+02 ← 3 7.905E+07 2.635E-04	これを調節して総除	熱量とUCS内音	3エネルギー変化が一致するよ	うにする。		UCS通過時間 伝熱時間= //2 + 流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効 // 除熱量 温度低下 CDA気泡流入熱エネルギー スティールが単相で上記流速で Re Seban-Shimazaki式 執伝達係数	0.063898238 ←UC 7.19E-02 たれる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04 6.691E+07 ←構築 6.549E+02 5.965E+08 ←ナ↓ 充れる状況の熱伝達係 3.770E+05 3.736E+01 3.142E±05	S出口に融体が達した 数に体積率を乗ずるこ ち りウムの沸点以上の 数に体積率を乗ずるこ	時のUCS軸方向温度分布を考慮し、伝熱時間はこの とで熱伝達係数を評価。 構造材表面の接触境界面温度を適用 融体熱エネルギー ことで熱伝達係数を評価。
上部プレサム圧 <i>ッ</i> ナトリウム飽和 温 合体体 で して S構造 して S構造 して S構造 して い して S構 二 ルシーク	力 置 間 満 二 量 期 温 後 ギ 一 量 期 温 後 ギ 一 量 期 温 後 ギ ー し 温 後 ギ ー し 温 後 ギ ー し 温 後 ギ ー し 温 後 ギ ー し 温 後 ギ ー し 思 し そ ギ ー し 思 し そ ギ ー し 思 し そ ギ ー し 思 し そ ギ ー し こ し た し ー の ま ー し し た ろ ー の し し し し た ー の し し し し し し し し し し し し し	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02 1.707E+05 8.093E+02 5.500E+02 7.145E+02 ← 3 7.905E+07 2.635E-04	これを調節して総除	熱量 と UCS 内音	3エネルギー変化が一致するよ	うにする。		UCS通過時間 伝熱時間= //2 + 流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効 // 除熱量 温度低下 CDA気泡流入熱エネルギ- スティールが単相で上記流速で Re Seban-Shimazaki式 熱伝達係数 実効 //	0.063898238 ←UC 7.19E-02 たれる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04 6.691E+07 ←構築 6.549E+02 5.965E+08 ←ナ↓ 充れる状況の熱伝達係 3.770E+05 3.736E+01 3.142E+05 4.876E±04	S出口に融体が達した 数に体積率を乗ずるこう も材表面温度に燃料と 、リウムの沸点以上の 数に体積率を乗ずるこ	時のUCS軸方向温度分布を考慮し、伝熱時間はこの とで熱伝達係数を評価。 構造材表面の接触境界面温度を適用 融体熱エネルギー ことで熱伝達係数を評価。
上部プレけム圧力 <i>**</i> ナトリウム飽和混 集合体本数 してS構造材体 してS構造造材 してS構造が引 してS内部エネルギ してS内部エネ してS内部エネ してS内部エネ してS内部エネ してS内部エネ してS内部エネ	り 島度 町 町 面積 二 量 期 温 後 ギ ー こ 量 期 温 後 ギ ー 目 温 後 ギ ー 用 温 後 ギ ー 用 2 ル マ の 町 面 積 二 二 二 二 二 二 二 の の の の し の の し の し の し の	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02 1.707E+05 8.093E+02 5.500E+02 7.145E+02 ← 3 7.905E+07 2.635E-04	これを調節して総除	熱量 と UCS内音	3エネルギー変化が一致するよ	うにする。		UCS通過時間 伝熱時間= //2 + 流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効 // 除熱量 温度低下 CDA気泡流入熱エネレギ- スティーレが単相で上記流速で Re Seban-Shimazaki式 熱伝達係数 実効 //	0.063898238 ←UC 7.19E-02 たれる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04 6.691E+07 ←構築 6.549E+02 5.965E+08 ←ナ 充れる状況の熱伝達係 3.770E+05 3.736E+01 3.142E+05 4.876E+04	S出口に融体が達した 数に体積率を乗ずるこう も材表面温度に燃料と 、リウムの沸点以上の 数に体積率を乗ずるこ	時のUCS軸方向温度分布を考慮し、伝熱時間はこの とで熱伝達係数を評価。 構造材表面の接触境界面温度を適用 融体熱エネルギー ことで熱伝達係数を評価。
上部プレけム圧 <i>ッ</i> ナトリウム飽和 温 集合体本 して の の し て の の に の の の の の の の の の の の の の	力 置 間 温 御 御 御 御 御 御 御 御 御 御 御 御 御	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02 1.707E+05 8.093E+02 5.500E+02 7.145E+02 ← 3 7.905E+07 2.635E-04	これを調節して総除	熱量 と UCS 内音	3エネルギー変化が一致するよ	うにする。		UCS通過時間 伝熱時間= //2 + 流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効 // 除熱量 温度低下 CDA気泡流入熱エネレギ- スティールが単相で上記流速で Re Seban-Shimazaki式 熱伝達係数 実効 // 除熱量 温度低下	0.063898238 ←UC 7.19E-02 れる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04 6.691E+07 ←構築 6.549E+02 5.965E+08 ←ナ 5.965E+08 ←ナ 3.770E+05 3.736E+01 3.142E+05 4.876E+04 1.214E+07 ←構築	S出口に融体が達した 数に体積率を乗ずるこう と材表面温度に燃料と トリウムの沸点以上の 数に体積率を乗ずるこう ち 数に体積率を乗ずるこう	時のUCS軸方向温度分布を考慮し、伝熱時間はこの とで熱伝達係数を評価。 離体熱エネルギー ことで熱伝達係数を評価。 点と想定
上部プレけム圧 <i>ッ</i> ナトリウム飽和 2 集合体す で 350°C <i>ッ</i> 比内構造材材 UCS構造材材 UCS構造材材 UCS構造れ の UCS構造力 の の の の の の の の の の の の の	力 度 一 置 期 温 ル 用 七 ル 用 七 川 温 後 ギ ー 、 一 量 期 温 後 ギ ー 、 一 量 期 温 後 ギ ー 、 ー し 温 後 ギ ー 、 ー し ー と 和 長 ー 、 ー の し ー 、 ー の し ー の し ー の し ー の し ー の し ー の し ー の し ー の し ー の し ー の し ー の し ー の し ー の し ー の し ー の し ー の し ー の し 一 の し ー の し し し し 一 の し し し 一 の し し し ー の し し し し 一 の し し し し し し し し し し し し し	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02 1.707E+05 8.093E+02 5.500E+02 7.145E+02 ← 3 7.905E+07 2.635E-04	これを調節して総除	熱量 と UCS 内 音	3エネルギー変化が一致するよ	うにする。		UCS通過時間 伝熱時間= //2 + 流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効 // 除熱量 温度低下 CDA気泡流入熱エネレギ- スティールが単相で上記流速で Re Seban-Shimazaki式 熱伝達係数 実効 // 除熱量 温度低下 CDA気泡流入熱エネレギ-	0.063898238 ←UC 7.19E-02 たれる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04 6.691E+07 ←構築 6.549E+02 5.965E+08 ←ナ 充れる状況の熱伝達係 3.770E+05 3.736E+01 3.142E+05 4.876E+04 1.214E+07 ←構築 1.678E+02 1.491E+08 ←+	S出口に融体が達した 数に体積率を乗ずるこう ちりウムの沸点以上の 数に体積率を乗ずるこう ちが表面は構造材の融 、	時のUCS軸方向温度分布を考慮し、伝熱時間はこの とで熱伝達係数を評価。 構造材表面の接触境界面温度を適用 融体熱エネルギー ことで熱伝達係数を評価。
上部プレけム圧フ <i>ッ</i> ナトリウム飽和法 集合体体数 してS構造材体 350°C <i>ッ</i> 比S構造材材 してS構造材材昇 してS内部エネ の してS内部エネ レ の してS内部エネ の してS内部エネ の し の の の の の の の の の の の の の	り島の 管断 積 二量期温ル 用せん 利度 新面積 二量期温ル 用セル	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02 1.707E+05 8.093E+02 5.500E+02 7.145E+02 ← 3 7.905E+07 2.635E-04	これを調節して総除	熱量 と UCS 内 部	3エネルギー変化が一致するよ	うにする。		UCS通過時間 伝熱時間= //2 + 流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効 // 除熱量 温度低下 CDA気泡流入熱エネレギ- 深 な に た た この た こ た た 二 た た た た た た た た た た た た た	0.063898238 ←UC 7.19E-02 たれる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04 6.691E+07 ←構築 6.549E+02 5.965E+08 ←ナ 5.965E+08 ←ナ 5.965E+08 ←ナ 3.770E+05 3.736E+01 3.142E+05 4.876E+04 1.214E+07 ←構築 1.678E+02 1.491E+08 ←ナ	S出口に融体が達した 数に体積率を乗ずるこう と材表面温度に燃料と 、リウムの沸点以上の 数に体積率を乗ずるこ と材表面は構造材の融 、リウムの沸点以上の	時のUCS軸方向温度分布を考慮し、伝熱時間はこの とで熱伝達係数を評価。 構造材表面の接触境界面温度を適用 融体熱エネルギー ことで熱伝達係数を評価。 点と想定 融体熱エネルギー
上部プレけム圧プ <i>ッ</i> ナトリウム飽和法 集合体体 そ合体被 してS構造材体 350°C <i>ッ</i> 比内構造材材 してS構造材材 してS構造材材 してS内部エネ ゴールシーク	わ 島 度 一 置 期 温 ル 用 七 ル 用 七 ル 月 二 二 里 期 温 ル 半 一 二 量 期 温 ル ギ ー 、 一 量 期 温 ん ギ ー 、 一 一 二 晶 後 ギ ー 、 一 一 二 晶 後 ギ ー 、 一 一 二 晶 後 ギ ー 、 一 の 積 ・ 一 二 二 し 二 の 石 信 ・ 一 二 二 し 二 の 石 に 一 の 石 信 ・ 一 、 一 の 石 し こ の で の れ し 、 一 の で の れ し 、 の 、 の し て の し て の し の た の の の し の 、 の の の し の の の の し の の の の の し の の の の の の の し の の の の の の の の の の の の の	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02 1.707E+05 8.093E+02 5.500E+02 7.145E+02 ← 3 7.905E+07 2.635E-04	これを調節して総除	熱量とUCS内音	3エネルギー変化が一致するよ	うにする。		UCS通過時間 伝熱時間= //2 + 流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効 // 除熱量 温度低下 CDA気泡流入熱エネルギー 不ティールが単相で上記流速で Re Seban-Shimazaki式 熱伝達係数 実効 // 除熱量 温度低下 CDA気泡流入熱エネルギー	0.063898238 ←UC 7.19E-02 たれる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04 6.691E+07 ←構致 6.549E+02 5.965E+08 ←ナ↓ 充れる状況の熱伝達係 3.770E+05 3.736E+01 3.142E+05 4.876E+04 1.214E+07 ←構致 1.678E+02 1.491E+08 ←ナ↓	S出口に融体が達した 数に体積率を乗ずるこう と材表面温度に燃料と 、リウムの沸点以上の 数に体積率を乗ずるこ と材表面は構造材の融 、リウムの沸点以上の	時のUCS軸方向温度分布を考慮し、伝熱時間はこの とで熱伝達係数を評価。 構造材表面の接触境界面温度を適用 融体熱エネルギー ことで熱伝達係数を評価。 融体熱エネルギー
上部プレけム圧フ <i>ッ</i> ナトリウム飽和法 集合体体数 しCS構造材体 350°C <i>ッ</i> 比S構造造材材 しCS構造社材 しCS構造れれ しCS内部エネ の この の の の の の の の の の の の の の	り島で「「「「」」」「「」」」」の「「」」」」で「」」」の「「」」」で、「」」」の「」」で、「」」」で、「」」」で、「」」」で、「」」」で、「」」」で、「」」」で、「」」」で、「」」」で、「」」」で、	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02 1.707E+05 8.093E+02 5.500E+02 7.145E+02 ← 3 7.905E+07 2.635E-04	これを調節して総除	熱量とUCS内音	3エネルギー変化が一致するよ	うにする。		UCS通過時間 伝熱時間= //2 + 流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効 // 除熱量 温度低下 CDA気泡流入熱エネルギ- 総除熱量 CDA気泡流入熱エネルギ-計	0.063898238 ←UC 7.19E-02 たれる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04 6.691E+07 ←構築 6.549E+02 5.965E+08 ←ナ 5.965E+08 ←ナ 5.965E+08 4.876E+01 3.142E+05 4.876E+04 1.214E+07 ←構築 1.678E+02 1.491E+08 ←ナ 7.905E+07 7.456E+08	S出口に融体が達した 数に体積率を乗ずるこう も材表面温度に燃料と 、リウムの沸点以上の 数に体積率を乗ずるこ も材表面は構造材の融 、リウムの沸点以上の	時のUCS軸方向温度分布を考慮し、伝熱時間はこの とで熱伝達係数を評価。 離体熱エネルギー ことで熱伝達係数を評価。
上部プレけム圧フ <i>************************************</i>	り 島度 「管断」積 「一量期温ル」 周 一 二 量 期 温 後 ギ ー し し 度 温 ー ・ 一 量 期 温 後 ギ ー し 、 ー し 温 後 ギ ー し 、 ー 、 ー し 温 後 ギ ー し 、 ー 、 、 ー 、 、 、 、 、 、 、 、 、 、 、 、 、	1.500E+05 1.199E+03 5.100E-04 8.092E-04 8.500E+01 1.040E-01 6.232E+02 1.707E+05 8.093E+02 5.500E+02 7.145E+02 ← 3 7.905E+07 2.635E-04	これを調節して総除	熱量 と UCS 内 音	3エネルギー変化が一致するよ	うにする。		UCS通過時間 伝熱時間= //2 + 流出時間 燃料が単相で上記流速で流 Re Dittus-Boelter式 熱伝達係数 実効 // 除熱量 温度低下 CDA気泡流入熱エネルギ- 総除熱量 温度低下 CDA気泡流入熱エネルギ- 総除熱量 CDA気泡流入熱エネルギ-計 (CDA気泡流入熱エネルギ-計)	0.063898238 ←UC 7.19E-02 たれる状況の熱伝達係数 1.057E+05 1.369E+02 1.739E+05 9.066E+04 6.691E+07 ←構築 6.549E+02 5.965E+08 ←ナ 5.965E+08 ←ナ 3.770E+05 3.736E+01 3.142E+05 4.876E+04 1.214E+07 ←構築 1.678E+02 1.491E+08 ←ナ 7.905E+07 7.456E+08 0.003	S出口に融体が達した 数に体積率を乗ずるこう も材表面温度に燃料と 、リウムの沸点以上の 数に体積率を乗ずるこ も材表面は構造材の融 、リウムの沸点以上の	時のUCS軸方向温度分布を考慮し、伝熱時間はこの とで熱伝達係数を評価。 構造材表面の接触境界面温度を適用 融体熱エネルギー ことで熱伝達係数を評価。

添付1b UCSを通した炉心物質の流出挙動(PGAV、液単相)

流出量計算													
即発臨界超過	時の状態(遷移	過程解析t=24.7909、	PDE解析t=0)							LM二相圧損計算			
溶融燃料 α	ALPLF	5.170E-01	燃料体積率	5.214E-01			平均液体密度	6.91E+03	流速	21.35 ←これを調け	節して圧損とPG	SATが一致するようにする	
燃料粒子 α	ALPPF	2.911E-03	〃密度	6.809E+03					流路等価直径	2.4800E-03			
燃料チャンクα	ALPCF	1.505E-03							液単相Re	2.4285E+05			
溶融スティールα	ALPLS	1.441E-01	スティール体積率	1.552E-01					液単相f	3.5587E-03			
スティール粒子α	ALPPS	1.112E-02	〃密度	7.251E+03					液単相圧損	6.4590E+06			
ボイド率	ALPG	2.855E-01	蒸気密度	2.272E+01		$\alpha:$ 体積率			気体単相Re	1.1310E+04			
									気体単相f	7.6605E-03			
即発臨界超過	時の状態(遷移	過程解析t=24.7909、	PDE解析t=0)						気体単相圧損	1.8270E+04			
				粘性率	熱伝導率	比内部エネルギ	比熱	プラントル数	Xtt	1.8802E+01			
溶融燃料温度	TMPF3	5.415E+03	燃料粘性	2.319E-03	3.150E+00	2.545E+06	3.325E+02	2.448E-01	Φ L^2	2.1197 (Chisholm	による相関)		
溶融スティール温ル	度 TMPS3	3.072E+03	スティール粘性	6.921E-04	2.086E+01	2.217E+06	7.427E+02	2.465E-02	二相圧損	1.3691E+07			
ガス温度	TMPG	5.269E+03	液体平均值	1.507E-03	3.912E+00		4.266E+02	1.643E-01	UCS流路長さ	0.92726			
									圧損	1.2695E+07			
即発臨界超過	時の状態(遷移	過程解析t=24.7909、	PDE解析t=0)										
燃料質量	MASF	8.864E+02							流路面積	0.001754411			
スティール質量	MASS	2.810E+02							集合対数	85 (CRGT、 州	照射集合体などを	燃料集合体に置き換え)	
ガス質量	MASG	1.620E+00	気体混合粘性率	1.064E-04									
燃料蒸気〃	MASF5	1.007E+00							CDA気泡への流出時間	4.00E-02			
スティール蒸気〃	MASS5	1.939E-01							燃料流出量	4.521E+02	燃料体積	6.641E-02	
ナトリウム蒸気〃	MASN2	1.416E-01							スティール流出量	1.433E+02	スティール体積	1.977E-02	
FPガス〃	MASFPG	2.771E-01									合計体積	8.617E-02	
									ゴールシーク用セル	0.0000E+00			
炉心蒸気圧総	和PGAV	6.609E+06											
	PGAV-上部7°	レナム <mark>6.459E+06</mark>											
炉心体積	VOLUME	2.497E-01											
病心物質から	の劫招生斗筲												
炉心初貝から	の熟損大計昇												
ト部プレナム圧フ	h	1 500F+05							UCS通過時間	0 043429785 ←UCS出口	に融休が達した服	寺のUCS軸方向温度分布を老膚し、伝	執時間はこの50%を
ルナトリウム的和語	島度	1.300E+03							伝執時間=〃/2+流出時間	6 17F-02			
		1.1332+00											
									燃料が単相で上記流速で流	れる状況の埶伝達係数に体	積率を乗ずること	とで埶伝達係数を評価。	
集合体ラッパ	管新面積	5 100F-04							Re	1 555F+05			
集合体被覆管	「新面積	8.092F-04							Dittus-Boelter式	1.864F+02			
集合体数		8 500F+01							熱 伝達係数	2.368F+05			
不可许致 UCS構造材体	活	1 ΠΔΠF-Π1							宝劲"	1 235F+05			
350°C		6 232F±02							入 <u>》</u> 除執量	1.2000-00 7 798F+07 ←構诰材実i	 司温度に燃料と#	輩诰材表面の接触谙界面温度を適田	
ルド内部でした		1 707F±05							<u>冰派</u> 温度低下	5 188F±02	山戸ノノママの京ですし中	みとすれて、四、シリタルがカント回加一尺で四月	
110の構造状態	Ē	2.101L+03							/皿/× 2 1 2 2 1 2 2 1 1	9.100L702 9.093F⊥N8 ←+ k II ↔	↓の油占いk∞▫	神休執エネルギー	
この海戸辺見	L半]相涅度									J.UJJL+UU ←ノトリソ	<u>らい</u> //アポ以上の簡	ヨモガジートファレ	
この海戸が	湖湖之		マカを調節レア公路	☆曲と□∩℃中☆	マーネルギ_赤ルギ	、 オストネ	うにする		フティールが畄枳ズkヨンンカーボ	おおおいしょう	त結玄を垂ずヱァ	とで執仁達函数を評価	
ししつ(再旦付升	S構造材昇温後温度 7.405E+02 ←これを調節して総除熱量とUCS内部エネレギー変化が一致するようにする。					1110回1へルリンボロム注所数に14 5517日 05	☆頃空で米りるこ	こ てがは足に対で計画。					
しいこり前上不	ルイー友化	9.2100+07							Ne Sohan Shimazaki - *	5.54/E+U3 5.080E+01			
<u>т</u>	田上山								Sengli-Sillilig7gKl式 對仁法区粉				
コールンーク	用セル	U.UUUE+UU							烈灯连涂敛 中动 "	4.2/9E+U5			
									天划∥ ◎ ☆ # ■	0.041E+U4			
									除熱量	1.418L+0/ ←構造材表	国は構造材の 融点	えと想定	
									温度低下	1.332E+02			
									CDA気泡流入熱エネレギ-	2.232E+08 ←ナトリウ	ムの沸点以上の副	曲体熱エネルギー	
									縱 陸劫 二	0.2165 - 07			
									応防淤里	<u>9.210E+U7</u>			
									UDA 丸氾流入熱エネルキ ー計	1.133E+U9			
									FUI/刘举				
									機械的エネルギー	3.398E+06			

添付2 カバーガス圧縮挙動の簡易モデル

【圧力源を1次元スラグでモデル化:Slug モデル】

上部プレナム内のナトリウムスラグを1次元のスラグでモデル化する。断面積をA、質量をM、カバーガスと圧力源の初期高さをそれぞれ l_{c0} と l_{b0} 、初期圧力をそれぞれ P_{c0} と P_{b0} とする。 $x = l_b$ を圧力源とナトリウムスラグの界面位置とすると、ナトリウムスラグの運動方程式は以下となる。

$$M\frac{d^2x}{dt^2} = A(P_b - P_c) \tag{1}$$

カバーガスはポリトロープ変化 $PV^n = const.$ に従うとする。即ち、

$$P_{c} = \frac{P_{c0}l_{c0}^{n}}{l_{c}^{n}} = \frac{P_{c0}l_{c0}^{n}}{\left(l_{c0} - (x - l_{b0})\right)^{n}}$$
(2)

従って(1)式は

$$\frac{d^2x}{dt^2} = \frac{A}{M} \left(\frac{P_{b0} l_{b0}{}^n}{x^n} - \frac{P_{c0} l_{c0}{}^n}{\left(l_{c0} - (x - l_{b0}) \right)^n} \right)$$
(3)

となる。初期値は、

$$x|_{t=0} = 0, \ \left. \frac{dx}{dt} \right|_{t=0} = 0$$
 (4)

である。

この時、ナトリウムスラグの運動エネルギーは

$$KE = \frac{1}{2}M\left(\frac{dx}{dt}\right)^2\tag{5}$$

カバーガスの圧縮エネルギーは

$$-\int_{V_{c0}}^{V_c} P_c dV_{c0} = -\int_{V_{c0}}^{V_c} \frac{P_{c0} V_{c0}^{n}}{V_c^{n}} dV_c$$

$$= -P_{c0} V_{c0}^{n} \left[\frac{V_c^{1-n}}{1-n} \right]_{V_{c0}}^{V_c} = \frac{P_{c0} V_{c0}^{n}}{n-1} \left(V_c^{1-n} - V_{c0}^{1-n} \right)$$

$$= \frac{A P_{c0} l_{c0}^{n}}{n-1} \left(l_c^{1-n} - l_{c0}^{1-n} \right)$$

$$= \frac{A P_{c0} l_{c0}^{n}}{n-1} \left(\left(l_{c0} - (x - l_{b0}) \right)^{1-n} - l_{c0}^{1-n} \right)$$

(6)

である。

【圧力源を半球でモデル化:Rayleigh モデル】

上部プレナム内のナトリウムスラグは1次元のスラグでモデル化する。断面積をA、質量を M、カバーガスの初期高さをそれぞれl_{c0}、初期圧力をそれぞれP_{c0}とする。一方、圧力源は 半球として、その初期半径をr_{b0}(数値解析上、微少な初期値を与える)とする。ここでは圧 力源の膨張と収縮を気泡の運動方程式である、Rayleigh-Plesset 方程式で解析する。ただし、 通常の Rayleigh-Plesset 方程式は無限遠までの慣性質量を用いているが、ここでは上部プレ ナム内のナトリウムスラグの有限の質量を慣性質量とするため、気泡界面からナトリウム スラグの質量Mを含む半球状の領域の半径r_cで極座標系の Navier-Stokes 方程式を積分して 得られる Rayleigh-Plesset 方程式、即ち

$$\frac{d^2 r_b}{dt^2} = \frac{r_c}{r_b (r_c - r_b)} \left(\frac{P_b - P_c}{\rho} - \frac{r_b^4 - 4r_c^3 r_b + 3r_c^4}{2r_c^4} \left(\frac{dr_b}{dt} \right)^2 \right)$$
(7)

を解く。なお、r_cはナトリウムスラグの質量M、気泡の半径r_bと次式の関係にある。

$$r_c = \left(r_b + \frac{3M}{2\pi\rho}\right) \tag{8}$$

なお、(7)式は $r_c = \infty$ とすると通常の Rayleigh-Plesset 方程式になる。 カバーガス体積はポリトロープ変化 $PV^n = const.$ に従うとする。即ち、

$$P_{c} = \frac{P_{c0}(Al_{c0})^{n}}{\left(Al_{c0} - \frac{2}{3}\pi(r_{b}^{3} - r_{b0}^{3})\right)^{n}}$$
(9)

となる。初期値は、

$$r_b|_{t=0} = r_{b0}, \ \left. \frac{dr_b}{dt} \right|_{t=0} = 0 \tag{10}$$

である。

このときのナトリウムの運動エネルギーは、半球内の径方向速度

$$v_r = \frac{v_b r_b^2}{r^2} \tag{11}$$

を用いて、 $r = r_b$ から $r = r_c$ まで積分することによって次式で計算される。

$$\int_{r_b}^{r_c} \frac{1}{2} \rho 2\pi r^2 v_r dr = \pi \rho \int_{r_b}^{r_c} \frac{v_r^2 r_b^4}{r^2} dr = \pi \rho v_r^2 r_b^4 \left(\frac{1}{r_b} - \frac{1}{r_c}\right)$$
(12)

なお、ナトリウムスラグの上昇速度は次式で概算できる。

$$v_{lc} = -\frac{1}{A}\frac{dV_c}{dt} = -\frac{1}{A}\frac{d}{dt}\left(Al_{c0} - \frac{2}{3}\pi(r_b^3 - r_{b0}^3)\right) = \frac{2\pi r_b^2}{A}\frac{dr_b}{dt}$$
(13)

また、カバーガスの圧縮エネルギーは

$$-\int_{V_{c0}}^{V_c} P_c dV_{c0} = -\int_{V_{c0}}^{V_c} \frac{P_{c0} V_{c0}^n}{V_c^n} dV_c$$
(14)

$$= -P_{c0}V_{c0}^{n} \left[\frac{V_{c}^{1-n}}{1-n}\right]_{V_{c0}}^{V_{c}} = \frac{P_{c0}V_{c0}^{n}}{n-1} \left(V_{c}^{1-n} - V_{c0}^{1-n}\right)$$
$$= \frac{P_{c0}V_{c0}^{n}}{n-1} \left(\left(Al_{c0} - \frac{2}{3}\pi(r_{b}^{3} - r_{b0}^{3})\right)^{1-n} - V_{c0}^{1-n}\right)$$

である。

添付3 有限距離の Rayleigh-Plesset 方程式

気泡表面から無限遠まで積分する直前の極座標における Navier-Stokes 方程式は以下の通り。

$$-\frac{1}{\rho}\frac{\partial P}{\partial r} = \frac{1}{r^2} \left(2R\left(\frac{dR}{dt}\right)^2 + R^2\frac{d^2R}{dt^2}\right) - \frac{2R^4}{r^5}\left(\frac{dR}{dt}\right)^2 \tag{1}$$

ここで、無限遠までではなく、気泡表面r = Rから有限の距離 $r = R_c$ まで積分する。

$$-\frac{1}{\rho} \int_{P_b}^{P_c} dP = \int_{R}^{R_c} \left[\frac{1}{r^2} \left(2R \left(\frac{dR}{dt} \right)^2 + R^2 \frac{d^2 R}{dt^2} \right) - \frac{2R^4}{r^5} \left(\frac{dR}{dt} \right)^2 \right] dr$$
(2)

を求めると、

$$\frac{P_b - P_c}{\rho} = \left[-\frac{1}{r} \left(2R \left(\frac{dR}{dt} \right)^2 + R^2 \frac{d^2 R}{dt^2} \right) + \frac{R^4}{2r^4} \left(\frac{dR}{dt} \right)^2 \right]_R^{R_c} \\
= -\frac{1}{R_c} \left(2R \left(\frac{dR}{dt} \right)^2 + R^2 \frac{d^2 R}{dt^2} \right) + \frac{R^4}{2R_c^4} \left(\frac{dR}{dt} \right)^2 \\
- \left[-\frac{1}{R} \left(2R \left(\frac{dR}{dt} \right)^2 + R^2 \frac{d^2 R}{dt^2} \right) + \frac{R^4}{2R^4} \left(\frac{dR}{dt} \right)^2 \right] \\
= -\frac{2R}{R_c} \left(\frac{dR}{dt} \right)^2 - \frac{R^2}{R_c} \frac{d^2 R}{dt^2} + \frac{R^4}{2R_c^4} \left(\frac{dR}{dt} \right)^2 \\
- \left[-2 \left(\frac{dR}{dt} \right)^2 - R \frac{d^2 R}{dt^2} + \frac{1}{2} \left(\frac{dR}{dt} \right)^2 \right] \\
= \left(-\frac{2R}{R_c} + \frac{3}{2} + \frac{R^4}{2R_c^4} \right) \left(\frac{dR}{dt} \right)^2 + \left(R - \frac{R^2}{R_c} \right) \frac{d^2 R}{dt^2} \\
= \frac{R^4 - 4R_c^3 R + 3R_c^4}{2R_c^4} \left(\frac{dR}{dt} \right)^2 + \frac{R(R_c - R)}{R_c} \frac{d^2 R}{dt^2}$$
(3)

従って、運動方程式は、

$$\frac{d^2 R}{dt^2} = \frac{R_c}{R(R_c - R)} \left[\frac{P_b - P_c}{\rho} - \frac{R^4 - 4R_c^3 R + 3R_c^4}{2R_c^4} \left(\frac{dR}{dt} \right)^2 \right]$$
(4)

となる。(7)式は $R_c = \infty$ とすると通常の Rayleigh-Plesset 方程式になる。

添付4 Slug モデルソースコード

```
module common_data
real*8 AREA, AM, PCO, ALCO, AN, AKE, &
    WCG, TKE, PCG, ALC, VSL, PBU, WPB, VBF, PVBF, PBINI
real*8 VBU_P, PBU_P
    Size    Size   
                real*8,parameter :: pi=3.141592653
integer,parameter :: MD = 2
end module common_data
!
                Program RK
                 use common_data
1
                integer ICYC
                real*8 F, t, dt, tend
real*8 y(MD), y1(MD), y2(MD), y3(MD)
real*8 k1(MD), k2(MD), k3(MD), k4(MD)
!
                namelist /input/ AREA, AM, PC0, ALC0, AN, VBF, PVBF, PBINI
namelist /control/ dt, tend
1
                t = 0
ICYC = 0
!
                read(5,nml=input)
read(5,nml=control)
1
                open(unit=6,status='UNKNOWN',form='formatted',FILE='LIST06')
                write(6,nml=input)
write(6,nml=control)
1
                open(unit=7,status='UNKNOWN',form='unformatted',FILE='SIMBF')
                call INTRF
!
                 initialization
1
                y(1) = 0.0d0
y(2) = 0.0d0
1
                WPB = 0.0d0
VBU_P = 0.0d0
PBU_P = PBINI
                 Solve ordinary differential equation by 4-th order Runge-Kutta method
1
                do while (t.lt.tend)
1
                         do n=1,MD
                                kl(n) = F(n,y,t)
yl(n) = y(n)+dt*kl(n)/2.0d0
                         enddo
!
                         do n=1,MD
                                 k_{2}(n) = F(n,y_{1},t+dt/2.0d0)

y_{2}(n) = y(n)+dt*k_{2}(n)/2.0d0
                         enddo
!
                        do n=1,MD
    k3(n) = F(n,y2,t+dt/2.0d0)
    y3(n) = y(n)+dt*k3(n)
                         enddo
1
                        do n=1,MD
k4(n) = F(n,y3,t+dt)
                         enddo
!
                        do n=1,MD
                        \begin{array}{l} x_{1}^{(n)} = y_{1}^{(n)} + dt/6.0d0*(k1(n)+2.0d0*k2(n)+2.0d0*k3(n)+k4(n)) \\ enddo \end{array}
1
                        VSL = y(2)

AKE = 0.5d0*AM*VSL**2

ALC = ALC0 - y(1)

WCG = -AREA*PC0*ALC0**AN/(1.0d0-AN)* &

(ALC**(1.0d0-AN)-ALC0**(1.0d0-AN))
                         PCG = PC0*(ALC0/(ALC0 - y(1)))**AN
!
                        VBU = max(AREA*y(1), 1.0d-10)
PBU = min(PBINI,PVBF*(VBF/VBU)**AN)
WPB = WPB + (PBU + PBU_P)*(VBU - VBU_P)/2.0d0
PBU_P = PBU
VBU_P = VBU
1
                         t = t + dt
                        ICYC = ICYC + 1
call WBF(t, ICYC, y)
                         write(6,1000) t, y(1), y(2), AKE, WCG, TKE
!
                enddo
  1000 format(1h ,1P,10(E12.5,' '))
```

```
!
            stop
            end
 !
Т
1
            real*8 function F(n,y,t)
use common_data
!
            integer n, ICYC
real*8 y(MD), t
!
           if (n.eq.1 ) then
    F = y(2)
elseif (n.eq.2) then
    VBU = max(AREA*y(1), 1.0d-10)
    PBU = min(PBINI,PVBF*(VBF/VBU)**AN)
    PCG = PC0*(ALC0/(ALC0 - y(1)))**AN
    F = AREA/AM*(PBU - PCG)
endif

             endif
1
             end function
 1
 !
1
             subroutine INIBF
            subjoatine iNLBF
integer IB, JB, I1, I2, J1, J2, NV, MV, IV
real*4 DR, DZ
character*72 CASEID
character*64 B64
character*10 SNS(15)
data SNS //
           character*10 SNS(12),
data SNS /&
    'LB ', 'VELOCITY ', 'KE
    'WCG ', 'TKE ', 'PCG
    'LC ', 'VSL ', 'PBU
    'WPB ', 'V1 ', 'V2
    'V3 ', 'V4 ', 'V5
                                                                                                                  ',&
',&
',&
',&
',&
!
            IB=1; JB=1; I1=1; I2=1; J1=1; J2=1
NV=0; MV=15; IV=0
DR=1.0; DZ=1.0
!
            write(7) CASEID
write(7) IB, JB, DR, DZ, I1, I2, J1, J2, 0, 1, 1, 1
write(7) NV, MV, IV
write(7) ( (SNS(N)//B64),N=1,MV )
1
             end subroutine
1
1
             subroutine WBF(t, ICYC, y)
            use common_data
integer ICYC
real*8 t, y(MD)
!
            write(7) real(t), icyc, real(y(1)), real(y(2)), &
    real(AKE), real(WCG), real(TKE), real(PCG), &
    real(ALC), real(VSL), real(PBU), real(WPB), &
    real(1.0), real(1.0), real(1.0), real(1.0), &
    real(1.0)
!
            end subroutine
```

サンプル入力 (n=1.4)

```
&input
AREA=9.29629, AM=2.691E4, PC0=1E5, ALC0=0.78526,
VBF=7.3, PVBF=1.0E5, PBINI=2.0d6, AN=1.4,
/
&control
dt=1.0E-5, tend=0.4,
/
```

Rayleigh モデルソースコード

```
module common_data
           dule common_data
real*8 AREA, AM, PCO, ALCO, RBO, AN, VCO, VBO, AKE, &
    WCG, TKE, PCG, RHO, ALC, VSL, PBU, WPB, RC, &
    VBF, PVBF, PBINI
real*8 VBU_P, PBU_P
real*8,parameter :: pi=3.141592653
integer,parameter :: MD = 2
dm module common data
       end module common data
!
       Program RK
!
       use common data
!
        integer ICYC
       real*8 F, t, dt, tend
real*8 y(MD), y1(MD), y2(MD), y3(MD)
real*8 k1(MD), k2(MD), k3(MD), k4(MD)
1
       namelist /input/ AREA, AM, PCO, ALCO, RBO, AN, RHO, &
VBF, PVBF, PBINI
namelist /control/ dt, tend
1
        read(5,nml=input)
       read(5,nml=control)
!
        open(unit=6,status='UNKNOWN',form='formatted',FILE='LIST06')
        write(6,nml=input)
       write(6,nml=control)
!
        open(unit=7.status='UNKNOWN'.form='unformatted'.FILE='SIMBF')
        call INIBF
1
        Initialization
1
        t = 0
       ICYC = 0
!
        v(1) = RB0
        y(2) = 0.0D0
1
       VC0 = AREA*ALC0
VB0 = 2.0D0/3.0D0*pi*RB0**3
!
        WPB = 0.0d0
       VBU_P = VB0
PBU_P = PBINI
1
        Solve ordinary differential equation by 4-th order Runge-Kutta method
!
       do while (t.lt.tend)
!
            do n=1.MD
               kl(n) = F(n,y,t)

yl(n) = Y(n)+dt*kl(n)/2.0d0
            enddo
!
           do n=1,MD

k2(n) = F(n,y1,t+dt/2.0d0)

y2(n) = y(n)+dt*k2(n)/2.0d0

enddo
1
            do n=1,MD
             k3(n) = F(n,y2,t+dt/2.0d0)
y3(n) = y(n)+dt*k3(n)
            enddo
!
            do n=1,MD
                k4(n) = F(n,y3,t+dt)
            enddo
!
            do n=1,MD
             y(n) = y(n) + dt/6.0d0*(k1(n)+2.0d0*k2(n)+2.0d0*k3(n)+k4(n))
            enddo
!
           VSL = 2.0d0*pi*y(1)**2/AREA*y(2) ! velocity of sodium slug

RC = (y(1)**3 + 3.0d0*AM/(2.0d0*pi*RHO))**(1.0d0/3.0d0)

AKE = pi*RHO*y(2)**2*y(1)**4*(1.0d0/y(1) - 1.0d0/RC)

VBU = 2.0D0/3.0D0*pi*y(1)**3
            VBU = 2.0D0/3.0D0/pr/(1)^3
ALC = ALCO - (VBU - VBO)/AREA ! length of CG
WCG = -AREA*PCO*ALCO**AN/(1.0d0-AN)*(ALC**(1.0d0-AN) - &
            ALCO**(1.0dO-AN))
TKE = AKE+WCG ! Total kinetic energy
PCG = PCO*(VCO)**AN/(AREA*ALC)**AN ! pressure of CG
!
           PBU = min(PBINI,PVBF*(VBF/VBU)**AN)
WPB = WPB + (PBU + PBU_P)*(VBU - VBU_P)/2.0d0
PBU_P = PBU
VBU_P = VBU
1
```

```
t = t + dt
ICYC = ICYC + 1
call WBF(t, ICYC, y)
write(6,1000) t, y(1), y(2), AKE, WCG, TKE, ALC, PCG, PBU
Т
          enddo
ī
  1000 format(1h ,1P,10(E12.5,' '))
!
          stop
          end
!
!
!
          real*8 function F(n,y,t)
          use common_data
!
         integer n, ICYC
real*8 y(MD), t
!
         if (n.eq.1 ) then
    F = y(2)
elseif (n.eq.2) then
    VBU = 2.0D/3.0D0*pi*y(1)**3
    PBU = min(PBINI,PVBF*(VBF/VBU)**AN)
    PCG = PC0*(VCO/(VCO - 2.0D0/3.0D0*pi*(y(1)**3-RB0**3)))**AN
    RC = (y(1)**3 + 3.0d0*AM/(2.0d0*pi*RHO))**(1.0d0/3.0d0)
    F = RC/y(1)/(RC-y(1))*((PBU-PCG)/RHO - &
    (y(1)**4-4.0d0*RC**3*y(1)+3.0d0*RC**4)/(2.0d0*RC**4)*y(2)**2)
endif
1
          end function
Т
1
          subroutine INIBF
integer IB, JB, I1, I2, J1, J2, NV, MV, IV
real*4 DR, DZ
character*72 CASEID
          character*/2 CASEID
character*64 B64
character*10 SNS(15)
data SNS /&
'RB ', 'DRBDT
                                                             ', 'KE
', 'PCG
', 'VSL
', 'V3
', 'V6
                                                                                          ۰٬۵۰
۵۰, ۱۰
۵۰, ۱۰
۱۰, ۵۰
                                ', 'DRBD
', 'TKE
', 'PBU
', 'V2
', 'V5
              'WCG
              'LC
              'WPB
'V4
!
          IB=1; JB=1; I1=1; I2=1; J1=1; J2=1
NV=0; MV=15; IV=0
DR=1.0; DZ=1.0
!
          write(7) CASEID
          write(7) IB, JB, DR, DZ, I1, I2, J1, J2, 0, 1, 1, 1
write(7) NV, MV, IV
          write(7) ( (SNS(N)//B64),N=1,MV )
1
          end subroutine
1
1
          subroutine WBF(t, ICYC, y)
          use common data
1
          integer ICYC
real*8 t, y(MD)
!
          write(7) real(t), ICYC, real(y(1)), real(y(2)), &
    real(AKE), real(WCG), real(TKE), real(PCG), &
    real(ALC), real(PBU), real(VSL), real(WPB), &
    real(1.0), real(1.0), real(1.0), real(1.0), &
                          real(1.0)
1
          end subroutine
サンプル入力 (n=1.4)
&input
AREA=9.29629, AM=2.691E4, PCO=1E5, ALCO=0.78526, RHO=814.3, RBO=1.0E-2, VBF=7.3, PVBF=1.0E5, PBINI=2.0d6, AN=1.4,
&control
dt=1.0E-5, tend=0.2,
/e
```