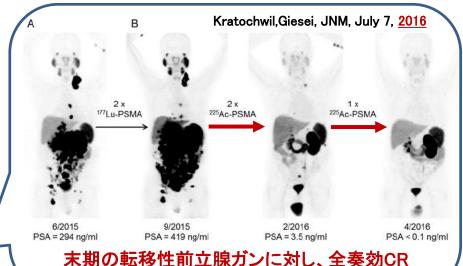


高速実験炉「常陽」における 医療用(治療用)ラジオアイソトープ の製造可能性

令和4年5月10日 国立研究開発法人日本原子力研究開発機構



革新的な核医学治療用RIの国産化ー国際競争力の向上

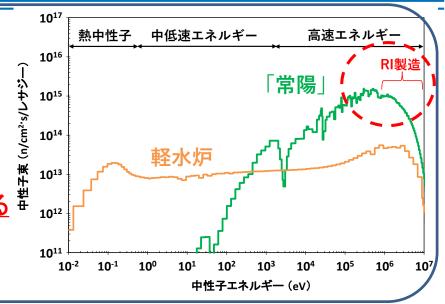
内用療法に利用される主なアルファ線放出RI

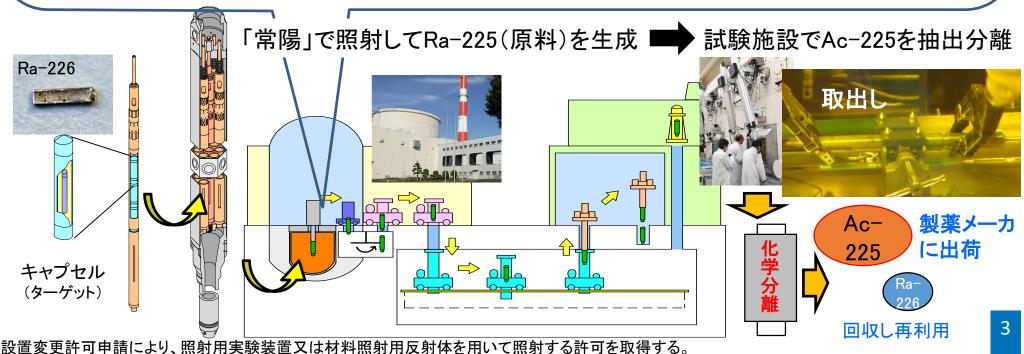
RI	半減期	開発状況
Ra-223	11日	初のα内用療法薬: Xofigo® 欧米で2013年、日本でも2016年に承認。2017年52か国で承認、欧米市場規模が1,000億円(米医療費の0.03%)。
At-211	7.2時間	2021年国内 Phase I開始予定
Ac-225	10日	2020年11月南ア・豪州 Phase I 開始

- (腫瘍マーカー PSA陰性)
- ✓ 多くの症例に対し、短半減期アルファ線放出核種による治療効果を確認。アルファ線の飛程は短く、遮へいも不要。
- ✓ 特にAc-225の治療効果が高く、病室の入退室制限も必要なし。
 ⇒ 世界で治験・臨床研究の競争が激化する一方で、Ac-225は供給不足という課題。
- ✓ 供給拡大を欧米は国の支援を得て実施。米(DOE)、欧(JRC)、カナダ(TRIUMF)等が加速器を用いた製造・配布実績を発表し始めた*。加えて、民間企業も積極的に参画。
 * 9月に開催されたIAEA総会サイドイベントにおける発表
- ✓ 日本は、研究に必要なAc-225の確保が十分とは言えず、医療への実用化に向けた治験の円滑な実施が現状では困難。
- ✓ 日本において、Ac-225製造量を増やす方策が急務。

世界の動向一Ac-225製造方法のオプション

製造法	原理	国∙施設	備考	
Th-229ジェネレーター からの抽出法	核燃料U-233の壊変で生じたTh- 229を使用し、Ac-225を抽出 (Th-229→Ra-225→Ac-225)	米国(ORNL) 独(JRC) 露(IPPE)	製造量はTh-229の量に依存。	
	Th-232の核破砕 (Th-232(p,spall) Ra-225→Ac-225)	カナダ (TRIUMF)	製造実績報告あり。Ac-227フ リーの製造が可能	
加速器法	Ra-226の核変換 (Ra-226(p,2n)Ac-225)	サイクロトロン (日本ではQST+メジフィジックス)	製造実績報告あり。Ac-226混 入が課題。	
	Ra-226の光核反応 (Ra-226(γ,n) Ra-225→Ac-225)	線形加速器 (日本では日立+東北大ELPH、 東大+東北大ELPH)	製造実績報告あり。	
原子炉法	Ra-226の核変換 (Ra-226(n,2n) Ra-225→Ac-225)	露(IPPE) (日本では、都市大+JAEA)	製造実績報告なし。	


- ✓ 現在、米、独、露(いずれも原料のTh-229を保有)のみがAc-225を供給。 総供給量は約2Ci(74GB)/年(前立腺癌で約3000人分)。世界的な供給不足。
- ✓ 供給を増やす方法として、高エネルギー中性子の照射場がないため、世界的に加速器を指向。
- ✓ 日本は「常陽」という高エネルギー中性子照射場を保有。



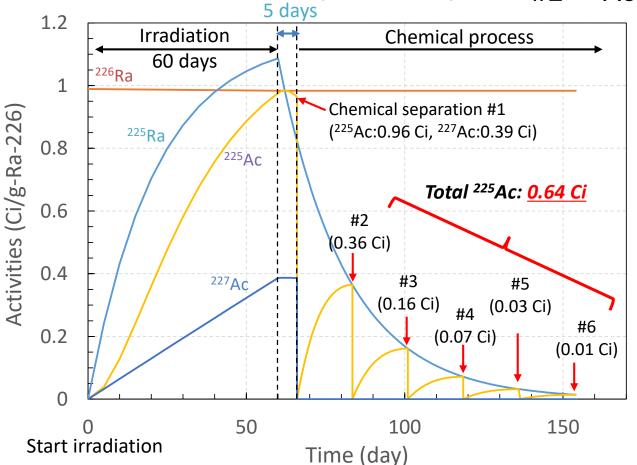
「常陽」を用いたAc-225製造方法

口高エネルギーの中性子照射が可能

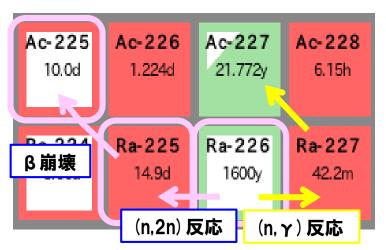
- ✓ Ra-225/Ac-225の製造に向いている
- ロ 高中性子東・大容量の中性子照射が可能
- ✓ 大量製造が可能
- ロ 定格運転日数が60日
- ✓ Ra-225(半減期15日)/Ac-225(半減期10日)に適する ^単
- ロ 運転中は装荷・取出し不可
- ✓ 原子炉停止後に迅速に払出す技術の確立

生成量評価(226Ra照射)

Ac-227

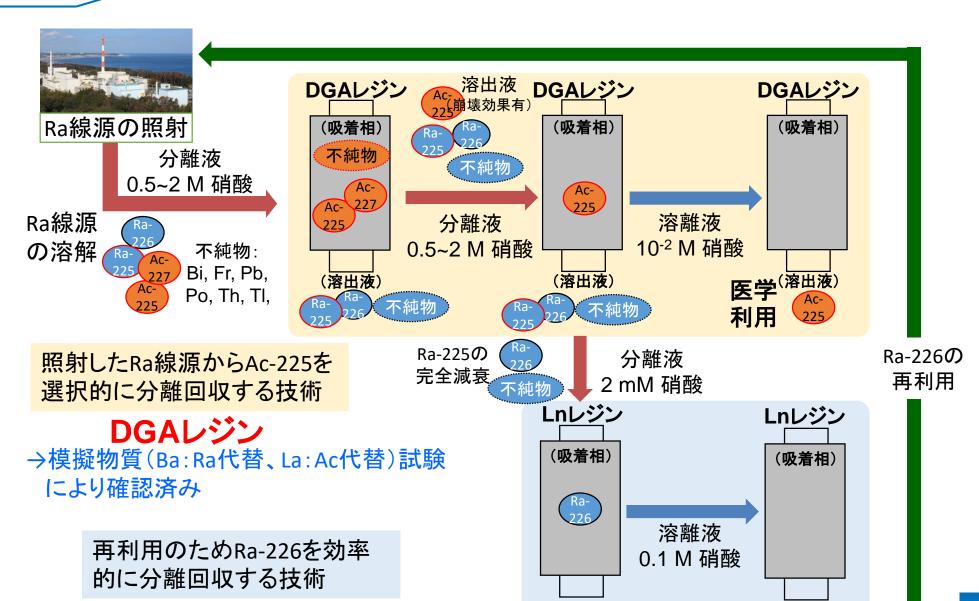

混入

『1g』の²²⁶Raを1cy(60日)照射 → #1 Ac-225 0.96 Ci(36 GBq)生成


Transfer of S/A from Joyo to PIE facility

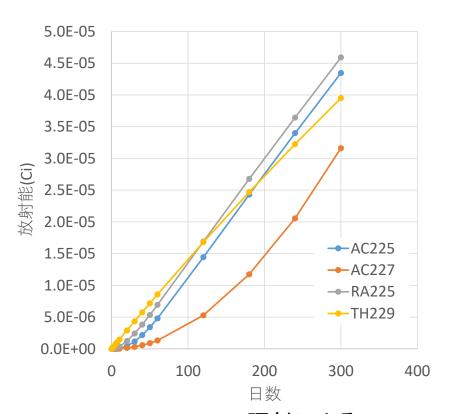
#2~ Ac-225 0.64 Ci(24 GBg)生成

Ac-227 混入なし


(現在の世界供給量 2 Ci (74 GBq/y))

Ra-226(1g)照射によるAc-225製造 (燃焼計算コードORIGEN2.2の計算結果)

化学処理


Lnレジン

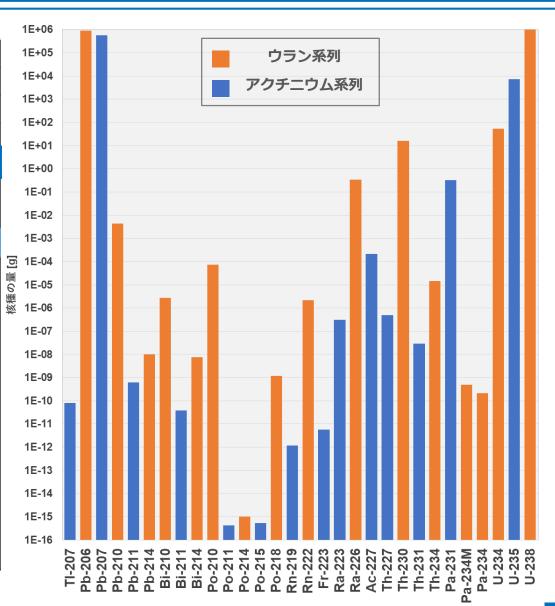
230Th 照射による229Th (ジェネレータ)の製造

『1kg』の230Thを5cy(300日)照射→229Th 0.040Ci(0.19g)生成

『0.19g』の229Thから年間12回、合計0.24Ci(8.9GBq)の225Acを毎年生成可能

Th-230 1g照射による
Th-229(Ac-225ジェネレータ)製造
(燃焼計算コードORIGEN2.2の計算結果)

(現在の世界供給量 2 Ci (74 GBq/y))


その他の副次的な反応、核分裂による生成物(FP等)もできてしまう。

→化学処理に再処理技術の応用が必要

天然ウラン1tonと放射平衡にある娘核種

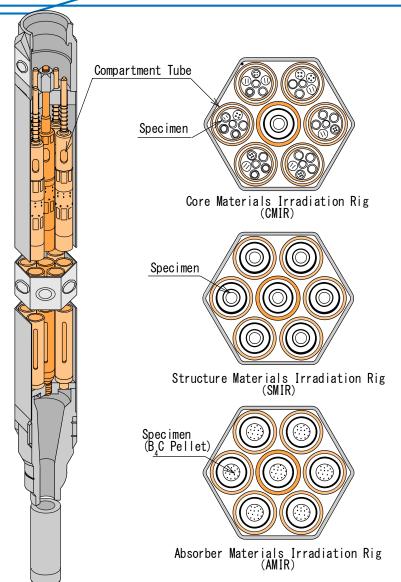
天然ウラン1tonと放射平衡にある核種の量						
Ę	フラン系列	アクチニウム系列				
核種	星	核種	里			
U-238	993 [kg]	U-235	7.20 [kg]			
U-234	53.4 [g]	Pa-231	330 [mg]			
Pa-234	2.17×10 ⁻¹⁰ [g]	Th-231	2.93×10 ⁻⁸ [g]			
Pa-234M	4.81×10 ⁻¹⁰ [g]	Th-227	4.99×10 ⁻⁷ [g]			
Th-234	1.44×10 ⁻⁵ [g]	Ac-227	0.215 [mg]			
Th-230	16.2 [g]	Ra-223	3.04×10 ⁻⁷ [g]			
Ra-226	338 [mg]	Fr-223	5.61×10 ⁻¹² [g]			
Rn-222	2.17×10 ⁻⁶ [g]	Rn-219	1.20×10 ⁻¹² [g]			
Po-218	1.20×10 ⁻⁹ [g]	Po-215	5.29×10 ⁻¹⁶ [g]			
Po-214	1.04×10 ⁻¹⁵ [g]	Po-211	4.21×10 ⁻¹⁶ [g]			
Po-210	7.42×10 ⁻⁵ [g]	Bi-211	3.74×10 ⁻¹¹ [g]			
Bi-214	7.56×10 ⁻⁹ [g]	Pb-211	6.31×10 ⁻¹⁰ [g]			
Bi-210	2.69×10 ⁻⁶ [g]	Pb-207	582 [mg]			
Pb-214	1.02×10 ⁻⁸ [g]	TI-207	8.15×10 ⁻¹¹ [g]			
Pb-210	4.35 [mg]					
Pb-206	894 [mg]					

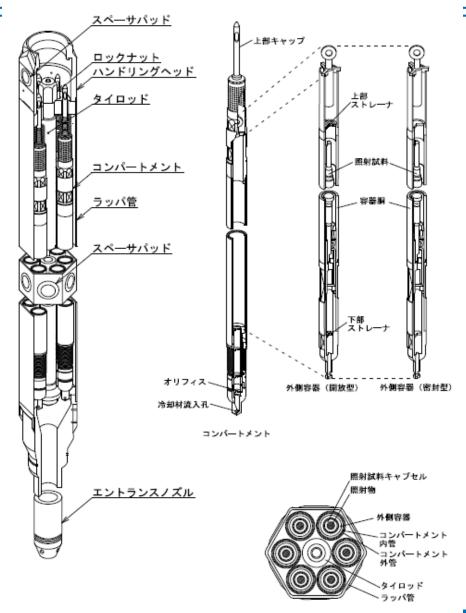
(ORIGENを用いた計算結果)

技術開発計画:原理実証~規模拡大~実用化

年	令和2 2020	令和3 2021	令和4 2022	令和5 2023	令和6 2024	令和7 2025	令和8 2026	令和9 2027
「常陽」 軍転再開			新規制基準対応工事			照射試験	(定期検査)	照射
建転舟用 工程				許可	_	運転再開		
	MEXT公募(概念検討、(上学処理実証)					**	証試験2
研究開発 主要工程		:	急速取出し実 照射試験準備	•		実 <mark>証試験</mark> 1 10mCi レベル ・照射・化学処	<mark>し、</mark> 化5	Ci レベル 学処理自動化
						RRAY TO TIVE	#	
				許認可取得(原子炉、核燃		用の目的追加。 マプセル開封用	
JAEA 実施項目			照射キャプセ	ル・集合体製	作		重追加、設備追	
			模擬集合体	での急速移送・	取出し実証		(死在1失的 十 /
			照射後RI分離	推·抽出技術開	発	RI抽出	検証	
				原料(Ra-226)	調達			

● 規模拡大・実用化に向けて留意すべき点


- ▶ 0.1Ci(3.7GB)レベルの実証までの原料は機構内在庫を活用。実用化に向けては、原料調達が大きな課題。 今後発生する廃棄線源、海外ウラン鉱山(Ra-226はU-238*1の崩壊により生成される)からの入手など 調達ルートを調査中。
- ▶ 令和10年度以降の実用化に向けた照射には燃料調達が課題。



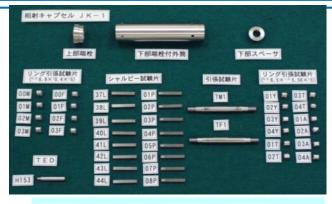
参考

参考)材料照射用反射体、照射用実験装置

材料照射用反射体

照射用実験装置(本体設備の一例)10

参考)材料照射用反射体



ハンドリングヘッド 上:CMIR 下:SMIR, AMIR

CMIR試料ホルダ構成例

AMIRキャプセル構成例

集合体外観

SMIRキャプセル構成例