別紙1 最	大放射能濃度の計算の手順の比較	(チャンネルボックス)	CBを例とした)
-------	-----------------	-------------	----------

規定	説明して欲しい内容	占推定法	区間推定法		
			濃度比法	換算係数法	濃度分布評価法
6.1.2.2 元素成分条件		_	—		
6.1.2.2.1 起源元素の選	・ どのように起源元素を選定したか	選定方法:附属書 F の例(放射化計算と	選定方法:附属書GではCBを評価対象物とし		附属書 K では、黒鉛ブロックを評価対
定方法	・ その結果、どの起源元素を選定したか	版射化字分析結果の比較)では、CBに関	ており、G.1.1に示しております起源元素の選定		家物としていますので、 左記と同じ方
	・ スクーリングをした場合、 その理由と	して、6060に関する計算で万州での比較給封を行うため Co-60の起源元表 Co	の例示のように103元素からG.1.1.3に示して		伝によりし、同し計価対象核性しめる [14C 36C] 60Co 63Ni 90Sr 94Nh
	スクリーニングの内容	のみとしています。	いよう4段階のスクリーニンクロ(級国1参照)		⁹⁹ Tc. ¹²⁹ I. ¹³⁷ Cs. 全g を生成する「C.
			を美施して、1000、現日L2 埋設などの中間核性 (14C 36C1 60C。 63N; 90S 94NIb 99Tp 129I		N, O, S, Cl, K, Fe, Co, Ni, Cu,
	起源元素は、評価対象とする放射化金		(Π C, \circ CI, \circ CO, \circ CNI, \circ SF, \circ TNO, \circ TC, \Box CI, \Box CI, \Box CI, \Box CI, \circ CO, \circ CI, \circ CI, \circ CO, \circ CI, \circ C		Y, Zr, Nb, Mo, Th, U (16元素)」
	属等の種類(材料)ごとに、次の考え	なお、最大放射能濃度の評価に適用する	すす		を起源元素として選定しています。
	方を踏まえ,選定する。 	場合は、CBの評価対象核種例としました	× 7。 注1 スクリーニングの理由と内容		
	素として存在していると考えられ	129J 137C。 全 g からの選定け 区間堆	必要な放射計算に絞り込むために実施		
	る元素とともに、評価する材料の	定法と同じです。	一次: U, Th以外の放射性同位体を除いた元素		
	化学組成から選定する。		に絞る。		
			(除外元素:Tc, Pm, Bi, Po, At, Rn, Fr,		
	生成する元素は、起源元素として		Ra, Ac, Pa, Np, Pu, Am, Cm, Bk, Cf,		
	抽出しなければならない。		Es, Fm, Md, No, Lr:21元素)		
	なお 起源元素は 次のステップ (全		二次:評価対象核種を生成する元素に絞る。		
	て又はいずれか)によって、対象から		(表G.3参照) (於如元素:H. Ho. Li, Po. P. Mg. Al		
	スクリーニングすることができる。		Si. P. Ca. Sc. Ti. Ga. Ge. As. Se. Br.		
	一 原子炉内で放射化によって生成す る放射性同位休け 起源元素から		Rh, Pd, Ag, Cd, In, Sn, Ce, Pr, Nd,		
	除外できる。ただし、天然に広く		Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,		
	存在する放射性同位体は除外しな		Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg,		
	い。		Tl, Pb:47元素)		
	化によって生成する放射性同位		三次:附属書Hの図H.19に示す製造工程(熱処		
	体。		埋:溶解等、化字処埋:遠元等)を踏ま		
	一 評価対象核種を生成しない元素		ス鋼材中に残存する元素に絞る。 (主CE会照 詳細な理由及び相切は第2		
	- 材料の精錬時などに揮散する可能		(衣伝の)の原体(お田)		
	性が高いと判断できる元素は、起		(除外元素·F Ne Ar Kr Bh Sr Y		
	源元素から除外できる。ただし、		Ru, Sb, Te, I, Xe, Cs, Ba, La : 15元素)		
	り家初の範囲及び計価によって は、完全に除去されず、放射化計		四次 : 放射能生成比0.01%以上の元素に絞る。		
	算に考慮した方がよい元素もあ		(表G.6,7参照)		
			(除外元素:C, Na, V, Cr, Mn, Zn:6元素)		
	- 計画対象核性の総主风放射能に対し する寄与が小さい元素は 起源元し		起源元素の選定結果:評価対象核種を生成する		
	素から除外できる。		「N, O, S, Cl, K, Fe, Co, Ni, Cu, Zr,		
			Nb, Mo, Th, U (14元素)」を起源元素とし		
			て選定しています。		
6.1.2.2.2 起源元素の元	• 3つの方法のうちどの方法で収集し	<u>収集万法:</u> 附属書 F の例では、分析によ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★	<u>収集万法</u> : 元素テータの収集段階においては、3 毎額の収集また: (ハセニュカサー++±とミエ明書・ 四〇		
素成分データの収集方	たか	³ 75	理想い収集刀伝(刀切、入脈・材料証明書、JIS 相格) を全て適用しており その適田方注け 附		
法	• その方法を選んだ理由	の比較検証用ですので、分析による収集	属書1の表1.3に示しています。		
		CT.			

2022年3月8日

			-	
	 評価対象とする放射化金属等の種類、材料を考慮した上で、次のいずれかの方法で起源元素の元素成分データを収集する。 一放射化金属等の試料(品質管理用保存試料など)又は同じ材料の種類の試料の化学分析を行う方法。 一放射化金属等と同じ材料種類の試料,又は同種の材料種類の試料の化学分析結果の文献データ,材料証明書を収集する方法。 一放射化金属等と同じ材料種類に関する材料規格の元素成分データを収集する方法。 	なお、最大放射能濃度の評価に適用する場合は、区間推定法と同じです。	 選択理由:元素データの収集段階においては、その使用の有無にかかわらず、幅広く元素分析データを収集するために、全ての手法を適用するものです。なお、この収集した分析データの中から入力用の元素データを設定するために、次のステップでデータを選択します。 ①分析データが得られている場合:分析データを選択する。 ②分析データが得られなかった場合:文献データを選択する。 ③主成分元素の場合:分析データに替えて、規格値(保守的な評価とするため)を適用してもよいと考えます。 	
			なお、上記を踏まえ、CBの例として入力用の元 素分布の設定データとして選択した結果を表 I.9に示しています。	
6.1.2.2.3 起源元素の成 分条件の設定方法	 ・ 3つの方法のうちどの方法で設定したか ・ その方法を選んだ理由 起源元素の元素成分条件は、次のいずれかの方法で設定する。 ー代表値を設定する方法 収集した起源元素の元素成分データによって、濃度の代表値を設定する。 ー濃度分布から設定する方法 収集した起源元素の元素成分データの濃度分布を踏まえ、複数の代表的濃度(例 平均濃度,信頼上限値など)を設定する。 ー濃度範囲を踏まえ、複数の代表的濃度を設定する。 ー濃度範囲を設定する方法 収集した起源元素の元素成分データの濃度範囲を踏まえ、最大濃度、最小濃度を設定する。 注記 検出が困難な元素に関する濃度分布の評価方法は、附属書日を参照。 	 設定方法:附属書 F の例では、代表値を 設定する方法 選択理由: Co-60 に関する計算と分析と の比較検証用ですので、評価対象とした CB の採取試料の代表値となる分析結果 で設定します。 なお、最大放射能濃度の評価に適用する 場合は、区間推定法と同じです。 その設定した濃度分布から、保守的とな る最大値、又は信頼上限値を適用します。 	 設定方法:適用しました分析データは、表I.9に 示します元素データを使用して、「濃度分布から 設定する方法」を適用しています。 なお、主成分である Fe 及び Zr は、CB の例で は「濃度範囲を設定する方法」を適用しています。 選択理由:評価対象物の元素濃度範囲を網羅し た評価をランダムサンプリングで行うために、 上記で選択した分析データ(平均値及び標準偏差)を踏まえて入力用濃度分布を設定します。 このため、基本は「濃度分布から設定する方法」ですが、保守的に設定できる「濃度範囲を設定する方法」ですが、保守的に設定できる「濃度範囲を設定する方法」(JIS 規格の元素成分の許容範囲で設定) として、主成分元素には、「一様分布」を適用してもよいと考えます。 	
6.1.2.3 中性子条件	—	-	—	
a) 中性子フルエンス 率・中性子スペクトル	 ・使用した中性子輸送コードの種類 ・そのコードを選んだ理由 ・中性子フルエンス率、中性子スペクト ルの設定に至るまでの考え方、設定の 判断方法、根拠 	中性子輸送コード:MCNP 選定理由: 添付 2 及び採取した試料位置 の中性子条件を正確に評価するために、 燃料集合体内を詳細にモデル化した中性 子フルエンス率・中性子スペクトル計算 できる MCNP を適用した。 設定方法: 附属書 F の F.1.3 b)の燃料棒 の出力及びボイド率を用い,燃料集合体 内を詳細にモデル化した中性子フルエン ス率分布計算を,MCNP によってサイク	中性子輸送コード: 単位燃料集合体核特性計算 コード 選定理由: 添付3及び軸方向出力分布、ボイド 率分布を考慮して軸方向の中性子条件を設定す るために、単位燃料集合体核特性計算コードに よる中性子フルエンス率・中性子スペクトル算 出結果を使用した。 設定方法: 附属書GのG.2.2に示します。 ①中性子フルエンス率・中性子スペクトルの炉 内分布の評価計算	

		と こうふく 山舟 てい うっぷ ちっつ	1) 小学学校的主体之后,这个一种情况不可能是一个	
		に、これから対象ナヤンネルホックスの	D1て表版本物面について、 燃焼度及び出力密度	
		試料採取位直における甲性子フルエンス	の余件を、それそれサイクル甲期の炉心平均	
		一 率・ 甲 性 ナ ス ヘ ク ト ル を 設 定 し よ す 。	燃焼度, 及び正格出力密度として, ナヤンネル ボータコ かった	
		われ、 見十七日化油 座の 河江に 法田子フ	ホックス設直位直の中性ナノルエンス率・中	
		なわ、取人似別能很良の評価に適用する	性子スペクトルを昇出します。	
		場合は、上記万伝と回して9か、取人とな ス証在位果た認知1まナ	2)代表炉心の3次元核熱水力解析によって、炉	
		る評価位置を選択します。	内住方回位直に応した軸方回出刀分布,示イ いまいまま	
			ト学方巾を昇出しより。	
			3)2)で氷めた軸方回出刀分布、ホイト挙分布を	
			利用し、1000個をかイト挙じり押、出力密度補	
			止を行い、炉心中天部及び東外向部における	
			アヤンイルホック人位直の中性ナノルエンス 変 中世フィックレルナション	
			半・甲性ナイベクトルを計算して設定します。 また、四尾書LのLoool、ルニーナトシス 中	
			また、附属者1の1.2.2.2.1a)に示りよりに、中	
			住宇 にこれについても中世スフルエンス束	
			111回、炉心りについても中性ナノルエンへ卒・	
			中住ナイベントルを訂昇して設定しまり。	
			し、中国ナノルエンへ竿・中国ナイベンクトルの速 空	
			L 1) $G194 昭射冬州の手順に上って選択した「昭$	
			170.1.2.4 旅引末中の子順によりて選バした「旅 射時間」を跡まう CB の后内のローテーショ	
			が時间」を増よん、CD のかりのローク ショ いパターン(実) たランダムサンプリングに上	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
			ダムサンプリングに上って沖完]ます(以西	
			「数宝術」	
			2)①の炬内分布の評価計算で評価した中性子フ	
			ルエンス密・中性子スペクトルの分布より 1)	
			で選択した評価位置のローテーションごとの	
			中性子フルエンス率・中性子スペクトルを選	
			択・決定します。(必要回数実施)	
b) 放射化新面積	・2つの方法のうちいずれの方法で放	設定方法:放射化計算コードの内蔵ライ	設定方法:放射化計算コードの内蔵ライブラリ	
	自化粧面積を佐成したのか	ブラリを使用。	<u>~~~~~</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		なお、ORIGEN-Sのスペクトルインデッ	なお、ORIGEN-Sのスペクトルインデックスを	
	・その方法を選んだ埋由	クスを用いて内蔵ライブラリを補正しま	用いて内蔵ライブラリを補正します。	
		す。	選択理由:中性子フルエンス率・中性子スペクト	
	次のいずれかの方法で設定する。	選択理由:中性子フルエンス率・中性子ス	ルの違いを放射化計算に反映するために、	
	一使用する放射化計算コードに内蔵	ペクトルの違いを放射化計算に反映する	ORIGEN-S を使用するので内蔵ライブラリを	
	又は附属されている放射化断面積	ために、ORIGEN-Sを使用するので内蔵	使用した。	
	フイノフリから選択する。このと き 是新の計算コード及び放射化	ライブラリを使用した。		
	いていた しん			
	一中性子フルエンス率の評価結果か			
	ら、放射化範囲の中性子スペクト			
	ルの特性を考慮して放射化断面積			
	・を設定する。			
6.1.2.4 照射条件	a)とb)のいずれを選定したか	設定万法: Co-60 に関する計算と分析と	設定万法:   代表照射履歴(照射時間)]を設定し、	
	• その方法を選んだ理由	の比較検証用ですので、詳細に「個別に照	その収集して設定した照射時間の人力用分布か	
	・各方法において、照射条件を設定する	射腹  塗」を設正しよす。(図 F.3 参照) 	らフンダムサンフリングします。 	
	場合の適切性を判断すろ理由(判断方		設守理由・評価対色しナス CD 今休の昭計冬川	
			<u> 取た生田:</u> 計Ⅲ刈家とりる UB 王仲の忠別朱件 た細羅」を設定したてために、この昭軒 田町の	
			を胴維しに取止とりるにめに、ての照射時間の	

B) EX [013.021 (2013.021 (2014))     (約40) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (					1
$ \frac{1}{12} $		法)は、同様に保守性を判断できる理	設定理由:評価対象とした CB 目体の中 性子昭射日数及び中性子昭射停止日数を	分布 (平均及び標準偏差) を設定した上で、ラン ダムサンプリングに上って計算田の入力条件を	
日本部はおいたのためまたますが、			111 派別日報人の「111」派別日正日報で	シートレキャー	
Buttager, 201, 192703         空田子子(1920)(1927030)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(1920)(		a) 個別に照射履歴を設定する方法	連転リイクルことに子えるため。		
<ul> <li> <ul> <li></li></ul></li></ul>		放射化金属等ごとに、中性子の照		<u> 安 当 任</u> :約13,000 仲の CB の 照射 时间の 夫態調	
<ul></ul>		射履歴に基づき、適切又は保守的	→ <u> 安当性:</u> 個別に、評価対象とした CB の	金結果を踏まえて、代表照射分布(平均 1 786	
L14390 $(1,1,2,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ $(2,1,2,3,1)$ <		に代表する照射条件を設定する。	「詳細な照射記録で設定します。	日、標準偏差=654日)を設定しています。(表	
日本の認知性によるは、高大校林裕濃築の評価に適用する たた、常く感情をいたです。 なら、高粱酸素に加速になって、のご用について、のご用 、ためいため、このないため、こので、のご用 、ためいため、このないため、こので、のご用 、ためいため、このないため、こので、のご用 、ためいため、このないため、こので、のご用 、ためいため、このないため、こので、のご用 、ためいため、このないため、こので、のご用 、ためいため、このないため、こので、のご用 、ためいため、このないため、このないため、こので、 、のご用、用用のの気をしたまた。 、ため、このないため、このないため、こので、のご用 、ためいため、このないため、こので、のご用 、ためいため、このないため、このないため、こので、のご 用用用のの気をしたまた。 、ためいため、このないため、このないため、こので、のご 用用のの気をしたまた。         ためいて、のごので、 のごので、のご用ので、のごので、こので、のごの 用の用のの気をしたまた。         ためいて、のごので のごので、のごので、のごので、こので、こので、 のごので、のごので、のごので、のごので、のこので、 、のごので、のごので、のごので、のごので、のこので、 、のごので、のごので、のごので、のごので、のこので、 、のごので、のごので、のごので、のごので、のごので、のごので、のこので、 、いて、いて、いて、いて、いて、いて、、こので、いて、いて、いて、いて、いて、いて、いて、いて、いて、いて、いて、いて、いて、		b)代表照射履歴を設定する方法 中		I.14 参照)	
加工         加		性子の照射復歴に基づき、放射化			
$B_{12}$ $B_{12$		金属寺のクルーノを適切又は保守	なお、最大放射能濃度の評価に適用する	<u>放射化計算の入力用の設定方法</u> :上記の CB の	
Sult 1995 NULL distance		りに代表9 る照射余件を設定9 7	場合は、区間推定法と同じですが、保守的	照射時間の実態調査結果から設定した代表照射	
<ul> <li></li></ul>		していた。 かれ、協管仮料が十、連座LV/+17671	に最大値などを評価条件として選択しま	分布から、ランダムサンプリングすることによ	
第3:11.1 世際の1981から発展を のであびにしておいたの皿フロ のであびにしておいた。     「「「」」」「「「」」」」」「「」」」」」」」「「」」」」」」」「「」」」」」」		浩安の方法がある。 では、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一日」、 「「一」、 「「一」、 「「一」、 「「一」、 「「一」、 「「一」、 「「一」、 「「一」、 「「一」、 「」、 「「一」、 「」、 「」、 「」、 「」、 「」、 「」、 「」、 「	す。	って、照射時間を必要回数設定します。	
日本の設定したが出生         「中に使きする600%年のの現立で からきまましたが出た         「中に使きする600%年のの現立 からきまましたが出た         「中に使うする600%年のの現立 からまたまかけたます」」         「中に使うする600%年の日本の現立 たいていたます」」         「日本の目本の目本の目本の目本の目本の目本の目本の目本の目本の見たいた」」           6.1.3.1 取得化計算が き         ・ なく、その原始に計算が決を思めたが かったいたまからした。 かられたりにないたいたいたまからいた。 かられたりのないためなれば目的にはないたます。 中に使うなったいたいたいたいたまからいた。 かったいたまからいたいたいたまからいた。 うったを表が出た。 いたいたいたいたいたまからいたいたいたまからいた。 いたいたいたいたいたまからいた。 いたいたいたいたいたまからいたいたいたまからいた。 かられたまからいたいたいたまからいた。 いたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいた		場合は複数の放射化全属等を適			
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		切に代表する照射条件の範囲又は			
6.13 放射化計算の         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <		分布を設定してもよい。			
6.131 法対化計算の 法         ・ なぜ、その説所作計算方法を知んだの か         激視力強、CORGENS         激波力強、CORGENS         激波力強、CORGENS           321 法対理         か         2012         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014         2014	6.1.3 放射化計算		_	-	
보か철민료 보기철민료 エー エー철민료 エー エー エー エー エー エー エー エー エー철민료 エー エー エー エー エー エー エー エー エー エー基田 エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー エー 	6.1.3.1 放射化計算方	・なぜ、その放射化計算方法を選んだの	選択方法: ORIGEN-S	選択方法: ORIGEN-S	
(m)     2     (m)     m) <td>注</td> <td><i>t</i></td> <td>選択理由:添付4及び中性子フルエンス</td> <td>選択理由:添付4及び中性子フルエンス率・中</td> <td></td>	注	<i>t</i>	選択理由:添付4及び中性子フルエンス	選択理由:添付4及び中性子フルエンス率・中	
Image: Section of the sectin of the section of the section of th	124	13	率・中性子スペクトルの違いを放射化計	性子スペクトルの違いを放射化計算に反映する	
IndexNotestartSelection togetherElection togetherSelection togetherS			算に反映するために、スペクトルインデ	ために、スペクトルインデックスを設定するこ	
Image: Constraint of the second s			ックスを設定することによって放射化計	とによって放射化計算に反映可能な ORIGEN-	
6.1.32         計算用人力条 (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power (Power ) (Power ) (Power (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Power ) (Pow			算に反映可能な ORIGEN-S を使用した。	Sを使用した。	
Linux 3 H Phi AGA A Single Carbon Carbon A C	6132 計質田 λ 力冬		設定方法・代表条件(ここでは一評価対象	設定方法・入力パラメータ及び条件をランダム	
(中国地区200%)は、人力パクスクタン び条件をランダムに抽出するれば、 (加水)が       (日間地区200%)は、人力パクスクタン び条件をランダムに加出するれば、 (加水)が       (日間地区200%)は、人力パタスクタン び条件をランダムに加出するれば、 (加水)が       (日間地区200%)は、人力パタイタン (日本)       (日間地区200%)は、人力パタイタン (日本)       (日本)			CBの評価対象位置の条件)で設定する方	に抽出する方法	
13.3 放射化計算の         一         通数次決策条件を設定するかどち。 か         遊児2曲: C0-00 に関する計算と効大び。 空の方法を選んだ理由         遊児2曲: C0-00 に関する計算の評価に適用する かねたどからランダムサンブリンプで行う必要 があるため。           6.1.33 放射化計算の         本お、最大放射縮濃度の評価に適用する 場合は、代表条件は保守的条件となりま す。         たお、最大放射縮濃度の評価に適用する 場合は、代表条件は保守的条件となりま す。         放け化計算の定面         設定した計 算用入方条件を使用して、適用する評価対象核種に対する濃度 比 (最大放射縮濃度を評価が多核剤に対する濃度 比 (最大放射縮濃度を評価する場合は算術平均 値を適用)を決定します。           6.1.33.1 点幣定決 4.33.1 点幣定決 6.1.33.1 点幣定決 6.1.33.1 点幣定決 6.1.34.1 点幣定以         ・ の要計算数 ・ 必要計算数         1 点         -         -           6.1.33.1 点幣定決 6.1.33.1 点幣定決 6.1.34.1 点幣定決         ・ の要計算数 ・ の数で使当とした理由         1 点 2.0 数で十分と判断した理由: 点幣定注 方式の研究 OB の物定の部 価額性 成料耗取位置) での保守性を含ま スい研究 以研究 次以研究 次以研究 次以研究 以研究 方式の構成。(Z)は特徴上現価を適用する なられ) -         -	作の設定	・区間推定法の場合、人力ハラメータ及	法		
適切な代表条件を設定するかどちら か ・ その方法を選んだ理由避決理由:Cor60 に関する計算と分析と の比較検証用に、特定の評価対象物及び 評価位置を設定するため。作為な評価を行うために、入力条件を設定した 分布などからランダムサンブリングで行う必要 があるため。・ その方法を選んだ理由本は、最大放射捲濃度の評価に適用する 場合は、代表条件は保守的条件となり す。                                                                                                                                                                                                                                                                                                   		び条件をランダムに抽出するか又は		選択理由:評価対象物の条件範囲を網羅した無	
$v$ • $\epsilon$ onfilde 200 And 201 $h$ $e$ confilde 200 And 201 $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$		適切な代表条件を設定するかどちら	選択理由: Co-60 に関する計算と分析と	作為な評価を行うために、入力条件を設定した	
· その方法を選んだ理由     評価配置を設定するため、 部あるため、     があるため、     があるため、       · なお、最大放射能濃度の評価に適用する 場合は、代表条件は保守的条件となりま す。 <u>放射化計算の定価(急度比の評価)</u> :設定した計 算用入力条件を使用して行った放射化計算の結 及.(Koy 核種と評価対象核種に対する濃度 比 (最大放射能濃度を評価する場合は算術平均 値を適用)を決定します。        6.1.33.1 点批注法     · 必要計算数 、     · 必要計算数 ・ 公要計算数     計算数:1 点        6.1.33.1 点批注法     · 必要計算数 ・ その数で妥当とした理由     計算数:1 点        · 2.0数で妥当とした理由     計算数:1 点        · 2.0数で妥当とした理由     計算数:1 点        · 2.0数で安当とした理由     計算なの比較 検証用の場合は、特定の CB の特定の評価 価加度 高材採取加速面)での保守性を含ま ない 部算。 又は最大放射推測度の場合は、CB の最大 濃度の位置での保守性(元素濃度、照射時) 同に最大値、又は電頻上取種を適用する。		か	の比較検証用に、特定の評価対象物及び	分布たどからランダムサンプリングで行う必要	
· その方法を選んた理由in landae linke / in lewin landae linke / in lewin landae linke / in lewなお、最大放射能濃度の評価に適用する 場合は、代表条件は保守的条件となります。 が用した 第用人力条件を使用して行った成材は許の結果 (Key 核種と評価対な縁種の放射能濃度) を 使用して、適用する評価対象核種に対する濃度 比(最大放射能濃度を評価する場合は算術平均 値を適用) を決定します。6.1.3.31 点排定法- ・ 必要計算数- ・ ・ ・ の数で安当とした理由-                                                                                                                   			評価位置を設定するため	があるため	
blackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblack <th< th=""><td></td><td>・その万法を選んた埋田</td><td></td><td></td><td></td></th<>		・その万法を選んた埋田			
場合は、代表条件は保守的条件となります。第用入力条件を使用して行った放射化計算の結果(Kgy 核種と評価対象核種の放射指慮度)を使用して、適用する評価対象核種に対する濃度 使用して、適用する評価対象核種に対する濃度 し、最大成射能濃度を評価する場合は算術平均 値を適用)を決定します。6.1.33 放射化計算の 計算数の設定-6.1.331 点推定法 ・ その数で妥当とした理由・その数で妥当とした理由・その数で妥当とした理由ごの保守性を含ま 水い計算。 スは最大成射能濃度の場合は、CB の最大 濃度の位置での保守性 (CF素濃度、照時時 間に最大版、以計類LPM時の合置中する)。			なお、最大放射能濃度の評価に適用する	放射化計算の実施(濃度比の評価):設定した計	
Allow reconsistence with the reconstruction of t			場合は代表条件は保守的条件とかりま	第日入力条件を使用して行った放射化計算の結	
6.1.3.3 放射化計算の 計算数の設定     -     -     -     -       6.1.3.1 点推定法     ・必要計算数     計算数:1点     -     -       6.1.3.3.1 点推定法     ・必要計算数     計算数:1点     -       · Co数で妥当とした理由     計算数:1点     -       · Co0 に関方ご計算と分析との比較 検証用の場合は、特定の CB の特定の評 価給が(資料採取位置)での保守性を含ま ない計算、 又は最大放射能濃度の場合は、CB の最大 濃度の位置での保守性(伝素濃度、照射時 間に最大放射能濃度の場合は、CB の最大 濃度の位置での保守性(伝素濃度、照射時 間に最大放力能     -				単(Kev 核種と評価対象核種の放射能濃度)を	
ConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruintConstruint			/ 0	6田して 商田する証価計免核語に対する濃度	
日本         日				、)」して、 週川 ) 3日 四八 3 (() (里()) ) 3 (() )	
6.1.3.3 放射化計算の 計算数の設定       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <th></th> <th></th> <th></th> <th>  11 (取八)(双))形版反こけ回りる勿口は昇州十分    信を高田) を決定! ます</th> <th></th>				11 (取八)(双))形版反こけ回りる勿口は昇州十分    信を高田) を決定! ます	
OLASA IXATICALAR     Construction       計算数の設定     計算数:1点       6.1.33.1 点推定法     ・必要計算数       ・その数で妥当とした理由     子の数で子分と判断した理由:点推定法 は、Co-60 に関する計算と分析をの比較 検証用の場合は、特定の CB の特定の評 価部位 健料採取位置)での保守性を含ま ない計算、 又は最大放射能濃度の場合は、CB の最大 濃度の位置での保守性(元素濃度、照射時 間に最大値、又は信頼上限値を適用する) を含む計算で評価するため。	6102 毎日ル旦答の		_		
計算数の設定       ・必要計算数       計算数:1点       -         6.1.3.3.1 点推定法       ・その数で妥当とした理由       計算数:1点       -         その数で妥当とした理由       その数で十分と判断した理由:点推定法       「人口の日うる計算と分析との比較 検証用の場合は、特定の CB の特定の評       -         低部位(試料採取位置)での保守性を含ま ない計算、 又は最大放射能濃度の場合は、CB の最大 濃度の位置での保守性(元素濃度、照射時 間に最大値、又は信頼上限値を適用する) を含む計算で評価するため。       -       -	0.1.3.3 成別化計算の	_			
6.1.3.3.1 点推定法       ・必要計算数       計算数:1点       -         ・その数で妥当とした理由       その数で子分と判断した理由:点推定法 は、Co-60 に関する計算と分析との比較 検証用の場合は、特定の CB の特定の評 価部位(試料採取位置)での保守性を含ま ない計算、 又は最大放射能濃度の場合は、CB の最大 濃度の位置での保守性(元素濃度、照射時 間に最大値、又は信頼上限値を適用する) を含む計算で評価するため。       -	計算数の設定				
・ その数で妥当とした理由       その数で子分と判断した理由:点推定法 は、Co-60 に関する計算と分析との比較 検証用の場合は、特定の CB の特定の評 価部位(試料採取位置)での保守性を含ま ない計算、 又は最大放射能濃度の場合は、CB の最大 濃度の位置での保守性(元素濃度、照射時 間に最大値、又は信頼上限値を適用する) を含む計算で評価するため。	6.1.3.3.1 点推定法	・必要計算数	<u>計算数:</u> 1点	_	
<a href="https://www.example.communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communication-communicatio-communicatio-communication-communicatio-communicatio-</th> <td></td> <td>・その数で妥当とした理由</td> <td></td> <td></td> <td></td>		・その数で妥当とした理由			
は、Co-60 に関する計算と分析との比較 検証用の場合は、特定の CB の特定の評 価部位 (試料採取位置) での保守性を含ま ない計算、 又は最大放射能濃度の場合は、CB の最大 濃度の位置での保守性 (元素濃度、照射時 間に最大値、又は信頼上限値を適用する) を含む計算で評価するため。			<u>その数で十分と判断した理由:</u> 点推定法		
検証用の場合は、特定の CB の特定の評 価部位 (試料採取位置) での保守性を含ま ない計算、 又は最大放射能濃度の場合は、CB の最大 濃度の位置での保守性 (元素濃度、照射時 間に最大値、又は信頼上限値を適用する) を含む計算で評価するため。			は、Co-60 に関する計算と分析との比較		
価部位(試料採取位置)での保守性を含ま ない計算、         又は最大放射能濃度の場合は、CBの最大         濃度の位置での保守性(元素濃度、照射時         間に最大値、又は信頼上限値を適用する)         を含む計算で評価するため。			検証用の場合は、特定の CB の特定の評		
ない計算、 又は最大放射能濃度の場合は、CBの最大 濃度の位置での保守性(元素濃度、照射時 間に最大値、又は信頼上限値を適用する) を含む計算で評価するため。			価部位 (試料採取位置) での保守性を含ま		
又は最大放射能濃度の場合は、CBの最大         濃度の位置での保守性(元素濃度、照射時         間に最大値、又は信頼上限値を適用する)         を含む計算で評価するため。			ない計算、		
濃度の位置での保守性(元素濃度、照射時 間に最大値、又は信頼上限値を適用する) を含む計算で評価するため。			又は最大放射能濃度の場合は、CBの最大		
間に最大値、又は信頼上限値を適用する) を含む計算で評価するため。			濃度の位置での保守性(元素濃度、照射時		
を含む計算で評価するため。			間に最大値、又は信頼上限値を適用する)		
			を含む計算で評価するため。		


	•	•		
6.1.3.3.2 区間推定法	・実施した計算数	_	<u>計算数:</u> 附属書Iに示します計算例では40点	
	• その数で十分と判断した理由		フの料本(八)小岐にした四本、長年間の村間間	
			<u> その級で十分と判断した理由:</u> 核種間の相関関 底にはちまえため、技種でした改善計算回数は	
			共なりまりが、例外した10-94 の場合は C0-00 との相関   広数 0.83 であり 計   首数 としてけ 30	
			「「「「「「「」」」、「「」」」、「「」」」、「「」」」、「「」」、「」」、「	
			した評価例を示すため40点としています。	
			(計算数の充足性に関しては、第3回会合にお	
			ける日本原子力学会への説明依頼事項に対する	
			回答の回答 13(4)を参照ください。)	
6.1.4 表面汚染の取扱い	・表面汚染を除染したか	同右	標準では理論的方法の説明のため、汚染分に関	
	<ul> <li>・除染した場合、除染が十分と判断した</li> </ul>		する具体例までを示しておりませんが、下記の	
	根拠		ように考えます。	
	<ul> <li>除染しない場合、表面に付着した放射</li> </ul>		表面汚染分の考慮:	
	性物質の放射能濃度の評価結果		表面汚染分の放射能濃度を評価して、放射化分	
	・理論計算法で決定した放射能濃度に		の放射能震度に加えることが基本です。	
	加えなかった場合、その埋由		表面汚染分の考慮が不要な場合の例:	
			除染などによって、表面汚染分の放射能濃度へ	
	理論計算法の適用において、放射化		の影響が低いと考えられる場合は、表面汚染分	
	金属寺の表面に付着した放射性物質		を考慮する必要はないと考えます。	
	合は、表面の汚染を考慮する必要は		・埋設における汚染分の緑量評価への影響に比	
	ない。また、除染しない場合は、放射		へ小さいと考えられる涙度以下(現段階では 明確でない)の担合	
	化金属等の表面に付着した放射性物		明確でないりの場合	
	質の放射能濃度を評価し、必要に応   「て理論計質注で決定」た放射能濃			
	度に加える。			
6.3.1 理論的方法の妥当		_	_	
性確認				
6.3.1.1 妥当性確認の	<ul> <li>放射化計算方法及び計算手順が期待</li> </ul>	結果:分析ー計算の比較及び保守性の評	同左	
方法	される結果を与えたか	価によって、適用する方法・手順によっ	(左記の分析―計算結果の比較検証及び計算コ	
	<ul> <li>そのとうに判断した根拠。</li> </ul>	て、廃棄体の放射能濃度を精度よく決定	ード及び入力条件の明確化を確認する)	
		することが出来ることを確認します。		
	・計算が、恒吊的に、正確に美施できる	(6.4 の説明参照)		
	か	恒常的に、正確に実施: 妥当性が確認され		
	・そのように判断した根拠	た計昇コートを使用し、計昇手順書を正		
		の、八万米件音を作成した上で于順に伯 って宝協! 計算の記録を建すことで 再		
		- ジンズ心し、町昇りになどなりことし、円 現性が得られる評価結果とたっていま		
		判断した根拠:第三者によって上記の方		
		法(検証結果含む)、手順及び入力データ		
		が確認でき、かつ、再評価もできるように		
		なっているため。		
6.3.1.2 不確かさの扱	• 不確かさの評価方法と結果	_	不確かさの評価方法:計算結果である濃度比(平	
しい			均値) に関しては信頼限界を評価し、組合せる	
			Key核種濃度(非破壊測定の場合)に関しては、	

			変動係数を評価し、双方を乗ることで、評価した	
			放射能濃度の不確かさの範囲を評価します。	
			<u>結果の不確かさの試算: Nb-94</u> の場合で約1.7	
			倍のばらつきを含みます (添付5参照)	
6.4 放射能濃度の評価	<ul> <li>・最大放射能濃度との比較に用いる推</li> </ul>		最大放射能度の評価に適用する濃度比:「算術平	
における公産	完故財営連定の質中方法と対甲	(附属書 F は、Co-60 に関する計算と分	均濃度比」を適用します。	
1047173117文		析との比較検証用に実施しているため、	これに加え、放射化計算の結果のばらつき(附属	
	・ 提示する評価 有度 値と その 根拠	保守性を加味した最大放射能濃度の評価	書 I の表 I.21 の計算結果では、 最も小さい Cl-	
		ではありませんので、下記の評価精度で	36の場合で最大濃度比/算術平均濃度比=2.4、	
		す。)	最も大きい Sr-90 の場合で最大濃度比/算術平	
			均濃度比=5.9)は、10倍以内に収まっており、	
		放射性核種 核種分析值。 放射化計算結果	濃度比法を適用できる範囲を制限するスクリー	
		(Bq/t) (Bq/t)	ニングレベル (例えば 1/10) を設定することに	
		60 Co $3.3 \times 10^{12}$ $3.4 \times 10^{12}$	よって、最大放射能濃度を超えないことの確認	
		<b>注</b> ^{a)} 核種分析値の計数値の統計変動 (計数 誤差) は、"±0.2%"であった。	が可能です。	
			推定放射能濃度の算出方法と結果:「算術平均濃	
			度比 にKev核種(Co-60)の放射能濃度(非破	
			壊外部測定によって評価した結果、または理論	
		なお、最大放射能濃度の評価に適用する	計算によって評価した結果)を乗じることで、評	
		場合は、計算条件に保守的条件(人力条件	価対象核種の放射能濃度を決定します。	
		に最大値、乂は信頼上限値の適用)を設定		
		することで俗度を確保でさます。	濃度比法による放射能濃度の計算結果	
			評価対象物:CB Nb-94濃度	
			濃度比法 算術平均 7.0 E+9 Bo/t	
			本として、「濃度比法」は、この Co-60 放射能濃	
			度に Nb-94/Co-60 濃度比を乗じて評価した。	
			結果の不確かさの試算・Nh-94の場合 約17倍	
			のばらつきを含む(添付5参昭)	
			また、下図 (Nb-94 $\succ$ Co-60 の放射能濃度の計	
			算結果の散布図)のように理論計算による計算	
			結果とCBの代表試料の分析結果の比較によっ	
			て保守性も把握しています。	
			⁹⁴ Nb(Bq/t)	
			10"	
			10"	
			10-	
			10"	
			10"	
			10" 80"566	
			10'	
			10 相関係数:0.89(0)	
			濃度比=8.9×10 ⁵ (幾何平均)	
			10 ¹⁰ 10 ¹⁰ 10 ²⁰ 10 ²¹ 10 ²² 10 ²³ 10 ²⁴ 10 ²⁵ 10 ²⁴ 10 ²² 10 ²⁸	
			©Co(Bq/t)	

	注記(	CB 中央部の分析結果を●で示す、比較は計	
	算結果	と(○)の最大領域の結果(赤破線の○で囲っ	
	た部分)	かとの比較となる。	

# 添付1

# <u>評価対象核種からの起源元素の選定方法の例</u> (材質ZrTN804D、評価対象核種Ni-63の場合の選定例)

本標準で示す評価対象核種の放射化計算の際に必要となる「起源元素」の選定手順の具体例を、ZrTN804Dの評価対象核種 Ni-63を例にした場合の選定手順とその過程における起源源元素の選定結果例を以下に示す。



# 添付2 第2回検討チーム会合 資料 2-1-3 P33 – 中性子輸送計算コード(例 MCNP)の妥当性-



# 添付3 第2回検討チーム会合 資料2-1-3 P34 - 中性子輸送計算コード(例 単位燃料集合体核特性コード)の妥当性-

#### 1. 概要

単位燃料集合体核特性コードは燃料集合体の反応度や出力分布等の核的性質 を解析するコードであり,GEや東芝などメーカーが独自に開発してきた解析コードである。 単位燃料集合体核特性コードを用いる場合は,必要に応じて出力密度及びボイド 率による補正を行う。

### 2. 機能

単位燃料集合体核特性コードは、遮蔽解析に際して以下の機能を有する。

1) 1体の燃料集合体を対象に、中性子の空間的・エネルギー的振舞いを評価する。

2) 単位燃料集合体核特性コードは、二次元の体系を扱うことができる。

# <u>3. 解析フロー</u>

単位燃料集合体核特性コードの解析フローを図に示す。

# <u>4. 使用実績</u>

単位燃料集合体核特性コードは,原子力施設の炉心設計及び中性子束分布評価に広く用いられており,豊富な実績がある。

# 5. 検証

コードの導入評価1)が実施されていることを確認。 臨界試験/実機運転実績等による検証1)が実施されていることを確認。

1) (株)東芝, "沸騰水型原子力発電所燃料集合体核特性計算手法", TLR-006Rev.1, 平成20年



# 添付4 第2回検討チーム会合 資料2-1-3 P13 放射化計算コード(例 ORIGEN-S)の妥当性

#### 1. 概要

ORIGEN-Sコードとは、米国オークリッジ国立研究所にて開発されたORIGENシリーズの一つであ る。SCALEシステムの一部であり、ORIGEN-79同様3群のスペクトルを使用可能である。 一連のORIGENコードを使用して計算できる内容は、次のとおりである。

- 1) 燃焼計算 燃料の核種組成(重量),照射期間(運転パターン),炉内中性子束あるいは炉の比出 カを入力することによって,各核種の放射能量,中性子やガンマ線発生数,核分裂生成物やアクチノイド 核種の生成量を計算する。
- 2) 放射化計算 評価対象である構造材の材料組成,中性子束,照射履歴を入力することによって,構造 材の放射化放射能量を計算する。
- 3) 崩壊計算 評価対象である材料組成,中性子束,照射履歴を入力することによって,生成,消滅計算から得られる放射性核種の発熱量を計算する。

### 2. 使用実績

ORIGEN-Sは、炉内構造物の放射化計算,原子炉施設の廃止措置に使用されている。

### 3. 検証方法

汎用コードの導入評価¹⁾が実施されていることが確認されている。 大型実験/ベンチマーク試験による検証²⁾が実施されていることが確認されている。

1) SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation, ORNL/TM-2005/39, Version 5.1, Vols.I–III,November (2006)

2) K.Tanaka et al., "Radioactivity evaluation for Main Steam Line and Suppression Chamber of small type BWR", Progress in Nuclear Science and Technology Volume 4 (2014) pp.836-839

# 添付5 区間推定法(濃度比法)における不確かさの評価

評価方法	評価方法内におけるばらつきの程度	放射化計算結果以降の評価で生じ るばらつきの評価
濃度比法 (附属書 I の 表 I.21 の結果を使 用し新たに計算し た結果)	<ul> <li>・同一グループ内でのばらつきを考慮した入力条件での濃度 比の計算結果のばらつき:</li> <li>Nb-94 での試算例:</li> <li>幾何平均に対する 99%信頼上限:1.37倍</li> <li>・非破壊測定結果(Co-60)のばらつき:</li> <li>測定精度:±20%[1]</li> <li>(L1 廃棄体に収納している廃棄物は体積線源と想定でき、 より均一廃棄体に近いと仮定されるが、保守性を加え充填</li> </ul>	平均に対して、濃度比の評価値と 非破壊測定値のばらつきを加味す ると、評価値は約 1.7 倍となる可 能性がある。
	固化体の測定評価結果を適用した)	

参考資料

[1] 酒井ら, 充填固化体の放射能評価について, 原子力バックエンド研究, Vol5, No1(1998)

#### 第3回会合における日本原子力学会への説明依頼事項に対する回答の回答13(4)

標準に記載されている内容ではありませんが、必要データ数の考え方としましては、次の考え方が適用できると考えます。

必要データ数の考え方の例として、IAEA Nuclear Energy Series No. NW-T-1.18 に示される評価に必要なデータの充足数に関する引用文献[1]では、図 13(4)-4 の評価結果(相関係数 0.8 の場合の 100 点のデータまでの統計値の推移を評価した例)などを踏まえ、相関係数に応じて、表 13(4)-2 のように計算数が充足性を満たす数量(引用文献ではスケーリングファクタ法における必要データ数)として示されており、このデータ数の充足性を満たす数量の考え方が、同じ相関係数を利用して評価する理論的方法にも適用可能と考えます。



図 13(4)-4 The changes in correlation coefficient with the number of samples (相関係数 0.8 の例[1])

表 13(4)-2 Required number of data according to the correlation coefficient and based on a 95% confidence limit [1]

		Correlation Coefficient								
	0.6	0.7	0.8	0.9	0.95					
Required number of data	40	35	30	25	20					

出典 1 KASHIWAGI M., MÜLLER W., LANTÈS B., "Considerations on the activity concentration determination method for low-level waste packages and nuclide data comparison between different countries", Safety of Radioactive Waste Management (Proc. Int. Conf. Cordoba, 2000), IAEA, Vienna (2000) 175–179.



図 F.3-チャンネルボックスの中性子の照射履歴(概念図)

### 表 G.3---放射化計算による核種生成の有無の評価例(二次スクリーニング評価)

記源元素						評価対象核種					単位:Bq
(1次SI ^{a)} 径)	¹⁴ C	³⁶ C1	⁶⁰ Co	⁶³ Ni	⁹⁰ Sr	⁹⁴ Nb	⁹⁹ Tc	129 _I	¹³⁷ Cs	²³⁷ Nn	全a
	-	-	-	-	51	110	-	-		-	
- Шо	<u> </u>	<u> </u>	<u> </u>		<u> </u>	_				_	
I i		_	_	_	_	_	_	_	_	_	_
Be	_	_	_	_	_	_	_	_	_	_	_
B	_	_	_	_	_	_	_	_	_	_	_
C	1.00 ×10.5	_	_	_	_	_	_	_	_	_	_
N	$1.00 \times 10^{-10}$	_	_	_	_	_	_	_	_	_	_
N 0	$1.04 \times 10^{-5}$										
E	$3.31 \times 10^{-2}$										
F	3.01 ×10	_	_	_	_	_	_	_	_	_	_
Ne	1.36 ×10 °	_	_	_	_	_	_	_	_	_	_
Na	4.91 ×10 ·	_	_	_	_	_	_	-	_	_	_
Mg	_	_	_	_	_		_		_	_	
Al	_	_	_	_	_	_	_	_	_	_	_
51	_	_	_	_	_		_		_	_	
P	_	-	_	_	_	_	_	_	_	_	_
5	_	1.90 ×10 °	_	_	_	_	_	_	_	_	_
CI	_	5.99 ×10 °	_	_	_	_	_	-	_	_	_
Ar	-	2.64 ×10 ·	_	_	_	_	-	-	_	_	_
K	_	4.88 ×10 °	-	_	-	_	_	_		-	_
Ca	_	_	_	_	_	_	_	_		_	_
Sc	-	_	_	_	_	_	-	_	_	_	_
Ti	-	-	-	-	-				-	_	_
V	-	-	1.13 ×10 ⁻⁰	-	-	_	-	-	-	_	-
Cr			4.5/ ×10 3	-							
Mn	-	-	5.97 ×10 /	9.45 ×10 ⁻¹	-		-	-	-	_	-
Fe	-		2.14 ×10 ⁹	2.34 ×10 ⁴				-	-	_	_
Co	-	-	4.87 ×10 ⁻¹²	5.29 ×10 ⁸	-	_	-	-	-	_	-
Ni		-	4.53 ×10 ¹⁰	1.94 ×10 ¹⁰	-			-	-	_	_
Cu	-	-	4.84 ×10 8	3.04 ×10 ⁹	-	_	-	-	-	_	-
Zn		-	2.01 ×10 ⁻¹	3.07 ×10 ⁵	-			-	-		_
Ga	-	-	-	-	-		-	-		_	_
Ge	-	-		-	-	-	-	-	-	-	-
As	-	-		-	-	-	-	-	-	-	-
Se	-	-	-	-	-	-	-	-	-	-	-
Br	-	—	-	—	-	_	-	-	-	—	-
Kr	-	-	-	-	2.51 ×10 ⁰	-	-	-	-	-	-
Rb	-	-	-	-	5.14 ×10 ³	-	-	-	-	-	-
Sr	-	-	-	-	5.98 ×10 ⁵	-	-	-	-	-	-
Y	-	-	-	-	1.34 ×10 ⁴	-	-	-	-	-	-
Zr	—	—	—	-	2.41 ×10 ⁴	8.64 ×10 ⁰	4.57 ×10 ⁻²	-	—	-	-
Nb	-	—	-	-	2.61 ×10 ⁻²	3.94 ×10 ⁸	1.65 ×10 ⁻²	-	—	-	-
Mo	-	-	-	-	1.88 ×10 ⁻¹	$1.60 \times 10^{-4}$	5.33 ×10 ⁵	-	-	-	-
Ru	-	—	-	-	—	4.47 ×10 ⁻¹	-	-	-	-	-
Rh	-	-	-	-	-	-	-	-	-	-	-
Pd	-	-	-	-	-		-	-	-	-	-
Ag	-	-	-	-	-	-	-	-	-	-	-
Cd	-	-	-	-	-	-	-	-	-	-	-
In	-	-	-		-		-	-			-
Sn	-	-	-	-	-	-	-	-	-	-	-
Sb	-	-	-	1	-		-	-	3.25 ×10 ⁻¹		-
Te	-	_	-	-	_	—	-	3.49 ×10 ⁴	3.84 ×10 ⁴	-	_
Ι	-	-	-	1	-		-	4.80 ×10 ³	6.60 ×10 ⁴		-
Xe	-	-	-	-	-	-	-	-	1.94 ×10 ⁹	-	-
Cs	-	-	-	-	-	-	-	-	6.16 ×10 ⁸	-	-
Ba	-			_					$1.71 \times 10^{-5}$	_	_
La				_				-	9.66 ×10 ²		_
Ce	-	-	-	-	-			-		_	_
Pr	_	_		_	_					_	_
Nd	_	_		_	_			_			_
Sm	_							_			
Eu	-	-		-	-	_	_	-		_	_
Gd	-	_	_	_	_	_	_	-	_	_	_
Tb				-		_		-		_	-
Dy				_	_	_		-	-	_	-
Ho				-		_		-		_	_
Er	—	—	—	_	—	_	—	-	_	_	_
Tm	-	-	-	-	-	-	-	-	-	-	-
Yb	-	—	—	-	—	_		-	-	_	-
Lu				_					_	_	_
Hf	-	—	—	—	-	_	—	-	-	_	—
Та	-	-	-	-	-	—	-	-	—	_	-
W	-	—	—	-	—	—	—	-	-	_	—
Re		-			-	_				_	-
Os	-	_	_	_	_	_		-	_	_	_
Ir	-	-	-	-	-	_	-	-	-	_	-
Pt	-	-	-	-	-	_		-	-	_	-
Au	-	-	-	_	-		-	-			_
Hg		_	_	_	_		_				_
Tl			_	_		_	_			_	
Pb	-	_	_	_	_	_	_		_	_	_
Th	_			_	5.77 ×10 ¹⁰	_	1.88 ×10 ⁶	2.04 ×10 ⁴	5.77 ×10 ¹⁰	1.92 ×10 ⁴	1.10 ×10 ⁹
U				_	9.35 ×10 ⁹		1.27 ×10 ⁶	8.29 ×10 ³	2.85 ×10 ¹⁰	2.41 ×10 ³	1.22 ×10 ¹⁰
合計	1.04 ×10 ¹⁰	6.04 ×10 ⁸	4.92 ×10 ⁻¹²	2.30 ×10 ¹⁰	6.70 ×10 ¹⁰	3.94 ×10 ⁸	3.68 ×10 °	6.84 ×10 ⁴	8.87 ×10 ¹⁰	2.16 ×10 ⁴	1.33 ×10 ¹⁰
注記1	上記は,一次	スクリーニングま	尾施後の元素(安	定同位体核種が有	存在する元素)に	対して放射化計算	真を実施した結果	である。			
注記2	放射化計算条	件は、計算コート	: ORIGEN2.2,	断面積ライブラリ	): PWR41J33, 月	限射時間:30y, 「	中性子フルエンス	、率:4.72×10 ¹⁴ cr	m ⁻² /s, 元素量:各	·元素とも等量((	0.001kg)
注記3	ORIGEN上の開	間値(CutOff)は,3.	.7Bq (=1.0×10 ⁻¹⁰	Ci)とした(ただし、	照射時間60yでの	生成量で核種生	成の有無を判断).				
1											

	スラグとして除去	低沸点による揮発	希ガス	希少元素	還式要認定にお除去	用途が限定される
三次 スカリーニング 対象元素	原料である鉱石に含まれるが, 高炉などで原料を溶解分離し たときのスラグとして大半は 除去。	高炉の温度が2000°C近くとなることを考慮すると、飢渇する可能性が高い(括弧内は沸点)。	岩石・鉱物に微量含まれるが, 希ガスが不純物として金属に 混入する可能性は,低い。	希少性が高く,不純物として金 属に混入する可能性は、低い。	高原における還元性雰囲気によっ て、精練健全で除去。 ただし、酸素を吹付けて脱炭する場 合もある。	特定の用途に利用する場合だ けに含まれる(括弧内は、利用 される場合の主な用途)。
O ^{a)}	_	_	_	_	0	_
F	_	_	_	_	_	(フッ素コーティング)
Ne	_	_	0	_	_	_
Ar	_	_	0	_	—	_
Kr	_	_	0	_	_	_
Rb	_	○ ( 696°C)	_	_	—	(ルビジウム原子時計)
Sr	0	○ (1 639°C)	_	_	—	_
Y	0	_	_	_	_	_
Ru	_	_	_	0	—	(水素化触媒)
Sb	0	○ (1 640°C)	_	_	_	_
Te	0	○ (1 390°C)	_	_	_	_
Ι	_	_	_	_	—	(抗菌処理)
Xe	_	_	0	_	—	_
Cs	0	○ ( 760°C)	_	_	_	_
Ba	0	○ (1 537°C)	_	_	_	_
La	0	_	_	_	_	_
注記 "○"と 注 [◎] ZrTN	t, 金属に対する三次スクリー 1804D の元素のうち, O は, 柞	ーニングが可能と考えられるな 幾歳的強度向上を目的とした	対象元素を示す。 添加が行われているため,評	価対象(三次スクリーニング	の対象外)とした。	

#### 表G.5—三次スクリーニングで除外対象とできる元素例(ZrTN804D, SUS304の場合の例)

	<zrtn804d></zrtn804d>										
	分析	データ ^{a)}	女前	データ ^{b)}	成分管理目標値	推定左在濃度					
元素		平均值		平均值	(質量分率%)	レベル					
	アータ数	(質量分率%)	アータ数	(質量分率%)	(JIS H 4751 ^[3] )	(質量分率%)					
С	16 (0)	1.6 ×10 -2	4 (2)	1.0 ×10 -2	≦ 0.027	1.0 ×10 -2					
N	21 (0)	3.2 ×10 -3	10 (1)	3.2 ×10 -3	$\leq$ 0.008	5.0 ×10 -3					
0	5 (0)	1.3 ×10 ⁻¹	5 (0)	1.1 ×10 ⁻¹	_	1.0 ×10 ⁻¹					
Na	0 (0)	_	0 (0)	—	_	1.0 ×10 ⁰					
S	0 (0)	_	1 (0)	3.5 ×10 -3	—	5.0 ×10 -3					
Cl	0 (21)	( 5.0 ×10 ⁻⁴ )	0 (0)	_	_	5.0 ×10 -4					
K	0 (4)	( 1.0 ×10 ⁻⁴ )	0 (0)	—	—	1.0 ×10 -4					
V	0 (0)	—	2 (0)	2.4 ×10 -3	_	1.0 ×10 -3					
Cr	0 (0)	—	18 (0)	1.1 ×10 ⁻¹	$0.07 \sim 0.13$	1.0 ×10 ⁻¹					
Mn	0 (0)	_	5 (1)	1.0 ×10 -3	≦ 0.005	1.0 ×10 -3					
Fe	5 (0)	2.1 ×10 -1	18 (0)	2.1 ×10 ⁻¹	$0.18 \sim 0.24$	1.0 ×10 ⁻¹					
Со	0 (21)	( 7.6 ×10 ⁻⁴ )	5 (0)	4.7 ×10 -4	≦ 0.002	5.0 ×10 ⁻⁴					
Ni	11 (10)	4.2 ×10 -3	3 (1)	3.5 ×10 -3	≦ 0.007	5.0 ×10 -3					
Cu	0 (0)	_	3 (0)	1.7 ×10 -3	$\leq$ 0.005	1.0 ×10 -3					
Zn	0 (0)	—	0 (0)	—	—	1.0 ×10 -2					
Zr	16 (0)	9.8 ×10 ⁻¹	1 (0)	9.8 ×10 ¹	残部	9.8 ×10 ⁻¹					
Nb	0 (21)	( 3.9 ×10 ⁻³ )	1 (0)	1.2 ×10 -2	≤ 0.010	5.0 ×10 -3					
Мо	0 (21)	7.6 ×10 ⁻⁴	1 (1)	2.0 ×10 ⁻³	$\leq$ 0.005	1.0 ×10 -3					
Th	0 (16)	( 1.0 ×10 ⁻⁵ )	0 (0)	—	_	1.0 ×10 -5					
U	1 (20)	( 8.1 ×10 ⁻⁵ )	2 (0)	3.5 ×10 -5	≦ 3.5E-04	5.0 ×10 -5					
			S	US304							
	/\+r				成公签理日搏症						
元素	(力が)	アーター		アーター	成力官 生日 保 他 ( <i>)</i> ( 母長公家()	推定存在濃度					
九帝	データ数	平均個 (質量分率%)	データ数	平均個 (質量分率%)	(USC 4205 ^[4] )	(質量分率%)					
C	21 (0)	$4.9 \times 10^{-2}$	13 (3)	5.9 ×10 ⁻²	< 0.08	$5.0 \times 10^{-2}$					
N	21 (0)	$4.5 \times 10^{-2}$	5 (0)	$6.9 \times 10^{-2}$		$5.0 \times 10^{-2}$					
Na	0 (0)		1 (0)	$9.7 \times 10^{-4}$		$1.0 \times 10^{-3}$					
S S	9 (0)	3.9 ×10 ⁻³	1(0)	$1.6 \times 10^{-2}$	< 0.03	$1.0 \times 10^{-2}$					
C1	0 (9)	$(73 \times 10^{-4})$	1 (0)	$7.0 \times 10^{-3}$	_ 0.05	$1.0 \times 10^{-3}$					
K	0(4)	$(10 \times 10^{-4})$	$\frac{1}{0}$ (1)	$(30 \times 10^{-4})$	_	$1.0 \times 10^{-4}$					
V	0(0)	( 1.0 ×10 )	1 (0)	$\frac{(5.0 \times 10^{-2})}{4.6 \times 10^{-2}}$	_	$5.0 \times 10^{-2}$					
Cr	9 (0)	1.8 ×10 ⁻¹	18 (0)	$1.9 \times 10^{-1}$	$18.00 \sim 20.00$	$2.0 \times 10^{-1}$					
Mn	9 (0)	$1.5 \times 10^{-0}$	11 (5)	$1.3 \times 10^{-0}$	< 2.00	$1.0 \times 10^{-0}$					
Fe	9 (0)	$7.2 \times 10^{-1}$	4 (0)	$7.0 \times 10^{-1}$	_	$7.0 \times 10^{-1}$					
Со	21 (0)	1.2 ×10 ⁻¹	3 (0)	7.7 ×10 ⁻²	_	1.0 ×10 ⁻¹					
Ni	21 (0)	8.7 ×10 ⁰	18 (0)	9.4 ×10 ⁰	$8.00 \sim 10.50$	$1.0 \times 10^{-1}$					
Cu	0 (0)	_	5 (0)	1.8 ×10 ⁻¹	_	1.0 ×10 ⁻¹					
Zn	0 (0)	_	1 (0)	4.6 ×10 ⁻²	_	5.0 ×10 ⁻²					
Zr	5 (7)	2.8 ×10 ⁻⁴	1 (0)	1.0 ×10 -3	—	5.0 ×10 ⁻⁴					
Nb	15 (0)	2.0 ×10 -2	2 (0)	9.5 ×10 -3		1.0 ×10 -2					
Мо	15 (6)	1.6 ×10 ⁻¹	5 (0)	1.8 ×10 ⁻¹	—	1.0 ×10 ⁻¹					
Th	0 (9)	( 5.0 ×10 ⁻⁷ )	0 (1)	( 1.0 ×10 ⁻⁴ )	_	1.0 ×10 -7					
U	0 (9)	( 5.0 ×10 ⁻⁷ )	0 (1)	( 2.0 ×10 ⁻⁴ )	—	1.0 ×10 -7					
注記1	上記は,分析デ	ータ及び文献データの	平均値から,各元家	************************************	■ ・ダー)を評価した結果である。						
注記2	データ数は,検	出値のデータ数と, その	横に括弧書きで検	出限界以下のデータ数	も合わせて記載した。						
注記3	平均値は,検出	データの平均値を記載	した。ただし,検出	限界データしか存在しな	い元素は,括弧書きで検出限界						
	データの平均値	を記載した(ZrTN804D	のUは検出データ	+検出限界データの平:	均値を括弧書き						
	で記載した)。										
<b>注記</b> 4	存在濃度レベル	の推定が困難な元素(2)	ZrTN804DのNa, Z	Zn)は, 地殻存在割合 ^{[24}	^{9]} を利用して推定存在濃度レベル						
	を評価した。										
<b>注</b> ^{a)}	分析データ:放射	化計算条件を設定する	ために事業者が評	価対象廃棄物(材料)中	コの元素分析を実施した結果[2]						
b)	文献データ・一般	公開文献情報[5]~[28]									

# 表 G.6—起源元素の推定存在濃度レベル例(オーダー)

#### 表 I.3-各元素の元素分析データ収集結果(ZrTN804D)

			7	i 寄分析データ ⁴						21	<b>東データ⁶⁾</b>				成分管理目標值
元政		対義正	規分布	王規分布	(実数)	—村	盼布		対数正	規分布	正规分布	(実数)	—様	分布	(118 H 476(2))
10.00	データ数	平均值 (賞量分率%)	標準備差 (平均値+1a)	平均值 (質量分率%)	標準優差	最小值 (質量分率%)	最大値 (質量分率%)	データ数	平均值 (質量分率%)	標準優差 (平時編+1a)	平均値 (質量分率%)	標準優差	最小值 (賞量分字%)	最大值 (質量均率%)	(第重分率%)
N	21 (0)	3.1 ×10-8 ( -2.5 )	3.7 ×10 ⁻⁸ ( 0.08 )	3.2 ×10 ⁻⁸	5.2 ×10 ⁻⁴	2.2 ×10 ⁻⁸	4.1 ×10 ⁻⁰	10 (1)	2.8 ×10 ⁻³ ( -2.6 )	4.6 ×10 ^a ( 0.22 )	3.2 ×10 ⁻⁸	2.0 ×10 ⁻⁰	1.4 ×10 ^a	8.0 ×10 ⁻⁸	≤ 0.008 (不純物)
0	5 (0)	1.3 ×10 ⁻⁴ ( -0.9 )	1.4 ×10 ⁻⁴ ( 0.01 )	1.3 ×10 ⁻⁴	3.7 ×10 ⁻⁸	1.3 ×10 ⁻⁴	1.4 ×10 ⁻⁴	5 (0)	1.1 ×10 ⁻⁴ ( -0.9 )	1.3 ×10 ⁻⁴ ( 0.05 )	1.1 ×10 ⁻⁴	1.3 ×10 ⁻⁴	9.5 ×10 ⁻⁴	1.3 ×10 ⁻⁴	-
8	0 (0)	-	-	-	-	-	-	1 (0)	3.5 ×10 ⁻³ (-2.5)	-	3.5 ×10 ⁻⁸	-	-	-	-
CI	0 (21)	(5.0×10 ⁻⁴ ) (-3.3)	-	( 5.0 ×10 ⁻⁴ )	-	( 5.0 ×10 ⁻⁴ )	( 5.0 ×10 ⁻⁴ )	0 (0)	-	-	-	-	-	-	-
к	0 (4)	(1.0 ×10 ⁻⁴ ) (-4.0)	-	( 1.0 ×10 ⁻⁴ )	-	( 1.0 ×10 ⁻⁴ )	( 1.0 ×10 ⁻⁴ )	0 (0)	-	-	-	-	-	-	-
Fe	5 (0)	2.1 ×10 ⁻⁴ ( -0.7 )	2.2 ×10 ⁻⁴ ( 0.01 )	2.1 ×10 ⁻⁵	5.5 ×10 ^a	2.1 ×10 ⁻⁴	2.2 ×10 ⁻⁴	18 (0)	2.1 ×10 ⁻⁴ ( -0.7 )	2.2 ×10 ⁻⁴ ( 0.03 )	$2.1 \times 10^{-4}$	1.3 ×10 ª	1.8 ×10 ⁻⁴	2.4 ×10 ⁻⁴	0.18 ~ 0.24
Co	0 (21)	(3.3 ×10 ⁻⁴ ) (-3.5)	-	(7.6 ×10 ⁻⁴ )	-	(1.0×10 ⁻⁵ )	( 1.0 ×10 ⁻⁰ )	5 (0)	2.8 ×10 ⁻⁴ (-3.5)	9.0 ×10 ⁻⁴ ( 0.50 )	4.7 ×10 ⁻⁴	4.8 ×10 ⁻⁴	1.1 ×10 ⁻⁴	1.0 ×10 ⁴	≦ 0.002 (不純物)
Ni	11 (10)	4.2 ×10 ⁻⁸ ( -2.4 )	4.5 ×10 ⁻⁸ ( 0.04 )	4.2 ×10 ⁻³	3.4 ×10 ⁻⁴	3.5 ×10.4	4.8 ×10 ⁻⁸	3 (1)	3.2 ×10 ⁻³ ( -2.5 )	5.1 ×10 ⁻⁸ ( 0.20 )	3.5 ×10.ª	1.5 ×10.4	2.0 ×10 ª	5.0 ×10 ^{-a}	≤ 0.007 (不純物)
Cu	0 (0)	-	-	-	-	-	-	3 (0)	1.6 ×10 ⁻³ ( -2.8 )	2.4 ×10 ⁻⁸ ( 0.17 )	1.7 ×10.4	5.8 ×10 4	1.0 ×10 ª	2.0 ×10 ⁻⁸	≦ 0.005 (不純物)
Zr	16 (0)	9.8 ×10 ¹ ( 2.0 )	-	9.8 ×101	-	9.8 ×101	9.8 ×10 ⁻¹	1 (0)	9.8 ×10 ¹ ( 2.0 )	-	9.8 ×101	I	-	1	機部
Nb	0 (21)	(2.9 ×10 ⁻³ ) (-2.5)	-	(3.9 ×10 ⁻³ )	-	( 5.0 ×10.4 )	( 5.0 ×10 * )	1 (0)	1.2 ×10 ⁻⁴ (-1.9)	-	1.2 ×10.4	-	-	-	≤ 0.010 (不純物)
Мо	0 (21)	(3.3 ×10 ⁻⁴ ) (-3.5)	-	(7.6 ×10 ⁻⁴ )	-	( 1.0 ×10 ⁻⁸ )	( 1.0 ×10 ⁻⁰ )	1 (1)	2.0 ×10 ⁻³ ( -2.7 )	-	2.0 ×10 ⁻⁸	-	-	-	≦ 0.005 (不純物)
Th	0 (16)	(1.0 ×10 ⁻⁸ ) (-5.0)	-	( 1.0 ×10 ⁻⁸ )	-	( 1.0 ×10 ⁻⁸ )	( 1.0 ×10 * )	0 (0)	-	-	-	-	-	-	-
U	1 (20)	2.0 ×10 ⁻⁴ (-3.7)	-	(8.1 ×10 ⁻⁸ )	-	-	-	2 (0)	3.2 ×10 ⁻³ ( -4.5 )	-	3.5 ×10 ⁻⁸	-	2.0 ×10 ⁴	5.0 ×10 ⁻⁸	≦ 3.5E-04 (不純物)
	2221111111111111111111111111111111111	は、元素分析デ 9数は、検出値 9数が3点未満 4 ポデータ: 1 - タ:	ータ及び文献デ のデータ数と、そ どの集計結果の り元廃は、標準 以射化計算条件 一般公開文献情	<ul> <li>一夕の平均値、</li> <li>の横に括弧書きに</li> <li>うち、括弧書きに</li> <li>最差の欄を"-"</li> <li>を設定するため</li> <li>報(以)((四)-(3)</li> </ul>	標準優差な にで検出下限 2、検出下限 とした。また、 に事業者が	どを評価した線) 値データ数も合 ビータ数あり点 データ数が1点 評価対象廃棄物	県である。また、∮ わせて記載した。 した結果を意味 の元廃住、一様 り(材料)中の元廃	副新結果のうち する(ただし、お う布の欄を"ー」 1の化学分析を	、対数正規分布 「協喜さがない場 」とした。 実施した結果 ^同	の標準備整は。 春合は、検出値?	*平均値+16*で *ータだけで集ま	!妻示し、下! ∦した結果で	受(括弧内): (ある)。	に対数値を	合わせて表記した。

#### 表 I.9-ZrTN804D の各元素の濃度分布条件設定結果

		濃度分布の設定	2					健康分布条件の設定	と 結果			
元素	10 A	濃度分布	基本形状		収集デ	-9	対数正	規分布	正規	分布	一様	分布
	管理条件	選択	設定	分析	加文	データ数	平均值 (質量分率%)	標準偏差 (平均+1c)	平均值 (質量分率%)	<b>標準偏</b> 能	最小值 (質量分率%)	最大值 (質量分率3)
N	不純物成分	対数正規分布	→	0	-	比較的少	3.2 ×10 ⁻³ ( -2.5 )	5.0 ×10 ⁻³ ( 0.2 )	-	-	-	-
0	微量成分	対数正規分布	→	0	-	比較的少	1.6 ×10 ⁻¹ ( -0.8 )	2.0 ×10 ⁻¹ ( 0.1 )	-	-	-	-
s	微量成分	対数正規分布	→	-	0	非常に少	4.0 ×10 ⁻³ ( -2.4 )	13×10 ⁻² (0.5)	-	-	-	-
сі	微量成分	対数正規分布	→	0	-	ND値だけ	2.0 ×10 ⁻⁴ (-3.7)	3.2 ×10 ⁻⁴ ( 0.2 )	-	-	-	-
К	微量成分	対数正規分布	→	0	-	ND値だけ	4.0 ×10 ⁻³ ( -4.4 )	6.3 ×10 ⁻³ ( 0.2 )	-	-	-	-
Fe	主成分	一樣分布	$\rightarrow$	0	-	比較的少	-	-	-	-	0.18	0.24
Co	不純物成分	対数正規分布	→	0	-	ND値だけ	4.0 ×10 ⁻⁴ (-3.4)	6.3 ×10 ⁻⁴ ( 0.2 )	-	-	I	-
Ni	不純物成分	対数正規分布	正規分布	0	-	比較的少	-	-	5 ×10 °	7 ×10 ⁻⁴	1	-
Cu	不純物成分	対数正規分布	正規分布	-	0	比較的少	-	-	2 ×10 -3	6 ×10 -4	I	-
Zr	主成分	一様分布	<b>→</b>	0	-	比較的少	-	-	-	-	98	100
ΝЪ	不純物成分	対数正規分布	→	0	-	ND値だけ	2.0 ×10 ⁻³ ( -2.7 )	3.2 ×10 ⁻³ ( 0.2 )	-	-	1	-
Mo	不純物成分	対数正規分布	→	0	-	ND値だけ	4.0 ×10 ⁻⁴ (-3.4)	6.3 ×10 ⁻⁴ ( 0.2 )	-	-	I	-
Th	微量成分	対数正規分布	$\rightarrow$	0	-	ND値だけ	4.0 ×10 ⁻⁶ ( -5.4 )	6.3 ×10 ⁻⁶ ( 0.2 )	-	_	-	-
υ	不純物成分	対数正規分布	$\rightarrow$	0	-	非常に少	2.5 ×10 ⁻⁴ ( -3.6 )	7.9 ×10 ⁻⁴ ( 0.5 )	-	-	-	-
<b>注記1</b> 収集デー 注記2 収集デー	-タの分析及び文書 -タのデータ数は、	約2、"分析:放射化計算が 農度分布条件設定の観点	新件を設定するために事 (から、"比較的少:元素#	業者が評価が たっテータ数	#象廃棄物( が記数的少)	材料)中の元素の化 ない元素"、"非常に	学分析を実施した結果 シ:元素成分データが3	[2]*、*文献:一般公開) 非常に少ない元素*、**	2款情報 ⁽⁰⁾⁽⁰⁾⁽⁰⁾⁽¹⁰⁾ (D値だけ:元廃成分	-(20)*を意味する。 ナデータ		

1年年195月ケータング・フタロス。使我から時代4枚との振んのつ、11年のロジンス集成ガデータ家コム和ロジンない元素 , 井市レジン元集成ガデークコウホルレジロ・元素 , に掲出TFM線(ONED)にないた美術で広分した。 注意3 対象正規分布の標準備整法, 平均値+標準備整(Ionで表示した。また, 対象正規分布の搭弧書き(下段)には, 平均値と標準備整(Ionの値)の対象表示値を示した。 注意3 年均値及び標準備整法, 有効数字3桁目(ただし, 対象正規分布の場合は, 対象値の有効数字3桁目)を切り上げて数定した。

運転サ	イクル数 ^{a)}		ᄞᅖᆬᄪᇵᇑᆆᄵᄮ
1) <b>/ b</b> 1) <del>//</del> /.	中性子照射	出現頻度分布	配直位直の設定条件
サイクル安文	時間		(ローナーションの種類の)
1	2 年未満	固 定 ^{b)}	A : 中央
2	2年以上,	配置ローテーションの	B :中央→中央
	3年未満	種類の一様分布の	C :中央→近傍
3	3年以上,	配置ローテーションの	D : 中央→中央→中央
	4 年未満	種類の一様分布の	E :中央→近傍→中央
4	4 年以上,	配置ローテーションの	F :中央→中央→中央→中央
	5 年未満	種類の一様分布 ^{。)}	G :中央→中央→近傍→中央
			H : 中央→中央→中央→最外
			Ⅰ :中央→中央→最外→最外
			J :中央→近傍→最外→最外
5	5年以上	配置ローテーションの	K :中央→中央→中央→中央→最外
		種類の一様分布。	L :中央→中央→中央→最外→最外
			M:中央→中央→近傍→最外→最外
<b>注</b> a) 中位	生子照射時間に応	こじて運転サイクル数を設定。	
p) 中小	生子照射時間 2 年	₣未満の場合は,配置位置のロ−	-テーションは,行わず,原子炉の中央部で継
続	的に照射される。		
c) 範[	囲を評価すること	:が重要であり、代表的な配置位	2置のローテーションを種類ごとに同じように
選	尺するとした。		
a) 原-	f 炉内での運転り コムいい	「イクルことの代表的な配置位置	<b>፤</b> のローアーションの種類(代表的な装荷位置
	狙合せ)。 中 , 原スに中の「		日初 近座,制御柱近座侍军 大龙叶子?
<u></u>	天:原于炉内の5	中天部, 取 2 ト: 原于 炉 内 の 軍 外 府	司部,

表 I.11-ZrTN804D (BWR チャンネルボックスの本体)の配置位置の設定

#### 表 I.14-ZrTN804D (BWR チャンネルボックスの本体)の照射時間の出現頻度分布の設定

	燃焼度の実態調査	設定頻度分布	中性子照射時間の設定条件 ^{a)}						
中性子照射 時間の条件	約13000体の燃料集合体(すな わち,付随するチャンネルボッ クス)の燃焼度の実態調査結果 を踏まえ,次の実態分布が評価 された。 燃焼度 : 正規分布	正規分布	平 均 値=1786日 標準偏差=654日						
<b>注</b> ^{a)} 中性子照射時間の設定条件は,燃料集合体の燃焼度(実績)に基づき比出力を踏まえて算出した。									
なお、比出	出力にはプラントの設置許可申請書記載	<b>战値の最小値を利</b> り	用した。						

_____

										単位:Bq/t
計算 No.	¹⁴ C	³⁶ Cl	⁶⁰ Co	⁶³ Ni	⁹⁰ Sr	⁹⁴ Nb	⁹⁹ Tc	¹²⁹ I	¹³⁷ Cs	²³⁷ Np
1	1.68 ×10 ¹¹	6.95 ×10 ⁸	2.16 ×10 ¹³	4.47 ×10 ¹¹	1.74 ×10 ⁹	3.09 ×10 ⁹	2.00 ×10 7	7.09 ×10 ²	1.95 ×10 ⁹	1.16 ×10 ³
2	1.14 ×10 ¹¹	3.16 ×10 ⁸	2.86 ×10 ¹³	2.72 ×10 ¹¹	6.90 ×10 ⁹	1.47 ×10 ⁹	1.71 ×10 7	4.77 ×10 ³	1.46 ×10 10	1.52 ×10 4
3	3.80 ×10 ¹⁰	2.52 ×10 ⁸	2.01 ×10 ¹³	2.16 ×10 ¹¹	1.96 ×10 ¹⁰	1.36 ×10 ⁹	2.09 ×10 ⁷	1.46 ×10 ⁴	4.43 ×10 10	5.22 ×10 ⁴
4	7.37 ×10 ¹⁰	3.00 ×10 ⁸	2.49 ×10 ¹³	2.68 ×10 ¹¹	8.73 ×10 ⁹	2.17 ×10 ⁹	7.58 ×10 ⁶	5.98 ×10 ³	1.79 ×10 ¹⁰	1.93 ×10 ⁴
5	4.66 ×10 10	2.46 ×10 ⁸	8.33 ×10 12	2.03 ×10 ¹¹	5.24 ×10 ⁹	1.98 ×10 ⁹	4.99 ×10 ⁶	3.38 ×10 ³	1.02 ×10 ¹⁰	1.14 ×10 ⁴
6	3.95 ×10 10	2.19 ×10 ⁸	1.24 ×10 ⁻¹³	1.49 ×10 ¹¹	1.06 ×10 ⁻¹⁰	2.45 ×10 ⁹	1.33 ×10 ⁷	8.06 ×10 ³	2.29 ×10 ¹⁰	3.22 ×10 4
7	3.77 ×10 ⁹	1.59 ×10 ⁷	1.88 ×10 12	1.67 ×10 ¹⁰	1.82 ×10 ⁹	8.15 ×10 ⁷	1.17 ×10 ⁶	5.31 ×10 ²	2.34 ×10 ⁹	4.01 ×10 ³
8	4.31 ×10 ⁹	5.99 ×10 ⁷	2.97 ×10 12	4.05 ×10 10	6.97 ×10 ⁸	3.38 ×10 ⁸	1.44 ×10 ⁶	2.92 ×10 ²	1.02 ×10 ⁹	1.74 ×10 ³
9	1.46 ×10 ¹⁰	6.51 ×10 ⁷	6.97 ×10 12	5.13 ×10 ⁻¹⁰	1.67 ×10 ⁻¹⁰	2.94 ×10 *	4.99 ×10 ⁶	7.18 ×10 ³	2.51 ×10 ¹⁰	2.88 ×10 ⁴
10	7.34 ×10 ¹⁰	1.23 ×10 ⁸	3.83 ×10 ¹³	2.29 ×10 ¹¹	2.35 ×10 ⁹	3.43 ×10 ⁹	2.50 ×10 ⁷	1.11 ×10 ³	3.11 ×10 ⁹	2.89 ×10 ³
11	1.17 ×10 ¹⁰	8.48 ×10 ⁷	4.43 ×10 12	6.45 ×10 ¹⁰	6.69 ×10 ⁸	7.31 ×10 ⁸	6.82 ×10 ⁵	2.93 ×10 ²	9.89 ×10 ⁸	1.15 ×10 ³
12	3.81 ×10 10	3.70 ×10 *	1.85 ×10 ¹³	1.39 ×10 ¹¹	1.84 ×10 ⁹	7.42 ×10 *	1.19 ×10 ⁷	9.98 ×10 ²	3.02 ×10 ⁹	4.30 ×10 ³
13	1.18 ×10 ¹¹	3.25 ×10 *	1.37 ×10 ¹³	2.98 ×10 ¹¹	3.91 ×10 ⁹	3.27 ×10 9	1.96 ×10 7	2.51 ×10 ³	7.16 ×10 ⁹	7.39 ×10 ³
14	2.55 ×10 10	2.42 ×10 ⁸	2.20 ×10 ¹³	1.41 ×10 ¹¹	2.28 ×10 ⁹	1.91 ×10 ⁹	8.61 ×10 ⁶	1.37 ×10 ³	3.96 ×10 ⁹	5.21 ×10 ³
15	8.63 ×10 "	6.92 ×10 '	1.31 ×10 ¹³	4.62 ×10 10	2.62 ×10 °	1.57 ×10 *	2.78 ×10 ³	9.20 ×10 ¹	3.42 ×10 °	2.06 ×10 ²
16	1.42 ×10 ¹¹	4.27 ×10 *	10.00 ×10 12	3.52 ×10 ¹¹	9.76 ×10 °	4.50 ×10 *	2.28 ×10 ⁷	7.42 ×10 ³	2.16 ×10 ¹⁰	2.01 ×10 *
17	6.99 ×10 ¹⁰	4.75 ×10 *	2.16 ×10 ¹³	1.62 ×10 ¹¹	8.58 ×10 ⁹	2.98 ×10 ⁹	1.20 ×10 ⁷	5.47 ×10 3	1.68 ×10 ¹⁰	2.42 ×10 4
18	3.26 ×10 10	2.42 ×10 °	1.70 ×10 ¹³	2.62 ×10 ¹¹	7.16 ×10 °	2.30 ×10 °	1.19 ×10 '	5.07 ×10 3	1.50 ×10 ¹⁰	1.57 ×10
19	1.65 ×10 ¹⁰	1.17 ×10 *	1.23 ×10 ¹³	7.30 ×10 ¹⁰	3.54 ×10 ⁹	1.36 ×10 °	4.53 ×10 °	1.93 ×10 ³	6.23 ×10 ⁹	9.66 ×10 ³
20	7.10 ×10 ¹⁰	3.30 ×10 *	2.46 ×10 ¹³	2.75 ×10 ¹¹	1.75 ×10 ¹⁰	2.90 ×10 *	1.90 ×10 ⁷	1.38 ×10 *	4.08 ×10 10	3.90 ×10 *
21	1.00 ×10 **	2.30 ×10 °	1.98 ×10 ¹³	2.79 ×10 **	3.31 ×10 **	3.07 ×10 7	3.23 ×10 '	2.60 ×10	7.76 ×10 10	8.58 ×10 4
22	6.23 ×10 °	7.05 ×10 °	8.42 ×10 ¹¹	5.11 ×10 ⁹	2.05 ×10 °	2.08 ×10 /	5.43 ×10 *	4.47 ×10 1	2.22 ×10 °	1.26 ×10 ²
23	5.41 ×10 10	1.66 ×10 °	6.53 ×10 ¹²	1.09 ×10 ¹¹	1.07 ×10 ⁹	6.25 ×10 °	1.91 ×10 °	5.72 ×10 ²	1.72 ×10 ⁹	2.12 ×10 ³
24	1.50 ×10 ··	5.91 ×10 *	4.33 ×10 ¹⁰	3.87 ×10 ···	1.76 ×10 **	2.16 ×10 ⁻	2.90 ×10 *	1.38 ×10 *	4.13 ×10 **	3.75 ×10 *
25	5.39 ×10 ×	1.46 ×10 °	3.45 ×10 12	5.27 ×10 ¹⁰	1.23 ×10 ×	5.93 ×10 *	9.51 ×10 ³	5.05 ×10 *	1.79 ×10 ×	2.14 ×10 ³
26	6.61 ×10 ¹⁰	2.26 ×10 *	4.30 ×10 13	3.30 ×10 ···	7.53 ×10 ×	4.54 ×10 ²	2.54 ×10 /	5.28 ×10 ³	1.52 ×10 ¹⁰	1.44 ×10 *
27	5.16 ×10 **	8.60 ×10 °	4.22 ×10 ¹³	2.93 ×10 ···	6.89 ×10 °	1.21 ×10 ²	1.83 ×10 °	4.95 ×10 ⁻	1.46 ×10 ¹⁰	1.51 ×10 ·
20	8.90 ×10 ···	4.64 ×10 -	1.09 ×10 ¹²	2.27 ×10 ¹⁰	0.72 ×10 ×	2.35 ×10 ×	9.58 ×10 °	4.44 ×10 -	2.56 v10 8	1.45 ×10 ·
29	3.07 ×10	3.30 ×10	2.82 ×10	1.70 ×10 ···	3.00 ×10 °	2.06 ×10 °	1.14 ×10 °	8.05 ×10 ⁻	5.56 ×10 °	2.49 ×10 -
21	1.04 ×10	2.40 ×10 ⁻	5.20 ×10 12	2.55 ×10 10	7.51 ×10 °	1.14 ×10 ×	7.78 ×10 1.10 ×10.6	0.51 ×10 ²	2.11 ×10.9	1.72 ×10
20	1.00 ×10	5.45	J.J9 ×10	3.97 ×10 ¹¹	1.27 -10.10	6.12	2.80 -10.7	9.01 ×10 *	2.02 -10.10	1.00 ×10 4
22	1.08 ×10 ···	3.43 ×10 -	4.02 ×10 ¹⁰	4.05 ×10 ¹⁰	1.57 ×10 **	0.15 ×10 ²	2.80 ×10 ⁻	1.01 ×10	0.54 ×10 ⁷	1.85 ×10
34	4.42 ×10 ¹⁰	4.18 ×10 8	2.05 ×10 ⁻¹³	1.24 ×10	1.12 ×10 ⁹	2.33 ×10 9	6 19 ×10 ⁶	5.17 ×10 ⁻²	1.47 ×10 ⁹	1.72 ×10 3
35	1.15 ×10 ⁻¹⁰	2.72 ×10 ⁸	1 13 ×10 ¹³	1.82 ×10 ⁻¹¹	1.12 ×10 9	1.58 ×10.9	3.89 ×10.6	5.83 ×10 ²	1.73 ×10.9	1.56 ×10 ³
36	4.64 ×10 ⁻¹⁰	2.21 ×10 ⁸	2.17 ×10 ⁻¹³	1.60 ×10 ⁻¹¹	2.69 ×10 ⁹	1.04 ×10.9	8.81 ×10 ⁶	1.57 ×10 ⁻³	4.83 ×10 ⁹	7 12 ×10 3
37	9.83 ×10 9	1.28 ×10 9	3 44 ×10 13	1.31 ×10 ⁻¹¹	1.85 ×10 ⁹	6.89 ×10 8	3.71 ×10 6	1.04 ×10 ³	3.25 ×10 9	4 48 ×10 3
38	3.57 ×10.10	2.90 ×10.8	2.43 ×10 ¹³	2.73 ×10 ⁻¹¹	7.61 ×10.9	3.30 ×10.9	1.33 ×10.7	5.62 ×10 3	1.64 ×10 ⁻¹⁰	1.88 ×10.4
39	9.38 ×10 ⁻¹⁰	1.76 ×10 ⁸	2.20 ×10 ⁻¹³	2.47 ×10 ⁻¹¹	3.22 ×10.9	1 70 ×10 ⁹	7.64 ×10.6	2.12 ×10 ³	6.23 ×10 ⁹	6 11 ×10 ³
40	3.32 ×10 ⁻¹⁰	1.82 ×10 8	1.25 ×10 ⁻¹³	1.51 ×10 ⁻¹¹	1.71 ×10.9	1.82 ×10.9	3 31 ×10 6	9 39 ×10 ²	2.97 ×10.9	3.92 ×10 ³
10										

#### 表 I.21-ZrTN804D の放射化計算結果(BWR チャンネルボックスの本体)