3 a

第5-1表 火災感知器の型式ごとの設置状況について

第5-1表 火災感知器の型式ごとの設置状況について				
火災感知器の設置場所	火災感知	1器の型式		
• 一般区域	煙感知器	熱感知器		
「異なる2種類の火災感知	(感度:煙濃度 10 %)	(感度:温度 60~75 ℃)		
器」の設置要求を満足するた				
め,火災感知器を設置	1 (((min)			
・格納容器圧力逃がし装置格納	火災時に炎が生じる前の発	火災時に生じる熱を感知で		
槽	煙段階から感知できる煙感	きる熱感知を設置(アナログ		
・常設代替低圧注水系ポンプ室	知器を設置(アナログ式)	式)		
・緊急用海水ポンプエリア				
· 蓄電池室, 緊急用 125V 系蓄	防爆型煙感知器	防爆型熱感知器		
電池室, 非常用 125V 系蓄電	(感度:煙濃度10%)	(感度:65 ℃)		
池室等				
蓄電池室は万一の水素濃				
度上昇を考慮				
・軽油貯蔵タンク設置区域,可	防爆機能を有する火災感知	 防爆機能を有する火災感知		
搬型設備用軽油タンク,緊急	器として煙感知器を設置	器として熱感知器を設置(非		
時対策所用発電機燃料油貯	(非アナログ式)	アナログ式)		
蔵タンク	()[/ / / / / / / / / / / / / / / / / / /	, , , , , , , , , , , , , , , , , , , ,		
万一の燃料気化による引				
火性又は発火性の雰囲気				
を形成する可能性を考慮	[# → / pp	W = 2 / BB		
	煙感知器	炎感知器		
	(感度:煙濃度50 %/スパ	(公称監視距離最大 60 m以		
原子炉建屋原子炉棟6階(オペレーティングフロア)	ン) 赤外光を発する発光部と受	内)		
・天井が高く大空間であるた	光部間の光路上を煙が遮っ	 炎から発生する赤外線の波		
め、煙の拡散を考慮	た時の受光量変化で火災検	長を感知する炎感知器を設		
60, 在0 AR 2 7 图	出する光電式分離型煙感知	置(非アナログ式)		
	器を設置 (アナログ式)			
	炎感知器	41.00		
	(公称監視距離最大 60 m 以	熱感知カメラ		
	内)	(感度:温度80℃)		
・海水ポンプ室,常設代替高圧	炎感知器(赤外線)を設置	屋外であり煙による火災感		
電源装置置場(屋外区域)	なお、炎感知器(紫外線)	知が困難であるため,炎から		
	は太陽光による誤作動の頻	放射される赤外線エネルギ		
	度が高いため設置しない	ーを感知する熱感知カメラ		
	(非アナログ式)	を設置(アナログ式)		
	煙感知器	熱感知器		
	(感度:煙濃度 10 %)	(感度:温度 70~80 ℃)		
原子炉格納容器内	火災時に炎が生じる前の発	火災時に生じる熱を感知で		
	煙段階から感知できる煙感	きる熱感知を設置(アナログ		
	知器を設置(アナログ式)	式)		
	煙感知器	熱感知器 (咸度・温度 70 ℃~02 ℃)		
主蒸気管トンネル室	(感度:煙濃度 10 %) 検出器部分を高線量区域外	(感度:温度 70 ℃~93 ℃) 放射線の影響を受けにくい		
(高線量区域)	検口希部分を高線重区域外 に設置可能な煙吸引式感知	放射線の影響を受けにくい 非アナログ式の熱感知器を		
	に設直り配な煙吸り式感知 器を設置 (アナログ式)	非アプログ式の熱感和器を 設置(非アナログ式)		
1	一冊で以上 (ノノピノハ)	以中(タトノ ノ ビン トレノ		

第5-4表 火災防護上重要な機器等及び重大事故等対処施設が設置 される火災区域又は火災区画で使用する消火設備

消火設備	消火剤	消火剤量	主な消火対象
ハロゲン化 物自動消火 設備(全域)	ハロン1301	防護区画体積×0.32+開口面積×2.4 (kg) (消防法施行規則第20条に基づき,開 口部を考慮して算出される量以上)	火災発生時の煙の 充満又は放射線の 影響による消火活 動が困難な火災区 域,又は火災の影 響軽減のための対 策が必要な火災区 域
ハロゲン化物自動消火設備(局所)	ハロン1301	防護区画体積*1×1.25× (4-3×a/A) (kg) a:防護対象物の周囲に実際に設けられた壁の面積の合計(m²) A:防護区画の壁の面積(壁のない部分にあっては,壁があると仮定した場合における当該部分の面積)の合計(m²) *1:防護対象物のすべての部分から0.6 m離れた部分によって囲まれた空間の部分(m³) (消防法施行規則第20条に基づき算出される量以上)	火災発生時の煙の 充満又は放射線の 影響によるが が困難な火災の影 域、又は火災の影響軽減のための対策が必要な火災区 域
二酸化炭素 自動消火設 備(全域)	二酸化炭素	防護区画体積×0.75 (kg/m³) *2+ 開口部面積×5 (kg/m²) *2:防火区画体積が1500 m³以上では0.75 (kg/m³), 150~1500 m³ では0.80 (kg/m³), 50~150 m³ では0.90 (kg/m³) となる。 (消防法施行規則第19条に基づき,開口部を考慮して算出される量以上)	火災発生時の煙の 充満又は放射線の 影響による消火活 動が困難な火災区 域
ケーブル トレイ 消火設備	ハロゲン化物 (FK-5-1-12)	 対象ケーブルトレイ (水平) の空間容積 (m³) × (kg/m³) 対象ケーブルトレイ (垂直) の空間容積 (m³) × (kg/m³) (試験結果による) 	発泡性耐火被覆の 隔壁又は鉄板を設置するケーブルト レイ内
消火栓	水	130 L/min以上 (屋内消火栓:消防法施行令第11条) 350 L/min以上 (屋外消火栓:消防法施行令第19条)	全火災区域又は火 災区画
消火器	粉末 二酸化炭素	消防法施行規則第6条及び第7条に基 づき算出される必要量	

3 b

(1)b, (4)

6. 火災の影響軽減対策

発電用原子炉施設は、火災によりその安全性を損なわないよう、火災防護上重要な機器等の重要度に応じ、それらを設置する火災区域又は火災区画内の火災及び隣接する火災区域又は火災区画における火災による影響に対し、火災の影響軽減のための対策を講じる。

- 6.1項では、火災防護上重要な機器等が設置される火災区域又は火災区画内の分離について説明する。
- 6.2項では、原子炉の高温停止及び低温停止を達成し、維持するために必要となる火 災防護対象機器等の選定、火災防護対象機器等に対する系統分離対策について説明す るとともに、中央制御室制御盤及び原子炉格納容器内に対する火災の影響軽減対策に ついても説明する。
- 6.3項では、換気空調設備、煙、油タンク及びケーブル処理室に対する火災の影響軽減対策について説明する。

(1)b, (4)

6.1 火災の影響軽減対策が必要な火災区域の分離

火災の影響軽減対策が必要な火災防護上重要な機器等が設置される火災区域については、3時間以上の耐火能力を有する耐火壁として、3時間耐火に設計上必要な150 mm以上の壁厚を有するコンクリート耐火壁や3時間以上の耐火能力を有することを確認した耐火壁(耐火隔壁、配管貫通部シール、ケーブルトレイ及び電線管貫通部、防火扉、防火ダンパを含む。)により他の火災区域と分離する。

3時間以上の耐火能力を有する耐火壁により分離されている火災区域又は火災 区画のファンネルは、煙等流入防止装置の設置によって、他の火災区域又は火災 区画からの煙の流入を防止する設計とする。

3時間以上の耐火能力を有する耐火壁(耐火隔壁,貫通部シール,防火扉,防火ダンパを含む。)の設計として,耐火性能を以下の文献等又は火災耐久試験にて確認する。

(1) コンクリート壁

3時間の耐火性能に必要なコンクリート壁の最小壁厚は,第6-1表及び第6-2表に示す以下の文献により,保守的に150 mm以上の設計とする。

- a. 2001年版耐火性能検証法の解説及び計算例とその解説(「建設省告示 第1433号耐火性能検証法に関する算出方法等を定める件」講習会テ キスト(国土交通省住宅局建築指導課))
- b. 海外規定のNFPAハンドブック
- (2) 耐火隔壁,配管貫通部シール,ケーブルトレイ及び電線管貫通部,防火扉, 防火ダンパ

耐火隔壁,配管貫通部シール,ケーブルトレイ及び電線管貫通部,防火扉,防火ダンパは,以下に示す実証試験にて3時間耐火性能を確認したものを使用する設計とする。

- a. 耐火隔壁
 - (a) 試験方法

建築基準法の規定に準じて第6-1図に示す加熱曲線 (ISO834)で3時間加熱し,第6-2図に示す非加熱側より離隔を確保した各温度を測定する。

(b) 判定基準

第6-3表に示す建築基準法第2条第7号 耐火構造を確認するための 防火設備性能試験(防耐火性能試験・評価業務方法書)の判定基準を すべて満足する設計とする。

(c) 試験体

第6-4表に示す0.4 mm以上の厚さの鉄板の両側に,厚さ約1.5 mmの 発泡性耐火被覆をそれぞれ3枚施工した試験体とする。

110

(d) 試験結果

試験結果を第6-5表及び第6-3図に示す。

- b. 配管貫通部シール
 - (a) 試験方法

1b, 4

建築基準法の規定に準じて第6-1図に示す加熱曲線 (ISO834)で3時間加熱する。

(b) 判定基準

第6-3表に示す建築基準法第2条第7号 耐火構造を確認するための 防火設備性能試験(防耐火性能試験・評価業務方法書)の判定基準を すべて満足する設計とする。

(c) 試験体

東海第二発電所の配管貫通部の仕様に基づき,第6-6表に示す配管 貫通部とする。

(d) 試験結果

試験結果を第6-7表に示す。

- c. ケーブルトレイ及び電線管貫通部
 - (a) 試験方法

建築基準法の規定に準じて第6-1図に示す加熱曲線 (ISO834)で3時間加熱する。

(b) 判定基準

第6-3表に示す建築基準法第2条第7号 耐火構造を確認するための 防火設備性能試験(防耐火性能試験・評価業務方法書)の判定基準を すべて満足する設計とする。

(c) 試験体

東海第二発電所のケーブルトレイ及び電線管貫通部の仕様を考慮 し、それぞれ第6-8表及び第6-9表に示すとおりとする。

(d) 試験結果

試験結果を第6-10表に示す。

- d. 防火扉
 - (a) 試験方法

建築基準法の規定に準じて第6-1図に示す加熱曲線 (ISO834)で3時間加熱する。

(b) 判定基準

第6-3表に示す建築基準法第2条第7号 耐火構造を確認するための 防火設備性能試験(防耐火性能試験・評価業務方法書)の判定基準を すべて満足する設計とする。 (1)b. (4)

(c) 試験体

東海第二発電所の防火扉の仕様を考慮し、第6-11表に示すとおりと する。

(d) 試験結果

試験結果を第6-12表に示す。

- e. 防火ダンパ
- (a) 試験方法

建築基準法の規定に準じて第6-1図に示す加熱曲線(ISO83 4) で3時間加熱する。

(b) 判定基準

第6-3表に示す建築基準法第2条第7号 耐火構造を確認するための 防火設備性能試験(防耐火性能試験・評価業務方法書)の判定基準を すべて満足する設計とする。

(c) 試験体

東海第二発電所の防火ダンパの仕様を考慮し,第6-13表に示すとお りとする。

(d) 試験結果

試験結果を第6-14表に示す。

6.2 火災の影響軽減のうち火災防護対象機器等の系統分離

発電用原子炉施設内の火災によって,原子炉の高温停止及び低温停止を達成し, 維持するために必要となる火災防護対象機器等を選定し、それらについて互いに 相違する系列間を隔壁又は離隔距離により系統分離する設計とする。

6.2.1 火災防護対象機器等の選定

火災が発生しても,原子炉の高温停止及び低温停止を達成し,維持する(以 下「原子炉の安全停止」という。) ためには、プロセスを監視しながら原子炉 を停止し、冷却を行うことが必要であり、このためには、手動操作に期待して でも、原子炉の安全停止に必要な機能を少なくとも1つ確保する必要がある。

このため、単一火災(任意の一つの火災区域又は火災区画で発生する火災) の発生によって,原子炉の安全停止に必要な機能を有する多重化されたそれぞ れの系統が同時に機能喪失することのないよう,「3.(1)a. 原子炉の安全停 止に必要な機器等」にて選定した原子炉の安全停止に必要となる火災防護対象 機器等について系統分離対策を講じる設計とする。

選定した火災防護対象機器及び火災防護対象機器の駆動若しくは制御に必 要となる火災防護対象ケーブルを火災防護対象機器等とする。

選定した火災防護対象機器のリストを第6-15表に示す。

(1)a, b

112

(1) b. (4)

6.2.2 火災防護対象機器等に対する系統分離対策の基本方針

東海第二発電所における系統分離対策は,火災防護対象機器等が設置される 火災区域又は火災区画に対して, 6.2.1項に示す考え方に基づき, 安全区分 I と安全区分 II, III を境界とし,以下の(1)項から(3)項に示すいずれかの方法で 実施することを基本方針とする。

- (1) 3時間以上の耐火能力を有する隔壁等による分離
- (2) 水平距離6 m以上の確保,火災感知設備及び自動消火設備の設置
- (3) 1時間耐火隔壁による分離,火災感知設備及び自動消火設備の設置 上記(1)項から(3)項の基本方針について以下に説明する。

上記(1)項に示す系統分離対策は,互いに相違する系列の火災防護対象機器等を,火災耐久試験により3時間以上の耐火能力を確認した隔壁等で分離する設計とする。

上記(2)項に示す系統分離対策は,互いに相違する系列の火災防護対象機器等を,仮置きするものを含めて可燃性物質のない水平距離6 m以上の離隔距離を確保する設計とする。火災感知設備は,自動消火設備を作動させるために設置し,自動消火設備の誤作動防止を考慮した感知器の作動により自動消火設備を作動させる設計とする。

上記(3)項に示す系統分離対策は、第6-16表に示すとおり互いに相違する系列の火災防護対象機器等を、火災耐久試験により1時間以上の耐火能力を確認した隔壁等(耐火間仕切り、耐火ラッピング)で分離する設計とする。火災感知設備は、自動消火設備を作動させるために設置し、自動消火設備の誤動作防止を考慮した感知器の作動により自動消火設備を作動させる設計とする。

- 6.2.3 火災防護対象機器等に対する具体的な系統分離対策
 - (1) 3時間以上の耐火能力を有する隔壁等による分離

「6.2.2 火災防護対象機器等に対する系統分離対策の基本方針」の(1) 項に示す,3時間以上の耐火性能を有する隔壁等による分離について,具体 的な対策を以下に示す。

a. 3時間以上の耐火能力を有する隔壁等 3時間以上の耐火能力を有する隔壁等として,耐火隔壁,配管貫通部シ ール,ケーブルトレイ及び電線管貫通部,防火扉,防火ダンパ,耐火間

b. 火災耐久試験

耐火隔壁,配管貫通部シール,ケーブルトレイ及び電線管貫通部,防火扉,防火ダンパは,「6.1 火災の影響軽減対策が必要な火災区域の分離」の(2)項に示す実証試験にて3時間以上の耐火性能を確認したものを使用する設計とする。

仕切り、耐火ラッピングの設置で分離する設計とする。

耐火間仕切り及び耐火ラッピングは,以下に示す実証試験にて3時間耐火性能を確認したものを使用する設計とする。

(a) 耐火間仕切り

(1)b. (4)

イ. 試験方法

建築基準法の規定に準じて第6-1図に示す加熱曲線(ISO834)で3時間加熱する。

口. 判定基準

第6-3表に示す建築基準法第2条第7号 耐火構造を確認するための防火設備性能試験(防耐火性能試験・評価業務方法書)の判定基準をすべて満足する設計とする。

ハ. 試験体

東海第二発電所の火災防護対象機器等に応じて適するものを選 定し、第6-17表に示すとおりとする。

二. 試験結果

試験結果を第6-18表に示す。

- (b) 耐火ラッピング
 - イ. 試験方法

建築基準法の規定に準じて第6-1図に示す加熱曲線(ISO834)で3時間加熱する。

口. 判定基準

第6-19表に示す外観,電気特性(導通,絶縁抵抗)確認を行い, 判定基準をすべて満足する設計とする。

ハ. 試験体

東海第二発電所のケーブルトレイ及び電線管の仕様を考慮し、 第6-20表及び第6-21表に示すとおりとする。

二. 試験結果

試験結果を第6-22表に示す。

- (2) 1時間耐火隔壁による分離,火災感知設備及び自動消火設備の設置
 - 「6.2.2 火災防護対象機器等に対する系統分離対策の基本方針」の(3) 項に示す,1時間耐火隔壁による分離,火災感知設備及び自動消火設備の設置について,具体的な対策を以下に示す。
 - a. 1時間の耐火能力を有する隔壁
 - (a) 機器間の分離に使用する場合

1時間の耐火能力を有する隔壁として,以下のイ.項に示す発泡性耐火被覆を施工した鉄板で機器間の系統分離を実施する場合は,以下のロ.項に示す火災耐久試験により耐火性能を確認した発泡性耐火被覆

(5) a

7. 原子炉の安全確保について

火災防護に係る審査基準では、火災の影響軽減として系統分離対策を要求するとともに、発電用原子炉施設内の火災によって、安全保護系及び原子炉停止系の作動が要求される場合には、多重化されたそれぞれの系統が同時に機能を失うことなく、原子炉の安全停止が可能である設計であることを要求し、原子炉の安全停止が可能であることを火災影響評価によって確認することを要求している。

評価ガイドには、内部火災により原子炉に外乱が及び、かつ、安全保護系、原子炉停止系の作動を要求される場合には、その影響を考慮し、「発電用軽水型原子炉施設の安全評価に関する審査指針」に基づき安全解析を行うとの記載がある。

このため、7.1項では、火災に対する原子炉の安全停止対策としての設計について説明する。

7.2項では、7.1項に示す設計により、火災が発生しても原子炉の安全停止が達成できることを、火災影響評価として説明する。

7.1 火災に対する原子炉の安全停止対策

東海第二発電所の火災に対する原子炉の安全停止対策としての設計を以下に示す。

(1) 火災区域又は火災区画に設置される不燃性材料で構成される構築物,系統及び機器を除く全機器の機能喪失を想定した設計

発電用原子炉施設内の火災区域又は火災区画に火災が発生し、安全保護系及び原子炉停止系の作動が要求される場合には、当該火災区域又は火災区画に設置される不燃性材料で構成される構築物、系統及び機器を除く全機器の機能喪失を想定しても、「6. 火災の影響軽減対策」に示す火災の影響軽減のための系統分離対策によって、原子炉の安全停止に必要な機能を確保するための手段(以下「成功パス」という。)を少なくとも1つ確保することで、多重化されたそれぞれの系統が同時に機能を失うことなく、原子炉を安全に停止できる設計とする。

(2) 設計基準事故等に対処するための機器に単一故障を想定した設計

内部火災により、安全保護系及び原子炉停止系の作動を要求される運転時の 異常な過渡変化又は設計基準事故が発生する場合には、「発電用軽水型原子炉 施設の安全評価に関する審査指針」に基づき、運転時の異常な過渡変化又は設 計基準事故に対処するための機器に単一故障を想定しても、制御盤間の離隔距 離、盤内の延焼防止対策又は現場操作によって、多重化されたそれぞれの系統 が同時に機能を失うことなく、原子炉の高温停止、低温停止を達成し、維持で きる設計とする。

7.2 火災の影響評価

(5) b

154

NT2 補② V-1-1-7 R2

5

ı			_	
覧表 (火災区域T-1, RW-5, RW-6, NRW-1, LLW-1, DY-1, DY-2, DC-1, 0-1, 0-17, 0-18)	評価結果	確認事項		
$-2, \mathrm{DC-I},$	1	低温 停止	<u> </u>	
)Y-1, DY	!	高温 停止	前	
(RW-1, LLW-1, I)	11 11 11 11 11 11 11 11 11 11 11 11 11	補助設備		
-5, RW−6, N	最終的	た熱の 逃し場	影	
域T-1, RW-	残留熱	除去系		
意表 (火災区	事故時	監視計器		
成功パス確認一覧	非常用	所內電源系		
	工学的	安全施設等		
東海第二発電所	原子炉	停止系*		
第7-2表	安全	保護系*		
	 	図 海製 出	神	

「○」,機能喪失するターゲット(関連するケーブル :機能喪失するターゲット(関連するケーブルを含む。)がない場合は, 洪

を含む。)がある場合は,「一」とする。

*:原子炉スクラムに係る論理回路は,フェイルセーフの設計としていること及び当該系統は安全区分に応じて分離されてい 注記

ることから、火災影響なしとして評価する。

2, **3**, **4**

8. 火災防護計画

火災防護計画は、発電用原子炉施設全体を対象とした火災防護対策を実施するため に策定する。

火災防護計画に定める主なものを以下に示す。

(1) 組織体制,教育訓練及び手順

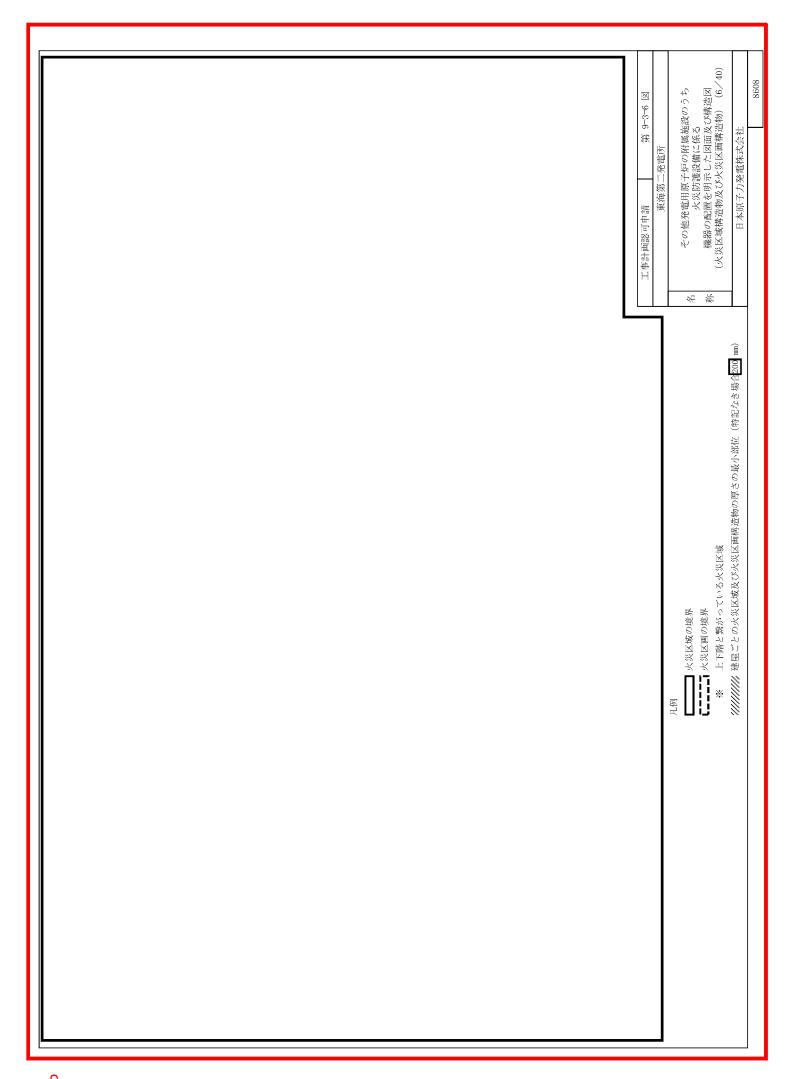
計画を遂行するための体制,責任の所在,責任者の権限,体制の運営管理,必要な要員の確保及び教育訓練並びに火災防護対策を実施するために必要な手順等について定める。

- (2) 発電用原子炉施設の火災防護上重要な機器等及び重大事故等対処施設
 - a. 発電用原子炉施設の火災防護上重要な機器等については、火災発生防止、 火災の感知及び消火並びに火災の影響軽減の3つの深層防護の概念に基づき、 必要な火災防護対策を行うことについて定める。重大事故等対処施設につい ては、火災発生防止、火災の感知及び消火に必要な火災防護対策を行うこと について定める。
 - b. 屋外の火災区域は、火災区域外への延焼防止を考慮し、資機材管理、火気 作業管理、危険物管理、可燃物管理及び巡視を行うことについて定める。
 - c. 非難燃ケーブル及びケーブルトレイを防火シートで覆い、その状態を維持するため結束ベルト及びファイアストッパで固定した複合体の保守管理について、火災防護計画に定める。
 - d. 火災防護上重要な機器等及び重大事故等対処施設に使用する電力ケーブル については、適切な保守管理を実施するとともに、必要に応じケーブルの引 替えを行うことについて、火災防護計画に定める。
 - e. 潤滑油又は燃料油を貯蔵する設備は、運転に必要な量にとどめて貯蔵する ことについて、火災防護計画に定める。
 - f. 水素ボンベは、ボンベ使用時に職員がボンベ元弁を開弁し通常時は元弁を 閉弁する運用とする。
 - g. 水素を内包する設備がある火災区域において,送風機及び排風機が異常により停止した場合は,運転員が現場にて遮断器を開放し,送風機及び排風機が復帰するまでの間は,蓄電池に充電しない運用とする。
 - h. 水素を貯蔵する水素ボンベは、運転に必要な量にとどめるため、必要な本数のみを貯蔵することを火災防護計画に定める。
 - i. 引火点が室内温度及び機器運転時の温度よりも高い潤滑油又は燃料油を使用すること並びに火災区域における有機溶剤を使用する場合の滞留防止対策について、火災防護計画に定め管理する。
 - j. 「工場電気設備防爆指針」に記載される微粉を発生する仮設設備及び静電 気が溜まるおそれがある設備を設置しないことを火災防護計画にて定め、管

255

理する。

- k. 放射性物質を含んだ使用済イオン交換樹脂,チャコールフィルタ及びHEPA フィルタは、火災防護計画にドラム缶や不燃シートに包んで保管することを 定め、管理する。
- 1. 電気室は、電源供給に火災影響を与えるような可燃性の資機材等を保管せず、電源供給のみに使用することを火災防護計画に定め、管理する。


1b, 2b

- m. 原子炉格納容器内に設置する原子炉の安全停止に必要な機器等及び重大事故等対処施設は,不燃性又は難燃性の材料を使用し周辺には可燃物がないことを火災防護計画に定め,管理する。
- n. 原子炉格納容器内に設置する火災感知器は,起動時の窒素封入後に作動信号を除外する運用とする。
- o. 火災発生時の煙の充満等により消火活動が困難とならない火災区域又は火災区画のうち,可燃物管理を行うことで煙の発生を抑える火災区域又は火災区画は,可燃物管理を行い火災荷重を低く管理する。
- p. 発泡性耐火被覆を施工した鉄板でケーブルトレイ間の系統分離を実施する場合は、火災耐久試験の条件を維持するための管理を行う。
- q. 中央制御室制御盤の1面に火災が発生した場合における消火の手順について,火災防護計画に定める。
- r. 原子炉格納容器内の油内包機器,分電盤等については,金属製の筐体やケーシングで構成すること,油を内包する点検用機器は通常電源を切る運用とする。
- s. 原子炉格納容器内で火災が発生した場合における消火の手順について、火 災防護計画に定める。
- t. 火災影響評価の評価方法及び再評価について、火災防護計画に定める。
- u. 火災影響評価の条件として使用する火災区域(区画)特性表の作成及び更新について、火災防護計画に定める。
- v. 外部火災から防護するための運用等について,火災防護計画に定める
- (3) 可搬型重大事故等対処設備, その他発電用原子炉施設

可搬型重大事故等対処設備及び(2)項で対象とした設備以外の発電用原子炉施設(以下「その他の発電用原子炉施設」という。)については、設備等に応じた火災防護対策を行うことについて定める。可搬型重大事故等対処設備及びその他発電用原子炉施設の主要な火災防護対策は以下のとおり。

- a. 可搬型重大事故等対処設備
 - (a) 火災発生防止
 - イ. 火災によって重大事故等に対処する機能が同時に喪失しないよう 考慮し、分散して保管する。

256

原子炉建屋換気系(ダクト)放射線モニタの変更認可申請に伴う影響について 発電用原子炉施設内における溢水等による損傷の防止 (第12条

基準適合性の確認範囲

①溢水防護対象設備の選定について

既工事計画においては,原子炉の高温停止,低温停止を達成し,これを維持するために必要な設備,放射性物質の閉じ込め機能 を維持するために必要な設備並びに使用済燃料プールの冷却機能及び給水機能を維持するために必要な設備を,溢水防護対象設 備として選定する方針と記載している。

[V-1-1-8-1 溢水等による損傷防止の基本方針」 (1,3頁参照)

[A-1-1-8-2 防護すべき設備の設定」(1~3,5,8,11~83,118~127頁参照)

「補足-5 【原子炉建屋換気系(ダクト)放射線モニタ改造工事の概要について】参照」

既工事計画においては、溢水により発生し得る原子炉外乱及び溢水の原因となり得る原子炉外乱に対処するために必要な設備 選定する方針と記載している。 р.

[V-1-1-8-1 溢水等による損傷防止の基本方針」 (1,3頁参照)

[A-1-1-8-2 防護すべき設備の設定」 (2,3,11〜83,118〜127頁参照)

回の変更認可申請に伴い, 上記の方針に変更がないことを確認する。

②溢水源、溢水量、溢水防護区画及び溢水経路の設定について

a. 既工事計画においては, 耐震 Sクラス機器については溢水源として想定しない方針であると記載している。

「V-1-1-8-1 溢水等による損傷防止の基本方針」 (1,2,5頁参照)

[A-1-1-8-3 溢水評価条件の設定」 (1,2,8,12頁参照)

ス通路を対象に溢水防護区画を設定するとともに,溢水防護区画内外で発生する溢水に対して,溢水防護区画内の溢水水位が最 既工事計画においては,溢水防護対象設備が設置されている全ての区画並びに中央制御室及び現場操作が必要な設備へのアクセ も高くなる溢水経路を設定する方針と記載している。 р.

(2,5頁参照) [V-1-1-8-1 溢水等による損傷防止の基本方針]

(11,13,26頁参照) [V-1-1-8-3 溢水評価条件の設定]

原子炉建屋換気系(ダクト)放射線モニタの変更認可申請に伴う影響について 発電用原子炉施設内における溢水等による損傷の防止、 [第12条

既工事計画においては,浸水に対する保護構造を有し被水影響を受けても要求される機能を損なうおそれがない設計とすると記載されている。また,保護構造を有さない場合は,機能を損なうおそれがない配置設計又は被水の影響が発生しないよう当該設備が設置される溢水防護区画において水消火を行わない消火手段を採用する設計とする。 ပ

[V-1-1-8-1 溢水等による損傷防止の基本方針」 (2,7頁参照)

d. 既工事計画においては, 想定破損及び消火水の放水に対して, 溢水量の算出し記載している。 (1~4頁参照) 「V-1-1-8-1 溢水等による損傷防止の基本方針」

今回の変更認可申請に伴い,上記の方針に変更がないことを確認する。

③溢水防護対象設備に関する溢水評価及び防護設計について

原子炉施設内における溢水の発生により、安全性を損なうおそれがないようにするため、以下を確認する。

既工事計画においては,没水影響に対して,溢水防護対象設備が要求される安全機能を損なうおそれがないようにするために, 当該設備の機能喪失高さは当該区画の溢水水位に対して裕度を確保する設計方針と記載している。 「V-1-1-8-1 溢水等による損傷防止の基本方針」(2,6頁参照)

「V-1-1-8-4 溢水影響に関する評価」 (1頁参照)

既工事計画においては,被水影響に対して,溢水防護対象設備が要求される安全機能を損なうおそれがないようにするために, 当該設備の配置を考慮した設計又は水の浸入に対する保護構造を有する設計方針と記載している。 「V-1-1-8-1 溢水等による損傷防止の基本方針」(2,7頁参照) р,

[N-1-1-8-4 溢水影響に関する評価」 (1,11頁参照)

既工事計画においては,使用済燃料プール等のスロッシングの影響に対して,スロッシング後も使用済燃料プールの冷却機能及 び遮蔽機能並びに給水機能の維持に必要な水位を確保する設計方針と記載している。 ပ

(2,9頁参照) 「V-1-1-8-1 溢水等による損傷防止の基本方針」

[N-1-1-8-4 溢水影響に関する評価」 (1,38頁参照)

今回の変更認可申請に伴い,上記の設計に変更がないことを確認する。

原子炉建屋換気系(ダクト)放射線モニタの変更認可申請に伴う影響について 発電用原子炉施設内における溢水等による損傷の防止、 [第12条

④その他の溢水防護設計について

既工事計画においては,放射性物質を含む液体を内包する容器,配管その他の設備からあふれ出る放射性物質を含む液体が管理区域外へ伝播しないようにする設計方針と記載している。

[A-1-1-8-1 溢水等による損傷防止の基本方針」 (2,10,11,13頁参照) [A-1-1-8-4 溢水影響に関する評価」 (1,57,58頁参照)

「V-1-1-8−5 溢水防護施設の詳細設計」(1,5,25頁参照)

今回の変更認可申請に伴い,上記の設計に変更がないことを確認する。

原子炉建屋換気系 (ダクト) 放射線モニタの変更認可申請に伴う影響について 【第12条 発電用原子炉施設内における溢水等による損傷の防止】

2. 確認結果

原子炉建屋換気系 (ダクト) 放射線モニタの変更認可申請に伴う影響について 【第12条 発電用原子炉施設内における溢水等による損傷の防止】

確認結果 確認結果	・今回の放射線モニタの改造により, 耐震 S クラス機器については溢水源として想定しないことから, 評価条件に影響を与えないことを確認した。 [②a]・今回の放射線モニタの改造により, 溢水防護区画, 及び溢水経路の設定方針に影響を与えないことを確認した。 [②b]	・今回の放射線モニタの改造により, 溢水防護対象設備に変更がなく, 評価条件に影響を与えない ことを確認した。【③, ④】	・今回の放射線モニタの改造により,放射性物質を含む液体を内包する容器,配管その他の設備からあふれ出る放射性物質を含む液体が管理区域外へ伝播しないようにする設計方針に影響を与えないことを確認した。【④】	・今回の放射線モニタの改造により, 溢水により防護すべき設備の評価条件に影響を与えないことを確認した。 [③,④]	・今回の放射線モニタの改造により,溢水防護対象設備に変更がなく, 評価条件に影響を与えないことを確認した。【④】	計 ・今回の放射線モニタの改造により,放射性物質を含む液体を内包する容器,配管その他の設備からあふれ出る放射性物質を含む液体が管理区域外へ伝播しないようにする設計方針に影響を与えないことを確認した。【④】
確認図書名	V-1-1-8-3 溢水評価条件の設定		V-1-1-8-4 溢水影響に関する評価		V-1-1-8-5 溢水防護施設の詳細設計	

原子炉建屋換気系(ダクト)放射線モニタの変更認可申請に伴う影響について 発電用原子炉施設内における溢水等による損傷の防止 [第12条

. 33

・今回の放射線モニタの改造については、溢水防護対象設備の配置を異なる溢水防護区画に変更するが、溢水防護対象設備に関する溢水評価及び防護設計並びにその他の溢水防護設計に係る基本設計に変更がないことを確認した。・溢水防護対象設備に関する溢水評価及び防護設計並びにその他の溢水防護設計に係る基本設計に変更がないため、技術基準の適合性

溢水評価及び防護設計,その他の溢水防護設計に影響がないこと(適合していること)を確認する必要があるため,変更の工事の内 溢水量, 溢水防護区画及び溢水経路の設定, 溢水防護対象設備に関する 溢水源, 既工事計画で確認された溢水防護対象設備の選定, 容(本申請内容)に関連し、審査対象条文とする。 に影響を与えない。

V-1-1-8-1 溢水等による損傷防止の基本方針

1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準規則」という。)第12条及び第54条並びに「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(以下「解釈」という。)に適合する設計とするため、設計基準対象施設及び重大事故等対処設備が発電所施設内における溢水の発生によりその要求される機能を損なうおそれがある場合に、防護処置その他の適切な処置を講じることを説明するものである。

(1) 2. 溢水等による損傷防止の基本方針

「原子力発電所の内部溢水影響評価ガイド」(以下「評価ガイド」という。)を踏まえて、溢水防護に係る設計時に発電用原子炉施設内で発生が想定される溢水の影響を評価(以下「溢水評価」という。)し、運転状態にある場合は発電用原子炉施設内における溢水が発生した場合においても、発電用原子炉を高温停止及び引き続き低温停止することができ、並びに放射性物質の閉じ込め機能を維持できる設計とする。また、停止状態にある場合は、引き続きその状態を維持できる設計とする。さらに、使用済燃料プールにおいては、使用済燃料プールの冷却機能及び使用済燃料プールへの給水機能を維持できる設計とする。また、「発電用軽水型原子炉施設の安全評価に関する審査指針」を踏まえ、溢水により発生し得る原子炉外乱及び溢水の原因となり得る原子炉外乱を抽出し、主給水流量喪失、原子炉冷却材喪失等の運転時の異常な過渡変化又は設計基準事故の対処に必要な機器の単一故障を考慮しても異常状態を収束できる設計とする。

これらの機能を維持するために必要な設備(以下「溢水防護対象設備」という。)が 発生を想定する没水、被水及び蒸気の影響を受けて、要求される機能を損なうおそれが ない設計(多重性又は多様性を有する設備が同時にその安全機能を損なわない設計)と する。重大事故等対処設備については、溢水影響を受けて設計基準事故対処設備並びに

使用済燃料プールの冷却設備及び給水設備(以下「設計基準事故対処設備等」という。) 又は同様の機能を有する重大事故等対処設備と同時に機能を損なうおそれがないよう, 被水及び蒸気影響に対しては可能な限り設計基準事故対処設備等又は同様の機能を有す る重大事故等対処設備との位置的分散を図り,没水の影響に対しては溢水水位を考慮し た位置に設置又は保管する。

① 溢水防護対象設備及び重大事故等対処設備を防護すべき設備とし、設定方針を「2.1 防護すべき設備の設定」に示す。

② a , d

溢水評価を実施するに当たり、溢水源及び溢水量を、想定する機器の破損等により生じる溢水(以下「想定破損による溢水」という。)、発電所内で生じる異常状態(火災を含む。)の拡大防止のために設置される系統からの放水による溢水(以下「消火水の放水による溢水」という。)並びに地震に起因する機器の破損及び使用済燃料プール等のスロッシングにより生じる溢水(以下「地震起因による溢水」という。)を踏まえ設

②a, d

定する。なお、施設定期検査中においては、使用済燃料プール、原子炉ウェル及びドライヤセパレータプールのスロッシングにより生じる溢水を踏まえ溢水源及び溢水量を設定する。その他の要因による溢水として、地下水の流入、地震以外の自然現象、機器の誤作動等により生じる溢水(以下「その他の溢水」という。)を考慮し、溢水源及び溢水量を設定する。

(2) b

溢水防護に対する評価対象区画(以下「溢水防護区画」という。)及び溢水経路は, 溢水防護区画内外で発生を想定する溢水に対して,当該区画内の溢水水位が最も高くな るように設定する。溢水源,溢水量,溢水防護区画及び溢水経路の設定方針を「2.2 溢 水評価条件の設定」に示す。

② c

溢水評価では、没水、被水及び蒸気の影響を受けて要求される機能を損なうおそれがある防護すべき設備に対して、溢水影響評価を実施し、必要に応じて防護対策を実施する。具体的な評価及び防護設計方針を、「2.3.1 防護すべき設備を内包する建屋内及びエリア内で発生する溢水に関する溢水評価及び防護設計方針」のうち「(1) 没水の影響に対する評価及び防護設計方針」,「(2) 被水の影響に対する評価及び防護設計方針」及び「(3) 蒸気影響に対する評価及び防護設計方針」に示す。

使用済燃料プールの機能維持に関しては、発生を想定する溢水の影響を受けて、使用 済燃料プール冷却系統及び給水系統が要求される機能を損なうおそれがないことを評価 する。具体的な評価及び防護設計方針を、「2.3.2 使用済燃料プールの機能維持に関す る評価及び防護設計方針」に示す。

溢水防護区画を内包する建屋外から溢水が流入するおそれがある場合には、防護対策 により溢水の流入を防止する。具体的な評価及び防護設計方針を、「2.3.3 防護すべき 設備を内包する建屋外及びエリア外で発生する溢水に関する溢水評価及び防護設計方針」 に示す。

4

発電用原子炉施設内の放射性物質を含む液体を内包する容器,配管その他の設備(ポンプ,弁,使用済燃料プール,サイトバンカプール,原子炉ウェル,ドライヤセパレータプール)から放射性物質を含む液体があふれ出るおそれがある場合において,放射性物質を含む液体が管理区域外へ漏えいすることを防止する設計とする。管理区域外への漏えい防止に関する評価及び防護設計方針を「2.3.4 放射性物質を含んだ液体の管理区域外への漏えい防止に関する溢水評価及び防護設計方針」に示す。

防護すべき設備が発生を想定する溢水により要求される機能を損なうおそれがある場合,又は放射性物質を含む液体が管理区域外に漏えいするおそれがある場合には,防護対策その他の適切な処置を実施する。発生を想定する溢水から防護すべき設備を防護するための施設(以下「溢水防護に関する施設」という。)について,実施する防護対策その他の適切な処置の設計方針を「2.4 溢水防護に関する施設の設計方針」に示す。

原子炉建屋原子炉棟6階については、原子炉建屋原子炉棟6階で発生した溢水が、原子 炉建屋原子炉棟内の東側の区画へ流下しない設計とする。また、発生した溢水は流下開 口により西側の区画へ流下する設計とする。

施設定期検査時については、使用済燃料プール、原子炉ウェル及びドライヤセパレータプールのスロッシングにより発生する溢水をそれぞれのプール等へ戻すことで、原子炉建屋原子炉棟6階よりも下層階に流下させない設計とし、原子炉建屋原子炉棟6階よりも下層階に設置される防護すべき設備がその機能を損なうおそれがない設計とする。

溢水評価条件の変更により評価結果が影響を受けないことを確認するために,溢水防護区画において,各種設備の追加及び資機材の持込みにより評価条件としている溢水源,溢水経路及び滞留面積等に見直しがある場合は,溢水評価への影響確認を行うこととし,保安規定に定めて管理する。

① a

2.1 防護すべき設備の設定

評価ガイドを踏まえ、以下のとおり溢水防護対象設備を設定する。

- (1) 「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」における 分類のクラス1,2に属する構築物,系統及び機器に加え,安全評価上その機能を 期待するクラス3に属する構築物,系統及び機器のうち,以下の機能を達成するた めの重要度の特に高い安全機能を有する系統が,その安全機能を適切に維持する ために必要な設備。
 - ・運転状態にある場合には、原子炉を高温停止及び、引き続き低温停止すること ができ、並びに放射性物質の閉じ込め機能を維持するための設備。
 - ・停止状態にある場合は引き続きその状態を維持する設備。
- (2) 使用済燃料プールの冷却機能及び使用済燃料プールへの給水機能を適切に維持 するために必要な設備

また、重大事故等対処設備についても溢水から防護すべき設備として設定する。

① 防護すべき設備の設定の具体的な内容を添付書類「V-1-1-8-2 防護すべき設備の設定」に示す。

(2) d

- 2.2 溢水評価条件の設定
 - (1) 溢水源及び溢水量の設定

溢水源及び溢水量は、想定破損による溢水、消火水の放水による溢水及び地震起因による溢水を踏まえ設定する。また、その他の溢水も評価する。

想定破損による溢水では、評価ガイドを参照し、高エネルギー配管は「完全全周破断」、低エネルギー配管は「配管内径の1/2の長さと配管肉厚の1/2の幅を有する貫通クラック(以下「貫通クラック」という。)」の破損を想定した評価とし、想定する破損箇所は溢水影響が最も大きくなる位置とする。

ただし、高エネルギー配管については、ターミナルエンドを除き、応力評価の結果により、以下のとおり破損形状を想定する。

- ・原子炉冷却材圧力バウンダリ及び原子炉格納容器バウンダリの配管であれば発生応力が許容応力の0.8倍以下であれば破損を想定しない。
- ・原子炉冷却材圧力バウンダリ及び原子炉格納容器バウンダリ以外の配管であれば発生応力が許容応力の0.4倍を超え0.8倍以下であれば「貫通クラック」による溢水を想定した評価とし、0.4倍以下であれば破損は想定しない。

低エネルギー配管については、配管の発生応力が許容応力の0.4倍以下であれば 破損は想定しない。

具体的には、高エネルギー配管のうち、原子炉冷却材圧力バウンダリ及び原子炉格納容器バウンダリ以外の配管である原子炉隔離時冷却系蒸気配管及び原子炉建屋廃棄物処理棟の所内蒸気配管の一般部(1Bを超える。)は、発生応力が許容応力の0.8倍以下を確保する設計とし、「貫通クラック」による溢水を想定した評価とする。破損を想定しない低エネルギー配管は発生応力が許容応力の0.4倍以下を確保する設計とする。

発生応力と許容応力の比較により破損形状の想定を行う原子炉隔離時冷却系蒸気配管及び原子炉建屋廃棄物処理棟の所内蒸気配管の一般部(IBを超える。)及び破損を想定しない低エネルギー配管は,評価結果に影響するような配管減肉がないことを確認するために,継続的な肉厚管理を実施することとし,保安規定に定めて管理する。

また,高エネルギー配管として運転している時間の割合が,当該系統の運転している時間の2%又はプラント運転期間の1%より小さいことから低エネルギー配管とする系統(ほう酸水注入系,残留熱除去系,残留熱除去系海水系,高圧炉心スプレイ系,低圧炉心スプレイ系及び原子炉隔離時冷却系)については,運転時間実績管理を実施することとし,保安規定に定めて管理する。

消火水の放水による溢水では、消火活動に伴う消火栓からの放水量を溢水量として設定する。消火栓以外の設備である発電所内で生じる異常状態(火災を含む。)

の拡大防止のために設置されるスプリンクラ及び格納容器スプレイ系統からの溢水については、防護すべき設備が溢水影響を受けない設計とする。具体的には、防護すべき設備が設置される建屋には、スプリンクラは設置しない設計とする。格納容器スプレイ系統の作動により発生する溢水については、原子炉絡納容器内の防護すべき設備が要求される機能を損なうおそれがない設計とし、詳細は添付書類「V-1-1-6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書」の「2.3 環境条件等」に示す。また、格納容器スプレイ系統は、作動信号系の単一故障により誤作動しないように設計されることから、誤作動による溢水は想定しない。

地震起因による溢水では、流体を内包することで溢水源となり得る機器のうち、

基準地震動S。による地震力により破損するおそれがある機器からの漏水及び使用 済燃料プールのスロッシングによる漏水を溢水源として設定する。施設定期検査中 においては、使用済燃料プール、原子炉ウェル及びドライヤセパレータプールのス ロッシングによる漏水を溢水源として設定する。廃棄物処理建屋においては、耐震 重要度分類に応じた要求される地震力によるサイトバンカプールのスロッシングに よる漏水を溢水源として設定する。

その際、配管については破断形状として完全全周破断を考慮した溢水流量、容器については全保有水量の流出を考慮する。使用済燃料プール、原子炉ウェル及びドライヤセパレータプールのスロッシングによる溢水量の算出に当たっては、基準地震動Ssにより生じるスロッシングにてプール外へ漏えいする溢水量を考慮する。

②a 耐震Sクラス機器については、基準地震動S。による地震力によって破損は生じないことから溢水源として想定しない。また、耐震B、Cクラス機器のうち、耐震対

策工事の実施あるいは設計上の裕度の考慮により、基準地震動S。による地震力に対して耐震性が確保されているものについては溢水源として想定しない。

溢水量の算出に当たっては、漏水が生じるとした機器のうち防護すべき設備への 溢水の影響が最も大きくなる位置で漏水が生じるものとして評価する。

溢水量の設定において、隔離による漏えい停止を期待する場合には、漏えい停止までの適切な隔離時間を考慮し、配管の破損箇所から流出した漏水量と隔離後の溢水量として隔離範囲内の系統の保有水量を合算して設定する。ここで漏水量は、配管の破損箇所からの流出流量に隔離時間を乗じて設定する。なお、手動による漏えい停止の手順は、保安規定に定めて管理する。

溢水量の算出に当たっては、配管の保有水量に10 %の保守性を考慮した設計と する。

その他の溢水については、地下水の流入、降水、屋外タンクの竜巻による飛来物の衝突による破損を伴う漏えい等の地震以外の自然現象により発生する溢水及び機器の誤作動等による漏えい事象を想定し、これらの溢水についても防護すべき設備が溢水の影響を受けて要求される機能を損なうおそれがない設計とする。

溢水源及び溢水量の設定の具体的な内容を添付書類「V-1-1-8-3 溢水評価条件の設定」のうち「2. 溢水源及び溢水量の設定」に示す。

② b (2) 溢水防護区画及び溢水経路の設定

溢水防護区画は、防護すべき設備が設置されているすべての区画並びに中央制御 室及び現場操作が必要な設備へのアクセス通路について設定する。

溢水防護区画は壁,扉,堰,床段差等又はそれらの組み合わせによって他の区画と分離される区画として設定する。

溢水経路は、溢水防護区画内外で発生を想定する溢水に対して、当該区画内の溢

5

水水位が最も高くなるように設定する。消火活動により区画の扉を開放する場合は, 開放した扉からの消火水の伝播を考慮した溢水経路とする。また,壁貫通部止水処 置は,火災により機能を損なうおそれがない設計とする。

また,溢水経路を構成する水密扉については、閉止状態を確実にするために、中央制御室における閉止状態の確認、開放後の確実な閉止操作及び閉止されていない 状態が確認された場合の閉止操作の手順書の整備を行うこととし、保安規定に定め て管理する。

また,原子炉建屋原子炉棟6階については,大物機器搬入口開口部及び燃料輸送容器搬出口開口部に関して,キャスク搬出入時における原子炉建屋原子炉棟溢水拡大防止堰6-4 (鋼板部)の取り外し,並びに原子炉建屋原子炉棟6階の残留熱除去系A系及びB系の熱交換器ハッチ開口部に関して,ハッチを開放する前には原子炉建屋原子炉棟止水板6-1及び原子炉建屋原子炉棟止水板6-2の設置並びにその他の流下経路(床ファンネル及び流下開口)の閉止措置を行い,溢水が下層階へ流下することを防止する設計とする。また,この堰,止水板の設置及び流下経路の閉止措置に係る運用は保安規定に定めて管理する。

現場操作が必要な設備へのアクセス通路について,最終的な滞留水位が200 mmより高くなる区画には想定される水位に応じて必要な高さの歩廊を設置し,アクセスに影響のない措置を講じる。

溢水防護区画及び溢水経路の設定の具体的な内容を添付書類「V-1-1-8-3 溢水評価条件の設定」のうち「3. 溢水防護区画及び溢水経路の設定」に示す。

(3) a

- 2.3 溢水評価及び防護設計方針
 - 2.3.1 防護すべき設備を内包する建屋内及びエリア内で発生する溢水に関する溢水 評価及び防護設計方針
 - (1) 没水の影響に対する評価及び防護設計方針

発生を想定する溢水量,溢水防護区画及び溢水経路から算出される溢水水位と, 防護すべき設備が要求される機能を損なうおそれがある高さ(以下「機能喪失高 さ」という。)を評価し、防護すべき設備が没水の影響により要求される機能を 損なうおそれがないことを評価する。

また,溢水の流入状態,溢水源からの距離,人のアクセス等による一時的な水位変動を考慮し,機能喪失高さは,溢水水位に対して裕度を確保する設計とする。 具体的には,防護すべき設備の機能喪失高さが溢水防護区画ごとに算出される溢水水位に対して一律100 mm以上の裕度を確保する設計とする。

さらに、区画の床勾配による床面高さのばらつきを考慮し、評価に用いる溢水 水位に一律100 mmの裕度を確保する設計とする。

防護すべき設備が溢水による水位に対し機能喪失高さを確保できないおそれが

ある場合は、溢水水位を上回る高さまで、止水性を維持する壁、扉、蓋、堰、逆 流防止装置又は貫通部止水処置により溢水伝播を防止する対策を実施する。

止水性を維持する溢水防護に関する施設については、試験又は机上評価にて止 水性を確認する設計とする。

重大事故等対処設備については、溢水水位を踏まえた位置に設置又は保管することで、没水影響により設計基準事故対処設備等又は同様の機能を有する重大事故等対処設備と同時に機能喪失しない設計とする。

使用済燃料プールの水位及び温度の監視に必要な設備は、使用済燃料プールの スロッシング等により一時的に水没するおそれがあることから、没水に対して機 能喪失しない設計とする。

消火水の放水による没水影響で防護すべき設備の機能を損なうおそれがある場合には、水消火を行わない消火手段(ハロゲン化物消火設備による消火、二酸化炭素自動消火設備による消火、消火器による消火)を採用することで没水の影響が発生しない設計とする。さらに当該エリアへの不用意な放水を行わない運用とすることとし保安規定に定めて管理する。

没水影響評価の具体的な内容を添付書類「V-1-1-8-4 溢水影響に関する評価」 のうち「2.1 没水影響に対する評価」に示す。

3 b

(2) 被水の影響に対する評価及び防護設計方針

溢水源からの直線軌道及び放物線軌道の飛散による被水若しくは天井面の開口 部又は貫通部からの被水の影響により、防護すべき設備が要求される機能を損な うおそれがないことを評価する。

(2) c

防護すべき設備は、浸水に対する保護構造(以下「保護構造」という。)を有し被水影響を受けても要求される機能を損なうおそれがない設計とする。

保護構造を有さない場合は、機能を損なうおそれがない配置設計又は被水の影響が発生しないよう当該設備が設置される溢水防護区画において水消火を行わない消火手段(ハロゲン化物消火設備による消火、二酸化炭素自動消火設備による消火、消火器による消火)を採用する設計とする。

保護構造により要求される機能を損なうおそれがない設計とする設備については、評価された被水条件を考慮しても要求される機能を損なうおそれがないことを設計時に確認し、保護構造を維持するための保守管理を実施する。

また、水消火を行う場合には、消火対象以外の設備への誤放水がないよう、消火放水時に不用意な放水を行わない運用とすることとし保安規定に定めて管理する。

重大事故等対処設備については、位置的分散により、被水影響により設計基準 事故対処設備等又は同様の機能を有する重大事故等対処設備と同時に機能喪失し 事故対処設備等又は同様の機能を有する重大事故等対処設備と同時に機能喪失しない設計とする。

防護すべき設備が蒸気環境に曝された場合、防護すべき設備の要求される機能 が損なわれていないことを確認することとし、保安規定に定めて管理する。

蒸気影響評価の具体的な内容を添付書類「V-1-1-8-4 溢水影響に関する評価」のうち「2.3 蒸気影響に対する評価」に示す。

原子炉建屋外側ブローアウトパネルに関する具体的な設計方針については、添付書類「V-1-1-6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書」に示す。

③ c 2.3.2 使用済燃料プールの機能維持に関する評価及び防護設計方針

使用済燃料プールに関しては、発生を想定する溢水の影響を受けても、使用済燃料プール冷却系統及び給水系統に要求される機能が損なわれるおそれがないことを評価する。具体的には、基準地震動 S_s による地震力によって生じるスロッシング後の使用済燃料プール水位が、使用済燃料プールの冷却機能(水温65 $^{\circ}$ C以下)の維持に必要な水位(サージタンクに流入するオーバーフローラインの下端位置以上)及び保安規定で定めた管理区域内における特別措置を講じる基準である線量率($\leq 1.0~mSv/h$)を満足する水位を上回ることを評価する。

また、スロッシングによる溢水(その他機器の地震起因による溢水を含む。) の影響を受けて、使用済燃料プールの冷却機能及び使用済燃料プールへの給水機 能の維持に必要な機器が要求される機能を損なうおそれがないことを評価する。

防護すべき設備が溢水により要求される機能を損なうおそれがある場合には, 防護対策その他の適切な処置を実施する。

使用済燃料プールのスロッシングによる溢水量の算出に当たっては、基準地震動S。による地震力によって生じるスロッシング現象をスロッシング後の使用済燃料プール水位及び使用済燃料プール外へ漏えいする水量がそれぞれ保守的になるよう設定した評価条件で3次元流動解析により評価する。

施設定期検査時においては、スロッシングによる溢水が使用済燃料プール、原子炉ウェル及びドライヤセパレータプールへ戻ることを踏まえ、スロッシング後にも使用済燃料プールの適切な水温及び遮蔽水位を維持できる設計とする。なお、プール等周りの縁石には、スロッシングによる溢水がプール等へ戻りやすくなるよう切欠きを設置する。

スロッシングによる溢水がプール等へ戻る際のプール内への異物落下防止措置 及び異物による切欠きの閉塞防止措置について、保安規定に定めて管理する。

使用済燃料プール機能維持評価の具体的な内容を添付書類「V-1-1-8-4 溢水 影響に関する評価」のうち「2.4 使用済燃料プールの機能維持に関する溢水評価」 に示す。

2.3.3 防護すべき設備を内包する建屋外及びエリア外で発生する溢水に関する溢水評価及び防護設計方針

防護すべき設備を内包する建屋及びエリアにおいて、建屋外及びエリア外で発生を想定する溢水である循環水管の伸縮継手の破損による溢水、屋外タンクで発生を想定する溢水、地下水等が、建屋内及びエリア内に流入するおそれがある場合には、壁、扉、蓋の設置及び貫通部止水処置を実施することで建屋内及びエリア内への流入を防止する設計とし、防護すべき設備が要求される機能を損なうおそれがない設計とする。

また、建屋外及びエリア外で発生する溢水量の低減対策として以下に期待する。 海水ポンプエリア外及びタービン建屋内における循環水管の伸縮継手の破損箇所からの溢水を早期に自動検知し、隔離(地震起因による伸縮継手の破損の場合は自動隔離、それ以外は中央制御室からの遠隔手動隔離)を行うために、循環水系隔離システム(漏えい検知器、循環水ポンプ出口弁、復水器水室出入口弁、検知制御盤及び検知監視盤等)を設置する。隔離信号発信後一分以内に循環水ポンプ、循環水ポンプ出口弁及び復水器水室出入口弁を自動隔離する設計とする。さらに、海水ポンプエリア外の循環水管については、伸縮継手を可撓継手構造とし、継手部のすき間(合計 mm以下)を設定する設計とすることで、破損箇所からの溢水量を低減する設計とする。

地下水については、排水ポンプの故障等により建屋周囲の水位が地表面まで上昇することを想定し、建屋外周部における壁及び貫通部止水処置により防護すべき設備を内包する建屋への流入を防止する設計とする。

防護すべき設備を内包する建屋外及びエリア外で発生する溢水に関する溢水評価の具体的な内容を添付書類「V-1-1-8-4 溢水影響に関する評価」のうち「3. 溢水防護区画を内包する建屋外からの流入防止」に示す。

④ 2.3.4 放射性物質を含んだ液体の管理区域外への漏えい防止に関する溢水評価及び 防護設計方針

発電用原子炉施設内の放射性物質を含む液体を内包する容器,配管及びその他の設備(ポンプ,弁,使用済燃料プール,サイトバンカプール,原子炉ウェル,ドライヤセパレータプール)からあふれ出る放射性物質を含む液体について,溢水量,溢水防護区画及び溢水経路により溢水水位を算出し,放射性物質を内包する液体が管理区域外へ漏えいすることを防止し伝播するおそれがないことを評価する。なお,地震時における放射性物質を含む液体の溢水量の算出については,耐震重要度分類に応じた要求される地震力を用いて設計する。

放射性物質を含む液体が管理区域外に伝播するおそれがある場合には管理区域 外への溢水伝播を防止するため、防護対策を実施する。

評価で期待する溢水防護対策として、漏えいする溢水水位を上回る高さを有する伝播防止処置を実施し、放射性物質を含む液体が管理区域外へ伝播しない設計とする。また、溢水防護対策は、溢水水位に対して原則200 mm以上の裕度を確保する設計とする。具体的には、溢水の流入状態、溢水源からの距離、人のアクセス等による一時的な水位変動を考慮し、溢水水位に対して原則100 mm以上の裕度を確保するとともに、区画の床勾配による床面高さのばらつきを考慮し、溢水水位に原則100 mm以上の裕度を確保する。ただし、溢水水位が低い場合や溢水防護対策の設置位置が床勾配の上端部であることが明らかな位置にある場合には、適切な裕度を確保する設計とする。

管理区域外への漏えい防止に関する溢水評価の具体的な内容を添付書類「V-1-1-8-4 溢水影響に関する評価」のうち「4. 管理区域外への漏えい防止に関する溢水評価」に示す。

2.4 溢水防護に関する施設の設計方針

(4)

「2.2 溢水評価条件の設定」及び「2.3 溢水評価及び防護設計方針」を踏まえ, 溢水防護区画の設定,溢水経路の設定及び溢水評価において期待する溢水防護に関す る施設の設計方針を以下に示す。設計に当たっては,溢水防護に関する施設が要求さ れる機能を踏まえ,溢水の伝播を防止する設備及び蒸気影響を緩和する設備に分類し 設計方針を定める。

また、溢水防護に期待する施設は、要求される機能を維持するため、計画的に保守管理を実施するとともに、必要に応じ補修を実施することとし、保安規定に定めて管理する。

溢水防護に関する施設の設計方針を添付書類「V-1-1-8-5 溢水防護施設の詳細設計」に示す。

2.4.1 溢水伝播を防止する設備

(1) 水密扉(浸水防止設備と一部兼用)

原子炉建屋原子炉棟内で発生を想定する溢水が、溢水防護区画へ伝播しない設計とするために、止水性を有する残留熱除去系A系ポンプ室水密扉、原子炉隔離時冷却系室北側水密扉、原子炉隔離時冷却系室南側水密扉及び高圧炉心スプレイ系ポンプ室水密扉を設置する。

また、屋外で発生を想定する溢水が、溢水防護区画内(常設代替高圧電源装置 用カルバート内)へ伝播しない設計とするために、止水性を有する常設代替高圧 電源装置用カルバート原子炉建屋側水密扉(浸水防止設備と兼用)を設置する。

(4) 管理区域外伝播防止堰 (放射性廃棄物の廃棄施設と一部兼用)

管理区域内で発生を想定する放射性物質を含む液体が、管理区域外へ伝播しない設計とするために、原子炉建屋廃棄物処理棟管理区域伝播防止堰1-1から1-2、タービン建屋管理区域外伝播防止堰1-1から1-4を設置する。また、放射性廃棄物の廃棄施設におけるキャスク搬出入用出入口、サイトバンカトラックエリア出入口、廃棄物処理建屋機器搬出入用出入口、雑固体ドラム搬出入用出入口、ドラム搬入室出入口、廃棄物処理建屋出入口及び焼却設備機器搬出入用出入口も管理区域外伝播防止堰として兼用する。

管理区域外伝播防止堰のうち耐震設計上の重要度分類がC-2クラスの堰は、発生を想定する溢水水位による静水圧に対し、溢水伝播を防止する機能を維持する設計とする。また、地震時及び地震後において、基準地震動S。による地震力に対して、溢水伝播を防止する機能を維持する設計とする。上記以外の管理区域伝播防止堰については、地震時及び地震後において、耐震重要度分類にて要求される地震力に対して、溢水伝播を防止する機能を維持する設計とする。

(5) 逆流防止装置

原子炉建屋原子炉棟内で滞留する溢水が,床ドレンラインを介して原子炉建屋 原子炉棟内の溢水防護区画へ伝播しない設計とするために,床ドレンラインに止 水性を有する逆流防止装置を設置する。

逆流防止装置は、発生を想定する溢水水位による静水圧に対し、溢水伝播を防止する機能を維持する設計とする。また、地震時及び地震後において、基準地震動 S_sによる地震力に対して、溢水伝播を防止する機能を維持する設計とする。

④ ┃ (6) 貫通部止水処置(浸水防止設備と一部兼用)

以下の設計のため、貫通部止水処置を実施する。

- ・防護すべき設備を内包する建屋外及びエリア外にて発生を想定する溢水が, 溢水防護区画へ伝播しない設計とするため。
- ・原子炉建屋原子炉棟内で発生を想定する溢水により,防護すべき設備の機能 を損なうおそれがない設計とするため。
- ・管理区域内で発生を想定する放射性物質を含む液体が管理区域外へ伝播しない設計とするため。

これらの貫通部止水処置は、発生を想定する溢水水位による静水圧に対し、溢水伝播を防止する機能を維持する設計とする。また、地震時及び地震後において、基準地震動 S。による地震力に対して、溢水伝播を防止する機能を維持する設計とする。

V-1-1-8-2 防護すべき設備の設定

1. 概要

本資料は、技術基準規則第12条、第54条及びその解釈並びに評価ガイドを踏まえて、 発電用原子炉施設内で発生を想定する溢水の影響から防護すべき設備の設定の考え方を 説明するものである。

2. 防護すべき設備の設定

2.1 防護すべき設備の設定方針

溢水から防護すべき設備として、「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」における分類のクラス1,クラス2に属する構築物、系統及び機器に加え、安全評価上その機能を期待するクラス3に属する構築物、系統及び機器のうち、重要度の特に高い安全機能を有する系統がその安全機能を維持するために必要な設備並びに使用済燃料プールの冷却機能及び使用済燃料プールへの給水機能を維持するために必要な設備である溢水防護対象設備を設定する。

また、重大事故等対処設備についても溢水から防護すべき設備として設定する。

2.2 溢水防護対象設備の抽出

防護すべき設備のうち、溢水防護対象設備の具体的な抽出の考え方を以下に示す。 溢水によってその安全機能が損なわれないことを確認する必要がある施設を、発電 用軽水型原子炉施設の安全機能の重要度分類に関する審査指針(以下「重要度分類審 査指針」という。)における分類のクラス1,クラス2及びクラス3に属する構築物、 系統及び機器とする。

この中から, 溢水防護上必要な機能を有する構築物, 系統及び機器を選定する。

具体的には,運転状態にある場合には原子炉を高温停止及び引き続き低温停止することができ並びに放射性物質の閉じ込め機能を維持するため,停止状態にある場合は引き続きその状態を維持するため及び使用済燃料プールの冷却機能及び給水機能を維持するために必要となる,重要度分類審査指針における分類のクラス1,クラス2に属する構築物,系統及び機器に加え,安全評価上その機能を期待するクラス3に属する構築物,系統及び機器を抽出する。

以上を踏まえ、防護すべき設備のうち溢水防護対象設備として、重要度の特に高い 安全機能を有する構築物、系統及び機器並びに使用済燃料プールの冷却機能及び給水 機能を維持するために必要な構築物、系統及び機器を抽出する。

(1) a

(1) 重要度の特に高い安全機能を有する系統がその安全機能を適切に維持するため に必要な設備

重要度の特に高い安全機能を有する系統がその安全機能を適切に維持するために 必要な設備として,運転状態にある場合は原子炉を高温停止及び引き続き低温停止 (1) a

することができ並びに放射性物質の閉じ込め機能を維持するために必要な設備,また,停止状態にある場合は引き続きその状態を維持するために必要な設備を溢水防護対象設備として抽出する。重要度の特に高い安全機能を有する系統・機器を表2-1に示す。

(1)b

また「発電用軽水型原子炉施設の安全評価に関する審査指針」を参考に、運転時の異常な過渡変化及び設計基準事故のうち、溢水により発生し得る原子炉外乱及び溢水の原因となり得る原子炉外乱を抽出し、その対処に必要な系統を抽出する。結果として、原子炉冷却材喪失(LOCA)や主蒸気管破断といった溢水源となり得る事象も抽出される。

原子炉外乱としては,以下の溢水により発生し得る原子炉外乱及び溢水の原因となり得る原子炉外乱を考慮する。地震に対しては溢水だけではなく,地震に起因する外乱(給水流量の全喪失,外部電源喪失等)も考慮する。

- ・想定破損による溢水(単一機器の破損を想定)
- ・消火水の放水による溢水 (単一の溢水源を想定)
- ・地震起因による溢水

溢水評価上想定する起因事象として抽出する運転時の異常な過渡変化及び設計基準事故を表2-2及び表2-3に、溢水評価上想定する事象とその対処系統を表2-4に示す。なお、抽出に当たっては溢水事象となり得る事故事象も評価対象とする。

(2) 使用済燃料プールの冷却及び給水機能維持に必要な設備

使用済燃料プールを保安規定で定められた水温(65°C以下)に維持するため,使 用済燃料プールの冷却系統の機能維持に必要な設備を抽出する。

使用済燃料プールの放射線を遮蔽するための水量を確保するため、使用済燃料プールへの給水系統の機能維持に必要な設備を抽出する。

具体的には、表2-5に示すとおり燃料プール冷却浄化系及び残留熱除去系を抽出する。

また、使用済燃料プールの水位及び温度の監視計器については、重要度分類指針における分類のクラス3に属する機器であるが、使用済燃料プールの状態を直接的に把握することができ、異常事態発生時の円滑な対応に資する設備であるため抽出する。

なお、「使用済燃料プール水位・温度(SA広域)」については、重大事故等対処設備として新たに設置するが、使用済燃料プールのスロッシングにより水位が一時的に低下した状態での水位監視に必要な設備であるため、水位監視機能を設計基準対象設備として設定し、溢水防護対象設備として抽出する。

① 2.3 防護すべき設備のうち評価対象の選定について

抽出された防護すべき設備について、表2-6に基づき、具体的に溢水評価が必要となる溢水防護対象設備及び重大事故等対処設備を選定した。その結果を表2-7及び表2-8に示すとともに溢水防護区画を図2-1に示す。

① a

表 2-1 重要度の特に高い安全機能と系統・機器 (2/2)

数 2 1 重		
その機能を有する複数の系統があり、それぞれの系統について多重性又は多様性を要求する安全機能	系統・機器	重要度 分類
圧縮空気供給機能	逃がし安全弁 自動減圧機能及び主蒸気隔離弁 のアキュムレータ	MS-1
原子炉冷却材圧力バウンダリを構成する 配管の隔離機能	原子炉冷却材圧力バウンダリ隔離 弁	MS-1
原子炉格納容器バウンダリを構成する配 管の隔離機能	原子炉格納容器バウンダリ隔離弁	MS-1
原子炉停止系に対する作動信号(常用系 として作動させるものを除く)の発生機 能	原子炉保護系(スクラム機能)	MS-1
工学的安全施設に分類される機器若しく は系統に対する作動信号の発生機能	工学的安全施設作動系 ・非常用炉心冷却系作動の安全保護回路 ・原子炉格納容器隔離の安全保護 回路 ・原子炉建屋ガス処理系作動の安 全保護回路 ・主蒸気隔離の安全保護回路	MS-1
事故時の原子炉の停止状態の把握機能	計測制御装置 ・中性子束(起動領域計装)	MS-2
事故時の炉心冷却状態の把握機能	計測制御装置及び放射線監視装置 原子炉圧力及び原子炉水位 原子炉格納容器圧力	MS-2
事故時の放射能閉じ込め状態の把握機能	計測制御装置及び放射線監視装置原子炉格納容器圧力 格納容器エリア放射線量率及び サプレッション・プール水温度	MS-2
事故時のプラント操作のための情報の把 握機能	計測制御装置 原子炉圧力 原子炉水位(広帯域,燃料域) 原子炉格納容器圧力 サプレッション・プール水温度 原子炉格納容器水素濃度及び原子 炉格納容器酸素濃度	MS-2
	主排気筒放射線モニタ 気体廃棄物処理系設備エリア排気 放射線モニタ	MS-3

① a

表2-4 溢水評価上想定する事象とその対処系統

表2-4 溢水評価上想定する事象とその対処系統				
	溢水評価上 想定する事象	左記事象に対する 対処機能	対処系統*	
運転時の異常な過渡変化	「原子炉起動時における制御棒の異常な引き抜き」 「出力運転中の制御棒の異常な引き抜き」 「出力運転中の制御棒の異常を引き抜き」 「外部電源喪失」 「給水加熱のででは、「給水水流・でででは、「食」、「食」、「原子炉、料御系のは、「食」、「原子が、は、「原子が、は、「原子が、は、「のは、「原子が、は、「のは、「原子が、は、「のは、」では、「原子が、は、し、「原子が、は、し、「原子が、は、し、「原子が、は、し、「原子が、は、し、「原子が、は、し、「原子が、は、し、「原子が、は、し、「原子が、は、し、し、「原子が、は、し、し、「原子が、は、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、	・原子炉の緊急停止 ・工学的安全施設及び原 炉停止系への作動信号 の発生 ・原子炉圧力の上昇の緩和 ・出力上昇の抑制	・制御棒及び制御棒駆動 系(スクラム機能) ・安全保護系 ・逃がし安全弁(逃がし弁 機能)	
設計基準事故	「原子炉冷却材喪失」 「原子炉冷却材流量の喪失」 「主蒸気管破断」	上記機能に加え ・原子炉冷却材圧力バウ ンダリの過圧防止 ・原子炉停止後の除熱 ・炉心冷却 ・放射性物質の閉じ込め ・安全上特に重要な関連機 能	上記機能に加え (安全弁 (安全弁 (安全弁 (安全弁 (安全弁 (安全弁 (安全	

注記 *:上記系統に係る間接系についても防護対象設備として抽出する。

表2-7 溢水評価対象の防護対象設備リスト (1/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
制御棒駆動系	水圧制御ユニット(東側) (水圧制御ユニットアキュムレータ,水 圧制御ユニット窒素容器,スクラム弁 (C12-126,C12-127)含む)		原子炉建屋 原子炉棟	
制御棒駆動系	水圧制御ユニット(西側) (水圧制御ユニットアキュムレータ,水 圧制御ユニット窒素容器,スクラム弁 (C12-126, C12-127)含む)		原子炉建屋 原子炉棟	
エリア放射線モニタ系	燃料取替フロア 燃料プール (検出器) (RE-D21-NS03)		原子炉建屋 原子炉棟	
エリア放射線 モニタ系	燃料取替フロア 燃料プール (現場監視ユニット) (RIA-D21-NS03)		原子炉建屋 原子炉棟	
格納容器 雰囲気監視系	格納容器雰囲気モニタヒータ電源盤 (B) (LCP-188B)		原子炉建屋 原子炉棟	
格納容器 雰囲気監視系	CAMS (B) 系 ヒータ電源用変圧器		原子炉建屋 原子炉棟	
格納容器 雰囲気監視系	CAMS モニタラック (B) (D23-P001B)		原子炉建屋 原子炉棟	
格納容器 雰囲気監視系	CAMS 校正用計器ラック (B) (D23-P002B)		原子炉建屋 原子炉棟	
格納容器 雰囲気監視系	CAMS 校正用ボンベラック (B) (D23-P003B)		原子炉建屋 原子炉棟	
格納容器 雰囲気監視系	CAMS (A) ドライウェル計装入口隔離弁 (D23-F001A(MO))		原子炉建屋 原子炉棟	
格納容器 雰囲気監視系	CAMS (A) ドライウェル計装出口隔離弁 (D23-F002A(MO))		原子炉建屋 原子炉棟	

(1)

溢水評価対象の防護対象設備リスト (2/73) 表2-7 系統 設備 溢水防護区画 設置建屋 設置高さ* CAMS (A) サプレッションプール計装入口 格納容器 原子炉建屋 隔離弁 雰囲気監視系 原子炉棟 (D23-F003A(MO)) 格納容器 格納容器雰囲気モニタヒータ電源盤(A) 原子炉建屋 雰囲気監視系 原子炉棟 (LCP-188A) 格納容器 原子炉建屋 CAMS (A) 系 ヒータ電源用変圧器 雰囲気監視系 原子炉棟 CAMS (B) ドライウェル計装入口隔離弁 格納容器 原子炉建屋 (D23-F001B(M0)) 雰囲気監視系 原子炉棟 格納容器 CAMS (B) ドライウェル計装出口隔離弁 原子炉建屋 雰囲気監視系 (D23-F002B(MO)) 原子炉棟 CAMS (B) サプレッションプール計装入口 格納容器 原子炉建屋 隔離弁 雰囲気監視系 原子炉棟 (D23-F003B(MO)) CAMS (B) サプレッションプール計装ドレ 原子炉建屋 格納容器 ン出口隔離弁 雰囲気監視系 原子炉棟 (D23-F004B(M0)) 格納容器 CAMS モニタラック (A) 原子炉建屋 原子炉棟 雰囲気監視系 (D23-P001A) 格納容器 CAMS 校正用計器ラック (A) 原子炉建屋 雰囲気監視系 (D23-P002A) 原子炉棟 格納容器 CAMS 校正用ボンベラック (A) 原子炉建屋 雰囲気監視系 (D23-P003A) 原子炉棟 格納容器 ドライウェル圧力 (伝送器) 原子炉建屋 雰囲気監視系 (PT-D23-N004A) 原子炉棟

表2-7 溢水評価対象の防護対象設備リスト (3/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
格納容器 雰囲気監視系	ドライウェル圧力(伝送器) (PT-D23-N004B)		原子炉建屋 原子炉棟	
格納容器雰囲気監視系	CAMS(A) サプレッションプール計装ドレン出口隔離弁 (D23-F004A(MO))		原子炉建屋 原子炉棟	
格納容器雰囲気監視系	CAMS (A) 冷却水入口弁 (RHRS (A) 系) (3-12F101A(MO))		原子炉建屋 原子炉棟	
格納容器 雰囲気監視系	CAMS (A) 冷却水出口弁 (RHRS (A) 系) (3-12F102A(M0))		原子炉建屋 原子炉棟	
格納容器雰囲気監視系	CAMS (B) 冷却水入口弁 (RHRS (B) 系) (3-12F101B(M0))		原子炉建屋 原子炉棟	
格納容器 雰囲気監視系	CAMS (B) 冷却水出口弁 (RHRS (B) 系) (3-12F102B(M0))		原子炉建屋 原子炉棟	
原子炉系	原子炉水位・圧力計装ラック (H22-P004)		原子炉建屋 原子炉棟	
原子炉系	原子炉水位・圧力計装ラック (H22-P005)		原子炉建屋 原子炉棟	
原子炉系	原子炉水位・圧力計装ラック (H22-P026)		原子炉建屋 原子炉棟	
原子炉系	原子炉水位・圧力計装ラック (H22-P027)		原子炉建屋 原子炉棟	
原子炉系	ジェットポンプループ (A) 計装ラック (H22-P010)		原子炉建屋 原子炉棟	

	表2-7	溢水評価対象	の防護対象設備	リスト	(4/73)
--	------	--------	---------	-----	--------

系統	設備	溢水防護区画	設置建屋	設置高さ*
原子炉系	ジェットポンプループ (B) 計装ラック (H22-P009)		原子炉建屋 原子炉棟	
原子炉系	原子炉水位燃料域 (LT-B22-N044B)		原子炉建屋 原子炉棟	
原子炉系	復水器真空度(伝送器)(復水器真空度低) (PT-B22-N075A)		タービン 建屋	
原子炉系	復水器真空度(伝送器)(復水器真空度低) (PT-B22-N075B)		タービン 建屋	
原子炉系	復水器真空度(伝送器)(復水器真空度低) (PT-B22-N075C)		タービン 建屋	
原子炉系	復水器真空度(伝送器)(復水器真空度低) (PT-B22-N075D)		タービン 建屋	
原子炉系	MSL PRESS ISO (A) (伝送器) (PT-B22-N076A)		タービン 建屋	
原子炉系	MSL PRESS ISO (B) (伝送器) (PT-B22-N076B)		タービン 建屋	
原子炉系	MSL PRESS ISO (C) (伝送器) (PT-B22-N076C)		タービン 建屋	
原子炉系	MSL PRESS ISO (D) (伝送器) (PT-B22-N076D)		タービン 建屋	
原子炉補機冷却系	RCW SURGE TANK LEVEL (スイッチ) (LSL-9-192)		原子炉建屋 原子炉棟	

表 2-7	溢水評価対象の防護対象設備リ	スト	(5/73)
12 4	- 1 IIII. / IV 0 I - IIIII / N 3/C V / 1/2 / IT 5/C II X IV II / I	/\ I	(0/10/

系統	設備	溢水防護区画	設置建屋	設置高さ*
原子炉補機冷却系	RCW SURGE TANK LEVEL(伝送器) (LT-9-192)		原子炉建屋 原子炉棟	
原子炉補機冷却系	ドライウェル内機器原子炉補機冷却水戻り弁 (2-9V33(M0))		原子炉建屋 原子炉棟	
原子炉補機 冷却系	ドライウェル内機器原子炉補機冷却水隔離弁 (2-9V30(MO))		原子炉建屋 原子炉棟	
原子炉補機冷却系	RCW 機器冷却器行き弁 (2-9V31(MO))		原子炉建屋 原子炉棟	
原子炉補機 冷却系	原子炉補器冷却系ポンプ (A) (RCW-PMP-A)		タービン 建屋	
原子炉補機 冷却系	原子炉補器冷却系ポンプ (B) (RCW-PMP-B)		タービン 建屋	
原子炉補機 冷却系	原子炉補器冷却系ポンプ (C) (RCW-PMP-C)		タービン 建屋	
原子炉補機 冷却系	RCW 熱交バイパス温度制御弁 (TCV-9-92)		タービン 建屋	
原子炉補機 冷却系	RCW TEMP CONTROL (指示調節計) (TIC-9-92)		タービン 建屋	
原子炉保護系	地震加速度検出器(地震加速度大) (C72-N009A)		原子炉建屋 原子炉棟	
原子炉保護系	地震加速度検出器(地震加速度大) (C72-N009B)		原子炉建屋 原子炉棟	

表 2-7	溢水評価対象の防護対象設備リ	スト	(6/73)
12 4	- 1 III. / IV 0 I - IIIII / I - 3/C V / 1/2 / II/5 / A I - 3/C U X - 1/1 / I	/\ I	10/10/

系統	設備	溢水防護区画	設置建屋	設置高さ*
原子炉保護系	地震加速度検出器(地震加速度大) (C72-N009C)		原子炉建屋 原子炉棟	
原子炉保護系	地震加速度検出器(地震加速度大) (C72-N009D)		原子炉建屋 原子炉棟	
原子炉保護系	地震加速度検出器(地震加速度大) (C72-N010A)		原子炉建屋 原子炉棟	
原子炉保護系	地震加速度検出器(地震加速度大) (C72-N010B)		原子炉建屋 原子炉棟	
原子炉保護系	地震加速度検出器(地震加速度大) (C72-N011A)		原子炉建屋 原子炉棟	
原子炉保護系	地震加速度検出器(地震加速度大) (C72-N011B)		原子炉建屋 原子炉棟	
原子炉保護系	地震加速度検出器(地震加速度大) (C72-N010C)		原子炉建屋 原子炉棟	
原子炉保護系	地震加速度検出器(地震加速度大) (C72-N0010D)		原子炉建屋 原子炉棟	
原子炉保護系	地震加速度検出器(地震加速度大) (C72-N011C)		原子炉建屋 原子炉棟	
原子炉保護系	地震加速度検出器(地震加速度大) (C72-N011D)		原子炉建屋 原子炉棟	
原子炉保護系	RPS M-G セット (2A) (発電機/電動機) (RPS-MG-A-GEN /RPS-MG-A-MTR)		原子炉建屋 付属棟	

16

表 2-7	溢水評価対象	の防護対象設備	リスト	(7/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
原子炉保護系	RPS M-G セット (2B) (発電機/電動機) (RPS-MG-B-GEN /RPS-MG-B-MTR)		原子炉建屋 付属棟	
原子炉保護系	RPS M-G セット(2A)制御盤 (LCP-184A)		原子炉建屋 付属棟	
原子炉保護系	RPS M-G セット(2B)制御盤 (LCP-184B)		原子炉建屋 付属棟	
原子炉保護系	RPS 分電盤 (A) (PNL-C72-P001)		原子炉建屋 付属棟	
原子炉保護系	RPS 分電盤 (B) (PNL-C72-P002)		原子炉建屋 付属棟	
残留熱除去系	RHR (A) 系 格納容器スプレイ弁 (E12-F016A(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR (A) 系 格納容器スプレイ弁 (E12-F017(MO))		原子炉建屋 原子炉棟	
残留熱除去系	残留熱除去系A系注入弁 (E12-F042A(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR VALVE DIFF PRESS A(伝送器) (DPT-E12-N058A)		原子炉建屋 原子炉棟	
残留熱除去系	RHR VALVE DIFF PRESS B(伝送器) (DPT-E12-N058B)		原子炉建屋 原子炉棟	
残留熱除去系	RHR VALVE DIFF PRESS C(伝送器) (DPT-E12-N058C)		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (8/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
残留熱除去系	RHR (B) 系 テストライン弁 (E12-F024B(MO))		原子炉建屋 原子炉棟	
残留熱除去系	残留熱除去系B系注入弁 (E12-F042B(M0))		原子炉建屋 原子炉棟	
残留熱除去系	残留熱除去系C系注入弁 (E12-F042C(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR (A) 系 シャットダウン注入弁 (E12-F053A(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR シャットダウンライン隔離弁(外側) (E12-F008(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR (B) 系 格納容器スプレイ弁 (E12-F016B(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR (B) 系 格納容器スプレイ弁 (E12-F017B(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR (B) 系 シャットダウン注入弁 (E12-F053B(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR(A)系サプレッションプールスプレイ 弁 (E12-F027A(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR (A) 系テストライン弁 (E12-F024A(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR(B)系サプレッションプールスプレイ 弁 (E12-F027B(MO))		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (9/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
残留熱除去系	RHR (A) 系ミニフロー弁 (E12-F064A(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR (B) 系ミニフロー弁 (E12-F064B(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR (C) 系ミニフロー弁 (E12-F064C(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR DIV-I 計装ラック (H22-P018)		原子炉建屋 原子炉棟	
残留熱除去系	RHR DIV-Ⅱ計装ラック (H22-P021)		原子炉建屋 原子炉棟	
残留熱除去系	RHR 熱交換器 (B) バイパス弁 (E12-F048B(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR 熱交換器 (A) バイパス弁 (E12-F048B(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR ポンプ (B) 停止時冷却ライン入口弁 (E12-F006B(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR ポンプ (B) 入口弁 (E12-F004B(MO))		原子炉建屋 原子炉棟	
残留熱除去系	残留熱除去系ポンプB (RHR-PMP-C002B)		原子炉建屋 原子炉棟	
残留熱除去系	残留熱除去系ポンプC (RHR-PMP-C002C)		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (10/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
残留熱除去系	RHR ポンプ (C) 入口弁 (E12-F004C(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR ポンプ (A) 停止時冷却ライン入口弁 (E12-F006A(MO))		原子炉建屋 原子炉棟	
残留熱除去系	RHR ポンプ (A) 入口弁 (E12-F004A(MO))		原子炉建屋 原子炉棟	
残留熱除去系	残留熱除去系ポンプA (RHR-PMP-C002A)		原子炉建屋 原子炉棟	
残留熱除去系	RHR (B) 系 サンプリング弁 (内側) (E12-F060B(A0))		原子炉建屋 原子炉棟	
残留熱除去系	RHR (B) 系 サンプリング弁 (外側) (E12-F075B(A0))		原子炉建屋 原子炉棟	
残留熱除去系	RHR (A) 系 サンプリング弁 (内側) (E12-F060A(A0))		原子炉建屋 原子炉棟	
残留熱除去系	RHR (A) 系 サンプリング弁 (外側) (E12-F075A(A0))		原子炉建屋 原子炉棟	
残留熱除去系 海水系	RHRS 熱交換器 (B) 海水出口弁 (E12-F068B(M0))		原子炉建屋 原子炉棟	
残留熱除去系 海水系	RHRS 熱交換器 (A) 海水出口弁 (E12-F068A(MO))		原子炉建屋 原子炉棟	
残留熱除去系 海水系	残留熱除去系海水系系統流量 (FT-E12-N007A)		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (11/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
残留熱除去系 海水系	残留熱除去系海水系系統流量 (FT-E12-N007B)		原子炉建屋 付属棟	
残留熱除去系 海水系	残留熱除去系海水系ポンプ A (RHRS-PMP-A)		海水ポンプ室	
残留熱除去系 海水系	残留熱除去系海水系ポンプB (RHRS-PMP-B)		海水ポンプ室	
残留熱除去系 海水系	残留熱除去系海水系ポンプ C (RHRS-PMP-C)		海水ポンプ室	
残留熱除去系 海水系	残留熱除去系海水系ポンプD (RHRS-PMP-D)		海水ポンプ室	
主蒸気系	主蒸気ドレン弁 (外側隔離弁) (B22-F019(M0))		原子炉建屋 原子炉棟	
主蒸気系	主蒸気ドレン弁 (外側隔離弁) (B22-F067A(M0))		原子炉建屋 原子炉棟	
主蒸気系	主蒸気ドレン弁 (外側隔離弁) (B22-F067B(M0))		原子炉建屋 原子炉棟	
主蒸気系	主蒸気ドレン弁(外側隔離弁) (B22-F067C(M0))		原子炉建屋 原子炉棟	
主蒸気系	主蒸気ドレン弁 (外側隔離弁) (B22-F067D(M0))		原子炉建屋 原子炉棟	
主蒸気系	主蒸気流量(A)計装ラック (H22-P015)		原子炉建屋 原子炉棟	

	表 2-7	溢水評価対象の	の防護対象設化	温リスト	$(12 \angle 73)$
--	-------	---------	---------	------	------------------

系統	設備	溢水防護区画	設置建屋	設置高さ*
主蒸気系	主蒸気流量 (B) 計装ラック (H22-P025)		原子炉建屋 原子炉棟	
主蒸気系	主蒸気隔離弁第2弁(A) (B22-F028A(A0))		原子炉建屋 原子炉棟	
主蒸気系	主蒸気隔離弁第2弁(B)(B22-F028B(A0))		原子炉建屋 原子炉棟	
主蒸気系	主蒸気隔離弁第2弁(C) (B22-F028C(A0))		原子炉建屋 原子炉棟	
主蒸気系	主蒸気隔離弁第2弁(D) (B22-F028D(A0))		原子炉建屋 原子炉棟	
所内電源系	モータコントロールセンタ 2A2-2		原子炉建屋 原子炉棟	
所内電源系	モータコントロールセンタ 2B2-2		原子炉建屋 原子炉棟	
所内電源系	モータコントロールセンタ 2C-9		原子炉建屋 原子炉棟	
所内電源系	モータコントロールセンタ 2D-9		原子炉建屋 原子炉棟	
所内電源系	モータコントロールセンタ 2C-7		原子炉建屋 原子炉棟	
所内電源系	モータコントロールセンタ 2C-8		原子炉建屋 原子炉棟	

1

表2-7 溢水評価対象の防護対象設備リスト (13/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
所内電源系	モータコントロールセンタ 2D-7		原子炉建屋 原子炉棟	
所内電源系	モータコントロールセンタ 2D-8		原子炉建屋 原子炉棟	
所内電源系	R/B INST DIST PNL 1		原子炉建屋 原子炉棟	
所内電源系	R/B INST DIST PNL 2		原子炉建屋 原子炉棟	
所内電源系	モータコントロールセンタ 2C-3		原子炉建屋 原子炉棟	
所内電源系	モータコントロールセンタ 2C-5		原子炉建屋 原子炉棟	
所内電源系	モータコントロールセンタ 2D-3		原子炉建屋 原子炉棟	
所内電源系	モータコントロールセンタ 2D-5		原子炉建屋 原子炉棟	
所内電源系	R/B INST DIST PNL 3		原子炉建屋 原子炉棟	
所内電源系	モータコントロールセンタ 2C-1		タービン 建屋	
所内電源系	モータコントロールセンタ 2D-1		タービン 建屋	

23

	VALUE FOR LUCKUS OF THE SHELL O	/
表 2-7	溢水評価対象の防護対象設備リスト(14/	73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
所内電源系	モータコントロールセンタ 2C-2		タービン 建屋	
所内電源系	モータコントロールセンタ 2D-2		タービン 建屋	
所内電源系	中央制御室 120V 交流計装用分電盤 2A-1 (PNL-DP-2A-1-AC)		原子炉建屋 付属棟	
所内電源系	中央制御室 120V 交流計装用分電盤 2A-2 (PNL-DP-2A-2-AC)		原子炉建屋 付属棟	
所内電源系	中央制御室 120V 交流計装用分電盤 2B-1 (PNL-DP-2B-1-AC)		原子炉建屋 付属棟	
所内電源系	中央制御室 120V 交流計装用分電盤 2B-2 (PNL-DP-2B-2-AC)		原子炉建屋 付属棟	
所内電源系	モータコントロールセンタ 2C-6		原子炉建屋 付属棟	
所内電源系	モータコントロールセンタ 2D-6		原子炉建屋 付属棟	
所内電源系	120/240V AC INST. DIST. CTR		原子炉建屋 付属棟	
所内電源系	120V AC INST HPCS DIST PNL		原子炉建屋 付属棟	
所内電源系	120V AC MCR DIST PNL NOR		原子炉建屋 付属棟	

表 9-7 冷水	評価対象の防護	対象設備リッ	とん (15/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
所内電源系	メタルクラッド開閉装置 2B-1		原子炉建屋 付属棟	
所内電源系	メタルクラッド開閉装置 2B-2		原子炉建屋 付属棟	
所内電源系	メタルクラッド開閉装置 2D		原子炉建屋 付属棟	
所内電源系	メタルクラッド開閉装置 2E		原子炉建屋 付属棟	
所内電源系	パワーセンタ 2D		原子炉建屋 付属棟	
所内電源系	パワーセンタ 2B-2		原子炉建屋 付属棟	
所内電源系	モータコントロールセンタ 2C-4		原子炉建屋 付属棟	
所内電源系	モータコントロールセンタ 2D-4		原子炉建屋 付属棟	
所内電源系	モータコントロールセンタ HPCS		原子炉建屋 付属棟	
所内電源系	メタルクラッド開閉装置 2A-1		原子炉建屋 付属棟	
所内電源系	メタルクラッド開閉装置 2A-2		原子炉建屋 付属棟	

表 2-7 溢 2	k評価対象σ	防護対象設備	苗リス	I	(16 / 73)	1
-----------	--------	--------	-----	----------	-----------	---

系統	設備	溢水防護区画	設置建屋	設置高さ*
所内電源系	メタルクラッド開閉装置 2C		原子炉建屋 付属棟	
所内電源系	メタルクラッド開閉装置 HPCS		原子炉建屋 付属棟	
所内電源系	パワーセンタ 2C		原子炉建屋 付属棟	
制御用圧縮 空気系	N ₂ GAS BOMBE DISCH PRESS (指示スイッチ) (PIS-16-900.1)		原子炉建屋 原子炉棟	
制御用圧縮 空気系	N ₂ GAS BOMBE DISCH PRESS (指示スイッチ) (PIS-16-900.2)		原子炉建屋 原子炉棟	
制御用圧縮 空気系	ドライウェル N₂ボトルガス供給弁 (2-16V13A(MO))		原子炉建屋 原子炉棟	
制御用圧縮 空気系	ドライウェル № ボトルガス供給弁 (2-16V13B(MO))		原子炉建屋 原子炉棟	
制御用圧縮 空気系	ドライウェル N ₂ 供給弁 (2-16V12A(MO))		原子炉建屋 原子炉棟	
制御用圧縮 空気系	ドライウェル N₂ 供給弁 (2-16V12B(MO))		原子炉建屋 原子炉棟	
制御用圧縮 空気系	ドライウェル制御用空気供給元弁 (2-16V11(MO))		原子炉建屋 原子炉棟	
制御用圧縮 空気系	ドライウェル窒素ボンベガス供給遮断弁 (3-16V900A(A0))		原子炉建屋 原子炉棟	

系統	設備	溢水防護区画	設置建屋	設置高さ*
制御用圧縮空気系	ドライウェル窒素ボンベガス供給遮断弁 (3-16V900B(A0))		原子炉建屋 原子炉棟	
中央制御室 換気系	中央制御室チラーユニット (WC2-1) (HVAC-WC2-1)		原子炉建屋 付属棟	
中央制御室 換気系	中央制御室チラーユニット (WC2-2) (HVAC-WC2-2)		原子炉建屋 付属棟	
中央制御室 換気系	中央制御室チラーユニット(WC2-1)制御盤 (T41-P036)		原子炉建屋 付属棟	
中央制御室 換気系	中央制御室チラーユニット(WC2-2)制御盤 (T41-P037)		原子炉建屋 付属棟	
中央制御室 換気系	中央制御室換気系空気調和機ファン A (HVAC-AH2-9A)		原子炉建屋 付属棟	
中央制御室 換気系	中央制御室換気系空気調和機ファン B (HVAC-AH2-9B)		原子炉建屋 付属棟	
中央制御室 換気系	中央制御室換気系フィルタユニット A (HVAC-FLT-A)		原子炉建屋 付属棟	
中央制御室 換気系	中央制御室換気系フィルタユニット B (HVAC-FLT-B)		原子炉建屋 付属棟	
中央制御室 換気系	中央制御室排気ファン (HVAC-E2-15)		原子炉建屋 付属棟	
中央制御室 換気系	中央制御室チラー冷水循環ポンプ (A) (HVAC-PMP-P2-3)		原子炉建屋 付属棟	

27

	NO 1 1 1 5 1 1 5	46 1 1 44 20 111		
表 2-7	溢水評価対象の防調	奪対象設備リ	スト	$(18 \angle 73)$

系統	設備	溢水防護区画	設置建屋	設置高さ*
中央制御室換気系	中央制御室チラー冷水循環ポンプ (B) (HVAC-PMP-P2-4)		原子炉建屋 付属棟	
中央制御室換気系	中央制御室換気系計装ラック (T41-P020)		原子炉建屋 付属棟	
中央制御室換気系	中央制御室換気系計装ラック (T41-P021)		原子炉建屋 付属棟	
中央制御室換気系	中央制御室給気隔離弁 (SB2-18A)		原子炉建屋 付属棟	
中央制御室換気系	中央制御室給気隔離弁 (SB2-18B)		原子炉建屋 付属棟	
中央制御室換気系	中央制御室給気隔離弁 (SB2-19A)		原子炉建屋 付属棟	
中央制御室換気系	中央制御室給気隔離弁 (SB2-19B)		原子炉建屋 付属棟	
中央制御室 換気系	中央制御室排気隔離弁 (SB2-20A)		原子炉建屋 付属棟	
中央制御室換気系	中央制御室排気隔離弁 (SB2-20B)		原子炉建屋 付属棟	
中央制御室換気系	中央制御室換気系フィルタ系ファン (A) (HVAC-E2-14A)		原子炉建屋 付属棟	
中央制御室換気系	中央制御室換気系フィルタ系ファン (B) (HVAC-E2-14B)		原子炉建屋 付属棟	

表2-7 溢水評価対象の防護対象設備リスト (19/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
中央制御室換気系	ファン (AH2-9A) 入口ダンパ (DMP-AO-T41-F090)		原子炉建屋 付属棟	
中央制御室 換気系	ファン(AH2-9B)入口ダンパ (DMP-AO-T41-F091)		原子炉建屋 付属棟	
中央制御室 換気系	非常用 MCR フィルターファン E2-14A(S) (DMP-A0-T41-F086)		原子炉建屋 付属棟	
中央制御室 換気系	非常用 MCR フィルターファン E2-14B(S) (DMP-A0-T41-F088)		原子炉建屋 付属棟	
中央制御室 換気系	AH2-9 (A) 出口温度制御弁 (TCV-T41-F084A)		原子炉建屋 付属棟	
中央制御室 換気系	AH2-9 (B) 出口温度制御弁 (TCV-T41-F084B)		原子炉建屋 付属棟	
スイッチギヤ 室換気系	スイッチギヤ室エアーハンドリング ユニットファン (A) (HVAC-AH2-10A)		原子炉建屋 付属棟	
スイッチギヤ 室換気系	スイッチギヤ室エアーハンドリング ユニットファン (B) (HVAC-AH2-10B)		原子炉建屋 付属棟	
スイッチギヤ 室換気系	AH2-10A 外気取り入れダンパ (DMP-AO-T41-F056)		原子炉建屋 付属棟	
スイッチギヤ 室換気系	AH2-10B 外気取り入れダンパ (DMP-AO-T41-F059)		原子炉建屋 付属棟	
スイッチギヤ 室換気系	AH2-10A 入口ダンパ (DMP-AO-T41-F057)		原子炉建屋 付属棟	

表2-7 溢水評価対象の防護対象設備リスト (20/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
スイッチギヤ 室換気系	AH2-10B 入口ダンパ (DMP-A0-T41-F058)		原子炉建屋 付属棟	
スイッチギヤ室換気系	HVAC SWITCHGEAR VENTILATING SYS. (PNL-T41-P023)		原子炉建屋 付属棟	
スイッチギヤ室換気系	SWGR室チラー冷水循環ポンプ (A) (HVAC-PMP-P2-5)		原子炉建屋 付属棟	
スイッチギヤ 室換気系	SWGR室チラー冷水循環ポンプ (B) (HVAC-PMP-P2-6)		原子炉建屋 付属棟	
スイッチギヤ室換気系	AH2-10 (A) 出口温度制御弁 (TCV-T41-F005A)		原子炉建屋 付属棟	
スイッチギヤ 室換気系	AH2-10 (B) 出口温度制御弁 (TCV-T41-F005B)		原子炉建屋 付属棟	
スイッチギヤ 室換気系	SWGRチラーユニット (WC2-3A) (HVAC-WC2-3A)		原子炉建屋 付属棟	
スイッチギヤ 室換気系	SWGRチラーユニット (WC2-3B) (HVAC-WC2-3B)		原子炉建屋 付属棟	
スイッチギヤ室換気系	SWGRチラーユニット (WC2-4A) (HVAC-WC2-4A)		原子炉建屋 付属棟	
スイッチギヤ 室換気系	SWGRチラーユニット (WC2-4B) (HVAC-WC2-4B)		原子炉建屋 付属棟	
バッテリー室 換気系	バッテリー室エアーハンドリング ユニットファン (A) (HVAC-AH2-12A)		原子炉建屋 付属棟	

表2-7 溢水評価対象の防護対象設備リスト (21/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
バッテリー室 換気系	バッテリー室エアーハンドリング ユニットファン (B) (HVAC-AH2-12B)		原子炉建屋 付属棟	
バッテリー室 換気系	バッテリー室排風機(A) (HVAC-E2-11A)		原子炉建屋 付属棟	
バッテリー室 換気系	バッテリー室排風機 (B) (HVAC-E2-11B)		原子炉建屋 付属棟	
バッテリー室 換気系	E2-11 (A) 出口ダンパ (DMP-A0-T41-F054)		原子炉建屋 付属棟	
バッテリー室 換気系	E2-11 (B) 出口ダンパ (DMP-A0-T41-F055)		原子炉建屋 付属棟	
バッテリー室 換気系	HVAC BATTERY ROOM VENTILATING SYS. (PNL-T41-P022)		原子炉建屋 付属棟	
直流電源設備	直流 125V モータコントロールセンタ 2A-2		原子炉建屋 原子炉棟	
直流電源設備	直流 125V モータコントロールセンタ 2A-1		原子炉建屋 原子炉棟	
直流電源設備	直流 250V 蓄電池 (250V DC BATTERY)		タービン 建屋	
直流電源設備	125V 系蓄電池 HPCS 系 (125V DC HPCS BATTERY)		原子炉建屋 付属棟	
直流電源設備	直流 125V 充電器(2A) (125V DC 2A BATT.CHARGER)		原子炉建屋 付属棟	

表2-7 溢水評価対象の防護対象設備リスト (22/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
直流電源設備	直流 125V 充電器(2B) (125V DC 2B BATT.CHARGER)		原子炉建屋 付属棟	
直流電源設備	直流 125V 充電器(HPCS) (125V DC HPCS BATT.CHARGER)		原子炉建屋 付属棟	
直流電源設備	直流 125V 主母線盤 2A (125V DC DIST CTR 2A)		原子炉建屋 付属棟	
直流電源設備	直流 125V 主母線盤 2B (125V DC DIST CTR 2B)		原子炉建屋 付属棟	
直流電源設備	直流 125V 主母線盤 HPCS (125V DC DIST CTR HPCS)		原子炉建屋 付属棟	
直流電源設備	直流 250V タービン配電盤 (250V DC TURB DIST CTR)		タービン 建屋	
直流電源設備	直流 125V 分電盤 (2A-1) (125V DC DIST PNL 2A-1)		原子炉建屋 付属棟	
直流電源設備	直流 125V 分電盤 (2A-2) (125V DC DIST PNL 2A-2)		原子炉建屋 付属棟	
直流電源設備	直流 125V 分電盤 (2B-1) (125V DC DIST PNL 2B-1)		原子炉建屋 付属棟	
直流電源設備	直流 125V 分電盤 (2B-2) (125V DC DIST PNL 2B-2)		原子炉建屋 付属棟	
直流電源設備	直流 125V 分電盤 (HPCS) (125V DC DIST PNL HPCS)		原子炉建屋 付属棟	
注記 *:溢水	評価上基準となる床面高さを示す。			

表2-7 溢水評価対象の防護対象設備リスト (23/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
直流電源設備	直流 125V 分電盤 (2B-2-1) (125V DC DIST PNL 2B-2-1)		原子炉建屋 付属棟	
直流電源設備	直流 250V 充電器 (常用,予備) (250V DC BATT. CHARGER)		タービン 建屋	
直流電源設備	直流 ±24V 中性子モニタ用分電盤 2A (24V DC DIST PNL 2A)		原子炉建屋 付属棟	
直流電源設備	直流 ±24V 中性子モニタ用分電盤 2B (24V DC DIST PNL 2B)		原子炉建屋 付属棟	
直流電源設備	直流 ±24V 充電器 (2A) (24V DC 2A BATT.CHARGER)		原子炉建屋 付属棟	
直流電源設備	直流 ±24V 充電器 (2B) (24V DC 2B BATT.CHARGER)		原子炉建屋 付属棟	
直流電源設備	中性子モニタ用蓄電池A系 (24V DC 2A BATTERY)		原子炉建屋 付属棟	
直流電源設備	中性子モニタ用蓄電池B系 (24V DC 2B BATTERY)		原子炉建屋 付属棟	
直流電源設備	地絡検出盤 (直流分電盤 2A-1) (PNL-LCP-177)		原子炉建屋 付属棟	
直流電源設備	地絡検出盤 (直流分電盤 2A-2) (PNL-LCP-178)		原子炉建屋 付属棟	
直流電源設備	地絡検出盤 (直流分電盤 2B-1) (PNL-LCP-179)		原子炉建屋 付属棟	

表2-7 溢水評価対象の防護対象設備リスト (24/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
直流電源設備	125V 系蓄電池A系 (125V DC 2A BATTERY)	_	原子炉建屋 付属棟	
直流電源設備	125V 系蓄電池B系 (125V DC 2B BATTERY)		原子炉建屋 付属棟	
直流電源設備	125V 系蓄電池 B 系 (125V DC 2B BATTERY)		原子炉建屋 付属棟	
直流電源設備	直流 125V 分電盤 (2A-2-1) (125V DC DIST PNL 2A-2-1)		原子炉建屋 付属棟	
燃料プール 冷却浄化系	FPC スキマーサージタンク補給水弁 (7-18V71(MO))		原子炉建屋 原子炉棟	
燃料プール 冷却浄化系	SKIMMER SURGE TANK HI LEVEL(スイッチ) (LSH-G41-N004)		原子炉建屋 原子炉棟	
燃料プール 冷却浄化系	SKIMMER SURGE TANK LO LEVEL (スイッチ) (LSL-G41-N005)		原子炉建屋 原子炉棟	
燃料プール 冷却浄化系	FPC SKIMMER SURGE TANK LI (PNL-LCP-133)		原子炉建屋 原子炉棟	
燃料プール 冷却浄化系	使用済燃料プール温度(検出器) (TE-G41-N015)		原子炉建屋 原子炉棟	
燃料プール 冷却浄化系	使用済燃料プール水位・温度(SA広域) (水位監視機能のみ)		原子炉建屋 原子炉棟	
燃料プール 冷却浄化系	FPF/DEMIN. CONTROL PNL. (PNL-G41-Z010-100)		原子炉建屋 原子炉棟	
注記 *:溢水	評価上基準となる床面高さを示す。		-	

表2-7 溢水評価対象の防護対象設備リスト (25/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
燃料プール冷却浄化系	FPC F/D INST. RACK (PNL-LR-R-46A)		原子炉建屋 原子炉棟	
燃料プール 冷却浄化系	FPC F/D INST. RACK (PNL-LR-R-46B)		原子炉建屋 原子炉棟	
燃料プール冷却浄化系	SKIMMER SURGE TANK LO LO LEVEL (スイッチ) (LSLL-G41-N006)		原子炉建屋 原子炉棟	
燃料プール 冷却浄化系	SKIMMER SURGE TANK HI LEVEL(伝送器) (LT-G41-N100)		原子炉建屋 原子炉棟	
燃料プール 冷却浄化系	FPC SYS PUMP AREA PNL. (G41-P002)		原子炉建屋 原子炉棟	
燃料プール 冷却浄化系	PUMP SECTION LO PRESS & ALARM(スイッチ) (PSL-G41-N007A)		原子炉建屋 原子炉棟	
燃料プール 冷却浄化系	PUMP SECTION LO PRESS & ALARM(スイッチ) (PSL-G41-N007B)		原子炉建屋 原子炉棟	
燃料プール冷却浄化系	FPC F/D (A) 出口弁 (G41-102A(A0))		原子炉建屋 原子炉棟	
燃料プール 冷却浄化系	FPC F/D (A) 出口流量制御弁 (G41-FCV-11A)		原子炉建屋 原子炉棟	
燃料プール冷却浄化系	FPC F/D (B) 出口弁 (G41-102B(A0))		原子炉建屋 原子炉棟	
燃料プール 冷却浄化系	FPC F/D (B) 出口流量制御弁 (G41-FCV-11B)		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (26/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
燃料プール 冷却浄化系	燃料プール冷却浄化系ポンプ(A) (FPC-PMP-C001A)		原子炉建屋 原子炉棟	
燃料プール冷却浄化系	燃料プール冷却浄化系ポンプ (B) (FPC-PMP-C001B)		原子炉建屋 原子炉棟	
バイタル交流 電源設備	バイタル交流分電盤 (PNL-VITAL-AC-1)		原子炉建屋 付属棟	
バイタル交流 電源設備	バイタル交流電源装置 (PNL-SUPS)		タービン 建屋	
バイタル交流 電源設備	バイタル交流分電盤 2 (PNL-VITAL-AC-2)		原子炉建屋 付属棟	
非常用 ガス再循環系	FRVS INST. RACK (A) (PNL-LR-R-43)		原子炉建屋 原子炉棟	
非常用 ガス再循環系	非常用ガス再循環系排風機A (HVAC-E2-13A)		原子炉建屋 原子炉棟	
非常用 ガス再循環系	非常用ガス再循環系排風機 B (HVAC-E2-13B)		原子炉建屋 原子炉棟	
非常用 ガス再循環系	非常用ガス再循環系フィルタトレイン A (FRVS-FLT-A)		原子炉建屋 原子炉棟	
非常用ガス再循環系	非常用ガス再循環系フィルタトレインB (FRVS-FLT-B)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS INST. RACK (B) (PNL-LR-R-44)		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (27/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
非常用ガス再循環系	FRVS トレイン (A) ヒータ (FRVS-HEX-EHC2-6A)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS トレイン (B) ヒータ (FRVS-HEX-EHC2-6B)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS トレイン (A) ヒータ制御盤 (PNL-LCP-122)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS トレイン (B) ヒータ制御盤 (PNL-LCP-125)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS (A) AIR HEATER AUTO RESET (検出器) (TE-26-940A)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS (B) AIR HEATER AUTO RESET (検出器) (TE-26-940B)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS (A) AIR HEATER HAND RESET (検出器)(TE-26-941A)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS (B) AIR HEATER HAND RESET (検出器)(TE-26-941B)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS TRAIN (A) INLET TEMP (検出器) (TE-26-31.1A)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS TRAIN (B) INLET TEMP (検出器) (TE-26-31.1B)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS TRAIN (A) OUTLET TEMP (検出器) (TE-26-31.4A)		原子炉建屋 原子炉棟	
注記 *:溢水	評価上基準となる床面高さを示す。		_ '	

表2-7 溢水評価対象の防護対象設備リスト(28/7	表 2-7	溢水評価対象	の防護を	l 象設備 1	リスト	$(28 \angle 73$
----------------------------	-------	--------	------	---------	-----	-----------------

系統	設備	溢水防護区画	設置建屋	設置高さ*
非常用ガス再循環系	FRVS TRAIN (B) OUTLET TEMP (検出器) (TE-26-31.4B)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS TRAIN (A) ADSORBER IN TEMP (検出器) (TE-26-909A)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS TRAIN (B) ADSORBER IN TEMP (検出器) (TE-26-909B)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS TRAIN (A) ADSORBER OUT TEMP (検 出器) (TE-26-910A)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS TRAIN (B) ADSORBER OUT TEMP (検 出器) (TE-26-910B)		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS 通常排気系隔離弁 (A) (SB2-12A(A0))		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS 通常排気系隔離弁 (B) (SB2-12B(A0))		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS トレイン (A) 入口ダンパ (SB2-5A(AO))		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS トレイン (B) 入口ダンパ (SB2-5B(AO))		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS トレイン (A) 出口ダンパ (SB2-7A(AO))		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS トレイン (B) 出口ダンパ (SB2-7B(AO))		原子炉建屋 原子炉棟	

- 42 /= / - 3m /N 6+ 1111 XL 32 V / 12/L 65 XL 32 67 118 7 / / P - L / 37 / L / L	表2-7	溢水評価対象∅) 防護対象設備	昔リスト	$(29 \angle 73)$
---	------	---------	----------	------	------------------

系統	設備	溢水防護区画	設置建屋	設置高さ*
非常用ガス再循環系	FRVS 循環ダンパ(SB2-13A) (SB2-13A(AO))		原子炉建屋 原子炉棟	
非常用ガス再循環系	FRVS 循環ダンパ(SB2-13B) (SB2-13B(A0))		原子炉建屋 原子炉棟	
非常用ガス処理系	非常用ガス処理系排風機 A (HVAC-E2-10A)		原子炉建屋 原子炉棟	
非常用ガス処理系	非常用ガス処理系排風機 B (HVAC-E2-10B)		原子炉建屋 原子炉棟	
非常用 ガス処理系	非常用ガス処理系フィルタトレインA (SGTS-FLT-A)		原子炉建屋 原子炉棟	
非常用 ガス処理系	非常用ガス処理系フィルタトレインB (SGTS-FLT-B)		原子炉建屋 原子炉棟	
非常用 ガス処理系	SGTS INST. RACK (A) (PNL-LR-R-47)		原子炉建屋 原子炉棟	
非常用 ガス処理系	SGTS INST. RACK (B) (PNL-LR-R-48)		原子炉建屋 原子炉棟	
非常用 ガス処理系	SGTS トレイン (A) ヒータ (SGTS-HEX-EHC2-7A)		原子炉建屋 原子炉棟	
非常用 ガス処理系	SGTS トレイン (B) ヒータ (SGTS-HEX-EHC2-7B)		原子炉建屋 原子炉棟	
非常用 ガス処理系	SGTS トレイン (A) エアヒータ制御盤 (PNL-LCP-116)		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (30/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
非常用ガス処理系	SGTS トレイン (B) エアヒータ制御盤 (PNL-LCP-119)		原子炉建屋 原子炉棟	
非常用ガス処理系	SGTS (A) AIR HEATER AUTO RESET (検出器) (TE-26-950A)		原子炉建屋 原子炉棟	
非常用ガス処理系	SGTS (B) AIR HEATER AUTO RESET (検出器) (TE-26-950B)		原子炉建屋 原子炉棟	
非常用ガス処理系	SGTS (A) AIR HEATER HAND RESET (検出器) (TE-26-951A)		原子炉建屋 原子炉棟	
非常用ガス処理系	SGTS (B) AIR HEATER HAND RESET (検出器) (TE-26-951B)		原子炉建屋 原子炉棟	
非常用ガス処理系	SGTS TRAIN (A) INLET TEMP (検出器) (TE-26-30.1A)		原子炉建屋 原子炉棟	
非常用ガス処理系	SGTS TRAIN (B) INLET TEMP (検出器) (TE-26-30.1B)		原子炉建屋 原子炉棟	
非常用ガス処理系	SGTS TRAIN (A) OUTLET TEMP (検出器) (TE-26-30.4A)		原子炉建屋 原子炉棟	
非常用ガス処理系	SGTS TRAIN (B) OUTLET TEMP (検出器) (TE-26-30.4B)		原子炉建屋 原子炉棟	
非常用ガス処理系	SGTS TRAIN (A) ADSORBER IN TEMP (検出器) (TE-26-921A)		原子炉建屋 原子炉棟	
非常用ガス処理系	SGTS TRAIN (B) ADSORBER IN TEMP (検出器) (TE-26-921B)		原子炉建屋 原子炉棟	

表 2-7	溢水評価対象の	防護対象設備リ	スト	(31 / 73)
124		197 11号 71] 多人 11人 11日 フ	/\ ·	(01/ 10/

系統	設備	溢水防護区画	設置建屋	設置高さ*
非常用ガス処理系	SGTS TRAIN (A) ADSORBER OUT TEMP (検出器) (TE-26-922A)		原子炉建屋 原子炉棟	
非常用ガス処理系	SGTS TRAIN (B) ADSORBER OUT TEMP (検出器) (TE-26-922B)		原子炉建屋 原子炉棟	
非常用ガス処理系	SGTS トレイン (A) 入口ダンパ (SB2-9A(AO))		原子炉建屋 原子炉棟	
非常用ガス処理系	SGTS トレイン (B) 入口ダンパ (SB2-9B(AO))		原子炉建屋 原子炉棟	
非常用ガス処理系	SGTS トレイン (A) 出口ダンパ (SB2-11A(AO))		原子炉建屋 原子炉棟	
非常用ガス処理系	SGTS トレイン (B) 出口ダンパ (SB2-11B(AO))		原子炉建屋 原子炉棟	
非常用ガス 再循環系/ 非常用ガス 処理系	FRVS-SGTS (A) HEATER CONT. PNL (LCP-133)		原子炉建屋 原子炉棟	
非常用ガス 再循環系/ 非常用ガス 処理系	FRVS-SGTS (B) HEATER CONT. PNL (LCP-134)		原子炉建屋 原子炉棟	
非常用ガス 再循環系/ 非常用ガス 処理系	FRVS SGTS 系入口ダンパ(SB2-4A) (SB2-4A(AO))		原子炉建屋 原子炉棟	
非常用ガス 再循環系/ 非常用ガス 処理系	FRVS SGTS 系入口ダンパ (SB2-4B) (SB2-4B(AO))		原子炉建屋 原子炉棟	
非常用 ディーゼル 発電設備	2C 非常用ディーゼル発電機 (GEN-DG-2C/DGU-2C) (内燃機関,調速装置,非常調速装置,冷 却水ポンプを含む)		原子炉建屋 付属棟	

41

表2-7 溢水評価対象の防護対象設備リスト (32/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
非常用 ディーゼル 発電設備	DG 2C 制御盤 (DGCP/2C)		原子炉建屋付属棟	
非常用 ディーゼル 発電設備	2C 非常用ディーゼル発電機励磁装置 (中性点接地変圧器盤,自動電圧調整器 盤,シリコン整流器盤,交流リアクトル 及びシリコン整流器用変圧器盤を含む)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2C 可飽和変流器 (PNL-SCT-2C)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2C 始動用電磁弁 (No.1) (3-14E147D-1)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2C 始動用電磁弁(No. 2) (3-14E147D-2)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2C INST. RACK (R-56)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2C DIESEL ENGINE INST. RACK (R-65)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2C シリンダー油タンク (DG-VSL-2C-DGLO-2)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2C 潤滑油サンプタンク (DG-VSL-2C-DGLO-1)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2C 潤滑油サンプタンクベント管 (7-6-DGL0-125)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	2C 非常用ディーゼル発電機燃料油デイタ ンク (DG-VSL-2C-D0-1)		原子炉建屋 付属棟	

主9 7	溢水評価対象の防護対象設備リスト (33/7)	o)
	1台 水 評 1曲 x 1 象 (/) 10 1 護 x 1 象 設 1曲 リ 人 ト (3.3 / /	.31

系統	設備	溢水防護区画	設置建屋	設置高さ*
非常用 ディーゼル 発電設備	2 C 非常用ディーゼル発電機燃料油デイタンクベント管 (3-11/4-D0-120)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	燃料デイタンク液面レベルスイッチ (2C) (DG-L1TS-105)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2C 機関ベント管 (7-8-DGL0-113)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	2D 非常用ディーゼル発電機 (GEN-DG-2D/DGU-2D) (内燃機関,調速装置,非常調速装置,冷 却水ポンプを含む)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2D 制御盤 (DGCP/2D)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	2D 非常用ディーゼル発電機励磁装置 (中性点接地変圧器盤,自動電圧調整器盤,シリコン整流器盤,交流リアクトル及びシリコン整流器用変圧器盤を含む)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2D 可飽和変流器 (PNL-SCT-2D)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2D 始動用電磁弁(No.1) (3-14-E47D-1)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2D 始動用電磁弁(No. 2) (3-14-E47D-2)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2D INST. RACK (R-52)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2D DIESEL ENGINE INST. RACK (R-64)		原子炉建屋 付属棟	

表2-7 溢水評価対象の防護対象設備リスト (34/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
非常用 ディーゼル 発電設備	DG 2D シリンダー油タンク (DG-VSL-2D-DGLO-2)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2D 潤滑油サンプタンク (DG-VSL-2D-DGL0-1)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2D 潤滑油サンプタンク (DG-VSL-2D-DGLO-1)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2D 潤滑油サンプタンクベント管 (7-6-DGL0-25)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	2D 非常用ディーゼル発電機燃料油デイタ ンク (DG-VSL-2D-D0-1)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	2D 非常用ディーゼル発電機燃料油デイタンクベント管 (3-11/4-D0-20)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	燃料デイタンク液面レベルスイッチ (2D) (DG-LITS-5)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2D 機関ベント管 (7-8-DGLO-13)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2C 吸気系フィルタ(L 側) (DG-2C-AE-FLT-INTAKE-L)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2C 吸気系フィルタ(R側) (DG-2C-AE-FLT-INTAKE-R)		原子炉建屋 付属棟	
非常用 ディーゼル 発電設備	DG 2D 吸気系フィルタ(L側) (DG-2D-AE-FLT-INTAKE-L)		原子炉建屋 付属棟	

表2-7 溢水評価対象の防護対象設備リスト (35/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
非常用 ディーゼル 発電設備	DG 2D 吸気系フィルタ(R側) (DG-2D-AE-FLT-INTAKE-R)		原子炉建屋 付属棟	
非常用 ディーゼル 発電機 海水系	2C 非常用ディーゼル発電機用海水ポンプ (DGSW-PMP-2C)		海水ポンプ室	
非常用 ディーゼル 発電機 海水系	2D 非常用ディーゼル発電機用海水ポンプ (DGSW-PMP-2D)		海水ポンプ室	
高圧炉心 スプレイ系 ディーゼル 発電設備	高圧炉心スプレイ系ディーゼル発電機 (GEN-DG-HPCS/DGU-HPCS) (内燃機関,調速装置,非常調速装置, 冷却水ポンプを含む)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電設備	DG HPCS 制御盤 (DGCP/2H)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電設備	高圧炉心スプレイ系非常用ディーゼル発電機励磁装置(中性点接地変圧器盤,自動電圧調整器盤,シリコン整流器盤,交流リアクトル盤及びシリコン整流器用変圧器盤を含む)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電設備	HPCS DG 可飽和変流器盤 (PNL-SCT-HPCS)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電設備	HPCS DG 起動用電磁弁 (No.1) (3-14E247D-1)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電設備	HPCS DG 起動用電磁弁 (No. 2) (3-14E247D-2)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電設備	DG HPCS INST. RACK (R-60)		原子炉建屋 付属棟	

表2-7 溢水評価対象の防護対象設備リスト (36/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
高圧炉心 スプレイ系 ディーゼル 発電設備	DG HPCS DIESEL ENGINE INST. RACK (R-66)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電設備	HPCS DG シリンダー油タンク (DG-VSL-HPCS-DGLO-2)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電設備	HPCS DG 潤滑油サンプタンク (DG-VSL-HPCS-DGLO-1)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電設備	HPCS DG 潤滑油サンプタンクベント管 (7-6-DGL0-225)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電設備	高圧炉心スプレイ系ディーゼル発電機燃料油デイタンク (DG-VSL-HPCS-D0-1)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電設備	高圧炉心スプレイ系ディ-ゼル発電機燃料油デイタンク ベント管 (3-11/4-D0-220)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電設備	燃料デイタンク液面レベルスイッチ (HPCS) (DG-LITS-205)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電設備	HPCS DG 機関ベント管 (7-8-DGL0-213)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電設備	HPCS DG 吸気系フィルタ(L側) (DG-HPCS-AE-FLT-INTAKE-L)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電設備	HPCS DG 吸気系フィルタ(R側) (DG-HPCS-AE-FLT-INTAKE-R)		原子炉建屋 付属棟	
高圧炉心 スプレイ系 ディーゼル 発電機海水系	高圧炉心スプレイ系ディーゼル発電機用 海水ポンプ (DGSW-PMP-HPCS)		海水ポンプ室	

表2-7 溢水評価対象の防護対象設備リスト (37/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
ディーゼル室 換気系	DG 2C ルーフベントファン (PV2-10)		原子炉建屋 付属棟	
ディーゼル室 換気系	DG 2C ルーフベントファン (PV2-11)		原子炉建屋 付属棟	
ディーゼル室 換気系	DG 2D ルーフベントファン (PV2-6)		原子炉建屋 付属棟	
ディーゼル室 換気系	DG 2D ルーフベントファン (PV2-7)		原子炉建屋 付属棟	
ディーゼル室 換気系	DG HPCS ルーフベントファン (PV2-8)		原子炉建屋 付属棟	
ディーゼル室 換気系	DG HPCS ルーフベントファン (PV2-9)		原子炉建屋 付属棟	
ディーゼル室 換気系	2D DG 室外気取入ダンパ (A) (AO-T41-F060A)		原子炉建屋 付属棟	
ディーゼル室 換気系	2D DG 室外気取入ダンパ (B) (A0-T41-F060B)		原子炉建屋 付属棟	
ディーゼル室 換気系	2D DG 室外気取入ダンパ (C) (A0-T41-F060C)		原子炉建屋 付属棟	
ディーゼル室 換気系	2D DG 室外気取入ダンパ (D) (A0-T41-F060D)		原子炉建屋 付属棟	
ディーゼル室 換気系	2D DG 室外気取入ダンパ (E) (AO-T41-F060E)		原子炉建屋 付属棟	

表2-7 溢水評価対象の防護対象設備リスト (38/73)

ディーゼル室 譲気系 2D DG 室外気取入ダンパ (A) 原子炉建屋 付属棟 ディーゼル室 渡気系 2D DG 室外気取入ダンパ (B) 原子炉建屋 付属棟 ディーゼル室 渡気系 2D DG 室外気取入ダンパ (C) 原子炉建屋 付属棟 ディーゼル室 渡気系 2D DG 室外気取入ダンパ (D) 原子炉建屋 付属棟 ディーゼル室 渡気系 2D DG 室外気取入ダンパ (D) 原子炉建屋 付属棟 ディーゼル室 渡気系 2D DG 室外気取入ダンパ (D) 原子炉建屋 付属棟 ディーゼル室 渡気系 HYAC D/G 2D EQUIP ROOM VENTILATING SYS. (PNL-T41=P008) 原子炉建屋 付属棟 ディーゼル室 渡気系 HPCS DG 室外気取入ダンパ (A) 原子炉建屋 付属棟 ディーゼル室 渡気系 HPCS DG 室外気取入ダンパ (C) 原子炉建屋 付属棟 ディーゼル室 渡気系 HPCS DG 室外気取入ダンパ (D) (A0-T41-F062D) 原子炉建屋 付属棟 ディーゼル室 渡気系 HPCS DG 室外気取入ダンパ (D) 原子炉建屋 付属棟 ディーゼル室 渡気系 HPCS DG 室外気取入ダンパ (D) 原子炉建屋 付属棟	系統	設備	溢水防護区画	設置建屋	設置高さ*
横気系					
接気系 (A0-T41-F061B) 付属棟 ディーゼル室 (A0-T41-F061C) 原子炉建屋 付属棟 ディーゼル室 接気系 (A0-T41-F061C) 原子炉建屋 付属棟 ディーゼル室 接気系 (A0-T41-F061D) 原子炉建屋 付属棟 ディーゼル室 接気系 (PNL-T41-F061D) 原子炉建屋 付属棟 ディーゼル室 接気系 (PNL-T41-F062A) 原子炉建屋 付属棟 ディーゼル室 HPCS DG 室外気取入ダンバ (A) 原子炉建屋 付属棟 ディーゼル室 HPCS DG 室外気取入ダンバ (B) 原子炉建屋 付属棟 ディーゼル室 接気系 (A0-T41-F062B) 原子炉建屋 付属棟 ディーゼル室 特気系 (A0-T41-F062C) 原子炉建屋 付属棟 ディーゼル室 サスマンバ (D) 原子炉建屋 付属棟 ディーゼル室 サスマンバ (D) 原子炉建屋 付属棟					
換気系					
換気系					
ディーゼル室 換気系 SYS. (PNL-T41-P008) 原子炉建屋 付属棟 ディーゼル室 換気系 HPCS DG 室外気取入ダンパ (A) (A0-T41-F062A) 原子炉建屋 付属棟 ディーゼル室 換気系 HPCS DG 室外気取入ダンパ (C) (A0-T41-F062C) 原子炉建屋 付属棟 ディーゼル室 換気系 HPCS DG 室外気取入ダンパ (D) (A0-T41-F062D) 原子炉建屋 付属棟 ディーゼル室 換気系 HPCS DG 室外気取入ダンパ (D) (A0-T41-F062D) 原子炉建屋 付属棟					
換気系(A0-T41-F062A)付属棟ディーゼル室 換気系HPCS DG 室外気取入ダンパ (B) (A0-T41-F062B)原子炉建屋 付属棟ディーゼル室 換気系HPCS DG 室外気取入ダンパ (C) (A0-T41-F062C)原子炉建屋 付属棟ディーゼル室 換気系HPCS DG 室外気取入ダンパ (D) (A0-T41-F062D)原子炉建屋 付属棟		SYS.			
換気系(A0-T41-F062B)付属棟ディーゼル室 換気系HPCS DG 室外気取入ダンパ (C) (A0-T41-F062C)原子炉建屋 付属棟ディーゼル室 換気系HPCS DG 室外気取入ダンパ (D) (A0-T41-F062D)原子炉建屋 付属棟					
換気系(A0-T41-F062C)付属棟ディーゼル室 換気系HPCS DG 室外気取入ダンパ (D) (A0-T41-F062D)原子炉建屋 付属棟ディーゼル室 ディーゼル室HPCS DG 室外気取入ダンパ (A)原子炉建屋					
換気系 (AO-T41-F062D) 付属棟 ディーゼル室 HPCS DG 室外気取入ダンパ (A) 原子炉建屋					

48

表2-7	溢水評価対象の防護対象	設備リスト	(39 / 73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
ディーゼル室 換気系	HPCS DG 室外気取入ダンパ (B) (A0-T41-F063B)		原子炉建屋 付属棟	
ディーゼル室 換気系	HPCS DG 室外気取入ダンパ (C) (AO-T41-F063C)		原子炉建屋 付属棟	
ディーゼル室 換気系	HPCS DG 室外気取入ダンパ (D) (AO-T41-F063D)		原子炉建屋 付属棟	
ディーゼル室 換気系	HVAC D/G HPCS EQUIP ROOM VENTILATING SYS. (PNL-T41-P009)		原子炉建屋 付属棟	
ディーゼル室 換気系	2C DG 室外気取入ダンパ (A) (A0-T41-F064A)		原子炉建屋 付属棟	
ディーゼル室 換気系	2C DG 室外気取入ダンパ (B) (A0-T41-F064B)		原子炉建屋 付属棟	
ディーゼル室 換気系	2C DG 室外気取入ダンパ (C) (AO-T41-F064C)		原子炉建屋 付属棟	
ディーゼル室 換気系	2C DG 室外気取入ダンパ (D) (AO-T41-F064D)		原子炉建屋 付属棟	
ディーゼル室 換気系	2C DG 室外気取入ダンパ (A) (A0-T41-F065A)		原子炉建屋 付属棟	
ディーゼル室 換気系	2C DG 室外気取入ダンパ (B) (A0-T41-F065B)		原子炉建屋 付属棟	
ディーゼル室 換気系	2C DG 室外気取入ダンパ (C) (AO-T41-F065C)		原子炉建屋 付属棟	

主 9_7	溢水評価対象の防護対象設備リスト(40/7	2)
	36 水 評 m x x 多 (/) b i 誰 x x 多 設 加 リ ス ト (4) / /	3.1

系統	設備	溢水防護区画	設置建屋	設置高さ*
ディーゼル室 換気系	2C DG 室外気取入ダンパ (D) (A0-T41-F065D)		原子炉建屋 付属棟	
ディーゼル室 換気系	HVAC D/G 2C EQUIP ROOM VENTILATING SYS. (PNL-T41-P010)		原子炉建屋 付属棟	
ディーゼル 発電機 燃料油系	2C 非常用ディーゼル発電機燃料移送ポンプ		常設代替高圧電源装置置場	
ディーゼル 発電機 燃料油系	2D 非常用ディーゼル発電機燃料移送ポンプ		常設代替高圧電源装置置場	
ディーゼル 発電機 燃料油系	高圧炉心スプレイ系ディーゼル発電機燃料移送ポンプ		常設代替高圧電源装置置場	
ディーゼル 発電機 燃料油系	軽油貯蔵タンク A		常設代替高圧電源装置置場	
ディーゼル 発電機 燃料油系	軽油貯蔵タンク A ベント管		屋外	
ディーゼル 発電機 燃料油系	軽油貯蔵タンク B		常設代替高圧電源装置置場	
ディーゼル 発電機 燃料油系	軽油貯蔵タンク B ベント管		屋外	
プロセス 放射線 モニタ系	原子炉建屋換気系(ダクト)放射線モニタ(検出器) (D17-N300A)		原子炉建屋 原子炉棟	
プロセス 放射線 モニタ系	原子炉建屋換気系(ダクト)放射線モニタ(検出器) (D17-N300B)		原子炉建屋 原子炉棟	

表 2-7	溢水評価対象の	防護対象設備リ	スト	$(41 \angle 73)$
12.4	1 IIII / IV		/\	(11/ 10/

系統	設備	溢水防護区画	設置建屋	設置高さ*
プロセス 放射線 モニタ系	原子炉建屋換気系(ダクト)放射線モニタ(検出器) (D17-N300C)		原子炉建屋 原子炉棟	
プロセス 放射線 モニタ系	原子炉建屋換気系(ダクト)放射線モニタ(検出器) (D17-N300D)		原子炉建屋 原子炉棟	
プロセス 放射線 モニタ系	主蒸気管放射線モニタ (検出器) (D17-N003A)		原子炉建屋 原子炉棟	
プロセス 放射線 モニタ系	主蒸気管放射線モニタ (検出器) (D17-N003B)		原子炉建屋 原子炉棟	
プロセス 放射線 モニタ系	主蒸気管放射線モニタ (検出器) (D17-N003C)		原子炉建屋 原子炉棟	
プロセス 放射線 モニタ系	主蒸気管放射線モニタ (検出器) (D17-N003D)		原子炉建屋 原子炉棟	
プロセス 放射線 モニタ系	原子炉建屋換気系(ダクト)放射線モニタ(検出器) (D17-N009A)		原子炉建屋 付属棟	
プロセス 放射線 モニタ系	原子炉建屋換気系(ダクト)放射線モニタ(検出器) (D17-N009B)		原子炉建屋 付属棟	
プロセス 放射線 モニタ系	原子炉建屋換気系(ダクト)放射線モニタ(検出器) (D17-N009C)		原子炉建屋 付属棟	
プロセス 放射線 モニタ系	原子炉建屋換気系(ダクト)放射線モニタ(検出器) (D17-N009D)		原子炉建屋 付属棟	
ほう酸水 注入系	ほう酸水注入ポンプA (SLC-PMP-C001A)		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (42/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
ほう酸水 注入系	ほう酸水注入ポンプB (SLC-PMP-C001B)		原子炉建屋 原子炉棟	
ほう酸水注入系	ほう酸水貯蔵タンク (SLC-VSL-A001)		原子炉建屋 原子炉棟	
ほう酸水 注入系	SLC 計装ラック (H22-P011)		原子炉建屋 原子炉棟	
ほう酸水注入系	SLC 貯蔵タンク出口弁 (A) (C41-F001A(M0))		原子炉建屋 原子炉棟	
ほう酸水注入系	SLC 貯蔵タンク出口弁 (B) (C41-F001B(MO))		原子炉建屋 原子炉棟	
ほう酸水 注入系	SLC 爆破弁 (A) (C41-F004A)		原子炉建屋 原子炉棟	
ほう酸水 注入系	SLC 爆破弁 (B) (C41-F004B)		原子炉建屋 原子炉棟	
ほう酸水 注入系	SLC PUMP DISCH PRESS(伝送器) (PT-C41-N004)		原子炉建屋 原子炉棟	
ほう酸水注入系	SLC テスト逆止弁バイパス弁 (C41-FF004(A0))		原子炉建屋 原子炉棟	
補機冷却 海水系	補機冷却系海水系ポンプ (A) (ASW-PMP-A)		海水ポンプ室	
補機冷却 海水系	補機冷却系海水系ポンプ (B) (ASW-PMP-B)		海水ポンプ室	

表2-7 溢水評価対象の防護対象設備リスト (43/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
補機冷却 海水系	補機冷却系海水系ポンプ (C) (ASW-PMP-C)		海水ポンプ室	
漏えい検出系	MSL AREA DIFF TEMP(A)(検出器) (TE-E31-N029A)		原子炉建屋 原子炉棟	
漏えい検出系	MSL AREA DIFF TEMP(B)(検出器) (TE-E31-N029B)		原子炉建屋 原子炉棟	
漏えい検出系	MSL AREA DIFF TEMP (C) (検出器) (TE-E31-N029C)		原子炉建屋 原子炉棟	
漏えい検出系	MSL AREA DIFF TEMP (D) (検出器) (TE-E31-N029D)		原子炉建屋 原子炉棟	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N031A)		原子炉建屋 原子炉棟	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N031B)		原子炉建屋 原子炉棟	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N031C)		原子炉建屋 原子炉棟	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N031D)		原子炉建屋 原子炉棟	
漏えい検出系	MSL AREA DIFF TEMP(A)(検出器) (TE-E31-N030A)		原子炉建屋 原子炉棟	
漏えい検出系	MSL AREA DIFF TEMP (B) (検出器) (TE-E31-N030B)		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (44/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
漏えい検出系	MSL AREA DIFF TEMP (C) (検出器) (TE-E31-N030C)		原子炉建屋 原子炉棟	
漏えい検出系	MSL AREA DIFF TEMP(D)(検出器) (TE-E31-N030D)		原子炉建屋 原子炉棟	
漏えい検出系	核分裂生成物モニタ系サンプリング弁 (E31-F010A(A0))		原子炉建屋 原子炉棟	
漏えい検出系	核分裂生成物モニタ系サンプリング弁 (E31-F011A(A0))		原子炉建屋 原子炉棟	
漏えい検出系	核分裂生成物モニタ系サンプリング弁 (E31-F010B(A0))		原子炉建屋 原子炉棟	
漏えい検出系	核分裂生成物モニタ系サンプリング弁 (E31-F011B(A0))		原子炉建屋 原子炉棟	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N044A)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N044B)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N044C)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N044D)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N045A)		タービン 建屋	

表2-7 溢水評価対象の防護対象設備リスト	S ((4!	15 /	$^{'}73$	()
-----------------------	-----	-----	------	----------	----

系統	設備	溢水防護区画	設置建屋	設置高さ*
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N045B)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N045C)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N045D)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高)(TE-E31-N046A)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N046B)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N046C)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N046D)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N039A)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N039B)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N039C)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N039D)		タービン 建屋	

表2-7 溢水評価対象の防護対象設備リスト(46/	/7:	(46	1	ス	IJ	借	象設	店 謹:	IT	対象	評価	溢水	表 2-7	
---------------------------	-----	-----	---	---	----	---	----	------	----	----	----	----	-------	--

系統	設備	溢水防護区画	設置建屋	設置高さ*
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N040A)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N040B)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N040C)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N040D)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N041A)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N041B)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N041C)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N041D)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N042A)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N042B)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N042C)		タービン 建屋	

表2-7 溢水評価対象の防護対象設備リスト	(/	$47 \angle 73$)
-----------------------	-----	----------------	---

系統	設備	溢水防護区画	設置建屋	設置高さ*
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N042D)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N043A)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N043B)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N043C)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N043D)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N047A)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高)(TE-E31-N047B)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N047C)		タービン 建屋	
漏えい検出系	主蒸気管トンネル温度検出器(主蒸気トンネル温度高) (TE-E31-N047D)		タービン 建屋	
可燃性 ガス濃度 制御系	可燃性ガス濃度制御系再循環結合装置ブロワA (FCS-HVA-T49-BLOWER-A)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	可燃性ガス濃度制御系再循環結合装置 A (FCS-HEX-1A)		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (48/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
可燃性 ガス濃度 制御系	可燃性ガス濃度制御系再循環結合装置加熱器 A (FCS-HEX-HTR-A)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	ブロワ (A) 入口ガス温度 (検出器) (TE-T49-2A)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	加熱管 2/3 位置 (A) ガス温度 (検出器) (TE-T49-4A)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	加熱管 (A) 出口ガス温度 (検出器) (TE-T49-5A)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	加熱管 (A) 出口壁温度 (検出器) (TE-T49-6A)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	再結合器 (A) ガス温度 (検出器) (TE-T49-7A)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	再結合器 (A) 壁温度 (検出器) (TE-T49-8A)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	再循環(A)ガス温度(検出器) (TE-T49-9A)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS ヒータ制御盤 (A) (PNL-FCS-HEATER-A)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS (A) 冷却器冷却水元弁 (E12-FF104A(MO))		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS 冷却器冷却水入口弁 (MV-10A(MO))		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (49/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
可燃性 ガス濃度 制御系	FCS 入口制御弁 (FV-1A(MO))		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS 再循環制御弁 (FV-2A(MO))		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS(A)系統流量計装		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	可燃性ガス濃度制御系再循環結合装置ブロワ B (FCS-HVA-T49-BLOWER-B)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	可燃性ガス濃度制御系再循環結合装置 B (FCS-HEX-1B)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	可燃性ガス濃度制御系再循環結合装置加 熱器 B (FCS-HEX-HTR-B)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	ブロワ (B) 入口ガス温度 (検出器) (TE-T49-2B)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	加熱管 2/3 位置 (B) ガス温度 (検出器) (TE-T49-4B)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	加熱管 (B) 出口ガス温度 (検出器) (TE-T49-5B)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	加熱管 (B) 出口壁温度 (検出器) (TE-T49-6B)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	再結合 (B) ガス温度 (検出器) (TE-T49-7B)		原子炉建屋 原子炉棟	

表2-7	溢水評価対象の防	護対象設備「	リスト	$(50 \angle 73)$

系統	設備	溢水防護区画	設置建屋	設置高さ*
可燃性 ガス濃度 制御系	再結合器 (B) 壁温度 (検出器) (TE-T49-8B)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	再循環 (B) ガス温度 (検出器) (TE-T49-9B)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS ヒータ制御盤 (B) (PNL-FCS-HEATER-B)		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS (B) 冷却器冷却水元弁 (E12-FF104B(MO))		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS 冷却器冷却水入口弁 (MV-10B(MO))		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS 入口制御弁 (FV-1B(MO))		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS 再循環制御弁 (FV-2B(MO))		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS (B) 系統流量計装		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS (B) 系 入口管隔離弁 (2-43V-1B(MO))		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS (A) 系 入口管隔離弁 (2-43V-1A(MO))		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS (A) 系 出口管隔離弁 (2-43V-3A(MO))		原子炉建屋 原子炉棟	

	表 2-7	溢水評価対象	の防護対象設備	リスト	$(51 \angle 73)$
--	-------	--------	---------	-----	------------------

系統	設備	溢水防護区画	設置建屋	設置高さ*
可燃性 ガス濃度 制御系	FCS (A) 系 出口弁 (2-43V-2A(MO))		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS (B) 系出口管隔離弁 (2-43V-3B(MO))		原子炉建屋 原子炉棟	
可燃性 ガス濃度 制御系	FCS (B) 系出口弁 (2-43V-2B(MO))		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	原子炉隔離時冷却系注入弁 (E51-F013(MO))		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	RCIC 外側隔離弁 (E51-F064(MO))		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	RCIC タービン排気弁 (E51-F068(MO))		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	RCIC 真空ポンプ出口弁 (E51-F069(MO))		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	RCIC DIV-I計装ラック (H22-P017)		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	RCIC DIV-Ⅱ計装ラック (H22-P029)		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	原子炉隔離時冷却系ポンプ (RCIC-PMP-C001)		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	原子炉隔離時冷却系タービン (TBN-RCIC-C002)		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (52/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
原子炉 隔離時 冷却系	RCIC ポンプサプレッションプール水供 給弁 (E51-F031(MO))		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	RCIC ミニフロー弁 (E51-F019(MO))		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	RCIC 潤滑油クーラー冷却水供給弁 (E51-F046(MO))		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	原子炉隔離時冷却系蒸気供給弁 (E51-F045(MO))		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	RCIC 弁 (E51-F045) バイパス弁 (E51-F095(MO))		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	RCIC トリップ/スロットル弁 (E51-C002(MO))		原子炉建屋 原子炉棟	
原子炉隔離時冷却系	油圧作動弁 ガバナ弁 (GOVERNING VALVE)		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	ガバナ		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	PUMP DISCHARGE PRESS (スイッチ) (PSH-E51-N020)		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	PUMP DISCHARGE H/L FLOW (伝送器) (FT-E51-N002)		原子炉建屋 原子炉棟	
原子炉隔離時冷却系	FI-E51-N002 計器収納箱		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (53/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
原子炉 隔離時 冷却系	原子炉隔離時冷却系系統流量(伝送器) (FT-E51-N003)		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	RCIC 蒸気入口ドレンポット排水弁 (E51-F025(AO))		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	RCIC 真空ポンプ (RCIC-PMP-VAC)		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	RCIC 復水ポンプ (RCIC-PMP-COND)		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	RCIC バキュームタンク復水排水弁 (E51-F004(A0))		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	RCIC バキュームタンク復水排水弁 (E51-F005(A0))		原子炉建屋 原子炉棟	
原子炉 隔離時 冷却系	RCIC TURBINE CONTROL BOX (LCP-105)		原子炉建屋 付属棟	
原子炉 隔離時 冷却系	RCIC 弁 (E51-F065) 均圧弁 (E51-FF008(A0))		原子炉建屋 原子炉棟	
原子炉建屋 換気系	HPCS ポンプ室空調機 (HVAC-AH2-2)		原子炉建屋 原子炉棟	
原子炉建屋 換気系	HPCS ポンプ室空調機 (HVAC-AH2-1)		原子炉建屋 原子炉棟	
原子炉建屋 換気系	RHR(B)ポンプ室空調機 (HVAC-AH2-5)		原子炉建屋 原子炉棟	

# 0 7	溢水評価対象の防護対象設備リスト(5	4 /79)
₹ 2−7	冷水 評価 対象(/) 近護 対象設備 リスト (!)	14 / 731

系統	設備	溢水防護区画	設置建屋	設置高さ*
原子炉建屋 換気系	RHR (C) ポンプ室空調機 (HVAC-AH2-6)		原子炉建屋 原子炉棟	
原子炉建屋 換気系	RHR(A)ポンプ室空調機 (HVAC-AH2-7)		原子炉建屋 原子炉棟	
原子炉建屋 換気系	RCIC ポンプ・タービン室空調機 (HVAC-AH2-4)		原子炉建屋 原子炉棟	
原子炉建屋 換気系	LPCS ポンプ室空調機 (HVAC-AH2-3)		原子炉建屋 原子炉棟	
原子炉建屋 換気系	C/S 給気隔離ダンパ (通常系) (SB2-1A(AO))		原子炉建屋 付属棟	
原子炉建屋 換気系	C/S 給気隔離ダンパ (通常系) (SB2-1B(A0))		原子炉建屋 付属棟	
原子炉建屋 換気系	C/S 給気隔離ダンパ (SB2-1C(AO))		原子炉建屋 付属棟	
原子炉建屋 換気系	C/S 給気隔離ダンパ (SB2-1D(AO))		原子炉建屋 付属棟	
原子炉建屋 換気系	C/S 排気隔離ダンパ (通常系) (SB2-2A(A0))		原子炉建屋 付属棟	
原子炉建屋 換気系	C/S 排気隔離ダンパ (通常系) (SB2-2B(AO))		原子炉建屋 付属棟	
原子炉建屋 換気系	C/S 排気隔離ダンパ (SB2-2C(AO))		原子炉建屋 付属棟	

表2-7 溢水評価対象の防護対象設備リスト (55/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
原子炉建屋 換気系	C/S 排気隔離ダンパ (SB2-2D(AO))		原子炉建屋 付属棟	
原子炉 再循環系	原子炉再循環系 (A) 計装ラック (H22-P022)		原子炉建屋 原子炉棟	
原子炉 再循環系	原子炉再循環系 (B) 計装ラック (H22-P006)		原子炉建屋 原子炉棟	
原子炉 再循環系	原子炉再循環ポンプ (B) 流量制御弁 (B35-F060B-V2(A0))		原子炉建屋 原子炉棟	
原子炉 再循環系	原子炉再循環ポンプ (B) 流量制御弁 (B35-F060B-V4(A0))		原子炉建屋 原子炉棟	
原子炉 再循環系	原子炉再循環ポンプ (B) 流量制御弁 (B35-F060B-V6(A0))		原子炉建屋 原子炉棟	
原子炉 再循環系	原子炉再循環ポンプ (B) 流量制御弁 (B35-F060B-V8(A0))		原子炉建屋 原子炉棟	
原子炉 再循環系	原子炉再循環ポンプ (A) 流量制御弁 (B35-F060A-V1(A0))		原子炉建屋 原子炉棟	
原子炉 再循環系	原子炉再循環ポンプ (A) 流量制御弁 (B35-F060A-V3(A0))		原子炉建屋 原子炉棟	
原子炉 再循環系	原子炉再循環ポンプ (A) 流量制御弁 (B35-F060A-V5(A0))		原子炉建屋 原子炉棟	
原子炉 再循環系	原子炉再循環ポンプ (A) 流量制御弁 (B35-F060A-V7(A0))		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (56/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
原子炉 冷却材 净化系	CUW 外側隔離弁 (G33-F004(M0))		原子炉建屋 原子炉棟	
高圧炉心 スプレイ系	高圧炉心スプレイ系注入弁 (E22-F004(MO))		原子炉建屋 原子炉棟	
高圧炉心 スプレイ系	HPCS DIV-Ⅲ計装ラック (H22-P024)		原子炉建屋 原子炉棟	
高圧炉心 スプレイ系	HPCS ポンプ入口弁 (CST 側) (E22-F001(MO))		原子炉建屋 原子炉棟	
高圧炉心 スプレイ系	HPCS ポンプ高圧炉心スプレイ系ポンプ (HPCS-PMP-C001)		原子炉建屋 原子炉棟	
高圧炉心 スプレイ系	HPCS ミニフロー弁 (E22-F012(MO))		原子炉建屋 原子炉棟	
高圧炉心 スプレイ系	HPCS ポンプ入口弁(S/P側) (E22-F015(MO))		原子炉建屋 原子炉棟	
高圧炉心 スプレイ系	CST WATER LEVEL(伝送器) (LT-E22-N054A)		復水貯蔵 タンクエリア	
高圧炉心 スプレイ系	CST WATER LEVEL(伝送器) (LT-E22-N054B)		復水貯蔵 タンクエリア	
高圧炉心 スプレイ系	CST WATER LEVEL(伝送器) (LT-E22-N054C)		復水貯蔵 タンクエリア	
高圧炉心 スプレイ系	CST WATER LEVEL(伝送器) (LT-E22-N054D)		復水貯蔵 タンクエリア	

	表2-7	溢水評価対象 <i>C</i>	防護対象設備リ	スト	$(57 \angle 73)$
--	------	-----------------	---------	----	------------------

系統	設備	溢水防護区画	設置建屋	設置高さ*
低圧炉心 スプレイ系	低圧炉心スプレイ系注入弁 (E21-F005(MO))		原子炉建屋 原子炉棟	
低圧炉心 スプレイ系	LPCS 計装ラック (H22-P001)		原子炉建屋 原子炉棟	
低圧炉心 スプレイ系	低圧炉心スプレイ系ポンプ (LPCS-PMP-C001)		原子炉建屋 原子炉棟	
低圧炉心 スプレイ系	LPCS ポンプ入口弁 (E21-F001(MO))		原子炉建屋 原子炉棟	
低圧炉心 スプレイ系	LPCS ミニフロー弁 (E21-F011(MO))		原子炉建屋 原子炉棟	
中央制御室 制御盤	プロセス放射線モニタ記録計盤 (H13-P600)		原子炉建屋 付属棟	
中央制御室 制御盤	非常用炉心冷却系制御盤 (H13-P601)		原子炉建屋 付属棟	
中央制御室 制御盤	原子炉補機制御盤 (H13-P602)		原子炉建屋 付属棟	
中央制御室 制御盤	原子炉制御操作盤 (H13-P603)		原子炉建屋 付属棟	
中央制御室 制御盤	プロセス放射線モニタ計装盤 (H13-P604)		原子炉建屋 付属棟	

表2-7 溢水評価対象の防護対象設備リスト (58/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
中央制御室 制御盤	TIP 制御盤 (H13-P607)		原子炉建屋 付属棟	
中央制御室 制御盤	出力領域モニタ計装盤 (H13-P608)		原子炉建屋 付属棟	
中央制御室 制御盤	原子炉保護系 (A) 継電器盤 (H13-P609)		原子炉建屋 付属棟	
中央制御室制御盤	原子炉保護系 (B) 継電器盤 (H13-P611)		原子炉建屋 付属棟	
中央制御室 制御盤	プロセス計装盤 (H13-P613)		原子炉建屋 付属棟	
中央制御室制御盤	プロセス計装盤 (H13-P617)		原子炉建屋 付属棟	
中央制御室 制御盤	残留熱除去系 (B),(C)補助継電器盤 (H13-P618)		原子炉建屋 付属棟	
中央制御室制御盤	ジェットポンプ計装盤 (H13-P619)		原子炉建屋 付属棟	
中央制御室 制御盤	原子炉隔離時冷却系継電器盤 (H13-P621)		原子炉建屋 付属棟	
中央制御室 制御盤	原子炉格納容器内側隔離系継電器盤 (H13-P622)		原子炉建屋 付属棟	
中央制御室 制御盤	原子炉格納容器外側隔離系継電器盤 (H13-P623)		原子炉建屋 付属棟	

表2-7 溢水評価対象の防護対象設備リスト (59/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
中央制御室 制御盤	高圧炉心スプレイ系継電器盤 (H13-P625)		原子炉建屋 付属棟	
中央制御室 制御盤	自動減圧系 (A) 継電器盤 (H13-P628)		原子炉建屋 付属棟	
中央制御室制御盤	低圧炉心スプレイ系, 残留熱除去系 (A) 補助継電器盤 (H13-P629)		原子炉建屋 付属棟	
中央制御室制御盤	自動減圧系 (B) 継電器盤 (H13-P631)		原子炉建屋 付属棟	
中央制御室制御盤	漏えい検出系操作盤 (H13-P632)		原子炉建屋 付属棟	
中央制御室制御盤	プロセス放射線モニタ, 起動時領域モニタ (A) 操作盤 (H13-P635)		原子炉建屋 付属棟	
中央制御室制御盤	プロセス放射線モニタ, 起動時領域モニタ (B) 操作盤 (H13-P636)		原子炉建屋 付属棟	
中央制御室制御盤	格納容器雰囲気監視系 (A) 操作盤 (H13-P638)		原子炉建屋 付属棟	
中央制御室 制御盤	格納容器雰囲気監視系(B)操作盤(H13-P639)		原子炉建屋 付属棟	
中央制御室 制御盤	漏えい検出系操作盤 (H13-P642)		原子炉建屋 付属棟	
中央制御室 制御盤	サプレッションプール温度記録計盤 (A) (H13-P689)		原子炉建屋 付属棟	

表 2-7	溢水評価対象の	の防護対象設備	リスト	$(60 \angle 73)$
4x 4 1	- 1111 / IX HT 1111 A'I 28K V	'ノ トクノ 15学 A' 2水 日 X 17日	7 / 1	100/

系統	設備	溢水防護区画	設置建屋	設置高さ*
中央制御室制御盤	サプレッションプール温度記録計盤 (B) (H13-P690)		原子炉建屋 付属棟	
中央制御室制御盤	原子炉保護系(1A)トリップユニット盤 (H13-P921)		原子炉建屋 付属棟	
中央制御室制御盤	原子炉保護系(1B)トリップユニット盤 (H13-P922)		原子炉建屋 付属棟	
中央制御室制御盤	原子炉保護系 (2A) トリップユニット盤 (H13-P923)		原子炉建屋 付属棟	
中央制御室制御盤	原子炉保護系 (2B) トリップユニット盤 (H13-P924)		原子炉建屋 付属棟	
中央制御室制御盤	緊急時炉心冷却系(DIV-I-1)トリップユニット盤 (H13-P925)		原子炉建屋 付属棟	
中央制御室制御盤	緊急時炉心冷却系(DIV-II-1)トリップユニット盤 (H13-P926)		原子炉建屋 付属棟	
中央制御室制御盤	緊急時炉心冷却系(DIV-I-2)トリップユニット盤 (H13-P927)		原子炉建屋 付属棟	
中央制御室制御盤	高圧炉心スプレイ系 トリップユニット 盤 (H13-P929)		原子炉建屋 付属棟	
中央制御室制御盤	所内電気操作盤 (CP-1)		原子炉建屋 付属棟	
中央制御室制御盤	タービン発電機操作盤 (CP-2)		原子炉建屋 付属棟	

表2-7 溢水評価対象の防護対象設備リスト (61/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
中央制御室 制御盤	タービン補機操作盤 (CP-3)		原子炉建屋 付属棟	
中央制御室 制御盤	タービン補機盤 (CP-4)		原子炉建屋 付属棟	
中央制御室 制御盤	窒素置換一空調換気制御盤 (CP-5)		原子炉建屋 付属棟	
中央制御室 制御盤	非常用ガス処理系,非常用ガス循環系(A) 操作盤 (CP-6A)		原子炉建屋 付属棟	
中央制御室 制御盤	非常用ガス処理系,非常用ガス循環系(B) 操作盤 (CP-6B)		原子炉建屋 付属棟	
中央制御室 制御盤	TURBINE GENERATOR V. B (CP-8)		原子炉建屋 付属棟	
中央制御室 制御盤	タービン補機補助継電器盤 (CP-9)		原子炉建屋 付属棟	
中央制御室 制御盤	発電機・主変圧器保護リレー盤 (CP-10A)		原子炉建屋 付属棟	
中央制御室 制御盤	発電機・主変圧器保護リレー盤 (CP-10B)		原子炉建屋 付属棟	
中央制御室 制御盤	予備変圧器保護リレー盤 (CP-10C)		原子炉建屋 付属棟	
中央制御室 制御盤	タービン補機盤 (CP-11)		原子炉建屋 付属棟	

表2-7 溢水評価対象の防護対象設備リスト (62/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
中央制御室制御盤	MSIV-LCS (A) 制御盤 (CP-13)		原子炉建屋 付属棟	
中央制御室制御盤	MSIV-LCS (B) 制御盤 (CP-14)		原子炉建屋 付属棟	
中央制御室制御盤	可燃性ガス濃度制御盤(A) (CP-15)		原子炉建屋 付属棟	
中央制御室制御盤	可燃性ガス濃度制御盤 (B) (CP-16)		原子炉建屋 付属棟	
中央制御室制御盤	送·受電系統制御盤 (CP-30)		原子炉建屋 付属棟	
中央制御室制御盤	開閉所保護リレー盤 (CP-32)		原子炉建屋 付属棟	
中央制御室 制御盤	原子炉廻り温度記録計盤 (H13-P614)		原子炉建屋 付属棟	
中性子計装系	起動領域計装 前置増幅器 (H22-P030)		原子炉建屋 原子炉棟	
中性子計装系	起動領域計装 前置増幅器 (H22-P031)		原子炉建屋 原子炉棟	
中性子計装系	起動領域計装 前置増幅器 (H22-P032)		原子炉建屋 原子炉棟	
中性子計装系	起動領域計装 前置増幅器 (H22-P033)		原子炉建屋 原子炉棟	

表2-7	溢水評価対	付象の防護対	け象設備リ	スト ($(63 \angle 73)$
10.4					

系統	設備	溢水防護区画	設置建屋	設置高さ*
中性子計装系	TIP 駆動装置電気盤 (LCP-200)		原子炉建屋 原子炉棟	
中性子計装系	TIP № 隔離弁 (C51-S0-F010(電磁弁))		原子炉建屋 原子炉棟	
主蒸気隔離弁漏えい抑制系	MSIV ステムリークドレン弁 (A) (E32-FF009A(MO))		原子炉建屋 原子炉棟	
主蒸気隔離弁漏えい抑制系	MSIV ステムリークドレン弁 (B) (E32-FF009B(MO))		原子炉建屋 原子炉棟	
ドライウェル冷却系	ドライウェル冷水入口隔離弁 (7-90V13(MO))		原子炉建屋 原子炉棟	
ドライウェル冷却系	ドライウェル冷水出口隔離弁 (7-90V17(MO))		原子炉建屋 原子炉棟	
不活性ガス系	ドライウェル圧力(A)(伝送器) (PT-26-79.51A)		原子炉建屋 原子炉棟	
不活性ガス系	ドライウェル圧力 (B) (伝送器) (PT-26-79.51B)		原子炉建屋 原子炉棟	
不活性ガス系	PCV PRESS(伝送器) (PT-26-79.53)		原子炉建屋 原子炉棟	
不活性ガス系	PCV PRESS(伝送器) (PT-26-79.5R)		原子炉建屋 原子炉棟	
不活性ガス系	サプレッション・チェンバ圧力 (PT-26-79.52A)		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (64/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
不活性ガス系	サプレッション・チェンバ圧力 (PT-26-79.52B)		原子炉建屋 原子炉棟	
不活性ガス系	SUPP CHAMBER LEVEL(伝送器) (LT-26-79.5R)		原子炉建屋 原子炉棟	
不活性ガス系	サプレッション・チェンバ水位 (A) (伝送器) (LT-26-79.5A)		原子炉建屋 原子炉棟	
不活性ガス系	サプレッション・チェンバ水位 (B) (伝送器) (LT-26-79.5B)		原子炉建屋 原子炉棟	
不活性ガス系	原子炉建屋換気系ベント弁(SB2-14) (2-26B-13(A0))		原子炉建屋 原子炉棟	
不活性ガス系	FRVS ベント弁 (SB2-3) (2-26B-14(A0))		原子炉建屋 原子炉棟	
不活性ガス系	ドライウェルベント弁 (2-26B-12(MO))		原子炉建屋 原子炉棟	
不活性ガス系	ドライウェル 2 インチ ベント弁 (2-26V9(AO))		原子炉建屋 原子炉棟	
不活性ガス系	サプレッション・チェンバベント弁 (2-26B-10(MO))		原子炉建屋 原子炉棟	
不活性ガス系	サプレッション・チェンバベント弁 (2-26B-11(AO))		原子炉建屋 原子炉棟	
不活性ガス系	サプレッション・チェンバ真空破壊止め 弁 (2-26B-3(A0))		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (65/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
不活性ガス系	サプレッション・チェンバ真空破壊止め 弁 (2-26B-4(A0))		原子炉建屋 原子炉棟	
不活性ガス系	サプレッション・チェンバパージ弁 (2-26B-5(AO))		原子炉建屋 原子炉棟	
不活性ガス系	サプレッション・チェンバ N ₂ ガス供給弁 (2-26B-6(AO))		原子炉建屋 原子炉棟	
不活性ガス系	エアパージ供給入口弁 (2-26B-1(A0))		原子炉建屋 原子炉棟	
不活性ガス系	格納容器パージ弁 (2-26B-2(A0))		原子炉建屋 原子炉棟	
不活性ガス系	格納容器/サプレッション・チェンバ N ₂ ガス供給弁 (2-26B-7(A0))		原子炉建屋 原子炉棟	
不活性ガス系	N ₂ ガスパージ供給弁 (2-26B-8(AO))		原子炉建屋 原子炉棟	
不活性ガス系	格納容器 N ₂ ガス供給弁 (2-26B-9(A0))		原子炉建屋 原子炉棟	
不活性ガス系	ドライウェル真空破壊弁テスト用電磁弁 (2-26V81(電磁弁))		原子炉建屋 原子炉棟	
不活性ガス系	ドライウェル真空破壊弁テスト用電磁弁 (2-26V82(電磁弁))		原子炉建屋 原子炉棟	
不活性ガス系	ドライウェル真空破壊弁テスト用電磁弁 (2-26V83(電磁弁))		原子炉建屋 原子炉棟	-

表2-7 溢水評価対象の防護対象設備リスト (66/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
不活性ガス系	ドライウェル真空破壊弁テスト用電磁弁 (2-26V84(電磁弁))		原子炉建屋 原子炉棟	
不活性ガス系	ドライウェル真空破壊弁テスト用電磁弁 (2-26V85(電磁弁))		原子炉建屋 原子炉棟	
不活性ガス系	ドライウェル真空破壊弁テスト用電磁弁 (2-26V86(電磁弁))		原子炉建屋 原子炉棟	
不活性ガス系	ドライウェル真空破壊弁テスト用電磁弁 (2-26V87(電磁弁))		原子炉建屋 原子炉棟	
不活性ガス系	ドライウェル真空破壊弁テスト用電磁弁 (2-26V88(電磁弁))		原子炉建屋 原子炉棟	
不活性ガス系	ドライウェル真空破壊弁テスト用電磁弁 (2-26V89(電磁弁))		原子炉建屋 原子炉棟	
不活性ガス系	ドライウェル真空破壊弁テスト用電磁弁 (2-26V90(電磁弁))		原子炉建屋 原子炉棟	
不活性ガス系	ドライウェル真空破壊弁テスト用電磁弁 (2-26V91(電磁弁))		原子炉建屋 原子炉棟	
事故時 サンプリング 系	D/W 内サンプリングバイパス弁 (V25-1008(電磁弁))		原子炉建屋 原子炉棟	
試料採取系	格納容器酸素分析系サンプリング弁 (25-51A1(電磁弁))		原子炉建屋 原子炉棟	
試料採取系	格納容器酸素分析系サンプリング弁 (25-51A2(電磁弁))		原子炉建屋 原子炉棟	

表2-7 溢水評価対象の防護対象設備リスト (67/73)

系統	設備	溢水防護区画	設置建屋	設置高さ*
試料採取系	格納容器酸素分析系サンプリング弁 (25-51B1(電磁弁))		原子炉建屋 原子炉棟	
試料採取系	格納容器酸素分析系サンプリング弁 (25-51B2(電磁弁))		原子炉建屋 原子炉棟	
試料採取系	PLR 炉水サンプリング弁 (外側隔離弁) (B35-F020(A0))		原子炉建屋 原子炉棟	
試料採取系	格納容器酸素分析系サンプリング弁 (25-51C1(電磁弁))		原子炉建屋 原子炉棟	
試料採取系	格納容器酸素分析系サンプリング弁 (25-51C2(電磁弁))		原子炉建屋 原子炉棟	
試料採取系	格納容器酸素分析系サンプリング弁 (25-51D1(電磁弁))		原子炉建屋 原子炉棟	
試料採取系	格納容器酸素分析系サンプリング弁 (25-51D2(電磁弁))		原子炉建屋 原子炉棟	
試料採取系	格納容器酸素分析系排気弁 (25-51E1(電磁弁))		原子炉建屋 原子炉棟	
試料採取系	格納容器酸素分析系排気弁 (25-51E2(電磁弁))		原子炉建屋 原子炉棟	
放射性 廃棄物 処理系	原子炉格納容器ドレン系機器ドレン隔離 弁 (外側) (G13-F132(A0))		原子炉建屋 原子炉棟	
放射性 廃棄物 処理系	原子炉格納容器ドレン系機器ドレン隔離 弁 (内側) (G13-F133(A0))		原子炉建屋 原子炉棟	

表 9-7	一 浴 水 誣 価 牡 象 /	の防護対象設備	リスト	(68 / 73)
77 / T	- 7台 / L 計 1111 X 1 多2 (/ / 1) / 7 6年 3/1 3/2 67 71田	リムト	1087/31

系統	設備	溢水防護区画	設置建屋	設置高さ*
放射性 廃棄物 処理系	原子炉格納容器ドレン系床ドレン隔離弁 (外側) (G13-F129(A0))		原子炉建屋 原子炉棟	
放射性 廃棄物 処理系	原子炉格納容器ドレン系床ドレン隔離弁 (内側) (G13-F130(A0))		原子炉建屋 原子炉棟	
復水 移送系	復水移送ポンプ(A) (MUW-PMP-CST-A)		タービン 建屋	
復水移送系	復水移送ポンプ (B) (MUW-PMP-CST-B)		タービン 建屋	
復水移送系	COND TRANS PUMP DISCH PRESS (PT-18-190.5)		タービン 建屋	
復水移送系	CST (A) LEVEL (伝送器) (LT-18-190A)		復水貯蔵 タンクエリア	
復水移送系	CST (B) LEVEL (伝送器) (LT-18-190B)		復水貯蔵 タンクエリア	
所内電源系	TB 120V AC INST DIST PNL 1		タービン 建屋	
所内電源系	モータコントロールセンタ 2A3-1		タービン 建屋	
所内電源系	モータコントロールセンタ 2B3-1		タービン 建屋	
所内電源系	パワーセンタ 2A-3		タービン 建屋	

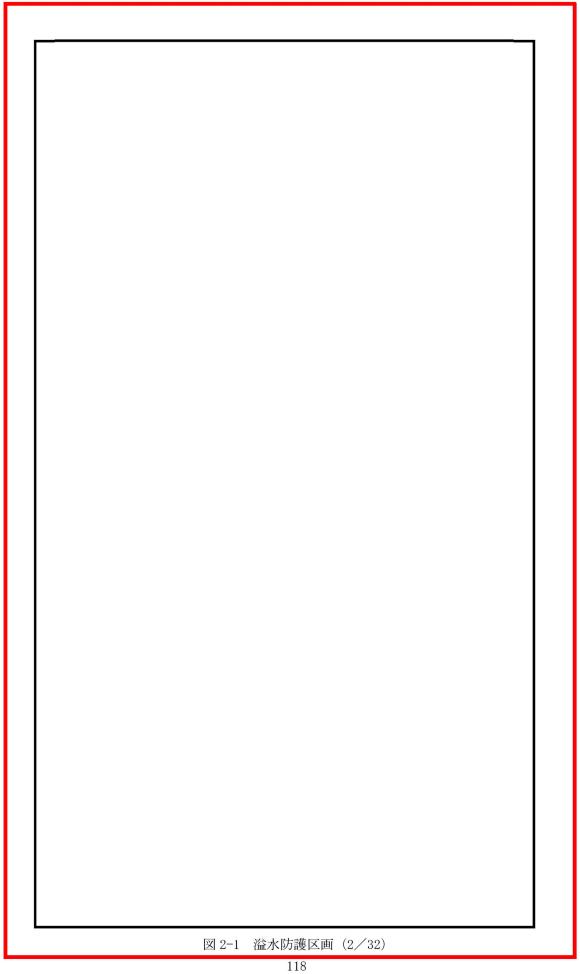
表2-7 溢水評価対象の防護対象設備リスト (69/73)

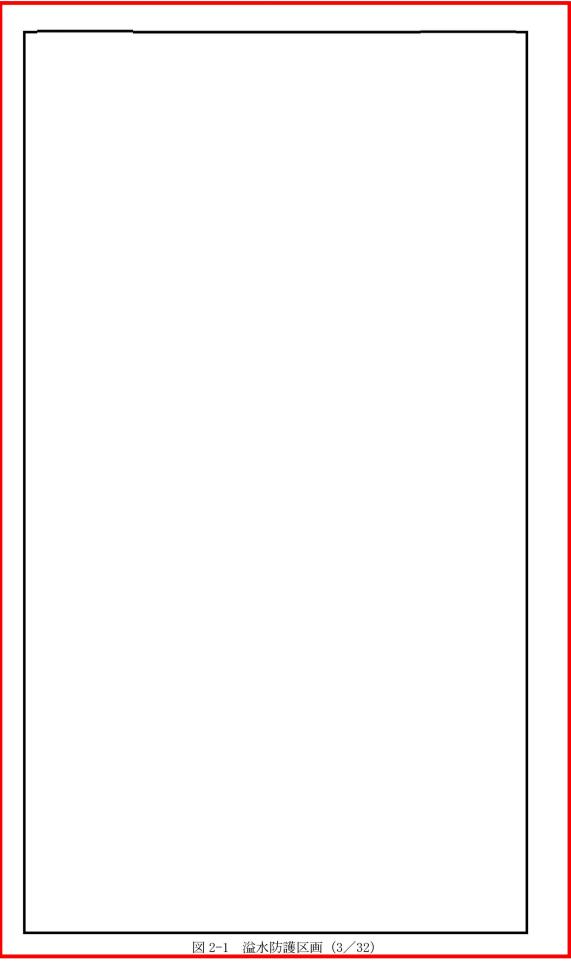
系統	設備	溢水防護区画	設置建屋	設置高さ*
所内電源系	パワーセンタ 2B-3		タービン 建屋	
プロセス 放射線 モニタ系	排ガス放射線モニタ (A) プリアンプ (RAM-D17-K020A)		タービン 建屋	
プロセス 放射線 モニタ系	排ガス放射線モニタ (B) プリアンプ (RAM-D17-K020B)		タービン 建屋	
プロセス 放射線 モニタ系	排ガス放射線モニタ (A) (検出器) (減衰管入口) (D17-N002A)		タービン 建屋	
プロセス 放射線 モニタ系	排ガス放射線モニタ (B) (検出器) (減衰管入口) (D17-N002B)		タービン 建屋	
プロセス 放射線 モニタ系	排ガス放射線モニタ (A) プリアンプ (RAM-D17-K030A)		原子炉建屋 付属棟	
プロセス 放射線 モニタ系	排ガス放射線モニタ (B) プリアンプ (RAM-D17-K030B)		原子炉建屋 付属棟	
プロセス 放射線 モニタ系	排ガス放射線モニタ (A) (検出器) (減衰管出口) (D17-N022A)		原子炉建屋 付属棟	
プロセス 放射線 モニタ系	排ガス放射線モニタ (B) (検出器) (減衰管出口) (D17-N022B)		原子炉建屋 付属棟	
プロセス 放射線 モニタ系	排ガス放射線モニタ (A) プリアンプ (活性炭吸着塔出口) (RAM-D17-K500A)		原子炉建屋 付属棟	
プロセス 放射線 モニタ系	排ガス放射線モニタ (B) プリアンプ 排ガス放射線モニタ (RAM-D17-K500B)		原子炉建屋 付属棟	

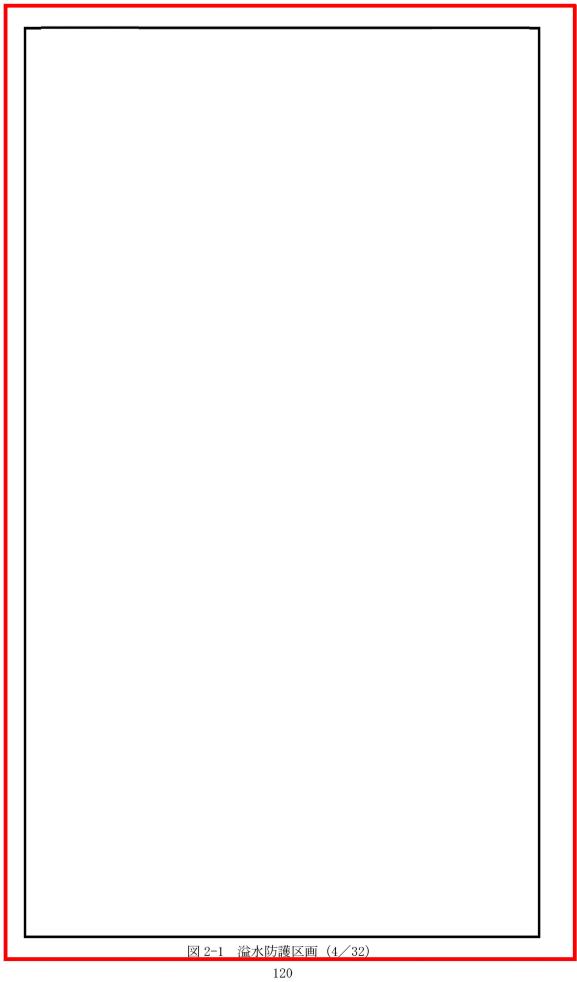
表2-7 溢水評価対象の防護対象設備リスト (70/73)

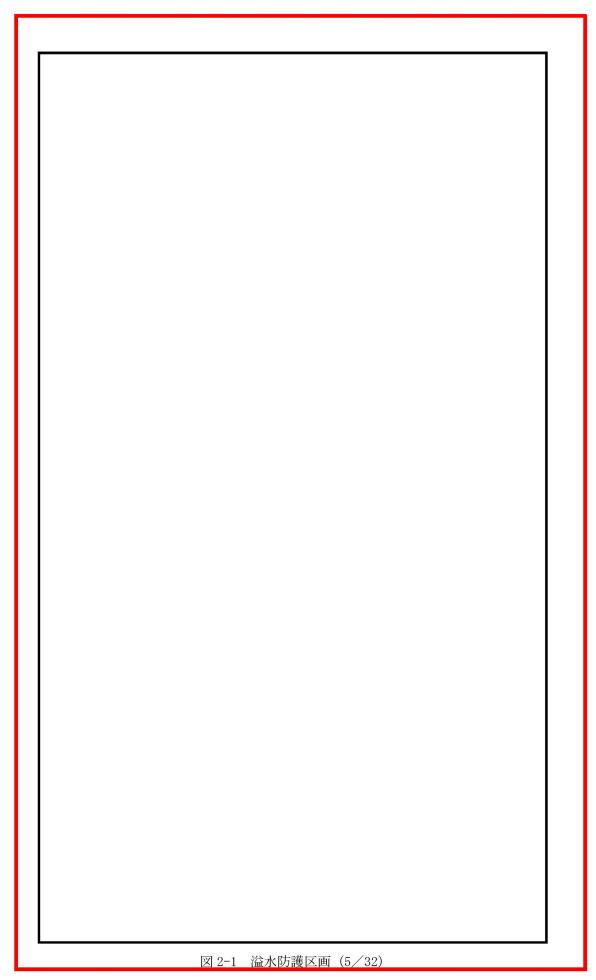
系統	設備	溢水防護区画	設置建屋	設置高さ*
プロセス 放射線 モニタ系	OFF GAS POST TREATMENT SAMPLE RACK (D17-J011)		原子炉建屋 付属棟	
プロセス 放射線 モニタ系	OFF GAS POST TREATMENT SAMPLE RACK (D17-J011-1)		原子炉建屋 付属棟	
プロセス 放射線 モニタ系	排ガス線形放射線モニタ(検出器) (D17-N021)		タービン 建屋	
プロセス 放射線 モニタ系	光変換器盤収納盤 (D17-P112)		原子炉建屋 付属棟	
プロセス 放射線 モニタ系	排気筒モニタ盤 A (D17-P012A)		排気筒 モニタ室	
プロセス 放射線 モニタ系	排気筒モニタサンプルラック A (D17-P102A)		排気筒 モニタ室	
プロセス 放射線 モニタ系	主排気筒モニタガスサンプラ A (D17-P101A)		排気筒 モニタ室	
プロセス 放射線 モニタ系	主排気筒放射線モニタ (D17-N030)		排気筒 モニタ室	
プロセス 放射線 モニタ系	排気筒モニタ盤B (D17-P012B)		排気筒 モニタ室	
プロセス 放射線 モニタ系	排気筒モニタサンプルラック B (D17-P102B)		排気筒 モニタ室	
プロセス 放射線 モニタ系	主排気筒モニタガスサンプラB (D17-P101B)		排気筒 モニタ室	

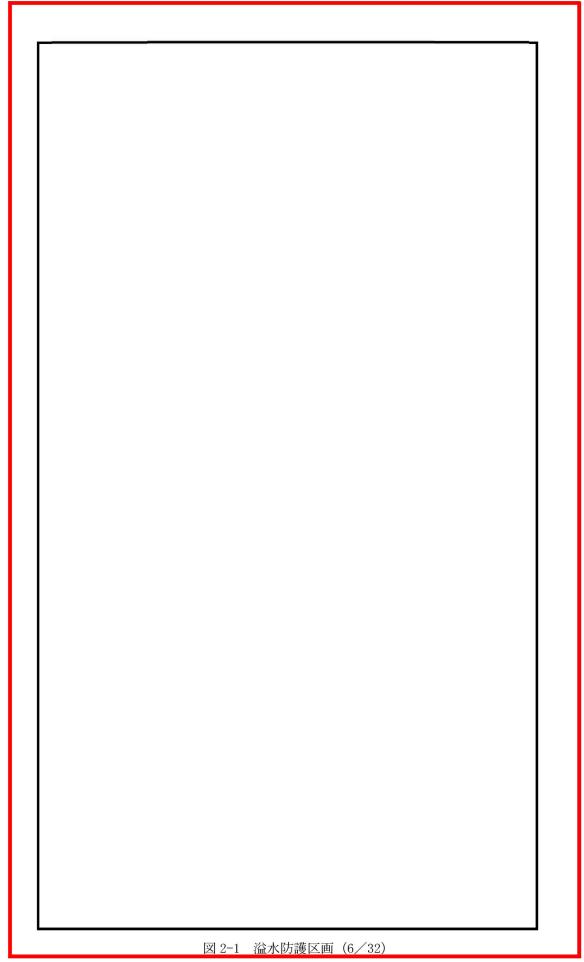
	表 2-7	溢水評価対象の	の防護対象設	備リスト	$(71 \angle 73)$
--	-------	---------	--------	------	------------------

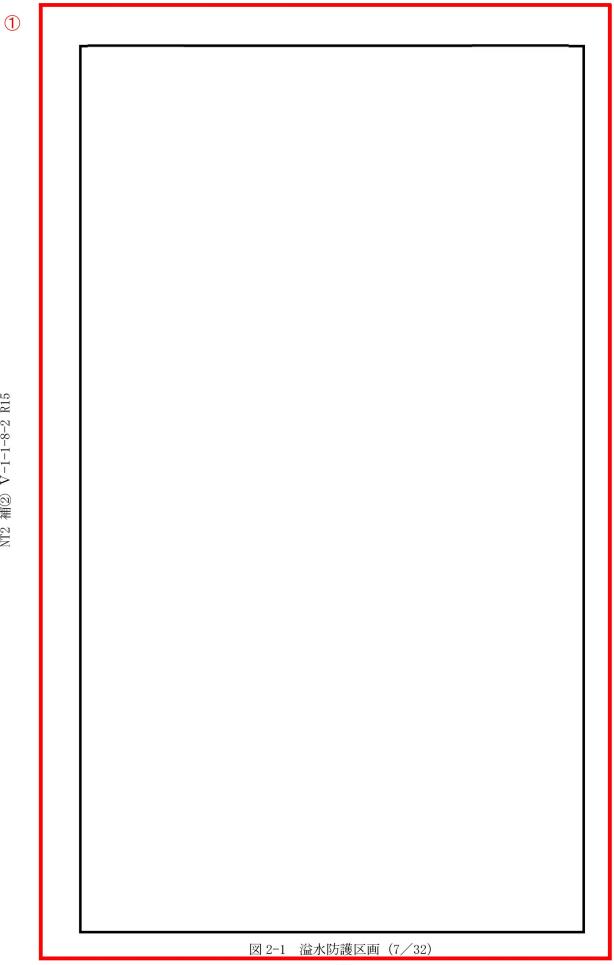

系統	設備	溢水防護区画	設置建屋	設置高さ*
プロセス 放射線 モニタ系	主排気筒モニタトリチウム回収制御盤 (D17-P103)		排気筒 モニタ室	
プロセス 放射線 モニタ系	主排気筒モニタトリチウムサンプルラックA (D17-P104)		排気筒 モニタ室	
プロセス 放射線 モニタ系	主排気筒モニタトリチウムサンプルラックB (D17-P104)		排気筒 モニタ室	
プロセス 放射線 モニタ系	主排気筒フィルタラック (D17-013)		排気筒 モニタ室	
プロセス 放射線 モニタ系	SGTS STACK SAMPLE RACK (D17-P001)		排気筒 モニタ室	
プロセス 放射線 モニタ系	SGTS STACK GAS SAMPLE RACK (D17-P001-1)		排気筒 モニタ室	
プロセス 放射線 モニタ系	非常用ガス処理系排気筒放射線モニタ		排気筒 モニタ室	
プロセス 放射線 モニタ系	SGTS STACK FILTER RACK (D17-P014)		排気筒 モニタ室	
中央制御室制御盤	OFF GAS CHACOAL SYS. V. B (CP-31)		原子炉建屋 付属棟	
中央制御室制御盤	TURB. GEN TEST&CHECKOUT V. B (CP-7)		原子炉建屋 付属棟	
気体廃棄物 処理系	OFF GAS SYSTEM INST. RACK (PNL-LR-R-4)		タービン 建屋	

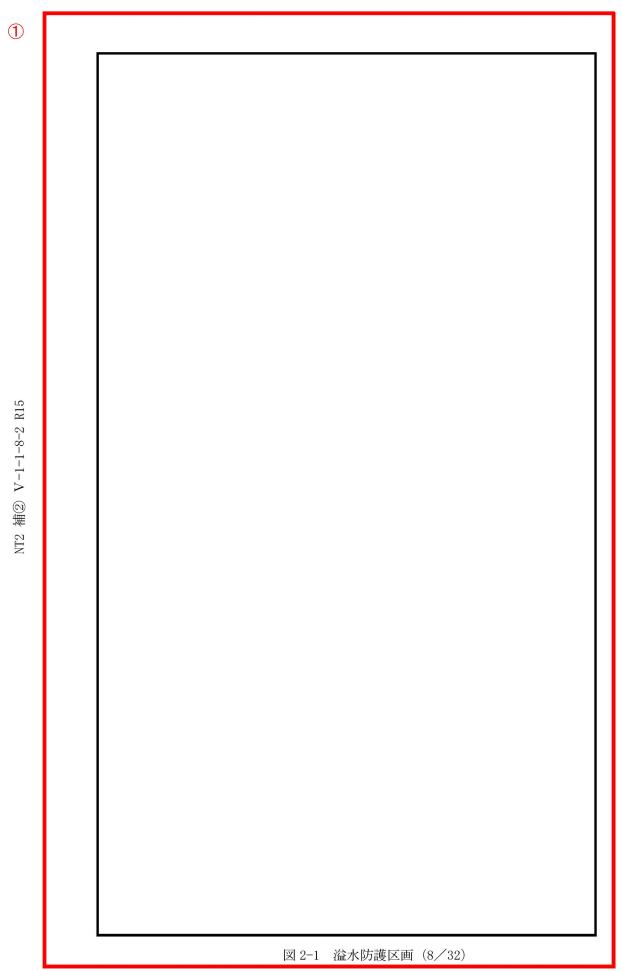

表2-7 溢水評価対象の防護対象設備リスト (72/73)

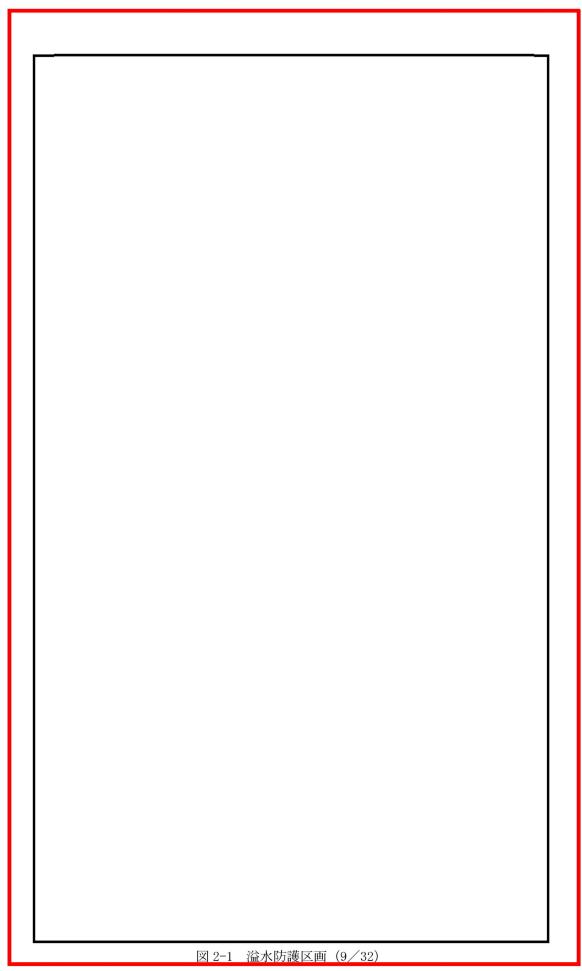

系統	設備	溢水防護区画	設置建屋	設置高さ*
気体廃棄物 処理系	OFF GAS PREHEATERS TEMP (TE-23-164)		タービン 建屋	
気体廃棄物 処理系	主蒸気式空気抽出器 (A) 出口弁 (6-23V1(MO))		タービン 建屋	
気体廃棄物 処理系	主蒸気式空気抽出器(B)出口弁(6-23V2(MO))		タービン 建屋	
気体廃棄物 処理系	オフガスプレヒータ (A) 入口弁 (6-23V5(AO))		タービン 建屋	
気体廃棄物 処理系	オフガスプレヒータ (B) 入口弁 (6-23V4(AO))		タービン 建屋	
気体廃棄物 処理系	排ガス予熱器 (A) 蒸気温度制御弁 (TCV-23-164.1A(AO))		タービン 建屋	
気体廃棄物 処理系	排ガス予熱器 (B) 蒸気温度制御弁 (TCV-23-164.1B(A0))		タービン 建屋	
気体廃棄物 処理系	排ガス空気抽出器 (A) 入口弁 (OGC-F019A(AO))		原子炉建屋 付属棟	
気体廃棄物 処理系	排ガス空気抽出器 (B) 入口弁 (OGC-F019B(A0))		原子炉建屋 付属棟	
気体廃棄物 処理系	排ガス空気抽出器 (A) 再循環圧力制御弁 (PCV-F051A)		原子炉建屋 付属棟	
気体廃棄物 処理系	排ガス空気抽出器 (B) 再循環圧力制御弁 (PCV-F051B)		原子炉建屋 付属棟	

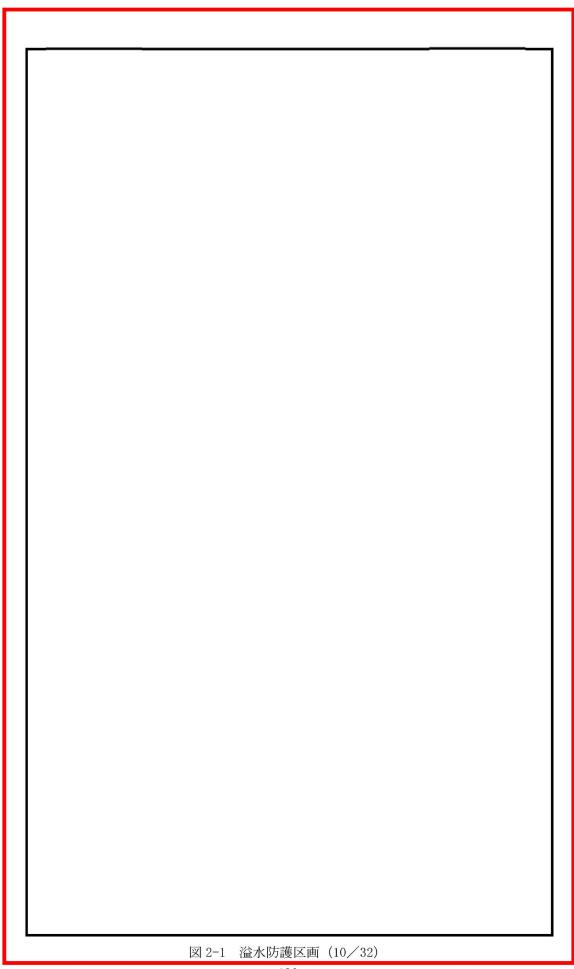

注記 *:溢水評価上基準となる床面高さを示す。

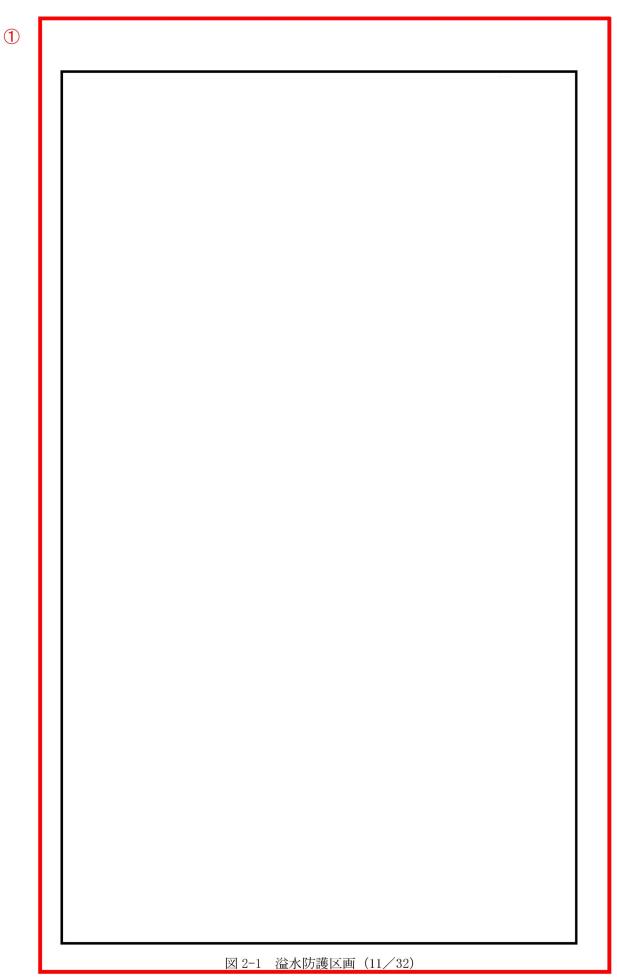

表2-7 溢水評価対象の防護対象設備リスト (73/73)					
系統	設備	溢水防護区画	設置建屋	設置高さ*	
気体廃棄物 処理系	排ガス空気抽出器 (A) 入口弁 (OGC-F103A(A0))		原子炉建屋 付属棟		
気体廃棄物 処理系	排ガス空気抽出器 (B) 入口弁 (OGC-F103B(A0))		原子炉建屋 付属棟		
気体廃棄物 処理系	排ガス再結合器 (A)		タービン 建屋		
気体廃棄物 処理系	排ガス再結合器 (B)		タービン 建屋		
空気抽出系	第1段 SJAE (A) 空気入口弁 (6-22V2(MO))		タービン 建屋		
空気抽出系	第1段 SJAE (B) 空気入口弁 (6-22V3(MO))		タービン 建屋		
空気抽出系	SJAE 蒸気 BLOCK (AO-7-119A)		タービン 建屋		
空気抽出系	SJAE 蒸気 BLOCK (AO-7-119B)		タービン 建屋		
タービン補助 蒸気系	主蒸気式空気抽出器(A)第1段蒸気入口 弁 (6-7V31A(MO))		タービン 建屋		
タービン補助 蒸気系	主蒸気式空気抽出器 (A) 第2段蒸気入口 弁 (6-7V31B(MO))		タービン 建屋		
タービン補助 蒸気系	主蒸気式空気抽出器 (B) 第1段蒸気入口 弁 (6-7V32A(MO))		タービン 建屋		
タービン補助 蒸気系	主蒸気式空気抽出器(B)第2段蒸気入口 弁 (6-7V32B(MO))		タービン 建屋		
注記 *:溢水	評価上基準となる床面高さを示す。				











V-1-1-8-3 溢水評価条件の設定

1. 概要

本資料は、溢水から防護すべき設備の溢水評価に用いる溢水源及び溢水量並びに溢水 防護区画及び溢水経路の設定について説明するものである。

(2) a

2. 溢水源及び溢水量の設定

溢水影響を評価するために、評価ガイドを踏まえて発生要因別に分類した以下の溢水を設定し、溢水源及び溢水量を設定する。

- ・溢水の影響を評価するために想定する機器の破損等により生じる溢水 (以下「想定 破損による溢水」という。)
- ・発電所内で生じる異常状態(火災を含む。)の拡大防止のために設置される系統からの放水による溢水(以下「消火水の放水による溢水」という。)
- ・地震に起因する機器の破損等により生じる溢水 (通常運転中における使用済燃料プールのスロッシングにより発生する溢水,施設定期検査中における使用済燃料プール,原子炉ウェル及びドライヤセパレータプールのスロッシングにより発生する溢水並びに廃棄物処理建屋におけるサイトバンカプールのスロッシングにより発生する溢水を含む。) (以下「地震起因による溢水」という。)
- ・その他の要因(地下水の流入,地震以外の自然現象,機器の誤作動等)により生じる溢水(以下「その他の溢水」という。)

想定破損により生じる溢水では、溢水源となり得る機器は流体を内包する配管とし、 地震起因による溢水では溢水源となり得る機器は流体を内包する容器(タンク、熱交換器、脱塩塔、ろ過脱塩器等)及び配管として、それぞれにおいて対象となる機器を系統図より抽出し、抽出された機器が想定破損における応力評価又は耐震評価において破損すると評価された場合、それぞれの評価での溢水源とする。

(<u>Z</u>) a

② a 2.1 想定破損による溢水

想定破損による溢水については、単一の配管の破損による溢水を想定して、配管の 破損箇所を溢水源として設定する。

また、破損を想定する配管は、内包する流体のエネルギーに応じて、以下で定義する高エネルギー配管又は低エネルギー配管に分類する。

- ・「高エネルギー配管」とは、呼び径25A(1B)を超える配管であって、プラントの 通常運転時に運転温度が95 \mathbb{C} を超えるか又は運転圧力が1.9 \mathbb{M} Pa[gage]を超える 配管。ただし、被水及び蒸気の影響については配管径に関係なく評価する。
- ・「低エネルギー配管」とは、呼び径25A (1B) を超える配管であって、プラントの 通常運転時に運転温度が95 \mathbb{C} 以下で、かつ運転圧力が1.9 \mathbb{M} Pa[gage]以下の配管。 なお、運転圧力が静水頭の配管は除く。

(2) a

・高エネルギー配管として運転している割合が当該系統の運転している時間の2 %

② a

又はプラント運転期間の1%より小さければ、低エネルギー配管として扱う。

配管の破損形状の想定に当たっては、高エネルギー配管は、「完全全周破断」、低エネルギー配管は、「配管内径の1/2の長さと配管肉厚の1/2の幅を有する貫通クラック(以下「貫通クラック」という。)」を想定する。ただし、応力評価を実施する配管については、発生応力 S_n と許容応力 S_a の比により、以下で示した応力評価の結果に基づく破損形状を想定する。

【高エネルギー配管(ターミナルエンド部を除く。)】

- ・原子炉冷却材圧力バウンダリ及び原子炉格納容器バウンダリ以外の配管
 - $S_n \leq 0.4 \times S_a \Rightarrow$ 破損想定不要
 - 0.4×S_a < S_n ≤ 0.8×S_a ⇒ 貫通クラック

【低エネルギー配管】

S_n≤0.4S_a⇒破損想定不要

発生応力と許容応力の比較により破損形状の想定を行う以下の配管は、評価結果に 影響するような減肉がないことを確認するために、継続的な肉厚管理を実施すること とし、保安規定に定めて管理する。

- ・原子炉隔離時冷却系蒸気配管の一般部 (重大事故等対処設備との共用ライン含む)
- ・原子炉建屋廃棄物処理棟の所内蒸気系配管の一般部

また,高エネルギー配管として運転している時間の割合が,当該系統の運転している時間の2 %又はプラント運転期間の1 %より小さいことから低エネルギー配管とする系統(ほう酸水注入系,残留熱除去系,残留熱除去系海水系,高圧炉心スプレイ系,低圧炉心スプレイ系及び原子炉隔離時冷却系)については,運転時間実績管理を実施することとし,保安規定に定めて管理する。

(2) a

(1) 溢水源の設定

高エネルギー配管及び低エネルギー配管に対して、想定される破損形状に基づいた溢水源及び溢水量を設定する。

想定破損評価対象配管を応力評価する際には、3次元はりモデルによる評価を実施する。

評価で用いる解析コードSAP-IV及びAutoPIPEは耐震評価と同じ使用 方法で用いる。

2 a

(2) 溢水量の設定

溢水評価では、「(1) 溢水源の設定」において設定した破損形状による溢水を想定し、 異常の検知、事象の判断及び漏えい箇所の特定並びに漏えい箇所の隔離等により漏えい停止 するまでの時間を考慮し保守的に設定し、溢水量を算出する。また、隔離後の隔離範囲内の 系統の保有水量を考慮して溢水量を算出する。想定する破損箇所は防護すべき設備への溢水 影響が最も大きくなる位置とする。

破損を想定する配管については、以下の手法を用いて溢水量の算定を行う。

- ・完全全周破断を想定する場合の溢水流量は、系統の定格流量を用いる。ただし、系統 上の破断位置、口径、流体圧力等を考慮することにより、より適切な溢水流量を算定 できる場合はその値を用いる。
- ・貫通クラックを想定する場合の流出流量は、破断面積、損失係数及び水頭を用いて以下の計算式より求める。

 $Q = A \times C \times \sqrt{(2 \times g \times H) \times 3600}$

Q:流出流量 (m³/h)

A:破断面積 (m²)

C:損失係数

q: 重力加速度 (m/s^2)

H: 水頭 (m)

破断面積(A)及び水頭(H)は、原則として系統の最大値(最大口径、最大肉厚、配管の最高使用圧力)を使用するが、破断を想定する系統の各区画内での口径、肉厚、圧力の最大値が明確な場合は、その値を使用する。

- ・溢水の発生後、溢水を検知し隔離するまでの隔離時間を、手動隔離及び自動隔離を想 定し設定する。評価した隔離までの時間に流出流量を乗じて系統保有水量を加えた溢 水量を算定する。
- ・系統保有水量は、原則として系統内のすべての配管内及びポンプ等の機器内の保有水 量の合算値を、保守的に1.1倍の安全率を乗じた値を用いる。

ただし、配管の高さや引き回し等の観点から流出しないと判断できる範囲を明確に示せる場合は、その範囲を除いた保有水量を用いる。また、屋外タンク等の公称容量が定められ、想定する保有水量が大きく変動することがない機器に関しては、1.1倍の安全率を乗ずる対象から除外する。

- ・隔離までの流出量に関しては、補給水や他系統からの回り込みを考慮する。
- ・溢水量を比較して最大となる溢水量を,当該系統の没水評価に用いる溢水量として設定する。設定した溢水量を表2-4に示す。

なお、配管の想定破損による溢水評価において、溢水量を制限するために漏えい停止操作 に期待する場合は、的確に操作を行うために手順を整備することとし、保安規定に定めて管 理する。

2 b

2.2 消火水の放水による溢水

溢水源として消火栓からの溢水と消火栓以外からの溢水について考慮する。

(1) 消火栓からの放水による溢水

消火水の放水による溢水については、発電用原子炉施設内に設置される消火設備等からの 放水を溢水源として設定し、消火設備等からの単位時間当たりの放水量と放水時間から溢水 量を設定する。

火災発生時には、1箇所の火災源を消火することを想定するため溢水源となる区画は1箇所となる。また、放水量は評価ガイドに従い放水時間を設定して算定する。

なお、消火活動により区画の扉を開放する場合は、開放した扉からの消火水の伝播を考慮する。

a. 放水時間の設定

消火栓からの消火活動における放水時間は、3時間に設定する。

なお、消火栓の放水に関して、中央制御室、電気品室、バッテリー排気ファン室等の異なる安全区分を有する設備が隣接するエリア、そのエリアへの流下経路があるエリア並びに重大事故等対処設備を内包する緊急時対策所建屋、緊急用海水ポンプピット、格納容器圧力逃がし装置格納槽、常設代替高圧電源装置置場、常設代替高圧電源装置用カルバート、常設低圧代替注水系ポンプ室、可搬型設備用軽油タンク室(南側)及び可搬型設備用軽油タンク室(西側)は、水消火を行わない消火手段を採用することで、消火栓の放水は行わない設計とする。

b. 溢水量の設定

屋内の消火栓からの溢水量の算出に用いる放水流量は、消防法施行令第十一条に規定される「屋内消火栓設備に関する基準」により、消火栓からの放水流量を 130 L/min とし、この値を 2 倍して溢水流量とした。放水時間と溢水流量から評価に用いる消火栓の溢水量を以下のとおりとした。

·130 L/min/個×3 時間×2 箇所=46.8 m³

屋外の消火栓からの溢水量の算出に用いる放水流量は、消防法施行令第十九条に規定される「屋外消火栓設備に関する基準」により、消火栓からの放水流量を 350 L/min とし、この値を 2 倍して溢水流量とした。放水時間と溢水流量から評価に用いる消火栓の溢水量を以下のとおりとした。

· 350 L/min/個×3 時間×2 箇所=126.0 m³

(2) 消火栓以外からの放水による溢水

消火栓以外の設備としては、スプリンクラや格納容器スプレイ冷却系があるが、防護すべき設備が設置されている建屋には、自動作動するスプリンクラは設置しない設計とし、防護すべき設備が要求される機能を損なうおそれがない設計とすることから溢水源として想定しない。

また、格納容器スプレイ冷却系は、単一故障による誤作動が発生しないように設計上考慮

されていることから誤作動による溢水は想定しない。

なお、原子炉格納容器内の防護すべき設備については、格納容器スプレイ冷却系の作動により発生する溢水により安全機能を損なわない設計とする。

2.3 地震起因による溢水

(1) 溢水源の設定

地震起因による溢水については、溢水源となり得る機器(流体を内包する機器)のうち、 基準地震動S。による地震力により破損が生じる機器及び使用済燃料プール等のスロッシングによる漏えい水を溢水源として設定する。

(2) a

耐震Sクラス機器については、基準地震動S。による地震力によって破損は生じないことから溢水源として想定しない。また、耐震B,Cクラス機器のうち耐震対策工事の実施あるいは設計上の裕度の考慮により、基準地震動S。による地震力に対して耐震性が確保されているものについては溢水源として想定しない。

施設定期検査中の評価を行う場合には、使用済燃料プール、原子炉ウェル及びドライヤセ パレータプールのスロッシングによる漏えい水を溢水源として設定する。

放射性物質を含む液体の管理区域外漏えいに関する評価を行う場合について、タービン建 屋内及び廃棄物処理建屋内の溢水源となり得る機器(流体を内包する機器)のうち、要求さ れる地震力により破損が生じる機器及び廃棄物処理建屋のサイトバンカプールのスロッシン グによる漏えい水を溢水源として設定する。

溢水源としない機器の具体的な耐震計算を添付書類「V-2 耐震性に関する説明書」のうち添付書類「V-2-別添2 溢水防護に係る施設の耐震性に関する説明書」に示す。

(2) 溢水量の設定

溢水量の算出に当たっては、漏水が生じるとした機器のうち防護すべき設備への溢水の影響が最も大きくなる位置で漏水が生じるものとして評価する。溢水源となる配管については破断形状を完全全周破断とし、溢水源となる容器については全保有水量を考慮した上で、溢水量を算出する。

また、漏えい検知による漏えい停止に期待する場合は、漏えい停止までの隔離時間を考慮し、配管の破損箇所から流出した漏水量と隔離後の溢水量として隔離範囲内の系統の保有水量を合算して設定する。ここで、漏水量は、配管の破損箇所からの流出流量に隔離時間を乗じて設定する。なお、地震による機器の破損が複数箇所で同時に発生する可能性を考慮し、漏えい検知による自動隔離機能を有する場合を除き、隔離による漏えい停止は期待しない。

タービン建屋及び海水ポンプ室循環水ポンプエリアにおいては、基準地震動 S_sによる地震力に対して、耐震性が確保されない循環水配管の伸縮継手の全円周状の破損を想定し、循環水ポンプを停止するまでの間に生じる溢水量を設定する。この際、循環水系隔離システムによる自動隔離機能に期待するとともに、海水ポンプ室循環水ポンプエリアについては、可撓継手による溢水流量低減に期待する。

使用済燃料プール,原子炉ウェル,ドライヤセパレータプール及びサイトバンカプールの スロッシングによる溢水量及びタービン建屋循環水ポンプエリア及び海水ポンプ室循環水ポ ンプエリアにおける循環水配管の伸縮継手の全円周状の破損を想定した溢水量の算出については、以下に示す。

また、以上の条件により設定した各建屋の溢水量を表2-5に示す。

表2-5 設定した溢水量(地震起因)

建屋名称		溢水量 (m³)		
原子炉建屋原子炉棟		通常運転中	123. 76* ¹	
		施設定期検査中	246. 93* ²	
カーパン7年日		循環水系配管	約14723*³	
タービン建屋 		循環水系配管以外	約8610*³	
	溢水防護区画	0		
海水ポンプ室	循環水ポンプエリア・	循環水管からの溢水量	328	
		系統保有水量	5000以上*4	
屋外タンク		7408		
原子炉建屋付属棟(廃棄物処理棟)		約2700		
原子炉建屋付属棟(廃棄物処理棟除く)		0		
廃棄物処理建屋		全保有水量	約4300* ⁵	
		スロッシングのみ	18. 5*6	

2 b

注記 *1:使用済燃料プールスロッシングによる最大溢水量を含む。

*2:使用済燃料プール,原子炉ウェル及びドライヤセパレータプールのスロッシングによる溢水量のみ。

*3:基準地震動 S。により破損する機器・配管からの溢水量であり、放射性物質を含む液体の管理区域外漏えいの評価においても、保守的に本溢水量を用いた評価を行う。

*4:循環水管の保有水量であるが、循環水管の破損箇所が水没した場合には水位 差がなくなるため、全量が流出することはない。

*5:サイトバンカプールの全保有水量を含む。放射性物質を含む液体の管理区域 外漏えいの評価においても、保守的に本溢水量を用いた評価を行う。

*6:サイトバンカプール設置エリアからの放射性物質を含む液体の管理区域外漏 えいを評価する際に用いる値。 また,施設定期検査作業に伴う防護対象設備の待機除外や扉の開放等,プラントの保守管理上 やむを得ぬ措置の実施により,影響評価上設定したプラント状態と一時的に異なる状態となった 場合も想定する。

具体的には、以下の運用を行うことを保安規定に定めて管理する。

- ・施設定期検査時において、原子炉建屋原子炉棟6階で使用済燃料プール、原子炉ウェル及び ドライヤセパレータプールのスロッシングにより発生する溢水に対して、床ファンネル及び 流下開口の閉止を行うことで、溢水影響が他に及ばない運用とする。
- ・原子炉建屋原子炉棟6階の残留熱除去系熱交換器ハッチを開放する場合には、ハッチ廻りに 原子炉建屋原子炉棟止水板6-1及び原子炉建屋原子炉棟止水板6-2を設置することで、ハッチ 内へ溢水が伝播することを防止する運用とする。
- ・通常運転中に関して、原子炉建屋原子炉棟6階におけるキャスク搬出入を行う際のみ、干渉物となる大物機器搬入口開口部及び燃料輸送容器搬出口開口部の原子炉建屋原子炉棟溢水拡大防止堰6-1(鋼板部)の取り外しを行い、作業完了後に設置する運用とする。
- ・上記の運用において、必要時に設置する若しくは取り外すとした設備及び措置については、 設置又は復旧時の構造強度及び止水性能を満足するための施工方法を定める。
- ・ 溢水経路を構成する水密扉については、開放後の確実な閉止操作、中央制御室における閉止 状態の確認及び閉止されていない状態が確認された場合の閉止操作の手順等を定める。

2 b

3.1 溢水防護区画の設定

溢水防護に対する評価対象区画を溢水防護区画とし、防護すべき設備が設置されているすべての区画並びに中央制御室及び現場操作が必要な設備へのアクセス通路について設定する。

溢水防護区画は壁、扉、堰、床段差等又はそれらの組み合わせによって他の区画と分離される区画として設定し、溢水防護区画を構成する壁、扉、堰、床段差等については、現場の設備等の設置状況を踏まえ、溢水の伝播に対する評価条件を設定する。

(2) b

3.2 溢水防護区画内漏えいでの溢水経路

溢水防護区画内漏えいに関する溢水経路の設定を行う場合、溢水防護区画内の水位が最も高くなるよう、原則として当該溢水防護区画から他の区画への流出がないように溢水経路を設定するが、溢水防護区画内水位が境界堰高さを超えた場合に他区画へ流出することが明らかな場合には、越流分の溢水が流出することを考慮して溢水経路を設定する。

溢水評価を行う場合の各構成要素の溢水に対する考え方を以下に示す。

(1) 床ドレン

溢水防護区画に床ドレン配管が設置され、他の区画とつながっている場合でも、目皿が1つの場合は、他の区画への流出は想定しない。ただし、同一区画に目皿が複数ある場合は、流出量の最も大きい床ドレン配管1本を除き、それ以外からの流出を期待する。

(2) 床面開口部及び床貫通部

溢水防護区画床面に開口部又は貫通部が設置されている場合であっても,床開口部又は貫

V-1-1-8-4 溢水影響に関する評価

1. 概要

本資料は、防護すべき設備に対して、発電用原子炉施設内で発生を想定する溢水の影響により、防護すべき設備が要求される機能を損なうおそれがないことを評価する。

また、放射性物質を含む液体を内包する容器、配管その他の設備からあふれ出ること を想定する放射性物質を含む液体が、管理区域外へ漏えいしないことを評価する。

2. 溢水評価

3 4

発電用原子炉施設内で発生を想定する溢水の影響により、防護すべき設備が要求される機能を損なうおそれがないことを評価する。また、使用済燃料プールのスロッシングによる水位低下を考慮しても、使用済燃料プールの冷却機能及び遮蔽機能が維持できることを評価する。溢水評価において、放射性物質を含む液体を内包する容器、配管その他の設備からあふれ出ることを想定する放射性物質を含む液体が、管理区域外へ漏えいするおそれがないことを評価する。

評価で期待する溢水防護に関する施設は、添付書類「V-1-1-8-1 溢水等による損傷防止の基本方針」によるものとする。また、溢水源及び溢水量の設定並びに溢水防護区画及び溢水経路の設定は、添付書類「V-1-1-8-3 溢水評価条件の設定」によるものとする。

重大事故等対処設備のうち可搬設備については、保管場所における溢水影響を評価する。

溢水評価において現場操作が必要な設備に対しては、必要に応じて環境の温度及び放射線量並びに薬品、溢水水位及び漂流物による影響を考慮しても、運転員による操作場所までのアクセスが可能な設計とする。操作場所までのアクセス性については、溢水水位が20 cm以下であることを確認することで評価を行う。なお、地震時の溢水については、溢水発生から現場操作を行うまでに十分な時間的余裕があり、溢水はすべて最地下階に流下するため、アクセス性に影響はない。最地下階においてアクセスが必要となる区画については、歩廊を設置する。

溢水評価を行うに当たり防護対策として期待する溢水防護に関する施設の設計方針については、添付書類「V-1-1-8-5 溢水防護施設の詳細設計」に示す。

2.1 没水影響に対する評価

(1) 評価方法

(3) a

溢水源,溢水量,溢水防護区画及び溢水経路から算出される溢水水位と防護すべき設備の機能喪失高さを比較し評価する。没水影響評価に用いる溢水水位の算出は、評価ガイドを踏まえ、漏えい発生区画とその経路上の溢水防護区画のすべてに対して行う。

2.2 被水影響に対する評価

(1) 評価方法

3b

被水影響については、溢水源からの直線軌道及び放物線軌道の飛散による被水、並びに天井面の開口部若しくは貫通部からの被水の影響を受ける範囲内*にある防護すべき設備が被水により要求される機能を損なうおそれがないことを評価する。なお、溢水源と防護すべき設備の間の離隔距離及び障壁の有無によらず、保守的に溢水源と同一区画内に設置される防護すべき設備は被水影響を受けることを想定し評価する。

注記 *:被水により防護すべき設備の機能が喪失する場合の被水源及び上層階からの伝播経路と防護すべき設備の位置関係について、溢水評価ガイドを参考に表2-2及び図2-1のように定める。

(2) 判定基準

被水影響に関する判定基準を以下に示す。

- a. 「JIS C 0920 電気機械器具の外郭による保護等級(IPコード)」に おける第二特性数字4以上相当の保護等級を有すること。
- b. 防護すべき設備のうち設計基準事故対処設備等については、多重性又は多様性を有しており、各々が別区画に設置され、同時に要求される機能を損なうことのないこと。その際、溢水を起因とする運転時の異常な過渡変化及び設計基準事故に対処するために必要な機器の単一故障を想定すること、又は溢水を起因とする運転時の異常な過渡変化及び設計基準事故に対処するために必要な機器が機能喪失する溢水事象により、運転時の異常な過渡変化及び設計基準事故が発生しないこと。
- c. 実機での被水条件を考慮しても、要求される機能を損なわないことを被水試験 等により確認した保護カバーやパッキン等による被水防護措置がなされていること。
- d. 防護すべき設備のうち重大事故等対処設備については、被水影響により設計基準事故対処設備等又は同様の機能を有する重大事故等対処設備と同時に機能を喪失することがないこと。

(3) 評価結果

防護すべき設備が判定基準のいずれかを満足することから,被水影響を受けて要求される機能を損なうおそれはない。

具体的な評価結果を表2-3に示す。

2.4 使用済燃料プールの機能維持に関する溢水評価

(1) 評価方法

3 c

基準地震動 S_s による地震力によって生じる使用済燃料プールのスロッシングによる使用済燃料プール水位の低下が、冷却機能及び遮蔽機能に与える影響を評価する。

また、スロッシングによって使用済燃料プール外へ流出する溢水等により、使用 済燃料プールの冷却機能及び使用済燃料プールへの給水機能を有する系統の防護すべき設備については、「2.1 没水影響に対する評価」及び「2.2 被水影響に対する 評価」における溢水影響評価において、スロッシングを含む溢水に対して機能喪失 しないことを確認している。

スロッシングにより発生する溢水量は、基準地震動 S_sによる地震力により生じるスロッシング現象を 3 次元流動解析により評価する。

スロッシングによる水位低下の影響評価においては、3次元流動解析における評価条件である通常水位を初期水位とするが、保守的な評価条件として使用済燃料プールの低水位警報設定値を初期水位とした評価も行う。

なお,施設定期検査中における,使用済燃料プール,原子炉ウェル及びドライヤセパレータプールのスロッシングによる溢水についても,同様の評価を行う。

(2) 判定基準

使用済燃料プールの機能維持に関する判定基準を以下に示す。

- ・スロッシング後の使用済燃料プール水位が、使用済燃料プールの冷却機能(水温65 ℃以下)及び燃料体等からの放射線に対する遮蔽機能(保安規定で定めた管理区域内における特別措置を講じる基準である水面の線量率(≦1.0 mSv/h))の維持に必要な水位が確保されること。
- ・スロッシング後の使用済燃料プール水位が、使用済燃料プールの冷却機能(水温65 ℃以下)の維持に必要な水位を下回る場合には、プール水温が65 ℃となるまでに使用済燃料プールの冷却機能及び使用済燃料プールへの給水機能を有する系統による給水・冷却が可能であること。

(3) 評価結果

(3) c

スロッシング後の使用済燃料プール水位は、燃料体等からの放射線に対する遮蔽機能に必要な水位が維持されることを確認した。また、スロッシング後の使用済燃料プール水位は、一時的にオーバーフロー水位を下回るが、プール水温が65 $^{\circ}$ となるまでに残留熱除去系等による使用済燃料プールの冷却機能及び使用済燃料プールへの給水機能を有する系統による給水・冷却が可能であり、冷却機能維持への影響がないことを確認した。評価結果を表2-7、表2-8に示す。

表 3-10 海水ポンプ室の溢水防護区画への溢水流入影響評価

循環水管からの溢水量		滞留する		
溢水発生から 隔離完了まで	系統保有水量	溢水量	許容量	判定
				O*2

注記 *1:系統保有水量は、水位差により流出することはないため、滞留しない。

*2:貫通部止水処置による溢水伝播防止処置を実施済み。

*3:配管保有水量の流出が停止した時点の溢水量。

3.5 地下水からの影響評価

防護すべき設備を内包する原子炉建屋、タービン建屋等の周辺地下部には排水設備(サブドレン)を設置しており、同設備により各建屋周辺に流入する地下水の排出を行っている。

地下水からの影響評価では、保守的に排水ポンプが故障等により機能喪失することを想定 し、その際の排水不能となった地下水が防護すべき設備に与える影響について評価を行う。

排水ポンプが機能喪失した場合,地下水位が上昇するが,保守的に地表面までの水位上昇を 考慮する。

この地下水位に対して,建屋外壁及び貫通部止水処置により建屋内に流入することを防止することから,溢水防護区画を内包する建屋内の防護すべき設備への影響はない。

4. 管理区域外への漏えい防止に関する溢水評価

(1) 評価方法

 (1) 計画力

 発電用原

発電用原子炉施設内の放射性物質を含む液体を内包する容器、配管その他の設備からあふれ出る放射性物質を含む液体が、管理区域外へ漏えいするおそれがないことを評価する。

添付書類「V-1-1-8-3 溢水評価条件の設定」で設定した溢水源,溢水量,溢水防護区画及び溢水経路を踏まえ,管理区域内での放射性物質を含む液体の溢水水位は「2.1 没水影響に対する評価」における算出方法により評価する。

防護すべき設備を内包する建屋の管理区域内の放射性物質を含む液体の溢水量と建屋の地下階の容積等を比較し、放射性物質を含む液体が管理区域外へ伝播するおそれがないことを評価する。また、中間階における溢水の一時的な水位と、放射性物質を含む液体が管理区域外へ伝播することを防ぐことを期待する管理区域外伝播防止堰高さを比較し、放射性物質を含む液体が管理区域外へ伝播するおそれがないことを評価する。

(2) 判定基準

発生を想定する放射性物質を含む液体の溢水量が建屋の地下階の容積を超えず、放射性物質を含む液体が管理区域外へ伝播するおそれがないこと。

中間階における溢水の一時的な溢水水位が、管理区域外伝播防止堰高さを超えず、放射性物質を含む液体が管理区域外へ伝播するおそれがないこと。この際、管理区域外伝播防止堰高さが、一時的な水位変動及び床勾配による床面高さのばらつきを考慮し、溢水水位に対して原則200 mm以上の裕度を確保されていること。ただし、一時的な水位変動については、溢水水位が100 mm未満であり、水位変動の影響が小さいと考えられる場合には、当該水位と同じ高さ以上の裕度が確保されていること。さらに、床勾配による床面高さのばらつきについては、管理区域外伝播防止堰の設置位置が床勾配の上端部であることが明らかである場合には、50 mmの裕度が確保されていること。

(3) 評価結果

発生を想定する放射性物質を含む液体の溢水量は、建屋の地下階の容積を超えないことから、放射性物質を含む液体は管理区域外へ伝播するおそれはない。

また、中間階における一時的な水位を考慮した場合の溢水水位が管理区域外伝播防止堰高さを超えないことから、放射性物質を含む液体は管理区域外へ伝播するおそれはない。

地下階における滞留評価結果を表4-1に、中間階における一時的な水位を考慮した場合の 溢水水位が管理区域外伝播防止堰高さを超えないことに対する評価結果を表4-2に示す。

対象建屋	滞留可能容量 (m²)	溢水量(m³)	判定
原子炉建屋廃棄物処理棟	6319	約2700	0
タービン建屋	約26699	約20910	0
廃棄物処理建屋	6970	約4300	0

表4-1 地下階層への滞留評価結果

表4-2 中間階における堰の評価結果

対象建屋		溢水水位 (m)	堰高さ (m) *
原子炉建屋廃棄物処理棟		0.03	0.30以上
タービン建屋		0.25	0.45以上
廃棄物処理建屋		0.015	0.15以上
 		0.015	0.15以上

注記 *:設置床からの高さ。

V-1-1-8-5 溢水防護施設の詳細設計

1. 概要

本資料は、添付書類「V-1-1-8-1 溢水等による損傷防止の基本方針」に基づき、溢水防護に関する施設(処置含む。)の設備分類、要求機能及び性能目標を明確にし、各設備の機能設計に関する設計方針について説明するものである。

2. 設計の基本方針

(4)

発電用原子炉施設内における溢水の発生により、添付書類「V-1-1-8-2 防護すべき設備の設定」にて設定している防護すべき設備が要求される機能を損なうおそれのないようにするため、あるいは、放射性物質を含む液体が管理区域外へ伝播するおそれがないようにするため、溢水防護に関する施設を設置する。

溢水防護に関する施設は、添付書類「V-1-1-8-2 防護すべき設備の設定」で設定している溢水防護区画、添付書類「V-1-1-8-3 溢水評価条件の設定」で設定している溢水源、溢水量及び溢水経路、添付書類「V-1-1-8-4 溢水影響に関する評価」にて評価している溢水水位による静水圧、蒸気噴出荷重及び基準地震動 S_s による地震力に対して、その機能を維持又は保持できる設計とする。

溢水防護に関する施設の設計に当たっては、添付書類「V-1-1-8-1 溢水等による損傷防止の基本方針」にて設定している、溢水防護対策を実施する目的や設備の分類を踏まえて設備ごとの要求機能を整理するとともに、機能設計上の性能目標及び構造強度設計上の性能目標を設定する。

溢水防護に関する施設の機能設計上の性能目標を達成するため、設備ごとの各機能の設計方針を示す。

溢水防護に関する施設の設計フローを図2-1に示す。

溢水水位による荷重に対し、強度が要求される溢水防護に関する施設の強度計算の基本方針、 強度計算の方法及び結果を添付書類「V-3-別添3 津波又は溢水への配慮が必要な施設の強度に 関する説明書」に示す。

基準地震動 S_s による地震力に対し、止水性の維持を期待する溢水防護に関する施設のうち、工事計画の基本設計方針に示す浸水防護施設の主要設備リストに記載される耐震設計上の重要度分類がC-2クラスの機器及び津波防護に係る耐震設計上の重要度分類がSクラスの施設と共通設計である「浸水防止蓋・水密ハッチ」、「逆流防止装置」及び「貫通部止水処置」の耐震計算については、添付書類「V-2 耐震性に関する説明書」のうち添付書類「V-2-1-9 機能維持の基本方針」に基づき実施し、耐震計算の方法及び結果については、添付書類「V-2 耐震性に関する説明書」のうち添付書類「V-2 耐震性に関する説明書」のうち添付書類「V-2 耐震性に関する説明書」のうち添付書類「V-2 耐震性に関する説明書」のうち添付書類「V-2-10-2 浸水防護施設の耐震性についての計算書」に示す。

基準地震動 S_s による地震力に対し、溢水伝播防止機能を維持するために必要な耐震Cクラスの循環水系隔離システムの耐震計算及び上位クラス施設に対する波及的影響を及ぼさないために必要な耐震Cクラスの防護カバーの耐震計算については、添付書類V-2-別添2-1「溢水防護に係る施設の耐震性についての計算書の方針」に基づき実施し、耐震計算の方法及び結果については、それぞれ添付書類「V-2-別添2-4 循環水系隔離システムの耐震性についての計算書」及び添付書類「V-2-別添2-5 防護カバーの耐震性についての計算書」に示す。

(4)

使用済燃料プール等のスロッシングにより発生する溢水に対して、止水機能を持つ溢水 拡大防止堰及び止水板については、繰り返し発生するスロッシングによる床面への溢水 が、徐々に滞留していくことを保守的に想定するために、スロッシングによる全溢水量を 超える静水圧荷重を考慮するものとする。

(4) 管理区域外伝播防止堰(放射性廃棄物の廃棄施設と一部兼用)

管理区域外伝播防止堰は、管理区域内で発生を想定する溢水に対し、地震時及び地震後においても、管理区域外への溢水伝播防止に必要な高さを上回る高さまでの止水性を維持することを機能設計上の性能目標とする。

管理区域外伝播防止堰のうち耐震設計上の重要度分類がC-2クラスの堰は、管理区域内で発生を想定する溢水の静水圧荷重及び基準地震動S。による地震力に対し、止水性の維持を考慮して、主要な構造部材が構造健全性を維持する設計とすることを構造強度設計上の性能目標とする。上記以外の管理区域外伝播防止堰は、管理区域内で発生を想定する溢水の静水圧荷重及び耐震重要度分類にて要求される地震力に対し、止水性の維持を考慮して、主要な構造部材が構造健全性を維持する設計とすることを構造強度設計上の性能目標とする。

(5) 逆流防止装置

逆流防止装置は、原子炉建屋原子炉棟内に滞留する溢水に対し、地震時及び地震後においても、原子炉建屋原子炉棟内の溢水防護区画への溢水伝播を防止する止水性を維持することを機能設計上の性能目標とする。

逆流防止装置は、原子炉建屋原子炉棟内に滞留する溢水による静水圧荷重及び基準地震動S。による地震力に対し、止水性の維持を考慮して、主要な構造部材が構造健全性を維持する設計とすることを構造強度上の性能目標とする。閉止部については溢水による静水圧荷重に対し、止水性の維持を考慮して、有意な漏えいを生じない設計とすることを構造強度上の性能目標とする。

(6) 貫通部止水処置(浸水防止設備と一部兼用)

貫通部止水処置は、溢水防護区画を内包する建屋外で発生を想定する溢水(地下水、循環水ポンプエリアにおける循環水管の破断による溢水等)及び溢水防護区画を内包する建屋内で発生を想定する溢水に対し、地震時及び地震後においても、溢水防護区画を内包する建屋及び溢水防護区画への溢水伝播防止に必要な高さを上回る高さまでの止水性を維持することを機能設計上の性能目標とする。

また, 貫通部止水処置は, 管理区域内で発生を想定する溢水に対し, 地震時及び地震後においても, 管理区域外への溢水伝播防止に必要な高さまでの止水性を維持することを機能設計上の性能目標とする。

貫通部止水処置は、溢水防護区画を内包する建屋外で発生を想定する溢水(地下水、循環水ポンプエリアにおける循環水管の破断による溢水等)、溢水防護区画を内包する建屋内で発生を想定する溢水及び管理区域内で発生を想定する溢水による静水圧荷重及び基準

(1) 逆流防止装置の漏えい試験

a. 試験条件

漏えい試験は、実機で使用している形状、寸法の試験体を用いて実施し、評価水位以上想定した水圧を作用させた場合に閉止部からの漏えいが許容漏水量以下であることを確認する。

図4-10に漏えい試験概要図を示す。

b. 試験結果

試験の結果,漏れはなく,許容漏水量以下であることを確認した。

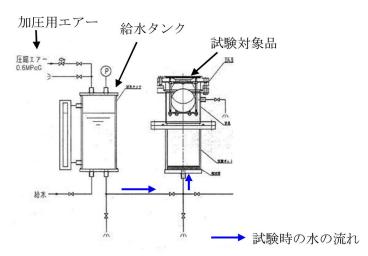


図 4-10 漏えい試験概要図

4.1.6 貫通部止水処置の設計方針

貫通部止水処置は,「3. 要求機能及び性能目標」の「3.1.3 性能目標」で設定している機能設計上の性能目標を達成するために,以下の設計方針としている。

貫通部止水処置は、溢水防護区画を内包する建屋外で発生を想定する溢水、(地下水、循環水ポンプエリアにおける循環水管の破断による溢水等)及び溢水防護区画を内包する建屋内で発生を想定する溢水に対し、地震時及び地震後においても、溢水防護区画を内包する建屋及び溢水防護区画への溢水伝播防止に必要な高さまでの止水性を維持するため、及び管理区域内で発生を想定する溢水に対し、地震時及び地震後においても、管理区域外への溢水伝播防止に必要な高さまでの止水性を維持するために、発生を想定する溢水高さまでの壁面の貫通部に貫通部止水処置を実施する。堰以外による貫通部止水処置については「(1) 貫通部止水処置の漏えい試験」により止水性を確認した施工方法による止水処置を実施し、堰による貫通部止水処置については「4.1.3 溢水拡大防止堰及び止水板の設計方針」と同じ施工方法による処置を実施する。

貫通部止水処置の配置を図4-11に示す。

可申請に伴う影響について (ダクト) 放射線モニタの変更認 安全設備】 [第14条 原子炉建屋換気系

1. 基準適合性の確認範囲

①多重性又は多様性及び独立性について

既工事計画においては,重要度が高い安全機能を有する施設について,単一故障が発生した場合であって,外部電源が利用できない場合においても,その機能が達成できるよう,多重性又は多様性及び独立性を有する設計方針とすることを記載している。 (1~3頁参照) -∇-1-1-6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書」 「補足-5【原子炉建屋換気系(ダクト)放射線モニタ改造工事の概要について】」

(8, 15, 19頁参照) 「Ⅴ-1-5-3 工学的安全施設等の起動(作動)信号の設定値の根拠に関する説明書」(1頁参照) 「V-1-5-4 発電用原子炉の運転を管理するための制御装置に係る制御方法に関する説明書」

「V-1-7-1 放射線管理用計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書」 (1,3,15,16頁参照)

今回の変更認可申請に伴い,多重性又は多様性及び独立性を有する設計に影響がないことを確認する。

2環境条件について

既工事計画においては,安全施設について,通常運転時,運転時の異常な過渡変化時及び設計基準事故時に想定される環境条件に おいて,その機能を発揮するため,当該設備がさらされると考えられる圧力,温度,湿度,放射線等の環境条件と機器仕様との比較 等により耐性を確認した設計方針とすることを記載している。

「補足-5【原子炉建屋換気系(ダクト)放射線モニタ改造工事の概要について】」

今回の変更認可申請に伴い,通常運転時,運転時の異常な過渡変化時及び設計基準事故時に想定される環境条件において,耐性を 「放射線管理施設 放射線管理用計測装置の検出器の取付箇所を明示した図面(放射線管理用計測装置)」(第7-1-5図参照) (1,16~21,23頁参照) 「V-1-1-6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書」

<u> 1日の叉入彫っ上間に下く、角日年枯ら、年枯らの共日確認した設計に影響がないことを確認する。</u>

原子炉建屋換気系 (ダクト) 放射線モニタの変更認可申請に伴う影響について 【第14条 安全設備】

2. 確認結果

確認結果	・今回の放射線モニタの改造により、機器構成に変更はないことから、多重性又は多様性及び独立性を有する設計に影響を与えないことを確認した。また,同じ「原子炉建屋付属棟」の建屋内への移設であり,環境条件に変更がないことから,通常運転時,運転時の異常な過渡変化時及び設計基準事故時に想定される環境条件における設計に影響を与えないことを確認した。【①,②】	・今回の放射線モニタの改造により、機器構成に変更がないことを確認した。【①】	・今回の放射線モニタの改造により、原子炉建屋ガス処理系の作動回路に変更はなく、多重性を有する設計に変更がないことを確認した。【①】	・今回の放射線モニタの改造により,多重性又は多様性及び独立性を有する設計に変更がないことを確認した。【①】 ・今回の放射線モニタの改造により,想定される環境条件において,耐性を有する設計に変更がないことを確認した。【②】	・今回の放射線モニタの改造により,同じ「原子炉建屋付属棟」の建屋内への移設することを確認した。【②】
確認図書名	補足-5【原子炉建屋換気系(ダクト)放射線モニタ改造工事の概要について】	V-1-7-1 放射線管理用計測装置の構成に 関する説明書並びに計測範囲及び警報動作 範囲に関する説明書	 3	V-1-1-6 安全設備及び重大事故等対処設 備が使用される条件の下における健全性に 関する説明書	放射線管理施設 放射線管理用計測装置の 検出器の取付箇所を明示した図面(放射線 管理用計測装置) (第7-1-5図)

(ダクト) 放射線モニタの変更認可申請に伴う影響について 原子炉建屋換気系

安全設備】 [第14条

. ვ

- ・今回の放射線モニタの改造について,重要施設に要求される多重性又は多様性及び独立性の設計に変更がないことを確認した。また,安全施設に要求される通常運転時,運転時の過渡変化時及び設計基準事故時に想定される環境条件における設計に変更がないことを確認した。
 ・安全設備を含めた重要施設及び安全施設に対する多重性又は多様性及び独立性並びに環境条件の設計方針に変更ないため,技術基準の適合性に影響を与えない。
- 既工事計画で確認された設計を変更するものではない。また,安全設備に関する基本設計方針についても変更がないことから, 対象条文とならない。

争

V-1-1-6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書

1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準規則」という。)第9条、第14条、第15条(第1項及び第3項を除く。)、第32条第3項、第38条第2項、第44条第1項第5号及び第54条(第2項第1号及び第3項第1号を除く。)及び第59条から第77条並びにそれらの「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(以下「解釈」という。)に基づき、安全設備及び重大事故等対処設備が使用される条件の下における健全性について説明するものである。

(1), (2)

今回は、健全性として、機器に要求される機能を有効に発揮するための系統設計及び構造設計に係る事項を考慮して、「多重性又は多様性及び独立性に係る要求事項を含めた多重性又は多様性及び独立性並びに位置的分散に関する事項(技術基準規則第9条、第14条第1項、第54条第2項第3号、第3項第3号、第5号、第7号及び第59条から第77条並びにそれらの解釈)」(以下「多重性又は多様性及び独立性並びに位置的分散」という。)、「共用化による他号機への悪影響も含めた、機器相互の悪影響(技術基準規則第15条第4項、第5項、第6項、第54条第1項第5号、第2項第2号及び第59条から第77条並びにそれらの解釈)」(以下「悪影響防止」という。)、「安全設備及び重大事故等対処設備に想定される事故時の環境条件(使用条件含む。)等における機器の健全性(技術基準規則第14条第2項、第32条第3項、第44条第1項第5号、第54条第1項第1号、第6号、第3項第4号及び第59条から第77条並びにそれらの解釈)」(以下「環境条件等」という。)及び「要求される機能を達成するために必要な操作性、試験・検査性、保守点検性等(技術基準規則第15条第2項、第38条第2項及び第54条第1項第2号、第3号、第4号、第3項第2号、第6号及び第59条から第77条並びにそれらの解釈)」(以下「操作性及び試験・検査性」という。)を説明する。

健全性を要求する対象設備については、技術基準規則及びその解釈だけでなく、「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則」(以下「設置許可基準規則」という。)及びその解釈も踏まえて、重大事故等対処設備は全てを対象とし、安全設備を含む設計基準対象施設は以下のとおり対象を明確にして説明する。

1

「多重性又は多様性及び独立性並びに位置的分散」については、技術基準規則第14条第1項及び その解釈にて安全設備に対して要求されていること、設置許可基準規則第12条第2項及びその解 釈にて安全機能を有する系統のうち安全機能の重要度が特に高い安全機能を有するもの(以下「重 要施設」という。)に対しても要求されていることから、安全設備を含めた重要施設を対象とする。

人の不法な侵入等の防止の考慮については、技術基準規則第9条及びその解釈にて発電用原子炉 施設に対して要求されていることから、重大事故等対処設備を含む発電用原子炉施設を対象とす る。

「悪影響防止」のうち、内部発生飛散物の考慮は、技術基準規則第15条第4項及びその解釈にて設計基準対象施設に属する設備に対して要求されていることから、安全設備を含めた設計基準対象施設を対象とする。共用又は相互接続の禁止に対する考慮は、技術基準規則第15条第5項及びその解釈にて、安全設備に対して要求されていること、設置許可基準規則第12条第6項及びその解釈にて重要安全施設に対して要求されていることから、安全設備を含めた重要安全施設を対象とする。共用又は相互接続による安全性の考慮は、技術基準規則第15条第6項及びその解釈にて安全機

能を有する構築物,系統及び機器(以下「安全施設」という。)に対して要求されているため,安全設備を含めた安全施設を対象とする。

① 「環境条件等」については、設計が技術基準規則第14条第2項及びその解釈にて安全施設に対して要求されているため、安全設備を含めた安全施設を対象とする。

「操作性及び試験・検査性」のうち、操作性の考慮は、技術基準規則第38条第2項及びその解釈にて中央制御室での操作に対する考慮が要求されており、その操作対象を考慮して安全設備を含めた安全施設を対象とする。試験・検査性、保守点検性等の考慮は技術基準規則第15条第2項及びその解釈にて設計基準対象施設に対して要求されており、安全設備を含めた設計基準対象施設を対象とする。

2. 基本方針

安全設備及び重大事故等対処設備が使用される条件の下における健全性について,以下の4項目に分け説明する。

2.1 多重性又は多様性及び独立性並びに位置的分散

重要施設は、単一故障が発生した場合でもその機能を達成できるように、十分高い信頼性を 確保し、かつ維持し得る設計とし、原則、多重性又は多様性及び独立性を備える設計とする。

多重性又は多様性及び独立性を備える設計とすることにより、単一故障、環境条件、自然現象、発電所敷地又はその周辺において想定される発電用原子炉施設の安全性を損なわせる原因となるおそれのある事象であって人為によるもの(故意によるものを除く。) (以下「人為事象」という。)、溢水、火災等により安全機能が損なわれるおそれがない設計とする。なお、

自然現象のうち地震に対する設計については、添付書類「V-2 耐震性に関する説明書」のうち添付書類「V-2-1 耐震設計の基本方針」に基づき実施する。地震を除く自然現象及び人為事象に対する設計については、添付書類「V-1-1-2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうち添付書類「V-1-1-2-1-1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき実施する。溢水に対する設計については、添付書類「V-1-1-8 発電用原子炉施設の溢水防護に関する説明書」のうち添付書類「V-1-1-8-1 溢水等による損傷防止の基本方針」に基づき実施する。火災に対する設計については、添付書類「V-1-1-7 発電用原子炉施設の火災防護に関する説明書」の「2. 火災防護の基本方針」に基づき実施する。また、発電用原子炉施設への人の不法な侵入等の防止に係る設計上の考慮等については、別添3「発電用原子炉施設への人の不法な侵入等の防止について」に基づき実施する。

重要施設は、当該系統を構成する機器に短期間では動的機器の単一故障、長期間では動的機器の単一故障又は想定される静的機器の単一故障が発生した場合で、外部電源が利用できない場合においても、系統の安全機能が達成できるよう、原則として、多重性又は多様性及び独立性を持つ設計とする。

短期間と長期間の境界は24時間とする。

重要施設のうち,単一設計で安全機能を達成できるものについては,その設計上の考慮を「3. 系統施設毎の設計上の考慮」に示す。

重大事故防止設備については、設計基準事故対処設備並びに使用済燃料プールの冷却設備及び注水設備(以下「設計基準事故対処設備等」という。)の安全機能と共通要因によって同時にその機能が損なわれるおそれがないよう、共通要因の特性を踏まえ、可能な限り多様性及び独立性を有し、位置的分散を図ることを考慮して適切な措置を講じた設計とする。ただし、重大事故に至るおそれのある事故が発生する要因となった喪失機能を代替するもののうち、非常用ディーゼル発電機等のように、多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備がないものは、多様性及び独立性並びに位置的分散の設計方針は適用しない。

常設重大事故防止設備は、設計基準事故対処設備等の安全機能と共通要因によって同時にその機能が損なわれるおそれがないように、共通要因の特性を踏まえ、可能な限り多様性及び独

2.3 環境条件等

安全施設及び重大事故等対処設備は、想定される環境条件において、その機能を発揮できる 設計とする。

安全施設の設計条件を設定するに当たっては、材料疲労、劣化等に対しても十分な余裕を持って機能維持が可能となるよう、通常運転時、運転時の異常な過渡変化時及び設計基準事故時に想定される圧力、温度、湿度、放射線量等各種の環境条件を考慮し、十分安全側の条件を与えることにより、これらの条件下においても期待されている安全機能を発揮できる設計とする。安全施設の環境条件には、通常運転時、運転時の異常な過渡変化時及び設計基準事故時における圧力、温度、湿度、放射線のみならず、荷重、屋外の天候による影響(凍結及び降水)、海水を通水する系統への影響、電磁的障害、周辺機器等からの悪影響及び冷却材の性状(冷却材中の破損物等の異物を含む。)の影響を考慮する。

重大事故等対処設備は、重大事故等時の温度、放射線、荷重及びその他の使用条件において、 その機能が有効に発揮できるよう、その設置場所(使用場所)又は保管場所に応じた耐環境性 を有する設計とするとともに、操作が可能な設計とする。重大事故等発生時の環境条件につい ては、温度(環境温度及び使用温度)、放射線、荷重のみならず、その他の使用条件として、環 境圧力、湿度による影響、屋外の天候による影響(凍結及び降水)、重大事故等時に海水を通水 する系統への影響、電磁的障害及び周辺機器等からの悪影響及び冷却材の性状(冷却材中の破 損物等の異物を含む。)の影響を考慮する。

荷重としては、重大事故等時の機械的荷重に加えて、環境圧力、温度及び自然現象(地震、 津波(敷地に遡上する津波を含む。)、風(台風)、竜巻、積雪、火山の影響)による荷重を考慮 する。

② 安全施設及び重大事故等対処設備について、これらの環境条件の考慮事項毎に、環境圧力、環境温度及び湿度による影響、放射線による影響、屋外の天候による影響(凍結及び降水)、荷重、海水を通水する系統への影響、電磁的障害、周辺機器等からの悪影響、冷却材の性状(冷却材中の破損物等の異物を含む。)の影響並びに設置場所における放射線の影響に分け、以下(1)から(6)に各考慮事項に対する設計上の考慮を説明する。

- (1) 環境圧力,環境温度及び湿度による影響,放射線による影響,屋外の天候による影響(凍結及び降水)並びに荷重
- 2 ・安全施設は、通常運転時、運転時の異常な過渡変化時及び設計基準事故時における環境 条件を考慮した設計とする。
 - ・原子炉格納容器内の重大事故等対処設備は、重大事故等時の原子炉格納容器内の環境条件を考慮した設計とする。操作は、中央制御室から可能な設計とする。また、地震による荷重を考慮して、機能を損なわない設計とする。
 - ・原子炉建屋原子炉棟内の重大事故等対処設備は、重大事故等時における環境条件を考慮 した設計とする。操作は、中央制御室、異なる区画若しくは離れた場所又は設置場所で 可能な設計とする。また、横滑りも含めて地震による荷重を考慮して、機能を損なわな い設計とするとともに、可搬型重大事故等対処設備については、必要により当該設備の

落下防止、転倒防止及び固縛の措置をとる。このうち、インターフェイスシステムLO CA時、使用済燃料プールにおける重大事故に至るおそれのある事故又は主蒸気管破断事故起因の重大事故等時に使用する設備については、これらの環境条件を考慮した設計とするか、これらの環境影響を受けない区画等に設置する。

- ・原子炉建屋付属棟内(中央制御室含む。),緊急時対策所建屋内,常設代替高圧電源装置置場(地下階)内,格納容器圧力逃がし装置格納槽内,常設低圧代替注水系ポンプ室内,緊急用海水ポンプピット内及び立坑内の重大事故等対処設備は,重大事故等時におけるそれぞれの場所の環境条件を考慮した設計とする。操作は、中央制御室,異なる区画若しくは離れた場所又は設置場所で可能な設計とする。また,横滑りを含めて地震による荷重を考慮して,機能を損なわない設計とするとともに、可搬型重大事故等対処設備については、必要により当該設備の落下防止、転倒防止及び固縛の措置をとる。
- ・屋外及び常設代替高圧電源装置置場(地上階)の重大事故等対処設備は,重大事故等時における屋外の環境条件を考慮した設計とする。操作は、中央制御室、離れた場所又は設置場所で可能な設計とする。また、横滑りを含めて地震による荷重を考慮して、機能を損なわない設計とするとともに、可搬型重大事故等対処設備については、地震後においても機能及び性能を保持する設計とする。さらに、風(台風)及び竜巻による風荷重を考慮して、浮き上がり又は横滑りによって設計基準事故対処設備や同じ機能を有する他の重大事故等対処設備に衝突して損傷することを防止するとともに、積雪及び火山の影響を考慮して、必要により除雪及び除灰等の措置を講じる。
- ・屋外の重大事故等対処設備は、重大事故等時において、万が一使用中に機能を喪失した場合であっても、可搬型重大事故等対処設備によるバックアップが可能となるよう、位置的分散を考慮して可搬型重大事故等対処設備を複数保管する設計とする。
- ・原子炉格納容器内の安全施設及び重大事故等対処設備は、設計基準事故等及び重大事故 等時に想定される圧力、温度等に対し、格納容器スプレイ水による影響を考慮しても、 その機能を発揮できる設計とする。
- ・安全施設及び重大事故等対処設備において、主たる流路の機能を維持できるよう、主た る流路に影響を与える範囲について、主たる流路と同一又は同等の規格で設計する。

a. 環境圧力

2

原子炉格納容器外の安全施設及び重大事故等対処設備については,事故時に想定される 環境圧力が,原子炉建屋原子炉棟内は事故時に作動するブローアウトパネル開放設定値を 考慮して大気圧相当,原子炉建屋の原子炉棟外及びその他の建屋内並びに屋外は大気圧で あり,大気圧にて機能を損なわない設計とする。

原子炉格納容器内の安全施設及び重大事故等対処設備については、使用時に想定される 環境圧力が加わっても、機能を損なわない設計とする。

原子炉格納施設内の安全施設に対しては、発電用原子炉設置変更許可申請書「十 発電 用原子炉の炉心の著しい損傷その他の事故が発生した場合における当該事故に対処する ために必要な施設及び体制の整備に関する事項」(以下「許可申請書十号」という。) ロ. において評価した設計基準事故の中で、原子炉格納容器内の圧力が最も高くなる「原子炉 冷却材喪失」を包絡する圧力として、0.31 MPa [gage]を設定する。

原子炉格納施設内の重大事故等対処設備に対しては、「許可申請書十号」ハ. において評価した重大事故等の中で、原子炉格納容器内の圧力が最も高くなる「大破断LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗(+全交流動力電源喪失)」を包絡する圧力として、原則として、0.62 MPa [gage]を設定する。

ただし、重大事故等発生初期に機能が求められるものは、機能が求められるときの環境 圧力を考慮して、環境圧力を設定する。

設定した環境圧力に対して機器が機能を損なわないように、耐圧部にあっては、機器が 使用される環境圧力下において、部材に発生する応力に耐えられることとする。耐圧部以 外の部分にあっては、絶縁や回転等の機能が阻害される圧力に到達しないことを確認する。

原子炉冷却材圧力バウンダリの減圧を行う安全弁等については、環境圧力において吹出量が確保できる設計とする。原子炉冷却材圧力バウンダリに属する逃がし安全弁は、サプレッション・チェンバからの背圧の影響を受けないようベローズと補助背圧平衡ピストンを備えたバネ式の平衡形安全弁とし、吹出量に係る設計については、添付書類「V-4-1 安全弁及び逃がし弁の吹出量計算書」に示す。

- ② 確認の方法としては、環境圧力と機器の最高使用圧力との比較の他、環境圧力を再現した試験環境下において機器が機能することを確認した実証試験等によるものとする。
 - b. 環境温度及び湿度による影響
- ② 安全施設及び重大事故等対処設備は、それぞれ事故時に想定される環境温度及び湿度にて機能を損なわない設計とする。環境温度及び湿度については、設備の設置場所の適切な区分(原子炉格納容器内、建屋内、屋外)毎に想定事故時に到達する最高値とし、区分毎の環境温度及び湿度以上の最高使用温度等を機器仕様として設定する。

原子炉格納容器内の安全施設に対しては、「許可申請書十号」ロ. において評価した設計 基準事故の中で、原子炉格納容器内の温度が最も高くなる「原子炉冷却材喪失」を包絡す る温度及び湿度として、温度は171 °C、湿度は100 %(蒸気)を設定する。

原子炉格納容器内の重大事故等対処設備に対しては、「許可申請書十号」ハ. において評価した重大事故等の中で、原子炉格納容器内の温度が最も高くなる「大破断LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗(+全交流動力電源喪失)」を包絡する温度及び湿度として、原則として、温度は200 °C (最高235 °C)、湿度は100 % (蒸気)を設定する。

原子炉格納容器外の建屋内(原子炉建屋原子炉棟内)の安全施設に対しては,原子炉建屋原子炉棟内の温度が最も高くなる「主蒸気管破断」を考慮し,事故等時の設備の使用状態に応じて,原則として,温度は65.6 $^{\circ}$ C (事象初期:100 $^{\circ}$ C),湿度は90 $^{\circ}$ C (事象初期:100 $^{\circ}$ C) (事》列用:100 $^{\circ}$ C) (事》列用:100

原子炉格納容器外の建屋内(原子炉建屋原子炉棟内)の重大事故等対処設備に対しては、原則として、温度は65.6 ℃、湿度は100 %を設定する。その他、「許可申請書十号」ハ.において評価した重大事故等の中で、エリアの温度が上昇する事象を選定する。

「格納容器バイパス(インターフェイスシステムLOCA)」時に使用する重大事故等対処設備に対しては、耐火壁により東側区分と西側区分に分離されており、機能が期待される区分は高温水及び蒸気による影響が小さく、温度は65.6 °C、湿度は100 %に包絡される。

「使用済燃料プールにおける重大事故に至るおそれがある事故」時に使用する重大事故等対処設備に対しては,使用済燃料プール水の沸騰の可能性を考慮して,温度は100 °C,湿度は100 %(蒸気)を設定する。

「主蒸気管破断事故起因の重大事故等」時に使用する原子炉建屋原子炉棟内の重大事故等対処設備に対しては、主蒸気管から原子炉棟への蒸気の流出を考慮し、原則として、温度は65.6 $^{\circ}$ (事象初期:100 $^{\circ}$)、湿度100 $^{\circ}$ (事象初期:100 $^{\circ}$)。

② 原子炉格納容器外の建屋内(原子炉建屋の原子炉棟外及びその他の建屋内)の安全施設及び重大事故等対処設備に対しては、原則として、温度は40℃、湿度は90%を設定する。

屋外の安全施設及び重大事故等対処設備に対しては、夏季を考慮して温度は40 ℃,湿度は100 %を設定する。

環境温度及び湿度以上の最高使用温度等を設定できない機器については、その設備の機能が求められる事故に応じて、サポート系による設備の冷却や、熱源からの距離等を考慮して環境温度及び湿度を設定する。

なお,環境温度を考慮し,耐環境性向上を図る設計を行っている機器については,「3. 系 統施設毎の設計上の考慮」に示す。

設定した環境温度に対して機器が機能を損なわないように、耐圧部にあっては、機器が使用される環境温度下において、部材に発生する応力に耐えられることとする。耐圧部以外の部分にあっては、絶縁や回転等の機能が阻害される温度に到達しないこととする。

② 環境温度に対する確認の方法としては、環境温度と機器の最高使用温度との比較、規格 等に基づく温度評価の他、環境温度を再現した試験環境下において機器が機能することを 確認した実証試験等によるものとする。

また、設定した湿度に対して機器が機能を損なわないように、耐圧部にあっては、当該構造部が気密性・水密性を有し、一定の肉厚を有する金属製の構造とすることで、湿度の環境下であっても耐圧機能が維持される設計とする。耐圧部以外の部分にあっては、機器の外装を気密性の高い構造とし、機器内部を周囲の空気から分離することや、機器の内部にヒーターを設置し、内部で空気を加温して相対湿度を低下させること等により、絶縁や導通等の機能が阻害される湿度に到達しないこととする。

② 湿度に対する確認の方法としては、環境湿度と機器仕様の比較の他、環境湿度を再現した試験環境下において機器が機能することを確認した実証試験等によるものとする。

c. 放射線による影響

② 安全施設及び重大事故等対処設備は、それぞれ事故時に想定される放射線にて機能を損なわない設計とする。放射線については、設備の設置場所の適切な区分(原子炉格納容器内,建屋内,屋外)毎に想定事故時に到達する最大線量とし、区分毎の放射線量に対して、

② 虚蔽等の効果を考慮して、機能を損なわない材料、構造、原理等を用いる設計とする。

安全施設に対しては、「許可申請書十号」ロ.において評価した設計基準事故の中で、原子炉格納容器内の線量が最も高くなる「原子炉冷却材喪失」を選定し、その最大放射線量を包絡する線量として、原子炉格納容器内は260 kGy/6ヶ月を設定する。原子炉格納容器外の建屋内(原子炉建屋原子炉棟内)の安全施設に対しては、原則として、1.7 kGy/6ヶ月を設定する。

② 原子炉格納容器外の建屋内(原子炉建屋の原子炉棟外及びその他の建屋内)の安全施設に対しては、屋外と同程度の放射線量として1 mGy/h以下を設定する。

ただし、放射線源の影響を受ける可能性があるエリアについては、遮蔽等の効果や放射 線源からの距離等を考慮して放射線量を設定する。

屋外の安全施設に対しては、1 mGy/h以下を設定する。

原子炉格納容器内の重大事故等対処設備に対しては、「許可申請書十号」ハ. において評価した重大事故等の中で、原子炉格納容器内の線量が最も高くなる事象として、「大破断LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗(+全交流動力電源喪失)」での最大放射線量を包絡する線量として、原則として、640 kGy/7日間を設定する。

原子炉格納容器外の建屋内(原子炉建屋原子炉棟内)の重大事故等対処設備に対しては, 原則として,1.7 kGy/7日間を設定する。

「格納容器バイパス(インターフェイスシステムLOCA)」時に使用する重大事故等対処設備に対しては、最大放射線量は1.7~kGy/7日間に包絡される。

「使用済燃料プールにおける重大事故に至るおそれがある事故」時に使用する重大事故等対処設備に対しては、使用済燃料プール水位が低下することで生じる燃料からの直接線とその散乱線が想定されるが、当該影響は小さいため、最大放射線量は1.7 kGy/7日間に包絡される。

原子炉格納容器外の建屋内(原子炉建屋の原子炉棟外及びその他の建屋内)の重大事故等対処設備に対しては、原則として、屋外と同程度の放射線量として3 Gy/7日間を設定する。

ただし、放射線源の影響を受ける可能性があるエリアについては、遮蔽等の効果や放射 線源からの距離等を考慮して放射線量を設定する。

屋外の重大事故等対処設備に対しては、原子炉格納容器からの直接線及びスカイシャイン線、原子炉格納容器から漏えいした放射性物質によるクラウドシャイン線及びグランドシャイン線を考慮し、「許可申請書十号」ハ. において評価した重大事故等の中で、「大破断LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗(+全交流動力電源喪失)」での最大放射線量を包絡する線量として、3 Gy/7日間を設定する。

表2-1-1~表2-1-6にこれらの放射線量評価に用いた評価条件等を示す。

放射線による影響に対して機器が機能を損なわないように、耐圧部にあっては、耐放射線性が低いと考えられるパッキン・ガスケットも含めた耐圧部を構成する部品の性能が有意に低下する放射線量に到達しないこと、耐圧部以外の部分にあっては、電気絶縁や電気信号の伝送・表示等の機能が阻害される放射線量に到達しないこととする。

2 確認の方法としては、環境放射線を再現した試験環境下において機器が機能することを確認した実証試験等により得られた機器等の機能が維持される積算線量を機器の放射線に対する耐性値とし、環境放射線条件と比較することとする。耐性値に有意な照射速度依存性がある場合には、実証試験の際の照射速度に応じて、機器の耐性値を補正することとする。

環境放射線条件との比較のため、機器の耐性値を機器が照射下にあると評価される期間で除算して線量率に換算することとする。なお、原子炉施設の通常運転中に有意な放射線環境に置かれる機器にあっては、通常運転時などの事故等以前の状態において受ける放射線量分を事故等時の線量率に割増すること等により、事故等以前の放射線の影響を評価することとする。

放射線の影響の考慮として,原子炉圧力容器は中性子照射の影響を受けるため,設計基準事故時等及び重大事故等時に想定される環境において脆性破壊を防止することにより,その機能を発揮できる設計とする。原子炉圧力容器は最低使用温度を21 ℃に設定し,関連温度(初期)を-12 ℃以下に管理することで脆性破壊が生じない設計とする。原子炉圧力容器の破壊靭性に対する評価については,添付書類「V-1-2-2 原子炉圧力容器の脆性破壊防止に関する説明書」に示す。

放射線に対して中央制御室遮蔽及び緊急時対策所遮蔽は、想定事故時においても、遮蔽装置としての機能を損なわない設計とする。中央制御室遮蔽及び緊急時対策所遮蔽の遮蔽設計及び評価については、添付書類「V-4-2 生体遮蔽装置の放射線の遮蔽及び熱除去についての計算書」に示す。

d. 屋外の天候による影響(凍結及び降水)

屋外の安全施設及び常設重大事故等対処設備については、屋外の天候による影響(凍結 及び降水)により機能を損なわないよう防水対策及び凍結防止対策を行う設計とする。

e. 荷重

2

安全施設及び常設重大事故等対処設備については、自然現象(地震、津波(敷地に遡上する津波を含む。),風(台風)、竜巻、積雪及び火山の影響)による荷重の評価を行い、それぞれの荷重及びこれらの荷重の組合せにも機能を有効に発揮できる設計とする。

可搬型重大事故等対処設備については、自然現象(地震、津波(敷地に遡上する津波を含む。),風(台風),竜巻、積雪及び火山の影響)によって機能を損なうことのない設計とする。

可搬型重大事故等対処設備は、地震荷重及び地震を含む荷重の組合せが作用する場合においては、その機能を有効に発揮するために、横滑りを含めて地震による荷重を考慮して機能を損なわない設計にするとともに、地震後においても機能及び性能を保持する設計とする。

屋内の重大事故等対処設備については、風(台風)及び竜巻による風荷重に対し外部からの衝撃による損傷の防止が図られた建屋等内に設置又は保管することで、他の設備に悪