

島根原子力発電所2号炉の基準地震動に対する 標準応答スペクトルの影響検討

令和3年9月29日 中国電力株式会社

目 次

 1. 検討方針 2. 標準応答スペクトルの影響検討 3. Ss-D以外の応答スペクトル比を (1)Ss-D以外の基準地震動に、 (2)地震観測記録による応答スペクト 4. まとめ 	き用いた検討 よる応答スペクトル比 ペクトル比の検討	の検討	2 3 7 8 12 20
参考資料 •新規制基準適合性審査会合資料	(抜粋) ••••••		•••••21
・島根原子力発電所2号炉 基準地震動の変更が不要である。	ことを説明する文書		•••••45

1. 検討方針

■ 新たに制定された標準応答スペクトルと島根原子力発電所の基準地震動Ssとの比較を行う。

■ 煙淮広答スペクトルの概要		1000	擬似速度応答スペクトル			
■ 保牛心合へ、ノールの似安 雪酒に傍の名物の地雪動記録にす	オベルオ笑 中 た地雪甘	1000	— 水平動 	-		°
展ぶ近傍の多数の地展到記録にを 般相当面(地震其般からの地般増加)	<u>きついて</u> 東足した地展委 原率が小さく地震動と			-	水平動	ト下動
二十二日(地展本三月のの地画日)	南千万元でも反動とし、	100		周期		<u></u> 擬似速度
		(s)		(5)	(cm/s)	(cm/s)
で, せん断波速度Vs=2,200m/s以」	この地層をいう。)におけ	(cm		0.02	1.910	1.273
る標準的な応答スペクトルとして次	の図に示すもの。	世 10	4 ⁰⁰	0.03	3.500	2.500
		以速	Son A Contraction of the second secon	0.04	6.300	4.400
		凝化		0.06	12.000	7.800
				0.09	20.000	13.000
		1	AN A	0.15	31.000	19.000
			No contraction of the contractio	0.30	43.000	26.000
(今和3年4日21日 百相技発筆21042165	1 佰之力相制禾昌会独定		St a Comis	0.60	60.000	35.000
				5.00	60.000	35.000
「美用発電用原子炉及ひその附属施設の	り位直、構造及ひ設備の基	0.1 0.0	01 0.1 1 10			
準に関する規則の解釈」による。)			周期(s)			
		义	地震基盤相当面における	5標準の	芯答スペ	クトル
島根原子力発電所2号炉の基準 地震動Ssを策定している解放基 盤表面のせん断波速度Vs			検討方針			
1,520m/s	 標準応答スペクトルに対 盤増幅特性を考慮したう。 る。 地盤増幅特性は基準地 当面まで引き戻し、その Ss-Dとの応答スペクト 	して, [†] えで, 動S した	地震基盤相当面から解決 基準地震動SsーDと比 sーDを地下構造モデル 波と解放基盤表面で設業	改基盤 較して を介し 定した	表面まて 影響を確 た地震基 しること	で の地 認す 基盤相 動 で考

(2)

2. 標準応答スペクトルの影響検討

- 地震基盤相当面はVs=2,200m/s以上と定義されていることから、島根原子力発電所の地震動評価に 用いる地下構造モデルにおいてVs=2,200m/s以上となり、それ以深の層もVs=2,200m/s以上となる T.P.-955m(Vs=2,730m/s)を地震基盤相当面に設定した。
- 解放基盤表面(Vs=1,520m/s^{*})で策定された基準地震動Ss-Dと,地下構造モデルによる地震基盤 相当面(Vs=2,730m/s^{*})での基準地震動Ss-Dの引戻し波との応答スペクトル比を算出する。(地下 構造モデルについては参考資料(22~36ページ)参照)

※鉛直方向については、水平方向のそれぞれのVsに対応するVpを有する層を対象に、同様の計算を行う。

	標高	層厚	S波	P波	ctar ctar	減衰定	2数(%)		/ 「 其淮州雪勈 2
層番号	(m)	(m)	速度	速度	密度 (kg/m ³)	h _s	h _P		至平地辰到55 0
			(m/s)	(m/s)		h(f)	h(f)	▽解放基盤表面	
1		14	1520	3240	2500	12.3f ^{-0.733}	31.1f ^{-0.733}	(Vs=1,520m/s, Vp=3,240m/s)	and a dadline and a second s
2		116	1900	3860	2570	6.53f ^{-0.463}	13.5f ^{-0.463}		
3		32	2100	4150	2490	11.4f ^{-0.739}	16.9f ^{-0.739}		1
4	-215-	43	1770	3800	2560	13.0f ^{-0.817}	13.9f ^{-0.817}		」 基進地震動Ss一D
5		130	2530	5220	2680	3.81f ^{-0.363}	4.27f ^{-0.363}		の引戻し波
6	-955	610	2190	4350	2650	2.51f ^{-0.497}	2.70f ^{-0.497}	▽地震基盤相当面	Malalahahahahahan
7	1510	555	2730	5160	2640	4.73f ^{-0.920}	4.84f ^{-0.920}	(Vs=2,730m/s, Vp=5,160m/s)	, '''''''''''''''''''''''''''''''''''
8	2040	530	3020	5220	2620	0.250	0.125		
9		13960	3570	6180	2720	0.185	0.091	·米) 羽 れ れ	
10	38000	22000	3870	6700	2800	0.125	0.063		
11	00000	∞	4510	7800	3100	0.100	0.050		
(島根	原子力発	電所2-	号炉 原	原子炉副	设置変更	許可申請	書	- 0.01 0.1 - 0.01 0.1 - 0.0	期(sec) ジクトリ.ド
添付	寸六 第5.5	-4表 1	地震動	評価に	用いる地	下構造モ	デル)	(基準地震動Ss-D/基準	*ノロルレ 「地震動Ss-Dの引戻し波)

地震動評価に用いる地下構造モデル

2. 標準応答スペクトルの影響検討

■ 基準地震動Ss-Dと、基準地震動Ss-Dの引戻し波により得られた以下に示す応答スペクトル比 を、標準応答スペクトルに乗ずることで地盤増幅特性を考慮する。

(4)

2. 標準応答スペクトルの影響検討

■ 基準地震動Ss-Dで算定した応答スペクトル比を用いて地盤増幅特性を考慮した標準応答スペクト ルは、基準地震動Ss-Dに包絡される。

■ 標準応答スペクトル(地盤増幅特性考慮)は基準地震動Ss-Dに包絡される。

国期※1	水平方向 擬似速度	応答(cm/s)	鉛直方向 擬似速度応答(cm/s)				
(S)	標準応答スペクトル (地盤増幅特性考慮)	Ss-D ^{%2}	標準応答スペクトル (地盤増幅特性考慮)	Ss-D ^{%2}			
0.02	1.602	2.611	1.136	1.742			
0.03	2.786	4.803	2.204	3.211			
0.04	5.491	7.401	4.223	4.956			
0.06	10.46	13.95	7.126	9.334			
0.09	18.55	26.50	10.70	17.67			
0.15	30.82	42.04	19.22	28.45			
0.30	42.27	62.82	27.28	46.10			
0.60	62.77	108.5	35.70	72.34			
5.00	58.82	170.0	34.17	113.4			

※1:周期は標準応答スペクトルのコントロールポイントを示す

※2:赤字は基準地震動Ss-Dのコントロールポイントの線形補間による値

3. Ss-D以外の応答スペクトル比を用いた検討

- ■「2.標準応答スペクトルの影響検討」にて、地震基盤相当面から解放基盤表面までの地盤増幅特 性の考慮に用いた応答スペクトル比の妥当性確認として、下記の検討を行う。また、それぞれの応 答スペクトル比を考慮した標準応答スペクトルと基準地震動Ss-Dを比較する。
- (1) Ss-D以外の基準地震動による応答スペクトル比の検討
 - Ss-D以外の複数の基準地震動で応答スペクトル比を算定した際に、Ss-Dで算定した場合と 同程度の応答スペクトル比となることを確認する。
- (2) 地震観測記録による応答スペクトル比の検討

地震観測記録を用いて応答スペクトル比を算定した際に、Ss-Dで算定した場合と同程度の 応答スペクトル比となることを確認する。

3. Ss-D以外の応答スペクトル比を用いた検討

3. (1)Ss-D以外の基準地震動による応答スペクトル比の検討⁽⁸⁾

■ Ss-D以外のすべての基準地震動を用いて検討を行う。(基準地震動については参考資料(37~43 ページ)参照)

島根原子力発電所の基準地震動

	甘淮志司	最大加速	度(ガル)
	本华·坦辰到	水平方向	鉛直方向
Ss-D	応答スペクトル手法による基準地震動	820	547
So-E1	断層モデル手法による基準地震動	(NS) 549	227
35-FT	(宍道断層による地震の短周期の地震動レベルの不確かさ(1.5倍):破壊開始点5)	(EW) 560	337
So-E2	断層モデル手法による基準地震動	(NS) 522	126
35-FZ	(宍道断層による地震の短周期の地震動レベルの不確かさ(1.5倍):破壊開始点6)	(EW) 777	420
Ss-N1	2004年北海道留萌支庁南部地震(K-NET港町)の検討結果に保守性を考慮した地震動	620	320
So - N2	2000年世界画目書堂圣神(1)(四字章)の描述出命	(NS) 528	195
35 - INZ	2000千局収示四即地辰の貝什アム(血且即)の観測記録	(EW) 531	400

検討に用いる基準地震動

■ 解放基盤表面(Vs=1,520m/s[※])で策定されたSs-D以外の各基準地震動と、地下構造モデルによる地震基盤相当面(Vs=2,730m/s[※])での各基準地震動の引戻し波との応答スペクトル比を確認する。(「2.標準応答スペクトルの影響検討」にてSs-Dを用いて実施したものと同じ手法)

※鉛直方向については、水平方向のそれぞれのVsに対応するVpを有する層を対象に、同様の計算を行う。

	標高	層厚	S波	P波	应由	減衰定	2数(%)	、 / - - - - - - - - - - - - -
層番号	(m)	(m)	速度	速度	省度 (kg/m ³)	h _s	h _P	
			(m/s)	(m/s)		h(f)	h(f)	✓ 解放基盤表面 _ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1		14	1520	3240	2500	12.3f ^{-0.733}	31.1f ^{-0.733}	(Vs=1,520m/s, Vp=3,240m/s)
2		116	1900	3860	2570	6.53f ^{-0.463}	13.5f ^{-0.463}	
3		32	2100	4150	2490	11.4f ^{-0.739}	16.9f ^{-0.739}	
4	-215	43	1770	3800	2560	13.0f ^{-0.817}	13.9f ^{-0.817}	其進地震動の
5	-345	130	2530	5220	2680	3.81f ^{-0.363}	4.27f ^{-0.363}	引戻し波
6		610	2190	4350	2650	2.51f ^{-0.497}	2.70f ^{-0.497}	▽地震基盤相当面
7	1510	555	2730	5160	2640	4.73f ^{-0.920}	$4.84f^{-0.920}$	(Vs=2,730m/s, Vp=5,160m/s)
8	2040	530	3020	5220	2620	0.250	0.125	
9	16000-	13960	3570	6180	2720	0.185	0.091	(本本)
10	38000	22000	3870	6700	2800	0.125	0.063	
11	00000	∞	4510	7800	3100	0.100	0.050	を 2000 100 100 100 100 100 100 100 100 10
(島根	【原子力発 +立 第55	電所2-	号炉 原	₹子炉割 ▼(雨)=1	置変更	許可申請	書	0.1 <u>1</u>
ふれ	小八	-4衣 」	吧辰到	5十1川1~)	_{古い} る地	い神迫て))//)	応答スペクトル比
								(基準地震動/基準地震動の引戻し波)

地震動評価に用いる地下構造モデル

3. Ss-D以外の応答スペクトル比を用いた検討

3. (1)Ss-D以外の基準地震動による応答スペクトル比の検討⁽¹⁰⁾

- 各基準地震動と、それに対応する基準地震動の引戻し波により得られた応答スペクトル比を以下に示す。
- Ss-D以外の各基準地震動を用いた応答スペクトル比は,基準地震動Ss-Dを用いた応答スペクトル比と同程度であることを確認した。

3. Ss-D以外の応答スペクトル比を用いた検討 3. (1)Ss-D以外の基準地震動による応答スペクトル比の検討⁽¹⁾

■ SsーD以外の各基準地震動による応答スペクトル比を用いて標準応答スペクトルに地盤増幅特性 を考慮しても、基準地震動SsーDに包絡される。

3. Ss-D以外の応答スペクトル比を用いた検討

- 島根サイトでは2015年7月より、発電所敷地内の大深度ボーリング孔で地震観測を実施しており、 地震基盤相当面と同程度の岩盤中(T.P.-500m:Vs=2190m/s)における地震観測記録が得られている。
- 大深度ボーリング孔で得られた地震観測記録を用いて、解放基盤表面/地震基盤相当面の応答 スペクトル比を算出する。

■ 島根原子力発電所の大深度地点(T.P.-500m)で観測された主な地震を示す。
 ■ 記録の抽出条件は、広い周期帯で成分を確認できるよう、M4.0以上、震央距離100km以内とした。

No.	年月日	時刻	震央地名	М	震源深さ (km)	震央距離 (km)
1	2015.10.18	08:30	鳥取県中部	4.2	8	83.2
2	2015.10.18	08:36	鳥取県中部	4.3	8	83.8
3	2015.12.14	15:01	鳥取県中部	4.2	8	83.5
4	2016.10.21	12:12	鳥取県中部	4.2	10	79.7
5	2016.10.21	14:07	鳥取県中部	6.6	11	79.8
6	2016.10.21	14:30	鳥取県中部	4.4	10	77.2
7	2016.10.21	14:33	鳥取県中部	4.4	5	77.5
8	2016.10.21	14:50	鳥取県中部	4.2	10	78.2
9	2016.10.21	14:53	鳥取県中部	5.0	9	81.4
10	2016.10.21	15:02	鳥取県中部	4.3	10	81.8
11	2016.10.21	16:52	鳥取県中部	4.1	6	78.1
12	2016.10.21	17:59	鳥取県中部	4.3	9	76.7
13	2016.10.22	06:17	鳥取県中部	4.0	11	75.9
14	2016.10.29	13:43	鳥取県中部	4.5	7	82.9
15	2018. 4. 9	01:32	島根県西部	6.1	12	54.0
16	2018. 4. 9	01:43	島根県西部	4.5	10	55.1
17	2018. 4. 9	01:56	島根県西部	4.8	10	54.8
18	2018. 4. 9	02:03	島根県西部	4.2	10	54.5
19	2018. 4. 9	02:10	島根県西部	4.9	10	55.1
20	2018. 4. 9	02:30	島根県西部	4.0	9	55.1
21	2018. 4. 9	05:05	島根県西部	4.6	9	54.8
22	2018. 4.23	01:01	島根県西部	4.1	11	55.0
23	2018. 6.26	17:00	広島県北部	5.0	12	68.1

13

3. Ss-D以外の応答スペクトル比を用いた検討

3. (2) 地震観測記録による応答スペクトル比の検討

- 地震観測記録の最大加速度一覧を示す。最大加速度は、最大で8ガル程度である。
- 検討対象地震は、島根原子力発電所で観測された地震記録のうち、M及び最大加速度が大きい 「No.5:2016年鳥取県中部の地震」及び「No.15:2018年島根県西部の地震」とする。

14

NL	400	n+ +u	雪市地力		震源深さ	震央距離	T.P500m [±]	也点 最大加速	最大加速度(cm/s ²)	
No.	午月日 	時刻	医天地名 	M	(km)	(km)	NS	EW	UD	
1	2015.10.18	08:30	鳥取県中部	4.2	8	83.2	0.12	0.15	0.12	
2	2015.10.18	08:36	鳥取県中部	4.3	8	83.8	0.15	0.12	0.13	
3	2015.12.14	15:01	鳥取県中部	4.2	8	83.5	0.21	0.20	0.17	
4	2016.10.21	12:12	鳥取県中部	4.2	10	79.7	0.29	0.30	0.28	
5	2016.10.21	14:07	鳥取県中部	6.6	11	79.8	8.17	5.78	5.73	
6	2016.10.21	14:30	鳥取県中部	4.4	10	77.2	0.26	0.56	0.38	
7	2016.10.21	14:33	鳥取県中部	4.4	5	77.5	0.13	0.18	0.16	
8	2016.10.21	14:50	鳥取県中部	4.2	10	78.2	0.17	0.40	0.21	
9	2016.10.21	14:53	鳥取県中部	5.0	9	81.4	0.31	0.47	0.43	
10	2016.10.21	15:02	鳥取県中部	4.3	10	81.8	0.26	0.23	0.19	
11	2016.10.21	16:52	鳥取県中部	4.1	6	78.1	0.17	0.16	0.20	
12	2016.10.21	17:59	鳥取県中部	4.3	9	76.7	0.24	0.35	0.37	
13	2016.10.22	06:17	鳥取県中部	4.0	11	75.9	0.21	0.22	0.16	
14	2016.10.29	13:43	鳥取県中部	4.5	7	82.9	0.17	0.15	0.13	
15	2018. 4. 9	01:32	島根県西部	6.1	12	54.0	7.37	7.20	3.87	
16	2018. 4. 9	01:43	島根県西部	4.5	10	55.1	0.09	0.14	0.09	
17	2018. 4. 9	01:56	島根県西部	4.8	10	54.8	0.47	0.60	0.47	
18	2018. 4. 9	02:03	島根県西部	4.2	10	54.5	0.40	0.37	0.37	
19	2018. 4. 9	02:10	島根県西部	4.9	10	55.1	1.10	1.38	0.65	
20	2018. 4. 9	02:30	島根県西部	4.0	9	55.1	0.29	0.35	0.15	
21	2018. 4. 9	05:05	島根県西部	4.6	9	54.8	0.26	0.40	0.26	
22	2018. 4.23	01:01	島根県西部	4.1	11	55.0	0.84	1.19	0.44	
23	2018. 6.26	17:00	広島県北部	5.0	12	68.1	1.32	1.93	1.14	

3. (2) 地震観測記録による応答スペクトル比の検討

「No.5:2016年鳥取県中部の地震」の加速度波形及び擬似速度応答スペクトルを以下に示す。

15

水平方向 (実線:NS成分,破線:EW成分)

擬似速度応答スペクトル

3. (2) 地震観測記録による応答スペクトル比の検討

「No.15:2018年島根県西部の地震」の加速度波形及び擬似速度応答スペクトルを以下に示す。

16

水平方向 (実線:NS成分,破線:EW成分)

擬似速度応答スペクトル

3. Ss-D以外の応答スペクトル比を用いた検討

- 地震計は岩盤中に埋設されていることから、観測記録には反射波(F)の影響が含まれるが、本検討では簡易的に、反射波(F)の影響を無視し、観測記録を入射波(E)とみなす。
- T.P.-500mの観測記録を地下構造モデルの地震基盤相当面に2E波として入力し、解放基盤表面で 出力した場合の、応答スペクトル比を確認する。

地震動評価に用いる地下構造モデル

	標高	層厚	S波	P波	ф.	減衰定	至数(%)	
層番号	(m)	(m)	速度	速度	省度 (kg/m ³)	h _S	h _P	
			(m/s)	(m/s)	(1.8,)	h(f)	h(f)	
1	-24	14	1520	3240	2500	12.3f ^{-0.733}	31.1f ^{-0.733}	(Vs=1,520m/s, Vp=3,240m/s) 「「して) がして) がして) (Vs=1,520m/s, Vp=3,240m/s)
2	140	116	1900	3860	2570	6.53f ^{-0.463}	13.5f ^{-0.463}	Ī
3	— -140 —	32	2100	4150	2490	11.4f ^{-0.739}	16.9f ^{-0.739}	応答スペクトル比を算出
4		43	1770	3800	2560	13.0f ^{-0.817}	13.9f ^{-0.817}	
5		130	2530	5220	2680	3.81f ^{-0.363}	4.27f ^{-0.363}	●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
6		610	2190	4350	2650	2.51f ^{-0.497}	2.70f ^{-0.497}	▽地震基盤相当面
7		555	2730	5160	2640	4.73f ^{-0.920}	4.84f ^{-0.920}	(Vs=2,730m/s, Vp=5,160m/s)
8		530	3020	5220	2620	0.250	0.125	$\begin{array}{c} \frac{10}{12} & 0 \\ (cm/s^2) & -5 \\ -10 & 10 \\ \end{array} \xrightarrow{(m/s^2)} -5 & 0 \\ 817 \\ -10 & 10 \\ \end{array} \xrightarrow{(m/s^2)} -5 & 0 \\ 0 \\ -10 & 0 \\ \end{array}$
9	16000	13960	3570	6180	2720	0.185	0.091	
10	38000	22000	3870	6700	2800	0.125	0.063	$\begin{bmatrix} z \\ z \\ (z = x^2) \end{bmatrix} \xrightarrow{-5} \begin{bmatrix} -1 \\ 0 \\ -10 \\ 0 \\ -10 \\ 0 \\ 0 \\ -10 \\ 0 \\ 0 \\ -10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
11	00000	∞	4510	7800	3100	0.100	0.050	
(島根	原子力発	電所2号	号炉 原	夏子炉 副	设置変更	許可申請	書	(検討に用いる地震)
添作	寸六 第5.5	-4表 1	れ 震動	評価に	用いる地	下構造モ	テル)	No.5:2016年鳥取県中部の地震
								No.15:2018年島根県西部の地震

3. Ss-D以外の応答スペクトル比を用いた検討

■ 2016年鳥取県中部の地震及び2018年島根県西部の地震の観測記録による応答スペクトル比を以下に示す。

18

■ 観測記録による応答スペクトル比は、基準地震動Ss-Dの引戻し波による応答スペクトル比と同程度であることを確認した。

T.P.-500m地点観測記録による応答スペクトル比

■ 地震観測記録による応答スペクトル比を用いて標準応答スペクトルに地盤増幅特性を考慮しても、 基準地震動Ss-Dに包絡される。

(19)

4. まとめ

- ■標準応答スペクトルはせん断波速度Vs=2,200m/s以上の地震基盤相当面にて定義されており、島根 原子力発電所の基準地震動を策定している解放基盤表面はVs=1,520m/sであることから、標準応答 スペクトルに対し、地震基盤相当面から解放基盤表面までの地盤増幅特性を考慮したうえで、基準 地震動Ss-Dと比較した。
- 地震基盤相当面から解放基盤表面までの地盤増幅特性の考慮方法は、解放基盤表面で策定された基準地震動Ss-Dと、地下構造モデルによる地震基盤相当面(T.P.-955m:Vs=2,730m/sに設定)での基準地震動Ss-Dの引戻し波との応答スペクトル比を標準応答スペクトルに乗ずる手法とした。検討の結果、地盤増幅特性を考慮した標準応答スペクトルは基準地震動Ss-Dに包絡されることを確認した。
- また、応答スペクトル比について、Ss-D以外の基準地震動や地震観測記録を用いた場合でも、 Ss-Dによる応答スペクトル比と同程度となることを確認した。各検討で算定した応答スペクトル比を用いて標準応答スペクトルに地盤増幅特性を考慮しても、基準地震動Ss-Dに包絡されることを確認した。
- 以上の検討の結果,基準地震動の変更は不要と判断した。

新規制基準適合性審查会合資料(抜粋)

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.1 敷地及び敷地周辺の地質・地質構造の調査
 - (2) 敷地地盤の地質・地質構造(敷地地盤の位置関係)

令和3年6月16日ヒアリング資料7 P26 再掲

22

| 敷地は1・2号炉が位置するエリアと3号炉が位置するエリアに分かれ, それぞれでボーリ | ング調査及び地震観測を行っており, 前者を「2号地盤」, 後者を「3号地盤」とする。

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.1 敷地及び敷地周辺の地質・地質構造の調査
 - (2) 敷地地盤の地質・地質構造(2号地盤の速度層断面図:南北断面)
- 2号地盤の南北断面における速度層区分より、2号地盤の南北方向の地下構造は北に傾斜している[※]。

第972回審査会合資料5-1 P28 再揭

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.1 敷地及び敷地周辺の地質・地質構造の調査
 - (2) 敷地地盤の地質・地質構造(2号地盤の速度層断面図:東西断面)
- 2号地盤の東西断面における速度層区分より、2号地盤の東西方向の地下構造は、ほぼ水平成層である。(緊急時対策所が位置する地盤を含む)

第972回審査会合資料5-1 P29 再掲

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.1 敷地及び敷地周辺の地質・地質構造の調査
 - (2) 敷地地盤の地質・地質構造(3号地盤の速度層断面図:南北断面)
- 3号地盤の南北断面における速度層区分より、3号地盤の南北方向の地下構造は北に 緩やかに傾斜している[※]。

第972回審査会合資料5-1 P30 再掲

⑥層

⑦層

4.15

3.80

2.10

1.77

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.1 敷地及び敷地周辺の地質・地質構造の調査
 - (2) 敷地地盤の地質・地質構造(3号地盤の速度層断面図:東西断面)
- ■3号地盤の東西断面における速度層区分より、3号地盤の東西方向の地下構造はほぼ 水平成層である。

第972回審査会合資料5-1 P31 再掲

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.2 解放基盤表面の設定

解放基盤表面

第972回審査会合資料5-1 P34 再掲

2

■ 解放基盤表面は,標高-10mの位置に設定した。

P波速度及びS波速度(2号地盤)

P波	P波速度及びS波速度(3号地盤)											
速度層	P波速度(m/s)	S波速度(m/s)										
①層	520	270										
2層	1710	620										
3層	2270	960										
④層	3240	1520										
5層	3860	1900										
6層	4150	2100										
⑦層	3800	1770										

速度層断面図(3号地盤)

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.5 地下構造モデルの設定

(1)2号地下構造モデルの設定(速度値,密度の設定)

第972回審査会合資料5-1 P82 再掲

28

■ 2号地下構造モデルのS波・P波速度, 密度については, 各種調査結果に基づき設定した。

	微重	カアレー	(探査			大深度	ミボー	リング		炉心周辺ボーリング						2号地下構造モデル					
Ⅰ 標高 Ⅰ Ⅰ <u>+50m</u>	層厚 (m)	S波 速度 (m/s)	P波 ^{※1} 速度 (m/s)	密度 ^{※2} (kg/m ³)	4 4 4					↓ ↓ ↓ ↓	層厚 (m)	S波 速度	P波 速度	密度		標高	層厚 (m)	S波 速度	P波 速度	密度 (/u= /u= ³)	
					└」標高 └」 └」 <u>+8.5m</u>	層厚 (m)	S波 速度 (m/s)	P波 速度 (m/s)	密度 (kg/m ³)	<u>+15m</u>	10	(m/s) 250	(m∕s) 800	(kg/m)		<u>+15m</u>	10	(m∕s) 250	(m∕s) 800	(kg/m)	
					-16.5m	25	760	1870	2150	<u>+5m</u> <u>-4.7m</u>	9.7	900	2100	2350		<u>+5m</u> 4.7m	9.7	900	2100	2350	
	310	1890	3390	2300	<u>-51.5m</u>	35	2660	5320	2610	-60	55.3	1600	3600	2500	E	-60-	55.3	1600	3600	2500	
					1 1 1	190	1710	3940	2390	<u>-110m</u> <u>-160m</u>	50 50	1950 2000	4000 4050	2500 2650		<u>-110m</u> -160m	50 50	1950 2000	4000 4050	2500 2650	
					<u>-241.5m</u>					<u>-215m</u>	55	2350	4950	2850	,-ŀ- .	r <u>215m</u>	55 75	2350	4950	2850	
<u>-260m</u>					1	130	2530	5220	2680			高速	度層			<u>-290m</u>			0220		
-660m	400	2140	3700	2370	<u>-371.5m</u>												610	2190	4350	2650	
	390	2220	3840	2400	 -9815m	610	2190	4350	2650						1	<u>-900m</u>					
<u>-1050m</u>					<u> </u>	210	2730	5160	2640								010	0700	5100	0040	
	460	2720	4710	2550	– <u>1191.5m</u>					. 1							610	2/30	5160	2640	
<u>-1510m</u>																<u>-1510m</u>					
-2040m	530	3020	5220	2620	×1 Vp∶3	1 Mai 2 5km /aキ注 Ma-1 20+1 11Ma (御崎はか(1000))										-2040m	530	3020	5220	2620	
	_	3570	6180	2720	Vp:3 ※2 ρ=1.	.5km/sり 2475+0.3	上 Vp=1 99Vp-0.0	.73Vs 26Vp²(Li	udwig et	al.(1970))							-	3570	6180	2720	

(1)2号地下構造モデルの設定(モデル設定値)

第972回審査会合資料5-1 P86 再掲

29

■ 2号地下構造モデルを以下のとおり設定した。なお、標高-1510m以深の減衰については 岩田・関口(2002)で用いられている地下構造モデル^{※1}の値を用いている。

	標高	層厚	S波	P波	宓市	減衰定数(%)									
層番号	(m)	(m)	速度	速度	(kg/m^3)					h _P					
	- +15-		(m/s)	(m/s)		h(f) ^{%2}	0.05s	0.1s	0.2s	0.5s	h(f) ^{%2}	0.05s	0.1s	0.2s	0.5s
1	- +10-	5	250	800	2100	75.8f ^{-0.003}	75.12	75.28	75.43	75.64	77.0f ^{-0.003}	76.31	76.47	76.63	76.84
2	+1.2	8.8	900	2100	2350	54.6f ^{-0.319}	21.00	26.19	32.68	43.77	70.4f ^{-0.319}	27.07	33.77	42.13	56.43
3	-60	61.2	1600	3600	2500	46.0f ^{-0.987}	2.39	4.74	9.39	23.21	83.2f ^{-0.987}	4.33	8.57	16.99	41.98
4		50	1950	4000	2500	27.3f ^{-0.539}	5.43	7.89	11.47	18.79	77.4f ^{-0.539}	15.40	22.37	32.51	53.27
5	-160-	50	2000	4050	2650	48.4f ^{-0.582}	8.47	12.67	18.97	32.33	82.9f ^{-0.582}	14.50	21.70	32.49	55.38
6		73.5	2350	4950	2850	7.62f ^{-0.363}	2.57	3.30	4.25	5.92	8.53f ^{-0.363}	2.88	3.70	4.76	6.63
7		56.5	2530	5220	2680	7.62f ^{-0.363}	2.57	3.30	4.25	5.92	8.53f ^{-0.363}	2.88	3.70	4.76	6.63
8	-900-	610	2190	4350	2650	5.01f ^{-0.497}	1.13	1.60	2.25	3.55	5.40f ^{-0.497}	1.22	1.72	2.43	3.83
9	1510	610	2730	5160	2640	9.46f ^{-0.920}	0.60	1.14	2.15	5.00	9.67f ^{-0.920}	0.61	1.16	2.20	5.11
10	2040	530	3020	5220	2620		0.	250				0	.125		
11	2040	8	3570	6180	2720	0.185 0.091									

2号地下構造モデル

※1 京都大学防災研究所地震予知センター鳥取地震観測所が震源決定に用いている速度構造(P波速度)を参考に設定された地下構造モデルで,2000年鳥取県西部地震の震源インバージョン 及び強震動シミュレーションに用いられており,強震動シミュレーション結果は観測記録と良く対応することが確認されている。

※2 f は振動数を表す。

※3 炉心周辺ボーリング及び大深度ボーリングのPS検層結果の接続部分であり、PS検層では境界を把握できないため同定解析により設定。

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.5 地下構造モデルの設定

(2)3号地下構造モデルの設定(速度値,密度の設定)

第972回審査会合資料5-1 P88 再掲

30

■ 3号地下構造モデルのS波・P波速度,密度については,各種調査結果に基づき設定した。

	微動	アレイ	探査			大深度	₹ボー	リング		<u>ب</u>	戶心厝	辺ボ・	ーリン	グ		3	号地 ⁻	下構造	モデノ	١
標高 <u>+50m</u>	層厚 (m)	S波 速度 (m/s)	 P波 ^{※1} 速度 (m∕s)	密度 ^{※2} (kg/m ³)						標高 	層厚 (m)	S波 速度 (m/s)	P波 速度 (m/s)	密度 (kg/m ³)	, 標福	5 +46m	層厚 (m)	S波 速度 (m/s)	P波 速度 (m/s)	密度 (kg/m ³)
										+38m	8	270	520	2280		+38m	8	270	520	2280
1					↓ ↓ 標高	層厚	S波 速度	P波 速度	密度	<u>+30m</u>	8	620	1710	2380	<u> </u> —	+30m	8	620	1710	2380
1					+8.5r	(m) 1	(m/s)	(m/s)	(kg∕m³)		23	960	2270	2390			23	960	2270	2390
1					 -16 5 -	25	760	1870	2150	<u>+ 7m</u>	0.1	1500		0500		<u>+ 7m</u>		1500	0040	0500
1	310	1890	3390	2300	<u>-10.5r</u>	25	2660	5220	2610	-24m	31	1520	3240	2500		-24m	31	1520	3240	2500
l I					<u>-51.5r</u>	1 1	2000	5520	2010		116	1900	3860	2570	1		116	1900	3860	2570
						100	1710	0040	0000	<u>-140m</u> -172m	32	2100	4150	2490		<u>∙140m</u> ∙172m	32	2100	4150	2490
						190	1/10	3940	2390	<u>-215m</u>	43	1770	3800	2560		215m	43	1770	3800	2560
<u>-260m</u>					<u>-241.5r</u>	120	2520	5220	2680			高速	专層			245	130	2530	5220	2680
	400	2140	3700	2370	<u>-371.5r</u>	n 130	2000	5220	2000	L			~~~			<u>-345m</u>				
-660m	100	2110	0,00	2070											i.		610	2190	4350	2650
						610	2190	4350	2650						<u> </u>	-955m				
	390	2220	3840	2400	-981.5r	n									1					
-1050m						010	0700	E100	0040											
					-1191.5r	210	2730	5160	2640								555	2730	5160	2640
	460	2720	4710	2550						•										
-1510m															-1	510m				
					I															
	530	3020	5220	2620													530	3020	5220	2620
<u>-2040m</u>					—————————————————————————————————————	3.5km/s未	:満 Vp=1	1.29+1.11	Vs(狐崎)	まか(1990))					<u>040m</u>				
	—	3570	6180	2720	×2 ρ=1	.2475+0.3	99Vp-0.0)26Vp ² (L	udwig et	al.(1970))							—	3570	6180	2720

(2)3号地下構造モデルの設定(モデル設定値)

第972回審査会合資料5-1 P92 再掲

3

■ 3号地下構造モデルを以下のとおり設定した。なお、標高-1510m以深の減衰については 岩田・関口(2002)で用いられている地下構造モデル^{※1}の値を用いている。

	標高	層厚	S波	P波	应由					減衰定	数(%)				
層番号	(m)	(m)	速度	速度	省皮 (kg/m ³)			h _S					h _P		
	- +16		(m/s)	(m/s)		h(f) ^{%2}	0.05s	0.1s	0.2s	0.5s	h(f) ^{%2}	0.05s	0.1s	0.2s	0.5s
1	+427-	3.3	270	520	2280	15.7f ^{-0.887}	1.10	2.04	3.77	8.49	24.9f ^{-0.887}	1.75	3.23	5.97	13.46
2	+42.7	6.4	620	1710	2380	8.92f ^{-0.845}	0.71	1.27	2.29	4.97	12.5f ^{-0.845}	0.99	1.79	3.21	6.96
3	+30.3	29.3	960	2270	2390	62.9f ^{-0.263}	28.61	34.33	41.19	52.42	$64.5f^{-0.263}$	29.34	35.20	42.24	53.75
4		31	1520	3240	2500	24.7f ^{-0.733}	2.75	4.57	7.59	14.86	62.0f ^{-0.733}	6.90	11.47	19.06	37.30
5		116	1900	3860	2570	13.1f ^{-0.463}	3.27	4.51	6.22	9.50	$26.9f^{-0.463}$	6.72	9.26	12.77	19.52
6	-140	32	2100	4150	2490	22.8f ^{-0.739}	2.49	4.16	6.94	13.66	33.8f ^{-0.739}	3.69	6.16	10.29	20.25
\bigcirc	-215	43	1770	3800	2560	25.9f ^{-0.817}	2.24	3.95	6.95	14.70	27.8f ^{-0.817}	2.40	4.24	7.46	15.78
8		130	2530	5220	2680	7.62f ^{-0.363}	2.57	3.30	4.25	5.92	$8.53f^{-0.363}$	2.88	3.70	4.76	6.63
9	055	610	2190	4350	2650	$5.01 f^{-0.497}$	1.13	1.60	2.25	3.55	5.40f ^{-0.497}	1.22	1.72	2.43	3.83
10		555	2730	5160	2640	9.46f ^{-0.920}	0.60	1.14	2.15	5.00	$9.67f^{-0.920}$	0.61	1.16	2.20	5.11
(11)		530	3020	5220	2620		0.	250				0.	125		
(12)	-2040	8	3570	6180	2720		0.	185				0.	091		

3号地下構造モデル

※1 京都大学防災研究所地震予知センター鳥取地震観測所が震源決定に用いている速度構造(P波速度)を参考に設定された地下構造モデルで,2000年鳥取県西部地震の震源インバー ジョン及び強震動シミュレーションに用いられており,強震動シミュレーション結果は観測記録と良く対応することが確認されている。

※2 f は振動数を表す。

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.6 地震動評価に用いる地下構造モデルの設定 地震動評価に用いる地下構造モデル(速度値等の物性値) ^{第972回審査会合資料5-1 P96 再掲}

■ 2号及び3号地下構造モデルの地盤増幅特性(解放基盤表面/地震基盤面)を比較すると、同程度となるが、3号地下構造モデルの方が若干大きくなるため、地震動評価に用いる地下構造モデルの速度値等の物性値は、3号地下構造モデルのものを用いた。

2号地下構造モデル

3号地下構造モデル

32

地盤増幅特性(解放基盤表面/地震基盤面)の比較

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.6 地震動評価に用いる地下構造モデルの設定 地震動評価に用いる地下構造モデル(減衰定数の設定) 第972回審査会合資料5-1 P97 再掲

地震動評価に用いる地下構造モデルの減衰定数は、地震観測記録に基づく3号地盤の 減衰定数の同定解析結果及び大深度ボーリング孔におけるQ値測定結果を考慮し、地 盤増幅特性が安全側になるように設定した。なお、8層以深の減衰定数も浅部と比較す ると、設定自体は安全側の評価(減衰定数が小さいので地盤増幅特性に対する感度は 小さい)となっている。

33

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.6 地震動評価に用いる地下構造モデルの設定 地震動評価に用いる地下構造モデル(モデル設定値) ^{第972回審査会合資料5-1 P98 再掲}

| 地震動評価に用いる地下構造モデルを以下のとおり設定した。なお,深部の物性値(モデ ルの網掛け箇所)は岩田・関口(2002)で用いられている地下構造モデル^{※1}の値を用いて いる。

34

	標高	層厚	S波	P波	ф. ф.					減衰定	数(%)						
層番号	(m)	(m)	速度	速度	密度 (kg/m ³)			hs					h _P				
			(m/s)	(m/s)		h(f) ^{% 2}	0.05s	0.1s	0.2s	0.5s	h(f) ^{%2}	0.05s	0.1s	0.2s	0.5s		
1	-24	14	1520	3240	2500	12.3f ^{-0.733}	1.37	2.27	3.78	7.40	31.1f ^{-0.733}	3.46	5.75	9.56	18.71		\uparrow
2	24	116	1900	3860	2570	6.53f ^{-0.463}	1.63	2.25	3.10	4.74	13.5f ^{-0.463}	3.37	4.65	6.41	9.79	統	
3		32	2100	4150	2490	11.4f ^{-0.739}	1.25	2.08	3.47	6.83	16.9f ^{-0.739}	1.85	3.08	5.14	10.13	計 的	
4		43	1770	3800	2560	13.0f ^{-0.817}	1.12	1.98	3.49	7.38	13.9f ^{-0.817}	1.20	2.12	3.73	7.89	グリ	 班
5		130	2530	5220	2680	3.81f ^{-0.363}	1.28	1.65	2.12	2.96	4.27f ^{-0.363}	1.44	1.85	2.38	3.32	 ン	論
6		610	2190	4350	2650	2.51f ^{-0.497}	0.57	0.80	1.13	1.78	2.70f ^{-0.497}	0.61	0.86	1.21	1.91	関数	n 手
7		555	2730	5160	2640	4.73f ^{-0.920}	0.30	0.57	1.08	2.50	4.84f ^{-0.920}	0.31	0.58	1.10	2.56	法	· 法
8	1510	530	3020	5220	2620		0.	250				0.	.125				
9	2040	13960	3570	6180	2720		0.	.185				0	.091				
10	10000	22000	3870	6700	2800		0.	125				0	.063				
11	38000	∞	4510	7800	3100		0.	100				0.	.050				

地震動評価に用いる地下構造モデル

※1 京都大学防災研究所地震予知センター鳥取地震観測所が震源決定に用いている速度構造(P波速度)を参考に設定した地下構造モデルで,2000年鳥取県西部地震の震源インバー ジョン及び強震動シミュレーションに用いられており、強震動シミュレーション結果は観測記録と良く対応することが確認されている。

※2 f は振動数を表す。

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.6 地震動評価に用いる地下構造モデルの設定

地震動評価に用いる地下構造モデル(地盤増幅特性)

第972回審査会合資料5-1 P99 再掲

35

地震動評価に用いる地下構造モデルの地盤増幅特性は、2号及び3号地下構造モデルの地盤増幅特性より大きくなり、敷地の地震動を安全側に評価する地下構造モデルを設定した。

地盤増幅特性(解放基盤表面/地震基盤面)の比較

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.6 地震動評価に用いる地下構造モデルの設定 地震動評価に用いる地下構造モデル(物性値の妥当性確認) ^{第972回審査会合資料5-1 P100 再掲} 36
 - 地震動評価に用いる地下構造モデルから求めた理論位相速度と、微動アレイ観測記録 (西側アレイ)から求めた位相速度を比較すると、同程度となっていることから、地震動 評価に用いる地下構造モデルの深さ2km程度までの物性値は妥当であることを確認した。

微動アレイ探査配置図

層番号	標高 (m)	層厚 (m)	S波 速度 (m/s)	P波 速度 (m/s)	密度 (kg/m ³)
1	-24	14	1520	3240	2500
2	140	116	1900	3860	2570
3		32	2100	4150	2490
4	-215	43	1770	3800	2560
5	-245	130	2530	5220	2680
6	-055	610	2190	4350	2650
7	-1510	555	2730	5160	2640
8		530	3020	5220	2620
9		8	3570	6180	2720

理論位相速度と観測位相速度の比較

5. 基準地震動の策定 5.1 敷地ごとに震源を特定して策定する地震動による基準地震動

(1)応答スペクトル手法による基準地震動 1/4

第972回審査会合資料5-1 P190 再掲

37

■ 審査ガイドでは、応答スペクトルに基づく手法による基準地震動は、検討用地震ごとに評価した応答スペクトルを下回らないように作成することを要求。

なお、鉛直方向の設計用応答スペクトルは、水平方向の2/3倍を下回らないように設定している。

基準地震動Ss-D及び応答スペクトル手法による地震動評価結果の応答スペクトルの比較

5. 基準地震動の策定 5.1 敷地ごとに震源を特定して策定する地震動による基準地震動

(1)応答スペクトル手法による基準地震動 2/4

第972回審査会合資料5-1 P191 再掲

基準地震動Ss-Dの設計用応答スペクトルに適合する模擬地震波は、乱数の位相を持つ正弦波の重ね合わせによって作成する。
 振幅包絡線の経時的変化については、Noda et al.(2002)に基づき、以下に示す耐専式を適用する検討用地震の地震動評価ケースのうち、継続時間が長くなるように「F-Ⅲ断層+F-Ⅳ断層+F-Ⅴ断層による地震の基本震源モデル(M:武村(1990))」の諸元により設定する。なお、T_d(継続時間)は同ケースの算定結果[52.6(s)]よりも安全側に長く[60.0(s)]設定する。

	地震動評価ケーフ	マグニチュード	等価震源距離	1	浱幅 包絡線	の経時的	変化(s)
	心反到 計画 / う	М	Xeq(km)	Τ _b	T _c	T _c -T _b	T _d (継続時間)
「略」を	基本震源モデル (M:松田(1975))	7.6	17.3	7.4	26.5	19.1	49.4
	基本震源モデル (M:武村(1990))	7.7	17.3	8.3	28.7	20.4	52.6
田 − ユ 王 − 土	断層傾斜角の不確かさを考慮したケース (M:松田(1975))	7.6	16.7	7.4	26.5	19.1	49.0
(参考) 宍道断層 による地震	基本震源モデル (M:松田(1975)及び武村(1990))	7.5	8.8	6.6	24.4	17.8	39.7

検討用地震のM, Xeq及び振幅包絡線の経時的変化

※宍道断層による地震は耐専式の適用外としているが、参考に基本震源モデルについて記載。

基準地震動Ss-Dの模擬地震波の振幅包絡線の経時的変化

5. 基準地震動の策定 5.1 敷地ごとに震源を特定して策定する地震動による基準地震動

(1)応答スペクトル手法による基準地震動 3/4

第972回審査会合資料5-1 P192 再掲

39

■ 基準地震動Ss-Dの模擬地震波の加速度時刻歴波形

■ 基準地震動Ss-Dの模擬地震波の速度時刻歴波形

5. 基準地震動の策定 5.1 敷地ごとに震源を特定して策定する地震動による基準地震動

(1)応答スペクトル手法による基準地震動 4/4

第972回審査会合資料5-1 P193 再掲

40

- 作成した基準地震動Ss-Dの模擬地震波が、日本電気協会(2008)に示される以下の適合度の条件を満足していることを確認した。
 - 目標とする応答スペクトル値に対する模擬地震波の応答スペクトル値の比が全周期帯で0.85以上
 - 応答スペクトル強さの比(SI比)が1.0以上

基準地震動Ss-Dの応答スペクトル比

応答スペクトル強さの比(SI比)

応答スペクトル	SI比 (周期0.1~2.5秒)
Ss-DH	1.00
Ss-DV	1.00

SILE:
$$\frac{\int_{0.1}^{2.5} S_{\nu}(T) dt}{\int_{0.1}^{2.5} \overline{S_{\nu}}(T) dt}$$

- SI:応答スペクトル強さ(減衰定数h=5%)
- $S_{\nu}(T)$:設計用模擬地震波の速度応答スペクトル(cm/s)
- $\overline{S_{\nu}}(T)$:目標とする設計用速度応答スペクトル(cm/s)

T:固有周期(秒)

5. 基準地震動の策定 5.3 基準地震動の策定のまとめ

基準地震動の策定のまとめ(最大加速度値)

■ 基準地震動の最大加速度値を以下に示す。

基準地震動の最大加速度値

令和3年6月16日ヒアリング資料7 P199 再掲

※表中のグラフは各基準地震動の加速度時刻歴波形[縦軸:加速度(cm/s²),横軸:時間(s)]

基準地震動の策定のまとめ(応答スペクトル) 1/2

令和3年6月16日ヒアリング資料7 P200 再掲

■ 策定した基準地震動の応答スペクトル(擬似速度)を以下に示す。

42

5. 基準地震動の策定 5.3 基準地震動の策定のまとめ

基準地震動の策定のまとめ(応答スペクトル) 2/2

令和3年6月16日ヒアリング資料7 P201 再掲

■ 策定した基準地震動の応答スペクトル(加速度)を以下に示す。

基準地震動の加速度応答スペクトルの比較

島根原子力発電所2号炉 基準地震動の変更が不要であることを説明する文書

	殿
2	1 1
	K/A
	転用
	± T ¥
	N
	烹

電安建第4号 令和3年9月21日

広島市中区小町4番33号

中国電力株式会社 代表取締役社長執行役員 清水希茂

基準地震動の変更が不要であることを説明する文書 島根原子力発電所2号炉

「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する 日発 基準地震 26 - 部改正に係る対応について(指示)(令和3年4月 下記のとおり,島根原子力発電所2号炉について, 動の変更が不要であることを説明する文書を提出いたします。 規則の解釈等の-信)」に基づき,

スペクトルに基づく地震動は基準地震動 S s – Dに包絡されることを確認した。 れた標準応答スペクトルと基準地震動Ssとの比較を行ったところ、標準応答 標記について「実用発電用原子炉及びその附属施設の位置、構造及び設備の基 26日発信)」に基づき、弊社島根原子力発電所2号炉について、新たに制定さ 準に関する規則の解釈等の一部改正に係る対応について(指示)(令和3年4月

このため, 島根原子力発電所2号炉は, 改正後の解釈を適用しても基準地震動 を変更する必要はないと考える。 標準応答スペクトルに基づく地震動と s-D の比較結果 島根原子力発電所2号炉 基準地震動S (添付資料)

以上

-Dの比較結果 S 標準応答スペクトルに基づく地震動と基準地震動S 島根原子力発電所2号炉

Ω S 標準応答スペクトルに基づく地震動が, 島根原子力発電所2号炉の基準地震動S に包絡されることを確認した。

基準 いる。島根原子力発電所の解放基盤表面は Vs=1520m/s であることから,標準応答スペ ※標準応答スペクトルはせん断波速度 Ns=2200m/s 以上の地震基盤相当面にて定義されて クトルに対し地震基盤相当面から解放基盤表面までの地盤補正を考慮したうえで、 s-Dと比較した。 地震動S

標準応答スペクトルの地盤補正方法

Dの地下構造モデルによる地震基盤相当面(Ns=2730m/s 層※上面)での引戻し波との応答 (※鉛直方向については,水平方向のそれぞれの Vs に対応する Vp を有する層とする。) 解放基盤表面(Ns=1520m/s[※])で策定された基準地震動SsーDと、基準地震動Ss スペクトル比を求め、これを標準応答スペクトルに乗ずることで地盤補正を考慮する。

		連	屋屋	S波	P波		減衰定	(%)
	層番号	(m	(E	速度	速度	密度 (L*/m³)	hs	μ _Ρ
解放基盤表面		-10		(m/s)	(m/s)	\N8/ 111 /	h(f)	h(f)
	1	0- FC-	14	1520	3240	2500	$12.3f^{-0.733}$	31.1f ^{-0.733}
	2	47	116	1900	3860	2570	6.53f ^{-0.463}	13.5f ^{-0.463}
	3	-140	32	2100	4150	2490	11.4f ^{-0.739}	16.9f ^{-0.739}
	4	-016	43	1770	3800	2560	13.0f ^{-0.817}	13.9f ^{-0.817}
	5	- 21.5	130	2530	5220	2680	3.81f ^{-0.363}	4.27f ^{-0.363}
地震基盤相当面	9	040	610	2190	4350	2650	2.51f ^{-0.497}	2.70f ^{-0.497}
	7	-1510	555	2730	5160	2640	4.73f ^{-0.920}	4.84f ^{-0.920}
	8		530	3020	5220	2620	0.250	0.125
	6	-16000	13960	3570	6180	2720	0.185	0.091
	10	-38000	22000	3870	6700	2800	0.125	0.063
	11	0000	8	4510	7800	3100	0.100	0.050

島根原子力発電所の地下構造モデル

