

		70.2000 210	24のこれが中で国の人に開系に対するペング ―ンノ和木(木/	
中間とりまとめから得	られた知見等を踏まえた論点			スクリ
事故分析の検討から	知見等を踏まえた論点	確認の対象	検討結果の概要(BWRを対象に検討したもの)	ーニン
得られた知見等				グ結果2
(5) 水素爆発	① SA 時の原子炉建屋	①-1 SA 時	【基準】	IN
時の映像及び損	内の水素量、分布・拡	の原子炉建	①一1 水素爆発による原子炉格納容器、原子炉建屋等の損傷を防止するための設備を設けること	
傷状況から、原	散、滞留時間に着目し	屋内の水素	を要求している(設置許可基準規則第52条等)が、水素量、分布・拡散、滞留時間に関す	
子炉建屋の破損	た、水素爆発対策及び	量、分布・	る要求は設定していない。	
の主要因は、原	原子炉建屋の健全性へ	拡散、滞留	【審査】	
子炉建屋内に滞	の影響確認が必要か。	時間に着目	①-1 原子炉建屋等の損傷を防止するための設備である静的触媒式水素再結合装置 (PAR) の設	
留した水素の爆		した、水素	計に当たって、一定の条件下で、原子炉格納容器内で発生した水素がトップヘッドフランジ	
燃(水素濃度 8%		爆発対策	等のシール材から漏えいすることを想定し、原子炉建屋での水素濃度評価を行い可燃限界以	
程度)によって			下となること等を確認している。	
生じた圧力によ			【対応案】	
ることを示唆し			①-1 SA時の温度上昇に伴う金属の変形やSA環境下(温度、水蒸気、放射線等)における電	
ている。			線貫通部のシール材の劣化等に起因する漏えいの有無、漏えい経路、漏えい量、滞留箇所	
			等に関する知見を収集する。	
	② 3号機の水素爆発	2-1 可燃	【基準】	IN
	時の火炎や爆煙につい	性ガスの種	②-1 原子炉格納容器内については、水素を含む可燃性ガスの発生について考慮することを要求	
	ては、水素以外の可燃	類、量	している(設置許可基準規則第37条)が、原子炉建屋内については、水素以外の可燃性ガ	
	性ガスが寄与している		スに対して具体的な要求は設定していない。	
	可能性が高く、可燃性		【審査】	
	ガスの種類、量の把握		②- 1 原子炉格納容器内で発生するその他の可燃性ガス(一酸化炭素等)の発生量が水素発生量	
	と規制上の位置付けの		に対して小さくなることを確認している。原子炉建屋内については、規制要求がないため審	
	整理が必要か。		査では確認していない。	
			【対応案】	
			②-1 原子炉格納容器内で発生し漏えいしてくる原子炉建屋内の可燃性ガスの量、挙動等につい	
			て更なる検討を行う必要がある。また、原子炉格納容器内での Zr-水反応等による水素発生	
			以外に、ケーブル材料、電線貫通部やトップヘッドフランジのシール材、有機系保温材等の	
			熱分解、放射線分解による可燃性ガスの発生について、調査分析等を実施する。	
(9) 3号機の	① 水素の拡散や滞留	①-1 水素	○ 論点(5)①参照	IN
ベント成功回数	等の挙動の検討が必要	の拡散や滞		
は2回。このべ	か。	留等の挙動		
	事では、「は、「は、「は、「は、「は、「は、「は、「は、「は、「は、」」」」」。」。」、「は、「は、「は、「は、「は、「い、」」」。」、「は、「い、「い、」」。」。」、「い、「い、「い、「い、「、「、 に、「、」」。」。」。」。」、「、「、「、「、」」。」。」、「、「、「、」、「、「、」、「、「、」、「、「、」、「、「、」、「、「、」、「、、「、	中間とりまとめから得られた知見等を踏まえた論点 事故分析の検討から 得られた知見等 (5) 水素爆発 時の映像及び損 傷状況から、原 子炉建屋の破損 の主要因は、原 子炉建屋内に滞留した水素の爆燃(水素濃度 8% 程度)によって生じた圧力によることを示唆している。 (2) 3号機の水素爆発 時の火炎や爆煙については、水素以外の可燃性ガスが寄与して可燃性ガスが高く、可能性が高く、可能性が高く、可能性が高く、可能性が高く、量の把握と規制上の位置付けの整理が必要か。 (9) 3号機のベント成功回数 (9) 3号機のベント成功回数 (1) 水素の拡散や滞留等の挙動の検討が必要	中間とりまとめから得られた知見等を踏まえた論点	中間とりまとめから得られた知見等を踏まえた論点 帯級がの後続から 帰られた知見等 (5) 水素爆発 所の映像及び損 傷状況から、原 子炉建屋の破損 の影響確認が必要か。 (6) 水素爆発対策及び の手野健屋内に滞 留した水素の爆 然 (水素濃度 的 程度) によって 生じた圧力によ ることを示唆し ている。② 3号機の水素爆発 時の火炎や爆煙については、水素以外の可燃性 力力が容与している。 (2) 3号機の水素爆発 性ガスが寄与している。可能性が高く、可燃性 ガスの種類、量の地盤 と規制上の位置付けの 整理が必要か。 (9) 3号機の ベント成功回数 (9) 3号機の (9) 3号機の ベント成功回数 (1) 水素の拡散や滞 (1) 水素の拡散や滞 (1) 水素の拡散や滞 (1) 小素の拡散や滞 (1) 小素が (1) 小素の拡散や滞 (1) 小素の拡散や滞 (1) 小素の拡散や滞 (1) 小素の拡散や滞 (1) 小素の拡散や滞 (1) 小素の大器の対象が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表

[「]令和3年度第1回原子力規制委員会 資料2から抜粋

² IN:検討を継続するもの 「資料48-5 作業Tスクリーニングフロー図」の【ステップ2】へ OUT: 既に規制対応が図られているもの

³ 詳細は「資料48-2 水素防護に関する知見について((5)及び(9)関係)(修正版)」参照。

中間とりまとめから得 事故分析の検討から 得られた知見等	られた知見等を踏まえた論点 ¹ 知見等を踏まえた論点	確認の対象	検討結果の概要(BWRを対象に検討したもの)	スクリ ーニン グ結果 ²
ントによって 4 号機原子炉建屋 内に水素が流入 し、40 時間にわ たって水素 留した後、爆発 に至った。	② 水素が滞留した原子炉建屋等における SA 対策や復旧作業等の安全確保の検討が必要か。	②-1 水素 の滞留を踏まえた建屋 内作業の安全確保	【基準】 ②-1 重大事故等対処及び復旧作業にあたって、運転・対処要員の防護に関しては、放射線防護や有毒ガス対策が要求されているが、原子炉建屋等における水素滞留等による環境条件についての具体的な要求は設定していない。(SA技術的能力審査基準)。 【審査】 ②-1 一定の条件の下で、原子炉格納容器内で発生した水素が原子炉建屋に漏えいすることを想定し、原子炉建屋内の水素濃度が可燃限界に至らないこと等を確認していることから、水素が滞留した環境条件での作業の成立性は確認していない。 【対応案】 ②-1 上記(5)①-1の対応案の結果を踏まえ、検討する。原子炉建屋への水素漏えいや原子炉建屋内での水素の挙動について不確かな部分もあるため、SA対策の成立性を確認する前提の環境条件について検討の余地がある。	IN
	③ 原子炉建屋内の水 素濃度の検知の必要 性、水素が滞留した場 合の水素濃度の低減対 策、人の立ち入りを伴 う SA 対策等との整理 及び水素漏えいの回避 対策の検討が必要か。	③ - 1 水素濃度の検知③ - 2 水風③ - 2 水風対策③ - 3 り立ち入り水の立ち入り水の温避	論点(9)②の結果を踏まえて検討する。SA時の爆発による機器・建物の損壊に関連して、水素濃度とその他の環境条件と爆発のエネルギーについて、実験等により検討する。	IN
	④ BMR トップヘッドフランジへの保護対策は PCV の他の箇所からの水素漏えいの誘因とならないか。	④-1 予期 せぬ部位か らの水素漏 えい	【基準】 ④-1 水素漏えい箇所について具体的な要求は設定していない。 【審査】 ④-1 一定の条件の下でのトップヘッドフランジ以外の箇所から水素が漏えいすることも考慮して、対策の成立性や自主対策による悪影響がないことを確認している。 【対応案】 ④-1 原子炉建屋への水素の漏えいや原子炉建屋内での水素の挙動については不確かな部分もあるため、どのような条件のもとで対策の成立性や自主対策による悪影響がないことを確認するか更なる検討を行う必要がある。また、トップヘッドフランジ等のシール材改良やウェル注水を行った場合における、改良部分以外又は改良部分における他要因でのリークの可能性、想定されるリークパスについて、調査・検討する。	IN

	中間とりまとめから得	られた知見等を踏まえた論点			スクリ
	事故分析の検討から	知見等を踏まえた論点	確認の対象	検討結果の概要(BWRを対象に検討したもの)	ーニン
	得られた知見等				グ結果2
	(1) 2号機耐	① 2号機及び3号機	①-1 耐圧	【基準】	ОИТ
	圧強化ベント	の事象進展(原子炉格	強化ベント	①-1 原子炉格納容器の隔離機能を目的としたものではなく、例えば、配管の窒素充填を目的と	
	は、ベントライ	納容器(PCV)の設計	が有効に動	したものなど十分低い圧力に設定されたラプチャーディスクを使用する場合やラプチャーデ	
	ンの系統構成は	圧力未満が継続)では	作しなかっ	ィスクを手動で強制的に破壊する装置を設置する場合を除き、ラプチャーディスクを設置す	
	完了していた	過圧破損対策となる耐	<i>t</i> =	る場合はバイパス弁を併置することを要求している。(設置許可基準規則第50条等)	
	が、ラプチャー	圧強化ベントは有効に	①-2 事故	①-2 PRA 等により、有意な頻度又は影響をもたらす格納容器破損モードが抽出された場合に	
	ディスクの作動	動作しなかった。事故	シーケンス	は、想定する格納容器破損モードとして追加することを要求している。(設置許可基準規則	
	圧力 (528kPa	シーケンスグループの	グループの	第37条)	
	[abs](原子炉	代表性と重大事故等	代表性		
	格納容器の設計	(SA) 対策 (PCV の過		①-1 耐圧強化ベントラインにはラプチャーディスクが設置されないこと、また、格納容器圧力	
	圧力の 1.1 倍))	圧破損対策及び過温破		逃がし装置の配管に設けられているラプチャーディスクについては、その系統内の窒素置換	
	に到達せず、ベ	損対策)の確認が必要		のために設置されているものであり、動作圧力は十分低く設定されていることを確認してい	
	ントは成功しな	か。		გ.	
	かった。			①-2 有効性評価*1におけるシーケンス選定においては、耐圧強化ベントや格納容器圧力逃がし	
ベ				装置に期待しない PRA に基づいて評価する事故シーケンスを選定していることから、耐圧強	
ン				化ベント及び格納容器圧力逃がし装置の動作成否が事故シーケンスグループの選定に影響を トラスターレスが、大きなことなる。	
 				与えることはないと考えられる。	
機				※1 SA対策やAM対策実施前の状態に対して、SA対策の有効性を評価するもの。	
能4				【対応案】 ①−1 なし。(ラプチャーディスクを設置する場合はバイパス弁を併置することを既に要求して	
				()ー 1 なし。(ブラデヤーディスクを設置する場合はバイバス弁を併置することを既に安米している。)	
				①-2 なし。(事故シーケンスグループの選定に影響を与えることはない。)	
	(2) 耐圧強化	① 本事象は、設計基	①-1 DB配	【基準】	IN
	ベントラインの	準事故対処設備 (DB)	管にベント	①-1 格納容器圧力逃がし装置の配管等は、他の系統・機器(例えば SGTS) や他号機の格納容器	
	非常用ガス処理	配管(非常用ガス処理	配管が接続	圧力逃がし装置等と共用しないことを要求している。ただし、工場等内の他の設備に対して	
	系配管への接続	系 (SGTS) 配管) にア	されていた	悪影響を及ぼさない場合、共用することができる。(設置許可基準規則第50条等)	
	により、自号機	クシデントマネジメン	①-2 事故	①-2 格納容器圧力逃がし装置の隔離弁は、人力により容易かつ確実に開閉操作ができることを	
	非常用ガス処理	ト(AM)対策配管(ベ	時に2つの	要求している。(設置許可基準規則第50条等)	
	系及び原子炉建	ント配管)が接続され	系統を隔離	①-3 設計基準対象施設と重大事故等対処設備を接続、兼用させる設計の許容を規定していない	
	屋内へのベント	ていたこと、事故時に	する弁が	が、機能の異なる設備を接続、兼用させる設計としては、計測制御系統施設の一部を安全保	
	ガスの逆流、汚	2つの系統を隔離する	fail-open 設	護回路と共用する場合(設置許可基準規則第24条等)、炉心損傷防止目的の冷却設備と格	
	染及び水素流入	弁が fail-open 設計で	計であった	納容器破損防止目的の設備(設置許可基準規則第49条等)と兼用する場合がある。 ************************************	
	による原子炉建	あったことによる。こ	①-3 重要	【審査】	
	屋の破損リスク	のような重要度又は機	度又は機能		

 $^{^4}$ 「資料 48-3 ベント機能に関する知見について ((1),(2),(3) 及び (4) 関係)」参照

中間とりまとめから得	られた知見等を踏まえた論点			スクリ
事故分析の検討から 得られた知見等	知見等を踏まえた論点	確認の対象	検討結果の概要(BWRを対象に検討したもの)	ーニン グ結 果 ²
の拡大が生じた。	能の異なる設備を接続、兼用させる設計、 運用の確認が必要か。	の異なる設 備を接続、 兼用させる 設計、運用	 ①-1/①-2 耐圧強化ベント配管、格納容器圧力逃がし装置の配管、非常用ガス処理系の配管については接続部が存在するものの、新規制基準適用後はベントを実施するライン以外への流れを阻止するための設計と運用(隔離弁の閉止)としていることを確認している。 ①-3 その他の重要度の異なる系統の接続や兼用、本来の用途以外の用途として重大事故等に使用する場合であっても、重大事故等対処設備としての必要な機能を有効に発揮するよう、かつ、他の設備に悪影響を及ぼさないよう設計・運用することを確認している。 【対応案】 ①-1 耐圧強化ベント配管内のガスの滞留の可能性が排除できるか、耐圧強化ベント系の存続の是非ついて検討する。 ①-2 なし。(格納容器圧力逃がし装置について人力により切り替えられるよう既に要求しいている。) ①-3 設計基準対象施設と重大事故等対処施設の接続、兼用については、規定上明確にする必要があるかについて今後の検討課題とする。 	
	② 仮に接続、兼用を 許容する場合は重要度 又は機能の異なる配管 の接続による影響確認 (逆流や汚染の拡大に よる事故時線量評価及 び放射線防護への影響 確認並びに系統機能へ の影響確認) が必要 か。	② - 1 接続 接 接	○ 論点(2)①参照	IN
(3) 1/2号 機共用排気筒の 内部に排気筒頂部までのは、 管がはでいるがでは、 でのででは、 でのでいでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでで、 とのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でので、 での	① PCV ベントの設計における排気筒の構造(排気経路)やベントガスの組成、挙動等に対する設計考慮の確認が必要か。	①-1 排気 筒の構造 (排気経路) ①-2 ベントガスの組成、挙動等	 【基準】 ① 1 ベントに関して、排気筒の構造や排気経路の具体的な構造などに対するに関する規制要求はない。 ① 2 格納容器圧力逃がし装置は排気中に含まれる放射性物質を低減するものであること(設置許可基準規則第50条等)、格納容器破損防止対策に係る有効性評価においては「放射性物質による環境への汚染の視点も含め、環境への影響をできるだけ小さくとどめるものであること」などを要求している(SA技術的能力審査基準)。 【審査】 ① 1 炉心損傷後の格納容器ベントに関しては排気筒とは独立した排気配管を有する格納容器圧力逃がし装置を用いることを確認しており、排気筒を経由しない排気経路であること確認している。 ① 2 炉心損傷前の格納容器ベントについては、耐圧強化ベント系も使用することから、耐圧強化ベント系を使用した場合の敷地境界における線量評価を行っており、5mSvを下回ることを 	IN

中間とりまとめから得	中間とりまとめから得られた知見等を踏まえた論点					スクリ
事故分析の検討から 得られた知見等	知見等を踏まえた論点	確認の対象	検討結果の概要(BWRを対象に検討したもの)	ーニン グ結 果 ²		
			確認している。格納容器破損防止対策に係る有効性評価においては、基準要求である「放射性物質による環境への汚染の視点も含め、環境への影響をできるだけ小さくとどめるものであること」を確認するため、格納容器圧力逃がし装置を用いたベント実施時に 0s-137 の放出量が 100TBq を下回ることを確認している。 【対応案】 ① 1 配管については、最高使用圧力・最高使用温度・内部流体の平均流速等をもとにした配管設計・強度設計が行われているが、流路構造による影響を検討する。 ① 2 1/2号排気筒下部で高線量部分が観測されたのは、フィルタのない耐圧強化ベント系から排出された放射性エアロゾルが滞留した可能性があるので、耐圧強化ベント実施のタイミングを含めた耐圧強化ベントの使用の是非について検討する。			
	② 高い汚染が確認されたことから、事故時線量評価及び放射線防護の観点からの設計確認が必要か。	②-1 事故 時線量評価 及び放射線 防護	【基準】 ②-1 想定される重大事故等が発生した場合において確実に SA 設備を操作できること、SA 設備の操作や復旧作業が行うことができるよう適切な放射線防護対策を講じることなどを要求している(設置許可基準規則第43条)。格納容器圧力逃がし装置については、炉心の著しい損傷時においても、現場において、人力で格納容器圧力逃がし装置の隔離弁の操作ができるよう、遮蔽又は離隔等の放射線防護対策がなされていることを要求している(設置許可基準規則第50条)。	ОЛТ		
			【審査】 ②-1 想定される重大事故等が発生した場合においても重大事故等対処設備の操作や復旧作業を行うことができるよう、放射線量の高くなるおそれの少ない場所への設置や遮蔽の設置等により遠隔で操作可能な設計とすることを確認している。具体的には、炉心損傷時においても、現場において、人力で格納容器圧力逃がし装置の隔離弁の操作ができるよう、遮蔽や離隔等の放射線防護対策がなされていることなどを確認している。なお、線量評価及び放出量評価については、上記論点(3)①のとおり。 【対応案】 ②-1 なし。(事故時線量評価を行い、放射線防護対策をすることを既に要求している。)			
(4) サプレッ ツラン・イン・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・	① SA 時における漏えい経路への追加は必要か。	① 1 たい はいます ではいます ではいます ではいます ではいます できまれる できまれる できまる かい はい はい	【基準】 ① 1 格納容器破損防止対策に係る有効性の判断基準として、「放射性物質による環境への汚染の視点も含め、環境への影響をできるだけ小さくとどめるものであること」としている(許可基準規則第37条)。その有効性評価に当たっては Cs-137 の放出量が 100TBq を下回っていることを確認するとしている (SA 有効性評価ガイド)。 【審査】 ① 1 真空破壊弁は正常に動作するものとして取り扱っており、その機能が喪失したものとした審査は行っていない。なお、炉心損傷後の放出量評価においてはドライウェルから格納容器ベントした場合の評価も行っており、格納容器ベント実施時におけるサプレッション・プールのスクラビング効果に期待しない場合の評価となっている	IN		

	中間とりまとめから得	られた知見等を踏まえた論点「			スクリ
	事故分析の検討から	知見等を踏まえた論点	確認の対象	検討結果の概要(BWRを対象に検討したもの)	ーニン
	得られた知見等		T = 15.45.41	Ft 1 shows	グ結果 ²
	せずに原子炉格		原子炉格納		
	納容器外に放出		容器外に放		
	される可能性が ある。		出)	より故障する可能性に関する設計の考え方等ついて、ATENA・事業者・バルブメーカから知見を収集する。	
	<i>න</i> තං	② 事故時に真空破壊 ② 事故時に真空破壊	②-1 真空		IN
		全 争成時に其至城場 弁(VB)が閉止できな	②一	【埜学】 ②-1 真空破壊弁について圧力の過度の上昇を適切に防止する性能を有し、必要な箇所に設ける	1/4
		ナ (M) が閉止できな くなる可能性の規制上	吸場弁が闭 止できなく	②一 真空破場弁について圧力の過度の工弁を適切に防止する性能を有し、必要な固別に設ける ことを要求している。(技術基準規則第57条等)	
		の位置付けの整理が必	なる可能性	ことで安水している。(技術基準規則第37余等) ②-2 真空破壊弁の耐久性に関する規制要求はない。	
		要かっ。また、VBの耐久	②一2 真空	⑥ 2 臭宝城場弁り側の住に関する規制安水はない。 【審査】	
		性の要求は必要か。	破壊弁の耐	【毎旦】 ②-1/②-2 真空破壊弁は単純構造かつ静的なものであり、一般的に信頼性が高い機器とし	
		1107安小6纪安/15	久性	で取り扱っている。	
			八江	「対応案】	
				②-1/②-2 なし。(真空破壊弁について圧力の過度の上昇を防止する性能を既に要求して	
				いる。)ただし、SA時の環境下で真空破壊弁が閉止できなくなる(故障する)可能性に関	
				する設計の考え方等について、ATENA・事業者・バルブメーカから知見を収集する。	
		③ サプレッションチ	③-1 ベン	○ 論点(4)②の結果を踏まえて検討する。	IN
		ェンバ(S/C)スクラ	トガスによ		
		ビングを経由しないべ	る事故時線	○ これに関連して、SA時の環境(温度・圧力・水蒸気・放射線等)を加味した原子炉格納容器	
		ントガスによる事故時	量評価	の漏えい率について、ATEMA・事業者から知見を収集する。	
		線量評価への影響確認			
		が必要か。			
	(6) 主蒸気逃	① 全交流動力電源喪	①-1 全交	【基準】	OUT
	がし安全弁の逃	失(SBO)条件下での	流動力電源	①-1 原子炉冷却材圧力バウンダリを減圧するために必要な設備を要求しており、常設直流電源	
	がし弁機能の不	主蒸気逃がし安全弁	喪失時の主	系統喪失時においても、減圧用の弁を作動させ原子炉冷却材圧力バウンダリの減圧操作が行	
	安定動作(中途	(SRV)の逃がし弁機	蒸気逃がし	えるよう、手動設備又は可搬型代替直流電源設備の配備すること、減圧弁が想定される重大	
減	開閉状態の継続	能の機能維持について	安全弁の逃	事故等が発生した場合の環境条件において確実に作動することを要求している。(許可基準	
圧	と開信号解除の	は、規制上の位置付け	がし弁機能	規則第46条等)	
機	不成立)が確認	の整理が必要か。	の機能維持	審查	
能	された。			①一1 主蒸気逃がし安全弁の駆動機構は全交流電源喪失時でも動作可能なように常設代替直流電	
				源設備からも受電可能な設計とするとともに、常設直流電源喪失時に備えて可搬型直流電源	
				設備からの受電も可能な設計としていることを確認している。また、主蒸気逃がし安全弁の	
				各部位の温度が、主蒸気逃がし安全弁の機能維持が確認されている温度を超えないことを解	
				析により確認している	

⁵ ドライウェル(D/W)=ウェットウェル(W/W)となると D/W から W/W への蒸気流入が阻害され、圧力抑制能力を失うのではないか

⁶「資料48-4 減圧機能に関する知見について((6)、(7)及び(8)関係)」参照

	中間とりまとめから得られた知見等を踏まえた論点		10-10-10 o lorge ()	スクリ
事故分析の検討から 得られた知見等	知見等を踏まえた論点	確認の対象	検討結果の概要(BWRを対象に検討したもの)	ーニン グ結 果 2
			【対応案】 ①-1 なし。(減圧弁が想定される重大事故等が発生した場合の環境条件において確実に作動することを既に要求している。)	
	② SRV 逃がし弁機能の中途開閉状態は、弁の開閉状態は、弁の開信号の解除圧力以下になず原因は不明されておらがにはバウンダルがらの小規模漏えいの場がであり、破損等による他のバウンがととが必要か。	②-1 バウ ンダリから の小規模漏 えい	【基準】 ② − 1 炉心損傷防止対策において必ず想定する事故シーケンスグループとして全交流動力電源喪失を含めることを要求している。また、有効性評価においては、複数の対策がある場合には、各々の対策について有効性を評価することを基本としており、過去の審査経験を踏まえ、当該事故シーケンスグループを、原子炉隔離時冷却系の機能喪失要因(直流電源の枯渇、直流電源の故障、RCIC の故障、SRV の開固着)に着目して、4つの事故シーケンスグループに分割し、それぞれ有効性を評価することを求めている。(許可基準規則第37条)【審査】 ② − 1 主蒸気逃がし安全弁の再閉失敗(開固着)を小規模漏えいとして取り扱っており、有効性評価においては、TBPシーケンス(全交流電源喪失+SRVの再閉失敗)に対して、対策の有効性を確認している。 【対応案】 ② − 1 なし。(原子炉冷却材圧力バウンダリの機能維持及び中小破断LOCAの事故シーケンスを既に要求している。) ただし、主蒸気逃がし安全弁について、故障原因の究明及び重大事故等状況下での能力について、ATENA・事業者・バルブメーカから知見を収集する。	IN
	③ 本事象は、計装用 圧縮空気系の隔離によ るもの(PCV 隔離信号 による隔離を含む)だ が、他の機器において も窒素供給が停止し、 同様の不安定動作の状 況になるのか精査が必 要か。	③ - 1 窒素 供給が停様の し、同様の 不安定動作 の状況にな るのか	論点(6)①参照	ОЛТ
	④ 計装用圧縮空気系 (配管及び弁)等の駆 動源の機能維持の規制 上の位置付けの整理が 必要か。	④-1 計装 用圧縮空気 系(配管及 び弁)等の 駆動源の機 能維持	【基準】 ④-1 原子炉冷却材圧力バウンダリを減圧するために必要な設備を要求しており、減圧用の弁が空気作動弁の場合には、可搬型コンプレッサー又は窒素ボンベを配備すること、減圧用の弁が想定される重大事故等が発生した場合の環境条件において確実に作動すること等を要求している。(許可基準規則第46条等) 【審査】 ④-1 主蒸気逃がし安全弁については、SA 条件時の背圧も考慮した上で、7 日間動作可能となるよう窒素ガスボンベを整備していることを確認している。その他の窒素を駆動源とする重大	OUT

中間とりまとめから得	ようなに対します。 ようれた知見等を踏まえた論点 ¹			スクリ
事故分析の検討から 得られた知見等	知見等を踏まえた論点	確認の対象	検討結果の概要(BWRを対象に検討したもの)	ーニン グ結果 ²
			事故等対処設備(AO弁等)についても、手動で操作可能とするか、動作に必要な窒素ガスボンベを整備していることを確認している。 【対応案】 ④-1 なし。(計装用圧縮空気系等の駆動源は、想定される重大事故等が発生した場合の環境条	
(7) 主蒸気逃がし安全弁の安全弁機能の作動開始圧力の低下が確認された。	① SA 条件下では様々な機器が設計基準事故の条件下とは異なる挙動をしている。SA 時の機器の挙動に関する知見の集積が必要か。	①-1 設計 基準事故の 条件下とは 異なる機器 の挙動	件において確実に作動することを既に要求している。) 【基準】 ①-1 重大事故等対処設備については、重大事故等が発生した場合における環境(温度、放射線、荷重等)において必要な機能を有効に発揮することを要求している。(許可基準規則第43条等) 【審査】 ①-1 主蒸気逃がし安全弁には炉心損傷後の過熱蒸気が通過することから、これを考慮した場合においても、安全弁の機能維持が確認されている温度を超えないことを解析で確認している。また、弁の環境改善のため格納容器スプレイを実施する手順としていることを確認している。	IN
			【対応案】 ①-1 なし。(重大事故等が発生した場合における環境において必要な機能を発揮することを既に要求している。) ただし、SA時の環境下での機器(例えば、主蒸気逃がし安全弁) の動作に関する設計の考え方等について、ATENA・事業者・バルブメーカから知見を収集する。	
	② AM 対策の圧力計を 含めて、SA 条件下での 計測機器の信頼性につ いて確認が必要か。	②一1 計測 機器の信頼 性	【基準】 ②-1 重大事故等対処設備については、重大事故等が発生した場合における環境(温度、放射線、荷重等)において必要な機能を有効に発揮することを要求している(許可基準規則第43条等)。 【審査】	IN .
			②-1 圧力計、水位計等の計測機器についても、重大事故等が発生した場合における環境(温度、放射線、荷重等)における信頼性について確認しており、さらに、重大事故等の発生により計測器が故障しパラメータを計測することが困難となった場合においても、必要なパラメータを推定できるように代替パラメータを設定していることを確認している。 【対応案】 ②-1 なし。(重大事故等が発生した場合における環境において必要な機能を発揮することを既に要求している。)ただし、重大事故等状況下での計測機器の能力について、ATENA・事業	
(8) 自動減圧 系が設計意図と 異なる条件の成 立 (サプレッションチェンバ圧	① 自動減圧系 (ADS)及びラプチャーディスク (RD) の動作については、SA 時の動作に関する設計条件の確認並	①-1 自動 減圧系の動 作	者・計測機器メーカから知見を収集する。 【基準】 ①-1 主蒸気逃がし安全弁の自動減圧機能の強化として、原子炉水位低かつ低圧注水系が利用可能な状態で、逃がし安全弁を作動させる減圧自動化ロジックを設けること(BWR の場合)を要求している。(許可基準規則第46条等) ①-2 (1)①参照	IN

中間とりまとめから得	られた知見等を踏まえた論点			スクリ
事故分析の検討から 得られた知見等	知見等を踏まえた論点	確認の対象	検討結果の概要(BWRを対象に検討したもの)	ーニン グ結 果²
力の上昇による	びに事故シーケンスグ	①-2 ラプ	【審査】	
低圧注水系ポン	ループ及びSA対策への	チャーディ	①-1 主蒸気逃がし安全弁の自動減圧機能(ADS)が喪失した場合の対策として代替自動減圧機	
プの背圧上昇を	影響確認が必要か。	スクの動作	能(原子炉水位低信号と低圧注水系の作動信号の and 条件で時間遅れをもって作動)を整備	
誤検知するこ			している。また、原子炉停止機能喪失時など ADS(代替ロジックでの作動を含む。)の作動回	
と)で作動した			避が必要な場合には、作動を阻止する手順であることを確認している。	
ことにより原子			①-2 (1)①参照	
炉格納容器圧力			【対応案】	
がラプチャーデ			①-1 なし。ただし、ADSの作動信号としている検出器の設置位置や設定値等によっては、意図	
ィスクの破壊圧			せず動作条件が成立することが有り得ることから、ADS の作動信号に関する設計の考え方	
力に達し、ベン			(機器の破損防止のためのインターロックがSA時の操作に与える悪影響の回避) につい	
トが成立した。			て、ATENA・事業者・計測機器メーカから知見を収集する。	
			①-2 なし。(ラプチャーディスクを設置する場合はバイパス弁を併置することを既に要求して	
			いる。)	
	② 3号機のPCV圧力の	②-1 大LOCA	【基準】	<i>out</i>
	上昇には水素等が有意	等を伴わず	②-1 事故シーケンスグループの選定について、必ず想定する格納容器破損モードとして水素燃	
	に寄与している。従	にPCV圧力の	焼を選定すること、及び個別プラントの内部事象に関する PRA 又はそれに代わる方法で評	
	来、PCV ベントは大	上昇に水素	価を実施し抽出した格納 容器 破損モードを想定することを要求している(許可基準規則第	
	LOCA 等を想定していた	等が有意に	37条等)。	
	と考えられるが、大	寄与した場	【審査】	
	LOCA 等を伴わずに PCV	合の事故シ	②-1 格納容器破損防止対策の有効性評価として、大LOCAシナリオの他、過渡事象が起因となる	
	圧力の上昇に水素等が	ーケンスグ	シナリオについても確認しており、一定の条件の下で整備した対策に有効性があるかを確	
	有意に寄与した場合の	ループへの	認している。	
	事故シーケンスグルー	影響	【対応案】	
	プへの影響確認が必要		②-1 PCV 圧力の上昇に水素等が有意に寄与するシナリオが事故シーケンスグループの選定に影	
	か。		響するか、PCV 圧力の上昇の要因として水素等を明にする必要があるか、今後の検討課題	
			とする。	