島根原子力多	発電所2号炉 審査資料
資料番号	EP-080 改 05(比)
提出年月日	令和3年5月10日

島根原子力発電所2号炉

気象資料の変更に伴う 島根原子力発電所原子炉設置許可申請書 の変更について

比較表

令和3年5月 中国電力株式会社

まとめ資料比較表〔気象資料の変更に伴う被ばく線量の評価結果について〕

女川原子力発電所2号炉(令和元年10月3日)	まとめ資料比較表〔気象資料の変更に伴う被ばく線 東海第二発電所(平成 30 年 9 月 18 日)	島根原子力発電所 2 号炉	備考
タ/4/8/1 7 7 7 7 2 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7	水(南州—九电/川(丁/A 00 丁 0 / 1 0 日)	参考資料1	, m, ,
気象資料の変更に伴う被ばく線量の評価結果について		気象資料の変更に伴う被ばく線量の評価結果について	
気象資料の変更に伴い,平常運転時における一般公衆の受け		気象資料の変更に伴い,平常運転時における一般公衆の受け	
る線量評価と設計基準事故時の線量評価の記載が変更となる。		る線量評価と設計基準事故時の線量評価の記載が変更となる。	
評価に当たっては,2012年1月から2012年12月までの気象資料を		評価に当たっては、 <u>2009年1月から2009年12月</u> までの気象資料を	・気象期間の相違
用いて、各種指針に基づき線量評価を実施した。具体的な評価		用いて、各種指針に基づき線量評価を実施した。具体的な評価	【女川2号】
結果について以下に示す。		結果について以下に示す。	
1. 平常運転時における一般公衆の受ける線量評価		1. 平常運転時における一般公衆の受ける線量評価	
「発電用軽水型原子炉施設周辺の線量目標値に関する指		「発電用軽水型原子炉施設周辺の線量目標値に関する指	
針」に基づき, 気体廃棄中の希ガスからのγ線, 液体廃棄物		針」に基づき、気体廃棄物中の希ガスからのγ線、液体廃棄	
中に含まれる放射性物質(よう素を除く)及び気体廃棄物中		物中に含まれる放射性物質(よう素を除く)及び気体廃棄物	
及び液体廃棄物中に含まれるよう素に起因する実効線量を,		中及び液体廃棄物中に含まれるよう素に起因する実効線量	
「発電用軽水型原子炉施設周辺の線量目標値に対する評価指		を, 「発電用軽水型原子炉施設周辺の線量目標値に対する評	
針」に従って評価する。		価指針」に従って評価する。	
		なお、1号炉の線量評価については、1号炉が廃止措置段	・廃止措置号炉に関する
		階(島根原子力発電所1号炉廃止措置計画認可申請書(平成	記載の相違
		29年4月19日付け,原規規発第17041912号をもって廃止措置	【女川2号】
		計画認可))であることから、島根原子力発電所原子炉設置	島根1号は炉廃止措
		変更許可申請書(1号及び2号原子炉施設の変更並びに3号	置段階であることによ
		<u> 炉の増設)(平成17年4月26日付け,平成15・12・18日原第</u>	る記載の相違
		3号をもって設置変更許可)の添付書類九「5. 平常運転時	
		<u>における一般公衆の受ける線量評価」における1号炉の線量</u>	
		<u>評価結果を用いる。</u>	
1.1 実効線量の計算方法		1.1 実効線量の計算方法	
女川2号炉の気象資料の変更に伴い,平常運転時における一		<u>島根2号炉</u> の気象資料の変更に伴い,平常運転時における	
般公衆の受ける実効線量について、線量評価指針及び気象指		一般公衆の受ける実効線量について、線量評価指針及び気象	
針に基づき計算している。		指針に基づき計算している。	
(1) 気体廃棄物中の放射性希ガスのγ線に起因する実効線量		(1) 気体廃棄物中の放射性希ガスのγ線に起因する実効線量	
気体廃棄物中の希ガスによる実効線量の計算は、放射性		気体廃棄物中の希ガスによる実効線量の計算は、放射性	
雲からのγ線による外部被ばくを対象に行っている。計算		雲からのγ線による外部被ばくを対象に行っている。計算	
に当たっては、蒸気式空気抽出器及び換気系からの放出を		に当たっては、蒸気式空気抽出器及び換気系からの放出を	
連続放出、起動用真空ポンプからの放出を間欠放出とし、		連続放出,起動用真空ポンプからの放出を間欠放出とし,	
それぞれの放出モードにおける第1-1表の希ガスの年間放		それぞれの放出モードにおける第1-1表の希ガスの年間放	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成 30 年 9 月 18 日)	島根原子力発電所 2 号炉	備考
出量及びガンマ線実効エネルギーを用いて計算している。		出量及びガンマ線実効エネルギーを用いて計算している。	
気体廃棄物中の希ガスの濃度χ (x', y', z') (Bq/m³) は,		気体廃棄物中の希ガスの濃度χ (x', y', z') (Bq/m³) は,	
気象指針に規定される次の(1.1)式を用いて計算している。		気象指針に規定される次の(1.1)式を用いて計算している。	
$\chi (x', y', z') = \frac{Q}{2\pi \cdot \sigma_{y} \cdot \sigma_{z} \cdot U} \exp(-\frac{y'^{2}}{2\sigma_{y}^{2}})$ $\times \left[\exp\{-\frac{(z'-H)^{2}}{2\sigma_{z}^{2}}\} + \exp\{-\frac{(z'+H)^{2}}{2\sigma_{z}^{2}}\}\right] \cdot \cdot \cdot (1.1)$		$\chi(\mathbf{x}', \mathbf{y}', \mathbf{z}') = \frac{Q}{2\pi \cdot \sigma_{\mathbf{y}} \cdot \sigma_{\mathbf{z}} \cdot \mathbf{U}} \exp(-\frac{\mathbf{y}'^{2}}{2\sigma_{\mathbf{y}}^{2}})$ $\times \left[\exp\left\{-\frac{(\mathbf{z}' - \mathbf{H})^{2}}{2\sigma_{\mathbf{z}}^{2}}\right\} + \exp\left\{-\frac{(\mathbf{z}' + \mathbf{H})^{2}}{2\sigma_{\mathbf{z}}^{2}}\right\}\right] \cdot \cdot \cdot (1.1)$	
Q : 放出率(Bg/s)		Q : 放出率 (Bq/s)	
」 : 放出源高さを代表する風速 (m/s)		U : 放出源高さを代表する風速 (m/s)	
H : 放出源の有効高さ (m)		H : 放出源の有効高さ (m)	
fy : 濃度分布の y' 方向の拡がりのパラメータ (m)		σ_{V} : 濃度分布の V' 方向の拡がりのパラメータ (m)	
Tz : 濃度分布の z' 方向の拡がりのパラメータ (m)		$\sigma_{\rm z}$: 濃度分布の ${\rm z}'$ 方向の拡がりのパラメータ $({\rm m})$	
評価地点における希ガスによる空気カーマ率の計算は、線量評価指針に規定される次の(1.2)式を用いている。		評価地点における希ガスによる空気カーマ率の計算は, 線量評価指針に規定される次の (1.2) 式を用いている。	
$D = K_1 \cdot E \cdot \mu_{en} \int_0^\infty \int_{-\infty}^\infty \int_0^\infty \frac{e^{-\mu x}}{4\pi r^2} \cdot B(\mu x) \cdot \chi(\chi', y', z') d\chi' dy' dz' \cdot \cdot \cdot (1.2)$		$D = K_1 \cdot E \cdot \mu_{en} \int_0^\infty \int_{-\infty}^\infty \int_0^\infty \frac{e^{-\mu r}}{4\pi r^2} \cdot B(\mu r) \cdot \chi(\chi', y', z') d\chi' dy' dz' \cdot \cdot \cdot (1.2)$	
D : 計算地点 $(x, y, 0)$ における空気カーマ率(μ Gy/h) K_1 : 空気カーマ率への換算係数($\frac{\mathrm{dis} \cdot \mathbf{m}^3 \cdot \mu \mathrm{Gy}}{\mathrm{MeV} \cdot \mathrm{Bq} \cdot \mathrm{h}}$)		D : 計算地点(x, y, 0)における空気カーマ率 (μ Gy/h)	
		$\mathbf{K}_{\mathbf{l}}$: 空気カーマ率への換算係数($\frac{\mathrm{dis} \cdot \mathbf{m}^{\mathbf{d} \cdot \mathbf{\mu}} \cdot \mu \mathrm{Gy}}{\mathrm{MeV} \cdot \mathrm{Bq} \cdot \mathrm{h}}$)	
E : γ線の実効エネルギー (MeV/dis)μ_{en} : 空気に対するγ線の線エネルギー吸収係数 (m⁻¹)		E : γ線の実効エネルギー (MeV/dis) μ _{en} : 空気に対するγ線の線エネルギー吸収係数 (m ⁻¹)	
 μ : 空気に対するγ線の線減衰係数 (m⁻¹) r : 放射性雲中の点(x', y', z')から計算地点(x, y, 0)までの距離 (m) B (μr) : 空気に対するγ線の再生係数 		μ : 空気に対する γ 線の線減衰係数 (m ⁻¹) r : 放射性雲中の点(x', y', z')から計算地点(x, y, 0)までの距離 (m) r : 放射性雲中の点(x', y', z')から計算地点(x, y, 0)までの距離 (m) r : 空気に対する γ 線の再生係数 r B (μ r) =1+ α (μ r) + β (μ r) r 2+ γ (μ r) r 3	
B $(\mu r) = 1 + \alpha (\mu r) + \beta (\mu r)^2 + \gamma (\mu r)^3$ ただし、 μ_{cn} 、 μ がいては、 μ 0.5MeVの μ 線に対する値を用い、以下のとおりとする。		ただし、 $\mu_{\rm en}$ μ , α , β , γ については、 $0.5 {\rm MeV}$ の γ 線に対する値を用い、以下のとおりとする。 $\mu_{\rm en}=3.84\times 10^{-3}~({\rm m}^{-1})~\mu=1.05\times 10^{-2}~({\rm m}^{-1})$	
$\mu_{\text{en}} = 3.84 \times 10^{-3} \text{ (m}^{-1)} \qquad \mu = 1.05 \times 10^{-2} \text{ (m}^{-1)}$ $\alpha = 1.000 \qquad \beta = 0.4492 \qquad \gamma = 0.0038$		$\alpha = 1.000$ $\beta = 0.4492$ $\gamma = 0.0038$	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
計算地点における年間の実効線量は、計算地点を含む方		計算地点における年間の実効線量は、計算地点を含む方	
位及びその隣接方位に向かう放射性雲の γ 線からの空気力		位及びその隣接方位に向かう放射性雲のγ線からの空気カ	
一マを合計して、次式により計算する。		一マを合計して、次式により計算する。	
$\mathbf{H}_{\!\scriptscriptstyle \boldsymbol{\gamma}} = \mathbf{K}_{\!\scriptscriptstyle \boldsymbol{2}} \cdot \mathbf{f}_{\!\scriptscriptstyle \boldsymbol{h}} \cdot \mathbf{f}_{\!\scriptscriptstyle \boldsymbol{0}} (\overline{\mathbf{D}}_{\!\scriptscriptstyle \boldsymbol{L}} + \overline{\mathbf{D}}_{\!\scriptscriptstyle \boldsymbol{L}-1} + \overline{\mathbf{D}}_{\!\scriptscriptstyle \boldsymbol{L}+1})$		$\mathbf{H}_{\!\scriptscriptstyle y} = \mathbf{K}_{\!\scriptscriptstyle 2} \cdot \mathbf{f}_{\!\scriptscriptstyle h} \cdot \mathbf{f}_{\!\scriptscriptstyle 0} (\overline{\mathbf{D}}_{\!\scriptscriptstyle L} + \overline{\mathbf{D}}_{\!\scriptscriptstyle L-1} + \overline{\mathbf{D}}_{\!\scriptscriptstyle L+1})$	
ここで、 $H_{\!$		ここで、 H_y : 計算地点における実効線量(μ Sv/y) K_z : 空気カーマから実効線量への換算係数(μ Sv/ μ Gy) f_h : 家屋の遮へい係数 f_0 : 居住係数 \overline{D}_L , \overline{D}_{L-1} , \overline{D}_{L+1} : 計算地点を含む方位(L)及びその隣接方位に向かう 放射性雲による年間平均の γ 線による空気カーマ (μ Gy/y)。これらは(1.2)式から得られる空気カーマ率 D を放出モード,大気安定度別風向分布及び風速分布を考慮して年間について積算して求める。	
線量の計算は,1号炉排気筒を中心として16方位に分割し		線量の計算は、2号炉排気筒を中心として16方位に分割	 ・サイト代表放出点の相
た陸側13方位の周辺監視区域境界外での希ガスγ線による		した陸側12方位の敷地境界外について行い, 希ガスのy線	違
実効線量が最大となる地点での線量を求める。		による実効線量が最大となる地点での線量を求める。	【女川2号】
		また,陸側11方位の周辺監視区域境界外についても,希	・陸側方位数の相違
		ガスのγ線による実効線量が最大となる地点での線量を求	【女川2号】
			女川2号炉は周辺監
これらの地点は,第1図に示す。		 これらの地点は,第1図に示す。	 視区域境界を平常時被
			ばくの評価地点として
(2) 液体廃棄物中に含まれる放射性物質(よう素を除く)に		(2) 液体廃棄物中に含まれる放射性物質(よう素を除く)に	いるのに対し,島根2号
起因する実効線量		起因する実効線量	炉では人の居住の可能
液体廃棄物中に含まれる放射性物質(よう素を除く)に		液体廃棄物中に含まれる放射性物質(よう素を除く)に	性のある敷地境界にて
起因する実効線量は、気象資料の変更に依存しないことか		起因する実効線量は、気象資料の変更に依存しないことか	評価を行い、参考として
ら実効線量の評価結果に変更はない。		ら実効線量の評価結果に変更はない。	周辺監視区域境界につ
			いても希ガスγ線によ
(3) 放射性よう素に起因する実効線量		(3) 放射性よう素に起因する実効線量	る実効線量の評価を実
よう素による実効線量の計算は、気体廃棄物及び液体廃		よう素による実効線量の計算は、気体廃棄物及び液体廃	施している(以下①の相
棄物中のよう素に着目し、成人、幼児及び乳児がそれぞれ		棄物中のよう素に着目し、成人、幼児及び乳児がそれぞれ	違)
呼吸,葉菜,牛乳及び海産物を介してよう素を摂取する場		呼吸,葉菜,牛乳及び海産物を介してよう素を摂取する場	
合の内部被ばくを対象に行っている。		合の内部被ばくを対象に行っている。	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成 30 年 9 月 18 日)	島根原子力発電所 2号炉	備考
a. 気体廃棄物中のよう素による実効線量		a. 気体廃棄物中のよう素による実効線量	
気体廃棄物中のよう素の地上空気中濃度は、蒸気式空気		気体廃棄物中のよう素の地上空気中濃度は、蒸気式空気	
抽出器及び換気系からの放出を連続放出,起動用真空ポン		抽出器及び換気系からの放出を連続放出,復水器真空ポン	
プからの放出を間欠放出とし、それぞれの放出モードにお		プからの放出を間欠放出とし、それぞれの放出モードにお	
ける第1-1表のよう素の年間放出量を用いて計算している。		ける第1-1表のよう素の年間放出量を用いて計算している。	
気体廃棄物中のよう素の濃度求は, (1.1) 式を用い, 隣接		気体廃棄物中のよう素の濃度束は、(1.1) 式を用い、隣接	
方位からの寄与も考慮して、次の(1.3)式により計算する。		方位からの寄与も考慮して、次の(1.3)式により計算する。	
$\overline{\chi} = \sum_{j} \overline{\chi}_{jL} + \sum_{j} \overline{\chi}_{jL-1} + \sum_{j} \overline{\chi}_{jL+1} \qquad \cdot \qquad \cdot \qquad (1.3)$		$\overline{\chi} = \sum_{j} \overline{\chi}_{jL} + \sum_{j} \overline{\chi}_{jL-1} + \sum_{j} \overline{\chi}_{jL+1} \qquad \cdot \qquad \cdot \qquad (1.3)$	
ここで、		ここで、	
j : 大気安定度(A~F)		j : 大気安定度 (A~F)	
L : 計算地点を含む方位		L : 計算地点を含む方位	
気体廃棄物中のよう素による実効線量は、濃度が最大と		気体廃棄物中のよう素による実効線量は、濃度が最大と	
なる地点の年平均地上空気中濃度を用いて,線量評価指針		なる地点の年平均地上空気中濃度を用いて、線量評価指針	
に従い、計算している。		に従い、計算している。	
b. 液体廃棄物中に含まれる放射性よう素に起因する実効線		b. 液体廃棄物中に含まれる放射性よう素に起因する実効線	
量		量	
液体廃棄物中に含まれる放射性よう素に起因する実効線		液体廃棄物中に含まれる放射性よう素に起因する実効線	
量は、気象資料の変更に依存しないことから実効線量の評		量は、気象資料の変更に依存しないことから実効線量の評	
価結果に変更はない。		価結果に変更はない。	
c. 気体廃棄物中及び液体廃棄物中に含まれる放射性よう素		c. 気体廃棄物中及び液体廃棄物中に含まれる放射性よう素	
を同時に摂取する場合の実効線量		を同時に摂取する場合の実効線量	
1号,2号及び3号炉からの気体廃棄物中及び液体廃棄物中		1号、2号及び3号炉からの気体廃棄物中及び液体廃棄	
のよう素を同時に摂取する場合の実効線量は線量評価指針		物中のよう素を同時に摂取する場合の実効線量は線量評価	
に従い評価を行っている。このうち、気体廃棄物中のよう		指針に従い評価を行っている。このうち,気体廃棄物中の	
素の起因する実効線量はa. と同様に評価した空気中濃度を		よう素の起因する実効線量はa. と同様に評価した空気中濃	
用いて評価を実施している。		度を用いて評価を実施している。	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
1.2 計算結果		1.2 計算結果	
1号,2号及び3号炉からの気体廃棄物中の放射性希ガスのγ		1号、2号及び3号炉からの気体廃棄物中の放射性希ガス	
線に起因する実効線量、液体廃棄物中に含まれる放射性物質		のγ線に起因する実効線量、液体廃棄物中に含まれる放射性	
に起因する実効線量及び放射性よう素に起因する実効線量を		物質に起因する実効線量及び放射性よう素に起因する実効線	
以下に示す。		量を以下に示す。	
(1) 気体廃棄物中の放射性希ガスのγ線に起因する実効線量		(1) 気体廃棄物中の放射性希ガスのγ線に起因する実効線量	
		敷地境界外陸側12方位について希ガスのγ線による実効	・陸側方位数の相違
		線量の計算を行った結果は、第1-2表に示すとおりである。	【女川2号】
		これによれば、陸側12方位の敷地境界外のうち、1号、2号	①の相違
		及び3号炉からの希ガスのγ線による実効線量が最大とな	
		るのは2号炉排気筒の北西約850mの敷地境界であり,その実	
		効線量は年間約7.8μSvである。	
周辺監視区域境界外 <u>陸側13方位</u> 並びに参考として <u>海側3方</u>		<u>また</u> ,周辺監視区域境界外 <u>陸側11方位</u> 並びに参考として <u>海</u>	・評価方位数の相違
<u>位</u> について希ガスのγ線による実効線量の計算を行った結		<u>側5方位</u> について希ガスのγ線による実効線量の計算を行っ	【女川2号】
果は, <u>第1-2表</u> に示すとおりである。 <u>陸側13方位</u> の周辺監視		た結果は <u>第1-3表</u> に示すとおりである。 <u>陸側11方位</u> の周辺	・評価方位, 距離の相違
区域境界外のうち、1号、2号及び3号炉からの希ガスのγ線		監視区域境界外のうち、1号、2号及び3号炉からの希ガス	【女川2号】
による実効線量が最大となるのは <u>1号炉排気筒の南東約790m</u>		のγ線による実効線量が最大となるのは <u>2号炉排気筒の北</u>	・評価結果の相違
の周辺監視区域境界(敷地境界)であり、その実効線量は年		西約830mの周辺監視区域境界であり,その実効線量は年間 <u>約</u>	【女川2号】
間 <u>約13μSv</u> である。		<u>8.0μSv</u> である。	
(2) 液体廃棄物中に含まれる放射性物質(よう素を除く)に		(2) 液体廃棄物中に含まれる放射性物質(よう素を除く)に	
起因する実効線量		起因する実効線量	
液体廃棄物中に含まれる放射性物質(よう素を除く)に起		液体廃棄物中に含まれる放射性物質(よう素を除く)に起	
因する実効線量は,気象資料の変更に依存しないことから変		因する実効線量は,気象資料の変更に依存しないことから変	
更はなく, 年間 <u>約0.9 μ Sv/y</u> である。		更はなく, 年間 <u>約12μSv/y</u> である。	・評価結果の相違
			【女川2号】
(3) 放射性よう素に起因する実効線量		(3) 放射性よう素に起因する実効線量	
a. 気体廃棄物中のよう素による実効線量		a. 気体廃棄物中 <u>に含まれる放射性</u> よう素に <u>起因する</u> 実効線	
敷地境界外陸側13方位で気体廃棄物中に含まれるよう素		量	
の年平均地上空気中濃度が最大となる地点は, <u>1号炉排気筒</u>		敷地境界外 <u>陸側12方位</u> で気体廃棄物中に含まれるよう素	・評価方位数の相違
<u>の南東約790m</u> であり、この地点におけるよう素-131及びよ		の年平均地上空気中濃度が最大となる地点は、2号炉排気	【女川2号】
う素-133の年平均地上空気中濃度の計算結果を,第1-3表		<u>筒の南東約1,100m</u> であり,この地点におけるよう素-131及	・評価地点の相違
に示す。これによれば、1号、2号及び3号炉合計でそれぞれ		びよう素-133の年平均地上空気中濃度の計算結果を, 第	【女川2号】
<u>約4.5$imes$10$^{-10}$Bq/cm3</u> 及び <u>約8.5$imes$10$^{-10}$Bq/cm3</u> である。		1-4表に示す。これによれば、1号、2号及び3号炉合計で	
気体廃棄物中のよう素による実効線量は幼児が最大とな		それぞれ <u>約2.6$imes$10$^{-10}$Bq/cm3</u> 及び約 $\underline{4.6} imes10^{-10}$ Bq/cm 3 である。	・評価結果の相違
り年間 <u>約2.0μSv/y</u> である。(<u>第1-4表</u>)		気体廃棄物中のよう素による実効線量は幼児が最大とな	【女川2号】
		り年間 <u>約1.5μSv/y</u> である。(<u>第1-5表</u>)	・評価結果の相違
			【女川2号】

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成 30 年 9 月 18 日)	島根原子力発電所 2 号炉	備考
b. 液体廃棄物中に含まれる放射性よう素に起因する実効線		b. 液体廃棄物中に含まれる放射性よう素に起因する実効線	
量		量	
液体廃棄物中に含まれる放射性よう素に起因する実効線		液体廃棄物中に含まれる放射性よう素に起因する実効線	
量は, 気象資料の変更に依存しないことから変更はなく,		量は、気象資料の変更に依存しないことから変更はなく、	
実効線量は海藻類を摂取する場合の乳児が最大となり <u>約</u>		海藻類を摂取する場合の乳児が最大となり <u>約0.07 μ Sv/y</u> で	・評価結果の相違
<u>0.006 μ Sv/y</u> である。		ある。	【女川2号】
c. 気体廃棄物中及び液体廃棄物中に含まれる放射性よ		c. 気体廃棄物中及び液体廃棄物中に含まれる放射性よう素	
う素を同時に摂取する場合の実効線量		を同時に摂取する場合の実効線量	
気体廃棄物及び液体廃棄物中のよう素による実効線量		気体廃棄物及び液体廃棄物中のよう素を同時に摂取する	
は、海藻類を摂取しない場合の幼児が最大となり年間約2.0		場合の実効線量は、海藻類を摂取しない場合の幼児が最大	・評価結果の相違
<u>μ Sv/y</u> である。(<u>第1-5表</u>)		となり年間が <u>約1.5μSv/y</u> である。(<u>第1-6表</u>)	【女川2号】
したがって、 <u>周辺監視区域境界外</u> における1号、2号及び3		したがって、 <u>敷地境界外</u> における1号、2号及び3号炉	・陸側方位数の相違
号炉からの気体廃棄物中の希ガスのγ線による実効線量,		からの気体廃棄物中の希ガスのγ線による実効線量,液体	【女川2号】
液体廃棄物中の放射性物質(よう素を除く)による実効線		廃棄物中の放射性物質(よう素を除く)による実効線量並	①の相違
量並びに気体廃棄物中及び液体廃棄物中に含まれるよう素		びに気体廃棄物中及び液体廃棄物中に含まれるよう素を同	
を同時に摂取する場合の実効線量は、それぞれ $\underline{$ 約13 $_{\mu}$ Sv/y,		時に摂取する場合の実効線量は,それぞれ <u>約7.8μSv/</u> y, <u>約</u>	・評価結果の相違
<u>約0.9 μ Sv/y</u> 及び <u>約2.0 μ Sv/y</u> となり,合計 <u>約16 μ Sv/y</u> であ		<u>12 μ Sv/y</u> 及び <u>約1.5 μ Sv/y</u> となり,合計 <u>約21 μ Sv/y</u> である。	【女川2号】
る。		これらの値は, 「発電用軽水型原子炉施設周辺の線量目	
これらの値は, 「発電用軽水型原子炉施設周辺の線量目		標値に関する指針」に示される線量目標値の50μSv/yを下	
標値に関する指針」に示される線量目標値の50μSv/yを下		回る。	
回る。			

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2 号炉	備考
NNW		第2 日本	
第1図 線量評価地点		第1図 線量評価地点	・評価地点の相違 【女川2号】
			• • • • • • • • • • • • • • • • • • •

	女川原子力発電所2号	炉(令和元年)	10月3日)	東海第二発	発電所(平成 30 年 9 月 18 日)			島根原子力系				備考
-1表	長 希ガス及びよう素の)年間放出量(月	原子炉1基当たり)				第1-1表	放射性希ガス	放出量及び	バ実効エネル	/ギ	・評価条件の相違
		1 号炉排気筒	2 号炉及び3 号炉 排気筒					1 号炉 排気筒	1号炉 タービン 建物排気筒	2 号炉 排気筒	3号炉 排気筒	【女川2号】
1	希ガス放出率(Bq/s)	約4.1×10 ⁷	約3.6×10 ⁷				希ガス放出率 (Bq/s)	約 9.8×10 ⁶	約3.0×10 ⁶	約 1.1×10 ⁷	約 1.1×10 ⁷	
+	γ線実効エネルギー(MeV)	約2. 5×10 ⁻¹	約2. 2×10 ⁻¹			連続放出						
	希ガス放出率(Bq/y)	約1. 4×10 ¹⁴	約4.6×10 ¹³				γ線実効 エネルギ (MeV)	約 2. 4×10 ⁻¹	約8.2×10 ⁻¹	約 2.9×10 ⁻¹	約 2.9×10 ⁻¹	
	γ線実効エネルギー(MeV)	約2.5×10 ⁻¹	約2.5×10 ⁻¹				年間放出量 (Bq/y)	約 4. 6	$\times 10^{13}$	約 4. 6×10 ¹³	約 4.6×10 ¹³	
_		放出率	率(Bq/s)			間欠放出	γ 線実効					
		1 号炉排気筒	2 号炉及び3 号炉 排気筒				エネルギ (MeV)	約 2. 9>	<10 ⁻¹	約 2.9×10 ⁻¹	約 2.9×10 ⁻¹	
	131 I	約2.5×10³	約6.0×10 ²									
	$^{133}\mathrm{I}$	約5.1×10³	約1.0×10 ³							率 (Bq/s)		
_		年間 抜!	出率(Bq/y)				核種	1 号炉 排気筒	1号炉ター ビン建 物 排 気 筒	2号炉 排気筒	3 号炉 排気筒	
		1 号炉排気筒	2 号炉及び3号炉 排気筒			連続放出	¹³¹ I	約 3.8×10 ²	約 2.6×10 ²	約 6.5×10 ²	約 5.2×10 ²	
	131 I	約4.4×10 ⁹	約1.5×10 ⁹			是形成日	133 I	約 6.6×10 ²	約 5.2×10 ²	約 1.1×10 ³	約7.8×10 ²	
	133 I	約4.4×10 ⁹	約1.5×10 ⁹						年間放	(原- 出 量 (Bq/y)	子炉1基当たり)	
							核種			号及び3号炉		
						間欠放出	¹³¹ I		約:	1.5×10^9		
							¹³³ I		約]	1.5×10 ⁹		

	女川原子力	発電所2号炉	可(令和元年 10)月3日)	東海第二発電所(平成30年9月18日)		Ē	島根原子力発電所	行 2号炉		備考
	第1-2表 放	射性希ガスの	γ線に起因す	る実効線量		第1-	-2表 敷地境界タ	トにおける放射性	上希ガスのγ線	に起因する実	・評価結果の相違
\Box			希ガスのy線に起因す	する実効線量(μSv/y)				効線量	<u> </u>		・陸側方位数の相違
$ \setminus $	計算地点の	1号炉	1~3	号炉合計					希ガスの γ	線に起因する	【女川2号】
$ \ $	方位	排気筒からの 距離 (m)	(変更前) 1991年11月から	(変更後) 2012年1月から				2 号 炉		量 (μ Sv/y)	①の相違
		MEME (m)	1992年10月まで の気象資料	2012年12月まで の気象資料			計算地点の	排気筒から		3号合計	
	N	約 890	約 7.5×10°	約 7.7×10°			方 位	の 距 離 (m)	(変更前) 1996年1月から	(変更後) 2009 年 1 月から	
	NNW	約 750	約 8.1×10°	彩 9.6×10°				(,	1996 年 12 月まで の気象資料	2009年12月までの 気象資料	
	NW	約 640	約 7.0×10 ⁰	約 8.0×10°			ENE	約 3, 100 ^{注)}	約 1.0×10 ⁰		
	WNW	約 620	約 7.0×10°	約 8.8×10°			E	約 1, 350 注)	約 4. 9×10°	約 4. 1×10°	
	W	約 670	約 6.8×10°	約 8.6×10°			ESE	約 1, 370	約 4.5×10°	約 4. 4×10°	
周辺監視区域境界	WSW	約 750	約 5.1×10°	約 6.9×10°			SE	約 1, 100	約 5. 2×10°	約 5. 1×10°	
規図	SW	約 650	約 6.2×10°	約 7.8×10°		ah-	SSE	約 960	約 3.9×10 ⁰	約 4. 6×10°	
吹 売 ア	SSW	約 680	約 4.2×10°	約 4.7×10°		敷地地	S	約 850	約 3.6×10°	約 3. 9×10°	
	S	約 640	約 4.4×10°	₩J 5. 1×10°		境	SSW	約 820	約 3.8×10°	約 4. 1×10°	
	SSE	約 760	約 4.9×10°	約 5.9×10°		界	SW	約 770	約 4.2×10°	約 4. 2×10°	
	SE	<u>約 790</u>	約 1.1×10 ¹	約 1.3×10 ¹			WSW	約 800	約 4.5×10°	約 4.1×10°	
	ESE	約 1,150	約 1.0×10 ¹	₩9.2×10°			W	約 850	約 4.1×10°	約 3.6×10°	
	Е	約 1,040	約 8.9×10°	約 8.5×10°			WNW	約 810	約 5.2×10°	約 4. 3×10°	
į.	ENE	約 760	約 9.5×10°	約 8.1×10°			NW	<u>約 850</u>	約8.6×10°	約7.8×10 ⁰	
5	NE	約 490	約 1.5×10	約 1.2×10 ¹							
海側参考地点	NNE	約 570	約 1.7×10 ¹	約 1.4×10 ¹							

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成 30 年 9 月 18 日)		ļ	島根原子力発電	i所 2 号炉		備考
			第1-3表 放!	射性希ガスのγ	線に起因する第	三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三	・陸側方位数の相違
						線に起因する	【女川2号】
					実効線		・①の相違
			計算地点の	2号炉排気筒から		号合計	
			方位	の距離	(変更前) 1996年1月か	(変更後) 2009年1月か	
				(m)	ら 1996 年 12	ら 2009 年 12	
					月までの気象	月までの気象	
			_	<i>***</i>	資料	資料	
			Е	約 1, 120	約 6.5×10°	約 6.0×10°	
			ESE	約1,070	約 6.4×10°	約 6.0×10°	
		周	SE	約 1,060	約 5.3×10°	約 5.3×10°	
		辺	SSE	約 830	約 4.7×10°	約 5.5×10 ⁰	
		監視	S	約 720	約 4.5×10°	約 4.8×10°	
		区	SSW	約 750	約 4.3×10 ⁰	約 4.7×10°	
		域	SW	約 630	約 5.1×10°	約 5.1×10 ⁰	
		境	WSW	約 720	約 5.0×10°	約 4.5×10 ⁰	
		界	W	約 750	約 4.6×10°	約 4.0×10 ⁰	
			WNW	約 790	約 5.4×10°	約 4.4×10°	
			NW	約 830	約8.8×10°	約8.0×10°	
		海	N	約 530	約 1. 7×10 ¹	約 1.6×10 ¹	
		側	NNE	約 110	約 2.4×10 ¹	約 2.4×10 ¹	
		参	NE	約 80	約 2.4×10 ¹	約 2.4×10 ¹	
		考地	ENE	約 140	約 2.5×10 ¹	約 2. 4×10 ¹	
		点点	NNW	約 570	約1.4×10 ¹	約 1. 4×10°	
			ININW	州5 510	かり1.4人10	小 1. 4 八 10	

タ	女川原子力を	力発電所2号炉(令和元年10月3日)							東海第	三発電所	f (平成 30	0年9月1	8 目)			島	。根原子	力発電所 2	号炉		備考
第1-3表 放射性よう素の年平均地上空気中濃度													第1-4	表放	射性よ	う素の年平均	地上空気中	農度	・評価結果の相違		
		核種	年平均地	上空気中濃度	ξ (Bq/cm³)																【女川2号】
	(3.22.40)	連続加	(出分	間欠放出分	r 合	計											核種	年平均地上空気中濃度(Bq/cm³)			_
	(変更前) 1991年11月から		$\times 10^{-10}$	約 1.9×10	-11 約 2.	9×10 ⁻¹⁰												連続放出分	間欠放出分	合 計	_
~3号炉	1992年10月まで の気象資料	¹³³ I 約 5.2	×10 ⁻¹⁰	約 1.9×10	-11 約 5.	4×10 ⁻¹⁰										更前) 年1月か	¹³¹ I	約 2. 9 ×10 ⁻¹⁰	約 2. 3 ×10 ⁻¹¹	約 3. 1 ×10 ⁻¹⁰	
	(変更後) 2012年1月から		$\times 10^{-10}$	約 3.0×10-	-11 約 4.	5×10 ⁻¹⁰										96年12		約 5. 1		約 5. 4	
2	2012年12月まで の気象資料	¹³³ I 約 8.2	×10 ⁻¹⁰	約 3.0×10-	-11 約8.	5×10^{-10}								1号, 2		での気象	¹³³ I	ポソ 5. 1 ×10 ⁻¹⁰	約 2. 3 ×10 ⁻¹¹	ポリ 5. 4 × 10 ⁻¹⁰	
														号及び 3号炉		資料 (更後)		<u></u> 約 2. 4	約 1. 7	約 2. 6	_
														(合計)		年1月か	¹³¹ I	$\times 10^{-10}$	×10 ⁻¹¹	$\times 10^{-10}$	
																09年12		約 4. 4	約1.7	約 4.6	
																での気象 資料	¹³³ I	$\times 10^{-10}$	$\times 10^{-11}$	$\times 10^{-10}$	

	女川	原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
第1-4	表気	気体廃棄物中に含まれる放射性よう素に起因する実効		第1-5表 気体廃棄物中に含まれる放射性よう素に起因する実効	・評価結果の相違
		<u>線量</u>		線量	【女川2号】
		実効線量(μSv/y)		実 効 線 量 (μ Sv/y)	
年齢		1~3号炉(合計)		年 令 1号, 2号及び3号炉(合計)	
グルーフ	摂取経路	路 (変更前) 1991年11月から (変更後) 2012年1月から 1992年10月までの気象資料 2012年12月までの気象資料		摂取経路 (変更前) 1996年1月から (変更後) 2009年1月から グループ 1996年12月までの気象資料 2009年12月までの気象資料	
		1311 1331 合計 1311 台計		131 Ⅰ 133 Ⅰ 台 計 131 Ⅰ 台 計	
	吸入	約3.6×10 ⁻² 約1.3×10 ⁻² 約4.8×10 ⁻² 約5.5×10 ⁻² 約2.0×10 ⁻² 約7.5×10 ⁻²		吸入約3.8×10-2約1.3×10-2約5.1×10-2約3.2×10-2約1.1×10-2約4.3×10-2	
成人	棄菜	約1.1×10-1 約6.6×10-3 約1.2×10-1 約1.7×10-1 約1.1×10-2 約1.8×10-1		族 某 約1.2×10 ⁻¹ 約6.5×10 ⁻³ 約1.3×10 ⁻¹ 約9.9×10 ⁻² 約5.5×10 ⁻³ 約1.0×10 ⁻¹	
1,200	牛乳			牛乳 約1.1×10 ⁻¹ 約2.8×10 ⁻³ 約1.2×10 ⁻¹ 約9.4×10 ⁻² 約2.4×10 ⁻³ 約9.7×10 ⁻²	
	合計			合 計 約 2.7×10 ⁻¹ 約 2.2×10 ⁻² 約 2.9×10 ⁻¹ 約 2.2×10 ⁻¹ 約 1.9×10 ⁻² 約 2.4×10 ⁻¹	
	吸入			吸入約6.9×10 ⁻² 約2.7×10 ⁻² 約9.6×10 ⁻² 約5.7×10 ⁻² 約2.3×10 ⁻² 約8.0×10 ⁻²	
幼児	葉菜 牛乳			禁 菜 約2.8×10 ⁻¹ 約1.8×10 ⁻² 約3.0×10 ⁻¹ 約2.3×10 ⁻¹ 約1.5×10 ⁻² 約2.5×10 ⁻¹	
	合計			牛乳 約1.3×10° 約3.8×10 ⁻² 約1.4×10° 約1.1×10° 約3.2×10 ⁻² 約1.1×10°	
				合 計 約1.7×10° 約8.4×10 ⁻² <u>約1.8×10°</u> 約1.4×10° 約7.1×10 ⁻² <u>約1.5×10°</u> 吸 入 約4.3×10 ⁻² 約2.0×10 ⁻² 約6.2×10 ⁻² 約3.5×10 ⁻² 約1.7×10 ⁻² 約5.2×10 ⁻²	
	葉菜			葉 菜 約2.1×10 ⁻¹ 約1.6×10 ⁻² 約2.2×10 ⁻¹ 約1.7×10 ⁻¹ 約1.4×10 ⁻² 約1.9×10 ⁻¹	
乳児	牛乳	終1.1×10° 約4.7×10 ⁻³ 終1.1×10° 終1.2×10° 終5.0×10 ⁻³ 終1.2×10°		乳児	
	合計	※j1. 3×10° ※j4. 1×10 ⁻² ※j1. 4×10° ※j1. 5×10° ※j6. 1×10 ⁻² ※j1. 6×10°		合 計 約1.4×10° 約4.0×10 ⁻² 約1.4×10° 約1.2×10° 約3.4×10 ⁻² 約1.2×10°	

	女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)			島村	退原子力発	電所 2号	炉		備考
貿	第1-5表 気体廃棄物中及び液体廃棄物中に含まれる			第1-6表	気体廃	棄物中及び	バ液体廃棄	物中に含まれ	hる	・評価結果の相違
	放射性よう素に起因する実効線量			-	放射性	よう素に起	因する実象	<u> 効線量</u>		【女川2号】
	液体廃棄物中に含まれる よう素に起因する よう素に起因する 実効線量 (μSv/y) 場合の実効線量 (μSv/y)				年 令 グループ	よう素に	中に含まれる ご起因する (μ Sv/y)	気体廃棄物中及 中に含まれるよ 摂取する場合 (μSv	う素を同時に の実効線量	
	海藻類を摂取 海藻類を摂取 海藻類を摂取 する場合 しない場合 する場合 しない場合					海藻類を摂取 する場合	海藻類を摂取 しない場合	海藻類を摂取 する場合	海藻類を摂取 しない場合	
	(変更前) 成 人 約 1.4×10 ⁻³ 約 1.4×10 ⁻³ 約 1.9×10 ⁻² 約 2.8×10 ⁻¹ 1991年11月から			(変更前)	成人	約 2.0×10 ⁻²	約 1.9×10 ⁻²	約 3.8×10 ⁻²	約 3. 1×10 ⁻¹	
.~3号炉	1992年10月まで 幼 児 約 4.3×10 ⁻³ 約 3.3×10 ⁻³ 約 1.4×10 ⁻¹ <u>約 1.7×10⁰</u> の気象資料 乳 児 約 5.3×10 ⁻³ 約 2.5×10 ⁻³ 約 1.9×10 ⁻¹ 約 1.4×10 ⁰			1996年1月から 1996年12月ま での気象資料	幼児				約 1.8×10 ⁰	
(合計)	(変更後) 成 人 約 1.4×10 ⁻³ 約 1.4×10 ⁻³ 約 2.5×10 ⁻² 約 3.8×10 ⁻¹		及び3号	17	乳児				約 1. 5×10 ⁰	
	2012年1月から 2012年12月まで 幼 児 約 4.3×10 ⁻³ 約 3.3×10 ⁻³ 約 1.7×10 ⁻¹ 約 2.0×10 ⁰ の気象資料 乳 児 約 5.3×10 ⁻³ 約 2.5×10 ⁻³ 約 2.2×10 ⁻¹ 約 1.6×10 ⁰	D		約 2.6×10 ⁻¹ 約 1.5×10 ⁰						
			<u> </u>							

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成 30 年 9 月 18 日)	島根原子力発電所 2号炉	備考
2. 設計基準事故時の線量評価		2. 設計基準事故時の線量評価	
設計基準事故(以下,「事故」という。) 時の線量評価は,		設計基準事故(以下,「事故」という。) 時の線量評価は,	
各種事故時において大気中へ放出される核分裂生成物の放出		各種事故時において大気中へ放出される核分裂生成物の放出	
量を評価し,大気拡散係数を乗じて実効線量を計算している。		量を評価し、大気拡散係数を乗じて実効線量を計算している。	
具体的には以下の仮定に基づいて行う。		具体的には以下の仮定に基づいて行う。	
①敷地境界外の地表空気中濃度は、添付書類六の「2.5 安		①敷地境界外の地表空気中濃度は、添付書類六の「2.5 安	
全解析に使用する気象条件」に記述する相対濃度に核分		全解析に使用する気象条件」に記述する相対濃度に核分	
裂生成物の全放出量を乗じて求める。		裂生成物の全放出量を乗じて求める。	
②敷地境界外の希ガスによるγ線空気カーマは、添付書類		②敷地境界外の希ガスによるγ線空気カーマは、添付書類	
六の「2.5 安全解析に使用する気象条件」に記述する相		六の「2.5 安全解析に使用する気象条件」に記述する相	
対線量に希ガスの全放出量を乗じて求める。		対線量に希ガスの全放出量を乗じて求める。	
女川2号炉の気象資料の変更に伴い,相対濃度と相対線量を		島根2号炉の気象資料の変更に伴い, 相対濃度と相対線量	
再評価しており、これに伴って、事故時の線量も再評価して		を再評価しており、これに伴って、事故時の線量も再評価し	
いる。以下に評価方法及び評価結果について示す。		ている。以下に評価方法及び評価結果について示す。	
2.1 大気拡散係数(相対濃度,相対線量)の評価		2.1 大気拡散係数(相対濃度,相対線量)の評価	
事故時に放出される放射性物質が、敷地周辺の公衆に及ぼ		事故時に放出される放射性物質が、敷地周辺の公衆に及ぼ	
す影響を評価するに当たって,放射性物質の拡散状態を推定		す影響を評価するに当たって、放射性物質の拡散状態を推定	
するために必要な気象条件については,現地における出現頻		するために必要な気象条件については、現地における出現頻	
度からみて、これより悪い条件がめったに現れないと言える		度からみて、これより悪い条件がめったに現れないと言える	
ものを選ばなければならない。		ものを選ばなければならない。	
そこで,線量等の評価に用いる放射性物質の相対濃度(以		そこで、線量等の評価に用いる放射性物質の相対濃度(以	
下「x/Q」という。)を, <u>標高70m及び標高175m</u> における <u>2012</u>		下「x/Q」という。)を, <u>標高65m及び標高130m</u> における <u>2009</u>	・測定地点及び気象期間
<u>年1月から2012年12月</u> までの1年間の観測データを使用して求		<u>年1月から2009年12月</u> までの1年間の観測データを使用して求	の相違
めた。すなわち、(2.1)式に示すように、風向、風速、大気安		めた。すなわち、(2.1)式に示すように、風向、風速、大気安	【女川2号】
定度及び実効放出継続時間を考慮したx/Qを陸側方位につい		定度及び実効放出継続時間を考慮したx/Qを陸側方位につい	
て求め,方位別にその値の小さい方からの累積度数を年間の		て求め、方位別にその値の小さい方からの累積度数を年間の	
データ数に対する出現頻度(%)として表すことにする。横軸		データ数に対する出現頻度(%)として表すことにする。横軸	
にx/Qを,縦軸に累積出現頻度をとり,着目方位ごとにx/Qの		にx/Qを、縦軸に累積出現頻度をとり、着目方位ごとにx/Qの	
累積出現頻度分布を描き、この分布から、累積出現頻度が97%		累積出現頻度分布を描き、この分布から、累積出現頻度が97%	
に当たるx/Qを方位別に求め,そのうち最大のものを安全解析		に当たるx/Qを方位別に求め、そのうち最大のものを安全解析	
に使用する相対濃度とする。		に使用する相対濃度とする。	
ただし, x/Qの計算の着目地点は,各方位とも敷地境界まで		ただし, x/Qの計算の着目地点は, 各方位とも敷地境界まで	
の距離とし,着目地点以遠でx/Qが最大になる場合は,そのx/Q		の距離とし、着目地点以遠でx/Qが最大になる場合は、そのx/Q	
を着目地点における当該時刻のx/Qとする。		を着目地点における当該時刻のx/Qとする。	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
$\chi/Q = \frac{1}{T} \sum_{i=1}^{T} (\chi/Q)_i \cdot \delta_i \qquad \cdot \cdot \cdot (2.1)$		$\chi/Q = \frac{1}{T} \sum_{i=1}^{T} (\chi/Q)_i \cdot \delta_i \qquad \cdot \cdot (2.1)$	
ここで、		ここで、	
χ/Q :実効放出継続時間中の相対濃度($\mathrm{s/m^3}$)		χ/Q :実効放出継続時間中の相対濃度($\mathrm{s/m^3}$)	
T : 実効放出継続時間(h)		T : 実効放出継続時間 (h)	
$\left(\chi/\mathrm{Q} ight)_{\mathrm{i}}$: 時刻 i における相対濃度($\mathrm{s/m^3}$)		$\left(\chi/\mathrm{Q} ight)_{\mathrm{i}}$: 時刻 i における相対濃度($\mathrm{s/m^3}$)	
$\delta_{ m i}$: 時刻 i において風向が当該方位にあるとき		$\delta_{ m i}$: 時刻 i において風向が当該方位にあるとき	
$\mathcal{S}_{\mathrm{i}} = 1$		$\mathcal{S}_{\mathrm{i}} = 1$	
時刻 <i>i</i> において風向が他の方位にあるとき		時刻 <i>i</i> において風向が他の方位にあるとき	
$\delta_{\rm i} = 0$		$\mathcal{S}_{\mathrm{i}} = 0$	
(x/Q) _i の計算に当たっては,短時間放出の場合,方位内で		(x/Q) _i の計算に当たっては,短時間放出の場合,方位内で	
風向軸が一定と仮定して(2.2)式で計算し,長時間放出の場		風向軸が一定と仮定して(2.2)式で計算し,長時間放出の場	
合,当該方位における放射性物質の全量が一方位内のみに一		合、当該方位における放射性物質の全量が一方位内のみに一	
様分布すると仮定して、(2.3) 式で計算する。		様分布すると仮定して、(2.3) 式で計算する。	
短時間放出の場合,		短時間放出の場合、	
$(\chi/Q)_{i} = \frac{1}{\pi \cdot \sigma_{yi} \cdot \sigma_{zi} \cdot U_{i}} \exp(-\frac{H^{2}}{2\sigma_{zi}^{2}}) \qquad \cdot \qquad \cdot \qquad (2.2)$		$(\chi/Q)_{i} = \frac{1}{\pi \cdot \sigma_{yi} \cdot \sigma_{zi} \cdot U_{i}} \exp(-\frac{H^{2}}{2\sigma_{zi}^{2}}) \qquad (2.2)$	
長時間放出の場合,			
$(\chi/Q)_{i} = \frac{2.032}{\sigma_{zi} \cdot U_{i} \cdot x} \exp(-\frac{H^{2}}{2\sigma_{zi}^{2}}) \qquad (2.3)$		長時間放出の場合, $ (\chi/Q)_i = \frac{2.032}{\sigma_{zi} \cdot U_i \cdot x} \exp(-\frac{H^2}{2\sigma_{zi}^2}) $ ・・・ (2.3)	
ここで,			
$\sigma_{_{\mathrm{yi}}}$: 時刻 i における濃度分布の水平方向の拡がりの		ここで, σ_{i} : 時刻 i における濃度分布の水平方向の拡がりの	
パラメータ (m)		σ_{y_i} : 時刻 i における濃度分布の水平方向の拡がりの パラメータ (m)	
σ_{zi} : 時刻 i における濃度分布の高さ方向の拡がりの パラメータ (m)		σ_i : 時刻 i における濃度分布の高さ方向の拡がりの	
U_i : 時刻 i における風速(m/s)		パラメータ (m)	
H : 放出源の有効高さ (m)		\mathbf{U}_{i} : 時刻 i における風速($\mathrm{m/s}$)	
x : 放出地点から着目地点までの距離 (m)		H : 放出源の有効高さ (m)	
		x : 放出地点から着目地点までの距離 (m)	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成 30 年 9 月 18 日)	島根原子力発電所 2号炉	備考
方位別x/Qの累積出現頻度を求めるとき, 静穏の場合には風		方位別x/Qの累積出現頻度を求めるとき,静穏の場合には風	
速を0.5m/sとして計算し、その風向は静穏出現前の風向を使		速を0.5m/sとして計算し、その風向は静穏出現前の風向を使	
用する。		用する。	
なお, 放射性雲からのγ線による空気カーマについては,		なお,放射性雲からのγ線による空気カーマについては,	
x/Qの代わりに空間濃度分布とγ線による空気カーマ計算モ		x/Qの代わりに空間濃度分布とγ線による空気カーマ計算モ	
デルを組み合わせた相対線量(以下「D/Q」という。)をx/Q		デルを組み合わせた相対線量(以下「D/Q」という。)をx/Q	
と同様な方法で求めて使用する。		と同様な方法で求めて使用する。	
ただし、長時間放出の場合でも方位内で風向が一定と仮定		ただし、長時間放出の場合でも方位内で風向が一定と仮定	
して計算する。γ線による空気カーマ計算には(1.2)式を使		して計算する。γ線による空気カーマ計算には(1.2)式を使	
用する。		用する。	
本原子炉の事故のうち,原子炉冷却材喪失は,大気中への		本原子炉の事故のうち、原子炉冷却材喪失は、大気中への	
放射性物質の放出が長時間継続するので、実効放出継続時間		放射性物質の放出が長時間継続するので、実効放出継続時間	
を 1 日とし,長時間放出の $(\mathbf{x}/\mathbf{Q})_i$ を使用して \mathbf{x}/\mathbf{Q} を求める。		を 1 日とし,長時間放出の $(\mathbf{x}/\mathbf{Q})_i$ を使用して \mathbf{x}/\mathbf{Q} を求める。	
また,原子炉冷却材喪失以外の事故については,放射性物		また,原子炉冷却材喪失以外の事故については,放射性物	
質が短時間に大気中に放出されるので,実効放出継続時間を1		質が短時間に大気中に放出されるので,実効放出継続時間を1	
時間とし,短時間放出の $(x/Q)_i$ を使用して x/Q を求める。計算		時間とし、短時間放出の $(x/Q)_i$ を使用して x/Q を求める。計算	
に使用する風向,風速は,排気筒放出の場合は排気筒高さ付		に使用する風向、風速は、排気筒放出の場合は排気筒高さ付	
近の風を代表する <u>標高175m (地上高71m)</u> の風向, 風速とする。		近の風を代表する <u>標高約130m(地上高約120m)</u> の風向,風速	・測定地点の相違
また,タービン建屋から直接放出される場合は,地表付近の		とする。また、タービン建物から直接放出される場合は、地	【女川2号】
風を代表する <u>標高70m(地上高10m)</u> の風向,風速とする。		表付近の風を代表する <u>標高28.5m(地上高約20m)</u> の風向,風	
		速とする。	
なお,D/Qについてもx/Qと同じ方法で求める。		なお,D/Qについてもx/Qと同じ方法で求める。	
以上により、計算した安全評価に使用するx/Q及びD/Qを第		以上により、計算した安全評価に使用するx/Q及びD/Qを第	
2-1表に示す。		2-1表に示す。	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
 2.2 事故時の線量評価 (1) 放射性気体廃棄物処理施設の破損 a. 評価方法 敷地境界外における希ガスのγ線外部被ばくによる実効線量H_y(Sv)は、(2.4)式で計算する。 H_y = K・D/Q・Q_y ・・・(2.4) ここで、 K :空気カーマから実効線量への換算係数(K=1 Sv/Gy) Q_y :事故期間中の希ガスの大気放出量(Bq)(γ線実効エネルギー0.5MeV 換算値) b. 評価結果 放射性気体廃棄物処理施設の破損の場合、気象資料の変更に伴ってD/Qの数値が変更とならないことから、実効線量に変 		 2.2 事故時の線量評価 (1) 放射性気体廃棄物処理施設の破損 a. 評価方法 敷地境界外における希ガスのγ線外部被ばくによる実効線量H_y(Sv)は、(2.4)式で計算する。 H_y = K・D/Q・Q_y ・・・(2.4) ここで、 K : 空気カーマから実効線量への換算係数(K=1 Sv/Gy) Q_y : 事故期間中の希ガスの大気放出量(Bq)(γ線実効エネルギー0.5MeV 換算値) b. 評価結果 上記の評価方法に基づき敷地境界外の実効線量を評価した結果は、第2-2表のとおり 9×9燃料が装荷され、MOX 	・評価結果の相違【女川 2 号】
更はなく、従前と同じく約1.1×10 ⁻² mSvのままとなる。 (2) 主蒸気管破断 a. 評価方法 敷地境界外における実効線量は、次に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量の和として計算する。 (a) よう素の吸入による内部被ばく i. 主蒸気隔離弁閉止前 流出した冷却材が外気中で完全蒸発し、半球状の蒸気 雲になるものとする。 この半球状の蒸気雲が風により地上を移動する際のよう素の内部被ばくによる実効線量H _{I1} (Sv) は、(2.5)式で計算する。		燃料が装荷されるまでのサイクルが約4.0×10 ⁻² mSv, MO X燃料が装荷されたサイクル以降が約4.0×10 ⁻² mSvとなる。 (2) 主蒸気管破断 a. 評価方法 敷地境界外における実効線量は、次に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量の和として計算する。 (a) よう素の吸入による内部被ばく i 主蒸気隔離弁閉止前 流出した冷却材が外気中で完全蒸発し、半球状の蒸気雲になるものとする。 この半球状の蒸気雲が風により地上を移動する際のよう素の内部被ばくによる実効線量H _{I1} (Sv) は、(2.5)式で計算する。	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
$H_{\rm II} = \frac{Q_{\rm I}}{V} \cdot R \cdot H_{\rm a} \cdot \frac{\alpha}{u}$ ・・・ (2.5) ここで、 $Q_{\rm I}$:よう素の放出量 (Bq) ($I-131$ 等価量一小児実効線量係数換算) V : 半球状の蒸気雲の体積 (2.64×10 6 m³) R : 呼吸率 (m^3 /s) 呼吸率Rは,事故期間が比較的短いことを考慮し,活動時の呼吸率 $0.31m^3/h$ を秒当たりに換算して用いる。 $E=0.31m^3/h$ を $E=0.31m^3/$		$H_{II} = \frac{Q_{I}}{V}R \cdot H_{\infty} \cdot \frac{\alpha}{u}$ (2.5) ここで, Q_{I} : よう素の放出量(B_{Q}) ($I-131$ 等価量 $-$ 小児実効線量係数換算) V : 半球状の蒸気雲の体積 $(2.11 \times 10^{6} \mathrm{m}^{3})$ R : 呼吸率 (m^{3}/s) 呼吸率 R は,事故期間が比較的短いことを考慮し,活動時の呼吸率 $0.31 \mathrm{m}^{3}/h$ を秒当たりに換算して用いる。 H^{∞} : よう素($I-131$)を 1 B_{Q} 吸入した場合の小児の実効線量($1.6 \times 10^{-7} \mathrm{Sv}/B_{Q}$) α : 半球状の蒸気雲の直径($200 \mathrm{m}$) u : 蒸気雲の移動の評価のための風速(1 m/s)	 ・評価条件の相違 【女川 2 号】 ・評価条件の相違 【女川 2 号】
なお、蒸気雲が敷地境界外に達するまでの間に核分裂 生成物が崩壊することは考慮しない。 ii. 主蒸気隔離弁閉止後 よう素の内部被ばくによる実効線量H ₁₂ (Sv)は、(2.6)		なお、蒸気雲が敷地境界外に達するまでの間に核分裂 生成物が崩壊することは考慮しない。 ii 主蒸気隔離弁閉止後 よう素の内部被ばくによる実効線量H ₁₂ (Sv)は,(2.6) 式で計算する。	
式で計算する。 $H_{I2} = R \cdot H_{\infty} \cdot \chi/Q \cdot Q_{I} \cdot \cdot \cdot \cdot (2.6)$ ここで、 $R : 呼吸率 (m³/s)$		 Hi2=R・H∞・χ/Q・Qi···············(2.6) ここで、 R : 呼吸率 (m³/s) 呼吸率Rは、事故期間が比較的短いことを考慮し、活動時の呼吸率 0.31m³/h を秒当たりに換算して用いる。 H∞ : よう素 (I −131) を1Bq 吸入した場合の小児の実効線量 (1.6×10⁻⁷Sv/Bq) χ/Q: 相対濃度 (s/m³) QI : 事故期間中のよう素の大気放出量 (Bq) (I −131等価量−小児実効線量係数換算) 	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成 30 年 9 月 18 日)	島根原子力発電所 2号炉	備考
(b) 希ガス及びハロゲン等のγ線による外部被ばく		(b) 希ガス及びハロゲン等のγ線による外部被ばく	
i . 主蒸気隔離弁閉止前		i 主蒸気隔離弁閉止前	
半径rの半球状の蒸気雲に核分裂生成物が一様に分布		半径rの半球状の蒸気雲に核分裂生成物が一様に分布	
している場合,半球底部の中心点における希ガス及びハ		している場合,半球底部の中心点における希ガス及びハ	
ロゲン等のγ線外部被ばくによる実効線量		ロゲン等のγ線外部被ばくによる実効線量	
H _{y1} (Sv) は, (2.7) 式で計算する。		H _{y1} (Sv) は, (2.7) 式で計算する。	
$H_{\gamma 1} = 6.2 \times 10^{-14} \frac{Q_{\gamma}}{V} \cdot E_{\gamma} \cdot \frac{\alpha}{u} \cdot (1 - e^{-\mu \cdot r}) \cdot \cdot \cdot (2.7)$		$H_{\gamma 1} = 6.2 \times 10^{-14} \frac{Q_{\gamma}}{V} \cdot E_{\gamma} \cdot \frac{\alpha}{u} \cdot (1 - e^{-\mu r}) \dots (2.7)$ $\subset \subset \mathcal{C},$	
Q, : 蒸気雲中の核分裂生成物量 (Bq)		\mathbf{Q}_{γ} : 蒸気雲中の核分裂生成物量($\mathbf{B}\mathbf{q}$)	
(γ線実効エネルギー0.5MeV換算値)		(γ線実効エネルギ 0.5MeV 換算値)	
V : 半球状の蒸気雲の体積 (2.64×10 ⁶ m³)		V : 半球状の蒸気雲の体積(<u>2.11×10⁶m³</u>)	示/π 々 // , 。 ↓□ /本
E _ν : γ線のエネルギー (0.5MeV)		E_{γ} : γ 線のエネルギ (0.5MeV)	・評価条件の相違
μ : 空気に対するγ線のエネルギー吸収係数 (3.9×10⁻³/m)		μ : 空気に対する γ 線のエネルギ吸収係数 $(3.9 \times 10^{-3} \text{/m})$	【女川2号】
α : 半球状の蒸気雲の直径 (216m)		α : 半球状の蒸気雲の直径(<u>200m</u>)	₹/ / / / / / / / / / / /
u :蒸気雲の移動の評価のための風速 (1 m/s)		u : 蒸気雲の移動の評価のための風速 (1 m/s)	・評価条件の相違
			【女川2号】
ii.主蒸気隔離弁閉止後		ii 主蒸気隔離弁閉止後	
主蒸気隔離弁閉止後,主蒸気隔離弁を通して漏えいし		主蒸気隔離弁閉止後,主蒸気隔離弁を通して漏えいし	
てくる希ガス及びハロゲン等のγ線外部被ばくによる		てくる希ガス及びハロゲン等の γ 線外部被ばくによる	
実効線量H _{γ2} (Sv) は,「2.2(1) 放射性気体廃棄物処理		実効線量H _{y2} (Sv) は, 「2.2(1) 放射性気体廃棄物処理	
施設の破損」において希ガスのγ線外部被ばくによる実		施設の破損」において希ガスのγ線外部被ばくによる実	
効線量を求める際に用いた(2.4)式で計算する。		効線量を求める際に用いた(2.4)式で計算する。	
b. 評価結果		b. 評価結果	
上記の評価方法に基づき敷地境界外の実効線量を評価し		上記の評価方法に基づき敷地境界外の実効線量を評価し	
た結果は,第2-2表のとおり約9.9×10 ⁻² mSvである。		た結果は, 第2-3表のとおり 9 × 9 燃料が装荷され, MO X	 ・評価結果の相違
		燃料が装荷されるまでのサイクルが約 6.8×10^{-2} mSv, MOX	【女川2号】
		燃料が装荷されたサイクル以降が約6.8×10 ⁻² mSvである。	
上記の値から判断して,本事故による周辺の公衆に与える放		上記の値から判断して、本事故による周辺の公衆に与える放	
射線被ばくのリスクは十分に小さいものと考えられる。		射線被ばくのリスクは十分に小さいものと考えられる。	
		71/1/1/2 (12) 7 / 7 (13) 73 (14) C (10) C (17) 2 (10)	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
(3) 燃料集合体の落下		(3) 燃料集合体の落下	
a. 評価方法		a. 評価方法	
敷地境界外における実効線量は、次に述べる内部被ばく		敷地境界外における実効線量は、次に述べる内部被ばく	
による実効線量及び外部被ばくによる実効線量の和として		による実効線量及び外部被ばくによる実効線量の和として	
計算する。		計算する。	
よう素の内部被ばくによる実効線量H ₁ (Sv) は, 「2.2(2)		よう素の内部被ばくによる実効線量H ₁ (Sv) は, 「2.2(2)	
主蒸気管破断」のにおいて主蒸気隔離弁閉止後のよう素の		主蒸気管破断」のにおいて主蒸気隔離弁閉止後のよう素の	
内部被ばくによる実効線量を求める際に用いた(2.6)式で		内部被ばくによる実効線量を求める際に用いた(2.6)式で	
計算する。		計算する。	
また,希ガスの γ 線外部被ばくによる実効線量 H_{γ} (Sv)		また,希ガスの γ 線外部被ばくによる実効線量 H_{γ} (Sv)	
は,「2.2(1) 放射性気体廃棄物処理施設の破損」において,		は,「2.2(1) 放射性気体廃棄物処理施設の破損」において,	
希ガスのγ線外部被ばくによる実効線量を求める際に用い		希ガスのγ線外部被ばくによる実効線量を求める際に用い	
た (2.4) 式で計算する。		た (2.4) 式で計算する。	
b. 評価結果		b. 評価結果	
上記の評価前提に基づき敷地境界外の実効線量を評価し		上記の評価前提に基づき敷地境界外の実効線量を評価し	
た結果は, <u>第2-3表のとおり約3.9×10⁻²mSvである。</u>		た結果は <u>第2-4表のとおり 9 × 9 燃料が装荷され</u> , MO X	・評価結果の相違
		燃料が装荷されるまでのサイクルが約8.0 \times 10 $^{-2}$ mSv, MOX	【女川2号】
上記の値から判断して、本事故による周辺の公衆に与え			
る放射線被ばくのリスクは十分に小さいものと考えられ		る放射線被ばくのリスクは十分に小さいものと考えられ	
る。		る。	
(4) 原子炉冷却材喪失		(4) 原子炉冷却材喪失	
a. 評価方法		a. 評価方法	
敷地境界外における実効線量は、次に述べる内部被ばく		敷地境界外における実効線量は、次に述べる内部被ばく	
による実効線量及び外部被ばくによる実効線量の和として		による実効線量及び外部被ばくによる実効線量の和として	
計算する。		計算する。	
よう素の内部被ばくによる実効線量H ₁ (Sv) は, 「2.2(2)		よう素の内部被ばくによる実効線量H ₁ (Sv) は, 「2.2(2)	
主蒸気管破断」において主蒸気隔離弁閉止後のよう素の内		主蒸気管破断」において主蒸気隔離弁閉止後のよう素の内	
部被ばくによる実効線量を求める際に用いた(2.6)式で計		部被ばくによる実効線量を求める際に用いた(2.6)式で計	
算する。ただし,呼吸率Rは事故期間が長いことを考慮し,		算する。ただし,呼吸率Rは事故期間が長いことを考慮し,	
1日平均の呼吸率5.16(m³/d) を用いる。		1日平均の呼吸率5.16(m³/d) を用いる。	
また, 希ガスの γ 線外部被ばくによる実効線量 H_{γ} (Sv) は,		また, 希ガスの γ 線外部被ばくによる実効線量 H_{γ} (Sv) は,	
「2.2(1) 放射性気体廃棄物処理施設の破損」において,希		「2.2(1) 放射性気体廃棄物処理施設の破損」において,希	
ガスのγ線外部被ばくによる実効線量を求める際に用いた		ガスのγ線外部被ばくによる実効線量を求める際に用いた	
(2.4) 式で計算する。		(2.4) 式で計算する。	
また、直接線及びスカイシャイン線の外部被ばくによる		また、直接線及びスカイシャイン線の外部被ばくによる	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成 30 年 9 月 18 日)	島根原子力発電所 2号炉	備考
実効線量は,直接線についてはQADコード,スカイシャイン		実効線量は,直接線についてはQADコード,スカイシャイン	
線についてはANISN,G-33コードにより求めたγ線空気カー		線についてはANISN, G-33コードにより求めたγ線空気カー	
マに換算係数(1Sv/Gy)を乗じて評価する。		マに換算係数(1Sv/Gy)を乗じて評価する。	
b. 評価結果		b. 評価結果	
上記の評価前提に基づき敷地境界外の実効線量を評価し		上記の評価前提に基づき敷地境界外の実効線量を評価し	
た結果は, <u>第2-4表のとおり約8.0×10⁻⁵mSvである。</u>		た結果は、 <u>第2-5表のとおり9×9燃料が装荷され、MOX</u>	・評価結果の相違
		燃料が装荷されるまでのサイクルが約1.0×10 ⁻⁴ mSv, MO	【女川2号】
		X 燃料が装荷されたサイクル以降が約 1.0×10^{-4} mSv であ	
		る。	
上記の値から判断して、本事故による周辺の公衆に与え		上記の値から判断して、本事故による周辺の公衆に与え	
る放射線被ばくのリスクは十分に小さいものと考えられ		る放射線被ばくのリスクは十分に小さいものと考えられ	
る。		る。	
(5) 制御棒落下		(5) 制御棒落下	
a. 評価方法		a. 評価方法	
敷地境界外における実効線量は次に述べる内部被ばくに		敷地境界外における実効線量は次に述べる内部被ばくに	
よる実効線量及び外部被ばくによる実効線量の和として計		よる実効線量及び外部被ばくによる実効線量の和として計	
算する。		算する。	
よう素の内部被ばくによる実効線量H ₁ (Sv) は, 「2.2(2)		よう素の内部被ばくによる実効線量H ₁ (Sv) は, 「2.2(2)	
主蒸気管破断」のにおいて主蒸気隔離弁閉止後のよう素の		主蒸気管破断」のにおいて主蒸気隔離弁閉止後のよう素の	
内部被ばくによる実効線量を求める際に用いた (2.6) 式で		内部被ばくによる実効線量を求める際に用いた(2.6)式で	
計算する。		計算する。	
また,希ガスの γ 線外部被ばくによる実効線量 H_{γ} (Sv)		また,希ガスの γ 線外部被ばくによる実効線量 H_{γ} (Sv)	
は,「2.2(1) 放射性気体廃棄物処理施設の破損」において,		は,「2.2(1) 放射性気体廃棄物処理施設の破損」において,	
希ガスのγ線外部被ばくによる実効線量を求める際に用い		希ガスのγ線外部被ばくによる実効線量を求める際に用い	
た (2.4) 式で計算する。		た (2.4) 式で計算する。	
b. 評価結果		b. 評価結果	
上記の評価前提に基づき敷地境界外の実効線量を評価し		上記の評価前提に基づき敷地境界外の実効線量を評価し	
た結果は, <u>第2-5表のとおり約8.0×10⁻³mSvである。</u>		た結果は、 $\hat{\mathbf{g}}$ 2-6表のとおり 9×9 燃料が装荷され、 \mathbf{MOX}	・評価結果の相違
		燃料が装荷されるまでのサイクルが約9.9×10 ⁻³ mSv, MO	【女川2号】
上記の値から判断して、本事故による周辺の公衆に与え		X 燃料が装荷されたサイクル以降が約 1.3×10^{-2} mSvである。	
る放射線被ばくのリスクは十分に小さいものと考えられ		上記の値から判断して、本事故による周辺の公衆に与え	
る。		る放射線被ばくのリスクは十分に小さいものと考えられ	
		る。	

7	女川原子力	発電所 2	2 号炉(台	令和元年 :	10月3日)	東海第二	発電所(平	P成 30 年 9	月 18 日)			島根原一	子力発電所	所 2号炉	i		備考
	安全評価(実効放出継続 放出位置 メ/Q (s/m²)	こ使用す	る相対濃			線量 (D/Q)	東海第二	発電所(当	P成 30 年 9	月 18 日)	第2-1表 放出条件 (変更前) 1996年1月から 1996年12月ま	安全評価 実効放出継続 放出位置:	に使用す	- る相対濃 _{実効放出継続}		及び相対	線量 (D/Q) 時間: 1 時間 排気筒 D/Q (Gy/Bq) 2. 2×10 ⁻¹⁹	備考 ・評価結果の相違 【女川2号】
変更後** ² 事故の種類		9. 3×10 ⁻²⁰	7.5×10 ⁻¹ ○主蒸気管破(主蒸気隔離	3. 1×10 ⁻¹⁸	5.5×10 ⁻⁶ ○放射性気体 施設の破損 ○制御棒落下	1.3×10 ⁻¹⁹					での気象資料 (変更後) 2009年1月から 2009年12月ま での気象資料 事故の種類	○原子炉冷却	1.5×10 ⁻¹⁹ 材喪失	3.3×10 ⁻⁴ ○主蒸気管で (主蒸気隔离		設の破損 ○制御棒落下		
	年 11 月から 1992 年 1 月から 2012 4				〇燃料集合体											○制御棒落す		

大力・大型 100	備考			, 号炉	力発電所 2	島根原子		東海第二発電所(平成30年9月18日)	月 3 日)	令和元年 10 月	女川原子力発電所2号炉(
第2-2表 主義気管破断 (事故) 時の実施業量 第2-3表 主義気管破断 (被計法律事故) 時の実施業量 第4 の 10 で	評価結果の相違 【女川2号】 女川2号炉は拡散 の結果(D/Q)が行	v) 更後)	量 (mSv) (変更後)	実効線』	棄物処理施設	放射性気体廃	第2-2表				
第2-2表 主蒸気管破断 (事故) 時の実効線量 第2-2表 主蒸気管破断 (歌計某準事故) 時の実効線量 第2-2表 主蒸気管破断 (歌計某準事故) 時の実効線量 [女/ (変元) (変元) (変元) (変元) (変元) (変元) (変元) (変元)	の値と変わらず実効; 量も変更とならなか たことから評価結果 掲載していない	2月までの 寮資料 0×10 ⁻² - 0×10 ⁻² 1 1 1 1 1 1 1 1 1 1 1 1 1	気象資料 約4.0×1 - 約4.0×1 約4.0×1	気象資料 約3.5×10 ⁻² - 約3.5×10 ⁻² 約3.5×10 ⁻²	こよる実効線量計	よう素の内部被ばくに 合 希ガスのγ線外部被ばく	装荷され、MO X燃料が装荷 されるまでの サイクル MO X燃料が 装荷されたサ				
実効線量 (mSv)											
大学 対象 報 (LSV)	評価結果の相違 女川2号】			1	行(設計基準	表 主蒸気管破断	第2-3		<u> </u>	事故)時の実存	第2-2表 主蒸気管破断(
る実効線量 約5.0×10 ⁻³ 約5.3×10 ⁻³ 対5.3×10 ⁻³ 対5.3×10 ⁻³ 対5.5×10 ⁻² 対6.8×10 ⁻² 対6.5×10 ⁻² よう素の内部被ばくによる実効線量 約9.0×10 ⁻² 約9.9×10 ⁻² 対6.8×10 ⁻² <	У Ш 2 6]	V) 更後) :1月から 2月までの	(変更後) 2009年1月 2009年12月ま	(変更前) 1996年1月から 1996年12月までの					(変更後) 2012年1月から 2012年12月まで	(変更前) 1991年11月から 1992年10月まで	_
よう素の内部被はくによる実効線量 約9.0×10 ⁻² 約9.4×10 ⁻² 合計 約9.5×10 ⁻² 約9.9×10 ⁻² MOX燃料が 希ガスのy線外部被ばくによる実効線量 約3.9×10 ⁻³ 約3.8×10 ⁻³							装荷され, MO				実効線量
MO X燃料が							されるまでの				
		×10 ⁻³	約3.8×1	約3.9×10 ⁻³	くによる実効線量	希ガスのγ線外部被ばく	MOY桝料が		※79. 9×10	ポリタ. 5 ∧ 10	디비
		×10 ⁻²	約6.5×1	約6.8×10 ⁻²	こよる実効線量	よう素の内部被ばくに	装荷されたサ				
イクル以降 合 計 約7. 2×10 ⁻² 約6. 8×10 ⁻²		$\times 10^{-2}$	約6.8×1	約7.2×10 ⁻²	計	合	イクル以降				

	令和元年 10 月	1 3 Ц)	東海第二発電所(平成3	00 0 /1 10 H /	島根原子力発電所	2 号炉		備考
第2-3表 燃料集合体の	第2-3表 燃料集合体の落下時の実効線量				第2-4表 燃料集合体の落つ	「時の実効線量	<u>.</u>	評価結果の相
	実効線量	t (mSv)					量 (mSv)	【女川2号】
	(変更前) 1991年11月から 1992年10月まで の気象資料	(変更後) 2012年1月から 2012年12月まで の気象資料				(変更前) 1996年1月から 1996年12月までの 気象資料	(変更後) 2009年1月から 2009年12月までの 気象資料	
希ガスのγ線外部被ばくによる実効線量	約3.4×10 ⁻²	約3.4×10 ⁻²		9×9燃料 装荷され,	市ルヘツγ耐欠はくによる夫効 極里	約7.0×10 ⁻²	約 7.9×10 ⁻²	
よう素の内部被ばくによる実効線量	約4.6×10 ⁻³	約5.4×10 ⁻³		X燃料がも	支荷 よう素の内部被ばくによる実効線量	約 2.4×10 ⁻⁴	約 2.9×10 ⁻⁴	
승카	約3.8×10 ⁻²	約3.9×10 ⁻²		されるま ^っ サイクノ	∆ ∌L	約 7.0×10 ⁻²	約 8.0×10 ⁻²	
				MOX燃料	希ガスのγ線外部被ばくによる実効線量	約 7.0×10 ⁻²	約 7.9×10 ⁻²	
				装荷された	たサ よう素の内部被ばくによる実効線量	約 2.4×10 ⁻⁴	約 2.9×10 ⁻⁴	
				イクル以				
第2-4表 原子炉冷却材喪失				第2-5	表原子炉冷却材喪失(設計基	1		・評価結果の相談【女川2号】
第2-4表 原子炉冷却材喪失	実効線量	(mSv) (変更後)		第2-5		進事故)時 <i>0</i> 実 効 線 (変更前)	<u>実効線量</u> 量 (mSv) (変更後)	
第2-4表 原子炉冷却材喪失	実効線量 (変更前) 1991年11月から 1992年10月まで	(mSv) (変更後) 2012年1月から 2012年12月まで		第2-5		進事故)時 の 実効線 (変更前) 1996年1月から 1996年12月までの	主効線量 量 (mSv) (変更後) 2009年1月から 2009年12月までの	
第2-4表 原子炉冷却材喪失 布ガスのy線外部被ばくによる実効線量	実効線量 (変更前) 1991年11月から	k (mSv) (変更後) 2012年1月から			表原子炉冷却材喪失(設計基	集事故) 時の 実 効 線 (変更前) 1996年1月から 1996年12月までの 気象資料	実効線量 量 (mSv) (変更後) 2009年1月から 2009年12月までの 気象資料	
	実効線量 (変更前) 1991年11月から 1992年10月まで の気象資料	(mSv) (変更後) 2012年1月から 2012年12月まで の気象資料		9×9燃料 装荷され,1	表 原子炉冷却材喪失 (設計ま ・	進事故)時の 実 効 線 (変更前) 1996年1月から 1996年12月までの 気象資料	実効線量 量 (mSv) (変更後) 2009年1月から 2009年12月までの 気象資料	
希ガスのγ線外部被ばくによる実効線量 よう素の内部被ばくによる実効線量 原子炉建屋原子炉棟内の核分裂生成物からの	実効線量 (変更前) 1991年11月から 1992年10月まで の気象資料 約4.3×10 ⁻⁵	(mSv) (変更後) 2012年1月から 2012年12月まで の気象資料 約5.2×10 ⁻⁵		9×9燃料 装荷され、i X燃料が装 されるまで	表原子炉冷却材喪失(設計多 ・おが の y線外部被ばくによる実効線量 よう素の内部被ばくによる実効線量 原子炉棟内の核分裂生成物からの直接線及 がスカイシャイン線による実効線量	実 効 線 (変更前) 1996年1月から 1996年12月までの 気象資料 約8.0×10 ⁻⁵ 約6.3×10 ⁻⁷	 実効線量 (mSv) (変更後) 2009年1月から 2009年12月までの 気象資料 約1.0×10⁻⁴ 	
希ガスのγ線外部被ばくによる実効線量 よう素の内部被ばくによる実効線量 原子炉建屋原子炉棟内の核分裂生成物からの	実効線量 (変更前) 1991年11月から 1992年10月まで の気象資料 約4.3×10 ⁻⁵ 約2.0×10 ⁻⁵	(mSv) (変更後) 2012年1月から 2012年12月まで の気象資料 約5.2×10 ⁻⁵ 約2.6×10 ⁻⁵		9×9燃料 装荷され、i X燃料が装	表原子炉冷却材喪失(設計多 ・おが の y線外部被ばくによる実効線量 よう素の内部被ばくによる実効線量 原子炉棟内の核分裂生成物からの直接線及 がスカイシャイン線による実効線量	集事故) 時の 実 効 線 (変更前) 1996年1月から 1996年12月までの 気象資料 約 8.0×10 ⁻⁵ 約 6.3×10 ⁻⁷	主効線量 量 (mSv) (変更後) 2009年1月から 2009年12月までの 気象資料 約1.0×10 ⁻⁴ 約9.4×10 ⁻⁷	
希ガスのy線外部被ばくによる実効線量 よう素の内部被ばくによる実効線量 原子炉建屋原子炉棟内の核分裂生成物からの 直接線及びスカイシャイン線による実効線量	実効線量 (変更前) 1991年11月から 1992年10月まで の気象資料 約4.3×10 ⁻⁵ 約2.0×10 ⁻⁶	(mSv) (変更後) 2012年1月から 2012年12月まで の気象資料 約5.2×10 ⁻⁵ 約2.6×10 ⁻⁵		9×9燃料 装荷され、i X燃料が装 されるまで	表原子炉冷却材喪失(設計まれが) では、まる実効線量はでは、まる素の内部被ばくによる実効線量原子炉棟内の核分裂生成物からの直接線及びスカイシャイン線による実効線量	実 効 線 (変更前) 1996年1月から 1996年12月までの 気象資料 約 8.0×10 ⁻⁵ 約 6.3×10 ⁻⁷ 約 3.1×10 ⁻⁷	主効線量 量 (mSv) (変更後) 2009年1月から 2009年12月までの 気象資料 約1.0×10 ⁻⁴ 約9.4×10 ⁻⁷ 約3.1×10 ⁻⁷ 約1.0×10 ⁻⁴ 約1.0×10 ⁻⁴	
希ガスのy線外部被ばくによる実効線量 よう素の内部被ばくによる実効線量 原子炉建屋原子炉棟内の核分裂生成物からの 直接線及びスカイシャイン線による実効線量	実効線量 (変更前) 1991年11月から 1992年10月まで の気象資料 約4.3×10 ⁻⁵ 約2.0×10 ⁻⁶	(mSv) (変更後) 2012年1月から 2012年12月まで の気象資料 約5.2×10 ⁻⁵ 約2.6×10 ⁻⁵		9×9燃料 装荷され、1 X燃料がま されるまで サイクル	表 原子炉冷却材喪失 (設計を ・ 一部 では、	実 効 線 (変更前) 1996年1月から 1996年12月までの 気象資料 約 8.0×10 ⁻⁵ 約 6.3×10 ⁻⁷ 約 8.1×10 ⁻⁵ 約 8.0×10 ⁻⁵ 約 8.0×10 ⁻⁵ 約 6.3×10 ⁻⁷	全 (mSv) (変更後) 2009年1月から 2009年1月までの 気象資料 約1.0×10 ⁻⁴ 約9.4×10 ⁻⁷ 約3.1×10 ⁻⁷	
希ガスのy線外部被ばくによる実効線量 よう素の内部被ばくによる実効線量 原子炉建屋原子炉棟内の核分裂生成物からの 直接線及びスカイシャイン線による実効線量	実効線量 (変更前) 1991年11月から 1992年10月まで の気象資料 約4.3×10 ⁻⁵ 約2.0×10 ⁻⁶	(mSv) (変更後) 2012年1月から 2012年12月まで の気象資料 約5.2×10 ⁻⁵ 約2.6×10 ⁻⁵		9×9燃料 装荷され、1 X燃料がま されるまで サイクル	表 原子炉冷却材喪失 (設計多数の) 線外部被ばくによる実効線量 よう素の内部被ばくによる実効線量 原子炉棟内の核分裂生成物からの直接線及 びスカイシャイン線による実効線量 合 計 希ガスの y 線外部被ばくによる実効線量 よう素の内部被ばくによる実効線量 よう素の内部被ばくによる実効線量 ア子炉棟内の核分裂生成物からの直接線及 サブ	実 効 線 (変更前) 1996年1月から 1996年12月までの 気象資料 約 8.0×10 ⁻⁵ 約 6.3×10 ⁻⁷ 約 8.1×10 ⁻⁵ 約 8.0×10 ⁻⁵ 約 8.0×10 ⁻⁵ 約 6.3×10 ⁻⁷	主効線量 量 (mSv) (変更後) 2009年1月から 2009年12月までの 気象資料 約1.0×10 ⁻⁴ 約9.4×10 ⁻⁷ 約3.1×10 ⁻⁷ 約1.0×10 ⁻⁴ 約1.0×10 ⁻⁴	

女川原子力発電所2号炉	(令和元年 10 月	13日)	東海第二発電所(平成30年9月18日)		島根原子力発電所	2号炉		備考
第2-5表 制御棒科	落下時の実効線 量				第2-6表 制御棒落下時	の実効線量		・評価結果の相違
	実効線量	i (mSv)				実 効 線	量 (mSv)	【女川2号】
	(変更前) 1991年11月から 1992年10月まで の気象資料	(変更後) 2012年1月から 2012年12月まで の気象資料				(変更前) 1996年1月から 1996年12月までの 気象資料	(変更後) 2009年1月から 2009年12月までの 気象資料	
希ガスのγ線外部被ばくによる実効線量	約1.4×10 ⁻³	約1. 4×10 ⁻³		9×9燃料が 装荷され, MO	希ガスのγ線外部被ばくによる実効線量	約 1.7×10 ⁻³	約 2.0×10 ⁻³	
よう素の内部被ばくによる実効線量	約5.7×10 ⁻³	約6.7×10 ⁻³		X燃料が装荷	よう素の内部被ばくによる実効線量	約 6.7×10 ⁻³	約 7.9×10 ⁻³	
合計	約7.1×10 ⁻³	約8. 0×10 ⁻³		されるまでの サイクル	合 計	約 8.4×10 ⁻³	約 9.9×10 ⁻³	
				MOX燃料が	希ガスのγ線外部被ばくによる実効線量	約 2.3×10 ⁻³	約 2.7×10 ⁻³	
				装荷されたサ	よう素の内部被ばくによる実効線量	約 8.9×10 ⁻³	約 1.1×10 ⁻²	
				イクル以降	合 計	約 1.1×10 ⁻²	約 1.3×10 ⁻²	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2 号炉	備考
補足1		補足1	-
平常運転時における一般公衆の受ける実効線量が増加した		平常運転時における一般公衆の受ける実効線量が変化した	・評価結果の相違
理由及びよう素の年平均地上空気中濃度の最大地点が変化し		理由について	【女川2号】
<u>た理由について</u>			
気象資料の変更に伴い,平常運転時における一般公衆の受		平常運転時における一般公衆の受ける実効線量が変化(減	
ける実効線量が増加した要因は1号炉排気筒から南東方向に		少) した主な要因として,以下2点について考察する。	
対する風向出現頻度が増加したことによるものである。第1			
表に変更前後における風向出現頻度を示す。		【希ガスのγ線による実効線量】	
変更前において希ガスのγ線による実効線量が最大となる		希ガスのγ線による実効線量が最大となる方位は北西であ	
のは南東、よう素による年平均地上空気中濃度が最大となる		り、この傾向は気象資料の変更前後で変化していないが、第	
地点は東南東であったが,風向出現頻度を見ると東南東の風		1表に変更前後における当該方位における大気安定度別風速	
向出現頻度は18.5%から14.8%に低下しており, 南東について		逆数の総和の変化率を示すとおり、2号炉排気筒高さにおい	
は9.6%から15.2%に増加している。		て、風速逆数の総和の小さい大気安定度Aを除くすべての大	
また、年平均の空気カーマ及び地上空気中濃度計算は、風		気安定度(B~F)において、風速逆数の総和が減少してい	
向別大気安定度別の空気カーマ率及び地上空気中濃度に,風		ることから、実効線量は減少傾向となる。	
向別大気安定度別風速逆数の総和を乗じたうえで,隣接3方位		一方、3号炉排気筒高さにおいては最も風速逆数の総和が	
分の合計値として評価している。東南東、南東及びこれらの		大きい大気安定度 D は増加しているが、第2表に示す通り、	
隣接方位について,風向別大気安定度別風速逆数の総和に対		北西方位に関する放出源の有効高さが大きく増加しており全	
する象資料の変更前後の比較表を第2表に示す。気象資料の変		体として実効線量の減少に寄与している。	
更前に対して、変更後には全体的に南東方位を中心とした数			
値が増加している。		【よう素による年平均地上空気中濃度】	
さらに線量評価地点までの距離は,南東は約790mであるの		よう素による年平均地上空気中濃度が最大となる方位は南	
に対し,東南東は約1,150mであり,南東の方が線量評価地点		東であり、これについても気象資料の変更前後で変化してい	
までの距離が近い。一般的に線量評価地点までの距離が近い		ない。南東方位では、2号炉、3号炉ともに排気筒有効高さ	
ほど,大気安定度が安定側(F側)よりも不安定側(A側)の線		が増加しているため、よう素による年平均地上空気中濃度は	
量への寄与が大きくなることから,不安定側 (A側) の風速逆		変更前と比べて減少している。	
数の総和が増加したことで,南東約790m地点がよう素の地上			
空気中濃度の最大地点になったものと考える。			
以上のことから、希ガスのγ線による実効線量は増加し、			
よう素による年平均地上空気中濃度が最大となる地点が東南			
東から南東に変化したものと考えられる。			

		女川	原子力発電	所 2 号炉(令和	n元年 10 月 3 日	∃)	東海第二発電所(平成30年9月18日)			島	根原子力発電	所 2号	-炉		備
		第1表	風向出現頻度に対する気象資料の変更前後比較表			发比較表 <u></u>		第1表	NW:						・評価結果(
快速時に対象	株式 株式 株式 株式 株式 株式 株式 株式			T	г	(%)			B.4						【 <i>女川</i> 2 号。
現所 別様	現所 別が 別が作用がある から発展がある から変化 であった であった であった であった であった であった であった であった							十年中					1		
No.	No.	風向	風下方位	1991年11月から 1992年10月まで	2012年1月から 2012年12月まで	差		定度 A	1996 年 1.39	2009年 4.09	1. 94	1996 年 4.92	2009 年 7.69	0. 56	
NR	NR	N	S			+0, 2				_					
No.	No.							D	+	85. 81	+				
ENE	No.	NNE	SSW	3. 5	3. 1	-0. 4									
E W 5.1 6.2 5.1 6.2 5.1 6.2 5.1 6.2 5.1 6.2 5.1 6.2 5.1 6.2 5.1 6.2 5.1 6.2 5.1 6.2 5.1 6.2 5.1 6.2 5.1 6.2 6.6 6.	E W 5.1 6.2 +1.1 E E W W 2.5 3.5 +1.0 S NW 4.4 3.1 -1.3 S S NN 4.0 4.4 +0.4 S N 4.4 3.9 -0.5 S S NN NN 9.2 5.8 -3.4 S W W E 7.1 4.4 -2.7 W E 7.2 7.3 -0.6 W W E 6.9 7.6 14.5 W E 7.1 4.4 -2.7 W E 6.9 7.6 14.5 W E 7.1 4.4 -2.7 W E 6.9 7.5 14.5 W E 7.1 4.4 -2.7 W E 7.2 7.3 -0.6 W W G 6.5 14.5 -3.7 S S S S S S S S S S	ΝE	SW	7. 2	7. 5	+0.3		F	110. 53	85.71	-0. 23	141. 52	158. 39	0. 12	
B	Barrier Warrier War	ENE	WSW	4. 4	6.8	+2.4				笙 ′	2 表 放出源(の有効点	ま さ		
ESE WNW 2.5 3.5 +1.0	SE NW 4.4 3.1 -1.3	Е	W	5. 1	6. 2	+1.1				<u>N1 2</u>			٠, ٠		
SE	SE	ESE	WNW	2. 5	3. 5	+1.0						みん・ロウモクト	(変更	(後)	
S	SSE NNW 4.0 4.4 +0.4 S N 4.4 3.9 -0.5 SW NNE 9.2 5.8 -3.4 SW NE 6.9 7.6 +0.7 WW ENE 7.1 4.4 -2.7 WNW ESE (RE) 18.5 14.8 -3.7 NW SE (RE) 9.6 15.2 +5.6	SE	NW	4. 4	3. 1	-1. 3				((H15年12月)		(令和	2年)	
S N 4.4 3.9 -0.5 SSW NNE 9.2 5.8 -3.4 SW NE 6.9 7.6 +0.7 WSW ENE 7.1 4.4 -2.7 W E/(東) 7.9 7.3 -0.6 WNW ESE (前東) 18.5 11.8 -3.7 NW SE (前東) 9.6 15.2 +5.6	S N 4.4 3.9 -0.5 SSW NNE 9.2 5.8 -3.4 SW NE 6.9 7.6 +0.7 WSW ENE 7.1 4.4 -2.7 W E/(東) 7.9 7.3 -0.6 WNW ESE (南東) 18.5 14.8 -3.7 NW SE (南東) 9.6 15.2 +5.6	SSE	NNW	4. 0	4. 4	+0.4				排気筒	排気筒		排気筒	排気筒	
SSW NNE 9.2 5.8 -3.4 SW NE 6.9 7.6 +0.7 WSW ENE 7.1 4.4 -2.7 W E(度) 7.9 7.3 -0.6 WNW ESE (東南東) 18.5 14.8 -3.7 NW SE (南東) 9.6 15.2 +5.6	SSW NNE 9.2 5.8 -3.4 SW NE 6.9 7.6 +0.7 WSW ENE 7.1 4.4 -2.7 W E 7.9 7.3 -0.6 WNW ESE 18.5 14.8 -3.7 NW SE 9.6 15.2 +5.6	S	N	4. 4	3.9	-0.5		 							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SSW	NNE	9. 2	5. 8	-3. 4						1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SW	NE	6. 9	7.6	+0.7									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	WNW $\frac{E S E}{(p r n p)}$ 18.5 14.8 -3.7 NW $\frac{S E}{(n p p)}$ 9.6 15.2 +5.6	WSW	ENE	7. 1	4. 4	-2.7									
NW SE (南東) 9.6 15.2 +5.6 NNW SSE 0.0 0.5 0.5	NW SE (南東) 9.6 15.2 +5.6 NNW SSE 0.6 0.5 0.5	W	<u></u> <u>E</u> <u>(東)</u>	7.9	7.3	-0.6									
yyyyy SSE aa a5 a5	yyyyy SSE aa a5 a5	WNW	_(東南東)_	18. 5	14.8	-3.7									
NNW SSE (南南東) 3.0 3.7 +0.7	NNW SSE 3.0 3.7 +0.7	NW		9.6	<u>15. 2</u>	+5. 6									
		NNW	<u>SSE</u> (南南東)	3.0	3.7	+0.7									

女	川原子力発電		予炉(令	和元年	三10月	3 目)		東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
第2表 風	2表 風向別大気安定度別風速逆数の総和に対する気象資料の 変更前後比較表 (E, ESE, ES, SSE方位)					⁻ る気象	でで できない できない できない できない かいい かいい かいい かいい かいい かいい かいい かいい かいい か			・評価結果の相違 【女川2号】
						Ι	(s/m)			
風下方位	大気安定度	A	В	С	D	Е	F			
	(変更前) 1991年11月から 1992年10月	9. 30	48. 57	5. 37	55. 67	6. 65	81. 57			
E (東)	(変更後) 2012年1月から 2012年12月	15. 90	53. 27	5. 67	69. 87	4. 36	64. 15			
	差	+6, 6	+4. 7	+0, 3	+14. 2	-2. 29	-17. 42			
	(変更前) 1991年11月から 1992年10月	3. 99	33. 77	20. 20	108. 85	17. 46	88. 79			
ESE (東南東)	(変更後) 2012年1月から 2012年12月	6. 92	51. 78	12.00	56.06	10.34	102. 99			
	差	+2. 93	+18. 01	-8. 2	-52. 79	-7. 12	+14. 2			
	(変更前) 1991年11月から 1992年10月	3. 55	31. 34	9, 90	67. 91	3. 36	121. 99			
S E (南東)	(変更後) 2012年1月から 2012年12月	9. 75	56. 31	13, 84	83. 23	8. 05	129. 76			
	差	+6, 2	+21. 97	+3. 94	+15, 32	+4. 69	+7. 77			
	(変更前) 1991年11月から 1992年10月	1. 68	19. 14	2. 00	40.83	3. 76	48. 80			
SSE (南南東)	(変更後) 2012年1月から 2012年12月	2. 31	24. 62	0. 56	50. 66	1.76	59. 83			
	差	+0. 63	+5. 48	-1.44	+9. 83	-2. 00	+11. 03			

離足 2 設計基準事故時における被ばくの代表事象が変更となった 理由について 気象資料の変更に伴う,設計基準事故時における敷地境界 外線量評価結果には大きな変化はなかったものの,「主蒸気 管破断(設計基準事故)」の評価結果がわずかに減少し,一 方で「燃料集合体落下」の評価結果がわずかに増加した結果, 線量評価結果が最も大きくなる事象が,「主蒸気管破断(設 計基準事故)」から「燃料集合体落下」に変更となった。 この変更に関する詳細は以下のとおりである。 1. 主蒸気管破断(設計基準事故)時の被ばく評価結果変更の主	・記載方針の相違 【女川2号,東海第二 島根2号炉の設計: 準事故に係る評価結: に関する考察を記載
理由について 気象資料の変更に伴う、設計基準事故時における敷地境界 外線量評価結果には大きな変化はなかったものの、「主蒸気 管破断(設計基準事故)」の評価結果がわずかに減少し、一 方で「燃料集合体落下」の評価結果がわずかに増加した結果、 線量評価結果が最も大きくなる事象が、「主蒸気管破断(設 計基準事故)」から「燃料集合体落下」に変更となった。 この変更に関する詳細は以下のとおりである。	【女川2号, 東海第二 島根2号炉の設計: 準事故に係る評価結:
気象資料の変更に伴う、設計基準事故時における敷地境界外線量評価結果には大きな変化はなかったものの、「主蒸気管破断(設計基準事故)」の評価結果がわずかに減少し、一方で「燃料集合体落下」の評価結果がわずかに増加した結果、線量評価結果が最も大きくなる事象が、「主蒸気管破断(設計基準事故)」から「燃料集合体落下」に変更となった。この変更に関する詳細は以下のとおりである。	島根2号炉の設計 準事故に係る評価結
外線量評価結果には大きな変化はなかったものの, 「主蒸気管破断(設計基準事故)」の評価結果がわずかに減少し, 一方で「燃料集合体落下」の評価結果がわずかに増加した結果,線量評価結果が最も大きくなる事象が, 「主蒸気管破断(設計基準事故)」から「燃料集合体落下」に変更となった。この変更に関する詳細は以下のとおりである。	準事故に係る評価結
外線量評価結果には大きな変化はなかったものの, 「主蒸気管破断(設計基準事故)」の評価結果がわずかに減少し, 一方で「燃料集合体落下」の評価結果がわずかに増加した結果,線量評価結果が最も大きくなる事象が, 「主蒸気管破断(設計基準事故)」から「燃料集合体落下」に変更となった。この変更に関する詳細は以下のとおりである。	
管破断(設計基準事故)」の評価結果がわずかに減少し、一方で「燃料集合体落下」の評価結果がわずかに増加した結果、線量評価結果が最も大きくなる事象が、「主蒸気管破断(設計基準事故)」から「燃料集合体落下」に変更となった。この変更に関する詳細は以下のとおりである。	に関する考察を記載
方で「燃料集合体落下」の評価結果がわずかに増加した結果、 線量評価結果が最も大きくなる事象が、「主蒸気管破断(設 計基準事故)」から「燃料集合体落下」に変更となった。 この変更に関する詳細は以下のとおりである。	
線量評価結果が最も大きくなる事象が, 「主蒸気管破断(設計基準事故)」から「燃料集合体落下」に変更となった。 この変更に関する詳細は以下のとおりである。	
計基準事故)」から「燃料集合体落下」に変更となった。 この変更に関する詳細は以下のとおりである。	
この変更に関する詳細は以下のとおりである。	
1. 主蒸気管破断(設計基準事故)時の被ばく評価結果変更の主	
な理由	
(1) 主蒸気管破断(設計基準事故)時の相対濃度の特徴	
主蒸気管破断(設計基準事故)時の相対濃度について、変	
更前後の値を第1表に示す。なお、主蒸気管破断(設計基準事	
故) 時の拡散評価は、地上放出を仮定することから、地上風を	
代表する地上 20m (標高 28.5m) における気象データを用い	
ている。	
主蒸気管破断(設計基準事故)時の拡散評価の特徴として,	
相対濃度の評価結果が、NW方位において突出して大きい。こ	
れは,第1図に示すとおり,地上風において,拡散の小さいE・	
F・G型の大気安定度が発生しているときの風向出現頻度が特	
に高い風下方位N(風向S)から風下方位NW(風向SE)ま	
での範囲と、陸側方位であるENE方位からNW方位までの範	
囲が重なっているところがNW方位のみであることによる。な	
お、この傾向は気象資料の変更前後において変化がない。	
(2) NW方位の相対濃度が低下した理由	
第1図より、大気安定度E・F・G型出現時の風下方位N	
W(風向SE)の出現頻度が減少していることが分かる。	
拡散の小さいE・F・G型の頻度が減少することで、拡散	
評価の累積出現頻度 97%における評価値が小さくなり, NW方	
位における相対濃度が低下したと考えられる。	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2 号炉	備考
タ川水1万元电/万名 号が (日和7元十 10万 1 日)	水神和一元电/J (下灰 50 干 5 J) 10 日)	(3) 主蒸気管破断(設計基準事故)時の被ばく評価が減少した理由 (1),(2)のとおり,主蒸気管破断(設計基準事故)時の評価値は,NW方位の大気拡散評価結果に依存しており,気象資料の変更に伴ってNW方位の相対濃度が低下した結果,主蒸気管破断(設計基準事故)の被ばく評価結果が減少したと考えら	ביי הווע
		れる。 第1表 主蒸気管破断 (設計基準事故) 時の相対濃度 (χ/Q) 風向風速データ	
		実効放出継続時間 1時間 実効放出継続時間 1時間 方位 距離 効高さ (m) 数は源有 契積出現 ダーラム (s/m²) オ/Q (s/m²) 方位 (m) 類高さ (m) 類点 (s/m²)	
		ENE (再上陸点) 2,900 0 98.76*1 約 4.2×10 ⁻⁷ ENE (再上陸点) 2,900 0 98.74*1 約 3.8×10 ⁻⁷ E 1,210 0 97.01 約 1.1×10 ⁻⁵ E 1,210 0 97.01 約 1.4×10 ⁻⁵	
		ESE 1,270 0 97.01 約2.9×10 ⁻⁵ ESE 1,270 0 97.01 約3.8×10 ⁻⁵	
		SE 1,070 0 97.01 20.00×10^{-5} SE 1,070 0 97.01 20.00×10^{-5} SE 930 0 97.01 20.00×10^{-5} SE 930 0 97.01 20.00×10^{-5} SE 930 0 97.01 20.00×10^{-5}	
		S 860 0 99. 23 ^{※1} 約 3. 8×10 ⁻⁶ S 860 0 99. 38 ^{※1} 約 2. 6×10 ⁻⁶	
		SSW 810 0 99. $71^{\pm 1}$ $\cancel{*}$ J 7. 9×10^{-6} SSW 810 0 99. $84^{\pm 1}$ $\cancel{*}$ J 3. 1×10^{-5}	
		SW 800 0 99. $61^{\pm 1}$ \$\psi 5. 1 \times 10^{-6}\$ SW 800 0 99. $70^{\pm 1}$ \$\psi 7. 4 \times 10^{-6}\$ WSW 860 0 99. $20^{\pm 1}$ \$\psi 3. 5 \times 10^{-6}\$ WSW 860 0 99. $62^{\pm 1}$ \$\psi 1. 4 \times 10^{-6}\$	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		WNW 910 0 97. 46 ^{卷 1} 約 2. 2×10 ⁻⁶ WNW 910 0 98. 15 ^{卷 1} 約 7. 6×10 ⁻⁶	
		NW 950 0 97.01 約 4.6×10 ⁻⁴ NW 950 0 97.01 約 3.2×10 ⁻⁴ 最大値 NW 方位 約 4.6×10 ⁻⁴ 最大値 NW 方位 約 3.2×10 ⁻⁴	
		※1 風向出現頻度が年間データの3%に満たない方位では、累積出現頻度97%値は0となるが、この場合は、累積出現頻度97%以降で最初に現れる0以外の値をその方位の相対濃度とする。	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2 号炉	備考
		2. 燃料集合体落下時の被ばく評価結果変更の主な理由	
		(1) 燃料集合体落下時の相対線量の特徴	
		燃料集合体落下時の被ばくの大部分は希ガス及びハロゲン	
		等のγ線による外部被ばくである。	
		燃料集合体落下時の相対線量について、変更前後の値を第	
		2表に、標高 130mにおける年間大気安定度別風配図を第2図	
		に示す。なお、燃料集合体落下時の拡散評価は、非常用ガス処	
		理系を用いた高所放出とすることから、2号炉排気筒における	
		高所風を代表する地上 115m (標高 130m) の気象データを用	
		いている。	
		第2表に示すとおり、燃料集合体落下時の相対線量は、変更並終しまた名式はですまれまいは見られないまのの最大は	
		更前後ともに各方位で大きな違いは見られないものの最大と	
		なる方位がNWからWSWに変化している。	
		(2) 最大方位がNWからWSWに変化した理由	
		第2図のとおり、変更前後において、拡散の小さい大気安	
		定度E・F・G型における風下方位NW(風向SE)の出現頻	
		度が減少したことにより、NW方位における相対線量の累積出	
		現頻度 97%の値が減少したと考えられる。	
		一方、新たに最大方位となったWSW方位は、拡散の小さ	
		い大気安定度E・F・G型については、変更前後においてほと	
		んど変化が見られないものの,次に拡散の小さい大気安定度D	
		型では、風下方位WSW(風向ENE)の出現頻度が増加して	
		おり,これによりWSW方位における相対線量の累積出現頻度	
		97%の値が増加し、相対線量の評価結果の最大値が変化したと	
		考えられる。	
		(3) 燃料集合体落下時の被ばく評価が増加した理由	
		燃料集合体落下時の被ばく評価について、従前、相対線量	
		の最大方位だったNW方位は気象資料の変更に伴って減少し	
		たが、WSW方位の相対線量が増加し、従前のNW方位の値を	
		超えて新たに最大方位となったために、燃料集合体落下時の被	
		超えて新たに取入力位となったために、	
		はく町間がもからしてる方とりない。	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
		第2表 燃料集合体落下時の相対線量 (D/Q) [1996年1月~12月 標高130m 1996年1月~12月 1996年1月~12日 1996年1月~1	
		風向風速データ 1996 年 1 月~12 月 標高 130m (地上高 115m) 風向風速データ 2009 年 1 月~12 月 標高 130m (地上高 115m) 放出位置 非常用ガス処理系排気管 放出位置 非常用ガス処理系排気管	
		実効放出継続時間 1時間 実効放出継続時間 1時間	
		方位 距離 (m) 放出源有 効高さ (m) 累積出現 頻度 (%) D/Q (Gy/Bq) 方位 (Gy/Bq) 距離 効高さ (m) 放出源有 効高さ (所) 累積出現 (Gy/Bq)	
		ENE (再上陸点) 3,100 140 97.01 約 3.7×10 ⁻²⁰ (再上陸点) 3,100 135 97.01 約 4.4×10 ⁻²⁰	
		E 1, 350 80 97.01 \$\%\gamma_1.0\times 10^{-19}\$ E 1, 350 90 97.01 \$\%\gamma_9.1\times 10^{-20}\$	
		ESE 1, 370 75 97.01 \$\%9.8.1\times 10^{-20}\$ ESE 1, 370 75 97.01 \$\%9.8.4\times 10^{-20}\$	
		SE 1,100 65 97.01 \$\hat{\psi}\$1.1\times10^{-19} SE 1,100 65 97.01 \$\hat{\psi}\$1.1\times10^{-19}	
		SSE 960 65 97.01 \$\%\delta\$ 8.2\times 10^{-20} SSE 960 70 97.01 \$\%\delta\$ 9.4\times 10^{-20}	
		S 850 75 97.01 \$\hat{k}\$14.8\$\times\$10^{-20} S 850 75 97.01 \$\hat{k}\$14.2\$\times\$10^{-20}	
		SSW 820 65 97.01 約9.8×10 ⁻²⁰ SSW 820 75 97.01 約8.1×10 ⁻²⁰	
		SW 770 70 97.01 約1.3×10 ⁻¹⁹ SW 770 70 97.01 約2.2×10 ⁻¹⁹	
		WSW 800 60 97.01 2.4×10^{-19} WSW 800 60 97.01 2.4×10^{-19}	
		W 850 55 97.01 № 1.9×10 ⁻¹⁹ W 850 60 97.01 № 1.9×10 ⁻¹⁹	
		WNW 810 60 97.01 約2.0×10 ⁻¹⁹ WNW 810 65 97.01 約1.6×10 ⁻¹⁹	
		NW 850 60 97.01 2.2×10^{-19} NW 850 60 97.01 1.8×10^{-19}	
		最大值 NW 方位 約 2. 2×10 ⁻¹⁹ 最大值 WSW 方位 約 2. 4×10 ⁻¹⁹	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2 号炉	備考
		気象 資料 年間大気安定度別風配図 (標高 130m, 地上高 115m)	
		陸側方位へ向かう風向の範囲 <> 評価方位 WSW	
		評価方位WSW	
		変更前 (1996	
		年)	
		安定度A·B·C型 安 度 度 D 型 安定度E·F·G型	
		(出現頻度24.2%) (出現頻度26.2%) (出現頻度27.6%) 注)1、次排率:3.3% 2、小円内の数字は静穏の頻度(%)	
		陸側方位へ向かう風向の範囲 <>	
		評価方位 WSW N	
		変更後	
		年) (2009年)	
		評価方位 NW	
		131 大田原生 (
		第2図 年間大気安定度別風配図(標高130m, 地上高115m)	
		3. 代表事象が変更となった理由	
		主蒸気管破断(設計基準事故)及び燃料集合体落下の評価	
		結果は、元々従来の評価結果が近い数値であったが、1.及び 2.のとおり、気象資料変更に伴い、主蒸気管破断(設計基準事	
		故)については評価結果が減少した一方,燃料集合体落下につ	
		いては評価結果が増加した結果,最も大きな数値となる事象が	
		主蒸気管破断(設計基準事故)から燃料集合体落下に変更とな	
		った。	
		第3表 実効線量評価結果	
		(mSv)	
		主蒸気管破断(設計基準	
		気象資料 事故) 燃料集合体落下	
		変更前(1996 年) 約 7.2×10 ⁻² 約 6.8×10 ⁻²	
		変更後 (2009 年) 約 7.0×10 ⁻² 約 8.0×10 ⁻²	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
1	輔足2 参考資料 2	補足3	
被ばく評価に用いた気象資料の代表性について	被ばく評価に用いた気象資料の代表性	被ばく評価に用いた気象資料の代表性について	
	1. はじめに 新規制基準適合性に係る設置変更許可申請に当たっては、東海第二発電所敷地内で2005年度に観測された風向、風速等を用いて線量評価を行っている。 本補足資料では、2005年度の気象データを用いて線量評価することの妥当性について説明する。	1. はじめに 新規制基準に係る被ばく評価に当たっては、島根2号炉の設置 変更許可申請(2013年12月25日)当初に用いていた1996年の気象 資料から、2009年の気象資料を用いて線量評価を行う事として、 気象資料の変更を行っている。 本資料では、気象資料の変更の経緯と2009年の気象資料を用いて線量評価することの妥当性について説明する。 2. 観測期間の気象資料の代表性	・気象資料の変更 【東海第二】 ・申請に用いた気象を
		2. 観劇期間の気象質料の代表性 2.1 設置変更許可申請当初における気象資料の代表性	・中雨に用いた気象プラクタの相違
	<u>理由</u>	2.1 放直変更計り申請目例にわける対象質科の代表性	ダの相達 【東海第二】
	線量評価には「発電用原子炉施設の安全解析に関する気象指	島根 2 号炉の設置変更許可申請(2013年12月25日)当初,島	島根2号炉は設置
	針」(以下, 気象指針という。) に基づき統計処理された気象デ	根原子力発電所原子炉設置変更許可申請書(1号及び2号原子	更許可申請当時気急
	ータを用いる。また、気象データのほかに放射性物質の放出量、	炉施設の変更並びに3号炉の増設)(平成17年4月26日設置変	代表性は確保され`
	排気筒高さ等のプラントデータ,評価点までの距離,排気筒有	更許可)で使用した,現地における1996年1月から1996年12月	たため気象データ
	効高さ(風洞実験結果)等のデータが必要となる。	までの1年間の気象データについて,長期間の気象状態と比較	を行っていない
	設置変更許可申請における線量評価については, 原子炉熱出	して特に異常がないかどうかの検討を行い、代表性があること	
	力向上の検討の一環で準備していた, 敷地の気象の代表性が確	を確認していた。 (第1表参照)	
	認された 2005 年度の気象データを用いた風洞実験結果**を用	その後,2014年以降のデータを加えた代表性の検討において,	
	いている。	異常年検定による棄却数が長期間の気象データの代表性の目安	
	新規制基準適合性に係る設置変更許可申請に当り、添付書類	である3個を超え、当該年の代表性が確保されなくなった(第	
	十に新たに追加された炉心損傷防止対策の有効性評価で、格納	1表参照) ため、代表性が確保された2009年1月から2009年12	
	容器圧力逃がし装置を使用する場合の敷地境界における実効	月までの1年間の気象データを新たに気象年として, 重大事故	
	線量の評価が必要となった。その際、添付書類六に記載してい	等に係る被ばく評価を行うとともに、島根原子力発電所2号炉	
	る 1981 年度の気象データの代表性について、申請準備時点の	原子炉設置変更許可申請書の気象(添付書類六),平常運転時	
	最新気象データを用いて確認したところ、代表性が確認できな	における一般公衆の受ける線量評価(本文九、添付書類九)及	
	かった。このため、平常時線量評価用の風洞実験結果が整備さ	び設計基準事故の被ばく評価(本文十,添付書類十)を行った。	
	れている 2005 年度の気象データについて、申請時点での最新		
	気象データにて代表性を確認した上で, 安全解析に用いる気象		
	条件として適用することにした。これに伴い、添付書類九(通		
	常運転時の線量評価),添付書類十(設計基準事故時の線量評		
	価)の安全解析にも適用し、評価を見直すこととした。		

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)		Ē	島根原子力	発電所 2号	炉		備考
	※:風洞実験は平常時,事故時の放出源高さで平地実験,模			第1表 舅	異常年検定編	5果		・申請に用いた気象デー
	型実験を行い排気筒の有効高さを求めている。平常時の				☆☆	結果(棄却個	*/~)	タの相違
	放出源高さの設定に当たっては、吹上げ高さを考慮して	検定年	統計期間		風向	風速分布	合計	【東海第二】
	おり、吹上げ高さの計算に 2005 年度の気象データ(風	(年)	(年)	観測地点	(16項目※)	(11項目)	(27項目)	島根2号炉は設置変
	向別風速逆数の平均)を用いている。		1	標高28.5m	1	0	1	更許可申請当時気象の
	これは,2011年3月以前,東海第二発電所において,		2003~2013	2 標高65m	1	1	2	代表性は確保されてい
	次のように 2005 年度の気象データを用いて原子炉熱出	1996		標高130m	2	0	2	たため気象データ変更
	力の向上について検討していたことによる。	1990		標高28.5m	1	0	1	を行っていない
	原子炉熱出力向上に伴い添付書類九の通常運転時の		2005~2014		<u>3</u>	<u>3</u>	<u>6</u>	
	線量評価条件が変更になること(主蒸気流量の 5%増に			標高130m	2	0	2	
	よる冷却材中のよう素濃度減少により, 換気系からの気	0000	2008,	標高28.5m	0	0	0	
	体状よう素放出量の減少等,別紙 1 参照),また,南南	2009	2010~2018	標高65m 標高130m	0	0	0	
	東方向(常陸那珂火力発電所方向),北東方向(海岸方			徐向130Ⅲ	U	0	U	
	向)の線量評価地点の追加も必要であったことから,中							
	立の大気安定度の気流条件での風洞実験を新たに規定							
	した「(社) 日本原子力学会標準 発電用原子炉施設の安							
	全解析における放出源の有効高さを求めるための風洞							
	実験実施基準:2003」に基づき,使用済燃料乾式貯蔵建							
	屋,固体廃棄物作業建屋等の当初の風洞実験(1982 年)							
	以降に増設された建屋も反映し、2005年度の気象データ							
	を用いて風洞実験(別紙2参照)を実施した。							
	3. 2005 年度の気象データを用いて線量評価することの妥当性	2. 2 20094	年の気象資	そ料の代表性	Ė			
女川原子力発電所敷地内において観測した <u>2012年1月から2012</u>	線量評価に用いる気象データについては,気象指針に従い統	島根原子	力発電所	敷地内に <u>お</u>	<u>いて</u> 観測し	た <u>2009年1月</u>	月から2009	・気象期間の相違
<u>年12月</u> までの1年間の気象データを用いて評価を行うにあたり,	計処理された1年間の気象データを使用している。気象指針(参	<u>年12月</u> まて	で 1 年間の	の気象デー	 タを用いて	評価を行う	に当たり、	【女川2号,東海第二】
当該1年間の気象データが長期間の気象状態を代表しているかど	考参照)では、その年の気象がとくに異常であるか否かを最寄	当該1年間	別の気象デ	ータが長期	間の気象状	態を代表し	ているか	
うかの検討をF分布検定により実施した。	の気象官署の気象資料を用いて調査することが望ましいとして	どうかの検	討をF分	布検定によ	り実施した。)		
以下に検定方法及び検討結果を示す。	いる。	以下に検	定方法及证	び検討結果	を示す。			
	以上のことから,2005年度の気象データを用いることの妥当							
	性を最新の気象データと比較し、以下の(1)(2)について確認す							
	<u> </u>							
	(1) 想定事故時の線量計算に用いる相対濃度							・検討対象の相違
	(2) 異常年検定							【東海第二】
								島根2号炉は異常年
								検定により,気象データ
								の妥当性を確認

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成 30 年 9)	月 18 日)	島根原子力発電所 2号炉	備考
	4. 想定事故時の線量計算に用いる相対濃度	と異常年検定の評価結		・検討対象の相違
	<u>果</u>			【東海第二】
	(1) 想定事故時の線量計算に用いる相対濃	度の最新の気象との比		島根2号炉は異常年
	<u>較</u>			検定により,気象データ
	想定事故時の線量計算に用いる相対濃度に	こついて,線量評価		の妥当性を確認
	に用いる気象 (2005 年度) と最新の気象 (2015 年度)との比		
	較を行った。その結果, 2005 年度気象で	での相対濃度※は		
	2.01×10 ⁻⁶ s/m³, 2015 年度気象では 2.0	4×10 ⁻⁶ s∕m³であ		
	る。2005 年度に対し 2015 年度の相対濃度に	は約 1%の増加(気		
	象指針に記載の相対濃度の年変動の範囲 30)%以内) であり,		
	2005年度の気象データに特異性はない。			
	※:排気筒放出における各方位の 1 時間毎6	の与色ギニカな田いた		
	年間の相対濃度を小さい方から累積し、			
	に当たる相対濃度を算出し、各方位の最			
	に当たる相対版及と弁田し、自分性の	X/\ <u>E & \(\nu \)</u>		
1. 検定方法	a. 検定に用いた観測記録		(1)検定方法	
(1) 検定に用いた観測データ	検定に用いた観測記録は第 1-2-1 表のと	らりである 。	a. 検定に用いた観測データ	
気象資料の代表性を確認するに当たっては通常は被ばく評価	なお、参考として、最寄の気象官署(水戸は	也方気象台,小名浜特	気象資料の代表性を確認するに当たって,被ばく評価で使用	
上重要な排気筒高風を用いて検定するものの,被ばく評価では保	別地域気象観測所) の観測記録についても何	吏用した。	する気象データとして,地上風を代表する標高28.5mの観測デ	
守的に地上風を使用することもあることから,排気筒高さ付近を			ータ,3号炉排気筒高さ付近を代表する標高65mの観測データ	
代表する地上高71mの観測データに加え、参考として地上高10m	第 1-2-1 表 検定に用いた観	測記録	及び2号炉排気筒高さ付近を代表する標高130mの観測データ	
の観測データを用いて検定を行った。	検定年 統計年 ^{※1}	観測地点※2	を用いて検定を行った。	
	① 2001年4月~2013年3月	・敷地内観測地点		
(2) データ統計期間	(申請時最新 10 年の気象データ)	(地上高 10m, 81m, 140m)	b. データ統計期間	
統計年: <u>2002年1月~2011年12月</u>	度: 2005 年 4	・敷地内観測地点 (地上高	統計年: 2008年1月~2008年12月,2010年1月~2018年12月	・気象期間の相違
検定年: <u>2012年1月~2012年12月</u>	月	10m, 81m, 140m)	検定年: <u>2009年1月~2009年12月</u>	【女川2号, 東海第二】
	〜 ② 2004年4月~2016年3月 2006年3 (最新10年の気象データ)	<参考>		
	月	・水戸地方気象台 ・小名浜特別地域気象		
		観測所		
	※1:2006 年度は気象データの欠測率が高い	 ため統計年から除外		
	※2:敷地内観測地点地上81m は東海発電所			
	であるが、気象の特異性を確認するため			
		initial Control		1
				1

女川原子力発電所2号炉(令和元年10月3日)		東海第	二発電所	(平成 3	80年9月	18 日)		島根原子力発電所 2 号炉	備考
(3) 検定方法	<u>b.</u> 検定力			(1 1/1/2, 0	· · · · · · · · · · · · · · · · · · ·	10 H/		c. 検定方法	L. HIA
不良標本の棄却検定に関するF分布検定の手順に従って検		本の棄却	検定に関 [、]	するF分	・布検定の	手順によ	り異常	不良標本の棄却検定に関するF分布検定の手順に従って検	
定を行った。	年検定を					* / * * * * * * * * * * * * * * * * * *		定を行った。	
		······································	······	·····					
2. 検定結果	c検定編	店果 (①~	16棄却検	定表参照	7)			(2)検定結果	
検定の結果,排気筒高さ付近を代表する地上高71mの観測デー	検定結	果は第 1-2	2-2 表のと	こおりで	あり,最新	「の気象テ	ータ (2004	検定の結果,全ての高度における観測データについて,有意水	
タについては、有意水準5%で棄却された項目が0項目であり、地	年4月~	2016年3	月)を用い	いた場合	でも, 有意	意水準(危	5%	準5%で棄却された項目 <u>は無かった(0項目)</u> ことから、評価に	・評価結果の相違
<u>上高10m</u> の観測データについては <u>1項目</u> であったことから,棄却数	での棄却	数は少なく	く,有意	な増加は	<u>ない。ま</u>	た,最寄の	の気象官署	使用している気象データは,長期間の気象状態を代表していると	【女川2号, 東海第二】
が少なく検定年が長期間の気象状態を代表していると判断した。	の気象デ	ータにおい	いても <u>, 才</u>	 	(危険率)	5%での	棄却数は少	判断した。	
検定結果を第1表から第4表に示す。	<u>なく, 20</u>	05 年度の	気象デー	タは異常	年とは判	断されな	<u></u>	検定結果を第2表から第7表に示す。	
			第 1-2	-2 表	定結果				・評価結果の相違
					棄却数				【東海第二】
	松克尔	統計年*1	敷	:地内観測均	也点	参	考		
	検定年	机计牛	地上高	地上高	地上高	水戸地方	小名浜特		
			10m	81m ^{*2}	140m	気象台	別地域気 象観測所		
			1 /173	o /m	o /III				
	2005 年	1	1個	0個	3個	_	_		
	度		- 677	. /-			- 477		
		2	3個	1個	4 個	1個	3個		
	* 1 : (1) :	2001年4	月~2013	年3月	·····································	·····································			
		タ)				*:K.LT.ik			
	②:	2004年4	月~2016	5年3月	(最新 10	年の気象	データ)		
	2006 年度は気象データの欠測率が高いため統計年から					高いため	統計年から		
		除外							
	※2:敷地内観測地点地上81m は東海発電所の排気筒付近のデータ					排気筒付	近のデータ		
	でき	うるが,気	象の特異	性を確認	はするため	評価			

女川原子力発電所2号炉(令和元年10月3日)		東海第二発電所	所(平成 30 年 9 月 18	3 日)	島根原子力発電所 2号炉	備考
	5. 異常	年検定による棄却項	頁目の線量評価に与え	こる影響		・棄却件数の相違
	異常年	三検定については,」	虱向別出現頻度 17項	[目, 風速階級別		【東海第二】
	出現頻原	₹10項目についてそ	れぞれ検定を行って	こいる。		島根2号炉は棄却数
	線量訊	呼価に用いる気象 (2	005 年度) を最新の気	気象データ (2004		なし
	年4月~	-2016年3月)にて	検定した結果、最大	の棄却数は地上		
	高 140m	の観測地点で 27 項	目中4個であった。	棄却された項目		
	について	「着目すると, 棄却	された項目は全て風	向別出現頻度で		
	あり, そ	の方位はENE,	E, ESE, SSW	である。		
		で、最新の気象デー	タを用いた場合の線	量評価への影響		
	を確認す	てるため, 棄却され	た各風向の相対濃度	について、2005		
	年度と2	015 年度を第 1-2-3	表のとおり比較した	÷ 9		
		***************************************	いては 2005 年度に対			
	***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	となり、2005年度で	***************************************		
	な評価と	なっており、線量	評価結果への影響を	与えない。なお,		
		***************************************	度に対し 2015 年度は			
		***************************************	た, SSWは頻度が			
	濃度の最	大方位とはならなり	いため線量評価への	影響はない。		
	第	1-2-3 表 棄却され	にた各風向の相対濃原	度の比較結果		
	風向	相対濃度* (s/m³) (2005年度): A	相対濃度* (s/m³) (2015 年度): B	比 (B/A)		
	ENE	1. 456×10 ⁻⁶	1. 258×10 ⁻⁶	0.864		
	E	1. 982×10 ⁻⁶	1. 010×10 ⁻⁶	0. 510		
	ESE	1.810×10 ⁻⁶	1. 062×10 ⁻⁶	0. 587		
	SSW	1. 265×10 ⁻⁶	1. 421×10 ⁻⁶	1. 123		
	位の) 1 時間毎の気象デ がら累積し, その	想定した排気筒放出 一夕を用いた年間の 累積頻度が 97%に当	相対濃度を小さ		

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
	6. 結論		
	2005 年度の気象データを用いることの妥当性を最新の気象デ		
	ータとの比較により評価した結果は以下のとおり。		
	(1) 想定事故時の線量計算に用いる相対濃度について,線量		
	評価に用いる気象 (2005 年度) と最新の気象 (2015 年度) での		
	計算結果について比較を行った結果、気象指針に記載されてい		
	る相対濃度の年変動(30%以内)の範囲に収まり、2005 年度の		
	気象データに特異性はない。		
	(2)2005年度の気象データについて申請時の最新気象データ		
	(2001 年 4 月~2013 年 3 月) 及び最新気象データ (2004 年 4		
	月~2016年3月)で異常年検定を行った結果, 棄却数は少なく,		
	有意な増加はない。また,気象指針にて調査することが推奨さ		
	れている最寄の気象官署の気象データにおいても、2005年度の		
	気象データは棄却数は少なく、異常年とは判断されない。		
	(3) 異常年検定にて棄却された風向の相対濃度については、		
	最新気象データと比べて保守的、あるいは、ほぼ同等となって		
	おり、線量評価結果への影響を与えない。		
	以上より、2005 年度の気象データを線量評価に用いることは		
	妥当である。		

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2 号炉	備考
第1表 棄却検定表 (風向) (地上高71m)	①棄却検定表(風向)(標高 148m)	第2表 棄却検定表 (風向)	・評価結果の相違
Wilting Minipage Minipage	2001 2002 2003 2004 2007 2008 2009 2010 2011 2012 2456位 (報高は48m, 地上高140m) (今5) 7452 7451 74	(%6)	【女川2号,東海第二

女川原司	一力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
<u>第</u> 2表	棄却検定表(風速) (地上高71m)	②棄却検定表(風速)(標高 148m)	第3表 棄却検定表(風速)	・評価結果の相違
	本 1.73 1.37 2.005 2.006 2.010 2.010 平均值 終定年 無利限別 無利限別 財政 1.48 1.73 1.37 2.03 1.44 1.39 1.48 1.35 1.47 1.60 2.11 0.83 ○ 2.02 2.14 0.99 8.87 9.64 9.20 9.11 9.22 1.13 6.84 ○ 2.23 1.40 0.99 8.87 9.64 9.20 9.11 0.83 0.91 9.20 9.11 9.20 1.13 6.84 ○ 9.20 9.11 9.20 1.14 1.14 1.47 1.49	2001 2002 2003 2004 2007 2008 2009 2010 2011 2012 平均値 機位年 集却限界(5%) 利定 (57 0.75 0.75 0.76 0.42 0.39 0.98 1.26 1.32 1.20 0.90 1.10 1.73 0.06 ○数数 1.26 1.32 1.20 0.90 1.10 1.73 0.06 ○ 数数 1.25 1.25 12.55 13.72 11.36 12.24 11.61 12.66 12.49 12.40 12.24 14.10 13.99 10.48 × 20 12.71 11.35 12.55 13.72 11.36 12.24 11.61 12.66 12.49 12.40 12.27 14.10 13.99 10.48 × 20 12.75 12.50 12.07 13.08 12.09 12.67 13.40 12.60 11.00 12.07 14.10 13.99 10.48 × 20 10.00 12.07 11.30 12.07 11.36 12.24 11.61 12.66 12.49 12.40 12.07 14.10 13.99 10.48 × 20 12.67 11.36 12.25 12.40 12.67 13.08 12.09 12.67 13.40 12.60 11.00 12.07 14.10 10.03 12.07 11.51 10.08 10.56 12.50 12.67 12.00 14.11 10.08 10.50 11.51 12.55 13.73 10.78 10.64 10.24 10.00 10.40 9.92 12.02 8.79 10.50 10.66 9.62 10.10 9.68 11.98 10.33 10.78 10.64 10.24 10.00 10.40 9.92 12.02 8.79 10.50 10.66 12.60 12.60 12.60 12.00 1	(公)	
	施計年 0.00~0.4 1. 0.0~0.4 1. 0.5~1.4 9. 1.5~2.4 12. 2.5~3.4 14. 3.5~4.4 12. 3.5~4.4 12. 4.5~5.4 10. 5.5~6.4 8. 6.5~7.4 7. 7.5~8.4 5. 8.5~9.4 4.	 総合性年 200 (0.0~0.4 1.5 (0.5~1.4 6.7.4 10.5 (2.5~3.4 12.2.3.5~4 11.5 (2.5~3.4 12.2.3.5~4 11.5 (3.5~4 11.5 (4.5~5.4 11.5 (5.5~6.4 11.5 (5.5~6.4 11.5 (6.5~7.4 7.6 (6.5~9.4 5.7 (6.5~9.4 5.7 (7.5~8.4 6.7 (8.5~9.4 5.7 <li< td=""><td>施計年 (m/s) (m/s) (m/s) (m/s) (m/s) (0.5~1.4 1.5~2.4 2.5~3.4 3.5~4.4 4.5~5.4 6.5~7.4 6.5~7.4 6.5~7.4 7.5~8.4 8.5~9.4</td><td></td></li<>	施計年 (m/s) (m/s) (m/s) (m/s) (m/s) (0.5~1.4 1.5~2.4 2.5~3.4 3.5~4.4 4.5~5.4 6.5~7.4 6.5~7.4 6.5~7.4 7.5~8.4 8.5~9.4	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
第3表 棄却検定表 (風向) (地上高10m)	③棄却検定表(風向)(標高 89m)	第4表 棄却検定表(風向)	・評価結果の相違
~~ <u>~</u>		観測場所:管理事務所屋上(標高 65m,地上高 50m)(%)	【女川2号, 東海第二】
世 世 世 (%) (%) (※) (※) (※) (※) (※) (※) (※) (※	(%)	端 聚 × 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
~2012 ~2012 ~2011 ~2011 ~2011 ~3.88 3.88 3.97 1.84 4.84 9.14 9.14 9.14 9.14 9.14 9.18 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3	:語 81m) (5%) (5%) (5%) (5%) (5%) (5%) (7%) (7%) (7%) (7%) (7%) (7%) (7%) (7		
	世上 179 179 179 179 179 179 179 179 179 179	限界 1.26 1.26 1.26 1.26 1.26 1.26 1.00 1.00 1.06 1.06 1.06 1.176 1.189 1	
藤地 上段 - 1-102 年 1 2002 年 1 2002 年 1 2002 年 1 3.50 5.29 7.67 7.67 3.56 6.93 8.97 17.60 17.60 17.60 17.44 13.23 17.44 17.44 17.44 17.44 17.44 17.44	~	兼独 上限 10.12 5.43 3.88 3.88 4.71 7.30 16.50 16.50 16.50 11.99 9.83 11.99 9.83 11.70	
新 10m)	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)		
	平均值 4.67 111.46 111.46 6.48 3.35 2.34 2.34 2.34 4.42 5.19 3.55 3.37 3.37 3.37 3.37 5.19 6.48 6.48 6.48 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.3	豫定年 2009年 1.197 1.197 1.197 1.14.69 1	
i i	: 敷地内A地点 5.5 4.67 11.40 16.75 3.30 6.48 11.70 2.34 1.70 2.34 3.20 2.81 6.10 4.42 6.10 4.42 6.10 3.37 4.40 4.30 8.70 8.21 14.10 3.37 6.30 5.73 6.30 5.73 6.30 5.73 6.30 6.81 1.10 0.81	平均值 7.24 7.24 3.355 3.355 3.356 11.59 11.59 11.59 13.56 11.59 13.56 13.56 13.56 14.53 3.55 3.55 3.55 3.55 3.55 3.55 3.55	
(標高 70m, (標高 70m, (標高 70m, 6.35 2.52 3.05 4.50 5.06 1.66 1.66 1.80 1.90 1.90 1.90 1.90 1.27 1.27 1.27 2.24 2.24 2.24 5.96		2018 4 2. 30 2. 30 1. 26 6. 97 1. 56 6. 64 6. 64 6. 64 7. 69 7. 69 7. 69 7. 69	
市 10 10 10 10 10 10 10 10 10 10 10 10 10 1	(観測場所 5.88 5.68 14.51 16.54 13.25 12.20 4.72 3.74 2.65 1.83 2.65 1.83 2.53 2.99 5.80 4.88 5.94 5.42 4.46 4.16 3.33 4.04 3.33 4.04 3.33 4.04 3.33 8.59 11.34 13.08 5.65 6.05 11.21 1.14		
	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20174 20174 5.09 3.10 1.64 1.64 1.65 6.52 6.52 14.25 10.20 10.20 11.34 4.49 11.34 8.08 8.08 8.08	
	2009 4.84 17.45 16.64 16.64 16.64 4.83 3.00 2.30 2.30 2.30 4.13 3.59 4.13 8.17 10.66 4.60 0.90 0.90 0.90	8.27 5.44 3.98 4.83 4.83 5.41 5.49 9.21 2.59 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70	
2008 2008 2008 2008 466 6.40 6.57 6.57 1.57 1.57 12.16 6.59 6.59 6.504 6.04	3.25 4.84 4.64 4 3.25 4.84 4.64 4 5.03 10.15 12.15 17. 5.51 16.08 19.04 16. 5.84 6.78 7.22 5. 5.02 4.35 4.18 3. 7.75 2.29 2.79 2. 7.80 2.21 2.96 2. 7.81 3.40 3.06 3. 7.82 5.76 4.74 4. 7.82 5.76 4.74 4. 7.82 5.76 4.74 4. 7.82 5.76 7.81 8. 7.66 7.81 8. 7.66 7.81 8. 7.66 7.81 8. 7.66 7.81 8. 7.66 7.81 8. 7.66 0.65 0. 7.67 6.32 5.42 4. 7.67 6.32 5.42 4. 7.67 6.32 5.42 4. 7.67 6.32 6.65 0. 7.66 10.68 0.65 0. 7.67 6.32 5.42 4. 7.67 6.32 5.42 4. 7.67 6.32 5.42 4. 7.67 6.32 5.42 4. 7.68 0.65 0.	30 00 00 09 09 09 09 09 09 09 09 09 09 09	
8 9 9 4 8 8 9 9 4 8 8 8 5 5 5	4.84 6.08 1 6.08 1 6.78 6.78 6.78 7 4.35 7 3.40 3.40 3.40 3.40 3.28 8 6.32 6.32 6.33 1 6.32 6.32 6.33 1 6.68 8 3 1 1 2 2 3 1 1 3 2 8 8 3 2 8 8 3 3 2 8 8 8 3 3 2 8 8 8 3 3 2 8 8 3 3 2 8 8 3 3 2 8 8 3 3 2 8 8 3 3 3 3		
	004 2007 3.25 4.8 03 10.15 51 16.08 84 6.78 80 2.21 77 3.74 82 5.76 83 3.07 09 3.28 17 4.04 10.68 11 15.33 67 6.32 61 0.68	2014 年 7.26 3.28 3.28 3.57 5.02 7.97 10.79 10.79 13.32 13.32 10.79 13.32 2.92 2.92 2.92 2.92 3.69 3.69 4.32 4.32 4.32 4.08	
2006 6.19 2.76 4.67 7.48 6.99 6.99 2.83 3.01 11.77 11.03 11.14 11.03 11.14 6.27 6.27 6.27 6.27 6.27 6.27 6.27 6.27	2004 23.25 6.03 17.51 17.84 4.02 2.75 2.75 2.80 6.82 3.09 3.09 3.09 3.09 15.17 15.17 15.17 15.17 15.17	2013 4 7. 66 1. 1. 42 3. 00 5. 27 7. 70 1. 1. 45 1. 1. 45 1. 1. 53 1. 1. 46 1. 5. 37 1. 5. 30 1. 5. 37 1. 5. 30 1. 5. 30 1. 5. 30 1. 5. 41 1. 5. 41	
2005 4.87 4.16 3.22 5.69 6.04 3.21 5.05 5.05 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.9	4.59 3.42 3.78 7.81 7.03 6.03 2003 2003 2003 2003 2003 20.90 3.78 7.81 7.83 6.03 2.79 2.47 2.79 2.46 2.86 2.96 2.86 2.96 2.86 3.20 3.48 3.66 4.43 6.8 2.56 3.20 3.8 3.62 3.42 3.03 3.11 3.03 3.11 3.03 3.11 3.03 3.11 3.03 3.11 3.03 3.11 3.03 3.11 3.03 3.11 3.03 3.11 3.03 3.11 3.03 3.11 3.03 3.11 3.03 3.11 3.03 3.11 3.03 3.11 3.03 3.03	# 2 9 9 8 1 8 9 1 8 2 1 2 7 2 7 2 7	
	4,59 7,81 11.91 8,22 8,22 3,80 2,79 3,66 3,66 3,66 3,66 3,66 3,68 3,68 3,68	2010 8 8 8 11 12 12 12 12 13 13 18 10 10 10 10 10 10 10 10 10 10 10 10 10	
2004 4.08 2.58 2.49 5.00 5.17 5.17 2.19 3.16 7.28 16.25 16.25 16.25 16.25 16.25 2.09 2.09 2.09 2.09 2.00 2.00 2.00 2.00	総合計年 2001 2 2001 2 2001 2 2 2 2 2 2 2 2 2	2011 4年 7.27 3.17 2.14 2.27 3.42 3.56 6.07 13.28 13.51 4.22 2.90 2.90 3.64 4.00 7.48 8.77 9.70 4.60	
2003 6.42 3.90 3.15 5.99 5.99 5.99 5.99 1.97 1.67 1.650 1.53 3.41 1.650 5.69 5.99 5.99 5.99 5.99 5.99 5.99 5.99	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2010 4£ 7. 60 2. 66 6. 79 13. 04 13. 14 13. 14 15. 10 16. 79 17. 81 18. 34 18. 34 18. 34 19. 20 10. 20	
88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	NNE ESE SSE SSW WNW WNW WNW WNW WNW WNW WNW WNW WNW		
2002 6.7 8.7 8.4 6.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		2008 4 8 10 3 105 5 2 95 6 6 3 1 15 62 1 15 62 1 15 62 1 15 62 2 87 2 87 3 87 3 87 3 88 3 88 3 88 3 88 3 88 3	
		MNNE BSE SSE SSW WSW WSW WSW WSW WSW WSW WSW W	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成 30 年 9 月 18 日)	島根原子力発電所 2 号炉	備考
第4表 棄却検定表 (風速) (地上高10m)	④棄却検定表(風速)(標高 89m)	第5表 棄却検定表 (風速)	・評価結果の相違
(4) (2002 日 19 - 2003 2004 2005 2006 2007 2008 2009 2010 2011 4.5			****

(a) 数数(b) が数(c) ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	・評価結果の相違(%)【東海第二】
(max w o o o o o o o o o o o o o o o o o o	<u>(%)</u> 【東海第二】
188 H H H H H H H H H H H H H H H H H H	_
(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	
	3
(1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
編 11 11 12 18 18 18 18 18 18 18 18 18 18 18 18 18	
10	
	i i
\$ 1 1 1 2 2 3 3 4 4 4 3 3 5 5 1 1 1 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	<u> </u>
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5
2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5
2003 2003 2003 2003 2003 3.99	5
2002 2002 2006 2006 3.24 3.66 6.86 6.86 6.86 6.86 6.86 6.86 6.86	2
2001 12.39 12.39 12.39 12.39 12.39 12.39 13.27 12.39 13.29 13.29 13.29 19.82 19.82 19.82 19.82 19.82 19.82 19.83	
M N N N N N N N N N N N N N N N N N N N	D-14

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
	⑥棄却検定表(風速)(標高 18m)	<u>第7表 棄却検定表(風速)</u> 場所:管理事務所屋上(標高 130m, 地上高 115m) (%)	・評価結果の相違 【東海第二】
	%	場所:管理事務所屋上(標高 130m, 地上高 115m) (%)	【宋(世界—】
		 支票 下限 1. 43 1. 23 1. 23 1. 49 1. 4. 96 7. 60 7. 60 7. 60 7. 60 1. 34 1. 34 1. 60 	
	程 1		
		日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	
	(標別 (機別 (機別 1.69 1.69 1.09 1.09 1.09 1.09 1.09	豫定年 11.98 11.05 17.85 17.85 17.85 9.01 5.24 3.03 3.59	
	A 地点 1. 48 4. 72 2. 42 0. 74 4. 72 3. 07 1. 93 1. 06 1. 18	平均值 2.51 10.58 15.44 17.24 16.70 13.16 8.86 5.62 3.59 3.90	
	次 打 2 10 10 10 10 10 10 10 10 10 10 10 10 10	年 年 10.88 10.88 10.88 114.77 115.84 116.26 9.16 9.16 5.38 3.77 4.04	
		年 年 11.91 13.25 13.25 15.83 17.38 17.38 17.38 17.38 6.35 6.35 6.04	
	 観測場所 2010 2011 1.60 1.90 15.83 15.92 32.91 33.15 23.08 23.08 23.60 11.19 10.19 6.75 6.01 3.58 4.17 2.02 2.44 1.39 1.25 0.72 0.60 0.75 0.94 0.75 	116 F F F F 127 37 37 37 37 37 37 37 37 37 37 37 37 37	
	2010 1. 60 15. 83 15. 83 11. 19 6. 75 6. 75 1. 39 0. 94		
		# 2015 3.25 3.25 3.25 17.98 17.98 18.01 11.16 7.67 7.67 7.67 7.67 2.94 2.27 3.30	
	2009 1.35 13.88 32.69 23.48 10.69 1.70 1.70 1.30 1.30	2014 年 1.85 9.51 15.83 17.13 16.26 9.14 9.14 9.14 6.25 3.62 2.52 2.52 4.83	
	2008 2009 1.82 1.35 15.93 13.88 10.88 10.69 6.66 7.22 4.15 3.91 2.25 2.60 1.20 1.70 0.86 1.30 0.90 1.30	2013 年 8.71 14.07 17.48 18.09 13.58 9.18 9.18 3.97 2.49 4.45	
	2007 1. 11 14. 40 10. 95 2. 24 4. 69 3. 31 2. 24 1. 24 1. 24 1. 45	2012 年 2.81 11.14 11.14 11.56 16.83 16.83 12.94 8.71 8.71 5.40 3.22 3.07	
	2004 20 1.85 1. 14.96 14. 22.97 21. 9.77 10. 6.25 6. 4.34 4. 3.30 3. 2.34 2. 1.33 1.	2011 2. 84 12. 21 16. 29 17. 20 17. 20 15. 81 12. 33 8. 46 5. 44 5. 44 3. 65 3. 71	
		2010 4年 10.25 10.25 115.55 116.72 116.72 117.72 1	
	2003 11.29 13.24 13.24 21.80 21.80 3.92 3.92 3.92 2.18 1.07 1.13	2008 4年 10.14 11.35 11.35 11.35 11.35 11.49 3.23 3.41	
	2002 1. 03 12. 79 21. 48 8. 16 6. 40 6. 40 7. 51 1. 12 1. 13 1. 13		
	(本語) (1) (2002) (2002) (2002) (2003	施計年 (m/s) (m/s) (m/s) (m/s) (n)/s)	
	年 4 4 4 4 4 4 4 4 4		
	(4.5~2.4 1.5~2.4 2.5~3.4 3.5~4.4 4.5~5.4 4.5~5.4 6.5~7.4 7.5~8.4 8.5~9.4 9.5以上 注1) 2006年		
	N 選 2 2 1 2 2 2 4 1 2 2 1 2 3 3 3 3 3		

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉 備考
	⑦棄却検定表(風向)(標高 148m)	・評価対象高度数の
	8	【東海第二】
	推上高140m) 現界(5%) 2 4.72 1 10.05 1 10.05 1 10.05 1 10.05 1 10.05 1 10.05 1 10.05 1 2.72 1 10.05 1 3.28 2 85 5 3.13 6 3.13 6 3.13 6 5.07 6 6.47 8 6.12	
	(表)	
	平均插 4.44 4.44 4.44 4.44 4.54 6.04 6.04 6.04 6.36 8.68 8.68 8.68 6.36 0.90	
	表演場所 4.38 14.59 13.11 5.59 3.06 2.36 2.36 2.36 5.29 5.87 4.64 5.16 5.16 5.16 5.07 7.56 9.69 5.08	
	13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	
	10 10 10 10 10 10 10 10	
	2011 15.31 115.31 114.71 14.71 5.40 3.13 3.13 4.68 5.83 4.07 4.07 4.26 6.37 8.94 8.94 8.94 5.98 1.32 1.32 1.32 1.32 1.32 1.32 1.33 1.33	
	2010 4, 62 14, 74 1 14, 99 1 1, 26 6, 03 6, 05 6, 05	
	2009 4.11 18.30 16.75 5.51 3.49 4.43 4.43 4.43 4.43 4.44 7.95 7.95 7.95 7.95 9.0.98	
	27 27 28 85 88 85 88 85 88 88 88 88 88 88 88 88	
	2007 5, 01 11.41 11.41 11.8.06 7.09 4,59 2,32 2,15 3,69 6,33 4,66 6,33 4,66 6,33 9,02 7.03 7.03 7.03	
	総計年 2004 ML MNE 6.22 MNE 6.22 MNE ENE 8.97 ENE 8.97 ENE SSE 3.54 SSW 5.02 SSW 5.02 SSW 6.63 SSW 6.63 SSW 6.71 WNW 6.71 WNW 6.71 NNW 6.97 CALM 0.76 注1) 2006年度は標高1・2006年度は標高1・2006年度は標高1・2006年度は標高1・2006年度は標高1・2006年度は標高1・2006年度は標高1・2006年度は標高1・2006年度は標高1・2006年度は標高1・2006年度は標高1・2006年度は標高1・2006年度は標高1・2006年度は標高1・2006年度は標高1・2006年度は標高1・2006年度は1・	
	4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	N N N N N N N N N N N N N N N N N N N	
	✓ 國	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
	⑧棄却検定表(風速)(標高 148m)		・評価対象高度数の相違
	※ 素素 0 0 0 0 0 0 0 0 0		【東海第二】
	© X		
	上南14((5%) 下限 10.75 10.75 10.05 10.05		
	(標高148n 検定年 乗 2005 11.10 11.28 11.28 12.03 13.85 14.10 12.03 13.85 14.85 5.51 7.40 9.92 12.03 13.00 17.00 17.00		
	100		
	: 数地内 1.04 1.04 1.04 1.04 1.098 11 11.78 11 11.78 1 11.78 1 11.78 1 11.78 1 11.63 1 7.47 7 5.89 4.97 7 7.47 7 5.89 7 7.5°		
	東測場所 2013 2014 0.75 0.88 5.92 6.20 10.58 9.76 12.89 12.13 14.22 13.05 12.52 12.25 10.35 11.29 8.57 9.22 7.01 6.63 5.01 5.14 12.18 13.45 2004年度を3追加し		
	2 2 8 8 2 0 0 0 2 8 8 3		
	2011 20 1.32 1. 6.97 7. 10.43 10. 12.49 12. 12.60 11. 10.24 10. 8.08 8. 6.28 7. 5.52 6. 5.52 6.		
	20 20 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		
	2009 0.98 6.14 6.14 10.82 11.61 12.67 10.78 8.19 8.19 5.91 5.91 5.03		
	2008 0, 39 4, 91 12, 24 12, 09 10, 33 10, 33 8, 28 7, 05 7, 05 17, 08		
	が計年 2004 2007 ~0.4 0.76 0.42 ~1.4 6.43 5.00 ~2.4 11.42 8.63 ~3.4 13.72 11.36 ~4.4 13.58 12.63 ~6.4 9.68 11.98 ~6.4 9.68 11.98 ~7.4 7.95 8.74 ~8.4 5.03 5.60 以上 14.02 15.61 2006年度は標高148mのデ		
	2004 0. 76 6. 43 11. 42 13. 72 13. 58 9. 68 5. 03 5. 03 度性漂亮		
	年 4 4 4 4 1111 6 6 0 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2 3		
	施計年 0.5~1.4 0.5~1.4 1.5~2.4 2.5~3.4 4.5~5.4 4.5~5.4 6.5~7.4 7.5~8.4 8.5~9.4 9.5以上 注1) 2006年		
	日本 1.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7		

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成 30 年 9 月 18 日)	島根原子力発電所 2号炉 備考
	⑨棄却検定表(風向) (標高 89m)	・評価対象高度数の相対
女川原子力発電所 2 号炉(令和元年 10 月 3 日)		
	77 2008 19 19 04 19 19 04 19 19 04 19 2 79 10 3 06 10 3 06	
	2007 4.84 10.16 16.08 6.78 3.74 3.74 3.07 3.07 3.07 7.66 6.32 6.32 6.32 6.32 6.32	
	2004 3.25 6.03 17.51 7.84 4.02 2.80 3.63 3.63 3.63 3.63 3.09 9.03 3.09 9.03 3.06 1	
	施計年 2004 2007 Min 2 3.25 4.84 NNE 6.03 10.15 10.08 10.15 10.08 10.15 10.08 10.15 10.08 10.15 10.08 10.09 10.00 1	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2 号炉 備考
	⑩棄却検定表(風速)(標高 89m)	・評価対象高度数の相違
	%	【東海第二】
	上海 81 ((5%) 下限 0.37 4.01 9.24 9.24 12.80 13.98 11.75 9.16 6.48 6.48 6.48 7.63 3.16 5.63	
	90	
	(標高 2005 2005 0.69 10.58 10.58 11.14 11.14 8.04 8.04 8.04 8.74	
	A地点 6.72 6.72 6.72 1.85 1.85 5.35 5.35 5.35 8.92 8.92	
	観測場所 0.86 6.47 11.84 15.26 13.64 10.49 8.49 8.49 8.49 8.05 8.05	
	(議) (議) (3) (4) (4) (7) (4) (6) (4) (7) (4) (6) (4) (7) (4) (7) (4) (7) (4) (7) (4) (7) (4) (7) (4) (7) (4) (7) (4) (7) (4) (7) (4) (4) (7) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
	2012 1.10 7.80 12.90 14.60 10.40 8.10 6.10 6.10 7.80	
	2011 2012 7.82 7.80 12.35 12.90 14.86 14.10 15.26 14.60 12.61 12.80 9.52 10.40 7.49 8.10 6.17 6.10 6.17 6.10	
	2009 2010 0.90 1.21 6.94 7.56 12.09 12.36 14.46 16.20 15.47 15.05 13.42 13.75 10.40 10.51 7.14 7.22 5.23 5.40 4.12 3.20 9.84 7.54	
	2009 0.90 0.90 12.09 13.42 13.42 10.40 7.14 4.12 9.84 9.84	
	2008 0.65 5.08 10.83 13.52 10.67 7.72 5.74 4.30	
	2007 0. 68 4. 89 9. 38 14. 98 11. 54 8. 66 6. 25 4. 85 10. 65	
	2004 0.61 0.61 11.31 11.31 10.73 7.90 5.44 4.10 9.58 度让機膨	
	施計年 2004 2007 0.0~0.4 0.61 0.68 0.5~1.4 5.62 4.89 1.5~2.4 11.31 9.38 2.5~3.4 14.52 13.35 3.5~4.4 16.34 14.98 4.5~5.4 10.73 11.54 6.25 5.5~6.4 10.73 11.54 6.25 8.5~9.4 4.10 4.85 9.5以上 9.58 10.65 9.5以上 9.58 10.65 注1) 2006年度は標高148mのデ	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
	①棄却検定表(風向)(標高 18m)		・評価対象高度数の相違
			【東海第二】
	(%) (水 (x) (x)		
	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
	海		
	(標高 2005年 2005年 2,15 2,15 4,49 4,49 15,15 1,22 2,36 1,22 2,36 1,22 2,36 1,22 2,36 1,22 2,40 1,22 2,40 2,56 2,56 2,56 2,56 2,56 2,56 2,56 2,56		
	平均值 平均值 平均值 2.47 2.47 2.47 3.30 3.30 3.30 3.23 3.23 3.23 3.25 1.27 2.07 2.07 2.07 2.07 2.07 2.06 8.51 3.15 3.15		
	CHE 15 15 16 17 17 17 17 18 18 18 18 19 19 19 19 19 19 19 19 19 19		
	通行: 第 13 2 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3		
	観測場所: 3 2014 6 2.16 2 2.16 2 2.16 2 2.14 3 1.1 3.47 3.14 3.42 3 2.14 3.42 3 2.14 3.42 3 2.4.11 20 3.42 3 2.		
	2013 2.26 8.24 12.60 7.34 2.84 3.01 4.96 3.69 3.47 1.47 1.97 5.87 5.87 5.87 6.83 9.78 4.17 1.68		
	201 11.6 11.7 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3		
	2010 2010 2010 2010 2.81 2.81 2.81 2.81 3.36 5.07 2.19 2.19 3.36 6.32 6.99 6.99 6.99 6.99 6.99 6.99 6.99 6.9		
	00 00 00 00 00 00 00 00 00 00		
	2 2 1 1 0 1 0 2 2 2 4 4 8 8 8 1 1 2 0 0 2 1 1		
	22 22 4 4 4 4 3 2 2 2 1 1 1 2 3 3 8 2 1 1 1 1 3 3 8 8 2 1 1 1 1 1 3 3 8 8 1 1 1 1 1 1 1 1 1 1 1		
	2007 2.57 7.29 3.05 3.05 3.05 3.05 3.05 3.05 3.19 3.19 1.14 1.11 1.11 1.11 1.11 1.11 1.11		
	2.5004 2.5004 3.74 3.74 3.85 3.20 3.85 3.85 3.20 6.52 6.53 6.53 6.52 6.52 6.52 6.53 6.52 6.52 6.52 6.52 6.52 6.52 6.52 6.52		
	施計年 MNB NNE NNE NNE ENE ENE ENE ENE ENE SSE SSW WSW WNW NNW NNW NNW NNW NNW NNW NNW CALM E1) 2006年。		
	/ 画		

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
	迎棄却検定表(風速)(標高 18m)		・評価対象高度数の相違
	8		【東海第二】
	上海 1.0 下 (5.2%) 1.03 1.03 13.48 9.49 9.49 9.49 0.09 0.09		
	(標高 2005 1.69 1.69 1.09 1.09 1.10		
	第 37 20 20 20 20 20 20 20 20 20 20 20 20 20		
	震測場所 11.64 15.63 33.04 24.23 11.65 6.89 6.89 0.94 0.94 0.56		
	2013 1. 68 15. 60 32. 64 22. 79 11. 34 7. 04 7. 04 1. 37 0. 71 0. 86		
	01 0 00 00 00 00 00 00 00 00 00 00		
	2011 2015 1.90 2.00 15.92 16.73 33.15 31.38 23.60 21.9 10.19 10.6 6.01 7.06 4.17 4.48 2.44 2.6 1.25 1.53 0.60 0.75 0.75 0.8		
	2009 2010 1.35 1.60 13.88 15.83 32.69 32.91 23.48 23.08 10.69 11.19 7.22 6.75 3.91 3.58 2.60 2.02 1.70 1.39 1.30 0.94		
	2009 1.35 13.88 13.69 23.48 7.22 3.91 1.70 1.70 1.30		
	2008 11. 82 15. 93 33. 39 21. 95 10. 88 6. 66 6. 66 0. 90 0. 90 0. 90		
	2007 1. 11 14. 40 32. 03 21. 70 10. 95 6. 89 4. 69 3. 31 2. 24 1. 24 1. 45 11. 45		
	2004 1.85 14.96 14.96 9.77 9.77 6.25 4.34 1.33 1.67 1.67		
	施計年 2004 2007 0.0~0.4 1.85 1.11 0.5~1.4 14.96 14.40 1.5~2.4 31.22 32.03 2.5~3.4 22.97 21.70 3.5~4.4 9.77 10.95 4.5~5.4 6.25 6.89 6.5~7.4 3.30 3.31 7.5~8.4 2.34 2.24 8.5~9.4 1.33 1.24 9.5以上 1.67 1.45 注1) 2006年度は標高148mのデ		

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
	③棄却検定表(風向)(水戸地方気象台)		・評価対象の相違
			【東海第二】
	1		島根2号炉は敷地内
	(5 %) (5 %) (5 %) (6 %) (7 %) (8 %) (8 %) (9 %)		の気象データを用いて
			検定を実施
	新却限是 上级 上级 20.47 8.51 12.05 5.21 7.34 4.09 4.40 4.40 8.34 2.22 2.22		
	機制場別 (機能) (2005 (20		
	94億 13 13 13 13 13 13 13 13 14 14 11 12 13 13 14 14 14 14 14 14 14 14 14 14		
	115 115 117 117 117 117 117 117 117 117		
	2004 2004 2004 2004 2004 2004		
	2012 1 2012 2 7.05 5 6.82 6.82 7 7.71 8 6.49 8 4.00 8 4.00 8 4.00 1 3.41 1 2.89 7 0.83 8 6.49 7 1.36 1 2.98 7 0.83 8 14.84 1 2.89 7 0.83 8 17.84 1 2.89 8 17.84 1 2.89 1 2.80 1		
	2011 7. 25 7. 2. 3. 06 3. 06 5. 06 5. 06 5. 06 16. 86 1. 44 1. 145 16. 86		
	2010 16.36 7.40 7.40 7.40 8.55 8.55 4.19 2.99 2.99 2.99 2.99 3.49 4.86 6.78 6.78 6.78 6.78 6.78 6.78 6.78 1.29 1.29 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36		
	2009 2009 11.84 1.57 10.20 9.26 3.38 3.05 3.05 1.15 2.49 2.84 1.72 4.59 16.29 16.29 16.29		
	2008 18.48 8.19 8.19 9.94 10.94 1.094 1.094 1.12 1.12 2.61 2.61 2.61 3.38 3.38 1.38 1.56 1.56 1.56 1.56 1.74 1.74		
	007 114 114 114 114 114 114 114 11		
	年 2004 200 15.34 17. 15.34 17. 15.34 17. 15.34 17. 15.34 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.		
	NN		
	恒 2 1 日 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日		

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉 備考	
	<u>④</u> 棄却検定表(風速)(水戸地方気象台)	・評価対象の相対	違
	8 世 年 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	【東海第二】	
	行	島根2号炉は	
	13 13 14 15 17 17 17 17 17 17 17	の気象データを	<u>:</u> 用いて
		検定を実施	
	第 共		
	観測場所 2005 2005 1.74 35.02 4 29.14 3 16.52 1 1.84 0.46 0.19 0.09		
	平均值 1.34 1.34 1.34 1.34 1.37 2.08 0.98 0.98 0.22 0.22		
	2015 0.87 26.35 35.10 11.26 4.93 2.78 0.98 0.08		
	2013 2014 0.85 1.38 32.61 32.82 31.80 30.66 16.83 16.86 9.81 10.24 4.44 4.23 1.80 1.97 0.82 1.14 0.39 0.43 0.43 0.08 2004年度を追加し		
	2011 2012 1.47 0.83 13.83 31.50 19.50 9.63 9.50 9.63 9.50 9.63 1.13 1.25 0.56 0.67 0.34 0.16 たため除外し、		
	5		
	2010 1.36 32.05 32.05 30.41 17.80 9.43 4.11 2.59 0.53 0.53 0.25		
	2009 1. 45 37. 22 28. 20 15. 96 8. 85 4. 08 2. 14 1. 14 0. 46 0. 30 0. 30		
	2008 11, 74 36, 96 30, 31 16, 28 8, 08 3, 76 1, 53 0, 51 0, 34 0, 34		
	2007 1. 73 35. 08 29. 88 17. 72 9. 42 3. 73 1. 30 0. 63 0. 63 0. 15 0. 15		
	2004 1.75 33.41 29.63 16.75 9.81 4.93 2.05 0.96 0.11 0.11		
	施書年 2004 2007 0.0~0.4 1.75 1.73 0.5~1.4 33.41 35.08 1.5~2.4 29.63 29.88 2.5~3.4 16.75 17.72 3.5~4.4 9.81 9.42 4.5~6.4 2.05 1.30 6.5~7.4 0.96 0.63 7.5~8.4 0.41 0.26 8.5~9.4 0.11 0.11 2.006年度は模高148mのデ		

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成 30 年 9 月 18 日)	島根原子力発電所 2号炉	備考
	⑤棄却検定表(風向)(小名浜気象観測所)		・評価対象の相違
			【東海第二】
			島根2号炉は敷地口
	為金額 (5%) 下限 (14.53 (1.43		の気象データを用いて
			検定を実施
	子		
	 機間場所 2005 2005 31.89 1.77 4.45 1.89 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 2.47 2.47 		
	(利益) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		
	2015 18.76 12.46 5.70 2.52 2.52 1.88 2.60 4.66 4.66 1.79 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.1		
	14 14 14 14 14 14 14 14 14 14 14 14 14 1		
	13 201 16. 37 9.9 16. 37 9.6 2.6 16. 37 9.6 2.6 16. 37 9.6 2.7 179 3.0 179 3.		
	2013 16. 92 10. 37 5. 79 2. 43 2. 48 4. 80 4. 80 7. 74 7. 74 1. 11 1. 42 4. 43 9. 14 9. 14 9. 16 0. 56		
	2012 16.86 9.70 9.70 1.90 1.90 1.90 7.04 7.04 7.04 7.04 7.04 1.18 10.26 10.26 10.22		
	2011 16.58 11.36 1.88 1.88 2.37 2.29 6.79 10.63 10.63 10.63 10.63 1.71 1.71 1.71 1.71 1.71 2.29 2.29 2.29 2.29 2.34 2.34		
	2010 17.05 9.44 9.44 9.44 1.78 2.22 2.22 2.28 2.38 2.64 2.64 2.64 5.09 11.91 11.91 11.91 11.91 11.91 11.91 3.98 3.98 3.98 3.98 3.98 3.98 3.98 3.98		
	2 11 12 6 9 9 4 1 1 1 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
	2008 111.94 111.94 111.94 2.22 2.22 2.36 2.02 2.94 4.51 8.58 5.88 1.68 1.68 1.68 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60		
	施計年 2004 2007 刷向 NNE 9.51 9.46 1 NE 5.07 5.21 ENE 1.70 2.19 ESE 2.95 2.68 SSE 5.80 4.93 SSE 5.80 4.93 SSE 5.80 4.93 SSE 5.80 4.93 SSE 5.80 1.70 WNW 2.13 1.79 WNW 4.70 4.69 NNW 9.27 8.70 NNW 15.51 17.31 1 CALM 2.64 2.15		
	通過 11 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 1 2 3 3 2 3 3 2 3 3 3 3		
	2004 15.61 15.61 1.70 1.70 2.96 5.80 0.95 0.95 1.80 0.95 1.80 0.95 1.80 0.95 1.80 0.95 1.80 0.95 1.80 0.95 1.80 0.95 1.80 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.9		
	N		
	画 で で で で で で で で で で で で で		

女川原子力発電所2号炉(令和元年10月3日)	東海領	第二発制	電所((平成	30 年	F9月	18 E	∃)		島根原子力発電所 2号炉	備考
	<u>⑥</u> 棄却	検定表	(風速	恵) (/	小名	兵気象	良観測	川所)			・評価対象の相違
		1	1					1	1	1	【東海第二】
	平 ○ ※ ※ 本 数 ○ 数 数 ○			0	0	00		0	0		島根2号炉は敷地
											の気象データを用い
	(6) (4) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	15,4	27. 52	10, 23	6. 42	2. S	0.45	0.09	0.07		検定を実施
	[[] []	+						-	+		
	小名浜気象観測所(% 業却限界(5%) 判定 上限 下限 × 兼封 3.74 0.00 〇	25, 64	35. L3	13.89	8. 42	2 3 3 3	1.30	0.94	0, 63		
	観測場所 植 檢定年 2005 8 2.47	20, 97	30. 33 18. 36	10.84	7.32	경 (3 =	0.72	0.39		
	零	100	Q (0	ý.	⊙	ي ي	2 12	-	ro.		
	平均值 1.76	20.53	30,32	12.06	7.42	4. 36. %	1.07	0.51	0.35		
	2015			ig.	7.86	4.28	: 8	0.60	36		
	2015	18, 49	20, 27	12, 35	t-	4.28	<u>.</u>	0	0.36		
	2014	18.83	7 % 7 %	12, 06		3.85	3 1	0, 63	0.37	を追加し、	
	2 0	8 2	<u> </u>	2	1-	ω ε	<u>i – i</u>	_	-		
	2013	18. 40	28, 28	13.73	7.82	5.02	34	0, 45	0.54	2004年度	
				1		_		-	+		
	2012	16.85	3 3 3 3 3 3	12.28	7.96	5 S	3 2	0, 59	0.50		
								-	+		
	2011	22.11	19, 71	12, 18	6.84	3,96	1.03	0.50	0,31	4	
		-	-	-				-		J : 0	
	2.33	22.30	20° 23° 23° 23° 23° 23° 23° 23° 23° 23° 23	E .		5. 13 8. 13	0.48	0.15	Ö	 	
	<u> </u>				9	z g		-		メ の 影響 が が	
	2.11	22. 79	23 23 23 23 24 25	12.21	7.80	e. − ∞ − 0.00	96.0	0.43	0.21	* X	
	8 2				8	22 62	5 6	20	32		
	2008	22.45		10, 66	06.90	4.62	0.99	0.70	0, 32		
	2007	21.13	30, 12 18, 99	11.62	7.33	3.87	1.08	0.34	0,34	€ C E	
	न ह	22 2	30. 18. 99.	incine.	F-	က်င	j	ਂ	Ö	89 148	
	2.64	21.92	28, 01	11.69	5	5.06		0.75	0, 39	2006年度は標高148mのラ	
			-							型	
	統計年 0~0.4	0.5~1.4	1.5~2.4 2.5~3.4	To the second	4.5~5.4	5. 5. 6. 4 5. 7. 7. 4. 4	- 8	8.5~9.4	4	} 900:	
	原(元/8)		(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(c)	6. 1)))	7.5	\ (c)	9.5以上	([規	
	V I		<u> </u>	ಟಾ		esa C	/ C=	· CC	<u> </u>		

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
	(参考)		
	「発電用原子炉施設の安全解析に関する気象指針」の解説 X. での		
	記載		
	1. 気象現象の年変動		
	気象現象は、ほぼ1年周期でくり返されているが、年による変動も存		
	在する。このため、想定事故時の線量計算に用いる相対濃度について		
	その年変動を比較的長期にわたって調査してみると、相対濃度の平均		
	値に対する各年の相対濃度の偏差の比は、30%以内であった。		
	このことから、1年間の気象資料にもとづく解析結果は、気象現象の		
	年変動に伴って変動するものの,その程度はさほど大きくないので,		
	まず、1年間の気象資料を用いて解析することとした。		
	その場合には、その年がとくに異常な年であるか否かを最寄の気象		
	332(1) (1) E / 3 30 E (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
	別紙1		
	平常時の気体状よう素放出量について		
	平常時の気体状よう素放出量の主要な放出経路である換気系		
	からの放射性よう素放出量は,「発電用軽水型原子炉施設周辺の		
	線量月標値に対する評価指針」に基づき、換気系の漏えい係数に		
	冷却材中の放射性よう素濃度を乗じて求めている。		
	一方,冷却材中の放射性よう素濃度は,次式により求めている。		
	例えば、ここで主蒸気流量FSが増加した場合γが増加するた		
	め,放射性よう素濃度は減少する。		
	$Ii = 2.47 \cdot f \cdot Yi \cdot \lambda_i^{0.5}$		
	I_i		
	$A_i = \frac{I_i}{M(\lambda_i + \beta + \gamma)}$		
	Ⅰi:核種iの炉心燃料からの漏えい率(Bq/s)		
	$f:$ 全希ガス漏えい率 $(1.11 \times 10^{1.0})$		
	Yi:核種 i の核分裂収率(%)		
	λ i: 核種 i の崩壊定数 (s ⁻¹)		
	Ai:核種iの冷却材中濃度(Bq/g) M:冷却材保有量(g)		
	β :原子炉冷却材浄化系のよう素除去率(s^{-1})		
	$\beta = \left(1 - \frac{1}{DF}\right) \cdot \frac{FC}{M}$		
	$P = \begin{pmatrix} 1 & DF \end{pmatrix} M$		
	DF:原子炉冷却材浄化系の除染係数		
	F C:原子炉冷却材浄化系流量 (g/s)		
	γ :よう素の主蒸気への移行率 (s ⁻¹)		
	$\gamma = CF \cdot \frac{FS}{M}$		
	CF:よう素の主蒸気中への移行割合 FS:ナ蒸気流量 (**/*)		
	F S:主蒸気流量 (g/s)		
	前述の換気系の漏えい係数は変わらないため、放射性よう素濃		
	度の減少に伴い気体状よう素放出量は減少する。		

女川原子力発電所2号炉(令和元年10月3日)

東海第二発電所(平成30年9月18日)

島根原子力発電所 2号炉

備考

建造物の増設又は移設による大気拡散条件への影響について

女川原子力発電所における建造物の増設又は移設による大気 拡散条件の変化は,風洞実験結果に影響を及ぼす可能性が考えら れる。

「発電用原子炉施設の安全解析における放出源の有効高さを 求めるための風洞実験実施基準:2009」においては、「既設放出 源に対する増設建屋の影響が著しくないと予想される条件」とし て、「放出源近傍の地形が増設により極端に変化しない場合であ って、既設放出源の実高さが増設建屋の高さの2.5倍以上ある場 合、又は既設放出源と増設建屋の距離が十分にある場合」と記載 されている。

この記載を踏まえ、女川原子力発電所敷地内における建造物の 増設又は移設が上記の条件に該当し、大気拡散条件に影響しない ことを以下のとおり確認した。

1.建造物の増設又は移設の影響

建造物が増設されたことによる影響を検討するうえでは,第1 図のとおり建造物

の設置位置の標高を基準とし、その標高に建造物の高さの2.5 倍を加えた高さが、

排気筒実高さ175mを上回る場合には、建造物の増設による影響があるものと整理

することが保守的であると考えられる。

女川原子力発電所における増設又は移設された主な建造物及 びその配置を第2

図に示す。

上記の考え方に基づき確認した結果は第1表のとおりであり、「既設放出源の実

高さが増設建屋の高さの2.5倍以上ある場合,又は既設放出源と増設建屋の距離が

十分ある場合」に該当するため、大気拡散条件には影響しないことを確認した。

東海第二発電所風洞実験結果の概要について

風洞実験結果は、参考文献「東海第二発電所大気拡散風洞実験報告書」(平成25年12月、三菱重工業株式会社)で公開している。風洞実験結果の概要を以下に示す。

なお,風洞実験は「(社) 日本原子力学会標準 発電用原子炉施設の安全解析における放出源の有効高さを求めるための風洞実験実施基準」(2003年6月,社団法人 日本原子力学会)に基づき実施している。

1. 実験手順

補足3

- (1)大気安定度で中立(C~D)に相当する条件になるように 風洞実験装置(図1参照)内の気流(風速分布,乱流強度分 布)を調整する(図2参照)。
- (2)排気筒有効高さを決定するためのスケールを作成するため、風洞実験装置内に縮尺模型を入れないで高度を変えて模型排気筒からトレーサガス(CH₄)を放出し、地表濃度を測定する平地実験を実施する(図3参照)。
- (3) 風洞実験装置内に縮尺模型 (1/2,000, 風下 10Km) を入れ, 所定の高度の模型排気筒からトレーサガスを放出し,地表 濃度を測定する模型実験を行い平地実験結果と照合し,排 気筒源有効高さを求める(図4参照)。これにより,建屋, 地形の大気拡散に及ぼす影響を把握する。

島根原子力発電所風洞実験結果の概要について

気象資料の更新に合せ、島根3号炉増設申請以降の敷地の造成 や新規制基準適合に係る建物の増設による影響を確認するため、 「日本原子力学会標準 発電用原子炉施設の安全解析における放 出源の有効高さを求めるための風洞実験実施基準:2009」に基づき、風洞実験を実施した。

島根原子力発電所の風洞実験の結果を以下に示す。

1. 実施設備

別紙 2

- (1) 乱流輸送モデリング風洞
 - 一般財団法人電力中央研究所が所有する乱流輸送モデリング風洞の第1試験セクションを使用した。風洞の概要及び主な仕様を第1図に示す。
- (2) 気流調整装置

風洞内の気流状態を実大気の気流に近づけるため、乱流格子を風洞測定部入口に、アングル及びスパイアを測定部上流に設置した。

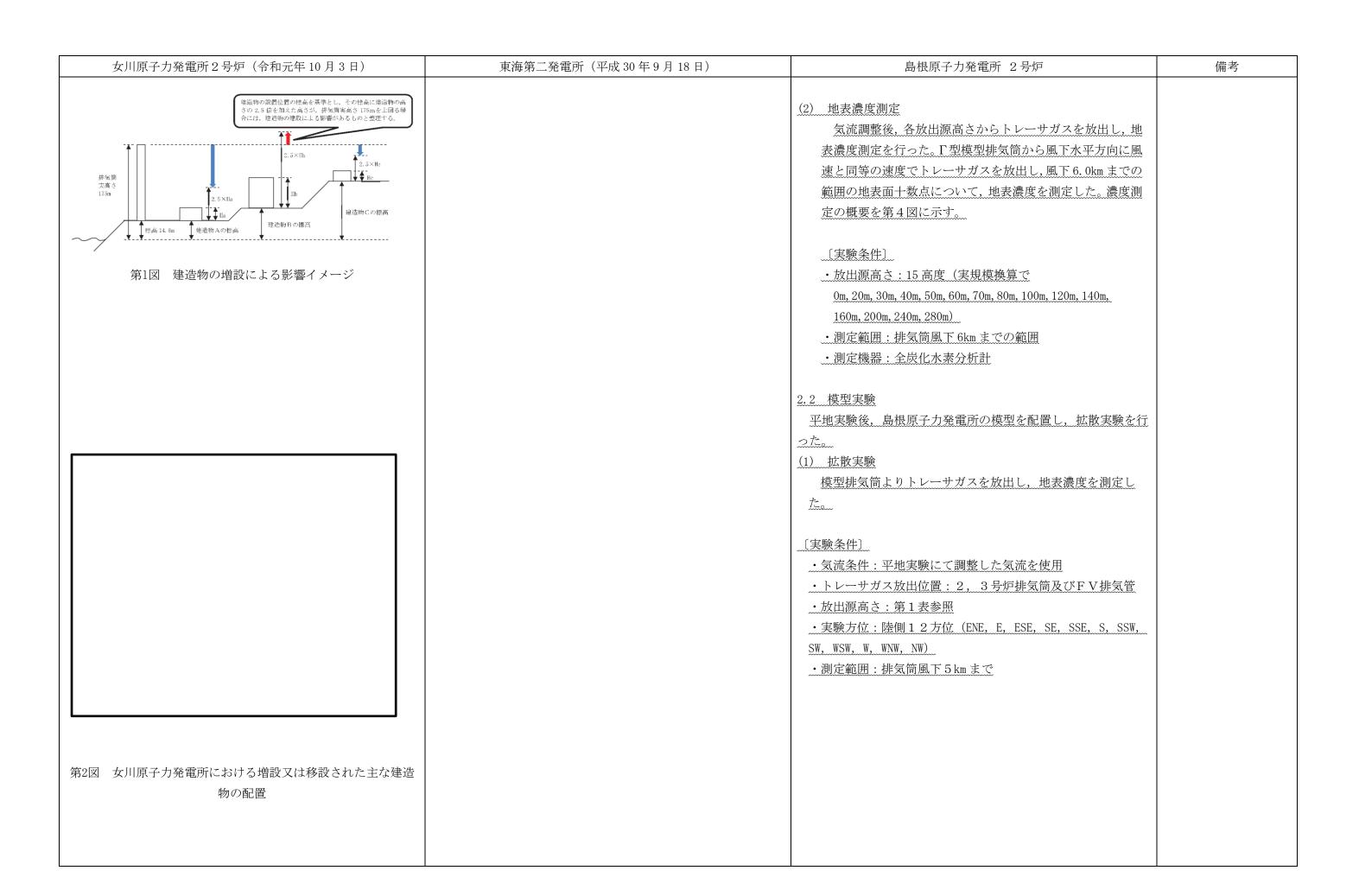
(3) トレーサガス

濃度測定では、 Γ 型模型排気筒よりトレーサガスを放出する。トレーサガスはエチレン(C_2 H₄)を用い、放出速度を周囲の風速に合わせるため空気を混合した。

2. 実施内容

2.1 平地実験

平地実験では,風路内に模型のない平地の状態で風洞気流を所 定の条件に調整した後地表濃度測定を実施した。


(1) 気流調整

風洞内の気流状態が大気安定度で中立(C~D)に相当する条件になるように風洞実験装置(図1参照)内の気流調整装置を配置し気流(風速分布,乱流強度分布)を調整した。 気流測定の概要を第2図,気流条件の調整結果を第3図に示す。

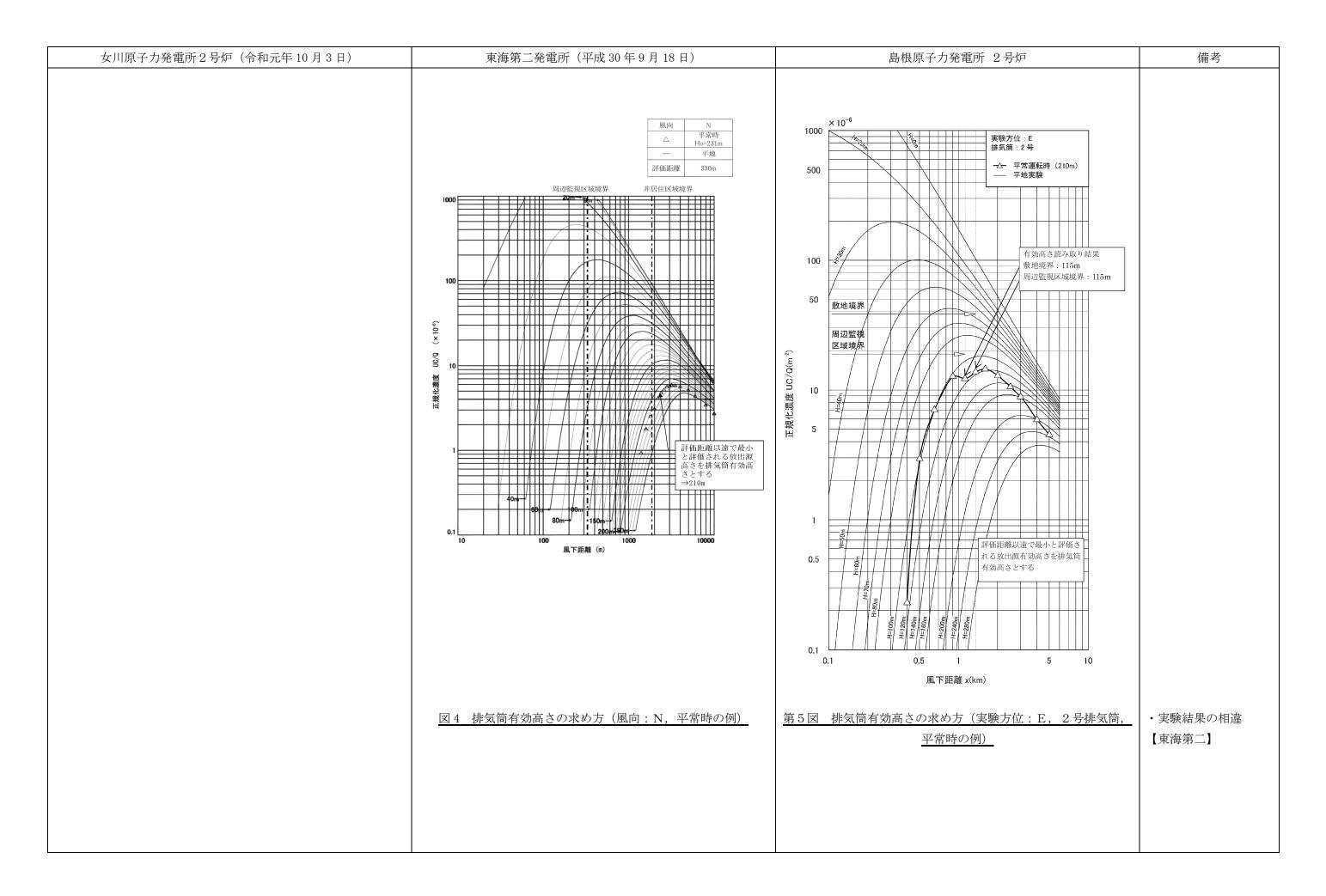
・記載方針の相違 【女川2号】

補足4

島根2号炉は風洞実 験を実施しているため, 結果の概要を説明

女川原子力	発電所2号炉(令和	元年 10 月	3 目)		東海第二発電所(平成 30 年 9 月 18 日)	島根原子力発電所 2号炉	備考
	子力発電所における: 告物による大気拡散彡			にた	整流格子 確流部 測定部 → 空間遊應トラバース 装置 模型排系値 か ス吸引管 → ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	金属20m	
増設又は移設 された建造物 の名称	(A) 建造物 (B) 建造物 の設置面か の設置面の 敷地高さ	(B) + (A) $\times 2.5$	判定 (<175m)	増設 又は 移設	電動機 透風機 流量計	第1回版セクション (Gi Sin)	
① 事務建屋	36.7m 14.9m	106.65m	0	増設	ドレーザ・カス	ハニカム メッシュ 17m (樹定部)	
② 固体廃棄物貯蔵所	19. 3m 23. 8m	72.05m	0	増設			
③ 防潮堤**	16. 2m 14. 8m	55.30m	0	増設		大型拡散風洞要目 風洞 送風機 電動機	
④ 緊急時対策建屋	14.7m 62.0m	98.75m	0	増設		形 式 水平二風路回流式 形 式 軸流式 形 式 直流電動機 測定部長さ 1.7m 最大風量 5.500m³/分 出 カ 132kW 測定部所面 高さ1.7m、幅3m 回 転数 9.70rpm 回 転数 定格1.150rpm 測定部風速 0.1~~15m/秒 風量調節 回転数および羽根角度制御	
⑤ 緊急用電気品建屋	7.5m 62.3m	81.05m	0	増設	図1 風洞実験装置	第1図 風洞の概要及び主な仕様	
⑥ 女川2号軽油タンク	9.1m 9.5m	32. 25m	0	移設 (地下化)			
						無機を 190 (190 (190 (190 (190 (190 (190 (190	

女川原子力発電所2号炉(令和元年10月3日) 東海第二発電所(平成30年9月18日) 島根原子力発電所 2号炉 備考 (参考) Ui:各高度の風速 日本原子力学会標準 発電用原子炉施設の安全解析における放出源の有効高さ を求めるための風洞実験実施基準:2009 Code for Wind Tunnel Experiments to Calculate the Effective Height of Emitting Source for Nuclear Power Facilities Safety Analysis: 2009 1. 適用範囲 本標準は、発電用原子炉施設から放出される放射性物質の大気拡散評価に対 する建屋及び地形の影響を評価するための風洞実験(1)について,実験条件及び実験方法並び に実験結果の整理方法及び実験結果を用いた有効高さの評価方法を規定する。本標準は大 気安定度が中立における実験を対象とする。 本標準は、原子炉施設の新設時並びに増設時で大気拡散評価において新たに設置する建 Δο 屋及び地形の改変の影響が著しいと予想される場合[©]に行う風洞実験に適用する。 *1 野外の相当高さで 400m までは風速分布, 乱れ分布を再現する。 なお、本標準は、発電用原子炉施設以外の排気筒放出の原子力施設にも適用することが できる。 注(1) 原子力安全委員会、"発電用原子炉施設の安全解析に関する気象指針"(昭和 57 年 1 月28日決定,平成元年3月27日,平成6年4月21日,平成13年3月29日一部 風速 u/U 乱流強度(%) 改訂)にて被ばく線量評価に用いる放出源の有効高さを求めるための風洞実験の実 ○ 放出源高さ H=0m の実験値 ○ 放出源高さ H=0m の実験値 施について定められている。 気象指針の拡がりバラメータ (A~Fは気象指針による大気安定度) (A~Fは気象指針による大気安定度 注(2) 排気筒高さが放出源に隣接して増設する建屋の高さの2.5倍に満たない場合。 既に風洞実験が行われているサイトに原子炉施設を増設し、増設建屋の影響確認実験 結果から既設放出源に対する増設建屋の影響が著しいと予想される場合(附属書 A(参 考)参照)。 附属書 A (参考) 建屋影響の評価方法 風下距離 X(m) *2 鉛直方向拡散幅は大気安定度が中立に相当する値(C~D)になっている。水平方向 この**附属書 A (参考)** は、本体に関連する事柄を説明するものであり、標準の一部では 拡散幅もほぼ大気安定度が中立に相当する値(C~D)になっている。 この附属書では、建屋の影響が著しいと予想される場合の増設建屋の影響について説明 する。 A.2 増設強壓の影響について a) 既設放出源に対する増設建屋の影響が著しくないと予想される条件を整理すると、放出 源近傍の地形が増設により極端に変化しない場合であって、既設放出源の実高さが増設 **建屋の高さの 2.5 倍以上ある場合。又は既設放出源と増設建屋の距離が十分ある場合と** 風下距離 x(km) 風下距離 x(km) ただし、増設建屋の影響については、この条件が満たされない場合でも、次のように 図2 気流条件調整結果 第3図 気流条件調整結果 取り扱うことができる。 1) 既設、増設建屋配置により、①建屋の並びに直角な実験風向、②既設放出源と増設建 屋を結ぶ風向を求め、既設建屋のみで実施した既存の実験風向のうち。最も①、②に 近い2風向を選定して増設建屋を加えた実験を行い、その結果放出源の有効高さが既 存の実験結果と比較してあまり変わらない場合(1)は、既存の実験結果をそのまま使用 できる (図 A.1 参照)。


女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
女川原子力発電所 2 号炉(令和元年 10 月 3 日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2 号炉 100	備考

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2 号炉	備考
	2. 放出源高さ	3. 放出源高さ	
	放出源高さは,事故時は通常の換気系は運転されないと想定	放出源高さは, 平常運転時においては, 換気系の運転による吹	
	し、排気筒実高H01=Hs、平常時は換気系の運転による吹上げ効	上げ効果を考慮し、次式にて計算される吹上高さを排気筒の実高	
	果を考慮し, 次式のように排気筒実高に吹上げ高さを加えた放出	さに加えたものを放出源高さとする。ここで、 $1/U$ には 2009	・気象データの相違
	高さH ₀₂ とする。ここで、1/Uには、 <u>2005年度</u> の気象データを用	<u>年1月~2009年12月</u> の気象データを用いた。	【東海第二】
	いた。表1に風洞実験の放出源高さを示す。	事故時は, 換気系の運転による吹上げの効果に期待せず, 排気	
		筒実高さを放出源高さとする。第1表に放出源高さを示す。	
	H ₀₂ =Hs+3.0×D×W×1/U Hs:排気筒実高(m) D:排気筒出口の内径(m) W:吹出し速度(m/s) 1/U:風速逆数の平均(s/m)	$H = H s + \triangle H$ $\triangle H = 3 \frac{w}{v} \cdot D$	
		ここで、	
		H:放出源高さ(m)	
		H s : 排気筒高さ(m) <u>(2号炉:120(m),</u>	・設備の相違
		<u>3 号炉:56.5 (m)</u>)	【東海第二】
		△ H:吹上高さ (m)	
		W:吹き出し速度(m/s)(<u>2 号炉:26(m/s),</u>	・設備の相違
		<u>3 号炉:28 (m/s)</u>)	【東海第二】
		D:排気筒出口直径 (m) (<u>2号炉:3.3 (m),</u>	
		<u>3 号炉:2.8 (m))</u>	
		1/U:風向別風速逆数の平均(s/m)	

### 2016年	女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2 号炉	備考
1871 18-20 18-		表 1 放出源高さ	第1表 放出源高さ(地上高)	・放出源高さの相違
平常時の変更前後の傾向として、全体的に有効高さが高くなっている。これは年間にわたる平均風速の低下に伴い、平常時の放 出源高さが大きくなったことによるものと考えられる。 事故時には吹上高さの影響は考慮しないこともあり、有効高さ に大きな変化は見られない。	女川原子力発電所 2 号炉(令和元年 10 月 3 日)	表1 放出源高さ 類向 春日方位 照准連載の平均 吹上げ高さ(a) 放出顔高さ (GL m) 収 数時 平常時 N	第1表 放出源高さ (地上高) 2 5 # 類簡 (標高 15 m 地点の風向、風速データ) (標高 65 m 地点の風向、風速データ) 管 (地上) (m) (場 / (m)	・放出源高さの相違

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2 号炉	備考
	表 2 排気筒有効高さ	第2表 排気筒有効高さ (m)	・実験結果の相違
	風向 養日方位 評価地点 放出源高さ 有効高さ 評価地点 放出源高さ 有効高さ		【東海第二】
	N S 330 231 210 1870 140 105		
	NNE SSW 350 209 180 1690 140 100	2 号/位下 A 排 須 億 事 核 由	
	NE SW 460 185 150 1300 140 110		
	ENE WSW 640 205 195 930 140 110	下気筒 時 170 170 110 115 115 115 115 190 220 220 195 155	
	E W 530 226 205 530 140 115	中海排氣衛 平常時 5 10 0 11 5 10 0 11 5 10 0 13 0 13 0 11 5 22 6 19 6 19 6 19 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 12 15 16 17 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	
	ESE WNW 600 242 205 600 140 105	3 号% 3 号% 周辺監視 110 110 	
	SE NW 660 246 220 660 140 105	変更後 (2009 年) 京衛 事故時 135 70 70 70 60 60 60 60	
	SSE NNW 890 218 200 890 140 105		
	S N 850 207 190 850 140 105	変更 変更 115 160 160 115 180 180 180 170 170 170 170 170 130 130	
	SSW NNE 600 226 200 600 140 95	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	SW NE 360 216 195 - - - WSW ENE - - - - - -	平 周辺騰海 二 115 95 95 140 165 170 170 170 135 130	
	W E		
	NW SE 290 198 170	中 中 中 145 100 95 80 95 95 140 140 155 125 140 130	
	NNW SSE 350 203 185 2900 140 115		
	注) 放出源高さが同じ事故時の排気筒有効高さを比較すると, 1987 年の風洞実験の 80~110m に対し, 今回は 95~115m と高く評価されている。これは, 今回の風洞実験	3 号域	
	では中立の大気安定度を再現(C~D)したしたため、気流の乱れが大きくなり、建屋 により生じる気流の乱れの影響が相対的に小さくなっているためと推定される。前 回は、D~Eの大気安定度に相当する気流の乱れであり、建屋で生じる気流の乱れが		
	大きく作用して煙が地上付近に降下し易くなる傾向がある。	前 (1996年) 事故時 80 75 65 65 65 65 60 60 60 60	
		原排: 1155 1150 1150 1150 1150 1130 1135	
		平	
		海	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成 30 年 9 月 18 日)	島根原子力発電所 2号炉	備考
	10000 10		

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
	別紙3	補足5	
	異常年検定法の概要について	異常年検定法の概要について	
	F分布検定の手順により異常年検定を行った。	F分布検定の手順により異常年検定を行った。	
	この検定方法は、正規分布をなす母集団から取り出した標本の	この検定方法は、正規分布をなす母集団から取り出した標本の	
	うち、不良標本と見られるものを X_0 (検定年)、その他のものを	うち、不良標本とみられるものを X_0 、その他のものを X_1 、 X_2 …	
	$X_1, X_2, X_3, \dots X_i, \dots X_n$ (比較年) とした場合、 X_0 を除く他の n	$\cdots X_{i}$, $\cdots \cdots X_{n}$ とした場合, X_{0} を除く他の n 個の標本の平均を	
	個の標本の平均を $\bar{X} = \sum_{i=1}^n X_i/n$ として、標本の分散から見て X_0 と	$\bar{X} = \sum_{i=1}^{n} X_i / n$ として、標本の分散から見て、 X_0 と \bar{X} との差が有意	
	$ar{X}$ との差が有意ならば X_0 を棄却とする方法である。検定手順を以下に示す。	ならば X_0 を棄却とする方法である。	
	***************************************	(1) 仮説:不良標本 X_0 と他の標本(その平均値) $ar{X}$ との間に有意	
	な差はないとする。	な差はないとする。	
	$H_0: X_0 = \bar{X}\left(\bar{X} = \sum_{i=1}^n X_i/n\right)$	$H_0: X_0 = \bar{X}\left(\bar{X} = \sum_{i=1}^n X_i/n\right)$	
	(2) 分散比 F ₀ を計算する。	(2) 分散比 F ₀ を計算する。	
	$F_0 = \frac{(n-1)(X_0 - \bar{X})^2}{(n+1)S^2}$	$F_0 = \frac{(n-1)(X_0 - \bar{X})^2}{(n+1)S^2}$	
	$(n+1)S^2$		
		ただし、	
	$S^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2 / n$	$S^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2 / n$	
	(3) 検定年は1年, 比較年は10年, 有意水準(危険率) は5%	(3) 検定年は1年, 比較年は10年とし(自由度 ν_1 =1, ν_2 =10	
	として,F分布表のF境界値($F_9^1(0.05) = 5.12$)を求める。	$-1=9$) ,有意水準(危険率) α を $5%$ として, F 分布表から	
		F境界値($F_9^1(0.05) = 5.12$)を求める。	
	(4) F_0 と F 境界値とを比較して, F_0 < F 境界値であれば仮説は	(4) F_0 と F 境界値 $(F_0^1(0.05) = 5.12)$ とを比較して,	
	採択する。	$F_0 \geq \mathrm{F}$ 境界値($F_0^1(0.05) = 5.12$)ならば仮説棄却: $H_0: X_0 = \bar{X}$	
		は棄却する	
		$F_0 <$ F 境界値 ($F_0^1(0.05) = 5.12$) ならば仮説採択 : $H_0 : X_0 = \bar{X}$	
		は採択する	
		危険率 $_{\alpha}$ における棄却限界は F_{o} = $F_{a}^{1}(0.05)$ とおいて X_{o} を計	
		算することで以下のように求めることができる。	
		$X_0 = \bar{X} \pm S \sqrt{\frac{(n+1)}{(n-1)}} F_9^1(0.05)$	
		$\sqrt{(n-1)^{2}}$	

女川原子力発電所2号炉(令和元年10月3日)	東海第二発電所(平成30年9月18日)	島根原子力発電所 2号炉	備考
	具体的には、次のように棄却限界の上限値と下限値を求め、その	上記により求めた棄却限界の上限値と下限値の範囲に検定年	
	範囲に検定年 X ₀ が収まっているかを確認して検定している。	X ₀ が収まっているかを確認して検定している。	
	$ \bar{X} - S \sqrt{\frac{(n+1)}{(n-1)}} F $	$\bar{X} - S\sqrt{\frac{(n+1)}{(n-1)}F_9^1(0.05)} < X_0 < \bar{X} + S\sqrt{\frac{(n+1)}{(n-1)}F_9^1(0.05)}$	