まとめ資料比較表 「第4条 地震による損傷の防止 別紙-4〕

女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
別紙-13 原子炉建屋屋根トラスの解析モデルへの弾塑性解析の	別紙-4 原子炉建物屋根トラスの解析モデルへの弾塑性解析の	・対象施設の相違
適用	適用について	【柏崎 6/7】
		島根2号炉の排気筒は
目次	目次	既工認から変更なしの
		ため相違
1. 概要	1. 概要	
2. 原子炉建屋屋根トラスについて	2. 原子炉建物屋根トラスについて	
2.1 原子炉建屋屋根トラスの概要	2.1 原子炉建物屋根トラスの概要	
2.2 原子炉建屋屋根スラブの概要	2.2 原子炉建物屋根スラブの概要	
2.3 原子炉建屋屋根トラスの地震応答解析モデルと設計クラ	2.3 原子炉建物屋根トラスの地震応答解析モデルと設計クライ	
イテリア	テリア	
2.4 既工認と今回工認における原子炉建屋屋根トラスの解析	2.4 既工認と今回工認における原子炉建物屋根トラスの解析モ	
モデルの比較	デルの比較	
2.5 弾塑性解析の採用について	<u>2.5</u> 弾塑性解析の採用について	
	2.5.1 弾塑性解析を採用することの目的	
	2.5.2 弾塑性特性の設定の妥当性・適用性について	
	2.5.3 各部材のクライテリアについて	
2.6 原子炉建屋屋根トラスの評価に関するまとめ	2.6 原子炉建物屋根トラスの評価に関するまとめ	
		・同上
3. まとめ	<u>3.</u> まとめ	
	4	
参考資料1 原子炉建屋屋根トラスの特徴	<u>添付資料-1</u> 原子炉建物屋根トラスの <u>耐震補強について</u>	
参考資料2 原子炉建屋屋根トラスの地震時シミュレーション		・モデルの相違
参考資料3 剛性比例型減衰の妥当性について	参考資料-1 剛性比例型減衰の妥当性について	【女川 2】
		島根2号炉は地震観
		測記録に基づく剛性低
		下を考慮しないため相
		違
	女川原子力発電所 2号炉 (2020.2.7版) 別紙 - 13 原子炉建屋屋根トラスの解析モデルへの弾塑性解析の 適用 目 次 1. 概要 2. 原子炉建屋屋根トラスについて 2.1 原子炉建屋屋根トラスについて 2.1 原子炉建屋屋根トラスの概要 2.2 原子炉建屋屋根トラスの概要 2.3 原子炉建屋屋根トラスの地震応答解析モデルと設計クラ イテリア 2.4 既工認と今回工認における原子炉建屋屋根トラスの解析 モデルの比較 2.5 弾塑性解析の採用について 2.6 原子炉建屋屋根トラスの評価に関するまとめ 3. まとめ 参考資料1 原子炉建屋屋根トラスの特徴 参考資料2 原子炉建屋屋根トラスの地震時シミュレーション 参考資料3 剛性比例型減衰の妥当性について	大川原子力変更新 2 5次 (2020.2.7 版) 時代 10 支川原子力変更新 2 5次 (2020.2.7 版) 島根原子力発電所 2 5次 道用 由 次 国子炉建設版目、5 スの解析モデルへの弾塑性解析の 通用について 日 次 日 次 日 次 日 次 日 次 日 次 1. 概要 1. 概要 2. 原子炉建品屋根トラスの地震 でデルの比較 1. 概要 2.4 原子炉建品屋根トラスの地震 でデルの比較 1. 概要 2.5 弾塑性解析の採用について 2.5 弾塑性解析の採用について 2.6 原子炉建品屋根トラスの評価に関するよとめ 2.5 弾塑性解析の採用について 2.6 原子炉建品屋根トラスの評価に関するよとめ 2.5 弾塑性解析の採用について 2.6 原子炉建品屋本トラスの離産に関するよとめ 2.5 学型生体析の楽用について 2.6 原子炉建品屋本トラスの離産に関するよとめ 2.5 学型生酸量根トラスの評価に関するよとめ 3. よとめ 素素文献 5.2 泉水生酸塩酸品トラスの耐酸素 素素文献 5.3 含量材のクライテリアについて 2.6 原子炉建物屋本トラスの耐酸素 2.6 原子炉建型屋本トラスの静強 素素文献 5.2 泉水生酸量量素 素素文献 5.3 含量材のクラスクラスの構成 素素文献 5.4 変換 素素文献 5.5 余量数

<u>実線</u>・・<u>設備運用又は体制等の相違(設計方針の相違)</u> 波線・・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
参考資料2 主排気筒の基礎部の評価について			・対象施設の相違
			【柏崎 6/7】
			島根2号炉の排気筒
			は既工認から変更なし
			のため相違
参考資料3 主排気筒の入力地震動及び固有振動数・固有モードに			・同上
ついて			
参考資料4 主排気筒の想定破損箇所及び破損モード,溶接箇所と			・同上
筒身支持位置の関係について			
参考資料5 屋根トラスの入力地震動及び固有振動数・固有モード	参考資料4 屋根トラスの入力地震動及び固有振動数・固有モード	参考資料-2 屋根トラスの入力地震動及び固有振動数・固有モー	
について	について	ドについて	
	参考資料5 屋根トラスの入力地震動に係る影響検討について	参考資料-3 屋根トラスの入力地震動に係る影響検討について	・影響検討の相違
			【柏崎 6/7】
			島根2号炉は屋根ト
			ラスの入力地震動に係
			る影響検討結果につい
			て詳細に説明
	 参考資料 6 二次格納施設のバウンダリを形成するオペフロ上部		・モデルの相違
	の耐震壁に係る気密性評価の整理		【女川 2】
			島根2号炉は地震観
			測記録に基づく剛性低
			下を考慮したいため相

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
1. 概要	1. 概要	1. 概要	
本資料は、柏崎刈羽原子力発電所第6号及び7号炉の建物・構	2 号炉の建物・構築物のうち,鉄骨構造部の詳細評価モデルを	本資料は, 島根原子力発電所2号炉の建物・構築物のうち, 鉄	
築物のうち、鉄骨構造部の詳細評価モデルを構築して評価を実施	構築して評価を実施している原子炉建屋屋根トラスの地震応答解	骨構造部の詳細評価モデルを構築して評価を実施している原子炉	
している原子炉 <u>建屋</u> 屋根トラス <u>及び主排気筒</u> の地震応答解析モデ	析モデルについては、既工認では弾性解析を採用しているが、今	建物屋根トラスの地震応答解析モデルの内容について説明し、既	・対象施設の相違
ルの内容について説明し,既工認時のモデルとの差異及びモデル	回工認では弾塑性解析を採用する予定である。	工認時のモデルとの差異及びモデル変更の目的について説明する	【柏崎 6/7】
変更の目的について説明するものである。なお,6 号及び7 号炉		ものである。	島根2号炉の排気筒
とも同様の構造であり、モデル化の考え方も共通であるため、こ		原子炉建物屋根トラスの地震応答解析モデルについては、既工	は既工認から変更なし
こでは7号炉を例として説明する。		認では弾性解析を採用しているが、今回工認では弾塑性解析を採	のため相違
		用する予定である。	
	本資料では、屋根トラスが二次格納施設のバウンダリを構成す	また、屋根トラスが二次格納施設のバウンダリを構成する屋根	・評価方針を詳細に説明
	る屋根スラブの間接支持構造物であることから,屋根トラスの3	スラブの間接支持構造物であることから,屋根トラスの3次元弾	【柏崎 6/7】
	次元弾塑性解析の妥当性・適用性について確認し、屋根スラブの	塑性解析の妥当性・適用性について確認し、屋根スラブの二次格	島根2号炉は屋根ト
	二次格納施設としての機能維持評価について説明する。	納施設としての機能維持評価について説明する。	ラス及び屋根スラブの
			評価方針について詳細
2. 原子炉建屋屋根トラスについて	2. 原子炉建屋屋根トラスについて	2. 原子炉建物屋根トラスについて	に記載
2.1 原子炉建屋屋根トラスの概要	2.1 原子炉建屋屋根トラスの概要	2.1 原子炉建物屋根トラスの概要	
原子炉建屋の上部構造は、鉄骨造陸屋根をもつ屋根トラスで構	原子炉建屋の上部構造は、鉄筋コンクリート造陸屋根をもつ屋	原子炉建物の上部構造は、鉄筋コンクリート造陸屋根をもつ鉄	
成されている。屋根トラスの平面は, <u>39.0m</u> (南北)× <u>59.6m</u> (東西)	根トラスで構成されている。屋根トラスの平面は, <u>38.0m</u> (南北)	<u>骨造の</u> 屋根トラスで構成されている。屋根トラスの平面は, <u>38.5m</u>	
の長方形をなしており,燃料取替床レベル(<u>T.M.S.L. 31.7m</u>)	× <u>51.0m</u> (東西)の長方形をなしており,燃料取替床レベル(<u>0.P.</u>	(南北)×51.6m(東西)の長方形をなしており、燃料取替床レベ	
からの高さは <u>18.0m</u> である。屋根トラスの概要を <u>第2.1.1</u> 図に示	<u>33.2m</u>) からの高さは <u>17.3m</u> である。 屋根トラスの概要を第 2.1-1	ル (<u>EL_42.8m</u>) からの高さは <u>20.7m</u> である。屋根トラスの概要	
す。 <u>第2.1.1</u> 表にトラス部材の諸元のうち, <u>RB</u> 通りの主トラス材	図に示す。第 2.1-1 表にトラス部材の諸元のうち, <u>F.通りの</u> 主ト	を <u>第2.1-1</u> 図に示す。 <u>第2.1-1</u> 表にトラス部材の諸元のうち,	
について例示する。	ラス材について例示する。なお,屋根トラスについては3.11 地震	主トラス材について例示する。	
	後に補強工事を実施している。		
		<u>屋根トラス各部材の主な要求機能は、屋根スラブからの鉛直荷</u>	・要求機能を詳細に説明
		<u>重の支持機能であり、主トラスについては、既工認と同様に水平</u>	【柏崎 6/7,女川 2】
		地震荷重及びクレーン荷重についても支持する設計とし,水平ブ	島根2号炉は屋根ト
		レースについては,既工認と同様に水平地震荷重の伝達が可能な	ラス各部材の要求機能
		設計としている。	について詳細に説明
	第2.1-2表に屋根トラスの各部材の要求機能を示す。	<u>第2.1-2表に屋根トラスの各部材の要求機能を示す。</u>	

号炉	備考
)))) ・ラス」のことを指す。以下同様。 トラス」のことを指す。以下同様。	
n) <u>スの概要(単位:m)</u> : 原子炉棟(二次格納施設) サブトラス 上弦材 屋根スラブ (二次格納施設のバウングリを構成) ・ ・ ・ 「 ・ 下弦材 ・ ・ 一 ・ 「 ・ 下弦材 ・ ・ 一 ・ 丁 ・ 広 本 本 山 山 山 山 山 山 山 山 山 山 山 山 山	・構造・仕様の相違 【柏崎 6/7, 女川 2】 トラスの形式(柏崎 6/7 及び女川 2 はワーレ ン形,島根 2 号炉はプラ ット形)の相違
<u>スの概要(単位:m)</u>	・同上

7.12.20版) 女川原	原子力発電所 2号炉(2020.2.7版)	島根原	兵子力発電所 2号炉	備考
諸元 第2	. 1-1 表 F 通り主トラスの部材諸元	第 2.1-1	表 主トラスの部材諸元	・構造・仕様の相違
部位 上弦材	使用部材 H-350×350×12×19 H-350×350×12×19	部材 上弦材 下弦材	使用部材 H-400×400×13×21 BH-400×400×19×35	【柏崎 6/7,女川 2】 主トラスを構成する 部材の相違
35	2CTs-175×350×12×19		$ \begin{array}{r} H - 400 \times 400 \times 13 \times 21 \\ \hline 2 CTs - 175 \times 350 \times 12 \times 19 \\ \hline \end{array} $	
81 新补材	2CTs-150×300×10×15	斜材		
21 東材	$2CTs-100\times200\times8\times12$	東材	$\begin{array}{c} 2\text{CTs-}175 \times 350 \times 12 \times 19 \\ \\ \hline 2\text{CTs-}150 \times 300 \times 10 \times 15 \end{array}$	
9			$2CTs-125\times250\times9\times14$	
.1				
3.5				
第2.1 部位 主トラス サブトラス 母屋 水平ブレー ※1 主な機能 負担も考慮	-2 表 屋根トラスの各部材の要求機能 部材 要求機能*1 上弦材 台直荷重の支持 下弦材 フレームを構成する部材として 麻材 小平地震荷重,クレーン荷重の支持 上弦材 台直荷重の支持 上弦材 台直荷重の支持 三弦材 台直荷重の支持 三次村 台直荷重の支持 三次村 台直荷重の支持 三ス - 空ボしており基準地震動 Ss に対する発生応力の 急する。また,水平ブレースは本設材とする。	第2.1-2表 第 部位 部材 上弦材 主トラス 下弦材 単ガトラス 下弦材 サブトラス 下弦材 日母屋 サブビーム サブビーム 水平ブレース 注1:主な機能を示 力の負担も考加	要求機能 ^{±1} 鉛直荷重の支持 フレームを構成する部材として 水平地震荷重、クレーン荷重の支持 鉛直荷重の支持 鉛直荷重の支持 鉛直荷重の支持 公正荷重の支持 公正荷重の支持<	 ・構造・仕様の相違及び 評価方針を詳細に説明 【柏崎 6/7】 島根 2 号炉は屋根ト ラス各部材の要求機能 について詳細に説明 【女川 2】 島根 2 号炉は水平ブ レースについて,建設工 認時より地震水平力の 伝達を担う構造部材で あることを踏まえ,要求 機能を記載 島根 2 号炉はサブビ ームをモデル化するた め相違
	水口() 女川() 諸元 第2 第位 上弦材 上弦材 下弦材 第 第 第 1 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 1 第 第 第 1 第 第 第 1 第 1 第 1 第 1 第 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1.2.20 版) 女川原子乃発電所 2 号炉 (2020.2.7 版) 諸元 第.2.1-1.2 ⊾ 」 通り主トラスの部材諸元 第位 使用部材 上弦材 H-350×350×12×19 35 第位 使用部材 11 2(Ts-175×350×12×19) 第村 2(Ts-175×350×12×19) 第村 2(Ts-175×350×12×19) 第村 2(Ts-175×350×12×19) 第村 2(Ts-100×200×8×12) 19 11 3.5 第2.1-2 表 屋根トラスの各部材の要求機能 第位 東村 2(Ts-100×200×8×12) 12 19 11 3.5 第位 第位 東村 シレーンの名称する部材をして 水平地 東村 2(Ts-100×200×8×12) 11 3.5 13 第位 14 2(Ts-100×200×8×12) 15 東村 16 東村 17 上弦村 18 中国市 19 11 35 第日 11 12 12 上弦村 東京村 東京村 東京村 東京村	1.12.20 版) 女川原子力発電所 2 号炉 (2020.2.7 版) 馬根原 講社 第2.1-1 表 p 的 2 ± 5 2 x 0 0 ± 1 ± 5 2 x 0 0 ± 1 ± 5 2 第2.1-1 第位 使用部材 1 1 1 33 1 1 2(Ts-175 × 350 × 12 × 19) 8 ± 1 34 2(Ts-156 × 360 × 12 × 19) 8 ± 1 8 ± 1 35 11 2(Ts-156 × 360 × 12 × 19) 8 ± 1 36 第 柱 2(Ts-166 × 360 × 10 × 10) × 15 8 ± 1 37 1 2 2 2 2 10 11 3 3 3 3 3 11 3 3 3 3 3 4 2 3 11 3 3 3 3 4 2 3 4 <	1.12.20(5) $\Delta H R c J \Delta R R d D T R c J D R C J D R C J D R C J D R C J$

柏崎刈羽原子力発電所 6/7号炉 (20	017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
		2.2 原子炉建屋屋根スラブの概要	2.2 原子炉建物屋根スラブの概要	・構造概要を詳細に説明
		原子炉建屋の屋根スラブは南北方向 <u>40.6m</u> ×東西方向 <u>53.0m</u> の	原子炉建物の屋根スラブは南北方向39.9m×東西方向53.8mの平	【柏崎 6/7】
		平面寸法,厚さ17cmの鉄筋コンクリート構造である。外周部は厚	面寸法,厚さの鉄筋コンクリート構造である。外周部は	島根2号炉は屋根ス
		さ 25cm の鉄筋コンクリート造の耐震壁で支持されており,南北方	厚さ (南北方向)及び (東西方向)の鉄筋コン	ラブの構造概要につい
		向に配置された5構面の主トラス,東西方向の5構面のサブトラ	クリート造の耐震壁並びに鉄骨鉄筋コンクリート造の柱で支持さ	て詳細に説明
		スとサブトラスの中間の母屋で支持されている。屋根スラブ下面	れており、南北方向に配置された7構面の主トラスと主トラスの	
		に取りつく主トラス上弦材,…サブトラス上弦材及び母屋はH型断	中間の母屋, 東西方向の4構面のサブトラスとサブトラスの中間	・構造・仕様の相違
		面の鋼材であり、スタッドで屋根スラブと一体化することにより	のサブビームで支持されている。屋根スラブ下面に取りつく主ト	【女川 2】
		面内及び面外に高い剛性を確保している。屋根スラブの断面図を	ラス上弦材及びサブトラス上弦材はH型断面の鋼材であり、スタ	スタッドの配置が異
		第2.2-1図に示す。	<u>ッドボルトで屋根スラブと一体化することにより面内及び面外に</u>	なることによる相違
			高い剛性を確保している。屋根スラブの断面図を第2.2-1図に示	
			<u>す。</u>	
		屋根スラブには気密性の維持機能が要求されるため、換気性能	屋根スラブには気密性の機能維持が要求されるため、換気性能	
		とあいまって維持する方針である。なお、屋上面には防水材を施	とあいまって機能維持する方針である。なお、屋上面には防水材	
		すことにより、防水性を確保している。	を施すことにより、防水性を確保している。	
		アスファルト防水	スタッドボルトφ19 _2×@400(h=200)	
			防水層	
			デッキブレート 主トラス上弦材 H-400×13×21	
			スタッドボルトや19 	
		61 主トラス上弦材 デッキブレート H-350×350×12×19		
		<u>第 2.2-1 図 屋根スラブ断面図</u>	<u>第2.2-1 図 屋根スラブ断面図</u>	 ・構造・仕様の相違 【女川 2】 トラス部材及び屋根 スラブの断面寸法の相
				進

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
2.2 原子炉建屋屋根トラスの地震応答解析モデル	2.3 原子炉建屋屋根トラスの地震応答解析モデルと設計クライ	2.3 原子炉建物屋根トラスの地震応答解析モデルと設計クライ	
	テリア	テリア	
	(1) 解析モデルの概要	(1) 解析モデルの概要	
原子炉建屋屋根トラスは、鉛直方向の地震動の影響を受けやす	原子炉建屋屋根トラスは、鉛直方向の地震動の影響を受けやす	原子炉建物屋根トラスは、鉛直方向の地震動の影響を受けやす	
いと考えられるため、水平方向と鉛直方向地震力の同時入力によ	いと考えられるため、水平方向と鉛直方向地震力の同時入力によ	いと考えられるため、水平方向と鉛直方向地震力の同時入力によ	
る評価を行うために3次元モデルによる地震応答解析を採用す	る評価を行うために3次元モデルによる地震応答解析を採用する。	る評価を行うために3次元モデルによる地震応答解析を採用す	
る。		る。	
地震応答解析モデルは,燃料取替床レベル (<u>T.M.S.L. 31.7m</u>)	地震応答解析モデルは,燃料取替床レベル(0.P.33.2m)より	地震応答解析モデルは、燃料取替床レベル(EL_42.8m)より	
より上部の鉄骨鉄筋コンクリート造の柱、梁、壁、鉄骨造の屋根	上部の躯体(屋根鉄骨,柱,梁,耐震壁,屋根スラブ,下屋部屋	上部の鉄筋コンクリート造(一部鉄骨鉄筋コンクリート造)の柱,	
トラス及び屋根面水平ブレース等を線材、面材により立体的にモ	<u>根スラブ)を</u> モデル化した <u>立体</u> フレームモデルとし、部材に発生	梁,壁,鉄骨造の屋根トラス及び屋根面水平ブレース等を線材,	
デル化した3次元フレームモデルとし、部材に発生する応力を地	する応力を地震応答解析によって直接評価できるモデルとしてい	面材により立体的にモデル化した3次元フレームモデルとし、部	
震応答解析によって直接評価できるモデルとしている。解析モデ	る。解析モデルの概要を第2.3-1図に示す。	材に発生する応力を地震応答解析によって直接評価できるモデル	
ルの概要を <u>第2.2.1</u> 図に示す。		としている。解析モデルの概要を第2.3-1図に示す。	
屋根トラス部は、主トラス、サブトラス(つなぎばり)、屋根上	屋根トラス部は、主トラス(上下弦材、斜材、束材)、サブトラ	屋根トラス部は、主トラス、サブトラス (つなぎばり),水平ブ	
<u>下面</u> 水平ブレース,サブビームをモデル化する。	ス <u>(上下弦材, 斜材等)</u> , 母屋, 水平ブレース <u>(上下弦面)</u> , <u>外周</u> 鉄骨梁をモデル化する。	レース <u>(屋根上弦面)</u> , <u>サブビーム及び母屋</u> をモデル化する。	 ・構造・仕様の相違及び モデル化対象部位の 相違 【柏崎 6/7,女川 2】 島根 2 号炉は下弦面 に水平ブレースが無い ため相違 【柏崎 6/7】 島根 2 号炉は母屋を モデル化するため相違 【女川 2】 島根 2 号炉はサブビ
各鉄骨部材は軸,曲げ変形を考慮した梁要素(トラスの上下弦 材)と軸変形のみを考慮したトラス要素(<u>屋根面</u> 水平ブレース, トラスの斜材及び束材等)としてモデル化する。	各鉄骨部材は軸,曲げ変形を考慮した梁要素(トラスの上下弦 材)と軸変形のみを考慮したトラス要素(<u>屋根面</u> 水平ブレース, トラスの斜材及び束材等)としてモデル化する。	各鉄骨部材は軸,曲げ変形を考慮した梁要素(トラスの上下弦 材 <u>及びサブビーム等</u>)と軸変形のみを考慮したトラス要素(水平 ブレース,トラスの斜材及び束材等)としてモデル化する。	ームをモデル化するた め相違 ・評価方針を詳細に説明 【柏崎 6/7,女川 2】 島根 2 号炉はサブビ ーム等を梁要素でモデ ル化していることを明 記

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
また、耐震壁及び外周梁は各々シェル要素及び軸、曲げ変形を	また、耐震壁及び外周梁は各々シェル要素及び軸、曲げ変形を	また,耐震壁及び <u>屋根スラブ</u> はシェル要素,外周梁は軸,曲げ	・モデル化対象部位の相
考慮した梁要素としてモデル化し、耐震壁の開口部についても考	考慮した梁要素としてモデル化し、耐震壁の開口部についても考	変形を考慮した梁要素としてモデル化し、耐震壁の開口部につい	違
慮する。なお、柱脚の条件は固定とする。また、解析に用いる材	慮する。なお、柱脚の条件は固定とする。また、解析に用いる材	ても考慮する。なお、柱脚の条件は固定とする。また、解析に用	【柏崎 6/7】
料の物性値を <u>第2.2.1</u> 素に示す。	料の物性値を第2.3-1表に示す。	いる材料の物性値を <u>第2.3-1</u> 表に示す。	島根2号炉は屋根ス
			ラブをモデル化するた
			め相違
	また、屋根トラスは屋根スラブとスタッドで一体化されている	また、屋根トラスは屋根スラブとスタッドボルトで一体化され	・同上
	ことにより高い剛性を確保しているため、屋根トラスの地震応答	ていることにより、高い剛性を確保しているため、屋根トラスの	
	解析モデルにおいても屋根スラブの面内剛性を考慮することとす	地震応答解析モデルにおいても屋根スラブの面内剛性を考慮する	
	る。なお、屋根トラス部材の応力評価に対する保守性を考慮し、	こととする。なお、屋根トラス部材の応力評価に対する保守性を	
	屋根スラブの面外剛性は考慮しないこととする。屋根スラブのシ	考慮し、屋根スラブの面外剛性は考慮しないこととする。屋根ス	
	ェル要素は <u>主トラス,サブトラス,母屋の各交点</u> で節点を共有す	ラブのシェル要素は主トラス及びサブトラスの各交点、並びに主	・モデル化対象部位が異
	るようにモデル化する。	トラス及びサブトラスと母屋、サブビームの各交点で節点を共有	なるため相違
		するようにモデル化する。	【女川 2】
			島根2号炉はサブビ
			ームをモデル化するた
			め相違
なお,基準地震動 Ss に対する評価を実施する際,トラス材とし			(対応箇所:島根2号炉
てモデル化した部材の一部については、弾性範囲を超えることが			「(2) 鉄骨部材の弾塑
確認されたため,部材座屈後の挙動を模擬できる手法(修正若林			性評価」)
モデル)に基づく弾塑性特性を考慮している。考慮した弾塑性特			
性の詳細については、「2.4 弾塑性解析の採用について」で示すこ			
ととする。			
解析モデルへの入力地震動は、原子炉建屋の質点系モデルによ			(対応箇所:島根2号炉
る地震応答解析結果から得られる燃料取替床レベル(<u>T.M.S.L.</u>			「(3) 入力地震動,材
<u>31.7m</u>)の応答結果(水平,鉛直及び回転成分)を用いることと			料減衰」)
し、燃料取替床位置を固定として、同時入力による地震応答解析			
を実施する。また、地震応答解析における減衰評価は、水平材の			
応答に影響の大きい鉛直方向1次固有振動数(5.19Hz)に対して			・モデルの相違
減衰定数が h=2% となる剛性比例型減衰を与えている。			【柏崎 6/7】
			解析モデルが異なる
			ため,1次固有振動数が
			相違

	備考
上下弦材) 素(斜材・束材)	
素** 考慮した等価厚さによりモデル化	
屋根トラスモデル化範囲	
<u>モデルの概要</u>	 ・構造・仕様の相違 【柏崎 6/7】 島根 2 号炉は屋根ス ラブをモデル化するため 個違 【女川 2】 島根 2 号炉の耐震壁 のシェル要素は開口を 考慮した等価厚さにより りモデル化するため 損違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
第2.2.1 表 解析に用いる材料定数	<u>第2.3-1表</u> 解析に用いる材料定数	<u>第2.3-1表</u> 解析に用いる材料定数	・構造・仕様の相違
部位 材料 ヤング係数 (N/mm ²) ポアソン比 減衰定数 屋根トラス 鉄骨 2.05×10 ⁵ 0.3 0.02	部位 材料 ヤング係数 (N/mm ²) ポアソン比 減衰定数	部位 材料 ヤング係数 (N/mm ²) ポアソン比 減衰定数 屋根トラス 鉄骨 2.05×10 ⁵ 0.3 0.02	【柏崎 6/7,女川 2】 コンクリートの材料
躯体 コンクリート 2.88×10 ⁴ 0.2 0.05	屋根トラス 鉄管 $2.05 \times 10^{\circ}$ 0.3 0.02 躯体 コンクリート $2.51 \times 10^{4 \times 1}$ 0.2 0.05	躯体 コンクリート 2.25×10 ⁴ 0.2 0.05	物性値の相違
部位 杯朴 (X/mm ²) ボアシン比 課業定数 屋根トラス 鉄骨 2.05×10 ⁶ 0.3 0.02 躯体 コンクリート 2.88×10 ⁴ 0.2 0.05	部位 村料 マンク (N/ms) ボアソン比 減衰定数 屋根トラス 鉄骨 2.05×10 ⁵ 0.3 0.02 躯体 コンクリート 2.51×10 ⁴⁻¹ 0.2 0.05 ※1:地震応答解析モデルと同様の初期剛性低下については,地 震観測記録の分析等を踏まえて,その影響を考慮すること とする。その考え方については第2.3-3 図に示す。 (2) 鉄骨部材の弾塑性評価 基準地震動 Ss に対する評価を実施する際,トラス材としてモデ ル化した部材の一部については塑性域に入ると考えられるため, 部材座屈後の挙動を模擬できる手法(修正若林モデル)に基づく 弾塑性特性を考慮している。考慮した弾塑性特性の詳細について は、「2.5 弾塑性解析の採用について」で示すこととする。 (3) 耐震壁,屋根スラブの剛性補正 耐震壁及びスラブのシェル要素については,解析コード上の制 限により弾性モデルとなっている。 耐震壁のモデル化に当たっては,質点系モデルにおける上部耐 震壁の初期剛性低下に整合するよう剛性を補正する方針とする。 基た,基準地震動 Ss に対しては、質点系モデルにおける耐震壁の 復元力特性モデルに基づく剛性低下(非線形化)が生じることか ら,質点系モデルの非線形化後と同等の剛性低下も考慮する。壁 例性の補正の考え方を第2.3-2 図に示す。 屋根スラブについては面内剛性のみ考慮するものとするが,耐	部位 材料 (N/mm ²) ボアソン比 減衰定数 屋根トラス 鉄骨 2.05×10 ³ 0.3 0.02 躯体 コンクリート 2.25×10 ⁴ 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05	 コンクリートの材料 物性値の相違 ・モデルの相違 【女川 2】 島根 2 号炉は地震観 測記録に基づく剛性低 下を考慮しないため相 違
	震壁に比べて生じる面内せん断ひずみは小さい(別紙11 添付3-3		
	<u> 一 変 照) こ と か ら 設 計 剛 性 を 基 本 グ ー 人 と す る 。 な お , 地 晨 時 の 応 答 を 踏 ま え て 剛 性 低 減 を 等 価 剛 性 (不 健 か さ ケ ー ス) と し て 考 慮 </u>		
	したモデルについても検討する。屋根スラブの剛性の考え方を第 2.3-3 図に示す。		

寻炉	備考
	 ・モデルの相違 【女川 2】 島根 2 号炉は地震観 測記録に基づく剛性低 下を考慮しないため相 違
	・同上

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2 号炉(2020. 2. 7 版)	島根原子力発電所 2号炉	備考
	(4) 入力地震動,材料減衰	(3) 入力地震動,材料減衰	
	解析モデルへの入力地震動は、原子炉建屋の質点系モデルによ	解析モデルへの入力地震動は、原子炉建物の質点系モデルによ	
	る地震応答解析結果から得られる燃料取替床レベル(0.P.33.2m)	る地震応答解析結果から得られる燃料取替床レベル(<u>EL_42.8m</u>)	
	の応答結果(水平,鉛直及び回転成分)を用いることとし,燃料	の応答結果(水平,鉛直及び回転成分)を用いることとし,燃料	
	取替床位置を固定として,同時入力による地震応答解析を実施す	取替床位置を固定として, 同時入力による地震応答解析を実施す	
	る。原子炉建屋水平方向の質点系モデルは床ばねモデルを採用し	る。原子炉建物水平方向の質点系モデルは床剛モデルを採用して	・モデルの相違
	ているため、入力波はモデル脚部の2質点の平均波を入力する。	いるため、加速度並進成分は燃料取替床レベルの各質点で同一応	【女川 2】
		答となるが、回転成分は各質点で応答が異なるため、回転成分の	島根2号炉の質点系
		入力波は,モデル脚部の2質点の平均波を入力する。入力地震動	モデルは床剛モデルを
		の取り出し位置を第2.3-2図に示す。	採用しているため相違
	また、地震応答解析における減衰評価は、水平材の応答に影響の	また、地震応答解析における減衰評価について、鉄骨造部分につ	
	大きい鉛直方向1次固有振動数(<u>3.01Hz</u>)に対して,鉄骨造部分	いては,水平材の応答に影響の大きい鉛直方向1次固有振動数	・モデルの相違
	の減衰定数が2%,鉄筋コンクリート造及び鉄骨鉄筋コンクリート	(<u>4.60Hz</u>)に対して減衰定数 <u>を2%とし,鉄筋コンクリート造及</u>	【柏崎 6/7,女川 2】
	造部分の減衰定数は5%とし、NS, EW 方向の短い方の1次周期に	び鉄骨鉄筋コンクリート造部分については, NS, EW方向の短	解析モデルが異なる
	対して減衰係数を設定する剛性比例型内部粘性減衰(各部別)と	い方の1次周期に対して減衰定数を5%とした減衰係数を設定す	ため,1次固有振動数が
	する。	る剛性比例型減衰(各部別)とする。	相違
		なお,剛性比例型減衰については,柏崎刈羽原子力発電所6号	
		及び7号炉の屋根トラスの設置変更許可段階の審査において採用	
		している手法と同様である。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
		 C. 大力地震動の取り出し位置(回転成分は2質点の平均波) 「」」」」「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	
		 (b) EW方向 (c) 約克士内 	
		(c) 鉛直方回 <u>第2.3-2図 入力地震動の取り出し位置</u>	・評価方針を詳細に説明 【柏崎 6/7,女川 2】 島根 2 号炉の 3 次元 フレームモデルへの入 力地震動の取り出し位 置について詳細に記載

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	(5) 要求機能に対する設計方針(設計クライテリア)	(4) 要求機能に対する設計方針(設計クライテリア)	・評価方針を詳細に説明
	屋根トラスの要求機能は屋根スラブの間接支持構造物であり,	屋根トラスの要求機能は屋根スラブの間接支持構造物であり,	【柏崎 6/7】
	基準地震動 Ss に対し二次格納施設のバウンダリを構成する屋根ス	Sクラスである原子炉建物原子炉棟(二次格納施設)のバウンダ	島根2号炉は屋根ト
	ラブの要求機能である気密性が確保されるように屋根トラスの設	リを構成する屋根スラブの要求機能である気密性が確保されるよ	ラス及び屋根スラブの
	計を行う。	うに基準地震動Ssに対し屋根トラスの設計を行う。	評価方針について詳細
	屋根スラブの評価方針は、面内方向については屋根トラスの地	屋根スラブの評価方針は、面内方向については屋根トラスの地	に説明
	震応答解析モデルにおいて屋根スラブの面内剛性を考慮している	震応答解析モデルにおいて屋根スラブの面内剛性を考慮している	
	ため、屋根スラブに発生する面内応力を対象に機能維持評価を実	ため、屋根スラブに発生する面内応力を対象に機能維持評価を実	
	施する。面外方向については、質点系モデルの屋根面に対応する	施する。面外方向については、質点系モデルの屋根面に対応する	
	鉛直方向震度を用いて、 <u>サブトラス上弦材と母屋に支持される</u> 一	鉛直方向震度を用いて,主トラス上弦材,サブトラス上弦材,サ	・構造・仕様の相違
	<u>方向版</u> として評価する。また,屋根トラスの地震応答解析モデル	ブビーム及び母屋に支持されるスラブとして評価する。また、屋	【女川 2】
	においては屋根スラブの面外剛性は考慮していないが、詳細設計	根トラスの地震応答解析モデルにおいては屋根スラブの面外剛性	島根2号炉はスラブ
	段階では面外剛性を考慮した解析により、屋根スラブの応答性状	は考慮していないが、詳細設計段階では面外剛性を考慮した解析	の支持状況に応じて四
	や応力分布などを確認のうえ機能維持評価を実施する。	により、屋根スラブの応答性状や応力分布などを確認のうえ機能	辺固定のスラブ式によ
		維持評価を実施する。	り評価するため相違
	屋根トラスの評価方針については,基準地震動 Ss に対して屋根	屋根トラスの評価方針については、基準地震動Ss に対して屋	
	スラブを支持できることを確認する。	根スラブを支持できることを確認する。	
	また、屋根トラスの解析モデルのうち、二次格納施設のバウン	また,屋根トラスの解析モデルのうち,二次格納施設のバウン	・モデルの相違
	ダリを構成する耐震壁の気密性については、質点系モデルによる	ダリを構成する耐震壁の気密性については、質点系モデルによる	【女川 2】
	算定結果を採用するが,屋根トラスのモデルによる応答性状と比	算定結果を採用する。	島根2号炉は地震観
	較した上で、必要に応じオペフロ上部の耐震壁のせん断ひずみ等		測記録に基づく剛性低
	の評価に反映する。		下を考慮しないため相
			違
	第2.3-2表に屋根トラスの解析モデルのうち二次格納施設のバ	第2.3-2表に屋根トラスの解析モデルのうち二次格納施設のバ	・評価方針を詳細に説明
	ウンダリを構成する屋根スラブ, 屋根トラスの機能維持の評価方	ウンダリを構成する屋根スラブ及び屋根トラスの機能維持の評価	【柏崎 6/7】
	針を示す。	方針を示す。	島根2号炉は屋根ト
	なお、屋根スラブにはひび割れに対して追従性のある防水材を	なお,屋根スラブにはひび割れに対して追従性のある防水材を	ラス及び屋根スラブの
	全面に施工することにより、防水性を確保している。また、屋根	全面に施工することにより、防水性を確保している。また、屋根	評価方針について詳細
	スラブには防水材の他に下部の全面にデッキプレートを敷設して	スラブには防水材の他に下部の全面にデッキプレートを敷設して	に説明
	あり、クレーン階より上部の耐震壁にも、建屋内部側にデッキプ	ある。これらは気密性に対し有効な機能を有すると考えられるが、	
	レートが存在する。これらは気密性に対し有効な機能を有すると	今回の気密性の検討においては、特にその性能は考慮しない。	
	考えられるが、今回の気密性の検討においては、特にその性能は		
	考慮しない。		
		1	1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女	川原子力	発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
		<u>第 2.3</u> -	-2表 機能維持の評価方針	第2.3-2表 機能維持の評価方針	・評価方針を詳細に説明
	部位	要求機能	評価方針	部位 要求機能 評価方針	【柏崎 6/7】
	屋根スラブ	気密性	 (面内)おおむね弾性状態であることを要素毎に 算定される応力度より確認する。おおむね弾 性状態を超える場合は、要素毎の面内せん断 ひずみを踏まえて漏えい量を算定し換気能力 を下回ることを確認する*1。 (面外)面外曲げに対して、鉄筋が降伏しないこと*2を確認する*3。(鉄筋が降伏する場合は 別途詳細検討) 	屋根スラブ (面内)概ね弾性状態であることを要素毎に算定され る応力度より確認する。概ね弾性状態を超え る場合は、要素毎の面内せん断ひずみを踏ま えて漏えい量を算定し換気能力を下回るこ とを確認する ^{は1} 。 (面外)面外曲げに対して、鉄筋が降伏しないこと ^{は2} を確認する ^{は3} 。 (動外)面外曲げに対して、鉄筋が降伏しないこと ^{は2} を確認する ^{は3} 。	島根2号炉は屋根ト ラス及び屋根スラブの 評価方針について詳細 に説明
	屋根トラス	間接支持 構造物	基準地震動 Ss に対して屋根スラブを支持できること。(各部材のクライテリアは第 2.5-2表参照)	屋根トラス 間接支持構 基準地震動Ssに対して屋根スラブを支持できるこ 造物 と。(各部材のクライテリアは第2.5.3-1表参照)	【女川2】 島根2号炉は屋根ス
	※1 漏えい	い量の算定	Eにあたっては,別途算定する耐震壁の漏え	注1:漏えい量の算定にあたっては,別途算定する耐震壁の漏	ラブの構造強度の確認
	い量を	考慮する。	0	えい量を考慮する。	に関する方針を記載
	※2 鋼材の	D基準強度	ま1.1 倍を超えないこと	注2:「原子力施設鉄筋コンクリート構造計算規準・同解説(日	
	※3 屋根ス	マラブにつ	ついては,辺長比を考慮して,サブトラス上	本建築学会,2005)(以下,「RC-N 規準」という。)」の短	
	弦材と	母屋に支	持される一方向版として鉛直方向の震度を	期許容応力度の鋼材の基準強度Fを「2015年版 建築物の	
	考慮す	る。		構造関係技術基準解説書(国土交通省国土技術政策総合	
				研究所・国立研究開発法人建築研究所,2015)(以下,「技	
				術基準解説書」という。)」に基づき 1.1 倍した耐力を超	
				えないこと。	
				任3: 産根ヘノノについては, 主下ノヘエ弦材, リノ下ノヘエ	
				広内、 サブビーム及び母座に又内されるハブブとして知 市方向の電度を考慮する	
				注4:構造強度については、気密性に対する評価方針を満足し	
				ていることを確認することにより、構造強度を確保する	
				方針とする。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
2.3 既工認と今回工認における原子炉建屋屋根トラスの解析モ	2.4 既工認と今回工認における原子炉建屋屋根トラスの解析モ	2.4 既工認と今回工認における原子炉建物屋根トラスの解析モ	
デルの比較	デルの比較	デルの比較	
原子炉建屋屋根トラスの解析モデルについて、既工認で採用し	原子炉建屋屋根トラスの解析モデルについて、既工認で採用し	原子炉建物屋根トラスの解析モデルについて、既工認で採用し	
た解析モデルと今回工認で採用する予定の解析モデルとの差異を	た解析モデルと今回工認で採用する予定の解析モデルとの差異を	た解析モデルと今回工認で採用する予定の解析モデルとの差異を	
整理する。既工認における屋根トラスの解析モデルと今回工認で	整理する。既工認における屋根トラスの解析モデルと今回工認で	整理する。既工認における屋根トラスの解析モデルと今回工認で	
採用予定の解析モデルの比較表を第2.3.1表に示す。	採用予定の解析モデルの比較表を第2.4-1表に示す。	採用予定の解析モデルの比較表を第2.4-1表に示す。	
第2.3.1 表のうち、解析コード、要素分割及び地震荷重の差異	第2.4-1表のうち,解析コード,要素分割及び地震荷重の差異	第2.4-1表のうち、解析コード、要素分割及び地震荷重の差異	
については、解析手法を変更したことに伴う変更である。また、	については、解析手法を変更したことに伴う変更である。また、	については、解析手法を変更したことに伴う変更である。また、	
モデル化については、原子炉建屋屋根トラスが鉛直方向の地震動	モデル化については、原子炉建屋屋根トラスが鉛直方向の地震動	モデル化については、原子炉建物屋根トラスが鉛直方向の地震動	
の影響を受けやすいと考えられるため、水平方向と鉛直方向地震	の影響を受けやすいと考えられるため、水平方向と鉛直方向地震	の影響を受けやすいと考えられるため、水平方向と鉛直方向地震	
力の同時入力による評価を適切に行うことを目的として3次元フ	力の同時入力による評価を適切に行うことを目的として3次元フ	力の同時入力による評価を適切に行うことを目的として3次元フ	
レームモデルによる弾塑性時刻歴応力解析を採用している。コン	レームモデルによる弾塑性時刻歴応力解析を採用している。	レームモデルによる弾塑性時刻歴応力解析を採用している。 ユン	
クリートのヤング係数及びポアソン比については、別資料(「別紙		クリートのヤング係数及びポアソン比については,適用基準を日	
-1 柏崎刈羽原子力発電所6 号及び7 号炉建屋及び原子炉の地震		本建築学会「鉄筋コンクリート構造計算規準・同解説 一許容応力	
応答解析モデルの詳細化について」の「別紙1-1 建屋の地震応		度設計法- 」(1999) に見直したことによるものである。	
答解析におけるコンクリート実剛性の採用について」)にて考察し			
ているため、ここでは差異として取り上げないこととする。			
以上を踏まえると,既工認と今回工認における主要な差異とし	以上を踏まえると,既工認と今回工認における主要な差異とし	以上を踏まえると、既工認と今回工認における主要な差異とし	
て,「原子炉建屋屋根トラスに対する弾塑性解析時刻歴応力解析の	て、「原子炉建屋屋根トラスに対する弾塑性時刻歴応力解析の採	て,「原子炉建物屋根トラスに対する弾塑性時刻歴応力解析の採	
採用」を抽出し、以下で検討を行うこととした。	用」を抽出し、以下で検討を行うこととした。	用」を抽出し、以下で検討を行うこととした。	
	なお、今回工認の弾塑性時刻歴応力解析では、解析モデル全体	なお,今回工認の弾塑性時刻歴応力解析では,解析モデル全体	・モデル化対象部位の相
	の自重による変形及び地震時挙動を精度良く評価するために、屋	の自重による変形及び地震時挙動を精度良く評価するために、屋	違
	根スラブも含めてモデル化している。屋根トラスは鉛直荷重を支	根スラブも含めてモデル化している。屋根トラスは鉛直荷重を支	【柏崎 6/7】
	持する部材として設計されており、主トラスについてはフレーム	持する部材として設計されており、主トラスについてはフレーム	島根 2 号炉では屋根
	を構成する部材として地震時の荷重も負担する設計としている。	を構成する部材として地震時の荷重も負担する設計としている。	スラブをモデル化する
	従って、屋根トラスの各部材に生じる応力としては、鉛直方向の	従って、屋根トラスの各部材に生じる応力としては、鉛直方向の	ため相違
	自重による初期応力のほか、屋根スラブと一体となった屋根トラ	自重による初期応力のほか、屋根スラブと一体となった屋根トラ	
	スの鉛直方向の面外振動による応力が加わる。また、主トラス方	スの鉛直方向の面外振動による応力が加わる。また、主トラス方	
	向の地震荷重に対しては主トラスの上下弦材やトラス材に応力が	向の地震荷重に対しては主トラスの上下弦材やトラス材に応力が	
	発生する。このように動的な地震応答解析では、屋根スラブをモ	発生する。このように動的な地震応答解析では、屋根スラブをモ	
	デル化することにより、地震時の挙動が適切に評価される。	デル化することにより、地震時の挙動が適切に評価されることか	
		ら,今回工認では,燃料取替床レベルより上部を立体的なモデル	
		として動的な地震応答解析を実施する。	

柏崎刈	羽原子力発電所 6/7	「号炉 (2017.12.20版)	女	:川原子力発電所 2号炉	(2020. 2. 7 版)		島根原子力発電所	2 号炉	備考
			以上のよう	に,今回工認では,才ペ	フロ上部を立体的なモデル				
			として動的な	地震応答解析を実施して	いるが、解析手法の妥当性				・モデルの相違
			については 3.	11 地震のシミュレーショ	ョン解析により確認してい				【女川 2】
			る。						島根2号炉は地震観
									測記録に基づく剛性低
									下を考慮したいため相
									「そう感じないため伯」
笛りつ	1 表 百子乍建長長規入	ラスの解析エデルの比較	笛 9 1-1	書 百子 「一日子」	マの解析エデルの比較	∽♀ /	1 丰 百乙后建物层根 \ 3	ラフの解析エデルの比較	」 ・ 構
<u> </u>	1 衣 床] 炉 建 座 座 低 十			衣 床) 炉 建 座 低 F /		<u>\$7 2.4</u>	1. 次 「 》 定 初 座 似 下 〉		
項目	既工認	今回工認	項日		 今回上認 ・時刻歴応力解析(弾塑性解 	項目	既工認	今回工認	
解析手法	 ・静的応力解析(弾性解析) ・NASTRAN 	 ・時刻歴応力解析(弾型性解析) ・DVN42E 	解析手法		析)	解析手法	•静的応力解析(弹性解析)	•時刻歷応力解析(弾塑性解析)	コンクリートの材料
	NASIIAN	・2 次テフレームエデル	解析コード	 ・SD(鹿島建設所有) ・2次元フレームモデル 	 ・fappase(鹿島建設所有) ・3次元フレームモデル 	解析コード	• SD	・fappase ・3次元フレームモデル	物性値の相違
モデル化	・2 次元フレームモデル	・3 (A.E.) レームモリル (屋根トラス部の耐震補強工事の内容を反 映 ^{※1})		梁要素: 主トラスの上下弦材,鉄骨柱,	梁要素: 主トラス及びサブトラスの上下	モデル化	・2次元フレームモデル	(屋根トラス部の耐震補強工事の内容 を反映 ^{注1})	【柏崎 6/7】
要表分割	梁要素:トラスの上下弦材	梁要素:トラスの上下弦材,外周梁 トラス要素:屋根面水平ブレース,トラ スの料材 車材		RC 柱 トラス要素:	弦材,母屋,外周鉄骨梁,鉄骨 柱,RC柱		梁要素:トラスの上下弦材等	梁要素:トラスの上下弦材,外周梁等 トラス要素:水平ブレース,トラス斜	局根 2 万炉は座根へ ラブをモデル化してい
2*/11	トラス要素:トラスの斜材,東材	シェル要素:耐震壁	要素分割	主トラスの斜材, 束材	トラス要素:	要素分割	トラス要素:トラスの斜材,東材	材,束材等	スため知道
	 ・鉄骨のヤング係数: F=2.1×107t/m² 	 ・鉄骨のヤング係数: F=2.05×105(N(wm2)) 			主トラスの斜材, 束材, サプト ラスの斜材, 水平ブレース		 ・鉄骨のヤング係数: 	シェル要素: 耐震壁, 屋根スフラ ・ 鉄骨のヤング係数:	るため相連
材料物性	E=2.1×10.0m ² ・コンクリートのヤング係数 E=2.7×106t/m ²	E=2.00×10×10×10×10×10×10×10×10×10×10×10×10×1			シェル要素:		$E = 2.1 \times 10^7 (t/m^2)$	$E = 2.05 \times 10^5 (N/mm^2)$	
	・コンクリートのポアソン比 v=0.167	・コンクリートのポアソン比 v=0.2		・鉄骨のヤング係数	耐震壁, 屋根スラブ ・鉄骨のヤング係数	材料物性	・ヨングリートのヤンク係数 E=2.1×10 ⁶ (t/m ²)	・ヨシグリートのヤンク係数 E=2.25×10 ⁴ (N/mm ²)	
	V-0.101	 • Ss 地震に対し、主トラスの各部材に発生 		$E=2.1 \times 10^7 (t/m^2)$	$E=2.05\times10^5$ (N/mm ²)		・コンクリートのポアソン比	・コンクリートのポアソン比	
and for the bits	・S2 地震及び静的地震力に対して発	する応力が,許容限界を超えないことを確 認	材料物性	・コンクリートのヤング係数 $F=2.7 \times 10^{6} (t/m^{2})$	・コンクリートのヤング係数 $F=2.51\times10^4$ (N/mm ²) *1		v =0.167	ν =0.2 ・ S クラスである原子炉建物原子炉棟	
評価万法	生応力が許容限界を超えないことを 確認 ・弾塑性特性(る部材(つなぎ)	のか計答限界を超えないことを ・弾塑性特性(修正若林モデル)を適用す る部材(つなぎ梁(東材・斜材),下面水平	・コンクリートのポアソン比		(二次格納施設)のバウンダリを構成す				
		ブレース)※2が破断しないことを確認		ν =0.167 ・其進地雲動 s1 に トス地震力	v =0.2 ^{%2} ・ 其進地雪動 Salz とる地震力		・Aクラス施設として,基準地震動S1	る屋根スラブの間接支持構造物として, 基準地震動Ssによる地震力に対し,主	
tota attachta arta	 ・水平:原子炉建屋の地震応答解 析結果に基づく地震荷重を静的に 	・水平及び鉛直:		及び静的地震力に対して短期許	・ 選単地展動 38 による地展力 に対し主トラスの各部材に発生	評価方法	による地震力及び静的地震力に対して 発生応力が許容限界を超えないことを	トラスの各部材に発生する応力が,許容	
地震何里	考慮 ・鉛直:静的震度を鉛直力として	モデル脚部に原子炉建屋の質点系モデルの地震応答解析による応答を同時入力	亚伍士社	容応力度設計	する応力が許容限界を超えない		確認 ^{注2}	限界を超えないことを確認 ・弾塑性特性(修正若林モデル)を適用	
↓ 1 . 両+	^//	ー 天仕次約112三十	計画力伝		・弾塑性特性(修正若林モデ			する部材が過度な塑性化はしないこと	
					ル)を適用する部材 ^{※3} が過度な			 (破断の可能性がないこと)を確認^{注3} ・水平及び鉛直・ 	
**2:弹型	型性特性を考慮する部材に	は、既上認時には地震刀を負担		 水平:原子炉建屋の質点系モ 	塑性化はしないことを確認 ・水平及び鉛直:モデル脚部に	地 電荷重	 水平:原子炉建物の地震応答解析結 里に基づく地震荷重を静的に差慮 	モデル脚部に原子炉建物の質点系モデ	
する音	『材としては取り扱われて	ていなかったが,3 次元挙動を	山高北子	デルの地震応答解析結果に基づ	原子炉建屋の質点系モデルの地	- CAR IN I	・鉛直:静的震度を鉛直力として入力	ルの地震応答解析による応答を同時入 カ	
適切に	:評価するという観点から	5今回工認で採用予定の3次	地震何里	く何里(変位)を静的に考慮 ・鉛直:静的震度を鉛直力とし	震応答解析による応答を同時入 力			・水平ブレース,屋根スラブ*等の部材	
元フレ	/ームモデルではモデル化	とすることとした部材である。		て入力			・水平ブレース,屋根スラブ等の部材	は3次元フレームモデルを構成する部	
			※1 コング	ウリートのヤング係数とし	しては,日本建築学会「鉄筋	その他	は重量として考慮し,剛性は考慮しな い	※屋根スラブはシェル要素としてモデ	
			コンク	リート構造計算規準・同	解説・許容応力度設計法」			ル化し,面内剛性を考慮(保守性を考慮) し、面外剛性は考慮しない)	
			(1999)による計算式により算	定した数値を用いる。				
			※2 適用基	基準を日本建築学会「鉄箱	第コンクリート構造計算規	注1:耐震	この「「「「「「「」」」では、「」では、「」では、「」では、「」では、「」では、「」	は,添付資料-1に示す。	
			準・同	解説・許容応力度設計法	」(1999)に見直したことに	注2:主]	、ラスの耐震性を確認する	ことにより、屋根スラブの	
			よる。			要求	、機能は維持できると考え	評価を実施。	
			※3 軸力の	のみを負担するトラス要素	素でモデル化した部材に弾	注3:軸フ	うのみを負担するトラス要	「素でモデル化した部材に弾	<u>á</u>
			塑性特	性を考慮する。		塑性	生特性を考慮する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
24 弾塑性解析の採用について	2.5 弾塑性解析の採用について	2.5 弾塑性解析の採用について	
2.4.1 弾塑性解析を採用することの目的	2.5.1 弾塑性解析を採用することの目的	<u>2.5.1</u> 弾塑性解析を採用することの目的	
原子炉建屋屋根トラスについては, 基準地震動 Ss による地震動	原子炉建屋屋根トラスについては,基準地震動 Ss による地震動	原子炉建物屋根トラスについては,基準地震動Ssによる地震	
の増大に伴い、トラスを構成する部材の一部が弾塑性領域に入る	の増大に伴い、トラスを構成する部材の一部が塑性域に入ると考	動の増大に伴い、トラスを構成する部材の一部が塑性領域に入る	
と考えられるが、弾性解析では当該部材の塑性化による影響を考	えられるが、弾性解析では当該部材の塑性化による影響を考慮で	と考えられるが、弾性解析では当該部材の塑性化による影響を考	
慮できないため、解析と実現象に乖離が生じることになる。そこ	きないため、解析と実現象に乖離が生じることになる。そこで今	慮できないため、解析と実現象に乖離が生じることになる。そこ	
で今回工認では、屋根トラスの弾塑性挙動を適切に評価すること	回工認では、屋根トラスの弾塑性挙動を適切に評価することを目	で今回工認では、屋根トラスの弾塑性挙動を適切に評価すること	
を目的として、部材の弾塑性特性を考慮した地震応答解析を採用	的として、部材の弾塑性特性を考慮した地震応答解析を採用する	を目的として、部材の弾塑性特性を考慮した地震応答解析を採用	
する予定としている。	予定としている。	する予定としている。	
原子炉建屋屋根トラスの応力解析に弾塑性解析を取り入れるこ	原子炉建屋屋根トラスの応力解析に弾塑性解析を取り入れるこ	原子炉建物屋根トラスの応力解析に弾塑性解析を取り入れるこ	
とによる利点としては,既工認で採用していた弾性解析では表現	とによる利点としては,既工認で採用していた弾性解析では表現	とによる利点としては,既工認で採用していた弾性解析では表現	
出来ないような大入力時の弾塑性挙動を評価できることにある。	できないような大入力時の弾塑性挙動を評価できることにある。	できないような大入力時の弾塑性挙動を評価できることにある。	
弾塑性挙動を適切に評価するに当たっては、部材の弾塑性特性を	弾塑性挙動の適切な評価に当たっては、部材の弾塑性特性を適切	弾塑性挙動を適切に評価するに当たっては、部材の弾塑性特性を	
適切に設定し解析を実施する必要があると考えられる。	に設定し解析を実施する必要があると考えられる。	適切に設定し解析を実施する必要があると考えられる。	
今回工認で採用予定の屋根トラス部材の弾塑性特性について,	今回工認で採用予定の屋根トラス部材の弾塑性特性を第2.5-1	今回工認で採用予定の屋根トラス部材の弾塑性特性について,	
第2.4.1 表に示す。第2.4.1 表に示すとおり、軸力のみを負担す	表に示す。第2.5-1表に示すとおり、軸力のみを負担するトラス	第2.5.1-1表に示す。第2.5.1-1表に示すとおり、軸力のみを	
るトラス要素に対してのみ弾塑性特性として修正若林モデルを採	要素に対してのみ弾塑性特性として修正若林モデルを採用する予	負担するトラス要素に対してのみ弾塑性特性として修正若林モデ	
用する予定である。当該モデルについては、先行電力の審査にて	定である。当該モデルについては,先行審査にて採用実績があり,	ルを採用する予定である。当該モデルについては、先行電力の審	
採用実績があり、モデルの妥当性自体に大きな論点はないと考え	モデルの妥当性自体に大きな論点はないと考えられるものの、原	査にて採用実績があり、モデルの妥当性自体に大きな論点はない	
られるものの, 柏崎刈羽原子力発電所 6 号及び 7 号炉原子炉建屋	子炉建屋屋根トラス部材の評価への適用性については、十分に確	と考えられるものの, <u>島根原子力発電所2号</u> 炉原子炉建物屋根ト	
屋根トラス部材の評価への適用性については、十分に確認する必	認する必要があると考えられる。	ラス部材の評価への適用性については、十分に確認する必要があ	
要があると考えられる。		ると考えられる。	
以下では,修正若林モデルの概要を確認した上で,原子炉建屋	以下では、修正若林モデルの概要を確認した上で、原子炉建屋	以下では、修正若林モデルの概要を確認した上で、原子炉建物	
屋根トラス部材への適用性を検討する。また、修正若林モデルを	屋根トラス部材への適用性を検討する。また、修正若林モデルを	屋根トラス部材への適用性を検討する。また、修正若林モデルを	
用いた弾塑性解析を実施することにより、一部部材の塑性化を考	用いた弾塑性解析を実施することにより、一部部材の塑性化を考	用いた弾塑性解析を実施することにより、一部部材の塑性化を考	
慮することとなるため、当該部材のクライテリアについても検討	慮することとなるため、当該部材のクライテリアについても検討	慮することとなるため、当該部材のクライテリアについても検討	
する。	する。	する。	

柏崎刈羽原子	·力発電所 6/7	7 号炉 (2017. 12. 20 版)	女」	川原子力新	ě電所 2 号烷	戸(2020. 2. 7 版)	島	根原子力発電所	2 号炉	備考
第 2.4.1	表 屋根トラス部林	オの弾塑性特性について	第 2.5-	1表 屋村	良トラス部材の	の弾塑性特性について	第 2.5.1-1 表	屋根トラス部材	の弾塑性特性について	・構造・仕様の相違及び
評価報告	エデル要素	猫 潮杜紫杜	評価部位		モデル要素	弹塑性特性	評価部位	モデル要素	弹塑性特性	弾塑性特性を考慮す
	这材 梁要素	考慮しない(弾性)	キトラス	上弦材 下弦材	梁要素	考慮しない(弾性)	上弦材		考慮しない(弾性)	る部材が異なるため
主トラス 余 す	4材 トラス要素	考慮しない(弾性)	±17/4	斜材 束材	トラス要素	弾塑性(修正若林モデル)	主下ワス 斜材 東材	トラス要素	弾塑性(修正若林モデル) ^{注1}	相違
Li T	达材 梁要素 达材 梁要素	考慮しない(弾性)	サブトラス	上弦材 下弦材	梁要素	考慮しない(弾性)	上弦材 サブトラス 下弦材		考慮しない(弾性)	【 伯崎 6/1, 女川 2】 島根 2 号炉は下弦面
サブトラス 能	4材 トラス要素	弾塑性(修正若林モデル)	日日	斜材 ^置	トラス要素 梁要素	弾塑性(修正若林モデル)考慮しない(弾性)	斜材	トラス要素 梁要素	弾塑性(修正若林モデル) ^{注1} 考慮しない(弾性)	に水平ブレースが無い
上 水平ブレース 水平ブ	弦面 パレース トラス要素	考慮しない(弾性)	水平ブレース	上弦面 下弦面	トラス要素	弾塑性(修正若林モデル)*1	サブビーム	梁要素	考慮しない(弾性)	ため相違
下で水平フ	弦面 ^ッ レース	弾塑性(修正若林モデル)	外周鉄	骨梁	梁要素	考慮しない(弾性)	水平ブレース	トラス要素	弾塑性(修正若林モデル)	山田とりがはリノヒ
			**1 水平ブ 大きいか に考慮す め, 剛	レースの; ぶ, 部材間 トる。たた 性と部材	 細長比は修正 副性と部材重 ごし、水平ブレ 重量の影響は	若林モデルの適用範囲より 量を考慮するため解析モデル ノースの部材断面は小さいた 軽微であると考えられる。	注1:主トラス斜 若林モデルの よる弾塑性 詳細設計段 開	f, 東材及びサス)適用範囲より力 許性を考慮してま 行で説明する。	ブトラス斜材の細長比は修正 たきいが,修正若林モデルに 3り,その適用性については	【柏崎 6/7】 島根2号炉はトラス 要素としてモデル化し た部材に弾塑性特性を 考慮しているため相違 島根2号炉は母屋を モデル化するため相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
24.2 弾塑性特性の設定の妥当性・適用性について	2.5.2 弾塑性特性の設定の妥当性・適用性について	2.5.2 弾塑性特性の設定の妥当性・適用性について	
(1) 今回工認で採用予定の弾塑性特性(修正若林モデル)の概要	(1) 今回工認で採用予定の弾塑性特性(修正若林モデル)の概要	(1) 今回工認で採用予定の弾塑性特性(修正若林モデル)の概要	
原子炉建屋屋根トラスを構成する部材のうち、軸力のみを負担	原子炉建屋屋根トラスを構成する部材のうち、軸力のみを負担	原子炉建物屋根トラスを構成する部材のうち、軸力のみを負担	
するトラス要素としてモデル化した部材については、弾塑性特性	するトラス要素としてモデル化した部材については、弾塑性特性	するトラス要素としてモデル化した部材については、弾塑性特性	
として修正若林モデルを使用している。	として修正若林モデルを使用している。	として修正若林モデルを使用している。	
修正若林モデルは、原子力発電所建屋(実機)を対象として実	修正若林モデルは、原子力発電所建屋(実機)を対象として実	修正若林モデルは、原子力発電所建物(実機)を対象として実	
施された谷口らの研究印に示される部材レベルの弾塑性特性であ	施された谷口らの研究しこに示される部材レベルの弾塑性特性であ	施された谷口らの研究(11)に示される部材レベルの弾塑性特性であ	
る。修正若林モデルは、若林モデル ^[2] を基本としているが、谷口ら	る。修正若林モデルは,若林モデル」22を基本としているが,谷口	る。修正若林モデルは、若林モデル-(2)-を基本としているが、谷口	
の研究印で実施された実験のシミュレーション解析を踏まえて,繰	らの研究印で実施された実験のシミュレーション解析を踏まえて、	らの研究-(1)-で実施された実験のシミュレーション解析を踏まえ	
り返し載荷による初期座屈以降の耐力低下を累積塑性歪の関数で	繰返し載荷による初期座屈以降の耐力低下を累積塑性歪の関数で	て、繰り返し載荷による初期座屈以降の耐力低下を累積塑性歪の	
表現し、実験との対応度を向上させた手法であり、式(1)により	表現し、実験との対応度を向上させた手法であり、式(1)により	関数で表現し、実験との対応度を向上させた手法であり、式(1)	
評価される。	評価される。	により評価される。	
$n/n_0 = 1/(\overline{\zeta} - Pn)^{1/6} \le 1 (1)$	$n/n_0 = 1/(\overline{\zeta} - Pn)^{1/6} \leq 1$ (1)		
$n = N/N_{\rm T}$ N ⁺ and $\tau = N_{\rm T} \cdot (N_{\rm T} + 1)$		$n/n_0 = 1/(\zeta - Pn)^{1/6} \le 1 \qquad (1)$	
	n = N/Ny N:軸力 Ny:降伏軸力	n = N/Ny N:軸力 Ny:降伏軸力	
n ₀ :無次元化初期座屈耐力 ζ:無次元化圧縮側累積塑性歪	\mathbf{n}_0 :無次元化初期座屈耐力 $\overline{\boldsymbol{\zeta}}$: 無次元化圧縮側累積塑性歪	n ₀ :無次元化初期座屈耐力 ζ:無次元化圧縮側累積塑性歪	
$Pn = (n_E/4) - 5 \qquad n_E = \pi^2 E/(\lambda e^2 \sigma y) \qquad \lambda e: 有効細長比$	Pn = $(n_E/4) - 5$ $n_E = \pi^2 E/(\lambda e^2 \sigma y)$ λe :有効細長比	$Pn = (n_E/4) - 5$ $n_E = \pi^2 E/(\lambda e^2 \sigma y)$ $\lambda e : 有効細長比$	
修正若林モデルの弾塑性特性を第2.4.1 図に示す。	修正若林モデルの弾塑性特性を <u>第2.5-1図</u> に示す。	修正若林モデルの弾塑性特性を <u>第2.5.2-1図</u> に示す。	
谷口らの研究 ^[1] においては,実機の特徴を反映した X 型ブレー	谷口らの研究 ¹¹¹ においては,実機の特徴を反映した X型ブレー	谷口らの研究-(1)においては,実機の特徴を反映したX型ブレー	
ス架構の静的繰返し実験を実施している。また、修正若林モデル	ス架構の静的繰返し実験を実施している。また、修正若林モデル	ス架構の静的繰返し実験を実施している。また、修正若林モデル	
の妥当性を確認するに当たって、ブレース部材の弾塑性特性とし	の妥当性を確認するに当たって、ブレース部材の弾塑性特性とし	の妥当性を確認するに当たって、ブレース部材の弾塑性特性とし	
て修正モデルを適用した解析モデルによる実験のシミュレーショ	て修正モデルを適用した解析モデルによる実験のシミュレーショ	て修正モデルを適用した解析モデルによる実験のシミュレーショ	
ン解析を実施しており、解析結果は実験結果を <u>おおむね</u> よくとら	ン解析を実施しており、解析結果は実験結果をおおむねよく捉え	ン解析を実施しており、解析結果は実験結果を概ねよくとらえて	
えているとしている。試験体の概要を <u>第2.4.2</u> 図,解析モデルを	<u> て</u> いるとしている。試験体の概要を <u>第2.5-2図</u> ,解析モデルを <u>第</u>	いるとしている。試験体の概要を <u>第2.5.2-2図</u> ,解析モデルを <u>第</u>	
第2.4.3 図,解析結果と実験結果の比較を第2.4.4 図に示す。	2.5-3 図,解析結果と実験結果の比較を <u>第2.5-4</u> 図に示す。	<u>2.5.2-3図</u> ,解析結果と実験結果の比較を <u>第2.5.2-4図</u> に示す。	
なお、本復元力特性については、前述のとおり、川内原子力発	なお,本 <u>弾塑性</u> 特性については,前述のとおり,川内原子力発	なお,本復元力特性については,前述のとおり,川内原子力発	
電所タービン建屋の解析で考慮したブレースの弾塑性特性として	電所タービン建屋の解析で考慮したブレースの弾塑性特性として	電所タービン建屋の解析で考慮したブレースの弾塑性特性及び東	
採用されており、認可実績がある。	採用されており、認可実績がある。	海第二発電所原子炉建屋の解析で考慮したトラス部材の弾塑性特	
		性として採用されており、認可実績がある。	

4条-別紙4-21

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
この研究は、原子炉建屋屋根トラスの終局耐力について検討し	この研究は、原子炉建屋屋根トラスの終局耐力について検討し	この研究は、原子炉建物屋根トラスの終局耐力について検討し	
たものであるが、実験結果を高精度にシミュレーションするため	たものであるが、実験結果を高精度にシミュレーションするため	たものであるが、実験結果を高精度にシミュレーションするため	
に構築したモデルの中で本弾塑性特性が適用されている。	に構築したモデルの中で本弾塑性特性が適用されている。	に構築したモデルの中で本弾塑性特性が適用されている。	
鈴木らの研究 ^[3] では,終局耐力を検討するにあたり原子炉建屋屋	鈴木らの研究」。こでは、終局耐力を検討するに当たり原子炉建屋	鈴木らの研究(3)では、終局耐力を検討するにあたり原子炉建物	
根トラスを模擬した縮小試験体を製作し、トラスの崩壊挙動に与	屋根トラスを模擬した縮小試験体を製作し、トラスの崩壊挙動に	屋根トラスを模擬した縮小試験体を製作し、トラスの崩壊挙動に	
える影響が大きい鉛直動的荷重を模擬した静的載荷試験により、	与える影響が大きい鉛直動的荷重を模擬した静的載荷試験によ	与える影響が大きい鉛直動的荷重を模擬した静的載荷試験によ	
その弾塑性挙動を確認している。なお、試験に当たっては、原子	り,その弾塑性挙動を確認している。なお,試験に当たっては,	り、その弾塑性挙動を確認している。なお、試験に当たっては、	
力発電所鉄骨屋根トラスがプラット形とワーレン形の2 種類に分	原子力発電所鉄骨屋根トラスがプラット形とワーレン形の2種類	原子力発電所鉄骨屋根トラスがプラット形とワーレン形の2種類	
類されることを踏まえ、この2 種類のトラス形式についての試験	に分類されることを踏まえ、この2種類のトラス形式についての	に分類されることを踏まえ、この2種類のトラス形式についての	
体を製作している。6. 号及び7. 号炉の原子炉建屋屋根トラスはこ	試験体を製作している。原子炉 <u>建屋</u> 屋根トラスはこのうち, <u>ワー</u>	試験体を製作している。 島根原子力発電所2号炉の原子炉建物屋	
のうち, <u>ワーレン形</u> に該当する。試験体の概要を <u>第2.4.5</u> 図に示	<u>レン形</u> に該当する。試験体の概要を <u>第2.5-5</u> 図に示す。	根トラスはこのうち, <u>プラット形</u> に該当する。試験体の概要を <u>第</u>	・構造・仕様の相違
す。		2.5.2-5図に示す。	【柏崎 6/7,女川 2】
実験のシミュレーション解析においては、トラス要素としてモ	実験のシミュレーション解析においては、トラス要素としてモ	実験のシミュレーション解析においては、トラス要素としてモ	トラス形式(柏崎 6/7
デル化した部材の弾塑性特性として修正若林モデルが適用されて	デル化した部材の弾塑性特性として修正若林モデルが適用されて	デル化した部材の弾塑性特性として修正若林モデルが適用されて	及び女川 2 はワーレン
おり、実験結果とシミュレーション解析を比較し、精度良く実験	おり、実験結果とシミュレーション解析を比較し、精度良く実験	おり、実験結果とシミュレーション解析を比較し、精度良く実験	形,島根2号炉はプラッ
結果を追跡できているとしている。結果の比較を第2.4.6 図に示	結果を追跡できているとしている。結果の比較を第2.5-6図に示	結果を追跡できているとしている。結果の比較を第2.5.2-6図に	ト形)の相違
す。	す。	示す。	
以上のように修正若林モデルは,提案当初の X 型ブレース材に	以上のように修正若林モデルは,提案当初のX型ブレース材に	以上のように修正若林モデルは、提案当初のX型ブレース材に	
加えて、ワーレン形、プラット形の鉄骨トラスでも実験結果を精	加えて、ワーレン形、プラット形の鉄骨トラスでも実験結果を精	加えて、ワーレン形、プラット形の鉄骨トラスでも実験結果を精	
度良く追跡できており、幅広い鉄骨架構形式において軸力のみを	度良く追跡できており、幅広い鉄骨架構形式において軸力のみを	度良く追跡できており、幅広い鉄骨架構形式において軸力のみを	
負担する部材の弾塑性特性として適用可能であると考えられる。	負担する部材の弾塑性特性として適用可能であると考えられる。	負担する部材の弾塑性特性として適用可能であると考えられる。	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
(3) 原子力発電所鉄骨屋根トラスへの適用性	(3) 原子力発電所鉄骨屋根トラスへの適用性	(3) 原子力発電所鉄骨屋根トラスへの適用性	
今回採用を予定している修正若林モデルについては、提案当初	今回採用を予定している修正若林モデルについては、提案当初	今回採用を予定している修正若林モデルについては、提案当初	
より、原子力発電所(実機)を対象として実施された実験により	より、原子力発電所(実機)を対象として実施された実験により	より、原子力発電所(実機)を対象として実施された実験により	
妥当性が検証されており,また,原子炉建屋鉄骨屋根トラスを模	妥当性が検証されており,また,原子炉建屋鉄骨屋根トラスを模	妥当性が検証されており,また,原子炉建物鉄骨屋根トラスを模	
擬した加力実験のシミュレーション解析においてもその適用性・	擬した加力実験のシミュレーション解析においてもその適用性・	擬した加力実験のシミュレーション解析においてもその適用性・	
妥当性が検証されている。これより、原子炉建屋屋根トラスの鉄	妥当性が検証されている。これより、原子炉建屋屋根トラスの鉄	妥当性が検証されている。これより,原子炉 <u>建物</u> 屋根トラスの鉄	
骨部材のうち,トラス要素としてモデル化した部材の弾塑性特性	骨部材のうち,トラス要素としてモデル化した部材の弾塑性特性	骨部材のうち、トラス要素としてモデル化した部材の弾塑性特性	
として、修正若林モデルを採用することは妥当であると考えられ	として、修正若林モデルを採用することは妥当であると考えられ	として、修正若林モデルを採用することは妥当であると考えられ	
る。	る。	る。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
24.3 各部材のクライテリアについて	2.5.3 各部材のクライテリアについて	2.5.3 各部材のクライテリアについて	
入力地震動の増大に伴い鉄骨部材の一部が弾塑性領域に入ると	入力地震動の増大に伴い鉄骨部材の一部が塑性域に入ると考え	入力地震動の増大に伴い鉄骨部材の一部が塑性領域に入ると考	
考えられることから、今回工認においては、弾塑性解析による評	られることから、今回工認においては、弾塑性解析による評価を	えられることから、今回工認においては、弾塑性解析による評価	
価を実施し, 弾塑性特性を適用した部材が破断しないことを確認	実施する。	を実施 <u>する。</u>	・評価方針の相違
<u>する予定である。これらの塑性化を許容する部材は、既工認時に</u>			【柏崎 6/7】
は地震力を負担しない部材として取り扱われていたが,3次元挙			島根2号炉は主要部
動を適切に評価するという観点からモデルに取り入れた部材であ			材が弾性範囲内である
る。なお、主トラス等の主要構造部材については、既工認時から			ことを基本とするため
地震力を負担する部材として取り扱われており、今回工認におい			相違
ても既工認と同様に弾性範囲内にあることを確認する。			
<u>第2.4.2</u> 表に各部材のクライテリアを示す。	<u>第2.5-2</u> 素に各部材のクライテリアを示す。 評価方法としては,主要部材が弾性範囲であることを確認する 方針とし,弾性範囲を上回る応答が生じた場合は別途詳細な検討 [※] ^上 を行う。	<u>第2.5.3-1</u> 表に各部材のクライテリアを示す。 <u>評価方法としては,主要部材が弾性範囲であることを確認する</u> <u>方針とし,弾性範囲を上回る応答が生じた場合は別途詳細な検討^注</u> <u>¹を行う。</u>	・同上
塑性化する鉄骨部材が破断しないことの確認に当たっては、各部材の累積塑性変形倍率を整理した上で、累積塑性変形倍率が最も大きい部材について検討 <u>を実施</u> する。検討は、当該部材の履歴 ループを参照し、局部集中ひずみの繰返し回数が、中込ほか(1995) ¹⁰ に基づき算定される、当該部材の最大ひずみ度に対する破断寿命 (繰返し回数)を下回っていること確認する。この手法は先行審 査(川内原子力発電所タービン建屋)でも認可実績のある手法で あることから、手法自体に技術的な論点はないものと考えられる。	※1 弾塑性特性を考慮してモデル化している部材については、各部材の累積塑性変形倍率を整理した上で、累積塑性変形倍率が最も大きい部材について、破断の可能性がないことを検討する。検討は、当該部材の履歴ループを参照し、局部集中ひずみの繰返し回数が、中込ほか(1995)回に基づき算定される、当該部材の最大ひずみ度に対する破断寿命(繰返し回数)を 十分に下回っていること等を確認する。この手法は先行審査 (川内原子力発電所タービン建屋)でも認可実績のある手法であることから、手法自体に技術的な論点はないものと考えられる。	 注1:弾塑性特性を考慮してモデル化している部材については、 各部材の累積塑性変形倍率を整理した上で、累積塑性変形倍率が最も大きい部材について破断の可能性がないことを検討する。検討は、当該部材の履歴ループを参照し、局部集中ひずみの繰返し回数が、中込ほか(1995)-(4)-に基づき算定される当該部材の最大ひずみ度に対する破断寿命(繰返し回数)を十分に下回っていることを確認する。この手法は先行審査(川内原子力発電所タービン建屋)でも認可実績のある手法であることから、手法自体に技術的な論点はないものと考えられる。 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考		
第2.4.2 表 今回工認における屋根トラス各部材のクライテリア	第2.5-2表 今回工認における屋根トラス各部材のクライテリア	第2.5.3-1表 今回工認における屋根トラス各部材のクライテリ	・構造・仕様の相違及び		
運研如告 運研 去法	評価部位 要求機能*1 弹塑性特性 評価方法	<u>7</u>	評価方針の相違		
上弦材 上弦材 主トラス 一 4 下弦材 単性範囲内であることを確認	上弦材 鉛直荷重の支持,7 考慮しない 正弦材 公正荷重の支持,7 考慮しない 下弦材 レームを構成する部 (弾性) 材として水平地震荷 4 4 算材 重,クレーン荷重の 弾塑性(修正)	評価部位 要求機能 ^{注1} 弾塑性特性 評価方法 ^{注3} 上弦材 鉛 直 荷 重 の 支 持, フレームを 考慮しない(弾性) 構成する部材と 構成する部材と	【柏崎 6/7,女川 2】 島根 2 号炉は下弦面 に水平ブレースが無い		
・ ・	東材 支持 若林モデル) サブトラス 上弦材 考慮しない 鉛直荷重の支持 考慮しない (弾性) 全は材 鉛は材 単塑性(修正 主要部材が弾性範囲で	主トラス 斜材 して水平地震荷 弾塑性(修正若林 東材 重,クレーン荷 重の支持 モデル)	ため相違 島根2号炉はサブビ		
水平 屋根面 ブレース 単性範囲内であることを確認 ブレース 下弦面 水平ブレース 破断しないことを確認	若林モデル) あることを確認 ^{※2} 母屋 鉛直荷重の支持 考慮しない (弾性) (弾性範囲を上回る場合は別途詳細検討)	サブトラス 下弦材 小 予弦材 給材	- ムについて記載 【柏崎 6/7】 島根2号炉は母屋を		
	水平 上弦面 (水平ブレースは建 水平 設時には仮設材であ 弾塑性(修正 ブレース るが、今回工認にお 若林モデル) 下弦面 いては本設材として 評価する)	母室 鉛直何重の支持 考慮しない(弾性) サブビーム 鉛直荷重の支持 考慮しない(弾性) 水平ブレース 水平地震荷重 弾塑性(修正若林 の伝達 モデル)	モデル化するにの相違 島根2号炉は主要部 材が弾性範囲内である ことを基本とするため		
	 ※1 主な機能を示しており基準地震動 Ss に対する発生応力の 負担も考慮する。 ※2 鋼材の基準強度 1.1 倍を超えないこと。 	 注1:主な機能を示しており基準地震動Ssに対する発生応力の負担も考慮する。 注2:「RC-N規準」の短期許容応力度の鋼材の基準強度Fを「技術基準解説書」に基づき1.1倍した耐力を超えないこと。 注3:接合部はボルト接合としており,保有耐力接合を基本とする。 	 ↓ 材が弾性範囲内である ことを基本とするため カ 相違 【女川2】 技 島根2号炉は水平ブ と レースについて,建設工 と 認時より地震水平力の 伝達を担う構造部材で あることを踏まえ,要求 機能を記載 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
2.5 原子炉建屋屋根トラスの評価に関するまとめ	2.6 原子炉建屋屋根トラスの評価に関するまとめ	2.6 原子炉建物屋根トラスの評価に関するまとめ	
今回工認では,原子炉建屋屋根トラスの評価に当たって,3次	今回工認では,原子炉建屋屋根トラスの評価に当たって,3次元	今回工認では,原子炉建物屋根トラスの評価に当たって,3次	
元フレームモデルによる弾塑性解析(弾塑性特性としては修正若	フレームモデルによる弾塑性解析(弾塑性特性としては修正若林	元フレームモデルによる弾塑性解析(弾塑性特性としては修正若	
林モデルを考慮)を採用する予定である。修正若林モデルは先行	モデルを考慮)を採用する予定である。修正若林モデルは先行審	林モデルを考慮)を採用する予定である。修正若林モデルは先行	
審査で採用実績のある弾塑性特性であるが, X 型ブレースを対象	査で採用実績のある弾塑性特性であるが、X型ブレースを対象とし	審査で採用実績のある弾塑性特性であるが、X型ブレースを対象	
として検討されたものであったため、本検討においては、修正若	て検討されたものであったため、既往文献(原子炉建屋鉄骨屋根	として検討されたものであったため, 本検討においては, 修正若	
林モデルの原子炉建屋屋根トラスへの適用性を検討する必要があ	トラスを模擬した加力実験のシミュレーション解析)を参照し,	林モデルの原子炉建物屋根トラスへの適用性を検討する必要があ	
ると判断した。既往文献(原子炉建屋鉄骨屋根トラスを模擬した	その適用性・妥当性が検証されていることを確認した。また、屋	ると判断した。既往文献(原子炉建物鉄骨屋根トラスを模擬した	
加力実験のシミュレーション解析)を参照し、その適用性・妥当	根スラブの要求機能と評価方針を踏まえ、弾塑性特性を考慮する	加力実験のシミュレーション解析)を参照し、その適用性・妥当	
性が検証されていることを確認した。また、弾塑性特性を考慮す	鉄骨部材のクライテリアについて整理した。	性が検証されていることを確認した。また、屋根スラブの要求機	
る部材のクライテリアについても検討し、妥当性を確認した。		<u>能と評価方針を踏まえ</u> ,弾塑性特性を考慮する部材のクライテリ	
		アについても検討し,妥当性を確認した。	
以上より、今回工認において原子炉建屋屋根トラスの評価に弾	以上より、今回工認において原子炉建屋屋根トラスの評価に弾	以上より、今回工認において原子炉建物屋根トラスの評価に弾	
塑性解析を採用することは妥当であると考える。	塑性解析を採用することは妥当であると考える。また、弾塑性解	塑性解析を採用することは妥当であると考える。また,弾塑性特	
	<u>析の結果を踏まえ</u> ,屋根トラスの評価及び屋根スラブの検討によ	性を採用した屋根トラスの評価及び屋根スラブの検討により、屋	
	り、屋根スラブの二次格納施設としての機能維持の評価方針を整	根スラブの二次格納施設としての機能維持の評価方針を整理し	
	理した。	them	
なお、原子炉建屋屋根トラスは、原子炉建屋の地震応答解析結	なお、原子炉建屋屋根トラスは、原子炉建屋の地震応答解析結	なお,原子炉建物屋根トラスは,原子炉建物の地震応答解析結	
果に基づく燃料取替床レベルの応答を入力動として評価を実施し	果に基づく燃料取替床 (地上3階) レベルの応答を入力地震動と	果に基づく燃料取替床レベルの応答を入力地震動として評価を実	
ており,入力動の不確かさ(建屋応答の不確かさ)をふまえた場	して評価を実施しており、入力地震動の不確かさ(建屋応答の不	施しており、入力地震動の不確かさ(建物応答の不確かさ)を踏	
合でも許容値を満足することを確認することにより保守性に配慮	確かさ)を踏まえた場合でも許容値を満足することを確認するこ	まえた場合でも許容値を満足することを確認することにより保守	
した設計とする予定である。	とにより保守性に配慮した設計とする予定である。	性に配慮した設計とする予定である。	
	1		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
3. 主排気筒について			・対象施設の相違
3.1 主排気筒の概要			【柏崎 6/7】
<u>主排気筒は,原子炉建屋の屋上(T.M.S.L. 38.2m)に位置し,</u>			島根2号炉の排気筒は
内径 2.4m の鋼板製筒身(換気空調系用排気筒)を鋼管四角形鉄塔			既工認から変更なしの
(制震装置付)で支えた鉄塔支持形主排気筒である。また,筒身			ため相違
内部には、耐震 S クラス設備である非常用ガス処理系用排気筒が			
筒身に支持されている。主排気筒の概要を第3.1.1 図及び第3.1.2			
図に示す。第3.1.1 表に主排気筒部材の諸元を示す。			
主排気筒モデル化範囲			
π ¹ μ ² κ ⁶ π ⁷			
TMSL450 ()			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
2.4 (简身内径)			・対象施設の相違
5.0			【柏崎 6/7】
T.M.S.L.85.0			島根2号炉の排気筒は
A ————————————————————————————————————			既工認から変更なしの
T.M.S.L.80.0 B			ため相違
15 15 15 15 15 15 15 15 15 15			
[∞] T.M.S.L.72.5 c			
T.M.S.L.65.0			
8.5 8.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10			
T.M.S.L.56.5 R			
112.7			
T.M.S.L.48.0 F			
86 38 4 400 11 3 3 8 3 4 4 00 1 1 1 3 3 8 3 4 4 0 1 1 1 3 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1			
$\begin{array}{c} G \\ T \\ M \\ S \\ L \\ 38 \\ 2 \\ \end{array}$			
<u>*1/Mダンパー</u> 7.1(NS) 8.0(EW) (単位:m)			
約35 20 20 20 20 20 20 20 20 20 20 20 20 20			
平面 (T.M.S.L.76.25m)			
第3.1.2 図 主排気筒の概要(その2)			

柏崎刈羽原子九)発電所 6	/7号炉 (2017.12.1	20版)	女川原子力発電	所 2号炉(2020.2.7	版)	島根原	子力発電所 2号	计 炉	備考
第 3.	1.1 表 主排	気筒の部材諸元一覧								・対象施設の相違
										【柏崎 6/7】
部位	部材間	寸法								島根2号炉の排気筒
		(mm)								は既工認から変更なし
	B-C	$318.5 \phi \times 6$								のため相違
	C-D	$406.4 \phi \times 6.4$								
主柱材	D-E	$508.0 \phi \times 7.9$								
	E-F	$609.6 \phi \times 16$								
	F-G	$711.2 \phi \times 19$								
	B-C	$216.3 \phi \times 4.5$								
	C-D	$267.4 \phi \times 6$								
斜材	D-E	$355.6 \phi \times 7.9$								
	E-F	$406.4 \phi \times 12.7$								
	F-G	$558.8 \phi imes 16$								
	В	$216.3 \phi \times 4.5$								
	С	$216.3 \phi \times 4.5$								
水平材	D	$318.5 \phi \times 6$								
	Е	$318.5 \phi \times 6$								
	F	$406.4 \phi \times 6.4$								
	A-B	$2412 \phi \times 6$								
	B-C	$2412 \phi \times 6$								
∽ 白,☆7	C-D	$2412 \phi \times 6$								
同名即	D-E	$2416 \phi \times 8$								
	E-F	$2416\phi{\times}8$								
	F-G	$2424 \phi \times 12$								
	D-E E-F F-G	$ \begin{array}{r} 2416 \phi \times 8 \\ 2416 \phi \times 8 \\ 2424 \phi \times 12 \end{array} $								

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
3.2 主排気筒の地震応答解析モデル			・対象施設の相違
主排気筒は塔状構造物であり、水平2方向及び鉛直方向地震力			【柏崎 6/7】
の同時入力の影響を受ける可能性があることから、3次元モデル			島根2号炉の排気筒
による地震応答解析を実施する。			は既工認から変更なし
<u>主</u> 排気筒の地震応答解析モデルは,屋上(T.M.S.L.38.2m)より			のため相違
上部を立体的にモデル化した立体架構モデルとし、部材に発生す			
る応力を地震応答解析によって直接評価できるモデルとしてい			
る。解析モデルの概要を第3.2.1 図に,解析に用いる材料の物性			
値を第 3. 2. 1 表に示す。			
モデルの作成に当たっては、主排気筒を構成する全ての構造部			
材をモデル化することを基本方針とする。構成部材のうち, 筒身,			
鉄塔部の主柱及び鉄骨鉄筋コンクリート造の基礎部については			
軸、曲げ変形を考慮した梁要素として、鉄塔斜材、水平材につい			
てはトラス要素としてモデル化する。なお、全部材が基準地震動			
Ss に対して弾性範囲内となるように設計する方針であることか			
ら、弾塑性特性は考慮していない。			
制振装置(オイルダンパー)の概要を第3.2.2 図に,諸元を第			
3.2.2 表に示す。オイルダンパーは、地震応答解析より求まる速			
度及び変位が許容値※の範囲内であることを確認することによ			
り、その適用性を確認することとする。第3.2.3 表に基準地震動			
Ss による応答(暫定条件に基づく試算値)を用いた確認結果を示			
<u>す。ダンパーの最大応答は、許容値を下回っており、基準地震動</u>			
Ss レベルの入力に対しても適用可能であることが確認できる。			
解析モデルへの入力は、原子炉建屋の質点系モデルによる地震			
応答解析結果から得られる屋上レベル(T.M.S.L. 38.2m)における			
応答結果(水平,鉛直及び回転成分)を用いることとし,主排気			
筒の基礎位置を固定として同時入力による地震応答解析を実施す			
3.			
<u>また、地震応答解析における減衰評価は、剛性比例型減衰を用</u>			
いており、水平方向の応答が主排気筒の応答性状に支配的である			
ことを踏まえて、水平方向(NS 方向)の鉄塔の1 次固有周期			
(3.69Hz)に対して減衰定数が h=2%となる減衰を与えることとし			
ている。			
※設計時に定めた許容値であり、既工認の耐震計算書においても			
同じ許容値を用いてダンパーの適用性を確認している。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
			・対象施設の相違
T.M.S.L. ダンパー設置レベル			【柏崎 6/7】
(m)			島根2号炉の排気筒は
			既工認から変更なしの
76.25			ため相違
72.5			
<u>_65.0</u>			
56.5			
48.0			
● コンクリート基礎部			
AGE 人力地震動			
第3.2.1 図 主排気筒の地震応答解析モデルの概要			
<u>第3.2.1 表 解析に用いる材料定数</u>			
カンロー たち マング係数 ポマソンド 注声字数			
鉄玲, 同好 鉄守 2.05×10 ³ 0.3 0.02 基礎 コンクリート 2.88×10 ⁴ 0.2 0.05			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
オイルダンパー			・対象施設の相違
$\begin{array}{c} \mathbf{C}: \mathcal{G} \to \mathcal{G} \to \mathcal{G} \\ \mathbf{C}: \mathcal{G} \to \mathcal{G} \to \mathcal{G} \\ \mathbf{K}: \mathbf{K} \to \mathcal{G} \\ \mathbf{K} \to \mathcal{G} \\ \mathbf{K}: \mathbf{K} \to \mathcal{G} \\ K$			【柏崎 6/7】
╋ ᢛЀ═╞╪╫╤═══╌╋			島根2号炉の排気筒は
			既工認から変更なしの
			ため相違
╋┲══╈╧╤══╋			
· · · · · · · · · · · · · · · · · · ·			
支持点アーム 支持点アーム 支持点アーム			
平面図 (T.M.S.L. 76.25 m) モデル概要図			
<u>ポールジョイント</u> 			
<u> </u>			
1740			
A-A オイルダンパー詳細図 (単位:mm)			
<u>第3.2.2 図 オイルダンパーの概要</u>			
第3.2.2 表 オイルダンパー諸元			
重量 6.0 (LN/会)			
ばね定数 K=0.3×10 ⁸ (N/m)			
減衰係数 C=1.2×10 ⁵ (N·s/m)			
			1
			1
			1

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
<u>第3.2.3</u> 表 オイルダンパーの	の適用性			・対象施設の相違
C - 县十亡发店				【柏崎 6/7】
	許容値			島根2号炉の排気筒は
				既工認から変更なしの
速度(m/s) 1.88	2.60			ため相違
変位 131	175			
(mm)	110			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
3.3 既工認と今回工認における主排気筒の解析モデルの比較			・対象施設の相違
主排気筒の解析モデルについて、既工認で採用した解析モデル			【柏崎 6/7】
と今回工認で採用する予定の解析モデルとの差異を整理する。新			島根2号炉の排気筒は
潟県中越沖地震後に実施した主排気筒の耐震補強工事に係る工事			既工認から変更なしの
計画(以下、「改造工認」という。)における主排気筒の解析モデ			ため相違
ルと今回工認で採用予定の解析モデルの比較表を第3.3.1表に示			
<u></u>			
第3.3.1 表のうち,要素分割及び地震荷重,解析コードの差異			
については、解析手法を変更したことに伴う変更である。また、			
既工認では、鉄塔部と筒身部を質点系でモデル化して地震応答解			
析(水平)を実施し、地震荷重を算定している。筒身部の評価は			
地震応答解析結果から求まる応力及び静的な鉛直荷重を用いた構			
造検討を実施し、鉄塔部については地震応答解析結果から求まる			
地震荷重及び静的な鉛直荷重を3次元フレームモデルに入力する			
ことにより構造検討を実施している。今回工認では、 3 次元フレ			
ームモデルによる時刻歴応力解析(水平及び鉛直)を実施し、鉄			
塔部の各部材も含めて時刻歴解析で直接応力を算定することによ			
り構造検討を実施する方針である。3次元フレームモデルによる			
時刻歴応力解析は先行審査(高浜3号炉燃料取扱建屋等)でも適			
用されている手法である。			
<u>また,コンクリートのヤング係数及びポアソン比については,</u>			
別資料(「別紙-1 柏崎刈羽原子力発電所6 号及び7 号炉 建屋及			
び原子炉の地震応答解析モデルの詳細化について」の「別紙1-1			
建屋の地震応答解析におけるコンクリート実剛性の採用につい			
て」)にて考察しているため、ここでは差異として取り上げないこ			
ととする。			
<u>以上を踏まえると、既工認と今回工認における解析モデルの主</u>			
要な論点となる項目はないと考えられる。			
<u>3.4 主排気筒の評価のまとめ</u>			
柏崎刈羽原子力発電所第6 号及び7 号炉の主排気筒について,			
既工認と今回工認における解析モデル及び解析手法を比較し、差			
異を抽出した結果,先行電力を含む既工認で採用実績がある手法			
であり,主要な論点となる項目はないことを確認した。			
なお, 主排気筒は, 原子炉建屋の地震応答解析結果に基づく屋			
上レベルの応答を入力動として評価を実施しており、入力動の不			

柏崎刈	羽原子力発電所 6/7	号炉 (2017.12.20版)	女川原子力発電所	2号炉(2020.2.7版)	島根原子力発電所	2 号炉	備考
確かさ(建	屋応答の不確かさ)をふ	まえた場合でも許容値を満足					・対象施設の相違
することを	確認することにより保守	性に配慮した設計とする予定					【柏崎 6/7】
である。							島根2号炉の排気筒は
							既工認から変更なしの
							ため相違
	第3.3.1 表 主排気筒の	解析モデルの比較					・同上
項目	既工認(改造工認)	今回工認					
解析手法	 ・地震応答解析(弾性解析) ・静的応力解析(弾性解析) 	・時刻歴応力解析 (弾性解析)					
解析コード	 ・DYNA2E(地震応答解析) ・NASTRAN(静的応力解析) 	• DYNA2E					
モデル化	 ・質点系モデル(地震応答解析) ・3次元フレームモデル(静的応力解析) 	・3 次元フレームモデル					
要素分割	【地震応答解析】 ・鉄塔部・筒身部を質点系でモデル 化,ダンパー部はダッシュポッド要 素とパネ要素でモデル化 【応力解析】 梁要素:鉄塔部(主柱材) トラス要素:鉄塔部(水平材,斜 材)	梁要素:鉄塔部 (主柱材), 筒身部, 基礎部 トラス要素:鉄塔部 (水平材, 斜材) ダッシュポッド要素, ばね要素: ダン パー					
材料物性	 ・鋼材のヤング係数: E=2.05×10⁵(N/mm²) ・鉄骨のポアソン比:0.3 	 ・鉄骨のヤング係数: E=2.05×10⁵(N/mm²) ・鉄骨のボアソン比:0.3 ・コンクリートのヤング係数 E=2.88×10⁴ kN/mm² ・コンクリートのボアソン比 v=0.2 					
評価方法	 S1地震及び静的地震力に対して発生 応力が許容限界を超えないことを確認 	・Ss 地震に対し,発生応力が許容限界を 超えないことを確認					
地震荷重	【地震応答解析】 ・水平:モデル脚部に質点系モデル の地震応答解析による水平方向の動 的応答を入力 ・鉛直:実施せず 【応力解析】 ・水平:地震応答解析から求まる地 震荷重を入力 ・鉛直:静的震度を鉛直力として入 力	・水平及び鉛直: モデル脚部に質点系モデルの地震応答 解析による水平及び鉛直方向の動的応 答を同時入力					
<u>4.</u> まとめ			3. まとめ		3. まとめ		
柏崎刈羽	原子力発電所第6 号及び	<u>7 号炉の</u> 原子炉 <u>建屋</u> 屋根トラ	2号炉原子炉建屋の屋根トラ	ラスについて,既工認と今回工認に	▲ <u>島根原子力発電所2号炉</u> 原子炉建物0	の屋根トラスについて、既	
ス <u>及び主</u> 排	気筒について,既工認と	今回工認における解析モデル	おける解析モデル及び解析手法	去を比較した。その結果, 既工認と	工認と今回工認における解析モデル及び	び解析手法を比較した。そ	・同上
及び解析手	法を比較した。その結果	既工認と差異が認められる	差異が認められる部分について	てはその妥当性・適用性について検	の結果、既工認と差異が認められる部分	分についてはその妥当性・	
部分につい	てはその妥当性・適用性	について検討を行い、今回工	討を行い,今回工認で使用する	る解析モデルとして妥当であること	適用性について検討を行い、今回工認つ	で使用する解析モデルとし	
認で使用す	る解析モデルとして妥当	であることを確認した。	を確認した。		て妥当であることを確認した。		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 女川原子力発電所 2号炉 (2020.2.7版) 島根原子力発電所 2号炉	備考						
--	----						
参考文献】							
[1] 谷口ほか:鉄骨 X 型ブレース架構の復元力特性に関する研究, [1] 谷口ほか:鉄骨 X 型ブレース架構の復元力特性に関する研究, (1) 谷口ほか:鉄骨 X型ブレース架構の復元力特性に関する研究,							
日本建築学会構造工学論文集 Vol. 37B 号, 1991 年 3 月, 日本建築学会構造工学論文集 Vol. 37B 号, 1991 年 3 月, 日本建築学会構造工学論文集 Vol. 37B 号, 1991 年 3 月, pp. 303							
pp303-316 -316							
[2] 柴田ほか:鉄骨筋違の履歴特性の定式化,日本建築学会構造 [2] 柴田ほか:鉄骨筋違の履歴特性の定式化,日本建築学会構造 (2) 柴田ほか:鉄骨筋違の履歴特性の定式化,日本建築学会論文							
工学論文集第 316 号,昭和 57 年 6 月, pp18-24 系論文集第 316 号,昭和 57 年 6 月, pp18-24 <u>報告集</u> 第 316 号,昭和 57 年 6 月, pp. 18-24							
[3] 鈴木ほか:原子力発電所鉄骨屋根トラスの終局限界に関する [3] 鈴木ほか:原子力発電所鉄骨屋根トラスの終局限界に関する (3) 鈴木ほか:原子力発電所鉄骨屋根トラスの終局限界に関する							
研究,日本建築学会構造系論文集 Vol. 76 No. 661,2011 年 3 研究,日本建築学会構造系論文集 Vol. 76No. 661,2011 年 3 月, 研究,日本建築学会構造系論文集 Vol. 76 No. 661,2011 年 3							
月, <u>P571-580</u> 月, <u>pp.</u> 571-580							
[4] 中込ほか(1995):繰返し力を受ける SM490 鋼の疲労性に関す [4] 中込ほか(1995):繰返し力を受ける SM490 鋼の疲労性に関す (4) 中込ほか(1995):繰返し力を受ける SM490 鋼の疲労性に関す							
る研究 日本建築学会構造系論文集 No. 469, 127-136, 1995.3 る研究 日本建築学会構造系論文集 No. 469, 127-136, 1995.3 る研究, 日本建築学会構造系論文集 No. 469, 1995 年3月,							
pp. 127-136							

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
添付資料1	別紙 13 参考資料 1	添付資料-1	
原子炉建屋屋根トラスの耐震補強について	原子炉建屋屋根トラスの特徴	原子炉建物屋根トラスの耐震補強について	
	1.原子炉建屋屋根トラスの特徴		
柏崎刈羽原子力発電所6号及び7号炉の原子炉建屋屋根トラス		島根原子力発電所2号炉の原子炉建物屋根トラスについては耐	
については耐震補強工事を実施しており、本資料では、当該工事		震補強工事を実施しており、本資料では、当該工事における補強	
における補強の内容について説明する。		の内容について説明する。	
屋根トラスの補強については、 <u>主トラスについては余裕がある</u>	原子炉建屋屋根トラスについては、3.11 地震後に接合部の補強	屋根トラス <u>の補強</u> については、 <u>主トラスやサブトラスの余裕の</u>	・補強内容の相違
ことが確認されたものの、それと直交するサブトラスの一部や下	を実施している。補強状況を参考 1-1 図に示す。	<u>少ない部材に対して、補強材の追加等による耐震補強工事</u> を実施	【柏崎 6/7,女川 2】
面水平ブレース等の余裕の少ない部材については、部材取替え及		している。耐震補強箇所を第1-1図に、補強部材の詳細を第1-1	島根2号炉は主に,主
び補強材の追加による耐震補強工事を実施している。耐震補強の		表に示す。	トラス及びサブトラス
補強箇所を第1図に、補強部材の詳細を第1表に示す。			に対して補強を実施し
			ているため相違
	1		

	備考
7	・補強内容の相違
-	【柏崎 6/7,女川 2】
·── ②斜材補強	島根2号炉は主に、主
-	トラス及びサブトラス
Л	に対して補強を実施し
	ているため相違
①下弦材補強	
7	
_	
1	
(3),(4)	
5	
(4) ⑤下弦材補強	
5	
3,4	
 前 	

柏崎刈羽	羽原子力発電所	6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)		島根原	系子力発電所 2
	第1表(a) 補	前強部材の詳細(6 号炉)			第1-	1表 補強部材の
No	1	<u>新所及1</u> 7,補強方法		N o		箇所及び補強方法
	ブトラス斜材 換え(端部)	補強前 2Ls-90×90×10 補強後 ↓ 2Ls-120×120×8		1	主トラス下弦材 補強材追加	
② サフ 取担	ブトラス斜材 換え	補強前 2Ls-90×90×10 補強後 2Ls-130×130×9		2	主トラス斜材 補強材追加	
③ 下ī 取抽	面水平ブレース材 換え	補強前 CT-150×300×10×15 補強後 ↓ CT-175×350×12×19		3	サブトラス斜材 補強材追加	
						補強前
No.	<u>第1表(b) 補</u> (B) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	<u>前強部材の詳細(7 号炉)</u> ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■		4	サブトラス斜材 接合部補強	
① ^補 ② ^ザ	捕強材の追加 サブトラス斜材 収替え	2Ls-90×90×10 補強材 L-75×75×6 補強前 2Ls-90×90×10 補強後 2Ls-130×130×9		(5)	サブトラス下弦材 補強材追加	
で 3 利	下面水平 ブレース材 甫強材の追加	ブレース材 CT-150×300×10×15 補強材				補強前
④ 取	下面水平 ブレース材 収替え	補強前 CT – 150 × 300 × 10 × 15 補強後 CT – 175 × 350 × 12 × 19		L		

柏崎刈羽原子力発電所 6/7号炉 (20	017.12.20版)	女川原子力発電所 2号炉(20	20.2.7版)	島根原子力発電所	2 号炉	備考
			<u>別紙 13 参考資料 2</u>			・モデルの相違
						【女川 2】
		原子炉建屋屋根トラスの地震時ショ	ミュレーション			島根2号炉は地震観
						測記録に基づく剛性低
		1. 屋根トラスの地震時シミュレーション				下を考慮しないため相
		2号炉原子炉建屋の屋根トラスのモデル	化の妥当性を確認する			達
		ために, 地震観測記録を用いてシミュレー	ション解析を実施して			
		いる。検討対象地震は, 3.11 地震の観測記録	录とし, 燃料取替床 (地			
		上3階)の観測記録を入力地震動として,	室上の地震観測記録の			
		シミュレーション解析を実施している。解	所結果は別紙 11 添付			
		<u>3-5 に示す。</u>				
		屋上位置のシミュレーション解析と観測	記録の加速度応答スペ			
		クトルを比較すると、各方向ともおおむね	整合する結果となって			
		<u>いる。</u>				
		このことから、オペフロ上部の耐震壁に	対する補強工事(鉄骨			
		ブレースの設置や鉄筋コンクリート壁の増	設等)前において屋根			
		トラスのモデルについては妥当と考えられ	<u>3.</u>			
		なお、今回工認の屋根トラスの解析モデ	ルにおいては、屋根ト			
		ラスに対する保守性を考慮した設計的観点	<u> </u>			
		した補強工事等を考慮して、参考2-1表に	示す項目を,このシミ			
		ュレーションモテルから変更している。				
		参考 2-1 表 シミュレーション解析モアル	と今回上認モアルの比			
		<u> </u>	1			
		項目 単本 項目 単本 ジミュレーション 解析モデル	今回工認モデル			
		目的 地震観測記録の再現	保守性を考慮した設計			
		主トラス上弦材,サブトラ	考慮しない			
		合成案 ヘエ 121 (4), (7) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7				
		 デ 屋根面のシェル要素 面内剛性,面外剛性を考慮 ル オペフロト部 工事前の状態(補強な1) 	面内剛性のみ考慮 工事後の追診部材をモデ			
			上事後の追載部初をモノ ル化			
		積載荷重 積載荷重 載荷重は考慮しない	設計として屋根面の積載 荷重を考慮			
						<u>ر</u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
参考資料	1 別紙13 参考資料	3 参考資料-1	
剛性比例型減衰の妥当性について	剛性比例型減衰の妥当性について	剛性比例型減衰の妥当性について	
1. はじめに	1. はじめに	1. はじめに	
今回工認では、原子炉建屋屋根トラスの地震応答解析における	今回工認では,原子炉建屋屋根トラスの地震応答解析における	今回工認では、原子炉建物屋根トラスの地震応答解析における	
減衰評価について,鉄骨造の構造物に対して一般的に適用してい	減衰評価について,鉄骨造の構造物に対して一般的に適用してい	減衰評価について,鉄骨造の構造物に対して一般的に適用してい	
る剛性比例型としている。	る剛性比例型としている。	る剛性比例型としている-(1)(2)。	
<u>第1表に7号炉</u> 原子炉建屋屋根トラスの固有値解析結果を,		, <u>第1-1表</u> に原子炉建物屋根トラスの暫定の固有値解析結果を,	
1.図に剛性比例型減衰による減衰定数と振動数の関係を示す。	参考 3-1 図に剛性比例型減衰による減衰定数と振動数の関係を示	第1-1図に剛性比例型減衰による減衰定数と振動数の関係を示	
	す。	す。	
鉄骨造の屋根トラスは、水平材として鉛直方向の挙動が卓越る	鉄骨造の屋根トラスは、水平材として鉛直方向の挙動が卓越す	鉄骨造の屋根トラスは、水平材として鉛直方向の挙動が卓越す	
ると考えられるため、水平材の応答に影響の大きい鉛直方向1	ると考えられるため、水平材の応答に影響の大きい鉛直方向1次	ると考えられるため、水平材の応答に影響の大きい鉛直方向1次	
 固有振動数(5.19Hz)に対して減衰定数が h=2%となる剛性比例	 固有振動数(3.01Hz)に対して減衰定数が,h=2%となる剛性比例	固有振動数(4.60Hz)に対して減衰定数がh=2%となる剛性比	・モデルの相違
 減衰を与えている。第1図より、剛性比例型減衰の特徴として		例型減衰を与えている。第1-1図より、剛性比例型減衰の特徴と	【柏崎 6/7,女川 2】
次モードの減衰を大きくとることになるが、高次モードが屋根	して高次モードの減衰を大きくとることになるが、高次モードが	して高次モードの減衰を大きくとることになるが、高次モードが	解析モデルが異なる
ラスの応答へ及ぼす影響は小さいため、剛性比例型減衰の採用な	屋根トラスの応答へ及ぼす影響は小さいため、剛性比例型減衰の	> 屋根トラスの応答へ及ぼす影響は小さいため、剛性比例型減衰の	ため、固有振動数が相違
屋根トラスの応答へ与える影響は小さいと考える。	採用が屋根トラスの応答へ与える影響は小さいと考える。	採用が屋根トラスの応答へ与える影響は小さいと考える。	
以下でけ 振動数 周期に加えて 刺激係数 有効質量比に~			・ 影響 検討の 相違
いても喜かモードまで確認」 剛性比例刑減音の設定の妥当性な			【柏崎 6/7】
	•		[111時 0/1] 自根9 早后における
			高次モートの影響につ
			いしは詳細設計段階に
			おいて、レイリー減衰等
			を用いて実施するため
			相違
<u>第1 表 固有値解析結果</u>	参考 3-1 表 原子炉建屋屋根トフスの固有値解析結果	第1-1表 原子炉建物屋根トフスの固有値解析結果	・モテルの相違
次数 振動数 周期 備考	水数 固有振動数 固有周期	■	【柏崎 6/7, 女川 2】
(Hz) (sec)	(Hz) (sec) (X) (Y) (Z)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	解析モデルが異なる
1 3.19 0.193 站直方向 次 2 6.16 0.162 鉛直方向二次	1 3.01 0.332 0.036 0.008 2.272 鉛直方向1次	1 4.60 0.217 0.085 -0.003 1.748 鉛直方向1次	ため,固有振動数が相違
3 7.07 0.141	46 5.19 0.193 -0.010 0.140 1.350 鉛直方向2次	2 6.23 0.160 -0.004 -0.040 -0.001 鉛直方向2次 3 7.87 0.127 -1.717 0.016 -0.002 NS方向1次	
4 7.51 0.133 NS方向一次	78 6.80 0.147 2.802 0.417 0.039 NS方向1次	4 8.12 0.123 -0.014 -1.988 0.006 EW方向1次	
5 8.10 0.123	102 8.34 0.120 0.759 -7.982 0.320 EW方向1次		
6 9.22 0.108 EW方向一次			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
$ \begin{array}{c} h (%) \\ 10 \\ \hline M \\ W \\ M \\ M$	h (96) $ightarrow f(H_2)$ $ightarrow f(H_2)$ $ightarrow f(H_2)$	h(%) M(%) $h_1=2$ $h_1=2$ 0 $f_1=4.60$ f(Hz) f(Hz)	
<u>第1図 剛性比例型減衰による減衰定数と振動数の関係</u>	参考 3-1 図 剛性比例型減衰による減衰定数と振動数の関係	<u>第1-1図 剛性比例型減衰による減衰定数と振動数の関係</u>	・モデルの相違 【柏崎 6/7,女川 2】 解析モデルが異なる ため,1次固有振動数が
2. 剛性比例型減衰設定の妥当性の確認 <u>屋根トラスについて,剛性比例型減衰の設定の妥当性を確認す</u> <u>るために,振動数,周期に加えて,刺激係数,有効質量比を追加</u> <u>の上,固有値解析結果を高次モードまで確認した結果を第2表に</u> <u>示す。</u>	2. 剛性比例型減衰設定の妥当性の確認	2. 剛性比例型減衰設定の妥当性の確認	相違 ・影響検討の相違 【柏崎 6/7】 島根 2 号炉における 高次モードの影響につ いては詳細設計段階に おいて,レイリー減衰等 を用いて実施するため 相違
屋根トラスの水平方向の1 次固有振動数は, NS 方向: <u>7.51Hz</u> ,	参考 3-1 表に示すとおり屋根トラスの水平方向の1次固有振動	第1-1表に示すとおり屋根トラスの水平方向の1次固有振動数	・モデルの相違
EW 方向: <u>9.22Hz</u> であり,原子炉建屋の地盤-建屋連成系の水平方	数(固有周期)は,NS方向: <u>6.80Hz(0.147sec)</u> ,EW方向: <u>8.34Hz</u>	<u>(固有周期)</u> は、NS方向: <u>7.87Hz(0.127秒)</u> ,EW方向: <u>8.12Hz</u>	【柏崎 6/7,女川 2】
向の1 次固有振動数 (NS, EW 方向共に2.3Hz 程度) と開きがあ	<u>(0.120sec)</u> であり,鉛直方向の1次固有振動数は, <u>3.01Hz</u>	<u>(0.123 秒)</u> であり, <u>鉛直方向の1次固有振動数は,4.60Hz(0.217</u>	解析モデルが異なる
ることから, 屋根トラスの評価においては, 水平方向の入力によ	(0.332sec) である。剛性比例型減衰の採用にあたっては、上記の	<u>秒)である。剛性比例型減衰の採用にあたっては、上記の振動数</u>	ため,1次固有振動数が
る影響は小さいと考えられる。	振動数のいずれかの振動数を基準に設定することとする。	のいずれかの振動数を基準に設定することとする。	相違
一方, 屋根トラスの鉛直方向の1 次固有振動数は, 5.19Hz であ	原子炉建屋の地盤-建屋連成系の水平方向の1次固有振動数は	原子炉建物の地盤-建物連成系の水平方向の1次固有振動数は	・同上
り,原子炉建屋鉛直方向の地盤-建屋連成系の1 次固有振動数(4Hz	NS 方向 <u>4.21Hz(0.237sec)</u> , EW 方向 <u>4.36Hz(0.230sec)</u> である。鉛	<u>NS方向 4.55Hz (0.220秒), EW方向 4.94Hz (0.203秒)</u> である。	【柏崎 6/7】
程度)と近接しており、また構造面から考えても、屋根トラスの	直方向については、地盤-建屋相互作用系の1次固有振動数は	鉛直方向については, 地盤-建物連成系の1次固有振動数は	解析モデルが異なる
評価においては鉛直動の影響が大きいと考えられる。なお、鉛直	9.96Hz (0.100sec)である。これらの1次固有振動数から屋根トラ	9.48Hz(0.105秒)である。これらの1次固有振動数から屋根トラ	ため, 屋根トラスの解析
方向については、固有振動数が近接している2次モード、3次モ	スの応答に影響が大きい成分を判断することは難しい。屋根トラ	スの応答に影響が大きい成分を判断することは難しい。屋根トラ	モデルと地盤-建物連
ードの影響も考えられるが、1次モードが他の高次モードに対し	スの構造面からは、鉛直方向の振動の影響が大きいと判断される	スの構造面からは, 鉛直方向の振動の影響が大きいと判断される	成系の1次固有振動数
て刺激係数,有効質量比とも大きく,1次モードが全体応答に与	ため,剛性比例型減衰の設定は鉛直方向の1次固有振動数に対し	ため, 剛性比例型減衰の設定は鉛直方向の1次固有振動数に対し	との関係性が相違
える影響が大きいと考えられる。	て設定することとする。	て設定することとする。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
また、参考として屋根トラスの各方向の固有振動数と解析モデ	また、参考として屋根トラスの各方向の固有周期と解析モデル	また、参考として屋根トラスの各方向の <u>固有周期</u> と解析モデル	
ルへの入力地震動の加速度応答スペクトルの関係を第2 図に示	への入力地震動の加速度応答スペクトルの関係を参考 3-2 図に示	への入力地震動の加速度応答スペクトル <u>(基準地震動Ss-D)</u>	
す。これより、入力動の応答スペクトルにおけるピークと屋根ト	す。入力地震動の応答スペクトルの卓越周期は原子炉建屋の地盤	の関係を第1-2図に示す。入力地震動の応答スペクトルの卓越周	・モデルの相違
ラスの固有振動数については、上記の考察と整合した関係になっ	-建屋連成系の各方向の1次周期におおむね対応しており、いず	期は原子炉建物の地盤-建物連成系の各方向の1次周期に概ね対	【柏崎 6/7】
ていることが確認できる。	れの方向についても赤線で示す屋根トラスの1次固有周期とは離	応しており、いずれの方向についても赤線で示す屋根トラスの1	解析モデルが異なる
	れた周期となっている。	次固有周期とは離れた周期となっている。	ため, 屋根トラスの解析
			モデルと地盤ー建物連
			成系の1次固有振動数
			との関係性が相違
以上のことから、屋根トラスは、刺激係数、有効質量比とも他	以上のことから,屋根トラスの応答は,建屋の各方向の1次固	以上のことから、屋根トラスの応答は、建物の各方向の1次固	・同上
のモードに比較して大きく,固有振動数が建屋地盤連成系の1次	有振動数(固有周期)との関連性が小さいため減衰を過大に評価	有振動数(固有周期)との関連性が小さく,また,高次モードが	
固有振動数と近接している鉛直方向の1次モードが応答性状に支	することが無く、屋根トラスモデルの固有振動数のうち、応答性	屋根トラスの応答へ及ぼす影響は小さいと考えられるため、屋根	
配的と考えられることから, 鉛直方向1次固有振動数(5.19Hz)	<u>状に支配的と考えられる</u> 鉛直の1次固有振動数(<u>3.01Hz</u>)に対し	トラスの構造面から応答に影響が大きいと判断される屋根トラス	・モデルの相違
に対して減衰定数が h=2%となる剛性比例型減衰を設定することは	て減衰定数が h=2%となる剛性比例型減衰を設定することは妥当で	<u>モデルの</u> 鉛直方向の1次固有振動数(<u>4.60Hz</u>)に対して減衰定数	【柏崎 6/7,女川 2】
妥当であると考えられる。	あると考えられる。	がh=2%となる剛性比例型減衰を設定することは妥当であると	解析モデルが異なる
		考えられる。	ため,1次固有振動数が
なお、詳細設計においては、必要に応じて剛性比例型以外の減	なお、詳細設計においては、必要に応じて剛性比例型以外の減	なお,詳細設計段階においては,代表ケースを選定して剛性比	相違
衰を用いて、高次モードの影響を確認することとする。	衰(例えば鉛直1次と2次で規定したレイリー減衰)を用いて,	例型以外の減衰(例えば鉛直1次と2次で規定したレイリー減衰)	
	高次モードの影響を確認することとする。	を用いて、高次モードの影響を確認することとする。	
第2表 固有值解析結果			・影響検討の相違
固有周期、振動数、刺激係数、有効質量比(屋根トラス)			【柏崎 6/7】
次数 振動数 周期 刺激係数 有効質量比 (Hz) (sec) X方向 Y方向 Z方向 Y方向 Z方向 備考			島根2号炉における
1 5.19 0.193 0.000 -0.001 1.596 0.000 0.000 0.065 鉛直方向一次			高次モードの影響につ
2 0.10 0.02 0.00 0.00 0.000 0.000 0.000 9.000<			いては詳細設計段階に
4 7.51 0.133 1.220 -0.004 -0.003 0.298 0.000 NS方向一次 5 8.10 0.123 -0.013 -0.473 -0.055 0.000 0.004 0.000			おいて、レイリー減衰等
6 9.22 0.108 0.003 1.811 -0.003 0.000 0.396 0.000 EW方向一次 7 10.16 0.098 1.414 0.011 0.002 0.032 0.000 0.000			を用いて実施するため
8 10.43 0.096 0.738 -0.011 -0.006 0.010 0.000 0.000			相違
9 10.44 0.096 -0.031 0.009 0.067 0.000 0.000 0.000 10 11.08 0.090 -0.199 -0.007 -0.002 0.001 0.000 0.000			
11 11.81 0.085 0.010 0.027 0.008 0.000 0.000 12 11.94 0.084 0.009 0.004 0.009 0.000 0.000			
13 13.58 0.074 0.017 -0.027 -0.069 0.000 0.000 0.000			
14 14.07 0.071 0.068 0.003 0.003 0.000 0.000 0.000 15 14.55 0.069 -0.011 0.024 -0.846 0.000 0.000 0.005			
16 14.90 0.067 -0.027 0.033 -0.935 0.000 0.000 0.007 17 15.57 0.064 -0.007 -0.054 -0.301 0.000 0.000 0.002			
18 15.60 0.064 0.008 0.038 -0.050 0.000 0.000 19 16.29 0.061 -0.004 0.289 0.040 0.000 0.000			
10 10.23 0.001 0.004 0.235 0.040 0.001 0.001 20 16.95 0.059 0.015 -0.264 0.000 0.000 0.010 0.000			
L	1	1	L

号炉	備考
W方向1次) h=2% W方向1次) h=2% 1 10 入力地震動の加速度応	・モデルの相違
<u>の関係 EW方向</u> た超高層建築物の構造 設計者が実際に行って	【柏崎 6/7, 女川 2】 解析モデルが異なる ため, 加速度応答スペク トル及び1次固有振動 数が相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
3. 主排気筒の減衰の設定について			・対象施設の相違
			【柏崎 6/7】
原子炉建屋屋根トラスと同様に、主排気筒の地震応答解析にお			島根2号炉の排気筒
ける減衰評価についても、鉄骨			は既工認から変更なし
<u>造の構造物に対して一般的に適用している剛性比例型としてい</u>			のため相違
<u>a.</u>			
鉄骨造の主排気筒は、塔状構造物であることから水平方向の挙動			
が卓越すると考えられるため、筒身部よりも応答に影響の大きい			
鉄塔部の水平(NS)方向1次固有振動数(3.69Hz)に対して減衰			
定数が h=2%となる剛性比例型減衰を与えている。			
<u>主排気筒について、剛性比例型減衰の設定の妥当性を確認する</u>			
ために、振動数、周期に加え			
て、刺激係数、有効質量比を追加の上、固有値解析結果を高次モ			
ードまで確認した結果を第3表			
に示す。			
<u>主排気筒の水平方向の1 次固有振動数は,筒身部ではNS 方向:</u>			
0.98Hz, EW 方向:0.98Hz,鉄塔部ではNS 方向:3.69Hz, EW 方向:			
3.71Hz となっており,原子炉建屋の地盤-建屋連成系の水平方向			
の一次固有振動数 (NS, EW 方向共に 2.3Hz 程度) と比較すると,			
両者とも近接しており、筒身部、鉄塔部それぞれの1次モードの			
影響が大きいと考えられる。刺激係数,有効質量比についても,			
鉄塔部,筒身部の1次モードは共に大きいため,筒身部,鉄塔部そ			
れぞれの1次モードの影響は大きいと考えられる			
また,1 次モード以外に刺激係数・有効質量比が比較的大きい			
モードとしては, 筒身の NS 方			
向2次(固有振動数6.63Hz), 筒身のEW 方向2次(固有振動数			
<u>6.67Hz), 鉄塔のNS 方向2 次</u>			
(10.74Hz), 鉄塔の EW 方向 2 次(11.15Hz)が挙げられるが, 原			
子炉建屋の地盤-建屋連成系の水平方向の一次固有振動数(NS, EW			
<u>方向共に2.3Hz 程度)とは開きがあることから、これらのモード</u>			
の影響は小さいと考えられる。			
一方,主排気筒の鉛直方向の1 次固有振動数は,筒身部 19.06Hz,			
鉄塔部 20.43Hz であり,原子炉建屋鉛直方向の地盤-建屋連成系の			
1 次固有振動数(4Hz 程度)と開きがあることから,主排気筒の			
評価においては、鉛直方向の入力による影響は小さいと考えられ			
<u> 3.</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
また、参考として主排気筒の各方向の固有振動数と解析モデル			・対象施設の相違
への入力地震動の加速度応答			【柏崎 6/7】
スペクトルの関係を第3図に示す。これより、入力動の応答スペ			島根2号炉の排気筒
クトルにおけるピークと主排			は既工認から変更なし
気筒の固有振動数については、上記の考察と整合した関係になっ			のため相違
ていることが確認できる。			
以上のことから、主排気筒は、刺激係数、有効質量比とも他の			
モードに比較して大きく、固有			
振動数が建屋地盤連成系の1 次固有振動数と近接している筒身部			
及び鉄塔部の水平方向の1次			
モードが応答性状に支配的と考えられるが、より保守的な評価と			
なる鉄塔部の水平方向1次固			
有振動数(3.69Hz)に対して減衰定数が h=2%となる剛性比例型減			
<u>衰を設定しており,主排気筒</u>			
の評価で採用予定の剛性比例型減衰の設定は妥当であると考えら			
<u>れる。</u>			
第3表 固有值解析結果			
Baf Billy, Kubby, NJXKABV, RADGE LL:(H SUB)XBKBBMV (H2)NJX (sec)XJT (TA)ZJT (TA)ADDE ZJT(H ab)10.981.0211.5280.0000.0000.1330.0000.000fb BNS.JDIA20.981.0180.0000.0000.0000.0000.0000.000fb PNS.JDIA32.750.3640.0000.0000.0000.0000.0000.000fb PNS.JDIA43.690.271-1.6160.0000.0000.0000.0000.000fb PNS.JDIA53.710.2690.000-1.5380.0000.0000.000fb PNS.JDIA66.630.151-1.2010.0000.0000.0000.000fb PNS.JDIA76.670.1500.000-1.1860.0000.0000.000fb PNS.JDIA87.730.1290.0000.0000.0000.0000.0001.00099.710.1030.0000.0000.0000.0000.0001.0111010.740.0831.0670.0000.0000.0000.0000.0001111.150.0800.0000.0000.0000.0000.0001.0111312.240.890.0000.0000.0000.0000.0001412.270.8610.0000.0000.0000.0001513.310.0750.0000.0			

き行	備老
y 17	 ・対象協設の相違
	/┐涿//回座
	▲1100000000000000000000000000000000000
	け既丁認から変更か1
	のため相違
	▶ >7,5 %71日建

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
10000			・対象施設の相違
UD, CRF			【柏崎 6/7】
(排気筒脚部) 第4:20月間			島根2号炉の排気筒は
			既工認から変更なしの
[² ₇ s 6000 □			ため相違
2000			
0 0.01 0.10 周期 (s) 1.00 10.00			
第3図(c) 固有振動数と入力動の加速度応答スペクトルの関係			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
参考資料2			・対象施設の相違
			【柏崎 6/7】
主排気筒の基礎部の評価について			島根2号炉の排気筒
			は既工認から変更なし
1. 基礎の概要			のため相違
主排気筒の基礎は、原子炉建屋と一体となった鉄骨鉄筋コンク			
リート造の立ち上がり部			
である。主排気筒基礎の概要を第1 図に示す。			
1,6			
0.8 0.8 _ 鉄塔部基礎 0.8 0.9			
平面团			
T.M.S.L. 40.2			
TMSL 39.0 9			
T.M.S.L. 38.2			
│ ┡ ╎┆┍╍┉╠╶╶┊╼╠┈┈┑┊ ┼┸╌			
┃ ┝ <u>╆</u> ┾┨ ╴┹╶┝╼┻ ──╄┥╽			
7.1 1.9			
0.5 8.5			
R1 R2			
A-A 新面図			
第1図 主排気筒基礎の概要			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
2. 基礎部の評価について			・対象施設の相違
今回工認における基礎部の評価は、既工認と同様に、鉄塔部基			【柏崎 6/7】
礎ボルト,鉄塔部基礎,筒身部基礎ボルトを対象として,実施す			島根2号炉の排気筒は
る予定である。			既工認から変更なしの
			ため相違
(1) 鉄塔部基礎ボルト			
鉄塔部基礎ボルトについては、基礎ボルト1本当たりに発生す			
る応力を評価し、基礎ボルトの諸元から求まる短期許容応力度と			
の比較を行うことにより評価を実施する。			
(2) 鉄塔基礎部			
鉄塔基礎部については、曲げモーメント、せん断力、軸力に対			
する評価を実施する。			
曲げモーメントについては、鉄筋コンクリート部の鉄筋のみが			
<u>負担すると仮定し,発生する応力が鉄筋の短期許容応力度を下回</u>			
っていることを確認する。			
せん断力については、コンクリートで負担すると仮定し、発生			
する応力がコンクリートの短期許容応力度を下回っていることを			
確認する。なお、評価に用いるコンクリート強度は既工認と同様			
に設計基準強度を用いるものとする。			
軸力については鋼管のみが負担するものとして,発生する応力			
が鋼材の短期許容応力度を下回っていることを確認する。			
(3) 筒身部基礎ボルト			
筒身部基礎ボルトについては,基礎ボルト1本当たりに発生す			
る応力を評価し、基礎ボルトの諸元から求まる短期許容応力度と			
の比較を行うことにより評価を実施する。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
参考資料3			・対象施設の相違
			【柏崎 6/7】
主排気筒の入力地震動及び固有振動数・固有モードについて			島根2号炉の排気筒は
			既工認から変更なしの
<u>主</u> 排気筒は,原子炉建屋の屋上(T.M.S.L.38.2m)に位置し,内			ため相違
径 2.4m の鋼板製筒身 (換気空調系用排気筒)を鋼管四角形鉄塔 (制			
震装置付)で支えた鉄塔支持形排気筒である。			
主排気筒は塔状構造物であり、水平2 方向及び鉛直方向地震力			
の同時入力の影響を受ける可能性がある構造物であることから,3			
次元モデルによる地震応答解析を実施する。解析モデルへの入力			
地震動は, 原子炉建屋の質点系モデルによる地震応答解析結果か			
ら得られる屋上レベル (T.M.S.L.38.2m) における応答結果 (水平,			
<u>鉛直及び回転成分)を用いている。</u>			
<u>主排気筒への入力として用いている入力動の時刻歴波形を Ss-2</u>			
を例として第1 図に示す。地震応答解析を実施する際には、水平,			
鉛直成分は加速度時刻歴波形を,回転成分は回転変位時刻歴波形			
を入力している。			
回転変位から求まる脚部鉛直変位は、鉄塔部主柱材の脚部にお			
いて,最大でNS 方向1.7mm 程度, EW 方向2.9mm 程度となる。			

き行	備老
y 17	 ・対象協設の相違
	/┐涿//回座
	▲1100000000000000000000000000000000000
	け既丁認から変更か1
	のため相違
	▶ >7,5 %71日建

号炉	備考
	・対象施設の相違
	【柏崎 6/7】
	島根2号炉の排気筒は
	既工認から変更なしの
	ため相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2
主排気筒のモデル化に当たっては、鋼製材のうち、筒身、鉄塔		
部及びコンクリート造の基礎部については軸、曲げ変形を考慮し		
た梁要素,鉄塔斜材,水平材についてはトラス要素としてモデル		
化する。固有値解析結果を第1表及び第2図に示す。		
筒身部の1 次固有振動数は水平方向で 1Hz, 鉛直方向で 19Hz と		
なり,鉄塔部の1次固有振動数は水平方向で3.7Hz,鉛直方向で		
20Hz となる。		
第1表 固有值解析結果		
振動数 周期		
次数 (Hz) (sec) X Y Z		
1 0.98 1.021 1.528 0.000 0.000 筒身NS方向1次 2 0.98 1.018 0.000 1.511 0.000 管身W支向1次		
2 0.30 1.00 0.000 1.011 0.000 同身比分向1次 4 3.69 0.271 -1.616 0.000 0.000 鉄塔NS方向1次		
5 3.71 0.269 0.000 -1.538 0.000 鉄塔EW方向1次 22 19.06 0.052 0.000 0.000 1.251 節身公声方向1次		
22 13.00 0.022 0.000 0.000 1.211 間外朝直方向1次 23 20.43 0.049 -0.001 0.000 1.615 鉄塔鉛直方向1次		

2号炉	備考
	・対象施設の相違
	【柏崎 6/7】
	島根2号炉の排気筒は
	既工認から変更なしの
	ため相違

号炉	備考
	・対象施設の相違
	【柏崎 6/7】
	島根2号炉の排気筒は
	既工認から変更なしの
	ため相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
参考資料4			・対象施設の相違
			【柏崎 6/7】
主排気筒の想定破損箇所及び破損モード、溶接箇所と筒身支持位			島根2号炉の排気筒は
置の関係について			既工認から変更なしの
			ため相違
<u>主</u> 排気筒の地震応答解析モデルは,屋上(T.M.S.L.38.2m)より			
上部を立体的にモデル化した			
立体架構モデルとしている。解析モデルの作成に当たっては、主			
排気筒を構成する全ての構造部			
材をモデル化することを基本方針としている。			
<u>主要な基準地震動(Ss-1 及び Ss-2)に対して,各部材の発生応</u>			
力度と評価基準値に対する比			
率を第1 図に示す。基準地震動 Ss に対して,各部材は弾性範囲			
内におさまる。また,第1 図には鉄塔部と筒身部の接続位置や,			
鉄塔部及び筒身部の溶接箇所も併せて示す。最大応力は、鉄塔部、			
筒身部とも構造物の高さ方向のおおむね中間部で発生し,かつ,			
溶接箇所とは異なる位置で発生しているため、主排気筒脚部や溶			
接部での破断により崩壊する状態にはならない。			
主排気筒の破損モードとしては, 第1 図に示す応力度比をみる			
<u>と、</u> 脚部の曲げヒンジより先			
に,鉄塔部の主柱材や筒身の局部座屈又は主柱材端部に曲げヒン			
ジが形成されることが想定さ			
れるため、倒壊に至るようなモードとはならないと考えられる。			
また、鉄塔部と筒身部の接続部			
近傍での応力度比は中間部に比べて小さく、鉄塔部及び筒身部の			
応力度比が大きい位置と一致			
していないことから、どちらかの破損から連鎖的な破壊が進行す			
<u>ることはないと考えられる。</u>			

寻 炉	備考
	・対象施設の相違
	【柏崎 6/7】
	島根2号炉の排気筒
	は既工認から変更なし
	のため相違

号炉	備考
参考資料-2	
・固有モードについて	
力地電動(百乙后建物	
<u>小地展勤(</u> ホ」 <u>炉 建物</u> ら得られる 燃料 取 萃床	
歴波形(暫定応答)に	
<u>2-1</u> 図に示す。地震応	
は加速度時刻歴波形を,	
している。	
40 50 60	
นี้ไม่เป็นเป็นเป็นไม่เห็นไม่เห็นไม่เห็นการและและและและและและ	
40 50 60	
the second free days a strength of the second	
40 50 60	
時刻歷波形	・モデルの相違
2分)	【柏崎 6/7, 女川 2】
	解析モデルが異なる
	にめ、八刀地宸町か相遅

PN C C C C C C C C C C C C C C C C C C C
(a) 全体
(b) サブトラス構面(RF通 2-2 図(2) 固有モード図(全体2音

	柏崎刈羽原子力発電所 6,	/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
3.	屋根トラスの耐震評価の見込	通し		3. 屋根トラスの耐震評価の見通し	3. 屋根トラスの耐震評価の見通し	
	基準地震動 Ss による暫定応	芯答を用い	た評価結果のうち, 屋根	屋根トラスの主要部材については、おおむね弾性範囲となる見	屋根トラスの主要部材については、概ね弾性範囲となる見込み	・記載の相違
_	トラスを構成する主トラス方「	句の発生応	「力と評価基準値の比	込みであるが,一部の部材が弾性範囲を超える場合については,	であるが、一部の部材が弾性範囲を超える場合については、詳細	【柏崎 6/7】
_	(発生応力/評価基準値)が最	最も大きい	部材を含む RE 通りにつ	詳細設計段階で別途詳細な検討をしていく。	設計段階で別途詳細な検討をしていく。	島根2号炉の屋根ト
ι	いて,評価部位を第3図に,	評価結果を	と第2表に示す。屋根ト			ラスの評価は,詳細設計
3	ラスについて各部材の発生応ス	力は,評価	「基準値以下となってい			段階で検討を実施する
;	る。詳細な評価結果は、今回工	工認の時点	(で示す予定であるが,			ため相違
Ē	暫定応答による評価結果からに	は重大な調	題が存在するとは考え			
1	られない。					
-						
	37.6	j				
	6.4 6.2 6.2	6. 2	5.2 6.4			
<u>T. M</u>						
	TLi TL2 TL3	76 (8) (7) (8) TL1	TLs (TLs)			
			(単位:m)			
			○ . 取入心力及无工匠直无小 ;。			
	第3図	評価部位				
	<u>第2表主トラスの</u>)評価結果	(暫定値)			
	部材 評価結果 (発生応力/評価基準値)	位置	使用部材			
	上弦材 0.59	TU1	$H-428 \times 407 \times 20 \times 35$			
	下弦材 0.66	TL6	$H-400 \times 408 \times 21 \times 21$			
	斜树 0.62 東材 0.42	08 V2	$H=244 \times 252 \times 11 \times 11$ $2[s=200 \times 90 \times 8 \times 13, 5]$			
	NET 0112					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	別紙 13 参考資料 5	参考資料-3	・影響検討の相違
			【柏崎 6/7】
	屋根トラスの入力地震動に係る影響検討について	屋根トラスの入力地震動に係る影響検討について	島根2号炉は屋根ト
			ラスの入力地震動に係
	1. 概要	1. 概要	る影響検討結果につい
	原子炉建屋屋根トラスの地震応答解析モデルへの入力地震動	原子炉建物屋根トラスの地震応答解析モデルへの入力地震動	て詳細に説明
	は、原子炉建屋の質点系モデルによる地震応答解析結果から得ら	は、原子炉建物の質点系モデルによる地震応答解析結果から得ら	
	れる燃料取替床(地上3階)レベルの応答時刻歴波形を用いるが,	れる燃料取替床レベル(EL 42.8m)の応答時刻歴波形を用いる	
	鉛直動に対する質点系モデルでは、 屋根スラブの剛性は考慮して	が,鉛直動に対する質点系モデルでは,屋根スラブの剛性は考慮	
	いない。	していない。	
	鉛直動に対する質点系モデルにおいて, 屋根スラブの剛性を考	鉛直動に対する質点系モデルにおいて,屋根スラブの剛性を考	
	慮した場合についても解析を実施し、原子炉建屋屋根トラスの地	<u>慮した場合についても解析を実施し、原子炉建物屋根トラスの地</u>	
	震応答解析モデルへの入力地震動に与える影響を確認する。	震応答解析モデルへの入力地震動に与える影響を確認する。	
	2. 検討結果	2. 検討結果	
	鉛直動に対する質点系モデルを <u>参考 5-1</u> 図に,屋根スラブの面	鉛直動に対する質点系モデルを第3-1図に,屋根スラブの面外	
	外剛性を屋根部分の剛性に考慮したモデルを参考 5-2 図に示す。	剛性を屋根部分の剛性に考慮したモデルを第3-2図に示す。	
	上記2つのモデルによる燃料取替床(地上3階)レベルの応答	上記2つのモデルによる燃料取替床レベル(EL 42.8m)の応	
	スペクトル (h=2%) の比較を, <u>Ss-D1, Ss-D2</u> を例に <u>参考 5-3</u> 図に	答スペクトル(h=2%)の比較を,基準地震動Ss-Dを例に	
	示す。	<u>第3-3</u> 図に示す。	
	全周期帯にわたり、2つのモデルによる応答値の差はほとんど	全周期帯にわたり、2つのモデルによる応答値の差はほとんど	
	無く,屋根トラスの評価において無視できる範囲である。	<u>無く,屋根トラスの評価において無視できる範囲である。</u>	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号
	設計基準強度 : Fo = 32.4 N/mm ² ヤング係数 : Ec = 2.65 × 10 ⁴ N/mm ² せん断断面性能(As.J)はRC等価な復にて与える せん断断面積(m ²) : h = 2% (トラス部) 前面2次モーメント(m ⁴) 輪ばね(×10 ⁷ kN/m)	
	$\begin{array}{c} \begin{array}{c} 0.773 \\ \hline 0.773 \\ \hline 0.99 \\ 1598 \end{array} \begin{array}{c} 1.12 \\ \hline 0.99 \\ 3197 \end{array} \begin{array}{c} 0.12631 \\ 20.41 \\ \hline 0 \\ 31842 \end{array} \begin{array}{c} H(m) \\ OP 48.725 \\ \hline 0 \\ 1598 \end{array} \begin{array}{c} 0P 48.725 \\ OP 41.200 \\ \hline 0 \\ 48.26 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	対称条件として回転を拘束 137.3 147.2543 279.1 137.3 147.2543 279.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	278.9 499.5 499.5 (1) 506631 477.2 (1) OP -0.800 OP -0.800 OP -0.800 OP -0.800	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	³ - 2350 × 84.0m(EW) Kv=2.350 × 10 ⁹ kN/m	EL 1.3 EL -4.7 EL -4.7 (6 (13)
	<u>(屋根の面外剛性非考慮)</u>	<u>(</u> 屋根の面外剛性非考慮

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	別紙 13 参考資料 6		・モデルの相違
			【女川 2】
	二次格納施設のバウンダリを形成するオペフロ上部の耐震壁に係		島根2号炉は地震観
	る気密性評価の整理		測記録に基づく剛性低
			下を考慮しないため相
	鉄筋コンクリート構造の耐震壁の気密性の維持については、耐		違
	震壁のせん断ひずみがおおむね弾性状態にとどまることを基本と		
	<u>する。おおむね弾性状態を超える場合は、地震応答解析による耐</u>		
	震壁のせん断ひずみから算定した空気漏えい量が、設置する換気		
	設備の性能を下回ることで必要な気密性を維持する設計とする。		
	その場合,基準地震動 Ss による気密性を要求される鉄筋コンクリ		
	ート造の施設に対し,許容限界を最大せん断ひずみ2.0×10 ⁻³ とし,		
	その適用性を確認する。		
	オペフロ上部の耐震壁のせん断ひずみは、建屋全体の水平動を		
	主体とした弾塑性応答を表す質点系モデルによる算定結果を採用		
	するが、オペフロ上部については初期剛性の低下量が大きいこと、		
	水平2方向入力の影響検討として、初期剛性低下を考慮した3次		
	<u>元FEM等価線形モデル(建屋全体モデル)による解析を行うこ</u>		
	<u>と、屋根トラスの耐震性評価として、トラスの弾塑性特性の反映、</u>		
	および耐震壁の初期剛性低下を考慮した屋根トラス解析モデルに		
	よる解析を行うことから、これらのモデルによる応答性状と質点		
	系の応答性状を比較した上で、必要に応じオペフロ上部の耐震壁		
	のせん断ひずみ等の評価に反映する。		
	東北地方太平洋沖地震による応答性状(初期剛性の低下)		
	建屋全体の水平動を主体とした 弾型性応答を表すモデル オペフロ上部の立体的な振動性状を表すモデルに運星全体の立体的な振動性状を表す デル(温根トラスの弾型性特性を含む) オペフロ上部の原理性特性を含む)		
	▲ 「		
	※2 ※2 小ヤンク回わるの知道の同に よる影響の検討 (弾性設計相差動なによる検討)		
	(気密性の検討) おおむね弾性状態 ※1.3.11地窖による影響を終まえた知道創作の低下等を考慮してエデル化		
	(おおむね弾性状態を超える場合は、 地震の答解析による耐震型のせん断 れずよから意思したの意識をしからないたの意思できる特徴がある。また、 3次元FEM等価線形モデルは建足全体の立体的な振動性状を考慮できる特徴がある。これら		
	. 設置する換気設備の性能を下回る ことを確認する等、別途詳細検討) (例えばオペフロ上部の耐震壁のせん断ひずみを算出し評価に反映する等)		
	<u> 参考 b-1 図 オヘノロ上部の耐農壁に係る気密性評価の整理</u>		

	まとめ資料比較表 〔第4条 地震による損傷の防止	別紙-5〕	加達(美具的な相連なし
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
別紙- <u>3</u> 土木構造物の解析手法及び解析モデルの精緻化について	別紙- <u>15</u> 土木構造物の解析手法及び解析モデルの精緻化について	別紙- <u>5</u> 土木構造物の解析手法及び解析モデルの精緻化について	
	 第1編 土木構造物の解析手法及び解析モデルの精緻化 本編では、線状構造物の解析手法及び解析モデルの精緻化(時 刻歴応答解析及び限界状態設計法の適用、減衰定数の変更)について説明する。 海水ポンプ室等の箱型構造物の構造解析に用いる三次元静的材料 非線形解析の適用性については「第II編 三次元静的材料非線形解 析の適用性」にて説明する。 		 ・設計方針の相違 【女川2】 女川2号炉は第Ⅱ編 で三次元静的材料非線 形解析について説明
 屋外重要土木構造物の評価手法の概要 屋外重要土木構造物の耐震安全性評価について, 拍崎刈羽原子 力発電所6 号及び7 号炉の今回の工事計画認可申請書(以下「今 回工認」という。)では, 屋外重要土木構造物の変位や変形をより 実状に近い応答に適正化することを目的に, 評価手法の高度化と して, 解析手法と減衰定数の変更を予定している。拍崎刈羽原子 力発電所6号及び7号炉の建設時の工事計画認可申請書(1991 年 8月)(以下「既工認」という。)と今回工認との手法の比較を策 3-1-1 表に示す。 既工認との相違点のうち, 解析手法として適用している「時刻 歴応答解析, 限界状態設計法」は, 新規制基準施行後の工事計画 	 屋外重要土木構造物の評価手法の概要 屋外重要土木構造物の耐震評価について、今回申請では、屋外 重要土木構造物の変位や変形をより実状に近い応答に適正化する ことを目的に、評価手法の高度化として、解析手法と減衰定数の 変更を予定している。女川原子力発電所2号炉の工事計画認可(平 成3年6月19日及び平成4年1月13日)(以下「建設工認」とい う。)と今回工認との手法の比較を第Ⅰ.1-1 素に示す。 建設工認との相違点のうち、解析手法として適用している「時 刻歴応答解析、限界状態設計法」は、新規制基準対応工認にて適	 E外重要土木構造物等の評価手法の概要 屋外重要土木構造物等の耐震安全性評価について, 島根原子力 発電所2号炉の今回の工事計画認可申請書(以下「今回工認」という。)では, 屋外重要土木構造物等の変位や変形をより実状に近い応答に精緻化することを目的に, 評価手法の高度化として, 解 析手法と減衰定数の変更及び隣接構造物のモデル化を予定している。島根原子力発電所2号炉の建設時の工事計画認可申請書(1984 年2月)(以下「既工認」という。)と今回工認との手法の比較を 第5-1-1表に示す。 ※設計基準対象施設のうち屋外重要土木構造物, 重大事故等対処施設のうち土木構造物及び波及的影響を及ぼすおそれのある施設のうち土木構造物を「屋外重要土木構造物等」という。 既工認との相違点のうち, 解析手法として適用している「時刻 歴応答解析, 限界状態設計法」は, 新規制基準施行後の工事計画 	 ・設計方針の相違 【柏崎 6/7,女川 2】 島根 2 号炉は隣接構 造物のモデル化を検討 (以下,①の相違)
認可にて適用例がある手法である。 なお、土木構造物の地震時の挙動は、地盤の影響を受けること を踏まえると、地盤特性を適切にモデル化することにより、実応 答に近い形で評価できるものと考えられる。このため、コンクリ ート強度は、既工認と同じく設計基準強度を採用する方針とする。	用例がある手法である。 なお,土木構造物の地震時の挙動は,地盤の影響を受けること を踏まえると,地盤特性を適切にモデル化することにより,実応 答に近い形で評価できるものと考えられる。このため,コンクリ ート強度は,建設工認と同じく設計基準強度を採用する方針とす る。	 認可にて適用例がある手法である。 なお、コンクリート強度は、既工認と同じく設計基準強度を採用する方針とする。 評価対象設備について、要求性能、解析手法、解析モデル及び 許容限界を整理した。既工認の整理結果を第5-1-2表に、今回工 認の整理結果を第5-1-3表に示す。また、評価対象設備の配置図 を第5-1-1図に示す。 	 ・設計方針の相違 【柏崎 6/7,女川 2】 島根 2 号炉は評価対 象設備ごとの要求性能 等について整理(以下, ②の相違)

実線・・

設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)
柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2長
				既工認では、各評価対象施設に求められ.
				通水性能)を考慮し,終構造部材の曲げに
				ん断については許容せん断力に対して妥当
				認することを基本としていた。
				 能,通水性能,貯水性能,止水性能及び遮
				 造部材の曲げにおいては「限界層間変形角
				るひずみ,主筋ひずみ:鉄筋の降伏強度に
				<u></u>

第3-1-1 表 既工認と今回工認との手法の比較

	解析手法	解析モデル	減衰定数	コンクリート強度	
日町、一丁・ラスコ	周波数応答解析	地質データに基づ	世治時の武吉 = 0/	30-31. 11 Mt 36 the	
成工政	許容応力度法	く FEM モデル	● 個道物の複数 3%	%	
스미가행	時刻歷応答解析	地質データに基づ	構造物の減衰1%	Studie in the state	
今回工認	限界状態設計法	く FEM モデル	+履歷減衰		
比較結果	●異なる	〇同じ	●異なる	〇同じ	
適用例	○あり	○あり	×なし	○あり	
比較結果 適用例	●異なる ○あり	○同じ ○あり	●異なる ×なし	〇同じ 〇あり	

第I.1-1 表 建設工認と今回工認の手法との比較

	解析手法	解析モデル	減衰定数	コンクリート強度	
建設工器	周波数応答解析 許容応力度法	地質データに基づく FEM モデル	構造物の減衰 5%	設計基準強度	
今回工器	時刻歴応答解析 限界状態設計法又は 許容応力度法	地質データに基づく FEM モデル	構造物の履歴減衰 ^率 +Rayleigh 減衰	設計基準強度	
比較結果	●異なる	〇同じ	●異なる	〇同じ	
適用例	○あり	○あり	○あり	○あり	
※:構造物を線形でモデル化する場合は, Rayleigh 減衰のみとする。					

		島根原子	一力発	電	訴 2	톳	炉			備考
既工認では、各評価対象施設に求められる要求性能(支持性能、									・設計方針の相違	
通水性能)を考慮し、終構造部材の曲げについては終局強度、せ									【柏崎 6/7,女川 2 】	
ん断につ	ついては許容	ドせん断	力に	対	して妥	当	な裕	度を持	うことを確	島根2号炉は各評価
認するこ	とを基本と	してい	た。							対象施設に求められる
今回コ	こ認では、名	評価対	象施	設	に求め	ら	れる	要求性	:能(支持性	要求性能及び目標性能
能. 通水	<性能, 貯水	、性能.	it 7ki	性	能及び	遮	蔽性	<u>能</u>) な	老庫)。構	を整理した上で、許容限
<u>他</u> の材の	<u>、 い</u> 曲げにおい	いてけ「	服界	国目	<u>間変形</u>	~	マけ	<u>下統</u> 縁	<u>リルマンクリー</u>	界の選定方針を敷理
<u>起前内。</u>	<u>) 出りに300</u>	にないず	Z1 ·		<u>可及ル</u>	<u> </u>	<u>入は</u>	工编码	産に対応す	外の医たり」「を正と
スカザフ	<u> </u>	<u>- 小日 し、9</u> ニフ、 、 <i>全</i> 中	かい	山、	レジュ	17	<u> </u>	<u> _ m m</u>		
	<u>メ, 土肋ひり</u>	<u>み:</u>	<u>肋の</u> ハ ト 「	年1 へ :	人畑皮	1ù	<u> </u>	9 50		
け耐力」	,「計谷応力]度」又 	は 1:	<u>全</u> 室	<u> 塑性モ</u> 、	<u> </u>	メン	<u>ト」カ</u>	ら、せん断	
において	こは「せん断	r耐力」	又は	=	許容応	力	度」	から遁	切に選定す	
<u>る。</u>										
	<u>第5-1-1</u> 素	表 既工	認と	今	回工認	と	の手	法の比	2較	・設計方針の相違
	解析手法	解析モデ	N	ð	咸衰定数		コンク	リート強 す	隣接構造物	【柏崎 6/7,女川 2 】
旺丁初	時刻歴応答解析 及び周波数応答	ばね質点系 ル及び地質	モデ デー 柞	冓 造	首物の減衰	ī.	記礼甘	~ "滩硷 庄	地盤としてモデ	①の相違
5人 上 10	解析 許容応力度法等	タに基づく 成層地盤モ	水平 ! デル	5%			成可盔	中周反	ル化	既工認及び今回工認
今回工認	時刻歴応答解析 限界状能設計法	地質データ づくFEM	に基 相 モデ :	構 造 2 %	前の減衰	ŧ	設計基	準強度	等価剛性でモデ ル化	における手法の相違
11.54.64 円		ル - 田内1	-	+ 履)	歴減衰			1		
比較結果	● 乗/よる	●無/s る	>		● 乗なる			りし	● 乗なる	
X82713123	0.077	00)			00)		0.		0.077	
	∽5_1_9≢	「二」	河価グ	えれ	+ 敢 - 田 _		監主	(町丁)	言刃)	・記卦士母の知造
分類	売3-1-2衣		3十1111ラ 要求性能に対	₹1 ⁻	+ 金 生	限界	見衣			
設計基準対象施設のうち	取水槽	通水性能 間接支持性能	目標性能 終局状態に至ら	ない 彩	曲げ	許容t	せん断 さん断力	時刻歷応答解析	ばね質点系モデル	【相畸 6/7, 女川 2】
屋外重要土木構造物	屋外配管ダクト(タービン建物〜排気筒	間接支持性能	終局状態に至ら	ない 彩	冬局強度	許容t	きん断力	周波数応答解析	地質データに基づく水平成層地盤モ デル (1次元波動論による)	(2)の相違
<u></u>	第5-1-3表	耐震評	価条	件	整理一	覧	該 (今回コ	[認)	・設計方針の相違
分類	設備名称	要求性能	要求性能に対 目標性能	する	許容曲げ	限界	せん断	解析手法	解析モデル	【柏崎 6/7,女川 2 】
	取水槽	通水性能	終局状態に至ら 鉄筋が降伏しな 発生せん断力が	ない 「	限作層回変形用又は3 コンクリート限界ひずみ 圧縮ひずみ:コンクリート 縮強度に対応するひずる 主筋ひずみ、4筋の熱	土物物 トの圧 み	せん断耐力 せん断耐力 層間変形角	時刻歴応答解析	地質データに基づくFEMモデル	②の相違
		支持性能	断耐力以下 終局状態に至ら	おない	に対応するひずみ に対応するひずみ 限界層間変形角又は日 コンクリート限界ひずみ	王縮緩	* (面内) せん断耐力			
設計基準対象施設のうち 屋外重要土木構造物	屋外配管ダクト(タービン建物〜排気) 屋外配管ダクト(タービン建物〜放水料	 (i) 支持性能 (ii) 支持性能 	終局状態に至ら 終局状態に至ら	iない -	限外層回変形用又は日 コンクリート限界ひずみ 限界層間変形角又は日 コンクリート限界バずみ	土和林野 王紹紹	せん断耐力	時刻歷応答解析 時刻歷応答解析	地質データに基づくFEMモデル 地質データに基づくFEMモデル	
	B - ディーゼル燃料貯蔵タンク基礎	支持性能	終局状態に至ら	らない 月	限界層間変形角又は日 コンクリート限界ひずみ	王縮繆	せん断耐力	時刻歷応答解析	地質データに基づくFEMモデル	
	屋外配管ダクト(B ーディーゼル燃料 タンク~原子炉建物)	F藏 支持性能	終局状態に至ら	ない	限界層間変形角又は日 コンクリート限界ひずみ	王縮縁	せん断耐力	時刻歷応答解析	地質データに基づくFEMモデル	
	取水官 取水口	通水性能	終局状態に至ら 終局状態に至ら	iない ま	許容応力度 許容応力度		許容応力度	時刻 歴心 音解析 時刻 歴応 答解析	地質データに基づくFEMモデル 地質データに基づくFEMモデル	
	第1ベントフィルタ格納槽	支持性能 這蔽性能	終局状態に至ら	ない	限界層間変形角又は日 コンクリート限界ひずみ	E縮減	せん断耐力	時刻歷応答解析	地質データに基づくFEMモデル	
	低圧原子炉代替注水ボンブ格納槽	支持性能	終局状態に至ら 鉄筋が降伏しな 発生せん新力力	いが	限作層面変形用又は日 コンクリート限界ひずみ 圧縮ひずみ:コンクリート 縮強度に対応するひず。	土和時 トの圧 み	せん断耐力	時刻歷応答解析	地質データに基づくFEMモデル	
重大事故等対処施設の うち土木構造物 ^{※1}	緊急時対策所用燃料跡下タンク	非常用発電装置に	新聞力以下 鉄筋が降伏しな	いが	土助ひすみ:鉄筋の降 に対応するひずみ 圧縮ひずみ:コンクリート	トの圧	を せん断脚力	時刻歷応答解析	地質データに基プ、FEMŦデル	
	ガスタービン発電機用軽油タンク基礎	係る燃料の貯蔵 ^{※2} 支持性能	新聞力以下	5001 F	王昉ひずみ:鉄筋の降 に対応するひずみ 曲げ耐力	伏強	せん断耐力	時刻歷応答解析	【タンクモデル】水平:多軸多質点系 曲げせん断棒モデル,鉛直:多軸	
	屋外配管ダクト(ガスタービン発電機用	輕支持性能	終 局 ;;##1".77"	5721 1	限界層間変形角又は日	王縮縁	世ん新聞も	時刻原広な輕4	> 貝県永保セナル 【相互作用】SRモデル 地質データに其づくFEMエデⅡ	
波及的影響を及ぼすおそ れのある施設のラムナナ	油タンワ〜ガスタービン発電機) 免需重要棟道薪壁	波及的影響	終局状態に至ら	5411	コンクリート限界ひずみ 壁:限界層間変形角3 縮線コンクリート限界パス	又は圧 ずみ	せん断耐力	時刻歷応答解析	地質データに基づくFEMモデル	
(いのの)の問題(U)つら工不 構造物 ※1 設計書准対象体部	2008年35111日期22 22時日する重要54施設のうち 120日	ペンズロソネン音 基準対象施設の旺厚手ミ	いたいまたのでは、「「」、「「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「	0121044	抗基礎:全型性モーメ	ノック ント 法に4	- 売して炉地	時刻歷応答解析	地質データに基づくFEMモデル	
※2 コンクリート躯体内	則のライナ(鋼製タンク)においても要求性的	ニーマーン、いっしょスークイロークス 能を確保する設計とする(計	容限界は許容の	う力度と	する)。	. art 1 - 1				

島根原子力発電所 2号炉									備考
既工認	忍では, 各評	(支持性能,	・設計方針の相違						
通水性能)を考慮し、終構造部材の曲げについては終局強度、せ									【柏崎 6/7,女川 2】
い断については許容せん断力に対して妥当な裕度を持つことを確									島根2号炉は各評価
忍するこ	とを基本と	してい	た。						対象施設に求められる
今回I	二認では,各	評価対	象施設	に求め	51	れる	要求性	能(支持性	要求性能及び目標性能
能,通水	<性能, 貯水	性能,	止水性	能及び	遮	蔽性	能)を	・考慮し、構	を整理した上で,許容限
告部材の)曲げにおい	ては「	限界層	間変形	角	又は	圧縮縁	マンクリー	界の選定方針を整理
ト限界び	♪ずみ」、「圧	縮ひず	み:=	ンクリ	<u> </u>	トの	圧縮強	度に対応す	
ろひずみ	・ 主筋ひず	み・鉄	筋の降	伏強度	にす	対応	するひ	ずみ」「曲	
<u>シロ / */</u> ギ耐力」	<u>, </u>	<u>∽ · ⊅(</u> 度 ⊢ 又	<u>パンマロ</u> け「仝	朝性モ	<u> </u>	メン	トレカ	らせん断	
こちいて		<u> 又」 へ</u> 耐力	マけ		- - 11	≠」	<u>- 」 ~</u> から谙	<u>り, ビル</u> 初に 選定す	
Z	、は 「 ビノレ 四	1011/17	入14	日合心	/]]	Z _	パワ胆		
<u>.</u>									
		≠ 80°	-∋राो. /	∖⊐⊤⇒र	11.	のエ	沖の日	. **	乱乱士はのお法
	<u> </u>	て 坑山	-認と^	7回上詭	121	の手	法の比		
	解析手法	解析モデ	ル	減衰定数	;	コンク!	リート強 度	隣接構造物	【相崎 6/7, 女川 2】
既工認	時刻 虚心 各解析 及び 周波 数応 答 解析	は43頁点示 ル及び地質 タに基づく	モノ デー 構 水平 50	造物の減す %	莨	設計基	準強度	地盤としてモデ ル化	①の相違
	許容応力度法等	成層地盤モラ 地質データ	^{デル} に基 構	造物の減す	ŧ			for the table	既工認及び今回工認
今回工認	時刻歷応答解析限界状態設計法	づくFEM ル	モデ 20	% 履歷減衰		設計基	準強度	等価剛性でモテ ル化	における手法の相違
比較結果	●異なる	●異なる	5	●異なる		O	司じ	●異なる	
適用例	○あり	○あり		○あり		08	あり	○あり	
	第5-1-2表	耐震	評価条	件整理-	一覧	記表	(既工)	認)	・設計方針の相違
分類	設備名称	要求性能	要求性能に対する 目標性能	許容 曲げ	限界 t	せん断	解析手法	解析モデル	【柏崎 6/7,女川 2】
計基準対象施設のうち 外重要土木構造物	取水槽 	間接支持性能	終局状態に至らない 終局状態に至らない	終局強度	許容せん 許容せん	,断力 ,断力	時刻歷応答解析 周波数応答解析	ばね質点系モデル 地質データに基づく水平成層地盤モ デル (1次元波動論による)	②の相違
第	第5-1-3表	耐震評	阿爾多爾	+整理	-覧	表(今回工	[認)	・設計方針の相違
4)#0	10,00-9,16	105 VEHICL RF	要求性能に対する	· 許『	容限界		假拆手注	\$215T=21	【柏崎 6/7 女川 2】
7J*M	121864340 ¹	通水性能	目標性能 終局状態に至らない	曲げ 限界層間変形角又は コンクリート限界ひずみ 圧縮ひずみ:コンクリー	圧縮線 - トの圧	せん断制力	神机子法	がやりモナル	
	取水槽	止水性能	鉄筋が確化しない 発生せん断力がせん 断耐力以下 終島は敷に至られ	縮強度に対応するひす 主筋ひずみ:鉄筋の削 に対応するひずみ 限界層間変形角又は	「み 脊伏強度 「 正縮縁	E(面内)	時刻歷応答解析	地質データに基づくFEMモデル	包叭们连
設計基準対象施設のうち 星外重要土木構造物	屋外配管ダクト(タービン建物〜排気筒	 文持性能 	終局状態に至らない	コンクリート限界ひずみ 限界層間変形角又は コンクリート限界ひずみ 限界層間変形角又は	压縮緩 ()	せん断耐力	時刻歷応答解析	地質データに基づくFEMモデル	
	屋外配管ダクト(タービン建物~放水槽 B = ディーゼル燃料貯蔵タンク基礎	 支持性能 支持性能 	終局状態に至らない 終局状態に至らない	限界層間変形角又は コンクリート限界ひずみ 限界層間変形角又は	正稿線	せん断耐力	時刻歴応答解析	地質データに基づくFEMモデル 地質データに基づくFEMモデル	
	屋外配管ダクト(B - ディーゼル燃料貯 タンク~原子炉建物)	蔵 支持性能	終局状態に至らない	コンクリート限界のすみ 限界層間変形角又は コンクリート限界のずみ	正縮緩	せん断耐力	時刻歷応答解析	地質データに基づくFEMモデル	
	取水管	通水性能	終局状態に至らない	許容応力度		許容応力度	時刻歴応答解析	地質データに基づくFEMモデル 物質データに基づくFEMモデル	
	第1ペントフィルタ格納槽	支持性能 遠蔽性能	**2mgitAttatic 至らなし 終局状態に至らなし	限界層間変形角又は コンクリート限界/いずみ	正縮縁	<u>ローレンフ度</u> せん断耐力	時刻歷応答解析	地質データに基づくFEMモデル	
		支持性能	終局状態に至らない	限界層間変形角又は コンクリート限界ひずみ	圧縮緩	せん断耐力			
	低圧原子炉代替注水ボンブ格納槽	貯水性能	鉄筋が降伏しない 発生せん断力がせん 断耐力以下	圧縮ひずみ:コンクリー 縮強度に対応するひす 主筋ひずみ:鉄筋の制 に対応するひずみ	-トの圧 「み 春伏強度	せん断耐力	時刻歷応答解析	地質データに基づくFEMモデル	
■ズ事故等対処施設の 55土木構造物 ^{≈1}	緊急時対策所用燃料地下タンク	非常用発電装置に 係る燃料の貯蔵 ^{※2}	鉄筋が降伏しない 発生せん断力がせん 断耐力以下	圧縮ひずみ:コンクリー 縮強度に対応するひす 主筋ひずみ:鉄筋の制 に対応するひずみ	-トの圧 『み 春伏強度	せん断耐力	時刻歷応答解析	地質データに基づくFEMモデル	
	ガスタービン発電機用軽油タンク基礎	支持性能	終局状態に至らない	曲げ耐力	TT SPER	せん断耐力	時刻歷応答解析	1ッンクセナル1水半:多釉多質点系 曲げせん断棒モデル,鉛直:多釉 多質点系棒モデル 【相互作用】SRモデル	
皮及的影響を及ぼすおそ	=>♪FILEフット (ガスタービン発電機用車 油タンク~ガスタービン発電機)	支持性能	終局状態に至らない	協介// 「一般介// 「一般界」の支援していた。 「「「一般界」の支援していた。 「「「「「」」の、 「「」」の、 「「」、 「」、 「」、 「」、 「」、 「」、 「」、 「」、 「」、 「	工物線	せん断耐力	時刻歴応答解析	地質データに基づくFEMモデル 地質データに基づくFEMモデル	
れのある施設のうち土木 黄造物	免震重要棟遮蔽壁	波及的影響	終局状態に至らなし	縮緑コンクリート限界の 杭基礎:全型性モー:	ぼみ メント		-930-1001世界4T 時刻歴応答解析	地質データに基づくFEMモデル	
※1 設計基準対象施設 ※2 コンクリート躯体内側	と兼用する重要 S A 施設のうち,設計基 別のライナ(鋼製タンク)においても要求性能	準対象施設の評価手法 を確保する設計とする(計	と相違がない施設は 「容限界は許容応力」	設計基準対象施設の一覧 変とする)。	総表に代表	そして記載。			

島根原子力発電所 2号炉									備考	
既工認では,各評価対象施設に求められる要求性能(支持性能,										・設計方針の相違
通水性能)を考慮し、終構造部材の曲げについては終局強度、せ										【柏崎 6/7,女川 2 】
ん断については許容せん断力に対して妥当な裕度を持つことを確										島根2号炉は各評価
認するこ	とを基本と	してい	た。							対象施設に求められる
<u>今回</u>]	二認では,各	評価対	象施	訯	に求め	6	れる	要求性	能(支持性	要求性能及び目標性能
能,通力	、性能,貯水	性能,	止水	:性	能及び	遮	蔽性	能)を	・考慮し,構	を整理した上で,許容限
造部材の)曲げにおい	ては「	限界	層	間変形	角	又は	圧縮縁	マンクリー	界の選定方針を整理
ト限界で	トずみ」、「圧	縮ひず	み:	Э	ンクリ	_	トの	圧縮強	度に対応す	
るひずみ	メ、主筋ひず	[*] み:鉄	筋の	陥	伏強度	に	対応	するひ	ずみ」、「曲	
<u>。。</u> げ耐力」	<u>, </u>	度」又	は「	· 一全	朔性王		メン	トレカ	ら. せん断	
において	<u>, 11日/11/5</u> 「け「けん断	耐力」	V V	- <u></u> -	<u> </u>	カ	<u>/</u>	<u>-」~</u> から谚	<u></u> i切に選定す	
Z			710			/]				
<i>′</i> ⊲∕₀										
	∽⊑ 1 1∃	⊰ ⊞⊥⊤	1. בעבי	. ~	,同一一刻	Ŀ	のヂ	述の日	、	、乳乳士紀の知法
	<u></u>	ズ 死⊥	「記る	- 7	凹上旕	· 2	01		<u>」 東 、 </u>	
	解析手法 時刻歴応答解析	解析モデ	ル エデ		減衰定数		コンク	リート强 変	隣接構造物	【相畸 6/7, 女川 2】
既工認	の の の 定 の 音 波 数 応 答 解 析	ル及び地質 タに基づく	デー 水平	構 道 5 %	造物の減弱 ,	ŧ	設計基	準強度	地盤としてモデ ル化	
	許容応力度法等	成層地盤モジ 地質データ	デル に基	構道	き物の減衰	ī.			佐年回時でエゴ	既上認及び今回上認
今回工認	時刻歷心合解析限界状態設計法	づくFEM ル	モデ	2% +履	歴減衰		設計基	準強度	寺価剛住 じモナ ル化	における手法の相違
比較結果	●異なる	●異なる	>		●異なる		0	司じ	●異なる	
適用例	○あり	○あり			○あり		07	あり	○あり	
	第5-1-2表	耐震	評価	条	牛整理-		覧表	(既工)	認)	・設計方針の相違
分類	設備名称	要求性能	要求性能に 目標性	対する 能	許容 曲げ	限界	せん断	解析手法	解析モデル	【柏崎 6/7,女川 2 】
設計基準対象施設のうち 屋外重要土木構造物	取水槽 屋外配管ダクト (タービン建物〜排気筒)	通水性能 間接支持性能 間接支持性能	終局状態に至 終局状態に至	きらない きらない	終局強度	許容せ 許容せ	ん断力	時刻歴応答解析	ばね質点系モデル 地質データに基づ水平成層地盤モ	 ②の相違
		MIXAJULE	and a designed as	L 3400.	P-7-93808.	ITE C	100075	PRASMON PP	テル(1次元波動論による)	
母	5月 1 9主	型型	による	C/H	• 敢 珊	影	主 (்து	- ⇒刃 \	、乳乳士社の扣法
<u></u>	30-1-3衣	長計	-1川子	₹14	* 金理一	見	.衣(行凹工	<u>_ 市心/ _</u>	
分類	設備名称	要求性能 通水性能	要求性能に 目標性 終局状態に3	こ対する E能 至らない	許容 曲げ 限界層間変形角又は コンクリート現界ですみ	祖界 王縮緑	せん断 せん断耐力	解析手法	解析モデル	【相崎 6/7, 女川 2】
	取水槽	止水性能	鉄筋が降伏し 発生せん断す 断耐力以下	しない りがせん	圧縮ひずみ:コンクリー 縮強度に対応するひず 主筋ひずみ:鉄筋の降 に対応するひずみ	トの圧 み 伏強度	せん断耐力 層間変形角 (面内)	時刻歷応答解析	地質データに基づくFEMモデル	②の相違
設計基準対象施設のうち	屋外配管ダクト(タービン建物〜排気筒	 支持性能 支持性能 	終局状態に3 終局状態に3	至らない 至らない	限界層間変形角又は コンクリート限界ひずみ 限界層間変形角又は	王縮縁 王縮縁	せん断耐力 せん断耐力	時刻歷応答解析	地質データに基づくFEMモデル	
屋外重要土木構造物	屋外配管ダクト(タービン建物~放水槽	1) 支持性能	終局状態に至	至らない	コンクリート限界のですの 限界層間変形角又は コンクリート限界ひずみ 限界層間変形角又は	王縮緑	せん断耐力	時刻歷応答解析	地質データに基づくFEMモデル	
	B-ナイーセル燃料貯蔵タンク基礎 屋外配管ダクト(B-ディーゼル燃料貯	 支持性能 蔵 支持性能 	彩局状態に当	至らない	コンクリート限界ひずみ 限界層間変形角又は	王縮緑	せん断耐力せん断耐力	時刻歴心音解析 時刻歴応答解析	地質テータに基づくFEMモデル 地質データに基づくFEMモデル	
	タンワー原ナが建物) 取水管	通水性能	終局状態に至	至らない	コンクリート限界ひ9 み 許容応力度		許容応力度	時刻歷応答解析	地質データに基づくFEMモデル	
	取水口 第1ペントフィル9格納槽	通水性能 支持性能	終局状態に3 終局状態に3	至らない 至らない	許容応力度 限界層間変形角又は	王縮縁	許容応力度 せん断耐力	時刻歴応答解析 時刻歴応答解析	地質データに基づくFEMモデル 地質データに基づくFEMモデル	
		遮蔽性能 支持性能	終局状態に	ー つっい 至らない	コンクリート限界ひずみ 限界層間変形角又は コンクリート規則パポッ	王縮緑	せん断耐力	370-207 HR/7+V		
	低圧原子炉代替注水ボンブ格納槽	貯水性能	鉄筋が降伏し 発生せん断け 断配カいテ	しない りがせん	コンフリートNB界のすみ 圧縮ひずみ:コンクリー 縮強度に対応するひず 主筋ひずみ:鉄筋の降	トの圧 み 伏強度	せん断耐力	時刻歷応答解析	地質データに基づくFEMモデル	
重大事故等対処施設の うち土木構造物 ^{※1}	緊急時対策所用燃料地下9ンク	非常用発電装置に 係る燃料の貯蔵*2	鉄筋が降伏し 発生せん断す	しない りがせん	に対応するひずみ 圧縮ひずみ:コンクリー 縮強度に対応するひず 主筋ひずみ:鉄筋の降	トの圧 み 伏強度	せん断耐力	時刻歷応答解析	地質データに基づくFEMモデル	
	ガスタービン発電機用軽油タンク基礎	支持性能	終局状態に登	至らない	ILC対応するひずみ 曲げ耐力		せん断耐力	時刻歷応答解析	【タンクモデル】水平:多軸多質点系 曲げせん断棒モデル,鉛直:多軸 多質点系棒モデル 「細石に用したエニー	
	屋外配管ダクト(ガスタービン発電機用) 油タンク〜ガスタービン発電機)	^座 支持性能	終局状態に至	至らない	限界層間変形角又は コンクリート期界パオユ	王縮縁	せん断耐力	時刻歷応答解析	14日旦作用JSRモデル 地質データに基づくFEMモデル	
波及的影響を及ぼすおそ れのある施設のうち土木	免震重要棟遮蔽壁	波及的影響	終局状態に至	至らない	壁:限界層間変形角 縮線コンクリート限界び	又は圧 ずみ	せん断耐力	時刻歷応答解析	地質データに基づくFEMモデル	
[構造物 ※1 設計基準対象施設	と兼用する重要 S A 施設のうち,設計者	準対象施設の評価手法	と相違がない	施設は設	杭基礎:全型性モーメ 計基準対象施設の一覧	ント ほんに代	表して記載。	時刻歷応答解析	地質データに基づくFEMモデル	
the second se	ヨのライナ(御勢タンク)においても要求性能	を確保する設計とする(計	容限界は許容	当応力度	とずる)。					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		<complex-block></complex-block>	
		<u> 貯水性能及び止水性能が要求される構造部材については、漏水</u> が生じるような原葉な(部材を貫通するような)ひび割わが発生	・設計方針の相違
		加生しるような顕着な(即相と負通するような)のの割れ加先生	【111時 0/7, 女川2】 ②の相違
		しないよう,日际住宅としては欧肋が再次しないこと及び完主し	包切相连
		の曲げ昭杏においてけコンクリート標準示方書「構造性能昭杏編]	
		(+木学会, 2002年制定)において応力一ひずみ関係として示さ	
		れた「圧縮ひずみ:コンクリートの圧縮強度に対応するひずみ	
		(2000 µ), 主筋ひずみ:鉄筋の降伏強度に対応するひずみ (1725	
		μ (SD345の場合))」に対して十分な安全余裕を持つことを確認す	
		る。また、せん断照査においては原子力発電所屋外重要土木構造	
		物の耐震性能照査指針・マニュアル(土木学会,2005)に規定さ	
		れた「せん断耐力」に対して妥当な安全余裕を持つことを確認す	
		<u>る。</u>	
		面内変形に対しては, JEAG4601-1991に規定されている層間変形	
		角がスケルトンカーブの第1折れ点以下であることを許容限界と	
		した耐震評価を行うこととし、これについても、耐震壁のせん断	
		変形に対する水密性評価の許容限界として既工認実績がある(第5	
		<u>-1-4表参照)。</u>	
		支持性能,通水性能及び遮蔽性能が要求される構造部材につい	
		ては、目標性能としては部材が終局状態に至らないことが求めら	
		れるため、構造部材の曲げ照査においては「限界層間変形角又は	
		圧縮縁コンクリート限界ひずみ」、「曲げ耐力」、「許容応力度」又	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所	2号炉	備考
			は「全塑性モーメント」, せん断照査に	おいては「せん断耐力」又	・設計方針の相違
			は「許容応力度」に対して妥当な安全余	、裕を持つことを確認する。	【柏崎 6/7,女川 2 】
					②の相違
			第5-1-4表 貯水性能及び止:	水性能の許容限界	
			変形モード 計谷取升 指標 許容値	既工認実績	
			圧縮ひずみ 2000 µ 曲げ	本許容値はコンクリート標準示方書 2002において、応カーひずみ関係と して示されており、概ね弾性範囲の 状態である(第5-1-2~3図参照)。 概ね弾性範囲の状態は止水機能に対	
			主筋ひずみ (SD345 の場合)	する計容限界として既二認実績かあ る。なお,この許容限界は水道施設 耐震工法指針・解説 2009 に規定され ている照査基準と同じレベルの許容 値である(第5-1-5表参照)。	
			層間変形角 (面内) 第1折点(γ ₁) 以下 せん断	JEAG4601-1991 に規定されており, 耐震壁のせん断変形に対する水密性 評価の許容限界として既工認実績が ある。	
			発生せん断力 せん断耐力	土木学会マニュアル 2005 に規定さ れており,屋外重要土木構造物の貯 水機能の許容限界として既工認実績 がある。	
			$k_{i}f_{cd}$ σ_{c}' $\frac{l^{2}-j^{2}}{200}$ 0.002 ϵ_{c}' $\frac{1}{35-1-2} \boxed{322} + 2 \sqrt{10} + 5 \sqrt{10}$	7 強度 0 μ	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			f_{yd} $\sigma = f_{yd}$ $\sigma = f_{yd}$ $\sigma = E_s \cdot \varepsilon$ $f_{yd} : 345N/mm^2$ $\varepsilon_{sy} : 1725 \mu$ ε <u>第5-1-3図</u> 鉄筋及び構造用鋼材の応力-ひずみ曲線	・設計方針の相違 【柏崎 6/7, 女川 2】 ②の相違
			r_{1} r_{2} r_{1} r_{1} r_{1} r_{2} r_{1} r_{2}	
			第5-1-5表 池状構造物(RC構造物)の耐震性能と照査基準 耐震性能 耐震性能1 耐震性能2 耐震性能3 限界状態*1 限界状態1 限界状態2 限界状態3 (時代耐力以下) (最大耐荷力以下) (除局変位以下、せん断耐力以下) 損傷状態 運動 運動 運動	
			照査項目例 ^{■2} 町面刀(曲げ、せん町)、応 町面刀(曲げ、せん町)、型 変位意、曲率、断面力(せん 力度 性率 野面力(曲げ)≤除伏曲げ動力 断面力(せん町)≤尽大曲げ耐力 断面力(せん町)≤せん断耐力 広力度 <u>≤許容応力度</u> 数性率≤許容数性率 断面力(せん断)≤せん断耐力	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
2. 解析手法	2. 解析手法	2. 解析手法	
屋外重要土木構造物の耐震安全性評価について, 既工認では,	屋外重要土木構造物の耐震安全性評価については、建設工認で	屋外重要土木構造物等の耐震安全性評価について、既工認では、	
地震応答解析手法として周波数応答解析を採用し,許容応力度法	は、地震応答解析手法として周波数応答解析を採用し、許容応力	地震応答解析手法として時刻歴応答解析及び周波数応答解析を採	・設計方針の相違
による設計として,構造部材の曲げ及びせん断について許容応力	<u>度法による設計として、構造部材の曲げ及び</u> せん断について許容	用し、構造部材の曲げについては終局強度、せん断については許	【柏崎 6/7,女川 2 】
度に対して妥当な裕度を持つことを確認することを基本としてい	応力度に対して妥当な裕度を持つことを確認することを基本とし	容せん断力に対して妥当な裕度を持つことを確認することを基本	既工認における設計
た。	ていた。	としていた。	方針の相違 (以下, ③の
今回工認では、屋外重要土木構造物の地震応答解析手法に時刻	今回工認では、屋外重要土木構造物の地震応答解析手法に時刻	今回工認では、屋外重要土木構造物等の地震応答解析手法とし	相違)
歴応答解析を適用した限界状態設計法による設計を採用する。減	歴応答解析を適用した限界状態設計法による設計を採用する。減	二時刻歴応答解析を適用した限界状態設計法による設計を採用す	
衰定数は、構造物の <u>減衰1%</u> 及び履歴減衰とする。構造部材の曲げ	衰定数は、構造物の履歴減衰及び <u>Rayleigh 減衰</u> とする。 <u>なお、構</u>	る。減衰定数は、構造物の <u>減衰2%</u> 及び履歴減衰とする。構造部材	・設計方針の相違
については限界層間変形角,曲げ耐力,圧縮縁コンクリート限界	造物を線形でモデル化する場合は、Rayleigh 減衰のみとする。構	の曲げについては「限界層間変形角又は圧縮縁コンクリート限界	【柏崎 6/7,女川 2】
<u>ひずみ又は許容応力度</u> に対して十分な安全余裕を持つこと、せん	造部材の曲げについては <u>限界層間変形角又は許容応力度</u> に対して	ひずみ」,「圧縮ひずみ:コンクリートの圧縮強度に対応するひず	島根2号炉は減衰を
断についてはせん断耐力又は許容応力度に対して妥当な安全余裕	十分な安全余裕を持つこと、せん断についてはせん断耐力又は許	み,主筋ひずみ:鉄筋の降伏強度に対応するひずみ」,「曲げ耐力」,	2%に設定
を持つことを確認することを基本とし、各設備の要求性能(支持	容応力度に対して妥当な安全余裕を持つことを確認する <u>…また</u> ,	「許容応力度」又は「全塑性モーメント」に対して十分な安全余	・設計方針の相違
性能,通水性能,貯水性能)を踏まえて照査項目・内容を追加す	各設備の要求機能(支持機能,通水機能,貯水機能)及び構造物	裕を持つこと、せん断については「せん断耐力」又は「許容応力	島根2号炉は第 5-1
る。	が間接支持する機器・配管の機能維持のための与条件(変位や傾	度」に対して妥当な安全余裕を持つことを確認することを基本と	-3 表に対応する許容
	<u>斜等)</u> を踏まえて照査項目・内容を追加する。	し各設備の要求性能(支持性能,通水性能,貯水性能,止水性	限界(曲げ)について説
		<u>能,遮蔽性能</u>)を踏まえて照査項目・内容を追加する。	明
		<u>貯水性能及び止水性能が要求される構造部材については、漏水</u>	・設計方針の相違
		が生じるような顕著な(部材を貫通するような)ひび割れが発生	【柏崎 6/7,女川 2 】
		しないよう、目標性能としては鉄筋が降伏しないこと及び発生せ	島根2号炉は止水性
		ん断力がせん断耐力以下になることが求められるため、構造部材	能及び遮蔽性能を考慮
		の曲げ照査においては「圧縮ひずみ:コンクリートの圧縮強度に	
		対応するひずみ,主筋ひずみ:鉄筋の降伏強度に対応するひずみ」,	
		<u>せん断照査においては「せん断耐力」に対して妥当な安全余裕を</u>	
		持つことを確認する。	
		支持性能,通水性能及び遮蔽性能が要求される構造部材につい	
		ては、目標性能としては部材が終局状態に至らないことが求めら	
		れるため、構造部材の曲げ照査においては「限界層間変形角又は	
		圧縮縁コンクリート限界ひずみ」、「曲げ耐力」、「許容応力度」又	
		は「全塑性モーメント」、せん断照査においては「せん断耐力」又	
		は「許容応力度」に対して妥当な安全余裕を持つことを確認する。	
以下では、今回工認で採用する限界状態設計法のうち、構造部	以下では、今回工認で採用する限界状態設計法のうち、構造部	以下では,「耐震設計に係る工認審査ガイド」において,適用実	
材の曲げ照査及びせん断照査に係る「原子力発電所屋外重要土木	材の曲げ照査に係る「原子力発電所屋外重要土木構造物の耐震性	績のある耐震設計に関連した規格及び基準等で示されてはいない	
構造物の耐震性能照査指針・マニュアル(土木学会,2005)」(以	能照査指針・マニュアル(土木学会,2005)」(以下「土木学会マ	が,先行サイトの審査で実績のある「原子力発電所屋外重要土木	
下「土木学会マニュアル」という。)の適用性について検討を行う。	ニュアル」という。)の適用性及びせん断照査に係る土木学会マニ	構造物の耐震性能照査指針・マニュアル(土木学会,2005)」(以	
	ユアルの適用性について検討を行う。	下「土木学会マニュアル」という。)の適用性について検討を行う。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
2.1 曲げ照査に係る土木学会マニュアルの適用性について	2.1 曲げ照査に係る土木学会マニュアルの適用性について	2.1 曲げ照査に係る土木学会マニュアルの適用性について	
今回工認における曲げに対する照査は、土木学会マニュアルに	今回工認申請における曲げに対する照査は、土木学会マニュア	土木学会マニュアルでは、構造物の曲げ系の破壊については限	・設計方針の相違
基づき,照査用層間変形角が限界層間変形角を超えないことを確	ルに基づき, 照査用層間変形角が限界層間変形角を超えないこと	界層間変形角又は圧縮縁コンクリート限界ひずみに対して妥当な	【柏崎 6/7,女川 2 】
認する。	を確認する。	裕度を持つことを確認することを基本としており, 今回工認にお	島根2号炉は土木学
		ける曲げに対する照査は、 圧縮縁コンクリート限界ひずみによる	会マニュアルの方法の
		方法を採用し、照査用圧縮縁コンクリートひずみが、限界圧縮縁	うち圧縮縁コンクリー
		<u>コンクリートひずみ</u> を超えないことを確認する。	ト限界ひずみによる方
「コンクリート標準示方書[構造性能照査編](土木学会,2002	「コンクリート標準示方書[構造性能照査編](土木学会,2002	「コンクリート標準示方書【構造性能照査編】(土木学会, 2002)」	法を採用(以下④の相
<u>年制定</u>)」(以下「コンクリート標準示方書2002」という。)では、	年制定)」(以下「コンクリート標準示方書2002」という。)では、	(以下「コンクリート標準示方書2002」という。)では、構造部材	違)
構造部材の終局変位は、部材の荷重-変位関係の骨格曲線におい	構造部材の終局変位は、部材の荷重-変位関係の骨格曲線におい	の終局変位は、部材の荷重-変位関係の骨格曲線において、荷重	
て,荷重が降伏荷重を下回らない最大の変位として求めてよいと	て、荷重が降伏荷重を下回らない最大の変位として求めてよいと	が降伏荷重を下回らない最大の変位として求めてよいとしてい	
している。コンクリート標準示方書2002 による構造部材の終局変	している。コンクリート標準示方書2002 による構造部材の終局変	る。コンクリート標準示方書2002による構造部材の終局変位の考	
位の考え方を <u>第3-2-1</u> 図に示す。	位の考え方を <u>第Ⅰ.2.1-1 図</u> に示す。	え方を <u>第5-2-1図</u> に示す。	
一方, 土木学会マニュアルでは, 以下の考え方に基づいている。	一方,土木学会マニュアルでは,以下の考え方に基づいている。	一方、土木学会マニュアルでは、以下の考え方に基づいている。	
屋外重要土木構造物を模したラーメン構造の破壊実験の結果よ	屋外重要土木構造物を模したラーメン構造の破壊実験の結果よ	屋外重要土木構造物を模したラーメン構造の破壊実験の結果よ	
り、かぶりコンクリートが剥落すると荷重が低下し始める。 <u>層間</u>	り、かぶりコンクリートが剥落すると荷重が低下し始める。 <u>層間</u>	り,かぶりコンクリートが剥落すると荷重が低下し始める。圧縮	・設計方針の相違
変形角1/100 に至る状態は、かぶりコンクリートの剥落が発生す	変形角1/100 に至る状態は、かぶりコンクリートの剥落が発生す	<u>縁コンクリートひずみが1%</u> に至る状態は、 <u>まだ応力を負担する</u>	【柏崎 6/7,女川 2 】
る前の状態であることを確認しており ¹⁾²⁾ ,荷重が低下しない範囲	る前の状態であることを確認しており(1),(2),荷重が低下しない範	<u>ことができ、</u> かぶりコンクリートの剥落が発生する前の状態であ	 ④の相違
にある。当該限界値を限界状態とすることで、構造全体としての	囲にある。当該限界値を限界状態とすることで、構造全体として	ることを確認しており ¹⁾²⁾ ,荷重が低下しない範囲にある。当該限	
安定性が確保できるものとして設定されたものである。 ラーメン	の安定性が確保できるものとして設定されたものである。 ラーメ	界値を限界状態とすることで、構造全体としての安定性が確保で	・設計方針の相違
構造の破壊実験の例を第3-2-2 図に示す。	<u>ン構造の破壊実験</u> の例を <u>第 I.2.1-2</u> 図に示す。	きるものとして設定されたものである。 <u>コンクリートの圧縮試験</u>	【柏崎 6/7,女川 2 】
		の例を <u>第5-2-2図</u> に示す。	 ④の相違
したがって、土木学会マニュアルによる曲げ照査手法は、コン	したがって、土木学会マニュアルによる曲げ照査手法は、コン	したがって、土木学会マニュアルによる曲げ照査手法は、コン	
クリート標準示方書2002による照査よりも安全側の評価を与える	クリート標準示方書2002 による照査よりも安全側の評価を与え	クリート標準示方書2002による照査よりも安全側の評価を与える	
ため、適用性を有している。	るため、適用性を有している。	ため、適用性を有している。	
さらに、土木学会マニュアルでは、「鉄筋コンクリート造建物の	さらに、土木学会マニュアルでは、日本建築学会「鉄筋コンク	さらに、土木学会マニュアルでは「鉄筋コンクリート造建物の	
靭性保証型耐震設計指針(案)・同解説(日本建築学会, 1997)」	リート造建物の靱性保証型耐震設計指針(案)・同解説(1997)」	靭性保証型耐震設計指針(案)・同解説(日本建築学会,1997)」(以	
(以下「日本建築学会」という。)にて記載されている設計限界変	にて記載されている設計限界変形1/100,終局限界変形1/80等	下「日本建築学会」という。)にて記載されている設計限界変形	
形1/100,終局限界変形1/80 等を基準値として参照している。	を基準値として参照している。	1/100,終局限界変形1/80等を基準値として参照している。	
対象は同じラーメン構造であり、軸力比(軸応力度/コンクリ	対象は同じラーメン構造であり、軸力比(軸応力度/コンクリ	対象は同じラーメン構造であり、軸力比(軸応力度/コンクリ	
ート圧縮強度比)は建築物よりも屋外重要土木構造物の方が小さ	ート圧縮強度比)は建築物よりも屋外重要土木構造物の方が小さ	ート圧縮強度比)は建築物よりも屋外重要土木構造物の方が小さ	
いと考えられることから,変形性能がより大きくなる傾向にあり,	いと考えられることから、変形性能がより大きくなる傾向にあり、	いと考えられることから、変形性能がより大きくなる傾向にあり、	
層間変形角1/100 は限界値として安全側であると考える。機能維	層間変形角1/100 は安全側であると考える。機能維持確保の観点	層間変形角1/100は限界値として安全側であると考えられる。土木	・設計方針の相違
持確保の観点からも耐荷性能が確保されることが担保できるため	からも耐荷性能が確保されることが担保できるため限界値として	学会マニュアルでは、層間変形角が1/100以下であれば、圧縮縁コ	【柏崎 6/7,女川 2 】
限界値として適切である。	適切である。	ンクリートひずみ1%の基準を保証したものとみなすと示されて	④の相違
		おり,機能維持確保の観点からも耐荷性能が確保されることが担	
		保できるため限界値として適切である。	
参考に,日本建築学会における曲げ降伏先行型の部材について,	参考に、建築学会における曲げ降伏先行型の部材について、復	参考に, 日本建築学会における曲げ降伏先行型の部材について,	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
復元力特性と限界状態(損傷度)の関係の概念図を <u>第3-2-3</u> 図に,	元力特性と限界状態(損傷度)の関係の概念図を <u>第Ⅰ.2.1-3図</u> に,	復元力特性と限界状態(損傷度)の関係の概念図を第5-2-3図に,	
土木学会マニュアルにおける鉄筋コンクリートはり部材の荷重変	土木学会マニュアルにおける鉄筋コンクリートはり部材の荷重変	土木学会マニュアルにおける鉄筋コンクリートはり部材の荷重	
位関係と損傷状態に対する概念図を <u>第3-2-4</u> 図に示す。建築学会	位関係と損傷状態に対する概念図を <u>第Ⅰ.2.1-4 図</u> に示す。建築学	変位関係と損傷状態に対する概念図を <u>第5-2-4図</u> に示す。日本建	
と土木学会マニュアルにおいて <u>おおむね</u> 対応が取れており、土木	会と土木学会マニュアルにおいて概ね対応が取れており、土木学	<u> 築学会と土木学会マニュアルにおいて概ね</u> 対応が取れており、土	
学会マニュアルの各損傷状態の設定は妥当であると考えられる。	会マニュアルの各損傷状態の設定は妥当であると考えられる。第	木学会マニュアルの各損傷状態の設定は妥当であると考えられ	
<u>第3-2-4</u> 図において <u>層間変形角1/100</u> は第4折れ点よりも手前に	<u>I.2.1-4</u> 図において <u>層間変形角1/100</u> は第4折れ点よりも手前	る。 <u>第5-2-4図</u> において <u>圧縮縁コンクリートひずみ1%</u> は第4折	・設計方針の相違
あり、屋外重要土木構造物の限界状態に至っていないと考えられ	にあり、屋外重要土木構造物の限界状態に至っていないと考えら	れ点よりも手前にあり、屋外重要土木構造物の限界状態に至って	【柏崎 6/7,女川 2 】
る。また,第3折れ点は <u>層間変形角1/100</u> よりも更に手前にある。	れる。また、第3折れ点は層間変形角1/100よりも更に手前にあ	いないと考えられる。また、第3折れ点は <u>圧縮縁コンクリートひ</u>	④の相違
	る。	<u>ずみ1%</u> よりもさらに手前にある。	
耐震安全性評価では、当該許容限界値に対して、十分な安全余	耐震安全性評価では、当該許容限界値に対して、妥当な安全裕	耐震安全性評価では、当該許容限界値に対して、十分な安全余	
裕を確保するため、構造部材の照査の過程において複数の安全係	度を確保するため、構造部材の照査の過程において複数の安全係	裕を確保するため、構造部材の照査の過程において複数の安全係	
数を考慮する。安全係数は、材料係数、部材係数、荷重係数、構	数と、地盤物性及び材料物性のばらつきの影響を考慮する。安全	数を考慮する。安全係数は、材料係数、部材係数、荷重係数、構	
造解析係数及び構造物係数の5種に分けられる。それぞれの安全係	係数は、材料係数、部材係数、荷重係数、構造解析係数及び構造	造解析係数及び構造物係数の5種に分けられる。それぞれの安全	
数の考え方を第3-2-5 図に示す。また、地盤物性のばらつきの考	物係数の5 種に分けられる。それぞれの安全係数の考え方を簠	係数の考え方を <u>第5-2-5図</u> に示す。また、地盤物性のばらつきに	
慮として、周辺地盤の変形特性について、平均値を基本ケースと	<u>I.2.1-5</u> 図に示す。また,地盤物性 <u>及び材料物性</u> のばらつきに <u>つ</u>	ついては,これらの影響を見込んだ照査を,詳細設計段階におい	・設計方針の相違
した場合に, 平均値±1.0×標準偏差(σ)のケースにおける影響	いては,これらの影響を見込んだ照査を,工事計画認可段階にお	て実施する。地盤物性のばらつきは、周辺地盤の変形特性につい	【女川2】
の程度を安全係数として考慮した照査を、工事計画認可段階にお	いて実施する。地盤物性のばらつき <u>は</u> ,…周辺地盤の変形特性につ	て,平均値を基本ケースとした場合に,平均値±1.0×標準偏差	女川2号炉は材料物
いて実施する。	いて,平均値を基本ケースとした場合に,平均値±1.0×標準偏差	(σ)のケース <u>について確認を行う。</u>	性のばらつきを考慮
	(σ)のケース <u>について確認を行う。</u>		(以下, ⑤の相違)
	材料物性のばらつきについては,構造物のせん断変形量を定義		・設計方針の相違
	するコンクリート部材の変形特性であるヤング係数が、コンクリ		【女川2】
	一トの設計基準強度に対応して定まることを踏まえ、コンクリー		⑤の相違
	トの設計基準強度を基本ケースとし、コンクリートの実強度に対		
	応して定めたケースについて確認を行う。		
	耐震安全性評価において,基準地震動Ss 全波(7波)を用いて	耐震安全性評価において,基準地震動Ss全波(6 波)を用い	
	基本ケースでの評価を実施し、基本ケースにおいて、曲げに対す	て基本ケースでの評価を実施し、基本ケースにおいて、曲げに対	
	る照査が厳しい(許容限界に対する余裕が小さい)地震動を用い、	する照査が厳しい(許容限界に対する余裕が小さい)地震動を用	
	地盤物性及び材料物性のばらつきを考慮した確認を行う。	い、地盤物性のばらつきを考慮した確認を行う。	
曲げに対する照査において考慮している安全係数は第3-2-1表	曲げに対する照査において考慮している安全係数は第 <u>I.2.1-1</u>	曲げに対する照査において考慮している安全係数は第5-2-1	
に示すとおり,材料係数,部材係数,荷重係数,構造解析係数,	表に示すとおり,材料係数,部材係数,荷重係数,構造解析係数,	素に示すとおり,材料係数,部材係数,荷重係数,構造解析係数,	
構造物係数がある。これらの安全係数は土木学会マニュアルにお	構造物係数がある。これらの安全係数は土木学会マニュアルにお	構造物係数がある。これらの安全係数は土木学会マニュアルにお	
いて以下の考えにより定められている。	いて以下の考えにより定められている。	いて以下の考えにより定められている。	
(1) 材料係数	(1) 材料係数	(1) 材料係数	
コンクリート強度の特性値は、製造において、その値を下回る	コンクリート強度の特性値は、製造において、その値を下回る	コンクリート強度の特性値は、製造において、その値を下回る	1
強度が発現する確率が5%以内となるように設定する。また、鉄筋	強度が発現する確率が5%以内となるように設定する。また、鉄筋	強度が発現する確率が5%以内となるように設定する。また,鉄	I
の機械的性質の特性値に関しても、日本工業規格(JIS)の規格範	の機械的性質の特性値に関しても、日本工業規格(JIS)の規格範	筋の機械的性質の特性値に関しても、日本工業規格(JIS)の	1

柏崎刈羽原	(子力発電所 6/	〈7号炉 (2017	7.12.20版)	女)	川原子力発電所	2 号炉(2019.11.	.6版)			島根原子力発電所	近 2 号炉		備考
囲の下限値を設	定してよいとして	こいる。このよう	うに,双方とも特	囲の下限値を設定してよいとしている。このように、双方とも特			規格範囲の下限値を設定してよいとしている。このように,双方						
性値の段階で実強度に対して小さい値を設定しており、応答値・			・ 性値の段階で実強度に対して小さい値を設定しており、応答値・			とも特性値の段階で実強度に対して小さい値を設定しており、応							
限界値ともに安	全側の照査がなさ	れているため,	材料係数は1.0	限界値ともに	安全側の照査がな	されているため,	,材料係数は1.0	答値・限界値ともに安全側の照査がなされているため、材料係数					
としている。				としている。				は1.0と	としている。				
(2) 部材係数	数			(2) 部材係数				(2) 音	部材係数				
安全側に配慮	した設定を行って	こいることから,	部材係数は1.0	安全側に配	慮した設定を行っ	っていることから,	, 部材係数は1.0	安全側に配慮した設定を行っていることから,部材係数は1.0と					
としている。				としている。				している。					
(3) 荷重係数	数			(3) 荷重係数				(3) 荷	荷重係数				
地震の影響以	、外の荷重の評価精	青度は,かなり高	高いものと考えら	地震の影響	以外の荷重の評価	「精度は,かなり」	高いものと考えら	地震	家の影響以外	の荷重の評価精度	は、かなり高	いものと考えら	
れ、地震の影響	については入力地	震動そのものが	ぶ最近の研究成果	れ、地震の影	響については入力	」地震動そのものお	が最近の研究成果	れ,地	震の影響に	ついては入力地震	動そのものが	最近の研究成果	
に基づいて設定	されるため,荷重	意係数は1.0 とし	ている。	に基づいて設	定されるため,荷	「重係数は1.0 と	している。	に基づ	いて設定さ	れるため、荷重係	数は1.0として	いる。	
(4) 構造解析	斤係数			(4) 構造解析	係数			(4) 楕	構造解析係数	 牧			
限られた条件	での実験であるこ	と、地盤パラメ	マータの設定が応	限られた条	件での実験である	っこと、地盤パラ	メータの設定が応	限ら	れた条件で	の実験であること	,地盤パラメ	ータの設定が応	
答解析結果に及	ぼす影響等を考え	併せて,構造解	解析係数は1.2 以	答解析結果に	及ぼす影響などを	考え併せて,構造	造解析係数は1.2	答解析	「結果に及ぼ	す影響 <u>など</u> を考え	併せて,構造角	遅析係数は1.2以	
上を標準として	いる。			以上を標準と	している。			上を標準としている。					
(5) 構造物係	系数			(5) 構造物係数			(5) 構造物係数						
屋外重要土木	構造物は重要度ご	とに適切な地震	豪動が設定され	屋外重要土木構造物は重要度ごとに適切な地震動が設定され			屋外重要土木構造物は重要度毎に適切な地震動が設定される。						
る。したがって	,構造物係数によ	い更に構造物の)重要性を考慮す	る。したがって、構造物係数により更に構造物の重要性を考慮す			従って、構造物係数によりさらに構造物の重要性を考慮する必要						
る必要はなく,	耐震性能照査にお	ける構造物係数	女は1.0 としてい	る必要はなく,耐震性能照査における構造物係数は1.0 としてい			はなく	はなく,耐震性能照査における構造物係数は1.0としている。					
る。				る。									
以上のことが	ら、土木学会マニ	ニュアルによる曲	由げ照査手法は,	以上のことから, 土木学会マニュアルによる曲げ照査手法は,			以上のことから,土木学会マニュアルによる曲げ照査手法は,						
コンクリート標	蓮示方書2002によ	、る照査よりも安	そ全側の評価を与	コンクリート標準示方書2002による照査よりも安全側の評価を与			コンクリート標準示方書2002による照査よりも安全側の評価を与						
えるため,技術	的妥当性及び適用	月性を有するとと	もに適切な余裕	えるため、技術的妥当性及び適用性を有するとともに適切な余裕			えるため、技術的妥当性及び適用性を有するとともに適切な余裕						
が確保されてい	ると判断できる。			が確保されていると判断できる。			が確保されていると判断できる。						
第3-2-1	表 曲げ評価におい	いて考慮している	る安全係数	第I.2.1	-1.表曲げ評価に	こおいて考慮して	いる安全係数		第5-2-1表	曲げ評価におい	て考慮している	る安全係数	
da	人后来。	曲げ!	照査	-	人成業	曲げ	照査			全体数	曲け	「照査	
	王馀姒	応答値算定	限界值算定	34	王休致	応答値算定	限界値算定		<u></u>		応答値算定	限界値算定	
	コンクリート	1.0	1.0		コンクリート	1.0	1.0	++-\k	1 15 ¥4	コンクリート	1.0	1.0	
材料係数	鉄筋	1.0	1.0	材料係数	鉄筋	1.0	1.0	松布	科徐毅	鉄肋 	1.0	1.0	
部材係数	地盤	-	1.0	部材係数	月四個語	-	1.0	部本	材係数		-	1.0	
荷重係数		1.0	-	荷重係数		1.0	-	荷重	重係数		1.0	_	
構造解析係数		1.2	_	構造解析係数	ία.	1.2	_	構造	造解析係数		1.2	_	
構造物係数 1.0		構造物係数		1.	0	構造	構造物係数 1.0			. 0			

4条-別紙5-10

计炉	備考
クリートの剥落	
■ 軸方向鉄筋の はらみ出し	
☆	
002による構造部材の	
ートの圧縮ひずみ 1% 200mm	
⁶) E縮試験例 ³⁾	・設計方針の相違 【柏崎 6/7,女川2】 ④の相違
行れ点:ひび割れ発生 行れ点:主筋降伏 行れ点:かぶりコンクリートの圧縮破壊 行れ点:主筋座屈	
1元刀特性と限界状態 は建築学会)	
him him has a second	1

	/++- ++
"炉	偏考
構造物	
貶	
屈⑥	
別れ発生	
锋伏 討荷力 (コンクリート圧縮縁ひずみ 0.35%程度) ↓コンクリート副英	
リコンシュート対応	
の荷重-変位関係と	
マニュアル)	
44.000	
係数	
▶ 設計用断面耐力	
↑	
構造物係数 ア,	
· · · · · · · · · · · · · · · · · · ·	
→ 設計断面力	
* 新花教	
デ え力	
造物の耐震性能照査指	・参考文献の相違
	【柏崎 6/7,女川 2 】
告性能照査編】,2002	
コンカゴート制地市地	
マレンファーズ地中傳	
る検討,土木字会地震	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
2.2 せん断照査に係る土木学会マニュアルの適用性について	2.2 せん断照査に係る土木学会マニュアルの適用性について	2.2 せん断照査に係る土木学会マニュアルの適用性について	
今回工認におけるせん断に対する照査は、土木学会マニュアル	今回工認申請におけるせん断に対する照査は、土木学会マニュ	今回工認におけるせん断に対する照査は、土木学会マニュアル	
に基づき、照査用せん断力が、せん断耐力を下回ることを確認す	アルに基づき、照査用せん断力が、せん断耐力を下回ることを確	に基づき、照査用せん断力が、せん断耐力を下回ることを確認す	
る。	認する。	る。	
	なお, せん断耐力は, せん断耐力評価式(分布荷重を受ける部	2.2.1 せん断破壊に対する照査	・設計方針の相違
	材のせん断耐力評価法を含む)及び材料非線形解析を用いる方法	応答せん断力とせん断耐力の比に構造物係数を乗じた数値が、	【柏崎 6/7,女川 2】
	のいずれかを用いて評価する。	1.0を下回ることの確認をもってせん断破壊に対する照査とする。	島根2号炉はせん断
		せん断耐力は、以下の3つの選択肢のいずれかを用いて評価する。	耐力評価式,分布荷重を
		(1) せん断耐力評価式	受ける部材のせん断耐
		(2)分布荷重を受ける部材のせん断耐力評価法*	力評価法又は材料非線
		分布荷重を受ける部材については、せん断耐力評価式を応用し	形解析を用いる方法の
		て、より合理的な評価を行うことができる。土木学会マニュアル	いずれかを用いて評価
		では、「等価せん断スパン比を用いた方法(第5-2-6図)」と「線	
		形被害則を用いた方法(第5-2-7図)」の2法を示す。	
		<u>(3)材料非線形解析を用いる方法</u>	
		ここでいう材料非線形解析とは、せん断耐力を求めるために用	
		いる解析法を指し、応答解析で用いる解析とは区別している。部	
		材が複雑な形状を有するなどの場合、これを選択できる。	
		(1)で全部材の照査を行った後,不合格と判定される部材だけを	
		取り出して(2)や(3)で再照査を行う。	
		▲ ※(2)の中の「等価せん断スパン比を用いた方法」と「線形被害則	
		を用いた方法」を同一構造物の異なる部材に対して使い分ける	
		ことはできない。	
2.2.1 せん断耐力評価式	2.2.1 せん断耐力評価式	2.2.2 せん断耐力評価式	
コンクリート標準示方書2002では、棒部材及びディープビーム	コンクリート標準示方書2002では、棒部材及びディープビーム	コンクリート標準示方書2002では、棒部材及びディープビーム	
について第3-2-2 表に示すとおりのせん断耐力式を定義してい	について第 <u>I.2.2-1</u> 表に示すとおりのせん断耐力式を定義して	について第5-2-2表に示すとおりのせん断耐力式を定義してい	
る。このうち,ディープビームについては, コンクリート標準示	いる。このうち, ディープビームについては, コンクリート標準	る。このうち,ディープビームについては, コンクリート標準示	
方書2002及び土木学会マニュアルにおいて同様の評価式となって	示方書2002及び土木学会マニュアルにおいて同様の評価式となっ	方書2002及び土木学会マニュアルにおいて同様の評価式となって	
いる。	ている。	いる。	
土木学会マニュアルでは、コンクリート標準示方書2002におけ	土木学会マニュアルでは、コンクリート標準示方書2002におけ	土木学会マニュアルでは、コンクリート標準示方書2002におけ	
 るせん断耐力式のうち棒部材式において,等価せん断スパンによ	るせん断耐力式のうち棒部材式において、等価せん断スパンによ	るせん断耐力式のうち棒部材式において、等価せん断スパンによ	
 り設定可能な係数βaを考慮している。これは屋外重要土木構造	り設定可能な係数βaを考慮している。これは屋外重要土木構造	 り設定可能な係数βaを考慮している。これは屋外重要土木構造物	
物が地中に埋設されたラーメン構造で、土圧、水圧、地震時慣性	物が地中に埋設されたラーメン構造で、土圧、水圧、地震時慣性	が地中に埋設されたラーメン構造で、土圧、水圧、地震時慣性力	
 力等の多数の分布荷重が作用していることによる分布荷重が卓越	力等の多数の分布荷重が作用していることによる分布荷重が卓越	 等の多数の分布荷重が作用していることによる分布荷重が卓越	
し、スパン内に反曲点が存在する等の載荷形態にある条件下では、	し、スパン内に反曲点が存在する等の載荷形態にある条件下では、	し、スパン内に反曲点が存在する等の載荷形態にある条件下では、	
せん断耐力が増大するという実験的知見を踏まえ、コンクリート	せん断耐力が増大するという実験的知見を踏まえ、より合理的な	せん断耐力が増大するという実験的知見を踏まえ、コンクリート	
標準示方書2002のせん断耐力式を精緻化したものである。当該せ	せん断耐力を与えるよう,コンクリート標準示方書2002のせん断	│標準示方書2002のせん断耐力式を精緻化したものである。当該せ	
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
ん断耐力式は、第3-2-7 図に示すとおり、屋外重要土木構造物を	耐力式を精緻化したものである。当該せん断耐力式は, 第1.2.2-2	ん断耐力式は、第5-2-6回に示すとおり、屋外重要土木構造物を	
模した破壊試験より得られるせん断耐力と整合的であり、合理的	図に示すとおり、屋外重要土木構造物を模した破壊試験より得ら	模した破壊試験より得られるせん断耐力と整合的であり、合理的	
な評価が可能であることが確認されている ¹⁾²⁾ 。	れるせん断耐力と整合的であり、合理的な評価が可能であること	な評価が可能であることが確認されている ¹⁾²⁾ 。	
	を確認されている ^{(3),(4)} 。		
また、これら多数の荷重の複合作用を個々に分解することは困	また、これら多数の荷重の複合作用を個々に分解することは困	また、これら多数の荷重の複合作用を個々に分解することは困	
難であることから、せん断耐力の算定時に個々の荷重作用を区分	難であることから、せん断耐力の算定時に個々の荷重作用を区分	難であることから、せん断耐力の算定時に個々の荷重作用を区分	
せず最終的な設計用断面力分布を用いてせん断耐力を算定するこ	せず最終的な設計用断面力分布を用いて合理的なせん断耐力を算	せず最終的な設計用断面力分布を用いてせん断耐力を算定するこ	
ととしている ¹⁾ 。	定することとしている33。	ととしている ¹ 。	
耐震安全性評価では、当該許容限界値に対して、妥当な安全余	耐震安全性評価では、当該許容限界値に対して、妥当な安全余	耐震安全性評価では、当該許容限界値に対して、妥当な安全余	
裕を確保するため、構造部材の照査の過程において複数の安全係	裕を確保するため、構造部材の照査の過程において複数の安全係	裕を確保するため、構造部材の照査の過程において複数の安全係	
数を考慮する。安全係数は、材料係数、部材係数、荷重係数、構	数と、地盤物性及び材料物性のばらつきの影響を考慮する。安全	数を考慮する。安全係数は、材料係数、部材係数、荷重係数、構	
造解析係数及び構造物係数の5 種に分けられる。それぞれの安全	係数は、材料係数、部材係数、荷重係数、構造解析係数及び構造	造解析係数及び構造物係数の5種に分けられる。それぞれの安全	
係数の考え方を <u>第3-2-6</u> 図に示す。また、地盤物性のばらつきの	物係数の5種に分けられる。それぞれの安全係数の考え方 <u>を第</u>	係数の考え方を <u>第5-2-8図</u> に示す。また、地盤物性のばらつきに	
考慮として、周辺地盤の変形特性について、平均値を基本ケース	<u>I.2.2-1</u> 図に示す。また、地盤物性及び材料物性のばらつきにつ	ついては、これらの影響を見込んだ照査を、詳細設計段階におい	・設計方針の相違
とした場合に、平均値±1.0×標準偏差(σ)のケースにおける影	いては、これらの影響を見込んだ照査を、工事計画認可段階にお	て実施する。地盤物性のばらつきは、周辺地盤の変形特性につい	【女川2】
響の程度を安全係数として考慮した照査を、工事計画認可段階に	いて実施する。 <u>地盤物性のばらつきは、</u> 周辺地盤の変形特性につ	て,平均値を基本ケースとした場合に,平均値±1.0×標準偏差	⑤の相違
おいて実施する。	いて,平均値を基本ケースとした場合に,平均値±1.0×標準偏差	(σ)のケース <u>について確認を行う。</u>	
	(σ)のケース <u>について確認を行う</u> 。 <u>材料物性のばらつきについて</u>		・設計方針の相違
	は、構造物のせん断変形量を定義するコンクリート部材の変形特		【女川2】
	性であるヤング係数が、コンクリートの設計基準強度に対応して		⑤の相違
	定まることを踏まえ、コンクリートの設計基準強度を基本ケース		
	とし、コンクリートの実強度に対応して定めたケースについて確		
	<u>認を行う。</u>		
	耐震安全性評価において,基準地震動Ss 全波(7 波)を用いて	耐震安全性評価において,基準地震動Ss全波(6波)を用い	
	基本ケースでの評価を実施し、基本ケースにおいて、せん断に対	て基本ケースでの評価を実施し、基本ケースにおいて、せん断に	
	する照査が厳しい(許容限界に対する余裕が小さい)地震動を用	対する照査が厳しい(許容限界に対する余裕が小さい)地震動を	
	い,地盤物性及び材料物性のばらつきを考慮した確認を行う。	用い、地盤物性のばらつきを考慮した確認を行う。	
せん断に対する照査において考慮している安全係数は第3-2-3	せん断に対する照査において考慮している安全係数は第.2.2-2	せん断に対する照査において考慮している安全係数は第5-2-	
素に示すとおり,材料係数,部材係数,荷重係数,構造解析係数,	素に示すとおり、材料係数、部材係数、荷重係数、構造解析係数、	3表に示すとおり、材料係数、部材係数、荷重係数、構造解析係数、	
構造物係数がある。これらの安全係数は土木学会マニュアルにお	構造物係数がある。これらの安全係数は土木学会マニュアルにお	構造物係数がある。これらの安全係数は土木学会マニュアルにお	
いて以下の考えにより定められている。	いて以下の考えにより定められている。	いて以下の考えにより定められている。	
(1) 材料係数	(1) 材料係数	(1) 材料係数	
応答値算定時に適用する材料係数は、コンクリートと鉄筋の物	限界値算定時に適用する材料係数はコンクリート標準示方書	応答値算定時に適用する材料係数は、コンクリートと鉄筋の物	
性値が、特性値の段階で実強度に対して小さい値を設定している	2002 に準拠して、コンクリートに対して1.3*、鉄筋に対して1.0	性値が、特性値の段階で実強度に対して小さい値を設定している	I
ことから安全側の照査がなされているため1.0としている。限界値	としている。応答値算定時に適用する材料係数は、コンクリート	ことから安全側の照査がなされているため1.0としている。限界値	I
算定時に適用する材料係数はコンクリート標準示方書2002 に準	と鉄筋の物性値が、特性値の段階で実強度に対して小さい値を設	算定時に適用する材料係数はコンクリート標準示方書2002に準拠	l

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
拠して, コンクリートに対して1.3, 鉄筋に対して1.0 としている。	定していることから安全側の照査がなされているため、材料係数	して, コンクリートに対して1.3, 鉄筋に対して1.0としている。	
	は1.0としている		
	※:材料係数は1.3 を標準とするが、既設構造物において、強度		
	等の材料特性のばらつきを考慮して特性値が設定されている		
	ことを実測値により確認した場合は1.0~1.3の間で低減す		
	<u> </u>		
(2) 部材係数	(2) 部材係数	(2) 部材係数	
コンクリート標準示方書2002に準拠して コンクリート寄与分	コンクリート標準示方書2002に準拠して コンクリート寄与分	コンクリート標準示方書2002に準拠して コンクリート寄与分	
に対して1.3. 鉄筋寄与分に対して1.1としている。	に対して1.3. 鉄筋寄与分に対して1.1としている。	に対して1.3. 鉄筋寄与分に対して1.1としている。	
(3)荷重係数	(3) 荷重係数	(3) 荷重係数	
地震の影響以外の荷重の評価精度は、かなり高いものと考えら	地震の影響以外の荷重の評価精度は、かなり高いものと考えら	地震の影響以外の荷重の評価精度は、かなり高いものと考えら	
れ、地震の影響については入力地震動そのものが最近の研究成果	れ、地震の影響については入力地震動そのものが最近の研究成果	れ、地震の影響については入力地震動そのものが最近の研究成果	
に基づいて設定されるため、荷重係数は1.0としている。	に基づいて設定されるため、荷重係数は1.0としている。	に基づいて設定されるため、荷重係数は1.0としている。	
(4)構造解析係数	(4) 構造解析係数	(4) 構造解析係数	
変形に関する応答値の評価精度に比較して、断面力に関する応	変形に関する応答値の評価精度に比較して、断面力に関する応	変形に関する応答値の評価精度に比較して、断面力に関する応	
答値の評価精度は高いと考えられることから、変形照査の場合よ	答値の評価精度は高いと考えられることから、変形照査の場合よ	答値の評価精度は高いと考えられることから、変形照査の場合よ	
り低減させて1.05としている。	り低減させて1.05としている。	り低減させて1.05としている。	
(5)構造物係数	(5) 構造物係数	(5) 構造物係数	
基準地震動は地点ごとにサイト特性を考慮して設定され、重要	基準地震動は地点ごとにサイト特性を考慮して設定され、重要	基準地震動は地点毎にサイト特性を考慮して設定され、重要度	
度分類に対応して入力地震動が選定される。したがって、構造物	度分類に対応して入力地震動が選定される。したがって、構造物	分類に対応して入力地震動が選定される。したがって、構造物係	
係数より更に構造物の重要性を考慮する必要はなく、耐震性能照	係数より更に構造物の重要性を考慮する必要はなく、耐震性能照	数により更に構造物の重要性を考慮する必要はなく、耐震性能照	
査における構造物係数は1.0としている。	査における構造物係数は1.0としている。	査における構造物係数は1.0としている。	
以上のことから, 土木学会マニュアルによるせん断照査手法は,	以上のことから、土木学会マニュアルによるせん断照査手法は、	以上のことから、土木学会マニュアルによるせん断照査手法は、	
屋外重要土木構造物の構造的特徴を踏まえ設定された手法である	屋外重要土木構造物の構造的特徴を踏まえ設定された手法である	屋外重要土木構造物の構造的特徴を踏まえ設定された手法である	
ため、技術的妥当性及び適用性を有すると判断できる。	ため, 技術的妥当性及び適用性を有すると判断できる。	ため、技術的妥当性及び適用性を有すると判断できる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
第3-2-2 表 せん断耐力式の比較表	第 I.2.2-1 表 せん断耐力式の比較表	第5-2-2表 せん断耐力式の比較表	
コンクリート標準示方書 2002 土木学会マニュアル	コンクリート標準示方書 2002 土木学会マニュアル	コンクリート標準示方書2002 土木学会マニュアル	
$V_{yd} = V_{cd} + V_{sd}$ $V_{yd} = V_{cd} + V_{sd}$ $V_{yd} : せん断耐力$ $V_{yd} : せん断耐力$ $V_{cd} : \neg 2 / 0 \sqrt{1 - 1} 6 12$ $V_{yd} : U \wedge m m 2 / 0 \sqrt{1 - 1} 6 12$ $V_{cd} : \neg 2 / 0 \sqrt{1 - 1} 6 12$ $V_{cd} : \neg 2 / 0 \sqrt{1 - 1} 6 12$ $V_{cd} : \neg 2 / 0 \sqrt{1 - 1} 6 12$ $V_{cd} : \neg 2 / 0 \sqrt{1 - 1} 6 12$ $V_{cd} : \beta_d \cdot \beta_p \cdot \beta_n \cdot f_{vcd} \cdot b_w \cdot d / \gamma_b$ $V_{cd} = \beta_d \cdot \beta_p \cdot \beta_n \cdot \beta_a \cdot f_{vcd} \cdot b_w \cdot d / \gamma_b$ $\beta_d, \beta_p : \overline{matrix} + \delta m m d r d r d r d r d r d r d r d r d r$	 	VydU (1)U (1) <th< td=""><td></td></th<>	
P - アレイズ P - アレイズ P - アレイズ P - レース P - レース	ビル新スペシより設定される係数を考慮し、 コンクリート標準示方書 2002のせん新聞力式を精緻化 Vpde = V_dd + V_dd Vpde = V_dd + V_dd Vpde : コンクリート負担 Ved: : コンクリート負担 Ved: : コンクリート負担 Ved: : : ロングリート負担 Ved: : : : : : : : : : : : : : : : : : :	アクシート標準示力書のせん断部力式を精緻化 マクリート標準示力書のせん断部力式を精緻化 V _{pd4} = V _{cd4} + V _{ad} V _{pd4} = $V_{cd4} + V_{ad}$ V _{ad4} : $v_{cd4} = \rho_d \cdot \rho_{p}$ $P_{ad4} = \frac{5}{1 + (\alpha_a/d)^2}$ α_y : 荷重作用点から支承前面までの距離 f_{ad} : 設計基準強度、安全係数等で決まる 同一の評価式	

炉	備考
	・資料構成の相違
	【柏崎 6/7,女川 2】
	島根2号炉は第 5-2
	-3表に記載
	、次料構成の相違
	「貝科佛成の相選 【柏崎 6/7 五川 9】
	【伯酮 0/1, 女/12】 自根 9 号 恒 け 筆 59
	-8 図に記載
	の日に民

炉	備考
 ・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		○応答解析の結果得られた断面力分布を基に耐力を算定する。	・設計方針の相違
		<u>a. 部材の分割</u>	【柏崎 6/7,女川 2 】
		応答せん断力分布を見て、部材中にせん断力の反転する点があ	島根2号炉は分布荷
		る場合は、その点で領域分割する。照査は双方の領域に対して行	重を受ける部材のせん
		<u>ð.</u>	断耐力評価法のうち線
		<u>b. 荷重分布の設定</u>	形被害則を用いた方法
		応答せん断力分布から、それと同じ状況を再現できる荷重分布	について検討
		を求める。部材非線形解析で応答を求めると、節点位置で階段状	
		<u>にせん断力が変化する。この変化分を着目節点位置に作用する荷</u>	
		<u>重とすればよい。a. の操作による分割点における変化分は両側の</u>	
		<u>領域に配分する。</u>	
		<u>c. 照査断面の設定</u>	
		照査断面は、せん断応力度(応答せん断力を断面積で除した値)	
		が最大となる断面とする。	
		<u>d.</u> 線形被害則の適用	
		個々の作用P _j (応答値側の安全係数を含む)に対するせん断耐力	
		Vj(限界値側の安全係数を含む)を評価し,作用力とせん断耐力	
		の比の総和に構造物係数を乗じた値が1.0以内であることの確認	
		<u>を行う。</u>	
		$\gamma_i \cdot \sum_j \frac{P_j}{V_j} \le 1.0$	
		(a) 応答せん断力分布 (b) 外力分布の設定 (c) 作用点毎のa/dの設定	
		第5-9-7回 線形拡実則を用いたせん断耐力評価法	
		53 2 1回 林形似音則を用いたせん時間刀計画仏	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発	電所 2号炉		備考
			材料係数 材料の特性値 アー 酸計基準強度 荷重の特性値 ア・ 荷重の特性値 ア・ 荷重係数 第5-2-8図 (第5-2-	■荷重 「Y ₀ 」 構造物係数 構造物係数 構造解析係数 定全係数の考え方 5図の再掲)	9新面耐力 ↓ アi ◆新面力	 ・資料構成の相違 【柏崎 6/7,女川2】 柏崎は第 3-2-6 図 に,女川は第 I.2.2-1 図に記載
			第5-2-3表 せん断耐力評価 安全係数 コンクリート 材料係数 地盤 部材係数 コンクリート 前車係数 横造解析係数 構造物係数 構造物係数	において考慮していた せん断照査 応答値算定 限 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	る安全係数	・資料構成の相違 【柏崎 6/7,女川 2】 柏崎は第 3-2-3 表 に,女川は第 I.2.2-2 表に記載

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
(6) 安全上適切と認められる規格及び基準を用いた評価につい		(6) 安全上適切と認められる規格及び基準を用いた評価につい	・設計方針の相違
7		<u>T</u>	【女川2】
屋外重要土木構造物の耐震安全性については、屋外重要土木構		屋外重要土木構造物の耐震安全性については、屋外重要土木構	島根2号炉は土木学
造物の構造上の特徴を踏まえ、土木学会マニュアルに基づき評価		<u>造物の構造上の特徴を踏まえ、土木学会マニュアルに基づき評価</u>	会マニュアルによるせ
を実施しているが、当該マニュアルについては「耐震設計に係る		を実施しているが、当該マニュアルについては「耐震設計に係る	ん断照査の妥当性につ
工認審査ガイド(原子力規制委員会,2013)」(以下「工認審査ガ		工認審査ガイド(原子力規制委員会,2013)」(以下「工認審査ガ	いて検討
イド」という。)において「安全上適切と認められる規格及び基準		イド」という。)において「安全上適切と認められる規格及び基準	
等」として取り扱われていない。このため代表構造物について、		等」として取り扱われていない。このため代表構造物について、	
工認審査ガイドにおいて「安全上適切と認められる規格及び基		工認審査ガイドにおいて「安全上適切と認められる規格及び基準	
準等」として適用可能な規格及び基準等に準拠した評価を実施し,		等」として適用可能な規格及び基準等に準拠した評価を実施し、	
土木学会マニュアルの評価結果と比較することで、現在の評価が		土木学会マニュアルの評価結果と比較することで,現在の評価が	
妥当であることを確認する。		妥当であることを確認する。	
評価項目のうち、構造部材の曲げについては、工認審査ガイド		評価項目のうち,構造部材の曲げについては,工認審査ガイド	
において「安全上適切と認められる規格及び基準等」として取り		において「安全上適切と認められる規格及び基準等」として取り	
扱われているコンクリート標準示方書2002 よりも保守的な手法		扱われているコンクリート標準示方書2002よりも保守的な手法を	
を用いていることから、今回工認では、耐震裕度が厳しい構造部		用いていることから、今回工認では、耐震裕度が厳しい構造部材	
材のせん断に対して検討を実施する。		のせん断に対して検討を実施する。	
検討では, 基準地震動Ss による地震応答解析により得られた応		<u>検討では、基準地震動Ssによる地震応答解析により得られた</u>	
答値を用い,「安全上適切と認められる規格及び基準等」として,		応答値を用い、「安全上適切と認められる規格及び基準等」として,	
工認審査ガイド記載の「原子力施設鉄筋コンクリート構造計算基		工認審査ガイド記載の「原子力施設鉄筋コンクリート構造計算規	
準・同解説(日本建築学会,2005 制定)」(以下「建築学会基準」		準・同解説(日本建築学会,2005制定)」(以下「建築学会基準」	
という。)によるせん断照査結果と比較を行うことで,土木学会マ		という。)によるせん断照査結果と比較を行うことで,土木学会マ	
ニュアルによるせん断照査が妥当であることを確認する。		ニュアルによるせん断照査が妥当であることを確認する。	
【参考文献】		【参考文献】	・参考文献の相違
1) 原子力土木委員会・限界状態設計部会:原子力発電所・鉄筋コ		1) 原子力土木委員会・限界状態設計部会:原子力発電所・鉄筋コ	【女川2】
ンクリート製屋外重要土		ンクリート製屋外重要土木構造物への限界状態設計法の適用-	
木構造物への限界状態設計法の適用-安全性照査マニュアルの提		安全性照査マニュアルの提案-,土木学会論文集No.442/V-16,	
案-, 土木学会論文集		pp23-33, 1992.2	
No. 442/V-16, 1992		2)遠藤達巳・青柳征夫・松村卓郎:鉄筋コンクリート製地中構造	
2) 遠藤達巳・青柳征夫・松村卓郎:鉄筋コンクリート製地中構造		物の限界状態設計に用いるせん断耐力評価法,電力中央研究所	
物の限界状態に用いるせん断耐力評価法、電力中央研究所報告、		報告, 平成4年3月	
1992		3)日本建築学会:原子力施設鉄筋コンクリート構造計算規準・同	
3) 日本建築学会:原子力施設鉄筋コンクリート構造計算基準・同		角军説, 2005	
解説, 2005			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
2.2.2.2 材料非線形解析を用いたせん断耐力評価	22.2 材料非線形解析を用いたせん断耐力評価	2.2.3 材料非線形解析を用いたせん断耐力評価	
構造部材の照査において発生するせん断力が、せん断耐力式に	構造部材の照査において発生するせん断力が,せん断耐力式に	構造部材の照査において発生するせん断力が, (1), せん断耐力評	
よるせん断耐力を上回る部材については、以下で示す材料非線形	よるせん断耐力を上回る部材については、以下で示す材料非線形	価式及び(2)分布荷重を受ける部材のせん断耐力評価法によるせ	・設計方針の相違
解析を用いたせん断耐力評価を実施する。	解析を用いたせん断耐力評価を実施する。	ん断耐力を上回る部材については,以下で示す材料非線形解析を	【柏崎 6/7,女川 2】
		用いたせん断耐力評価を実施する。	島根2号炉は分布荷
			重を受ける部材のせん
(1)評価条件	(1) 評価条件	(1) 評価条件	断耐力評価法について
<u>2.2.1</u> で示したせん断耐力式は、既往の実験等から一般化	2.2.1 で示したせん断耐力式は、既往の実験等から一般化され	2.2.2で示したせん断耐力式は、既往の実験等から一般化された	検討
されたものであることから、構造部材の形状、作用荷重及び鉄筋	たものであることから、構造部材の形状、作用荷重及び鉄筋コン	ものであることから、構造部材の形状、作用荷重及び鉄筋コンク	
コンクリートの非線形特性を踏まえた材料非線形解析を実施する	クリートの非線形特性を踏まえた材料非線形解析を実施すること	リートの非線形特性を踏まえた材料非線形解析を実施することに	
ことにより、より高い精度でせん断耐力を求め、構造部材のせん	により、より高い精度でせん断耐力を求め、構造部材のせん断照	より、より高い精度でせん断耐力を求め、構造部材のせん断照査	
断照査を行う。	査を行う。	を行う。	
第3-2-4 表及び第3-2-5 表に材料非線形解析の概要を示す。	第 I.2.2-3 表及び第 I.2.2-4 表に材料非線形解析の概要を示		
	them and the second sec		
材料非線形解析は,90年代までに、ひび割れの進展モデルや破	材料非線形解析は,90年代までに、ひび割れの進展モデルや破	材料非線形解析は、90年代までに、ひび割れの進展モデルや破	
壊エネルギーの概念等、基本となるモデルが提示され、様々な問	壊エネルギーの概念等、基本となるモデルが提示され、様々な問	壊エネルギーの概念等、基本となるモデルが提示され、様々な問	
題に適用されながら有効性と信頼性を高めており、「コンクリート	題に適用されながら有効性と信頼性を高めており、「コンクリート	題に適用されながら有効性と信頼性を高めており、「コンクリート	
標準示方書 設計編(土木学会, 2012)」(以下「コンクリート標準	標準示方書 設計編(土木学会, 2012)」(以下「コンクリート標準	標準示方書 設計編(土木学会, 2012)」(以下「コンクリート標	
示方書2012」という。)や土木学会マニュアル等で取り扱われてい	示方書2012」という。)や土木学会マニュアル等で取り扱われてい	準示方書2012」という。)や土木学会マニュアル等で取り扱われて	
る。	る。	いる。	
材料非線形解析にて用いる鉄筋コンクリートの構成則について	材料非線形解析にて用いる鉄筋コンクリートの構成則について	材料非線形解析にて用いる鉄筋コンクリートの構成則について	
は種々あるが、ここでは、現在までに実務でも使用され、適用性	は種々あるが、ここでは、現在までに実務でも使用され、適用性	は種々あるが、ここでは、現在までに実務でも使用され、適用性	
と信頼性が確認されており、コンクリート標準示方書2012 におい	と信頼性が確認されており、コンクリート標準示方書2012 におい	と信頼性が確認されており、コンクリート標準示方書2012におい	
て標準とされる以下の手法とする。	て標準とされる以下の手法とする。	て標準とされる以下の手法とする。	
① 鉄筋とコンクリートとの一体性を前提とする分散ひび割れモ	① 鉄筋とコンクリートとの一体性を前提とする分散ひび割れモ	①鉄筋とコンクリートとの一体性を前提とする分散ひび割れモデ	
デルにてモデル化する。	デルにてモデル化する。	ルにてモデル化する。	
② 鉄筋との複合作用が支配的な鉄筋周辺のコンクリートについ	② 鉄筋との複合作用が支配的な鉄筋周辺のコンクリートについ	②鉄筋との複合作用が支配的な鉄筋周辺のコンクリートについて	
ては、平均化構成則を用いる。	ては、平均化構成則を用いる。	は、平均化構成則を用いる。	
③ 鉄筋との複合作用が及ばない領域では、コンクリートの破壊力	③ 鉄筋との複合作用が及ばない領域では、コンクリートの破壊力	③鉄筋との複合作用が及ばない領域では、コンクリートの破壊力	
学の概念を導入する。	学の概念を導入する。	学の概念を導入する。	
なお、材料非線形解析の適用に当たっては、当該構造物の構造	なお、材料非線形解析の適用に当たっては、当該構造物の構造	なお、材料非線形解析の適用にあたっては、当該構造物の構造	
的な特徴や荷重条件が類似する既往の実験等から得られたせん断	的な特徴や荷重条件が類似する既往の実験等から得られたせん断	的な特徴や荷重条件が類似する既往の実験等から得られたせん断	
耐力と、材料非線形解析によるせん断耐力を比較し、その適用性	耐力と、材料非線形解析によるせん断耐力を比較し、その適用性	耐力と、材料非線形解析によるせん断耐力を比較し、その適用性	
を判断した上で、モデル化や各種パラメータの設定に係る解析者	を判断した上で、モデル化や各種パラメータの設定に係る解析者	を判断したうえで、モデル化や各種パラメータの設定に係る解析	
の差を考慮した安全係数を設定する。	の差を考慮した安全係数を設定する。	者の差を考慮した安全係数を設定する。	
		参考として、耐震性能照査における応答値の評価に用いる解析	
		手法を第5-2-4表及び第5-2-5表に示す。	

	部材非線形角	單析	材料非線形解析			
モデル化	骨組モデ/	V	有限要素			
解析次元	18	、元		2 次元	3 次元	
構成則	M ·φ, M ·θ 等			応カーひずみ関係		
要素	はり要素	ファイノ	、一要素	平面ひずみ要素	立体要素	
AL 344	(汎用性)		狭い ←	→ 広い		
村国	(解析時間)		短い ←	→ 長い		

	部材非線形解	材料非線形解析					
モデル化	骨組モデル			有限要素			
解析次元	1 2			2次元	5次元		
構成則	M -Φ, M -θ等				応力-ひずみ関係		
要素	はり要素	ファイノ	《一要素		平面ひずみ要素	立体要素	
44-34-	(汎用性)	狭い	A ←		広い		
44.00	(解析時間)	烜	A ←	\rightarrow	長い		

	島根原子力発電所 2号炉 備考									
	第5-2-4表 耐震性能と地震応答解析手法との対応									
⊠分	限界	状態	選択される標準的な解析手法と 耐震性能に用いる物理量							
1	構造物 降伏に	の部材が 至らない		2 3			 線形解析 ・ 線筋及びコンク ・ 最大せん断応力 ・ 電気 ・ 電気 ・ 電気 ・ ・	リートの最大応力 	T	
2	構造物 力に3	が最大耐 Eらない	,	ļ	4)	 ・最大曲げモーメン ③部材非線形解 ・最大曲げモーン ・最大曲げモーン ・最大曲ばモーン ・最大増間変形列 	小 が (ント (変位 3)、最大せん断力		
3	構造物 し	かが崩壊 ない		ļ	,	,	 ④材料非線形解 ・最大変位 ・最大層間変形が ・最大ひずみ、 	析 9 8大せん断力		
地震 線 形 ま た 部 材	也震応答解析手法の使用に当たっては,新設土木構造物は,① 泉形解析を基本とする。 また,既設構造物は,③部材非線形解析の使用を基本とするが, 部材によっては,④材料非線形解析を用いる場合もある。									
		部材	非線形劑	译析			材料非線形制	斩	1	
モジ	デル化	骨	組モデノ	ν	+		有限要素		{	
解	所次元		18	大元			2次元	3次元	1	
構	成則	M-¢, M-	θ 等				応カーひずみ関係			
4	要素 はり要素 ファイハー要素 平面のすみ3 特徴 (汎用性) 狭い ← → 広い (解析時間) 短い ← → 長い		平面ひずみ要素 ← → 広い ← → 長い	立体要素						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
1) 適用基準	<u>a</u> 適用基準	1) 適用基準
材料非線形解析については、土木学会マニュアル、コンクリー	材料非線形解析については、土木学会マニュアル、コンクリー	材料非線形解析については、土木学会マニ
ト標準示方書2012等に基づき実施する。基準と異なる設定を用い	ト標準示方書2012等に基づき実施する。基準と異なる設定を用い	ト標準示方書2012等に基づき実施する。
る場合には、設定根拠の妥当性を確認する。	る場合には、設定根拠の妥当性を確認する。	<u>第5-2-6表</u> に参考とする主な基準・文献
第3-2-6 表に参考とする主な基準・文献を示す。	第 I.2.2-5 表に参考とする主な基準・文献を示す。	

第3-2-6 表 参考とする主な基準等

項目	参考とする主な基準等	備考
entral attraction and all data sub-	・コンクリート標準示方書 2012	
材料定数・材料特性	・土木学会マニュアル	_
		・既往文献等より設定した許容
		限界(破壊基準)が,部材係数
許容限界	-	の設定における材料非線形解析
		にて,実験結果と整合的である
		ことを確認。

<u>第1.2.2-5</u> 表 参考とする主な基準等

項目	参考とする主な基準等	備考
材料定数 ・材料特性	 ・コンクリート標準示方書2012 ・土木学会マニュアル 	_
許容限界	_	 ・せん断力-相対変位関係より設定した許容限 界(破壊基準)が,部材係数の設定における材 料非線形解析にて,実験結果と概ね整合的であることを確認。

	島根原子力発	備考						
凖	<u>E</u>							
形解析に	彡解析については,土木学会マニュアル,コンクリー							
書2012等	岸に基づき実 旅	値する。						
。 表に参	考とする主な	基準・文	献を示す。					
第5-	-2-6表 参考	寄とする ∃	主な基準等					
		44.50.64	-					
	参考とする主な	《基準等 進云古書	偏考					
料特性	2012	テル	-					
	・工小子云、こう	110	 ・既往文献等により設定した 					
	_		許容限界(破壊基準)が、部 材係数の設定における材料非					
//-			線形解析にて、実験結果と整 合的であることを確認。					
数								
性評価に	こ用いる材料類	定数は,	設計図書及び文献等を基					
, コンク	リート及び銷	失筋の材料	斗定数を <u>第5-2-7表</u> 及び					
に示す。	0							
第5-1	2-7表 コン	クリート	の材料定数					
	設定値		諸 元					
積重量	0. 0kN/m ³	材料非線形(から考慮し)	解析による荷重に含まれること ない					
強度	18. 1N/mm ²	設計基準強	度(設計図書23.5N/mm ²)					
		/材料係数	(ymc=1.3)					
強度	1. 45N/mm ²	引張強度/オ	材料係数					
クひずみ	0.15%	コンクリー	ト標準示方書2012					
ーせん断 係数	1.0	コンクリー	ト標準示方書2012					
ペルギー	レギー 0.0754N/mm コンクリート標準示方書2012							
第	第5-2-8表	鉄筋の材	料定数					
~~~								
	設定値	材料非線型	諸 元 解析による荷重に含まれること					
重量	0. 0kN/m ³	から考慮し	\$N					
系数	200kN/mm ²	コンクリー	ト標準示方書2012					
主鉄筋	1000N/mm ²	せん断破壊 曲げ耐力が	8元17型の破壊形態となるよう、 「増大するように設定					
せん断 補強筋	$345 \text{N/mm}^2$	設計図書						
	ļ							

				備考				
)	適用基準							
杉	材料非緩	泉形解析に	こついては、	土木学会	マニュアル,コンクリ	ļ		
ト령	票準示力	声書2012等	<b>豪に基づき実</b> が	奄する。				
贫	第5-2-	-6表に参	考とする主な	基準・文	献を示す。			
~~~								
		第5-	-2-6表 参表	きとする	主な基準等			
	項	3	参考とする主な	な基準等	備考			
杉	「料定数・	材料特性	 ・コンクリート標 2012 	準示方書	_			
	- The second		・土木学会マニュ	アル				
					 ・既往文献等により設定した 許容限界(破壊基準)が、部 			
	許容	長界	-		材係数の設定における材料非 線形解析にて、実験結果と整			
					合的であることを確認。			
		•						
)	材料定	三数						
而	时震安全	と性評価に	こ用いる材料	定数は,	設計図書及び文献等を	·基		
こ割	定する	5。コンク	リート及び銀	失筋の材料	斗定数を <u>第5-2-7表</u> 及	び		
<u> </u>	-2-8	表に示す。	0					
		第5一	2-7表 コン	クリート	の材料定数			
			設定値		諸元			
	単位	体積重量	0. 0kN/m ³	材料非線形	解析による荷重に含まれること			
F		later their other	10 11/ 2	から考慮しない 設計基準強度(設計図書23.5N/mm ²)				
Ļ)Es	稻 强度	18. 1N/mm*	/材料係数(γmc=1.3)				
	引	張強度	1.45N/mm ²	引張強度/材料係数				
	圧縮ピ	ークひずみ	0.15%	コンクリー	ト標準示方書2012			
	ひび割 伝	れーせん断 達係数	1.0	コンクリー	コンクリート標準示方書2012			
政康エネルギー 0.0754N/mm コンクリート標準示方書2012								
L								
		紅	30-2-01	业大月7 0 ノヤリ	科定数			
			設定値		諸元			
	単位体	積重量	0. 0kN/m ³	材料非線用	彡解析による荷重に含まれること ひい	-		
	ヤンク	係数	200kN/mm ²	から考慮し コンクリー	- ト標準示方書2012	-		
	欧 (4)	主鉄筋	1000N/mm ²	せん断破壊	後先行型の破壊形態となるよう、			
	強度	せん断	0.001	町の前方が	*市へりのように政定	-		
		補強筋	345N/mm²	設計図書				

2) 材料定数

耐震安全性評価に用いる材料定数は、設計図書及び文献等を基 に設定する。コンクリート及び鉄筋の材料定数を<u>第3-2-7</u>表及び <u>第3-2-8</u>表に示す。

<u>第3-2-7</u> 表 コンクリートの材料定数

	設定値	諸元
単位体積重量	0.0kN/m ³	材料非線形解析による荷重に含まれる ことから考慮しない
圧縮強度	18.1 N/mm ²	設計基準強度(設計図書 23.5N/mm ²) /材料係数 (γmc=1.3)
引張強度	1.45N/mm ²	引張強度/材料係数
圧縮ピークひずみ	0.2%	コンクリート標準示方書 2012
ひび割れ-せん断 伝達係数	1.0	コンクリート標準示方書 2012
破壊エネルギー	0.0768N/mm	コンクリート標準示方書 2012

第3-2-8 表 鉄筋の材料定数

		設定値	諸元
単位体積重量		0.0kN/m ³	材料非線形解析による荷重に含まれる ことから考慮しない
ヤン	グ係数	200kN/mm ²	コンクリート標準示方書 2012
降伏	主鉄筋	2000N/mm ²	せん断破壊先行型の破壊形態となるよ う,曲げ耐力が増大するように設定
強度	せん断補 強筋	345 N/mm ²	設計図書

b. 材料定数

耐震安全性評価に用いる材料定数は、設計図書及び文献等を基 に設定する。コンクリート及び鉄筋の材料定数を<u>第1.2.2-6</u>表及 び<u>第1.2.2-7</u>表に示す。

<u>第1.2.2-6</u> 表 コンクリートの材料定数

	設定値	諸 元
単位体積重量	0.0 kN/m ⁵	材料非線形解析による荷重に含まれ ることから考慮しない
圧縮強度	15.8 N/mm²	設計基準強度(設計図書20.5N/mm ²) /材料係数 ^並
引張強度	1.33 N/mm^2	引張強度/材料係数**
圧縮ピークひずみ	0.2%	コンクリート標準示方書2012
ひび割れーせん断 伝達係数	1.0	コンクリート標準示方書2012
破壊エネルギー	0.0681 N/mm	コンクリート標準示方書2012
※:材料係数を1.	3 として算出	

第<u>1.2.2-7</u> 表 鉄筋の材料定数

		設定値	諸 元				
単位体積重量		0.0 <u>kN/m</u> ³	材料非線形解析による荷重に含まれ				
			ることから考慮しない				
ヤング係数		200 kN/mm ²	コンクリート標準示方書2012				
	十件数	2000 N/mm2	せん断破壊先行型の破壊形態となる				
降伏	土鉄肋	2000 10/1111-	よう曲げ耐力が増大するように設定				
強度	せん断						
	補強筋	345 N/mm ²	設計図書(SD345)				

		島根原子力発	電所 2	号炉	備考
適用基	基準				
才料非約	泉形解析に	こついては,	土木学会	マニュアル,コンクリー	
票準示力	テ書2012等	豪に基づき実 が	庖する。		
第5−2-	-6表に参	考とする主な	基準・文	献を示す。	

	第5-	-2-6表 参考	ミレオス	ド か 基 准 等	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
項	E	参考とする主な	な基準等	備考	
オ料定数・	材料特性	<ul> <li>・コンクリート標 2012</li> </ul>	準示方書	_	
111/2.34	1111111	・土木学会マニュ	アル		
				<ul> <li>・既往文献等により設定した</li> <li>許容限界(破壊基準)が、部</li> </ul>	
許容	限界	-		材係数の設定における材料非 線形解析にて、実験結果と整	
				合的であることを確認。	
	ı				
材料定	官数				
<b>耐震安</b> 全	を性評価に	こ用いる材料第	定数は,	設計図書及び文献等を基	
没定する	る。コンク	リート及び鎗	失筋の材料	斗定数を <u>第5-2-7表</u> 及び	
-2-8	表に示す	0			
	第5—	2-7表 コン	クリート	の材料定数	
		設定値		諸 元	
単位	体積重量	0. 0kN/m ³	材料非線形	解析による荷重に含まれること	
	<i>统动</i> 库	10 111/2	設計基準強)	度(設計図書23.5N/mm ² )	
)±	相加思思	18. IN/ mm ⁻	/材料係数	(ymc=1.3)	
引	張強度	1.45N/mm ²	引張強度/2	材料係数	
圧縮ピ	ークひずみ	0.15%	コンクリー	ト標準示方書2012	
ひび割 伝	れーせん断 達係数	1.0	コンクリー	ト標準示方書2012	
破壊コ	ニネルギー	0.0754N/mm	コンクリー	ト標準示方書2012	
	贫	5-2-8表	鉄筋の材	料定数	
		設定値	材料非總平	諸 元 縦桁による荷面に含まれスニレ	
単位体	積重量	0. 0kN/m ³	から考慮し	ない	
ヤンク	「係数	200kN/mm ²	コンクリー	<ul> <li>ト標準示方書2012</li> </ul>	
降伏	主鉄筋	1000 N/mm ²	せん断破場 曲げ耐力が	&先行型の破壊形態となるよう、 3増大するように設定	
強度	せん断 補強筋	345N/mm ²	設計図書		

		島根原子力発	٤電所 2	号炉		備考
)適用	目基準					
材料非	<b>ド線形解析</b>	については,	土木学会	マニュアル、コンクリ	J —	
ト標準え	卡方書2012	等に基づき実施	施する。			
第5一	2-6表に参	考とする主な	、基準・文	献を示す。		
	第5	-2-6表 参考	考とする王	主な基準等		
	項目	参考とする主	な基準等			
材料定数	炎・材料特性	<ul> <li>・コンクリート標 2012</li> <li>・土木学会マニコ</li> </ul>	『準示方書 『アル	_		
許	容限界	_		<ul> <li>・既往文献等により設定した</li> <li>許容限界(破壊基準)が、</li> <li>材係数の設定における材料</li> <li>線形解析にて、実験結果と整合的であることを確認。</li> </ul>		
耐震安 こ設定す 第5-2-	F2全性評価 -る。コン -8表に示す 第5-	に用いる材料 クリート及びst -。 -2-7表 コン	定数は, 鉄筋の材料 (クリート	設計図書及び文献等を 料定数を <u>第5-2-7表</u> 及 の材料定数	è基 をび	
	2130000	設定値				
н	位体積重量	0. OkN/m ³	材料非線形	解析による荷重に含まれること		
	Lastr (Raining		から考慮し 設計基準確	ない 度 (設計図書23.5N/mm ² )		
	圧縮強度	18. 1N/mm ²	/材料係数	(γmc=1.3)		
	引張強度	1.45N/mm ²	引張強度/	材料係数		
圧権	音ピークひずみ	0.15%	コンクリー	ト標準示方書2012		
00	パ割れーせん断 伝達係数	1.0	コンクリー	ト標準示方書2012		
破	懐エネルギー	0.0754N/mm	コンクリー	ト標準示方書2012		
		第5-2-8表	鉄筋の材	料定数		
		設定値		諸 元		
単位	在積重量	0. 0kN/m ³	材料非線用 から考慮し	シ解析による荷重に含まれるこ レない	F	
+	ング係数	200kN/mm ²	コンクリー	- ト標準示方書2012 第44分刊の改造形飾したストン	-	
降伏	主鉄筋	1000N/mm ²	せん研破壊曲げ耐力が	R元17空の破壊形態となるよう 3増大するように設定	`	
強度	せん断 補強筋	$345 \mathrm{N/mm^2}$	設計図書			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
3)解析モデルの要素分割	.c解析モデルの要素分割	<u>3)</u> 解析モデルの要素分割	
材料非線形解析の対象とする構造部材を平面ひずみ要素でモデ	材料非線形解析の対象とする構造部材を平面ひずみ要素でモデ	材料非線形解析の対象とする構造部材を平面ひずみ要素でモデ	
ル化する。構造部材のモデル化に当たっては、第3-2-8 図に示す	ル化する。構造部材のモデル化に当たっては、 <u>第1.2.2-3</u> 図に示	ル化する。構造部材のモデル化にあたっては、第5-2-9図に示す	
とおり、鉄筋の付着が有効な領域を鉄筋コンクリート要素として	すとおり,鉄筋の付着が有効な領域を鉄筋コンクリート要素とし	とおり、鉄筋の付着が有効な領域を鉄筋コンクリート要素として	
モデル化し、付着の影響が及ばない領域を無筋コンクリート要素	てモデル化し、付着の影響が及ばない領域を無筋コンクリート要	モデル化し、付着の影響が及ばない領域を無筋コンクリート要素	
としてモデル化する。	素としてモデル化する。	としてモデル化する。	
部材厚方向の要素分割数については、鉄筋を含む要素と無筋要	部材厚方向の要素分割数については、鉄筋を含む要素と無筋要	部材厚方向の要素分割数については、鉄筋を含む要素と無筋要	
素を明確に指定できる分割数が望ましいこと及び3層以上の分割	素を明確に指定できる分割数が望ましいこと,及び3層以上の分割	素を明確に指定できる分割数が望ましいこと及び3層以上の分割	
数をとる場合,解析結果に大きな差異が生じないことから3層以上	数をとる場合,解析結果に大きな差異が生じないことから3層以上	数をとる場合,解析結果に大きな差異が生じないことから3層以	
に設定することとする。	に設定することとする。	上に設定することとする。	
具体的には、鉄筋を含む要素は、鉄筋を中心としてかぶり厚さ	具体的には、鉄筋を含む要素は、鉄筋を中心としてかぶり厚さ	具体的には、鉄筋を含む要素は、鉄筋を中心としてかぶり厚さ	
の2倍とし、無筋領域については、要素形状が極端に扁平とならな	の2倍とし、無筋領域については、要素形状が極端に扁平とならな	の2倍とし、無筋領域については、要素形状が極端に扁平となら	
いように分割する。	いように分割する。	ないように分割する。	
なお、対象とする構造部材に接合する部材は、弾性要素でモデ	なお、対象とする構造部材に接合する部材は、弾性要素でモデ	なお、対象とする構造部材に接合する部材は、弾性要素でモデ	
ル化し、モデル下端を固定境界とする。	ル化し、モデル下端を固定境界とする。	ル化し、モデル端部を固定境界とする。	
<image/> <complex-block><equation-block><equation-block><equation-block><equation-block><text><text><text><text></text></text></text></text></equation-block></equation-block></equation-block></equation-block></complex-block>	<image/> <complex-block><complex-block><equation-block><equation-block></equation-block></equation-block></complex-block></complex-block>	white with a control of the series of the	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
4) コンクリートの非線形特性	dコンクリートの非線形特性	<u>4)</u> コンクリートの非線形特性	
耐震安全性評価に用いる要素は鉄筋コンクリート要素及び無筋	耐震安全性評価に用いる要素は鉄筋コンクリート要素及び無筋	耐震安全性評価に用いる要素は鉄筋コンクリート要素及び無筋	
コンクリート要素に分類されるが、それぞれの非線形特性は同一	コンクリート要素に分類されるが、それぞれの非線形特性は同一	コンクリート要素に分類されるが、それぞれの非線形特性は同一	
の考え方で表される。	の考え方で表される。	の考え方で表される。	
・圧縮応力下における応力-ひずみ関係	・圧縮応力下における応力-ひずみ関係	・圧縮応力下における応力-ひずみ関係	
<u>第3-2-9</u> 図に一軸圧縮応力下における応力-ひずみ関係を示	<u>第Ⅰ.2.2-4</u> 図に一軸圧縮応力下における応力-ひずみ関係を	第5-2-10図における一軸圧縮応力下における応力-ひずみ関	
す。	示す。	係を示す。	
圧縮応力下の応力-ひずみの骨格曲線は、最大応力点までの硬	圧縮応力下の応力-ひずみの骨格曲線は、最大応力点までの硬	圧縮応力下の応力-ひずみの骨格曲線は、最大応力点までの硬	
化域と、最大応力点を超えた軟化域で表され、残留塑性ひずみと	化域と、最大応力点を超えた軟化域で表され、残留塑性ひずみと	化域と、最大応力点を超えた軟化域で表され、残留塑性ひずみと	
除荷再載荷時の剛性低下を考慮している。	除荷再載荷時の剛性低下を考慮している。	除荷再載荷時の剛性低下を考慮している。	
また,ひび割れ発生後のコンクリートの圧縮強度については,	また,ひび割れ発生後のコンクリートの圧縮強度については,	また、ひび割れ発生後のコンクリートの圧縮強度については、	
第3-2-10 図に示す、低減係数を破壊パラメータに乗じることで、	第 <u>I.2.2-5</u> 図に示す、低減係数を破壊パラメータに乗じること	第5-2-11図に示す、低減係数を破壊パラメータに乗じることで、	
ひび割れ発生後の圧縮強度の低下を考慮する。	で、ひび割れ発生後の圧縮強度の低下を考慮する。	ひび割れ発生後の圧縮強度の低下を考慮する。	
$\begin{aligned} & \int_{c_0}^{\sigma'_c} \int_{c_0}^{\sigma'_c} \int_{c_0 \in C_0 \times C$	$\begin{aligned} & \int_{a_{p}}^{a_{p}'} \int_{b_{p}'}^{a_{p}'} \int_{b_{p}'}^{a_{p}'}} \int_{b_{p}'}^{a_{p}'} \int_{b_{p}'}^{a_{p}'$	$\sigma'_{c}$ $f'_{cd}$ $f'_{cd}$ $f'_{cd}$ $f'_{cd}$ $f'_{cd}$ $f'_{cd}$ $f'_{cd}$ $f'_{cd}$ $f'_{cd}$ $f'_{cd}$ $f'_{c} = E_0 K (e'_c - e'_p) \ge 0$ $E_0 = \frac{2f'_{cd}}{e'_{pask}}$ $K = exp \left\{ -0.73 \frac{e'_{max}}{e'_{peak}} \left( 1 - exp \left( -1.25 \frac{e'_{max}}{e'_{peak}} \right) \right) \right\}$ $e'_p = e'_{max} - 2.86 \cdot e'_{peak} \left\{ 1 - exp \left( -0.35 \frac{e'_{max}}{e'_{peak}} \right) \right\}$ $z = c.r., f'_{cd} = f'_{ck} h'_{ma}$ $e'_{peak} : Etalage cylc f z = 0 \cdot f'_{ck} o \cdot f'_{ck} (-g_{cl}c_{cl}, 0.002 \ge l \cdot c \cdot b \cdot l \cdot l)$ $e'_m : ::::::::::::::::::::::::::::::::::$	



・引張応力下における応力-ひずみ関係

引張応力下における応力-ひずみ関係は、ひび割れ発生までは 線形弾性とし、ひび割れ強度以降は、鉄筋とコンクリートの付着 の影響等を考慮し、第3-2-11 図に示す骨格曲線を用いて、ひび割 れ間のコンクリートに引張応力分担を考慮する。

引張力を受ける無筋コンクリート要素では、引張軟化挙動は、 破壊エネルギー(Gf)によって定義する。引張軟化挙動の考慮に 当たっては、第3-2-12 図に示すひび割れ発生後の軟化曲線とひび 割れ発生点からの除荷曲線とで囲まれる面積がGf/Le(要素寸法) に一致するように、軟化特性を表す係数Cを用いる。 ・引張応力下における応力ーひずみ関係

引張応力下における応力-ひずみ関係は、ひび割れ発生までは 線形弾性とし、ひび割れ強度以降は、鉄筋とコンクリートの付着 の影響等を考慮し、第1.2.2-6図に示す骨格曲線を用いて、ひび 割れ間のコンクリートに引張応力分担を考慮する。

引張力を受ける無筋コンクリート要素では,引張軟化挙動は, 破壊エネルギー(Gf)によって定義する。引張軟化挙動の考慮に 当たっては,第1.2.2-7回に示すひび割れ発生後の軟化曲線とひ び割れ発生点からの除荷曲線とで囲まれる面積がGf/Le(要素寸 法)に一致するように,軟化特性を表す係数Cを用いる。

・引張応力下における応力-ひずみ関係 引張応力下における応力-ひずみ関係は 線形弾性とし、ひび割れ強度以降は、鉄筋 の影響等を考慮し、第5-2-12図に示す骨 割れ間のコンクリートに引張応力分担を考慮 引張力を受ける無筋コンクリート要素で 破壊エネルギーGfによって定義する。引張 っては、第5-2-13図に示すひび割れ発生 れ発生点からの除荷曲線とで囲まれる面積が 一致するように、軟化特性を表す係数Cを見







第5-2-12図 引張応力下における鉄筋 付着効果を考慮した応力-ひ

炉	備考
<b>大引張ひずみ</b> の低減係数	
, ひび割れ発生までは とコンクリートの付着 格曲線を用いて, ひび 慮する。 は,引張軟化挙動は, 軟化挙動の考慮に <u>あた</u> 後の軟化曲線とひび割 がGf/Le(要素寸法)に 用いる。	
$f_{td}: 引張強度arepsilon_{tu}: 引張軟化開始ひずみarepsilon_{tu}: 引張軟化開始ひずみC: 引張軟化特性を表す係数$	
筋とコンクリートの ずみ関係	

## 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)

# 女川原子力発電所 2号炉(2019.11.6版)

### 島根原子力発電所 2号



第3-2-12 図 応力一ひずみ曲線と破壊エネルギーGf の関係

・ひび割れ面でのせん断伝達関係

コンクリートのひび割れ発生後にひび割れ角度を固定する固定 ひび割れモデルでは、ひび割れ面のずれによるせん断応力伝達特 性を考慮する必要がある。

ひび割れ面でのせん断伝達挙動は、斜めひび割れの発生に伴う 剛性低下や破壊を評価するため、第3-2-13 図に示すとおり、ひび 割れ面におけるせん断ひずみ $\gamma$ とひび割れ開口ひずみ $\epsilon$ の比をパ ラメータとし、コンクリートの剛性低下を考慮するモデルを用い る。



- $\beta$ : ひび割れ面におけるせん断ひずみ $\gamma$ とひび割れ開口ひずみ $\varepsilon$ の比( $\gamma/\varepsilon$ )
- τ : ひび割れ面でのせん断応力
- 𝑥max :除荷開始時せん断応力
- $\beta_{max}$ :除荷開始時せん断ひずみ  $\gamma$  とひび割れ開口ひずみ  $\epsilon$  の比

第3-2-13 図 ひび割れ面でのせん断伝達モデル



<u>第1.2.2-7</u>図応力一ひずみ曲線と破壊エネルギーGfの関係

### ・ひび割れ面でのせん断伝達関係

コンクリートのひび割れ発生後にひび割れ角度を固定する固定 ひび割れモデルでは、ひび割れ面のずれによるせん断応力伝達特 性を考慮する必要がある。

ひび割れ面でのせん断伝達挙動は、斜めひび割れの発生に伴う 剛性低下や破壊を評価するため、第<u>Ι.2.2-8</u>図に示すとおり、ひ び割れ面におけるせん断ひずみγとひび割れ開口ひずみεの比を パラメータとし、コンクリートの剛性低下を考慮するモデルを用 いる。



第5-2-13図 応力-ひずみ曲線と破壊

・ひび割れ面でのせん断伝達関係

コンクリートのひび割れ発生後にひび割 ひび割れモデルでは、ひび割れ面のずれに 性を考慮する必要がある。

ひび割れ面でのせん断伝達挙動は、斜め 剛性低下や破壊を評価するため、第5-2-び割れ面におけるせん断ひずみγとひび割 をパラメータとし、コンクリートの剛性低 用いる。





- $\beta$ : ひび割れ面におけるせん断ひずみ $\gamma$ とひび割れ開口ひずみ $\epsilon$ の比 ( $\gamma / \epsilon$ )
- ? : ひび割れ面でのせん断応力
- $\tau_{max}$ : 除荷開始時せん断応力
- $\beta_{max}$ : 除荷開始時せん断ひずみ  $\gamma$  とひび割れ開口ひずみ  $\varepsilon$  の比

<u>第1.2.2-8</u> 図 ひび割れ面でのせん断伝達モデル

分炉	備考
Plastic zone	
$\int \sigma_t d\varepsilon_t = \frac{G_f}{L_e}$ エネルギーGfの関係	
れ角度を固定する固定 よるせん断応力伝達特	
ひび割れの発生に伴う <u>14図</u> に示すとおり,ひ れ開口ひずみεの比 <u>魚</u> 下を考慮するモデルを	
$\partial \beta_{\max}, \tau_{\max}/3$	
れ開口ひずみ ε の比( γ / ε )	
ずみ∉の比 し断伝達モデル	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
5)鉄筋の非線形特性	<u>e</u> 鉄筋の非線形特性	<u>5)</u> 鉄筋の非線形特性	
ひび割れを複数含む領域におけるコンクリート中の鉄筋の平均	ひび割れを複数含む領域におけるコンクリート中の鉄筋の平均	ひび割れを複数含む領域におけるコンクリート中の鉄筋の平均	
応力-平均ひずみ関係は、単体鉄筋の応力-ひずみ関係と異なり、	応力-平均ひずみ関係は,単体鉄筋の応力-ひずみ関係と異なり,	応力-平均ひずみ関係は,単体鉄筋の応力-ひずみ関係と異なり,	
第3-2-14 図に示すひずみ硬化特性を考慮する。	<u>第1.2.2-9</u> 図に示すひずみ硬化特性を考慮する。	第5-2-15図に示すひずみ硬化特性を考慮する。	
$\hat{g}_{3-2-14}$ 図 ひずみ硬化域までモデル化した鉄筋の 平均応力 一平均ひずみ関係	・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・		
6) 鉄筋コンクリートとしてのモデル化	f 鉄筋コンクリートとしてのモデル化	6) 鉄筋コンクリートとしてのモデル化	
コンクリートと鉄筋の界面の付着特性をテンションスティフニ	コンクリートと鉄筋の界面の付着特性をテンションスティフニ	シングリートと鉄筋の界面の付着特性をテンションスティフニ	
ング効果(引張特性が硬化する現象)として一鉄筋コンクリート	ング効果(引張特性が硬化する現象)として一鉄筋コンクリート	ング効果(引張特性が硬化する現象)として一鉄筋コンクリート	
要素の中に取り込むことにより、鉄筋コンクリートの構成則を直	要素の中に取り込むことにより、鉄筋コンクリートの構成則を直	要素の中に取り込むことにより、鉄筋コンクリートの構成則を直	
接与える。	接与える。	接与える。	
鉄筋コンクリートの引張応力下の平均応力は、以下の式で表さ	鉄筋コンクリートの引張応力下の平均応力は、以下の式で表さ	鉄筋コンクリートの引張応力下の平均応力は、以下の式で表さ	
13.	na.	na.	
$\bar{\sigma}_{RC} = \frac{A_s}{A_{RC}}\bar{\sigma}_S + \frac{A_c}{A_{RC}}\bar{\sigma}_C$	$\bar{\alpha}_{BC} = \frac{A_S}{\bar{\alpha}_C} + \frac{A_C}{\bar{\alpha}_C}$	$- A_s - A_c -$	
ここに ましま ふみわぶわ鉄館 レコンクリートの正均広力	$A_{RC} \rightarrow A_{RC} \rightarrow A$	$\sigma_{\rm RC} = \frac{1}{A_{\rm RC}} \sigma_{\rm s} + \frac{1}{A_{\rm RC}} \sigma_{\rm c}$	
$C \subset \{c, o_{RC}, o_{C} : c_{A} \cup c_{A$	ここに, $\bar{\sigma}_s$ , $\bar{\sigma}_c$ :それぞれ鉄筋とコンクリートの平均応力	ここに、 $\sigma_s$ 、 $\sigma_c$ : それぞれ鉄筋とコンクリートの平均応力	
$A_s$ , $A_c$ : それぞれ鉄筋とコンクリートの断面積, $A_{RC} = A_s + A_c$	$A_S$ , $A_c$ : それぞれ鉄筋とコンクリートの断面積, $A_{RC} = A_S + A_C$	$A_s$ , $A_c$ : それぞれ鉄筋とコンクリートの断面積、 $A_{RC} = A_s + A_c$	
7)荷重の組合せ	<u>g</u> 荷重の組合せ	7) 荷重の組合せ	
材料非線形解析においては、地震応答解析(部材非線形解析)	材料非線形解析においては、地震応答解析(部材非線形解析)	材料非線形解析においては、地震応答解析(部材非線形解析)	
により得られた荷重を用いることから、荷重の組み合わせは、地	により得られた荷重を用いることから、荷重の組み合わせは、地	により得られた荷重を用いることから、荷重の組み合わせは、地	
震応答解析と同様である。	震応答解析と同様である。	震応答解析と同様である。	





予炉	備考
震応答解析(部材非線 体的には,地震応答解 ん断照査結果が厳しく ,軸力,せん断力)を 示すとおりに作用させ 材非線形解析)…で得ら 重分布を算出し,この 堂時荷重と地震時荷重	<ul> <li>・設計方針の相違</li> <li>【柏崎 6/7,女川 2】</li> <li>④の相違</li> <li>・設計方針の相違</li> </ul>
★ 曲げモーメントを再現する荷重 触力を再現する荷重 せん新力を再現する荷重 せん新力を再現する荷重 面定境界 おける載荷状況	【柏崎 6/7, 女川 2】 島根 2 号炉は常時荷 重と地震時荷重を足し 合わせ, 材料非線形解析 を実施
<u> 用手順</u>	<ul> <li>・設計方針の相違</li> <li>【柏崎 6/7,女川 2】</li> <li>島根 2 号炉は常時荷</li> <li>重と地震時荷重を足し</li> <li>合わせ,材料非線形解析</li> <li>を実施</li> </ul>



分炉	備考
材料非線形解析におけ	
応答から設定する。具	
, せん断力-相対変位	
変位が急増する点又は	
力と判断する。	
頂底版間の相対 変位が急増	
版間の	
70 80 90 100	
せん断耐力の設定例	

柏崎刈羽原	子力発行	電所 6	/7号炉 (2017.12.20版)		女川	原子力	発電所	2 号炉(2019.11.6版)			島根原	〔子力〕	発電所 2号炉	備考
<ol> <li>4) 安全係数の設 材料非線形解 れる断面力P0() 解析に作用させ; ん断耐力Vy に, y a, 構造物係数</li> </ol>	定 歩では、 曲げモ・ た時の・ 下記の (yiを	地震応 ーメント せん断力 らとおり音 考慮し,	答解析(部材非線形解析)で得ら , 軸力, せん断力)を材料非線形 V と材料非線形解析で得られるせ N材係数 y b1, y b2, 構造解析係数 照査用せん断力Vd, 設計せん断耐	<ul> <li>d. 安全係数の設定</li> <li>材料非線形解析では、地震応答解析(部材非線形解析)で得られる断面力(曲げモーメント、軸力、せん断力)を材料非線形解析に作用させた時のせん断力Vと材料非線形解析で得られるせん断耐力V_yに、以下のとおり部材係数γ_{b1}、γ_{b2}、構造解析係数γ_a、構造物係数γ_iを考慮し、照査用せん断力V_d、設計せん断耐力</li> </ul>				<ul> <li>4) 安全係数の設定 材料非線形解析では、地震応答解析(部材非線形解析)で得られる断面力<u>P_0</u>(曲げモーメント、軸力、せん断力)を材料非線形 解析に作用させた時のせん断力Vと材料非線形解析で得られるせん断耐力V_yに、下記の通り部材係数γ_{b1}、γ_{b2}、構造解析係数 γ_a、構造物係数γ_iを考慮し、照査用せん断力V_d、設計せん断耐</li> </ul>						
$V_{d} = \gamma i \cdot \gamma a$ $V_{yd} = V_{y} / (\gamma)$	νος 1 • V 61 • γ Ι	₂ )		V	$V_{yd} \sim \mu \ell \gamma \omega_{o}$ $Vd = \gamma_{i} \cdot \gamma_{a} \cdot V$ $Vyd = Vy / (\gamma_{b1} \cdot \gamma_{b2})$					$y_{d}$ 之身足 9 公 $d = \gamma i \cdot \gamma a \cdot V$ $d = V_{y} / (\gamma_{b1} \cdot \gamma_{b2})$				
考慮した安全 については,実 材料非線形解析 ることとし,解 割,材料物性の 考慮する。 具体的には, 線形解析を実施 No.12の部材係数	係験に折殺 上し、 数又よに定 木 , 24 な1.24	第3-2-9 せ得け入 く 験 設 定 す ど し の れ 構 増 ユ て し に し の れ 構 増 ユ 、 し に の の れ た の の の の の の の の の の の の の	素に示す。ここで,部材係数γb1 力式により得られるせん断耐力と せん断耐力との比率により設定す 則の相違や,要素の種類,要素分 等,多岐にわたる解析者間の差を アルに示される17 ケースの材料非 ん断耐力との差が最も大きいCase 5 (第3-2-10表)。	<ul> <li>オ属<u>す</u>る安全係数<u>の設定</u></li> <li>オ係数γ_{b1}については,集</li> <li>ん断耐力と材料非線形解析</li> <li>より設定することとし,解</li> <li>集,要素分割,材料物性の</li> <li>析者間の差を考慮する。</li> <li>料非</li> <li>具体的には,土木学会マ</li> <li>線形解析を実施し,実験又</li> <li>No. <u>7</u>の部材係数<u>1.13</u>を設定</li> </ul>			設 解,性。 会 験 設定実析 解の マ 又 定例 険に 析 設 ニ はす	を第 $I.2.2-8$ 表に示す。ここで、部 又はせん断耐力式により得られるせ より得られるせん断耐力との比率に こおける構成則の相違や、要素の種 定、入力増分等、多岐にわたる解 aアルに示される17 ケースの材料非 せん断耐力との差が最も大きいCase る (第 $I.2.2-9$ 表)。	される割考線 No. S	考慮した安全係数を第5-2-9表に示す。ここで、部材 については、実験又はせん断耐力式により得られるせん 材料非線形解析により得られるせん断耐力との比率によ ることとし、解析における構成則の相違や、要素の種類 割、材料物性の設定、入力増分等、多岐にわたる解析者 考慮する。 具体的には、土木学会マニュアルに示される17ケース 線形解析を実施し、実験又はせん断耐力との差が最も大 No. 8の部材係数 <u>1.15</u> を設定する( <u>第5-2-10表</u> )。				<ul> <li>・設計方針の相違</li> <li>【柏崎 6/7,女川2】</li> <li>土木学会マニュアル</li> <li>に其づく材料ま線形解</li> </ul>
														析結果の相違
	<u>第3-2</u>	-9 表 考	<u> </u>		<u>第 I</u>	. 2. 2-8	表考	慮する安全係数の設定例		2	₿5 <u>−</u> 2−	9表	考慮した安全係数	
安全係数		値	設定根拠		安全係数		值	設定根拠		安全係	数	値	設定根拠	品根2号炉は材料係
部材係数	γ b1 γ b2	1.24	が歴実施する材料弁線が序がにより 設定 地震応答解析による層間変形角より		部材係数	γ _{b1} γ _{b2}	1.13 1.0	別途実施する材料非線形解析により設定 地震応答解析による層間変形角より設定		部材係数	$\gamma_{b1}$ $\gamma_{b2}$	1.15 1.00	別途実施する材料非線形解析により 設定 地震応答解析による層間変形角より 設定	数について説明
構造物係数	γi	1.00	設定 構造物の重要度は、基準地震動 Ss に より評価することで包絡されている		構造物係数	Yı	1.0	構造物の重要度は、基準地震動Saにより 評価することで包絡されていると判断		構造物係数	γ i	1.00	構造物の重要度は,基準地震動Ss により評価することで包絡されてい ると判断	
↓歩 \/と 4.0 + C.15 米/-		1.05	と判断	l	構道解析係数	Ya	1.05	各種又献より保守的に設定		構造解析係数	γ _a	1.05	各種文献より保守的に設定 各種文献より設定	
神地	γa	1.00	177進入開入より1水寸口に改た								· at		1	

安全係数		値	設定根拠
\$P++15 #4	γ b1	1.24	別途実施する材料非線形解析により 設定
即村休奴	γ b2	1.00	地震応答解析による層間変形角より 設定
構造物係数	γi	1.00	構造物の重要度は,基準地震動 Ss に より評価することで包絡されている と判断
構造解析係数	γa	1.05	各種文献より保守的に設定

安全係数		值	設定根拠
如针接影	$\gamma_{b1}$	1.13	別途実施する材料非線形解析により設定
READ PRESS	Y _{b2}	1.0	地震応答解析による層間変形角より設定
構造物係数	γı	1.0	構造物の重要度は、基準地震動Seにより 評価することで包絡されていると判断
構造解析係数	Ya	1.05	各種文献より保守的に設定

	島根原	原子力發	後電所 2号炉	備考
全係数の設定	定			
非線形解析	では,	地震応	、答解析(部材非線形解析)で得	ŝ
面力 <u>P</u> _(曲	ゖ゙゙゙モー	-メン	ト,軸力,せん断力)を材料非綺	形
作用させた	時のせ	ん断力	IVと材料非線形解析で得られる	せ
力V _y に, T	「記のì	通り部	材係数γ _{b1} ,γ _{b2} ,構造解析係	数
等造物係数 γ	_i を考	慮し,	照査用せん断力V _d ,設計せん断	而封
を算定する	0			
γί · γα · V				
$V_{y}/(\gamma_{b1}\cdot\gamma_{b2})$				
した安全係教	数を第	5-2-	<u>9表</u> に示す。ここで,部材係数γ	b 1
ては、実験	又はせ	ん断雨	力式により得られるせん断耐力	しと
線形解析に	より得	られる	せん断耐力との比率により設定	T
とし,解析	におけ	る構成	〕則の相違や,要素の種類,要素	分
料物性の設定	定,入	力増分	等,多岐にわたる解析者間の差	<i>e</i>
る。				
的には、土	木学会	マニュ	アルに示される17ケースの材料	非
析を実施し,	,実験	又はせ	ため断耐力との差が最も大きいCa	ase
部材係数 <u>1.1</u>	<u>し5</u> を設	定する	( <u>第5-2-10表</u> )。	・設計方針の相違
				【柏崎 6/7,女川 2】
				土木学会マニュアル
				に基づく材料非線形解
				析結果の相違
<u>第</u>	5-2-	-9表	考慮した安全係数	・設計方針の相違
安全係数	t	値	設定根拠	【柏崎 6/7, 女川 2】
立[[] 大大(公米)	$\gamma_{b1}$	1.15	別途実施する材料非線形解析により 設定	島根2号炉は材料係 数について説明
印印 所教	$\gamma_{\rm b2}$	1.00	地震応答解析による層間変形角より 設定	
推出的标卷		1 00	構造物の重要度は,基準地震動 S s	
<b>伸迫初休毅</b>	γ _i	1.00	により計画することで包括されてい ると判断	
構造解析係数	γ _a	1.05	各種文献より保守的に設定	
材料係数	$\gamma_{mc}$	1.3	各種文献より設定	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)			女川原子力発電所 2号炉(2019.11.6版)				島根原子力発電所 2号					
第3-2-10 表 部材係数γb1 の設定			第I.2.2-9 表 部材係数γb1 の設定例				<u>第5-2-10</u> 表 部材係数γb					
Case No.	実験結果	解析結果	部材係数		試験結果	解析結果				Case No.	実験結果	解析結果
	せん断耐力 (kN)	せん断耐力 (kN)	(解析結果/ 実験結果)	Case	せん断耐力 (FN)	せん断耐力 (FN)	部材係数 (解析結果/	備考			せん断耐力 (kN)	せん断耐力 (kN)
1	475	437	0.92	140.	0	@	実験結果) (②(①)			1	475	461
2	1,187	1,234	1.04	1	475	422.8	0.89			2	1, 187	1, 167
3	324	343	1.06	2	1187	1258.2	1.06			э 1	294	303
4	294	306	1.04	3	324	356.4	1.10			5	581	510
5	581	529	0.91	4	294	308.7	1.05			6	329	343
6	329	309	1.09	5	581	511.3	0.88			7	1, 587	1,716
8	350	200	1.20	6	329	335.6	1.02			8	350	402
9	855	855	1.14	7	1587	1793.3	1.13	最大值		9	855	863
10	165	168	1.02	8	350	392.0	1.12			10	165	108
11	333	403	1.21	9	855	880.7	1.03			11	333	346
12	127	157	1.24	10	165	102.3	0.62			12	127	105
13	188	165	0.88	11	333	316.4	0.95			13	188	128
14	163	156	0.96	12	127	100.3	0.79			14	163	120
15	273	172	0.63	13	188	118.4	0.63			15	273	188
16	356	235	0.66	14	163	117.4	0.72			16	356	324
17	432	324	0.75	15	273	177.5	0.65			亚均	432	
平均	-	-	0.99	16	356	291.9	0.82			標準偏差		
標準偏差	-	-	0.18	17	432	246.2	0.57			54. 1 PH4744		

# (3) 適用範囲

二次元時刻歴応答解析により断面力等を算出して耐震安全性	生評
<u>価を行う線状構造物とし、線状構造物のうち後施工せん断補</u>	寅筋
- (CCb)により耐震補強を行っている部材は適用範囲外とする	0

чу <del>−</del>	備考			
の設定	・設計方針の相違			
部材係数	【柏崎 6/7,女川 2】			
(解析結果/	十木学会マニュアル			
実験結果)	エバチム、ニュアル			
0.97	に基つく材料非緑形解			
0.98	析結果の相違			
1.12				
1.07				
0.88				
1.04				
1.08				
1.15				
1.01				
0.65				
1.04				
0.83				
0.00				
0.69				
0.91				
0.58				
0.91				
0.18				
	<ul> <li>・設計方針の相違</li> <li>【女川2】</li> <li>女川2号炉は適用範</li> <li>囲について説明</li> </ul>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
<ol> <li>3. 屋外重要土木構造物の減衰定数</li> </ol>	3. 屋外重要土木構造物の減衰定数	3. 屋外重要土木構造物の減衰定数	
(1)減衰の設定について	<u>3.1</u> 減衰 <u>定数</u> の設定について	(1) 減衰の設定について	
今回工認で採用している時刻歴応答解析において,地盤及び構	今回工認で採用している時刻歴応答解析において、地盤及び構	今回工認で採用している時刻歴応答解析において、地盤及び構	
造物の減衰は、粘性減衰と履歴減衰とで考慮している。	造物の減衰 <u>定数</u> は、粘性減衰と履歴減衰とで考慮している。	造物の減衰は、粘性減衰と履歴減衰とで考慮している。	
粘性減衰による減衰は、固有値解析にて求まる固有周期及び減	粘性減衰は、固有値解析にて求められる固有周期と各材料の減	粘性減衰による減衰は、固有値解析にて求められる固有周期と	
衰比に基づき、質量マトリックス及び剛性マトリックスの線形結	衰比に基づき、質量マトリックス及び剛性マトリックスの線形結	各材料の減衰比に基づき、質量マトリックス及び剛性マトリック	
合で表される以下のRayleigh 減衰 <u>にて</u> 与える。 <u>土木学会マニュア</u>	合で表される以下のRayleigh 減衰を解析モデル全体に与える。	スの線形結合で表される以下のRayleigh減衰 <u>を解析モデル全体に</u>	・設計方針の相違
ルに従いRayleigh 減衰をα=0 となる剛性比例型減衰とする。材		与える。なお、卓越する基準モードについては解析モデル全体の	【柏崎 6/7,女川 2 】
料ごとに減衰を設定するために要素剛性比例型としている。なお、		固有値解析において、卓越するモードを選定している。	島根2号炉は固有値
一次の基準モードについては構造系全体がせん断変形しているモ			解析結果 (例) 及びモー
ードを選定している。			ド図 (添付資料1)を示
			し,卓越するモードを選
$[C] = \alpha [M] + \beta [K]$	$\begin{bmatrix} C \end{bmatrix} = \alpha \begin{bmatrix} M \end{bmatrix} + \beta \begin{bmatrix} K \end{bmatrix}$	$[C] = \alpha [M] + \beta [K]$	定
	[C]:減衰係数マトリックス, [M]:質量マトリックス,	[C]:減衰係数マトリックス, [M]:質量マトリックス	
[C]: 減衰係数マトリックス, [M]: 質量マトリックス,	[K]:剛性マトリックス, $\alpha$ , $\beta$ :係数	[K]:剛性マトリックス, $\alpha$ , $\beta$ :係数	
[K]: 剛性マトリックス, $\alpha$ , $\beta$ :係数			
係数 α、 β は以下のように求めている。	係数α, βを定めるにあたり,水平成層地盤の二次固有振動数	係数α,βは,解析モデル全体系の固有値解析において,卓越	・設計方針の相違
$\alpha = 0$	が一次固有振動数の3 倍であることから,二次モードの固有円振	するモードの減衰とRayleigh減衰が一致するように、以下の式に	【柏崎 6/7,女川 2 】
$\beta = h \neq \pi f$	<u>動数ω2</u> は一次モードの固有円振動数ω1 の3 倍としている。地中	より決定する。	島根2号炉は土木マ
h: 各材料の減衰定数, f: 固有値解析により求められた一次固有振動数	構造物を対象としていることから地震応答解析の解析モデルに占	$h_n = \alpha / 2 \omega_n + \beta \omega_n / 2$	ニュアルを踏まえた係
設定したRayleigh 減衰を第3-3-1 図に示す。	める割合の大きい盛土及び旧表土の挙動に支配されるため、一次	h _n :固有値解析により求められた n 次モードの減衰定数	数の算出方法を説明。ま
	固有振動数は、解析モデルの固有値解析結果より得られる一次モ	<ul> <li>ω_n: 固有値解析により求められた n 次モードの固有円振動数</li> </ul>	た,島根2号炉は選定さ
	ードの振動数とし、減衰定数は2%(0.02)としている。	卓越するモードは、全体系の固有値解析における刺激係数及び	れた卓越するモードに
	なお,構造部材を線形でモデル化する場合も非線形でモデル化	モード図にて決定する。	より Rayleigh 減衰を設
	する場合も、係数 $\alpha$ , $\beta$ の設定方法は同一である。	設定したRayleigh減衰の一例(取水槽)を第5-3-1図に,	定
	Rayleigh 減衰の設定フローを第Ⅰ.3.1-1 図に, Rayleigh 減衰	Rayleigh減衰の設定のために実施した固有値解析結果を第5-3-	
	の設定イメージを第Ⅰ.3.1-2 図に示す。	1表に、固有値解析のモード図を第5-3-2図に示す。	
		取水槽の固有値解析結果によると,各モード次数の減衰定数は	
		0~2%程度となっている。これは取水槽周辺の表層地盤に埋戻土	
		(減衰定数0%)が分布していることが影響していると判断した。	
		Rayleigh減衰の設定に際しては、加振方向に振動するモードの	
		刺激係数の大きさ及びモード図を選定の指標とした。	
		取水槽の場合,刺激係数の値及びモード図より1次モード及び10	
		次モードを選定した。	
		1次及び10次モードは全体系で大きく振動しており、その他のモ	
		ードは表層地盤(埋戻土)が局所的に振動していることから、モ	
		ード図からも主要なモードは1次及び10次モードであると判断し	
		<u>t</u> .	



⁴条-別紙5-35

寻炉	備考
  非線形性(ファイバー    すみ関係)における非	<ul> <li>・設計方針の相違</li> <li>【柏崎 6/7,女川 2】</li> <li>島根 2 号炉は構造部</li> <li>材の部材非線形性(ファイバーモデルのコンクリート及び鉄筋の応力</li> <li>ーひずみ関係)により履</li> <li>歴減衰を検討</li> </ul>
	<ul> <li>・設計方針の相違</li> <li>【柏崎 6/7,女川 2】</li> <li>島根 2 号炉は選定された卓越するモードにより Rayleigh 減衰を設定</li> </ul>

			白.	비로구노회			
	女川原于刀発電所 2 亏炉(2019.11.6 版)		局	限原于力学	<b>光</b> 竜///	2	
今回工認における剛性比例型減衰は、履歴減衰が生じない状態							
空にわけて知振しの空空のためにわるべく小さい値しして一次円		<u>4</u>	ちょう 1 丰	田方荷	砌长注田	(玉水挿	
寺にわりる脾例上の女足のにめになるべく小さい個として一次直		<u>9</u>	50-0-1衣	回有他	,胜忉茄木	(取小僧	
有振動数に対して減衰1%を採用している。		k'	因者用振動数	因有损断数	因有周期	波音定数	創造係約(水平)
		次数	eo (rad/s)	F(Hz)	T(s)	h	β
		1	20, 275	3. 227	0, 310	0.0108	3159, 600
		2	21.257	3, 383	0.296	0.0072	0.000
履歴減春に上ろ減春け、構造部材の部材非線形性(曲げモーメ	履歴減春に上ろ減春け、構造部材の部材非線形性(曲げモーメ	3	24. 272	3, 863	0.259	0.0079	922.350
履正例及による例及は, 悟道即的の即均外脉乃且( <u>曲)に )</u>	履症機及による機及は、 悟道即何の即何を除力正 ( <u>血) ビック</u>	4	26, 316	4, 188	0, 239	0.0021	0,000
<u>ントー曲率関係</u> )における非線形の程度に応じた値となる。	<u>ントー曲率関係又はコンクリート,鉄筋の応力ーひずみ関係</u> )に	6	31.765	5.056	0. 219	0.0051	0.000
	おける非線形の程度に応じた値となる。なお、構造物を線形でモ	7	33. 307	5.301	0.189	0.0028	383. 250
		8	36.410	5, 795	0.173	0.0011	0.000
	<u>テル化する場合は,Rayleigh 減衰のみ設定する。</u>	9	37.161	5,914	0, 169	0.0020	603. 840
		10	39, 201	6, 239	0, 160	0.0158	-3412, 700
		12	40.138	6, 388	0. 157	0.0014	-423. 950
		13	42.302	6. 733	0.149	0.0017	0.000
		14	42.692	6.795	0.147	0.0012	-150.580
		15	42.748	6.804	0.147	0.0103	0.800
		12Conserverses	: Rayleigh 演覧の	フィッティング	7に用いた次数		

<u>.</u>	J	ľ	1
1	)	Ь	

備考

・設計方針の相違

【柏崎 6/7,女川 2 】

島根2号炉は固有値 解析結果 (例) 及びモー ド図を示し, 卓越するモ ードを選定

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2長


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
(2) 既工認と今回工認との相違について	3.2 建設工認と今回工認の相違について	(2) 既工認と今回工認との相違について	
今回工認における構造物の粘性減衰定数は,履歴減衰が生じな	今回工認に <u>おける構造物の粘性減衰は、履歴モデルにより構造</u>	今回工認に <u>おいて,固有値解析における減衰定数は,岩盤は減</u>	・設計方針の相違
い状態等における解析上の安定のためになるべく小さい値として	物の履歴減衰を用いる場合は、履歴減衰が生じない状態等におけ	<u>衰3%</u> , 埋戻土は減衰0%, 構造部材は減衰2%とした。	【柏崎 6/7】
一次固有振動数に対して減衰1%となる剛性比例型減衰を採用して	る解析上の安定のためになるべく小さい値として一次固有振動数		島根2号炉は固有値
<u>いる。</u>	及び二次固有振動数に対して減衰2%となるRayleigh 減衰を採用		解析により Rayleigh 減
	している。		衰を設定
既工認では、周波数応答解析における構造物の減衰定数は5%を	建設工認では、周波数応答解析における構造物の減衰定数は5%	<u>既工認</u> では, <u>時刻歴応答解析及び</u> 周波数応答解析における <u>構造</u>	・設計方針の相違
用いた (JEAG4601-1987 記載)。	を用いた(JEAG4601-1987 記載)。	<u>部材</u> の減衰定数は5%を用いた(JEAG4601-1987記載)。	【柏崎 6/7,女川 2 】
非線形解析における粘性減衰による減衰の値は、道路橋示方	<u>時刻歴</u> 非線形解析における粘性減衰の値は,道路橋示方書・同	非線形解析における粘性減衰による減衰の値は、道路橋示方	島根2号炉の既工認
書・同解説 V耐震設計編(平成14 年3月)において,構造部材	解説 V 耐震設計編 (平成14 年)-55-において,構造部材の非線形性	書・同解説 V耐震設計編(平成14年 <u>3月</u> ) ¹⁾ において,構造部材	では時刻歴応答解析及
の非線形性を非線形履歴モデルで表した場合には、この部材の履	<u>として</u> 履歴モデル <u>を用いる</u> 場合には、この部材の履歴減衰は履歴	の非線形性を非線形履歴モデルで表した場合には、この部材の履	び周波数応答解析を使
歴減衰は履歴モデルによって自動的に解析に取り入れられるた	モデルによって自動的に解析に取り入れられるため、履歴モデル	歴減衰は履歴モデルによって自動的に解析に取り入れられるた	用
め、非線形履歴モデルを用いて表した部材の減衰定数は、コンク	により構造物の履歴減衰を用いる場合には、コンクリート部材	め,非線形履歴モデルを用いて表した部材の減衰定数は,コンク	
リート部材は2%(0.02)程度,鋼部材は1%(0.01)程度とするの	は2%(0.02)程度,鋼構造部材は1%(0.01)程度とするのがよ	リート部材は2%(0.02)程度,鋼部材は1%(0.01)程度とす	
がよいとされている。	いとされている。	るのがよいとされている。	
最新の道路橋示方書・同解説(平成24 年3月)においても、構	最新の道路橋示方書・同解説 (平成29 年)- <u>(6</u> -においても, <u>履歴</u>	最新の道路橋示方書・同解説( <u>平成29年11月)²⁾においても、</u> 構	
造部材の非線形性を非線形履歴モデルで表した場合の減衰定数に	モデルにより構造物の履歴減衰を用いる場合の粘性減衰につい	造部材の非線形性を非線形履歴モデルで表した場合の減衰定数に	
ついて,鉄筋コンクリート橋脚は2%(0.02)とされている。	て,鉄筋コンクリート橋脚は2% (0.02) とされている。	ついて,鉄筋コンクリート橋脚は2% (0.02) とされている。	
以上のように、粘性減衰の減衰定数は、履歴減衰が生じない状	以上のように、粘性減衰は、履歴減衰が生じない状態等におけ	以上のように、粘性減衰 <u>の減衰定数</u> は、履歴減衰が生じない状	
態等における解析上の安定のために設定される値であるため、構	る解析上の安定のために設定される値であるため、履歴減衰を用	態等における解析上の安定のために設定される値であるため、構	
造物の減衰について <u>, なるべく小さい値として減衰1%</u> を採用して	いる場合においては、なるべく小さい値として2%を採用してい	<u>造物の減衰について減衰2%</u> を採用している <u>ことは、技術的妥当</u>	
いることは、技術的妥当性を有するものと判断した。	Zem -	性を有するものと判断した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
<ul><li>(3) 構造物の減衰定数の影響</li></ul>		<u>(3)</u> 構造物の減衰定数の影響	・設計方針の相違
解析モデルの中で構造物の占める割合は小さいため、構造物の		解析モデルの例を第5-3-3図に示す。解析モデルの中で構造物	【柏崎 6/7】
減衰の影響は小さいと考えられる。		の占める割合は小さいため、構造物の減衰の影響は小さいと考え	島根2号炉は粘性減
			衰2%を採用
地盤の減衰定数は1%のまま、構造物の減衰定数を5%とした場合		既工認と同様に、岩盤は減衰3%、埋戻土は減衰0%、構造部	・設計方針の相違
の解析モデル全体の一次モード減衰を確認したところ <u>1.03%</u> であ		材は減衰5%に設定した固有値解析における解析モデル全体の一	【女川2】
		次モード減衰を確認したところ、比率(既工認/今回工認)は1.06	島根2号炉は構造物
		であった。	の減衰定数の影響につ
			いて検討
以上のことから、地盤の減衰の影響が支配的であり、構造物の		以上のことから、地盤の減衰の影響が支配的であり、構造物の	・設計方針の相違
減衰の影響は小さいと考えられる。		減衰の影響は小さいと考えられる。	【柏崎 6/7】
			島根2号炉は既工認
		取水槽	と同様の減衰を設定
			・設計方針の相違
		答 PHNK —— 答 解 析	【柏崎 6/7】
		時 (抗 岩盤 抗	<b>自根9号恒け解析</b> チ
		性 性 性 性 性 性 性 性 性 性 性 性 性 性 性 性 性 性 性	デルの例を踏まって解
			チルの内を唱よれて辞
		地震動 メ 地震応 営解析時(粘性境界) ※ MMR(マンメ(トロック)	の上める <u>割</u> 合について
		第二の一般にエジュ(氏え進の版)	の百める割合について
		<u> </u>	作史言门
【参考文献】	<i>▲ 参考文</i> 部	【参考文献】	・  参 孝  立
▲ <u>《 ~ 入 M 】</u> 1) 日本道政协会,道政场云古書,同報道, V 耐雪恐計矩 2002	4. <u>の行入</u> (1) (1) 松尾島・コンクリート制地中構造物の合理的な耐雪性能評価	▲ <u>※今天</u> 1)日本道敗協会,道敗接云古書,同解范 V·計雲設計編 亚式14	【 柏蔭 6 /7
1) 日本追昭協云,追昭简小刀音,问胜祝,V间侯取日禰,2002 9) 日本道政协会,道政练子士書,同敏消,V副電源計矩, 2012	(1) 仏宅り・コンクク 下表地下悟垣初の日母的な耐晨住能計画 指揮に開まる検針 土大学会抽蛋工学科文集 2002	1)日本追昭励云·追昭简小力音·问胜就 V 前晨取可棚 十成14 年9日	【1日吨 077, 女川乙】
2) 日本追始励云: 追始惝小力音・问胜號 V III 展成計 柵, 2012	相保に関りる使討, 上个子云地最上子彌又朱, 2003	平 5 月 3) 日本学校协会,学校接示士事,同知学,VI 新電訊書館,亚卡30	
	(2) 石川ら:	2) 口 半 道 路 協 示 力 音 · 问 胜 说 V 附 晨 設 訂 編 平 成 29	
	■ 態に関わる美験的考察, 第26 回地晨上字研究発表会講演論又集,	年11月	
	(3) 原子刀土木委員会・限界状態設計部会:原子刀発電所・鉄筋		
	コンクリート製屋外重要土木構造物への限界状態設計法の適用・		
	安全性照査マニュアルの提案,土木学会論文集No.442/V-16		
	(4) 遠藤ら:鉄筋コンクリート製地中構造物の限界状態に用いる		
	せん断耐力評価法,電力中央研究所報告		
	(5) 日本道路協会:道路橋示方書・同解説 V耐震設計編 平成14		
	年3月		
	(6) 日本道路協会:道路橋示方書・同解説 V耐震設計編 平成29		
	年11 月		

柏崎刈羽原子力発電所 6/	/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
4. 耐震性能照査の手順			4. 耐震性能照査の手順	・設計方針の相違
機器・配管を支持する屋外重要	要土木構造物の照査では,想定さ		機器・配管を支持する屋外重要土木構造物の照査では、想定さ	【女川2】
れる荷重条件に対して機器・配管	音の機能を維持することが主たる		れる荷重条件に対して機器・配管の機能を維持することが主たる	島根2号炉は耐震性
目的となる。このため、土木学会	会マニュアルでは,機器・配管を		目的となる。このため、土木学会マニュアルでは、機器・配管を	能照査の手順について
支持する屋外重要土木構造物の間	耐震性能評価においては, 機器 ·		支持する屋外重要土木構造物の耐震性能評価においては、機器・	説明
配管の機能維持のために屋外重要	要土木構造物に求められる制約条		配管の機能維持のために屋外重要土木構造物に求められる制約条	
件を与条件としている。			件を与条件としている。	
屋外重要土木構造物の耐震性能	能の照査に当たっては、地盤と構		屋外重要土木構造物の耐震性能の照査に当たっては、地盤と構	
造物の連成解析を行い、床応答な	や変位を算定する。機器・配管の		造物の連成解析を行い、床応答や変位を算定する。機器・配管の	
耐震安全性は、当該構造物を支持	寺する屋外重要土木構造物の床応		耐震安全性は、当該構造物を支持する屋外重要土木構造物の床応	
答や変位を用いて、別途確認を行	う。 <u>第3-4-1</u> 表に対象構造物の		答や変位を用いて,別途確認を行う。第5-4-1表に対象構造物の	
例を示す。				
第3-4-1 表 検討	対象構造物の例		第5-4-1表 検討対象構造物の例	・対象設備の相違
屋外重要上木構造物	機器・配管		屋外重要土木構造物 機器・配管	【柏崎 6/7】
	軽油タンク		原子炉補機海水ポンプ           取水槽         原子炉補機海水ストレーナ	
軽油タンク基礎	燃料移送ポンプ		原子炉補機海水系配管	
	燃料移送ポンプ出口逆止弁		非常用ガス処理系配管   屋外配管ダクト(タービン建物   A ーディーゼル燃料移送系配管	
燃料移送系配管ダクト	燃料油系配管		<ul> <li>~ 排気筒)</li> <li>H P C S - ディーゼル燃料移送</li> </ul>	
			が間に官	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			5. 隣接構造物のモデル化	・設計方針の相違
			既工認では、簡便かつ保守的に評価する観点から、評価対象構	【柏崎 6/7,女川 2 】
			造物に隣接する建物等(以下「隣接構造物」という。)は地震応答	①の相違(5.隣接構造
			解析モデルでは地盤としてモデル化していた。今回工認では、評	物の相違については以
			価対象構造物に隣接する構造物の影響を考慮した現実的な挙動特	下同様の相違理由)
			性を把握する必要がある場合について,隣接する構造物を等価剛	
			性でモデル化する。	
			5.1 隣接構造物のモデル化方針	
			評価対象構造物と隣接する構造物が接している場合、又は評価	
			対象構造物と隣接する構造物が近接している場合においては、隣	
			接する構造物の挙動を含めた応答を正しく評価する必要がある。	
			したがって、隣接構造物の種類、規模及び設置箇所における地盤	
			状況を考慮し、隣接構造物が評価対象構造物の地震時応答に与え	
			る影響及び間接支持する設備がある場合はその設備(以下、「収納	
			設備」とする。)の地震時応答に与える影響を踏まえ、モデル化要	
			否を検討する。	
			隣接構造物をモデル化する場合には、隣接構造物を等価剛性で	
			モデル化する。モデル化対象は、岩盤上に設置されており、評価	
			対象構造物と同等以上の大きさで耐震性を有する建物・構築物(原	
			子炉建物等)とする。なお、隣接構造物のモデル化に当たっては、	
			評価対象構造物と隣接構造物との相互影響について別途確認す	
			る。なお、評価対象構造物が隣接構造物へ及ぼす影響については、	
			評価対象構造物の規模,構造及び応答特性等を踏まえ,詳細設計	
			段階において影響検討を実施する。	
			隣接構造物のモデル化方針を以下に示す。	
			① 評価対象構造物と隣接構造物が接している場合	
			評価対象構造物及び収納設備の地震時応答に与える影響が大き	
			いことから、隣接構造物をモデル化するとともに、評価対象構造	
			物と隣接構造物との相互影響について別途確認する。評価対象構	
			造物と隣接構造物が接している場合の概略図を第5-5-1図に示	
			す。	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017 12 20 版)	女川原子力発電所 2号炬 (2019-11-6版)	島根原子力発電所 2号炉	備老
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉 埋戻土, が多、構造物 埋戻土, が多、構造物 埋戻土, MMR等 単価対象構造物と隣接構造物が接している場合 概略図 ② 評価対象構造物と隣接構造物をの間が埋戻土の場合 評価対象構造物と隣接構造物の間が埋戻土を介しており、評価 対象構造物と隣接構造物が近接している場合は、埋戻土よりも剛 性の大きい隣接構造物をモデル化することにより、解析モデルの 固有周期が短くなる等、評価対象構造物及び収納設備の地震時応 答に与える影響が大きいことから、隣接構造物をモデル化すると ともに、評価対象構造物と隣接構造物と隣接構造物との相互影響について別途 確認する。評価対象構造物と隣接構造物との相互影響について別途 確認する。評価対象構造物と隣接構造物との相互影響について別途	備考
		<ul> <li>岩盤</li> <li>第5-5-2図 評価対象構造物と隣接構造物との間が埋戻土の場合 概略図</li> <li>③ 評価対象構造物と隣接構造物との間がMMRの場合 評価対象構造物と隣接構造物の間がMMRを介している場合は、隣接構造物をモデル化することにより、解析モデルの固有周期が短くなる等、評価対象構造物及び収納設備の地震時応答に与える影響が大きいことから、隣接構造物をモデル化するとともに、評価対象構造物と隣接構造物との相互影響について別途確認する。評価対象構造物と隣接構造物との間がMMRの場合の概略図を第5-5-3回に示す。</li> </ul>	

柏崎刈羽原子力発電所 6/7-	号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			「聖戻土」」「評価」」「評価」」「「評価」」」「「「一」」」」」  第5-5-3図 評価対象構造物と障様構造物との間が MMR(マンメイドロック)の場合 概略図   ④-1 評価対象構造物の周辺に隣接構造物が存在しない場合又は +分な離隔を有する場合(隣接構造物が存在しない場合、又は評 価対象構造物の周辺に隣接構造物が存在しない場合、又は評 価対象構造物と隣接構造物の間が+分な離隔を有する場合,隣接 構造物の応答が評価対象構造物の地震時応答に与える影響は小さ いことから、隣接構造物をモデル化しない。評価対象構造物の周辺に隣接構造物の周辺に隣接構造物が存在しない場合又は+分な離隔を有する場合の 概略図を第5-5-4図に示す。   第5-5-4図 評価対象構造物の周辺に陸接構造物が存在しない 場合又は+分な離隔を有する場合、概略図   ④-2 評価対象構造物の周辺に陸接構造物が存在しない 場合又は+分な離隔を有する場合の 概略図   ④-2 評価対象構造物の周辺に正応対象の構成   ④-2 評価対象構造物の周辺に正式の、   第5-5-4図 評価対象構造物の周辺に陸接構造物が存在しない 場合又は+分な離隔を有する場合   第6-5-4回 評価対象構造物の周辺に陸接構造物が存在しない 場合又は+分な離隔を有する場合   第5-5-4回 評価対象構造物の周辺に陸接構造物が存在しない 場合又は+分な離隔を有する場合   第5-5-4回 評価対象構造物の周辺に陸接構造物が存在しない   第5-5-4回 評価対象構造物の周辺に陸接触   第5-5-4回 評価対象構造物の周辺に応接触   第5-5-4回 課価対象構造物の周辺に   第2-5-5-4回 読録を   第5-5-4回 読録を   第5-5-4回 評価対象構造物の周辺に   第5-5-4回 評価対象構造物の周辺に   第5-5-4回 読録   第2-5-5-4回   第5-5-4回   第5-5-5-4回   第5-5-5-4回   第5-5-5-4回   第5-5-5-4回   第5-5-5-4回   第5-5-4回   第5-5-5-4回   第5-5-5-4回   第5-5-5-4回   第5-5-4回   第5-5-5-4回   第5-5-5-4回   第5-5-5-4回   第5-5-5-4回   第5-5-5-4回   第5-5-5-4回   第5-5-5-4回   第5-5-5-5回   第5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
				埋戻土, MMR等 埋戻土, MMR等 弾価 対象 構造物 構築物以外の
				第5-5-5図 評価対象構造物の周辺にモデ 物以外の構造物が隣接する場合
				5.2 隣接構造物のモデル化 評価対象設備の配置図を第5-5-6図に示 隣接構造物のモデル化方針を踏まえ,各 隣接構造物のモデル化を検討した。隣接構 を第5-5-1表に示す。
				広水槽     取水槽       座外配管ダクト     取水槽       「クービン建物~放水槽)     レ水管       「クービン建物~排気筒)     上外配管ダクト       日ーディーゼル燃料     日ーディーゼル燃料時蔵タンク       日ーディーゼル燃料     一日       丁酸クンク基礎     低圧原子炉代替注       第1ベントフィ     一日       第1ベントフィ     一日       第1ベントフィ     一日       日ービン空電機用軽油     カンタンク基礎       日ービン空電機用軽油     日       日ービン空電機用軽油     日       日ービン空電機用軽油     日       日ービン空電機用軽油     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日       日     日   <
				第5-5-6凶 評価対象設備



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	[子力発電所 2号炉 (2019.11.6版) 島根原子力発電所 2号炉			1	備考											
		第5-5-1表 隣接構造物のモデル化(例)															
		隣接構造物の モデル化	जे ठे वे ठे	बेर्ड बेर्ड	U¢W ≠z	9	しない	<u>व</u> े ठ	4 1	9 8 Utiti	いない	いない	しない				
		モデル化方針道定の理由	南側にタービン建物が階段している。 南側に埋戻土を介してタービン建物が隣接している。	南側に排気筒が隣接している。 西側にMMRを介して排気筒が隣接している。	北側に放水槽が隣接しているが、耐鬱性を有しないことから、モデル化しない。 い。 車面II-MM ロチムソーア店 ZutraMatricitation アリス	来的LMINTKをJD-CUFナが建物が開発している。 東側に埋戻土を介して原子が建物が開発している。	解析モデル範囲内に隣接構造物が存在しない。 取水口1の商創、取水口1の西側に取水管が隣接しているが、取水口 と取水管は可撓ジョイントで接続されており、取水管の影響を受けないこと	から、隣接構造物が存在しない場合と整理した。 北側にMMRを介して原子炉建物が隣接している。また、西側にMMR を介して補助消火水槽が、東側にMMRを介して低圧原子炉代替注水	ポンプ格納槽が隣接している。 西側にMMRを介して第1ベントフィリン名納槽が隣接している。また。北	側にMMRを介して原子炉建物が開始している。 北側に免震重要棟が隣接するが、免震重要棟は免震装置を有しており、 子の影響を守けれいアサや、モデルドルはい。	解析モデル範囲に屋外配管グト、(ガスタービン発電機用酸油タンクーガ スタービン発電機(制)及いりスタービン発電機離割が存在するが、地震面付 立っご確定に設置され、カスタービン発電機構用酸油タンクー質確 たっこ素が開始すれやいさいたいたいない。40~40~40~40~40~40~40~40~40~40~40~40~40~4	ハラムる防御にひとしいり阿妊年回言がリーオエレシャラムで産生しに。 離析モデル範囲にひえタービス実産繊維が行在する方、地表面付近の 岩盤上に設置され、屋外配管タフト(ガスタービン発電機用廃油ウソン・ ガスタービン発電機)、石美スあ影響切りといことから、隣接構造物が存在	しない場合と数里した。 解析モデル範囲に緊急時対策所が存在するが、地表面付近の岩盤上に 設置され、の設置要要能施設を与える影響はかさいてとから解除構造物 が存在したい場合と数單によっ	- 2.12.14-10-0-2.12.14.14.14.14.14.14.14.14.14.14.14.14.14.			
		隣接構造物の モデル化方針※	9	0	( <del>6</del> -2	0	<ul><li>(4)-1</li><li>(4)-1</li></ul>	0	ē	@ 2	4-1	<b>(4</b> )-1	4-1	1 转接構造物が評価対象構造 <b></b>			
		設備的林	取水槽 屋外配管ダケト(タービン建物~排気筒)	屋外配管ダクト(タービン建物~放水槽)	准/1月1日/11/(クービン准約)。JX29月) 日 11 / ナニ酸料的2世が、7年7年	B -アイービル総合HIMBタンノ基地 歴外記憶ダクト(B -ディーゼル燃料貯蔵タンク~原 子炉建物)	現水管現水口	第1ペントフィレク格納槽	正百百之后,4.我,4.少.老,一才按 約曲	WALFATTATICE/エクシンクロ#99目 緊急時対策所用燃料地下タンク	ガスタービン発電機用軽油タンク基礎	屋外配管ダナト(ガスタービン発電機用軽油タンク〜ガ スタービン発電機) スタービン発電機)	免濃重要棟遮蔽壁	構造物が見している場合 構造物の間が程度上の場合 構造物の間かは原見上の場合 調査物の的時のの場合 辺に常野が存在しない場合又は十分な議師を有する場合(隣 辺にてデレビジョの運物・構築物以外の構造物が確接する場合			
		分類			設計基準対象施設のうち 屋外重要土木構造物					·····································	■大事政寺が必加設の25 士木構造物※1		波及的影響を及ぼすおそれの ある施設のうち土木構造物	<ul> <li>(1) 評価対象相違物と構成 (2) 評価対象相違的と構設 (3) 評価対象相違的と構設 (4) -1 評価対象相違的の (4) -2 評価対象相違的の所</li> </ul>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版	) 女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	第Ⅱ編 三次元静的材料非線形解析の適用性	6. 3次元静的材料非線形解析の適用性	・資料構成の相違
	本編では、海水ポンプ室等の箱型構造物の構造解析に用いる、	島根原子力発電所2号炉の屋外重要土木構造物等のうち取水槽	【女川2】
	建設工認,並びに先行プラントも含めた旧規制及び新規制下にお	の構造解析に用いる、既工認、並びに先行プラントも含めた旧規	3次元静的材料非線
	ける工認実績(以下「既工認実績」という。)のない三次元静的材	制及び規制下における工認実績のない3次元静的材料非線形解析	形解析の適用性につい
	料非線形解析の評価方法及び適用性について説明する。	を採用する。	て,島根2号炉は別添-
	1. はじめに	3次元静的材料非線形解析の評価方法及び適用性については,	6にて説明
	1.1 三次元静的材料非線形解析を用いる目的	「別添-6 島根原子力発電所2号炉 屋外重要土木構造物等の	
	女川原子力発電所2号炉の土木構造物のうち,海水ポンプ室,	耐震評価における断面選定について」において説明する。	
	取水口及び復水貯蔵タンク基礎については、女川原子力発電所2		
	号炉の建設工認時より加振方向に配置される妻壁や隔壁等の面部		
	材が耐震部材として機能する効果、つまり、構造の三次元性が地		
	震時の応答に与える影響を考慮するため、線形シェル要素による		
	三次元モデルを採用し、許容応力度法により設計していた。軽油		
	タンク室については、新規制対応として、地下式に構造を変更し		
	ているが、旧規制では耐震Cクラスであり、工認対象外であった。		
	例として、海水ポンプ室における建設工認の解析モデルを第		
	Ⅱ.1.1-1 図に示す。		
	また,女川原子力発電所2号炉の適合性審査において浸水防止		
	設備の間接支持構造物となる3号炉海水ポンプ室についても、女		
	川原子力発電所3号炉の建設工認時より、2号炉の海水ポンプ室		
	同様、線形シェル要素による三次元モデルを採用し、許容応力度		
	法により設計していた。		
	今回工認では、基準地震動Ss が大加速度化したことにより、構		
	造物の挙動が非線形性を示すレベルとなることから、構造物の地		
	震時挙動を精緻に評価するため、新規に非線形性を考慮できる解		
	析モデルを取り入れ,三次元静的有限要素法による材料非線形解		
	析(以下「三次元静的材料非線形解析」という。)により耐震		
	安全性を評価している。例として、海水ポンプ室における今回工		
	認の解析モデルを第Ⅱ.1.1-2 図に示す。		
	三次元静的材料非線形解析は既工認実績はないが、特に非線形		
	ソリッド要素を用いると構造物の形状を詳細にモデル化でき、複		
	雑な構造の鉄筋コンクリート構造物の非線形挙動を考慮した変形		
	や断面力を評価することができるため、鉄筋やコンクリートのひ		
	ずみ、せん断力を用いた精緻な評価が可能である。なお、許容		
	限界は既工認実績のある許容限界,又はそれと同等の許容限界(お		
	おむね弾性範囲に相当するコンクリートの圧縮ひずみ及び鉄筋の		
	引張ひずみ)を、その妥当性を説明した上で採用することとして		
	いる (第Ⅱ.1.1-3 図)。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	<ul> <li>第単</li> <li>第</li> <li>第</li></ul>		
	44		
	第Ⅱ.1.1-2 図 海水ポンプ室の今回工認モデル(非線形ソリッド 要素)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	地表面 変位 δ 「 「 「 「 「 「 「 」 「 」 」 「 」 」 」 一 一 一 一 一 一 一 一 一 一 一 一 一		
	荷重P, 応力σ		
	第Ⅱ.1.1-3 図 大加速度化による非線形性の考慮(曲げ・軸力系 の破壊について)		
	<ul> <li>1.2 対象構造物 女川原子力発電所2号炉の新規制審査において、三次元静的材 料非線形解析により耐震安全性を評価する構造物は海水ポンプ 室、取水口,軽油タンク室、復水貯蔵タンク基礎及び3号炉海水 ポンプ室である。各構造物の特徴を以下に示す。</li> <li>・海水ポンプ室 幅32.5m、延長77m、高さ約28m と大規模であり、地下2階構造 で上部は開放された3部屋、下部は延長方向に4連又は2連のカ ルバート構造の複雑な形状である。地震時に揺れやすい弱軸は横 断方向で、横断方向加振に対し耐震壁として機能する壁部材は、 上部に4枚、下部に2枚と多く、複雑な構造である。耐震クラス はC クラス (Ss 機能維持)、また重大事故等対処施設であり、要 求機能として通水機能、支持機能、貯水機能及び止水機能がある。 海水ポンプ室の構造図を第Ⅱ.1.2-1 図~第Ⅱ.1.2-3 図に示す。</li> </ul>		



~炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	・取水口		
	幅33m, 延長11.5m, 高さ12m の標準部(6連カルバート)の背		
	面に幅32.4m~13.4m, 延長28.3m, 高さ5.5m の地中カルバート		
	構造である漸縮部(6連又は2連)が接続しており、高さの異な		
	る構造が一体化された複雑な形状である。地震時に揺れやすい弱		
	軸は横断方向で、横断方向に設置される壁は、標準部の背面の1		
	枚である。耐震クラスはC クラス (Ss 機能維持), また重大事故		
	等対処施設であり、要求機能として通水機能及び貯水機能がある。		
	取水口の構造図を第Ⅱ.1.2-4 図~第Ⅱ.1.2-8 図に示す。		
	PN		
	新田.1.2-4 図 取水口平面図		
	11:1482       0.P. +3.50m         11:1482       0.P6.50m         11:1482		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	点     32.40     点       98.33.500     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0 <th></th> <th></th>		
	用.1.2-7 図 取水口 (御袖部) 好面図 (B-B 好面)		
	第Ⅱ.1.2-8 図 取水口(漸縮部)断面図(C-C 断面)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	・軽油タンク室		
	南北16.70m~20.70m, 東西27.00m~32.40m, 高さ6.80m の箱型		
	構造物であり、軽油タンク室と燃料移送ポンプ室からなる比較的		
	単純な形状である。東西方向と南北方向で耐震壁として機能する		
	部材数に大きな差異はなく、明確な弱軸方向及び強軸方向を有し		
	ない。耐震クラスはC クラス (Ss 機能維持), また重大事故等対		
	処施設の間接支持構造物であり、要求機能として支持機能がある。		
	軽油タンク室の構造図を第Ⅱ.1.2-9 図~第Ⅱ.1.2-11 図に示す。		
	NUMERICAL NUME		
	第Ⅱ.1.2-9 図 軽油タンク室平面図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	第日.1.2-11 図 軽油タンク室断面図(C-C 断面)		
	・復水貯蔵タンク基礎 タンクを支持する基礎版及び基礎版上に固定された遮蔽壁他か ら構成されており,基礎版は,南北32.45m,東西26.75m,厚さ5.00m, 遮蔽壁は内径23.10mの円筒形で,壁厚1.00m(地上部は0.50m)で あり,複雑な形状である。遮蔽壁は円筒形で,明確な弱軸方向及 び強軸方向を有しない。重大事故等対処施設の間接支持構造物で あり,要求機能として支持機能がある。復水貯蔵タンク基礎の構 造図を第Ⅱ.1.2-12 図~第Ⅱ.1.2-14 図に示す。		
	Image: second		
	弗Ⅱ.1.2−12 図 復水灯廠タンク 基礎平面図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	第Ⅱ.1.2-13 図 復水貯蔵タンク基礎断面図(A-A 断面)		
	第Ⅱ.1.2-14 図 復水貯蔵タンク基礎断面図(B-B 断面)		
	・3号炉海水ポンプ室 幅32.1m,延長55m,高さ29m であり,地下3階構造で上部は開 放された2部屋,下部は延長方向に4連又は2連のカルバート構 造の複雑な形状である。地震時に揺れやすい弱軸は横断方向で, 横断方向加振に対し耐震壁として機能する壁部材は,上部に3枚, 下部に2枚と多く,複雑な構造である。耐震クラスはCクラス (Ss 機能維持)であり,2号炉の新規制審査において必要な要求機能 として支持機能及び止水機能がある。3号炉海水ポンプ室の構造 図を第Ⅱ.1.2-15 図~第Ⅱ.1.2-17 図に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	第Ⅱ.1.2-15 図 3号炉海水ポンプ室平面図		
	第11.1.2-16 図 3号炉海水ポンプ室断面図 (A-A 断面)		

柏崎刈羽原子力発電所 6/7号炉 (2	017.12.20版) 女	川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		32.10		
	. 、南	_1.8028.501.801.		
	0. P. +)	5.00m		
	<u> </u>			
	<u>0. P. –</u> 1	4.00m		
		MMR		
		· 新教教授)		
	第Ⅱ.1.2	-17 図 3号炉海水ポンプ室断面図(B-B 断面)		
	本編の以降	の説明において,海水ポンプ室と3 号炉海水ポンプ		
	室については	,既工認及び今回工認ともに耐震性評価手法が同様		
	であることカ	ら,規模が大きく,構造も複雑であり,要求機能が		
	多岐にわたる	海水ポンプ室で代表することとする。		
	また、前述	の対象構造物を含めても、海水ポンプ室の構造が最		
	も複雑で規模	が大きいこと、要求機能が充実している状況は同様		
	であることか	ら、海水ボンブ室を代表として、三次元静的材料非		
	緑形解析を用	いた評価方法について説明する。		
	13昭杏休采			
	三次元静的	材料非線形解析を用いた耐震性評価方法の評価体系		
	と各評価の概	要を第Ⅱ.1.3-1 図に示す。安全係数の設定等にあた		
	り準拠する規	格・基準については,既工認実績のある土木学会マ		
	ニュアル2005	を適用することを基本とし,三次元材料非線形解析		
	に係る照査法	を示しているコンクリート標準示方書2017 や土木		
	学会マニュア	ル2018 を参照する。また,限界状態の考え方として,		
	「水道施設而	震工法指針・解説(日本水道協会, 2009)」(以下「水		
	道施設耐震工	法指針2009」という。)を一部参照する。		

柏崎刈羽原子力発電所 6	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			<complex-block></complex-block>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	2. 建設工認からの変更点		
	2.1 照査体系の変更点		
	二次元地震応答解析により算定した地震時荷重を三次元モデル		
	へ作用させて生じる変形や断面力と許容限界を比較する照査体系		
	は、今回工認と建設工認で変わりはない。		
	建設工認では、構造物の応答が線形レベルだったことから線形		
	解析を用いた許容応力度法により照査していたが,今回工認は,		
	非線形解析を用いた限界状態設計法により、要求性能に応じた許		
	容限界に対して照査する(第Ⅱ.2.1-1 図)。		
	建設工認及び今回工認における照査体系の比較を第Ⅱ.2.1-2		
	図に示す。		
	第第第二日         第第第三日         第第第三日         第11.2.1-1         図         今回工認と建設工認の許容限界イメージ(曲げ・ 軸力系)		

Image: series of the series	柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版) 女川原子力発電所	〒 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版) 女川原子力発電詞		島根原子力発電所 2.9炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	2.2 耐震性評価手法の変更点		
	建設工認における耐震性評価は、妻壁や隔壁の耐震機能を設計		
	で考慮できるよう、線形シェル要素による三次元モデルで構造解		
	析を行っている。また、二次元地震応答解析は、構造物を実構造		
	と等価な剛性とした線形モデルとして、地盤-構造物連成の周波		
	数応答解析(線形解析)により評価している。		
	今回工認における耐震性評価は、妻壁や隔壁の耐震機能に加え		
	非線形性も考慮できるよう、非線形要素(ソリッド要素及びシェ		
	ル要素)による三次元モデルで構造解析を行う。三次元モデルは、		
	貯水機能や止水機能が要求される構造物については、部材のひび		
	割れ状況を評価できるソリッド要素を採用し、支持機能のみ要求		
	される構造物についてはシェル要素を採用する。		
	また、二次元地震応答解析は、構造物を実構造と等価な剛性と		
	した線形モデルとし、地盤ー構造物連成の二次元動的解析により		
	評価しており、地盤の非線形性に応じて、時刻歴非線形解析(構		
	造物線形)により評価している構造物(海水ポンプ室、取水口)		
	と,周波数応答解析により評価している構造物(軽油タンク室,		
	復水貯蔵タンク基礎)がある。なお、三次元解析を採用する予定		
	のすべての構造物について、二次元地震応答解析手法は地下水位		
	等の地盤の状況や、解析手法の適用範囲を勘案して適切に選定す		
	ることとしている。		
	各構造物における建設工認の耐震性評価手法の概要を第		
	Ⅱ.2.2-1 表に, 今回工認の耐震性評価手法の概要を第Ⅱ.2.2-2		
	表に, 耐震性評価手法の変更点を第Ⅱ.2.2-3 表に示す。第		
	Ⅱ.2.2-3 表に示すとおり、今回工認のうち、既工認実績のない手		
	法は、三次元静的材料非線形解析(ソリッド要素及びシェル要素)		
	と,限界状態設計法のうち圧縮ひずみ/引張ひずみであり,本資料		
	で説明する海水ポンプ室は、時刻歴非線形解析とソリッド要素を		
	採用しており、新規に採用する方法を網羅している。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2 号炉(2019.11.6版)     島根原子力発電所 2 号炉			備考			
		第Ⅱ.2.2-	1 表 建設工認の耐震性語	平価手	去		
	技术計蔵タンク基礎			<ul> <li></li></ul>			
	戦祖ダンク重 1679点 1670点 1611-1111月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 1611月 16111 16111 16111 16111 16111 16111 16111 16111 1611	建設工器対象外	编成工器结构外	建設工器対象外			
	現代代日 会社を発展されていたことでの発展的ですが、 低く地帯では、1000年代の1000年代			<ul> <li>機能対応性能に対し、機能的の6-進の 30.44-15-2個外質的し情報する。 (個外皮術)</li> </ul>	捕		
	<ul> <li>第本はしつ「重</li> <li>注声すれによる時間面にも下からし、単株</li> <li>第二時時を単純的によっか。(第四) とし、む</li> </ul>			<ul> <li>         ・          ・         ・</li></ul>	<ul> <li>         ・</li></ul>		
	評価方法	二次元 地震応客線柱	以次元七学小	主要な 情座モード	単のの中 国語		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	第Ⅱ.2.2-2 表 今回工認の耐震性評価手法		
	<ul> <li>(技术時間タンク)振動</li> <li>(技术時間タンク) 水水子定長け箇新ト</li> <li>(生力学などした、地路 (主力会) (成系マランをとした、地路 (主力会) (成系マランをとした、地路 (本社会) (成系) (市) (市)</li> <li>(首本) (市)</li> <li>(首本) (市)</li> <li>(首本) (市)</li> <li>(首本) (市)</li> <li>(日名)</li> <li>(日名)</li> </ul>		
	RUX II       • КЕХЛИК: 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 201		
	<ul> <li>(成大ポンプ)(()</li> <li>(成大ポンプ)(()</li> <li>(成大ポンプ)(()</li> <li>(()</li> <li>()</li> <li>(()</li> <li>()</li> <l< td=""><td></td><td></td></l<></ul>		
	二次13 施展动作者 副務協会会性 評価		

第Ⅱ.2.2-3 表 耐震性評価手法の変更点	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	<ol> <li>3 新規採用手法の概要</li> </ol>		
	今回新規に採用する手法は、地震時荷重算定のために実施する		
	二次元時刻歴非線形解析(構造物線形)と三次元静的材料非線形		
	解析である。二次元時刻歴非線形解析(構造物線形)と三次元静		
	的材料非線形解析の概要を以下に示す。		
	①二次元時刻歷非線形解析 (構造物線形)		
	・解析モデル		
	地盤-構造物連成の二次元FEM 解析において, 地盤の非線形性		
	を考慮した地震応答解析を行う。		
	構造物は、地震時荷重(地震時土圧、慣性力)を安全側に評価		
	するため線形モデルとし、地盤の材料特性として、H-D モデルや		
	R-0 モデル等に基づく骨格曲線とメイシング則に基づく履歴曲線		
	により,非線形挙動を表現する。また,地盤-構造物間の剥離,		
	再接触を考慮する。		
	妻壁等の剛性を考慮した平面応力要素を用いることで、地盤と		
	構造物の動的相互作用を正しく評価する。		
	・照査(利用)方法		
	三次元静的材料非線形解析で作用させる地震時土圧や慣性力		
	を、地震時荷重として算出する。		
	構造物も非緑形とした手法について、川内1号の取水ビット、		
	公海3・4号の取水ビット, 高浜3・4号の海水ホンノ室, 美浜		
	3号の海水ホンノ至等の地中構造物などで成上認美禎か多数の		
	<u>ි</u> .		
	<ul> <li>・規格・基準</li> </ul>		
	土木学会マニュアル2005 において、地盤-構造物連成系の時刻		
	歴地震応答解析において、地盤及び構造物の非線形性を考慮した		
	解析手法が規定されている。また、コンクリート標準示方書2017		
	において、部材及び地盤の非線形性を考慮した、構造物と地盤の		
	連成解析手法が規定されている。		
	②三次元静的材料非線形解析		
	・解析モデル		
	三次元の構造モデルに、慣性力や土圧等の地震時荷重を静的に		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	載荷し、構造解析を行う。		
	地盤は、地震時の解析では、底面と妻壁にばねとしてモデル化		
	する。側壁への土圧等の作用は,構造物に直接作用させるため,		
	地盤ばねは用いない。		
	構造物の材料特性として、材料非線形性を有するソリッド要素		
	やシェル要素により非線形挙動を表現する。ソリッド要素は、曲		
	げ変形に加えてせん断に対する非線形挙動を表現可能であり、要		
	素のせん断破壊に伴う非線形挙動も精緻に表現できる。シェル要		
	素は、曲げ変形に対する非線形挙動を表現可能であり、部材非線		
	形性を有する梁モデルを二次元平面に拡張した要素である。		
	<ul> <li>・照査方法</li> </ul>		
	材料非線形を考慮した要素に発生する断面力や変形に対して照		
	査を行う。おおむね弾性範囲に対し、コンクリートの圧縮ひずみ		
	と鉄筋の引張ひずみを限界値としている。		
	• 旺丁韧生结		
	・ 以上 応天祖		
	成工記失視として、川内1500取小路、公供3・4500供小目		
	ククト室死なとし、部初のせんめ順力を二次元初科升禄心府何に 上り証価している実績けなるが、構造物全体を対象とした実績け		
	より計画している美積はめるか, 悟垣初主体を対象とした美積は たく 曲げての破壊の昭本において 非線形解析から得られる鉄		
	なく、一切示の破壊の点量において、非尿心症切から待られる妖		
	加てコンノノードののアを用すって天順ななす。		
	・規格・基準		
	コンクリート標準示方書2017 において,三次元の構造モデルに		
	対する材料非線形解析による評価方法が規定されている。また,		
	土木学会マニュアル2018 において,構造物全体を三次元ソリッド		
	要素でモデル化し、耐震性評価を行う方法が規定されている。		
	2.4 三次元静的材料非線形解析の得失		
	新規手法を採用することによる影響を確認するため、新規制の		
	適合性審査において実績のある二次元地震応答解析(部材非線形)		
	と三次元静的材料非線形解析の得失を第Ⅱ.2.4-1 表のとおり整		
	理した。		
	二次元地震応答解析は線状構造物に適した解析手法で、加振方		
	向に設置される部材の評価ができないのに対し、三次元静的材料		
	非線形解析は箱型構造物に適した解析手法で,三次元的な挙動,		
	隅角部等における応力伝達が実態に近く再現できる。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子	力発電所 2号炮	戸(2019.11.6	;版)	島根原子力発電所 2号炉	備考
	海水ポンプ室のよ	うに複雑な部材	から構成され	,ひび割れの狷		
	生状態から貯水・止	水機能の評価が	必要な構造物	は、解析モデル		
	の作成に労力を要す	るものの、ソリ	ッド要素を用	いた三次元静的	5	
	   材料非線形解析が適	している。				
	第Ⅱ.2.4-1	表 三次元静的	材料非線形解構	所の得失		
	三次元齢的候料非線形解析 ノリッド要素:滴水ボンブ鉱 他) (シェル要素:滴水ボンブ鉱 他) (シェル要素:能治タンク鉱 他) (シェル要素:能治クンク鉱 他) (シェル要素:能治クンク鉱 他) (シェル要素:能治クンク鉱 他) (シェルの数素:能治力の解析) (シェルの数素: (中マスワ) (他的たいの) (中マスワ) (他的たいの) (中マスワ) (他的たいの) (中マスワ) (他的たいの) (中国のの) (中国のの)の。	版でするは、自然の意味をディ、FIMにの原語をデーロー、この酸でも脱の的な情報の像、キャディトできる。 部に成られ、厳ロ事業が少ない、 1980年から構成すずははングラート解除ため書、 この酸素をおしても、 1980年からの。 1980年からの。 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年から、 1980年のの 1980年から、 1980年のの 1980年のの 1980年のの 1980年のの 1980年のから、 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980年のの 1980	第条書からきて、大規模構造物に対しては、他的 からのあ。 第本からのは、大規模構造物に対しては、他的 素がからの。 第本からの、大規模構造物に対しては、他的 素がからの。 第本からの、大規模構造物に対しては、他的 素がのです。 第本からの、大規模構造物に対しては、他的 素がのです。 第本からの、大規模構造物に対しては、他的 素がのです。 第本からの、大規模構造物に対しては、他的 素がのです。 第本からの、大規模構造物に対しては、他的 素がのです。 第本からの、大規模構造物に対しては、他的 第本からの、大規模構造物に対しては、他的 第本の、大規模構造物に対しては、他的 第本の、大規模構造物に対しては、他的 第本の、大規模構造物に対しては、他的 第本の、大規模構造物に対しては、中的の 第本の、「「「「「「」」」」 第本の、「」」」 第本の、「」」 第本のの、「」」 第本のの、「」」 <	またの施設に対けを施する。 だけおしては、コンクタートの主任器化する点は 他のにだみにより強いためた 他のにだみにより強いため、 他のにだんにより強いため、 他のにだんにより強いため、 他のにだんにより強いため、 他のにだんにより強いため、 の、や人体に対しては、供口能の強い能能化を 適用できる。 の、や人体に対しては、供口能の強い能能化を 適用できる。		
	<ul> <li>二次元地間応答解析</li> <li>(曲時 非線形解析: 取水紙 他)</li> <li>(一集件を分析すしか)</li> <li>(一集件を分析に書作しか)</li> <li>(一集件を分析に書作した)</li> <li>(一集件を分析に書作した)</li> <li>(一二十十一日)</li> <li>(一二十十一日)</li> <li>(一一集件を分析)</li> <li>(一一集件を分析)&lt;</li></ul>	<ul> <li>○□本●も大キテレイン・モナタなど、装置な機能た</li> <li>②</li> <li>◎</li> <li>○</li> <li>○</li></ul>	<ul> <li>○:計算貨貨が比較的からく、時間間の建築が消費がか</li> <li>○:消費</li> <li>○:消費</li> <li>(1)</li> <li>(1)</li> <li>(2)</li> <li>(2)</li> <li>(3)</li> <li>(4)</li> <li>(4)</li> <li>(5)</li> <li>(5)</li> <li>(5)</li> <li>(5)</li> <li>(6)</li> <li>(7)</li> <li></li></ul>	<ul> <li>○: 金 / 何へでん参にはする糸 SK ( 愛) ○</li> <li>二級米値 べある。</li> <li>○</li> <li>○</li></ul>		
	解析 七万 小竹成	構成中方ル	*	4 8		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	2.5 二次元地震応答解析手法の変更による影響		
	二次元地震応答解析について,建設工認では周波数応答解析(線		
	形解析)を行っているが、今回工認では、基準地震動Ss が大加速		
	度化することにより、周辺地盤の非線形性を考慮する必要がある		
	ことから、時刻歴非線形解析(構造物線形)を採用している。		
	今回工認手法を採用する影響を確認するため、建設工認手法と		
	今回工認手法における地震時荷重を比較する。地震時荷重は、女		
	川では基準地震動Ss がSs-D1, Ss-D2, Ss-D3, Ss-F1, Ss-F2, Ss-F3,		
	Ss-N1 と7波あるため、これらの中で海水ポンプ室全体の層間変		
	位が大きい基準地震動Ss-D2 において,海水ポンプ室全体の層間		
	変位が最大となる時刻の、海水ポンプ室の中心付近である補機ポ		
	ンプエリアの地震時荷重で代表する。		
	建設工認手法と今回工認手法の土圧分布を第Ⅱ.2.5-1 図に,水		
	平方向及び鉛直方向加速度を第Ⅱ.2.5-2 図に示す。		
	今回工認手法では周辺地盤の非線形性を考慮し、時刻歴非線形		
	解析による結果では、地盤のひずみレベルが大きくなり、海水ポ		
	ンプ室に作用する土圧は今回工認手法の方が全体的に大きくなっ		
	ている。また、地盤と構造物間のジョイント要素により、剥離-		
	再接触を考慮しているため、建設工認手法において解析上側壁を		
	地盤が引張るような荷重は、剥離として考慮されている。		
	加速度においては、底面のジョイント要素の影響により、構造		
	物が地盤から離れ、回転変形するような挙動が再現され、鉛直加		
	速度に差異が生じている。		
	このように土圧及び加速度のいずれについても、今回工認手法		
	は建設工認手法と比較して,地盤と構造物の相互作用が実現象に		
	近い結果となっている。		
	今回工認手法と建設工認手法の差異が構造物に与える影響とし		
	て、今回工認手法の土圧が大きいことから、土圧が直接作用する		
	側壁等において、一部の要素が非線形領域となることが考えられ		
	る。また、回転変形により、底版のせん断力や右側壁の軸力に影		
	響が出ると考えられる。		
	以上のことから、一部の要素が非線形化し、荷重の負担が部材		
	間で配分されることや、地盤と構造物間との剥離-再接触が考慮		
	されることにより、断面力や床応答が実現象に近い応答となる。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	<ul> <li>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</li></ul>		
	imageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimage		
	<ul> <li>2.6 三次元モデルの変更による影響</li> <li>三次元モデルについて,建設工認では線形シェルモデルを採用し,許容応力度法により照査を行っているが,今回工認では非線形ソリッド要素によりモデル化し,限界状態設計法により照査を行っている。</li> <li>今回工認で採用した方法では,曲げ系の破壊をひずみで評価することで,より精緻に部材の応答を把握することができる。</li> <li>例として,2.5 項に示す今回工認手法の地震時荷重を非線形ソリッド要素による三次元モデルに載荷させた場合における要素の応力-ひずみ関係を第Ⅱ.2.6-1 図及び第Ⅱ.2.6-2 図に示す。</li> <li>図中の線形解析応答値及び非線形解析応答値は,同一の荷重を建設工認の三次元モデル(線形シェル要素)及び今回工認の三次元モデル(非線形ソリッド要素)に載荷させた応答値である。</li> <li>曲げ系の破壊に対して、コンクリートの圧縮ひずみはおおむね</li> </ul>		
	弾性範囲内で用いることとし,鉄筋の引張についてはコンクリー トと鉄筋の付着性能を考慮した鉄筋コンクリート要素としてひず		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	みを取り扱い、鉄筋のひずみを精緻かつ合理的に算定することが		
	可能である。		
	CITATION DE LA CONTRACTION DE LA CONTRACTICA DE		
	AINTE		
	5158 (15.06)		
	31072 31072		
	<u>31071</u> 31069		
	断面回(A新面) 侧壁基部拡大回		
	1日期ログル(点)		
	第Ⅱ.2.6-1 図 主圧縮応カー主圧縮ひずみ関係(圧縮側要素		
	31069)		
	ື່ວ ແທນ 1800 <u>1725</u> g000 ສະໜະ ສະໜ ⊽ະາ⊄7⊁(µ)		
	   第Ⅱ 2 6-2 図 鉄筋コンクリートの広力7N-ずみ関係 (引進側)更		
	素31072)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	また、今回工認の三次元モデル(非線形ソリッド要素)及び建		
	設工認の三次元モデル(線形シェル要素)に2.5 項に示す今回工		
	認手法における地震時荷重を載荷させた場合の軸力、せん断力及		
	び曲げモーメントについて比較を行った。比較結果を以下に示す。		
	・軸力		
	今回工認の三次元モデル(非線形ソリッド要素)及び建設工認		
	の三次元モデル(線形シェル要素)の軸力図を第Ⅱ.2.6-3 図に示		
	す。		
	今回工認と建設工認の軸力はおおむね同等となっているが、海		
	側側壁で差異が出ている。差異が出ている箇所は、後に示す曲げ		
	モーメントによりひび割れが発生し剛性低下が生じている箇所で		
	ある。		
	今回工認では非線形性を考慮しており,剛性低下の影響により,		
	地震時の引張軸力が負担できなくなることから、常時の圧縮軸力		
	が多く残留することが、差異が出ている原因である。		

相畸刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	<figure></figure>		
	荷重 ひび親れが発生し 解性が低下する		
	第Ⅱ.2.6-3 図 軸力図		
	●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	・せん断力 今回工認の三次元モデル(非線形ソリッド要素)及び建設工認 の三次元モデル(線形シェル要素)のせん断力図を第Ⅱ.2.6-4 図 に示す。 今回工認と建設工認のせん断力はおおむね同等となっている が、中床版及び底版の海側で差異が出ている。 前頁で示したとおり海側側壁に剛性低下の影響により軸力の差 異が出ており、直交部材の軸力とせん断力の関係から、海側側壁 と直交する中床版及び底版のせん断力に差異が出たものである。		
	第11.2.6-4 図 ぜん断刀図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	・曲げモーメント		
	今回工認の三次元モデル(非線形ソリッド要素)及び建設工認		
	の三次元モデル(線形シェル要素)の曲げモーメント図を第		
	Ⅱ.2.6-5 図に示す。		
	今回工認と建設工認の曲げモーメントについても、海側側壁や		
	中床版の海側で差異が出ている。軸力及びせん断力の比較で示し		
	たとおり、海側側壁下部における曲げモーメントによる曲げひび		
	割れの発生により剛性が低下し、海側側壁下部の軸力や、中床版		
	及び底版のせん断力に差異が出ている。		
	また、部材端部の曲げモーメントの差異は、建設工認は剛域な		
	しの線形シェルモデルであるが、今回工認はソリッド要素でモデ		
	ル化したことにより接合部の剛域が考慮され、断面力算定スパン		
	に差異が生じていることが原因である。		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
--------------------------------	--------------------------------------------------------------------------------------	--------------	----
	存ま ひび割れが発生し 副性が低下する		
	第Ⅱ.2.6-5 図 曲げモーメント図 以上のように、一部の要素が非線形化するような大加速度下に ないては、材料非線形による解析により部材の剛性低下に伴う力		
	の配分の変化を表現することができ、精緻な評価が可能となる。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	3. 三次元静的材料非線形解析の評価手順		
	3.1 耐震性の評価フロー		
	三次元静的材料非線形解析による耐震性の評価フローは、建設		
	工認と同様に、基準地震動Ss による二次元地震応答解析により評		
	価される地震時荷重(土圧,加速度)を三次元モデルへ作用させ		
	て,耐震安全性評価を行う。評価フローを第Ⅱ.3.1-1 図に示す。		
	新規制基準により、基準地震動の大加速度化、新たな要求機		
	能(津波に対する止水機能)の追加、水平2方向地震の検討の追		
	加などが変更となっている。それらの変更に伴い解析手法を変更		
	しており、解析手法の建設工認からの主な変更点は、二次元地震		
	応答解析を線形解析である周波数応答解析から時刻歴非線形解析		
	へ変更した点と、三次元モデルを線形シェル要素から非線形ソリ		
	ッド要素又は非線形シェル要素へ変更し、耐震安全性評価を許容		
	応力度法から限界状態設計法に変更した点である。		

本語語語語語: 本語語語語語: 本語語: 本語語: 本語語: 本語語: 本語	
function of the second secon	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	3.2 三次元モデルの作成		
	三次元モデルは、構造物を非線形ソリッド要素、地盤をばね要		
	素でモデル化し作成する。常時解析及び地震時解析の三次元モデ		
	ル図を第Ⅱ.3.2-1 図に示す。		
	・構造物のモデル		
	8節点6面体と6節点5面体のソリッド要素を用いて立体的に		
	モデル化する。モデル化にあたり大きな開口部は考慮する。		
	・ お料 北 線 形 の エ デ ル		
	材料の物性値は「コンクリート標準示方書2017 5音材料の設		
	計値」に準拠する コンクリートの圧縮領域及び引張領域の構成		
	目には、前川モデルを用いる。		
	・支持地盤のモデル		
	本編の目的に鑑み、支持地盤は弾性ばねでモデル化し、構造物		
	の健全性(断面保持)の観点から鉛直部材の応答が厳しく評価さ		
	れ,より非線形性が明確に表れるよう底面の水平2方向及び鉛直		
	方向の線形ばねでモデル化する。		
	ただし、二次元地震応答解析で構造物と地盤の剥離-再接触を		
	考慮した荷重を三次元モデルに載荷することから、工認段階では		
	二次元地震応答解析における支持地盤と構造物底面の剥離の状況		
	を確認し、支持地盤と構造物底面の剥離が構造物の安全性に影響		
	を及ぼすことが考えられる場合には剥離を考慮できる非線形ばね		
	を用いる。		
	・妻壁の側方地盤のモデル		
	側方地盤は、弾性はねでモアル化し、妻壁の法線方向に取り付		
	りる。このはねは、1万回載何の地震時解析の際に考慮し、2万 白巻曲の際はしてた声位作用される		
	「回載何の院は工圧を直接作用させる。		



~炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	3.4 二次元地震応答解析		
	二次元地震応答解析は、地盤の非線形性を考慮した地盤-構造		
	物連成の時刻歴非線形解析により行う。等価剛性の構造物モデル		
	は,線形モデルとしており,盛土,旧表土, D級岩盤, セメント		
	改良土及び改良地盤については、非線形性を考慮している。地盤		
	条件は、防潮堤下部、海水ポンプ室東側及び西側は地盤改良する		
	予定であり、延長方向で変わらない。二次元地震応答解析の解析		
	モデル図を第Ⅱ.3.4-1 図に,海水ポンプ室周辺の地盤改良範囲図		
	を第Ⅱ.3.4-2 図~第Ⅱ.3.4-4図に示す。		
	海水ポンプ室と原子炉建屋の間及び海水ポンプ室と防潮堤の間		
	には剛性の大きい地盤改良体が存在しており、地盤改良の効果を		
	適切に評価するため,原子炉建屋及び防潮堤を線形でモデル化す		
	る。原子炉建屋のFEM モデルは、「原子力発電所の基礎地盤及び周		
	辺斜面の安定性評価技術<技術資料>」(土木学会原子力土木委員		
	会,2009)を参考に作成する。原子炉建屋及び防潮堤のモデル化		
	方法を以下に示す。		
	・原子炉建屋のモデル化		
	建屋の水平方向応答及び鉛直方向応答の両者に着目し、建屋モ		
	デルである多質点系モデルと等価な水平及び鉛直方向振動特性を		
	有するFEM モデルに変換して作成する。質点系モデルと1次の水		
	平方向の固有周期、固有モードが同等であり、かつ、1次の鉛直		
	方向の固有周期、固有モードが同等となるよう作成し、単位奥行		
	き当たりの剛性及び質量に換算してモデル化する。なお、スクリ		
	ーンエリア、補機ポンプエリア、循環水ポンプエリア全て同一の		
	モデルとする。		
	・防潮堤のモデル化		
	鋼管式鉛直壁を構成する鋼管杭は、海水ポンプ室の延長方向		
	(77m)に相当する本数の剛性・重量を考慮したはり要素及び質点		
	でモデル化する。背面補強工及びセメント改良土は、地盤と同様		
	に平面ひずみ要素でモデル化する。いずれも単位奥行き当たりの		
	剛性及び質量に換算してモデル化する。なお、スクリーンエリア、		
	補機ポンプエリア,循環水ポンプエリア全て同一のモデルとする。		
	機器・配管荷重は、はり要素や節点の付加重量として考慮して		
	おり、機器・配管の設計に用いる床応答は、当該節点の応答を用		
	いる。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	the second seco		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	第 II.3.4-3 図 改良範囲断面図 (A-A' 断面)		
	第 П. 3. 4-4 図 改良範囲断面図 (B-B' 断面)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	3.5 地震時荷重の算定		
	二次元地震応答解析において要求機能に対応する着目部位の変		
	位や断面力が大きくなり、照査上厳しくなる時刻を選定し、地震		
	時増分土圧と応答加速度を算定する。照査時刻の選定方法は5.3		
	項に示す。慣性力は、応答加速度を基に応答震度を算定する。地		
	震時増分土圧分布及び応答加速度分布の例を第Ⅱ.3.5-1 図及び		
	第Ⅱ.3.5-2 図に示す。		
	周囲せん概力 直力内倒土匠 -300 0 300 -300 -300 0 300 -300 0 300 -300 0 300 -300 0 -300 -300 0 -300 0 -300 -300 0 -300 0 -300 -300 0 -300 0 -300 0 -300 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300 0 -300		
	(Will : n/sec ¹ )		
	第Ⅱ.3.5-2 図 応答加速度分布例		
	3.6 地震時解析		
	3.6.1 1 方向載荷		
	二次元地震応答解析より算定した慣性力及び地震時増分土圧等		
	を地震時荷重として三次元静的材料非線形モデルに載荷する。地		
	震時荷重として、慣性力、地震時増分土圧、動水圧及び内水圧を		
	考慮する。		
	躯体及び機器・配官類等の慣性力を考慮する。		
	一 解析により求めた心谷震度(水平震度,鉛直震度)より慣性力を		
	算定する。竜巻防護ネットの荷重は接続部の反力として作用させ		
	る。周辺地盤等の物性のばらつきを考慮した海水ポンプ室の床応		

## 4条-別紙5-82

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	答に対し、竜巻防護ネットの地震応答解析を行い、算定された最		
	大反力を海水ポンプ室の設計用荷重とする。		
	・地震時増分土圧及び動水圧		
	二次元地震応答解析により求めた地震時増分土圧(直土圧,周面		
	せん断力)を作用させる。海水ポンプ室には地下水位低下設備が配		
	置されており、構造物近傍は地下水位が低下しているため水圧は		
	直接作用しない。構造物より離れた位置における地下水の影響は		
	地震時増分土圧に含めて考慮する。		
	・内水圧		
	内水の動水圧は、自由水面の無い閉水路部分については水の重		
	量に応答震度を乗じた付加荷重として考慮し,自由水面のある開		
	水路部分については応答震度を用いてWestergaard 式から算定す		
	る。		
	慣性力及び地震時増分十圧け、エリアごとに風行き方向に一様		
	か荷面として作用させる 地震時荷面の載荷イメージ図を第		
	底面の支持地般げわけ「田治見の振動アドミッタンス理論」に		
	基づき設定し、事時の法線方向に取り付ける側方地般げわけ「道		
	窓橋示方書・同解説V耐電設計編」に基づき設定する		
	昭本値が最も厳しくたろ地震動に対してけ、地般剛性等の不確		
	かさを考慮した一設計用荷重を載荷し、評価を行う		
	第Ⅱ.3.6-1 図 地震時荷重載荷イメージ (1方向載荷)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	3.6.2 水平2方向載荷		
	水平2方向載荷に対する検討として、1方向載荷に、縦断方向		
	の地震時荷重を同時に載荷する。地震時荷重の載荷イメージ図を		
	第Ⅱ.3.6-2 図に示す。		
	縦断方向の土圧は妻壁と地盤の相互作用により発生するが、横		
	断方向と異なり妻壁は構造物全体の挙動ではなく、1部材として		
	応答するため、縦断方向の地震時荷重を算定するための二次元モ		
	デルは等価剛性とはせず鉄筋コンクリート部材の剛性を考慮す		
	る。		
	縦断方向の地震時荷重は、水平2方向載荷の影響が大きい部材		
	のうち,1方向載荷時の照査値が最も厳しい部材・時刻に対し,		
	同時刻の縦断方向の地震時荷重を、位相が異なる地震動により算		
	出して用いる。1方向載荷時において, 耐震要素として考慮され		
	る横断方向に平行な壁部材が非線形化する可能性があるため、評		
	価時刻に至るまでの荷重により受ける影響を考慮して,水平2方		
	向同時入力の影響を評価する。		
	地盤ばねは,底面の支持地盤ばねを設定し,設定方法は,1方		
	向載荷時と同様である。		
	第日.3.6-2 図 地震時荷重載荷イメージ(水平2方向載荷)           3.7 耐震安全性評価           三次元静的材料非線形解析で建設工認に比べ新規性の高い点           は、変形に基づく指標を用いて耐震安全性を評価する点であり、		
	16, 2000年7、1日赤を川いて町展女王にで町回りるふてのり, 地電時荷重に対し、既丁認宝績のある層間変形角、せん断力の納		
	100km 町回 里に ハ し, 死工 応大 傾 い の る 宿 间 多		
	シクリートの圧縮ひずみと主節のひずみが許容限界にしてい		
	ることを確認する。		
	海水ポンプ室では部材ごとに要求機能が異なることから、それ		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	ぞれの要求機能に着目し、耐震安全性評価を行う。		
	海水ポンプ室は, S クラスの機器・配管等の間接支持構造物及		
	び非常用取水設備であること等を考慮し、その要求機能について		
	は以下のとおり設定する。		
	・通水機能		
	非常用取水設備のうち、通水断面を構成する部材について、そ		
	の崩壊により通水断面を閉塞しないこと。		
	<評価方針>		
	一つの部材が終局状態に至った場合でも、直ちに通水断面の閉		
	塞に繋がる事象には至らないが、保守的に、終局状態に至らない		
	ことを目標性能とし、部材の層間変形角及びせん断力が許容限界		
	に至らないことで確認する。なお、支持機能、貯水機能及び止水		
	機能が要求される部材についても、構造部材が終局状態に至らな		
	いことが前提となるため、通水機能に対する要求機能は構造物全		
	体に対して適用する。		
	<許容限界>		
	【面外変形】 層間変形角:1/100		
	せん断力: せん断耐力以下		
	【面内変形】 層間変形角:2/1000		
	<対象部材>		
	<ul> <li>・海水の通水部分(下部カルバート部)</li> </ul>		
	・構造物全体		
	・支持機能		
	S クラスの機器及び配管等を安全に支持できること。		
	<評価方針>		
	S クラス機器及び配管等を安全に支持することは、耐荷性能を		
	維持することと同義であり、部材が終局状態に至らないことを目		
	標性能とする。この目標性能は、通水機能の確認を、構造物全体		
	に対し行うことで確認できる。		
	加えて, S クラス機器及び配管等のアンカー定着部周辺の損傷		
	が部材降伏程度であれば、定着性能に影響を及ぼさないことから、		
	アンカー定着部周辺においては,鉄筋が降伏しないことを目標性		
	能とし、コンクリートの圧縮ひずみ及び主筋のひずみが許容限界		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	に至らないことで確認する。		
	また, 面内変形に対しては, 部材の層間変形角がJEAC4601-2015		
	で規定されている支持性能の許容限界に至らないことで確認す		
	る。		
	<許容限界>		
	【面外変形】 圧縮ひずみ:圧縮強度に対応するひずみε' peak		
	$2000\mu$		
	主筋ひずみ:降伏強度に対応するひずみεy		
	$1725\mu$		
	せん断力: せん断耐力以下		
	【面内変形】 層間変形角:2/1000		
	<対象部材>		
	・S クラス機器及び配管等の支持部分(補機ポンプエリア隔壁,		
	側壁、中床版、循環水ポンプエリア中床版、妻壁、スクリーンエ		
	リア側壁)		
	・貯水機能		
	津波の引き波時に、部材の損傷により著しい漏水がなく、海水		
	を取水できない時間に必要となる冷却用水を安全に貯留できるこ		
	と。		
	<評価方針>		
	ひび割れが発生したとしても,底面はMMR と接しているため顕		
	著な漏水は無く,側面の盛土は透水性が小さく漏水量は貯留量と		
	比べて微量であることから、引き波時に必要となる冷却用水を安		
	全に貯留できる。		
	一方,盛土の止水性にすべてを期待し,ひび割れに伴う漏水を		
	許容したうえで貯水機能を適切に評価することは困難である。そ		
	のため,保守的に躯体の評価により貯水機能を満足できるよう,		
	漏水が生じるような顕著な(部材を貫通するような)ひび割れが		
	発生しないと考えられる、鉄筋が降伏しないこと及び発生せん断		
	力がせん断耐力以下であることを目標性能とし、コンクリートの		
	圧縮ひずみ及び主筋ひずみが許容限界に至らないことと、せん断		
	力がせん断耐力以下であることで確認する。		
	また, 面内変形に対しては, 層間変形角がJEAG4601-1991 で規		
	定されているスケルトンカーブの第1折点(γ1)以下あれば面		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	内せん断ひび割れは発生せず水密性はあると考えられ, γ1を超		
	過する場合については、漏水量を算定し、安全機能を損なうおそ		
	れがないことを評価する。		
	<許容限界>		
	【面外変形】 圧縮ひずみ:圧縮強度に対応するひずみε' peak		
	$2000\mu$		
	主筋ひずみ:降伏強度に対応するひずみε y		
	$1725\mu$		
	せん断力: せん断耐力以下		
	【面内変形】 層間変形角:第1折点(γ1)以下 ただし, γ		
	1を超過する場合は、漏水量を算定し、安全機能へ影響しないこ		
	とを確認		
	<対象部材>		
	・津波引波時の海水貯水部分で、取水口敷高以下の部分(下部カ		
	ルバートのうち0.P5.3m 以下の部分)		
	・止水機能		
	以下の3つの観点に対し、部材からの漏水により、S クラスの		
	機器及び配管等の安全機能を損なうことがないよう止水できるこ		
	と。		
	(観点1) 津波の押し波時における外郭防護		
	(観点2) 屋外タンク損傷時における内郭防護		
	(観点3) 循環水管単一破損時における内部溢水		
	<評価方針>		
	断面が降伏に至らない状態及びせん断耐力以下であれば、漏水		
	が生じるような顕著な(部材を貫通するような)ひび割れは発生		
	しないことから、鉄筋が降伏しないこと及び発生せん断力がせん		
	断耐力以下であることを目標性能とし、コンクリートの圧縮ひず		
	み及び主筋ひずみが許容限界に至らないことと、せん断力がせん		
	断耐力以下であることで確認する。そのうえで、顕著なひび割れ		
	が発生していないことを解析等により確認又は妥当な裕度を持た		
	せることとする。		
	また, 面内変形に対しては, 層間変形角がJEAG4601-1991 で規		
	定されているスケルトンカーブの第1折点(γ1)以下あれば面		
	内せん断ひび割れは発生せず水密性はあると考えられ, γ1を超		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	過する場合については、漏水量を算定し、安全機能を損なうおそ		
	れがないことを評価する。		
	<許容限界>		
	【面外変形】 圧縮ひずみ:圧縮強度に対応するひずみε' peak		
	$2000\mu$		
	主筋ひずみ:降伏強度に対応するひずみεy		
	$1725 \mu$		
	せん断力: せん断耐力以下		
	【面内変形】 層間変形角:第1折点(γ1)以下 ただし, γ		
	1を超過する場合は、漏水量を算定し、安全機能へ影響しないこ		
	とを確認		
	<対象部材>		
	・補機ポンプエリア隔壁,地上部側壁,中床版,循環水ポンプエ		
	リア地上部側壁,地上部妻壁,中床版,下部カルバート部妻壁,		
	スクリーンエリア側壁		
	4. 評価方法に係る課題の抽出		
	評価方法に係る課題を抽出するため,評価手順における建設工		
	認からの変更点、変更することによる設計体系への影響の有無及		
	び今回工認手法における既工認実績の有無を確認する。確認結果		
	を第Ⅱ.4-1 表に示す。		
	また,抽出された課題と課題に対する検討の概要を第Ⅱ.4-2 表		
	に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	第II.4-1 表 建設工認からの変更点及び設計体系への影響の有無 (1/2)		
	原料体系への影響の消滅 ・ 個長において、非規制性を考慮した適 切な可能を適定するの情報があるで、 前目的が認識化するの情報であるた 加な可能を変更できる、補償な経緯がある。 またを変更できる、補償な経緯がから またの整備とのご認定を加定するかの 並れた可能性の上昇進しであり、非規 新行の影響中の上昇進しであり、非規 新行の影響中の上昇進しであり、非規 新行の影響中の上昇進しであり、非規 新行の影響中の上昇進しであり、非規 新行の影響中の上昇進してあり、非規 新行の影響中の上昇進してあり、非規 またを変更できた。補償にため、非常 となる。 ・ 一次に通常にたった。 を引いた を引い、 またすると出版等かたの。 他们に またするのある。 ・ 評価制に参加しため、 を通びある。 ・ 評価制やのため、 を通びからる。 を通びからる。 を通びからる。 を通びからる。 を通びからる。 を通びからる。 を通びからる。 を引い、 またすると出版等かた」 を引い、 を引い、 またする。 を引い、 を引い、 またする。 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 を引い、 で、 で、 の を引い、 で、 で、 の を引い、 で、 で、 の で、 で、 で、 で、 で、 で、 で、 で、 で、 で、		
	・高市は実施したの変更点 ・高市は実施したが確認工具(高市地震動により算正しており をいた。 ・または実施したからの特徴がなど、油酸により算正しており 変更点はない。 ・構設工程では、構造的会体、油酸業を含む)を対象に、単位度 (市きたりの時間がにすった、 ・何におにといかで、新たに加快成したすいな、 ・何に工程にといいて、新たに加快成したすいな、 ・何に工程にといいて、新たに加快成したすいな、 ・何に工程にはいた。 の、部件でといかで、新たに加快成したすいる。 ・何に工程にはいたの時間がな があれている。 の、部件だといかで、新たに加快成したすいる。 ・何にない、 の、新社だいない。 の、部件だというで、 の、 の、 の、 の、 の、 の、 の、 の、 の、 の		
	時間 予報 (1) 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	第Ⅱ.4-1 表 建設工認からの変更点及び設計体系への影響の有無 (2/2)		
	正認実績・認識		
	職件本派への影響の低幅 一般有コードの他の依疑能定を信頼部に 用いる応答を通知に評価できることを 確認する必要が分析したが等を通知に評価で そのし ・水平とが消費者にため等のから。 ・水平とが消費者にため影響を通知に評価 できる感染分析したが多く通知に評価 できる感染分析したが多く通知に評価 ・水平とが消費者にたる影響を通知に評価 において、 副社の登集をなる。 ・ 他能能能大きん思想をある。 ・ たいため、 参加に認定する許 をし ・ たいため、 今回 工能でなどの 50 ・ 他能に能でする必要がある。 ・ 他能であったが、 一般能にするが において不確からな 50 ・ たいため、 今回 工能ではながらた を またいていため、 今回 工能ではあがられた なにおいて不確からな 多数を活動として するしていることから、 労働活動的 10 如な能での必要となる。		
	建設工限からの変更成 を設工のでは、構造的を二次にの裁判シュル要素でをグル化している。 ・ 他に工能では、構造的を二次にの裁判シュル要素でをグル化している。 ・ うに工能では、基準特徴要素の火力の逆度化により、部計が96.4%の 化するため、構造的を二次とのの構造の余いの運度化により、部件が96.4%の するため、構造的を二次とのの、構造的全体の中的。 本の範疇でするとから、構造的などでものとりを必要 まため、構造的などでものとりますが認識でです。 本の範疇でするという。 本の範疇でするという。 市利用のので、相関のでするとりラッド調素でモデル化している。 ・ 他のでは、他的合わの加速等を発行している。 ・ 他のでは、他的の自己の心。 本の範疇では、他のの意志できたいで、 ・ たんだがの構造的はどこのが意味を発行さい。 ・ たんだがの意志では、 ・ たいこのでは、他的の心理を発行している。 ・ たんだがきます。 本でなから、 素たに電報の様として当切るたいでも、 ・ たん形力及びひずひを用意相關としている。 ・ 自口工能では、限的能力が高い。 他に認定では、限制の能力が高い。 他に認定では、限制の能力が高い。 をの をして当切るたいでいる。 ・ たん断力及びひずひを用意相關としている。 ・ 予加に能力及びひずひを用意相關としている。 ・ 予加に能力及びひずひを用意相關としている。 ・ 一の口工能では、限制を行きたる。		
	非確決金性計幅		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	第Ⅱ.4-2 表 主な課題と検討の概要(1/2)		
	<ul> <li>(株がけンプ部は、3 エリアに5かんれており、あっ リアの構造の利用語に認知する 6億回時度 度を正しく 原注するため、エリアごとに等価価 を言かった 特徴している。</li> <li>(600年年月10日)</li> <li>(600年年月日)</li> <li>(700年年月日)</li> <li>(7005年月日)</li> <li>(700年年月日)</li> <li>(700年年月日)</li> <li>(7005年月日)</li> <li>(7005年月日)</li> <li>(7005年月日)</li> <li>(7005年月日)</li> <li>(7005年月日)</li> <li>(7005年月日)</li> <li>(7005年月日)</li> <li>(7005477757501年月日)</li> <li>(7005477751547545475454754547545475454754</li></ul>		
	1 MB 07:9 - 0.000         1 MB 07:0 - 0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	第Ⅱ.4-2 表 主な課題と検討の概要(2/2)		
	(キュリアごとに馬作き一個の夜間を変更きなた場合と、県近時の気形に伴も広うが風化りを考慮した夜間を変更させ合かの物件を行っ ついる。 (本)の、 (本)の		
	市法律報酬 「開墾者と」 新聞から 本件部構成に成じて通知に設定することは 適切から 本件部構成に成じて通知に設定することは 通知者 「開墾者」 「「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「開墾者」 「加爾者」		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	5. 地震応答解析に係る課題の検討		
	地震応答解析に係る課題として抽出した, 第Ⅱ.4-2 表中の【課		
	題1-1】~【課題1-3】に対する検討を行う。		
	5.1 【課題1-1】に対する検討		
	【課題1-1】「二次元地震応答解析に用いる等価剛性モデルは,		
	海水ポンプ室の三次元構造が適切に考慮されているか?」に対す		
	る検討として、二次元地震応答解析に用いる等価剛性モデルの作		
	成方法を以下に示す。		
	・等価剛性モデルの作成方法		
	地震時荷重の算定に用いる二次元地震応答解析の構造物モデル		
	は、構造物と地盤の相互作用により発生する土圧を正しく評価す		
	るため、妻壁や隔壁の剛性を考慮し、初期剛性の実構造と等価な		
	剛性を持つ二次元等価剛性モデルとする。		
	各エリアの構造の相違に起因する地震時荷重を正しく算定する		
	ため,エリアごとに等価剛性モデルを作成する。(第Ⅱ.5.1-1 図)		
	初期剛性の三次元構造モデルに単位荷重(98kN/m2)を作用させ		
	た際のエリアごとの奥行き方向の平均的な変位と、等価剛性モデ		
	ルに同じ単位荷重を作用させた際の変位が等しくなるように剛性		
	を設定する。(第Ⅱ.5.1-2 図)		
	等価剛性モデルは、地震時荷重を保守的に評価するよう線形の		
	モデルとする。		
	つんにし、そいつ 妹はおいづていつ 新港をおいづていつ		
	966N/mi 986N/m ² 986N/m ² 986N/m ² 986N/m ²		
	DERIVIT ² DERIVIT ² DERIVIT ² DERIVIT ² DERIVIT ² DERIVIT ²		
	※:等価剛性モデルの色分けは、材料物性の違いを示している。		
	第Ⅱ.5.1-1 図 各エリアの等価剛性モデル		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	9880/m ² 9880/m ² 9880		
	剛性の調整方法		
	$E = Ec \times \alpha \times \beta$		
	E : 等価剛性モデルの弾性係数		
	Ec:コンクリートの弾性係数		
	<ul><li>     α:海水ポンプ室の奥行き長さに対する部材の奥行き長さの比率     </li></ul>		
	= Le/L		
	Le:部材の奥行き長さ		
	L:海水ポンプ室の奥行き長さ		
	β:変位を合わせるための弾性係数の補正係数		
	第Ⅱ.5.1-2 図 剛性の調整方法		
	各エリアごとに等価剛性モデルを作成することや,初期剛性に 対する等価剛性モデルとし,土圧や加速度を保守的に算定するこ とにより,海水ポンプ室の延長方向の構造の変化を考慮して,地 震時荷重を適切に評価できている。 上記は海水ポンプ室の等価剛性モデルの作成方法であるが,他 の箱型構造物についても上記の内容を参照して等価剛性モデルを 作成する。		
	5.2 【課題1-2】に対する検討 【課題1-2】「二次元地震応答解析に用いる等価剛性モデルは, 水平方向の剛性を等価としているが,鉛直方向の床応答に影響は ないか?」に対する検討として,以下のことを確認する。		
	<ul> <li>・機器が設置される4辺固定の中床版の固有振動数を算定し、中 床版の位置により増幅の影響がないこと。</li> <li>・水平方向の剛性を等価としない場合の鉛直方向の床応答を算定し、剛性調整の影響の有無。</li> </ul>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力	発電所 2号炉	╡ (2019.1	11.6版)	島根原子力発電所 2号炉	備考
	まず,三次元FEM モデルを用いた固有値解析を行い,補機ポン			<b>所を行い,補機ポ</b> ン	/	
	プエリアの中床版の固有振動数を算定し、中床版の位置により増			末版の位置によりお		
	幅の影響がないことを確認する。					
	固有値解析の結果を第Ⅱ.5.2-1 表に, モード図を第Ⅱ.5.2-1			・ド図を第Ⅱ.5.2-1		
	図に示す。補機ポンプ	エリアの1次日	固有振動数	数は20Hz を上回っ	τ	
	おり、機器・配管類の	耐震設計にお	いては, -	十分に剛であると打	及	
	え、中床版の鉛直方向	の応答増幅の	影響はない	いことを確認した。		
	第Ⅱ.5.2-1 表 🤇	補機ポンプエリ	リア中床版	反の固有振動数		
	郎位:	固有振動数(Hz)	刺激係数	值 考		
	1898-189 (B. 1973)	61, 1	17.0	1次		
	補職ポンプエリア 中床版	71,3	12, 1	2次		
		75, 6	9,5	375:		
			2 88672 711.97	r.		
	400 B	UTATEA & OLE & X A A A A DA A DOLLAR DA A TO CO	E - Hickordsin			

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		i = f		
		第Ⅱ.5.2-1 図 モード図(1次~3次)		
		次に、二次元等価剛性モデルの平面応力要素は、水平・鉛直方 向で等方のため、方向に応じて剛性を変更することはできないこ とから、水平方向の剛性を等価としない場合の鉛直方向の床応答 を算定し、剛性調整による鉛直方向床応答への影響について確認 する。 確認方法として、現状の地盤改良(案)をモデル化した二次元 地震応答解析により、水平方向の剛性を合わせた場合( $\beta$ 調整) と、合わせない場合( $\beta = 1$ )の床応答について比較を行う。 鉛直方向加速度応答スペクトルの比較結果を第 $\Pi$ .5.2-2 図に 示す。加速度応答スペクトルで比較すると、おおむね同等のスペ クトルとなっているが、主な機器の固有周期で見ると、 $\beta$ 調整の 応答が小さい周期帯もあることから、 $\beta = 1$ とした場合について も機器への影響を確認することとする。 なお、ここでは海水ポンプ室を例に結果を示しているが、他の 箱型構造物についても、 $\beta = 1$ とした場合の機器への影響を確認 する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	主な機器の固有周期         機器名       1次固有周期(s)         根器系配管         HPSW系配管         HPSW系配管         W: 応答スペクトルは現状の地盤改良範囲 をモデル化して算定したものであり、 改良範囲等が確定後清算予定。		
	床応答算出位置		
	第Ⅱ.5.2-2 図 鉛直方向加速度応答スペクトルの比較結果		
	5.3 【課題1-3】に対する検討		
	【課題1-3】「地震時荷重の選定時刻は,評価部材や照査項目(損		
	傷モード)に応じて適切に選定されているか?」に対しては、要		
	求機能に応じて、部材ごとに照査項目が異なることから、以下に		
	示す構造的特徴や損傷モードを踏まえ、部材ごとかつ損傷モード		
	ごとに評価が厳しくなる時刻を選定していることを確認する。		
	<ul> <li>・海水ポンプ室の構造的特徴</li> </ul>		
	海水ポンプ室は、地下2階構造となっており、上部はスクリー		
	ンエリア、補機ポンプエリア、循環水ポンプエリアに分かれてい		
	る。下部は水路となっており、スクリーンエリア及び補機ポンプ		
	エリアの下部は4連の,循環水ポンプエリアの下部は2連又は1		
	連のカルバート構造となっている。		
	加振方向に平行に配置される面部材は耐震要素として機能する		
	ため、延長方向加振に対しては、側壁に加え、水路部の隔壁が耐		
	震要素として機能する。一方、横断方向加振に対しては、妻壁と		
	上部の隔壁等しか耐震要素として機能する面部材はないことか		
	ら、横断方向が弱軸方向となる。		
	横断方向加振に対し、側壁や隔壁などの構造物延長方向に配置		
	された部材は、部材の面外変形により抵抗する。一方、妻壁や隔		
	壁などの構造物横断方向に配置された部材は、部材の面内変形に		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	より抵抗する。海水ポンプ室の部材は、地震力に対し、面外変形		
	により抵抗する部材と面内変形により抵抗する部材より構成され		
	る。海水ポンプ室の構造を第Ⅱ.5.3-1 図に示す。		
	根断方向加振に対し耐業 要素として機能する部材 縦断図 根断方向加振に対し耐農要素とし て機能する能材がないエリア		
	下部はカルバート構造の せん断変形が支配的となる したわむ変形となる 根断図		
	第Ⅱ.5.3-1 図 海水ポンプ室の構造		
	・損傷モード 横断方向に地震時荷重が作用した場合,耐震要素として機能す る面部材は,スクリーンエリアと補機ポンプエリアの下部には存 在しない。したがって,横断方向加振の際,海水ポンプ室の下部 については第Ⅱ.5.3-2 図に示すとおりカルバート構造のせん断 変形が支配的な変形モードとなる。また,上部については,各エ リアの側壁のスパン中央部分が面外にたわむ変形となり,下部同 様に面外荷重に対する変形が支配的となる。		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		側壁の面外たわみ変形		
		Contraction of the second seco		
		カルバート構造のせん断変形		
		第Ⅱ.5.3-2 図 海水ポンプ室の変形イメージ		
		地震時荷重の抽出は,要求機能を有する各部位の想定される損		
		傷モード(曲げ・軸力系の破壊,せん断破壊)に応じた時刻の荷		
		重を抽出する。		
		要水機能を有する部位は、谷エリアの下部カルハート部、側壁, 隔壁・妻壁がある。冬部位に対する。地震時荷重抽出時刻を以下		
		M生 安全がある。日前世にパチシ, 地震の両重曲山の肉での下 に示す。		
		・下部カルバート部		
		下部カルバート部については、曲げ・軸力系の破壊に対する荷		
		重として、下部カルバート部の層間変位が最大となる時刻の荷重		
		を抽出する。		
		の荷重を抽出する。(第Ⅱ.5.3-1 表)		
		第Ⅱ.5.3-1 表 下部カルバート部に対する地震時荷重抽出時刻		
		● 日本が 消費ホード お言語分類的 スクリーン 補償がソプ 感覚をポンプ		
		ti 81		
		平認カルパート語     「「「」」「「」」」「「」」」」「「」」」」」「「」」」」」」「「」」」」」」		
		t ム 新 破壊 総木 平岩 重が動大となる時刻     ロ		
		東3         東3         t4           東1:スクリーンホリアと同時刻         東2:補機ポンプホリアと同時刻		
		泉 3 : 機関水ボンプホリアと同時用		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	・側壁 側壁については、曲げ・軸力系の破壊に対する荷重として、側 壁の転倒モーメントが最大となる時刻の荷重を抽出する。変位を 指標としないのは、耐震壁として考慮される隔壁等の影響を除く ためである。 せん断破壊に対する荷重として、側壁の水平荷重が最大となる 時刻の荷重を抽出する。 また、側壁の面外たわみ変形に対する時刻として、拘束の小さ い側壁上部の荷重が最大となる時刻の荷重を抽出する。(第 Ⅱ.5.3-2 表)		
	第 II.5.3-2 表 側壁に対する地震時荷重抽出時刻 「「「」」」「」」」「」」」」「」」」」」」」」 「」」」」」」」」」」		
	・ 隔壁・ 妻壁 隔壁・ 妻壁については、主として面内せん断破壊が想定される ことから、面内せん断変形が最大となる時刻として、面部材の層 間変位が最大となる時刻の荷重を抽出する。(第Ⅱ.5.3-3 表) 第Ⅱ.5.3-3 表 隔壁・妻壁に対する地震時荷重抽出時刻		
	東京都位         横峯セード         青葉協問時間         スクリーン         黒橋ポンプ         黒筒木ポンプ           藤繁・黄葉         セム振装業         日本村の署営業位が着大となる時間         年2         1.1         年2         1.2                 ・             ・		
	上記のとおり,地震時荷重は,要求機能を有する部位の損傷モ ードに応じて,各エリアごとに時刻を選定し抽出することとして いるが,各エリアの選定時刻の差がほぼ同時刻(前後0.1 秒以内) の場合については,各エリアで選定された時刻の荷重分布を確認 し,分布形状が大きく変わらないことを確認した上で,各エリア		

## 4条-別紙5-100

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	の荷重を組み合せることにより、各時刻に対する個別評価を代表		
	させることとする。荷重の組み合せ方を、下部カルバート部の曲		
	げ・軸力系の破壊に対する荷重抽出時刻を例に第Ⅱ.5.3-3 図に示		
	す。		
	スクリーンエリアの時刻 t 1 , 補機ポンプエリアの時刻 t 2 及		
	び循環水ポンプエリアの時刻 t 3 の差が前後0.1 秒以内である場		
	合は,スクリーンエリアには t 1 の荷重を,補機ポンプエリアに		
	はt2の荷重を、循環水ポンプエリアにはt3の荷重をそれぞれ		
	載荷させ評価を行う。		
	また,荷重が類似している場合などは,時刻が大きく異なる場		
	合でも包絡させた荷重を用いる場合がある。		
	なお、ここでは海水ポンプ室を例に荷重抽出時刻を示したが、		
	他の箱型構造物においても、同様の方針で、各部位の想定される		
	損傷モードに応じた時刻の荷重を抽出する。		
	着日部位     荷重抽出時刻 スクリーン       第カル バート部 (曲げ・軸 力系の破 潮) $t_1$ $\oplus$ 1 $\oplus$ 1       東2     東2     東2       東3     東3 $t_3$ レ $t_1$ $t_2$ 水 $t_2$ $t_3$ 大 $t_1$ $t_2$ 大 $t_2$ $t_3$ 東4 $t_1$ $t_2$ 大 $t_1$ $t_2$ 大 $t_3$ $t_1$ $t_1$ $t_2$ $t_3$ $t_3$ $t_3$ $t_4$		
	i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	6. 構造解析に係る課題の検討		
	構造解析に係る課題として抽出した, 第Ⅱ.4-2 表中の【課題		
	2-1】~【課題2-5】に対する検討を行う。		
	6.1 【課題2-1】に対する検討		
	【課題2-1】「三次元静的材料非線形解析に用いる解析コードは,		
	三次元構造の応答を適切に評価することが可能か?」に対する検		
	討として、今回用いる解析コードは、三次元構造物の終局状態ま		
	で解析可能なコードであり、海水ポンプ室同様に、壁部材から構		
	成される三次元構造物による載荷実験を再現解析した事例によ		
	り,終局状態まで精度良く実験結果を再現できていることを確認		
	する。		
	6.1.1 解析コードの概要		
	解析コードは、東京大学コンクリート研究室で開発され、実績		
	の多いCOM3 を用いる。構成式は,三次元まで拡張された前川モデ		
	ルを採用しており、三次元構造物の終局状態を再現する解析が可		
	能である。		
	前川モデルの構成式は、非線形解析の代表モデルとして、コン		
	クリート標準示方書2017 に記載されている。前川モデルは,鉄筋		
	コンクリート部材の中で有限要素解析に適用するのに最も適して		
	いるのは壁であるとし、壁構造の正負交番載荷における力学的性		
	状を表現できる非線形解析モデルとして開発された経緯があり,		
	海水ポンプ室など壁(スラブ)で構成されている構造物に対する		
	適用性は高い。		
	・解析コードCOM3 の概要		
	COM3 は,東京大学コンクリート研究室で開発された,有限要素		
	法 (FEM) による鉄筋コンクリート構造物の動的/静的非線形解析		
	プログラムである。非線形材料に関する構成則には、すべて実験		
	結果を忠実に再現した経路依存型の履歴モデルである前川モデル		
	を採用している。		
	第Ⅱ.6.1-1 図に示すとおり,最大耐力,部材の変形角,ひび割		
	れの角度及び各サイクルにおける履歴ループの面積を精度よく再		
	現している。		
	本解析で用いるCOM3 は, 平面部材の挙動を精度よく追跡できる		
	構成則を、投影型モデルにより三次元に拡張したものである。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	第Ⅱ.6.1-1 図 壁部材の繰返しせん断実験に対する検証解析		
	本解析コードは、第Ⅱ.6.1-2 図に示すように、鉄筋が水平・鉛		
	直に分散して配置されている鉄筋コンクリート要素には分散ひび		
	割れモデルを、異なる部材の境界面などに用いる接合要素には離		
	散ひび割れモデルを採用している。		
	分散ひび割れモデルとは、ある有限の領域の鉄筋コンクリート		
	板における挙動を、「平均応力-平均ひずみ」の関係で与える平均		
	化構成モデルである。ひび割れの発生や進展が、有限要素内で平		
	均的に考慮され、部材の全体的な挙動を総合的に把握するのに適		
	している。このため、鉄筋が分散して配置されている壁やシェル		
	構造等に適した方法である。		
	離散ひび割れモデルとは、鉄筋コンクリートに発生した個々の		
	ひび割れをモデル化する方法であり,鉄筋とコンクリートの付着,		
	ひび割れ界面での力の伝達など,鉄筋コンクリート特有の現象を,		
	本質的に捉える有効な方法である。本解析コードでは、異なる部		
	材の境界面などで生じる鉄筋の引き抜け、接合面のズレ、めり込		
	みなどのような局所的な不連続な変形が生じる部位には接合要素		
	を用いることが可能で、接合要素に離散ひび割れモデルを採用し		
	ている。		
	これらのモデルの妥当性については、開発者は、前出の検証用		
	壁試験体及び日本コンクリート工学協会の「鉄筋コンクリート構		
	造のせん断強度研究委員会」によって選定された解析モデル検証		
	用試験体(1983)を用いて十分に検証を行っている。		

## 4条-別紙5-103

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	荷重-変位曲線における包絡線及び内部曲線、破壊モード、最		
	大耐力時のひび割れ状況などの力学的特性すべてにおいて実験結		
	果とよく対応していると評価できる。		
	■ 取つび形わモデル  Discrete crack modeling  Areace  Areace Areace  Areace  Areace  Areace  Areace  Areace  Areace  Areace Areace  Areace  Areace  Areace  Areace  Areace  Areace  Areace		
	第Ⅱ.6.1-2 図 分散ひび割れモデル及び離散ひび割れモデル		
	本解析で用いるCOM3 の構成則は、十分な検証がおこなわれた構成則を、投影型モデルにより三次元に拡張したものである。投影型モデルの概念図を第Ⅱ.6.1-3 図に示す。		
	・投影刑エデルの概要		
	・コンクリートと鉄筋の広力けそれぞれ別に質定して足し合わ		
	せる。		
	・コンクリートについては、固定したひび割れ座標系(1-2-3)		
	上で算定する。		
	・1-2 面, 2-3 面, 1-3 面の各面上で二次元のひび割れたコン		
	クリートモデルを適用する。		
	<ul> <li>・各面で算定されたコンクリート応力を重ね合わせる。その際、</li> </ul>		
	σ11,σ22,σ33 については,それぞれ2 つの面上で算定され		
	た値を平均する。		
	・1 方向は最初のひび割れ面直角方向に設定する。1,2,3 軸は		
	最初に設定されたものが固定されその後変更はされない。		
	COM3 の三次元構造物に対する適用事例を6.1.2 項に示すが、水		
	半荷重-水半変位関係,損傷の状況や損傷部位などにおいて解析		
	は実験と整合しており、COM3 は立体構造物の終局状態まで解析か		
	り記な弾ケケテュートじめる。		



~炉	備考

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	第Ⅱ.6.1-5 図 適用例 2		
	<ul> <li>第II.6.1-5 図を代表に層間変形角-水平荷重関係を見ると、変形により照査するおおむね弾性に相当する範囲は、初期勾配がとても良く再現されている。</li> <li>また、海水ポンプ室の設計で用いる層間変形角1/100の範囲は良く再現されており、保守的な評価となっている。第II.6.1-5 図の層間変形角-水平荷重関係の拡大図を第II.6.1-6 図に示す。なお、再現解析における要素分割等の考え方は、海水ポンプ室と同様であることを確認している。</li> </ul>		
	Regional de la construction de l		
	第Ⅱ.6.1-6 図 層間変形角-水平荷重関係の拡大図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	6.2 【課題2-2】に対する検討		
	【課題2-2】「構造物の応答レベルは、おおむね弾性範囲に収ま		
	るか?」に対する検討として,三次元静的材料非線形解析の適用		
	範囲を明確化するため、海水ポンプ室以外の構造物(取水口、軽		
	油タンク室、復水貯蔵タンク基礎)について、層間変位が最大と		
	なる基準地震動に対する鉄筋及びコンクリートひずみを確認し,		
	おおむね弾性範囲に収まることを確認する。なお、通水機能とし		
	て設定している許容限界(層間変形角1/100)は、一部の要素では		
	おおむね弾性範囲を超えるものの、構造物全体としてはおおむね		
	弾性範囲に収まることを確認する。		
	代表例として、層間変位が最大となる基準地震動に対する各構		
	造物の鉄筋及びコンクリートひずみを示す。		
	ここに示す結果は、二次元地震応答解析に時刻歴非線形解析(取		
	水口)及び周波数応答解析(軽油タンク室,復水貯蔵タンク基礎)		
	を採用した結果であり、非線形レベルを示すための暫定的な結果		
	であり、今後、地震応答解析等の手法の変更により、工事計画認		
	可段階で変更となる可能性がある。工事計画認可段階での詳細な		
	検討の結果、要素のひずみがおおむね弾性範囲を超える範囲が広		
	がるなど、今回適用性を確認した範囲を超える場合は、耐震補強		
	を施すことを基本とする。耐震補強による対応が難しい場合は,		
	工事計画認可段階で許容限界,設計手法の妥当性及び適用性を改		
	めて説明したうえで、新しい手法を用いる可能性がある。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	・取水口		
	取水口は,標準部(高さ12m)の背面に漸縮部(高さ5.5m)が		
	接続された、高さの異なる構造が一体となっている箱型構造物で		
	あり、横断方向が弱軸方向となる。		
	標準部の部材高さは漸縮部の2倍程度と大きく、構造物の全体		
	変形へ与える影響が大きいと考えられることから、標準部に着目		
	し、標準部の層間変位が最大となる基準地震動について見通しを		
	示す。		
	第Ⅱ.6.2-1 表に示すとおり、コンクリートの主圧縮ひずみ及び		
	鉄筋の引張ひずみは、おおむね弾性範囲として整理する許容値と		
	比較して十分に小さい値となっている。		
	また、標準部と漸縮部で形状が異なることによるねじれの影響		
	が生じるが、第Ⅱ.6.2-2表に示すとおり、標準部と漸縮部の層間		
	変位差が最大となる時刻においてもおおむね弾性範囲に収まって		
	おり、ねじれの変形モードは厳しい時刻ではないことが確認でき		
	る。		
	なお, 取水口の周辺地盤は, 第Ⅱ.6.2-1 図~第Ⅱ.6.2-3 図に		
	示すように地盤改良することにより変形を抑制する計画としてい		
	る。		
	第Ⅱ.6.2-1 表 層間変位最大時刻に対する評価		
	確認項目 確認結果 許容征		
	医塑地模制 Sar-D2 -		
	主圧縮(ハージス (コンクリート) 748 2000 p		
	3(BC) 1/2 (BOB) 1/2 (BOB)		
	加度 万间		
	7451		
	nete		
	× × v		
	主圧幅いすみ (コングリート) 引張いすみ (鉄船)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	第日.6.2-2 表 ねじり変形最大時に対する評価		
	f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f       f		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
--------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------	----
	第 II.6.2-2 図 改良範囲断面図 (標準部A-A' 断面)		
	<ul> <li>第 П. 6. 2-3 図 改良範囲断面図 (漸縮部B-B' 断面)</li> </ul>		
	<ul> <li>・軽油タンク室は、隔壁にて仕切られた複数の部屋からなる箱型 構造物であり、耐震設計上見込むことができる側壁や隔壁の部材 寸法に大きな差異は無く、弱軸・強軸の方向が明確ではないが、 応答ひずみが大きい東西方向加振の結果について見通しを示す。 東西方向の二次元地震応答解析より得られる層間変位が最大と なる基準地震動について見通しを示す。</li> <li>第Ⅱ.6.2-3 表に示すとおり、コンクリートの主圧縮ひずみ及び 鉄筋の引張ひずみは、おおむね弾性範囲として整理する許容値と 比較して十分に小さい値なっている。</li> </ul>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	第 II.6.2-3 表 層間変位最大時刻に対する評価		
	<ul> <li>・復水貯蔵タンク基礎は、遮蔽壁、バルブ室及び連絡トレンチからなる箱型構造物であり、円筒形の遮蔽壁を有するという構造的特徴から弱軸・強軸の方向が明確ではないが、応答ひずみが大きい東西方向加振の結果について見通しを示す。</li> <li>部材高さ及び重量が大きく、構造物の全体変形へ与える影響が大きい遮蔽壁の層間変位が最大となる基準地震動について見通しを示す。</li> <li>第Ⅱ.6.2-4 表に示すとおり、コンクリートの主圧縮ひずみ及び鉄筋の引張ひずみは、おおむね弾性範囲として整理する許容値と比較して十分に小さい値となっている。</li> </ul>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	6.3 【課題2-3】に対する検討		
	【課題2-3】「三次元モデルにおける要素分割は適切か?」に対		
	する検討として,要素分割をパラメータとした感度解析を実施し,		
	要素分割の違いによる影響を確認する。		
	三次元静的材料非線形解析を行う場合のモデル化は、土木学会		
	マニュアル2005に準拠し、以下に示すモデル化方針に基づき実施		
	している。		
	・モデル化方針		
	部材厚方向の分割は、上端筋と下端筋を鉄筋付着有効領域(RC		
	ゾーン)とし、部材厚に応じて無筋領域(PL ゾーン)を分割し、		
	3分割以上とする。部材厚方向分割の概略図を第Ⅱ.6.3-1 図に,		
	鉄筋付着有効領域と無筋領域の分割例を第Ⅱ.6.3-2 図に示す。		
	高さ方向のスパンの分割は,解析コードの節点数に対する制限		
	を考慮し、6分割以上とする。スパン分割の概略図を第Ⅱ.6.3-3		
	図に示す。		
	延長方向のスパンの分割は、要素のアスペクト比を考慮し、分		
	割する。		
	RC PL RC (適重分朝) (適重分朝) (適重分朝) ( (適重分朝) ( (適重分朝) ( ( (適重分朝)) ( ( ( ( () ( () () () () () () () ()		
	$I_{max} = \frac{\sqrt{\pi}}{2} D_{0} \sqrt{\frac{f_{f}}{f_{i}}}$		
	<ul> <li>ここに、J_{mn}: 鉄筋一本当たりの付着有効面積を正方形で考えた場合の一辺の長さ</li> <li>D_b: 鉄筋の直径</li> <li>f_r: 鉄筋の降伏強度</li> <li>f₁: コンタリートの引弾強度</li> </ul>		
	第Ⅱ.6.3-2 図 鉄筋付着有効領域と無筋領域の分割例		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		第 II.6.3-3 図 スパン分割の概略図		
	解析モデ タとした感 感度解析 ポンプ室の 材厚とした。 ルの要素分 側壁にか 外に等分布 また,6. 影響を確認 討を行った。	ルの要素分割数を決定するため,要素分割をパラメー 度解析を実施した。検討概要を第Ⅱ.6.3-1 表に示す。 に用いる解析モデルは,床版と隔壁に拘束された海水 側壁を想定しており,側壁と同等規模のスパン長や部 。解析モデルを第Ⅱ.6.3-4 図に示す。また,解析モデ *割例を第Ⅱ.6.3-5 図に示す。 かる主たる荷重は面外荷重であることから,荷重は面 荷重を漸増載荷する。 1.2 項に示す再現解析と同等の要素寸法とした場合の なするため,モデル寸法を縮小したケースについても検		
	解析モデル 部原力向の 分割数検討 分割数検討	<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>		

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			第II 6 3-4 図 解析モデル		
			第Ⅱ.6.3-4 図 脾材モナル 第Ⅱ.6.3-5 図 要素分割例(板厚方向4分割,スパン方向6分割)		
			第Ⅱ.6.3-6 図に, PL ゾーンを2分割,3分割した場合の荷重 漸増解析における荷重-変位関係を示す。 PL ゾーン2分割(板厚方向に4分割)とPL ゾーン3分割(板 厚方向に5分割)で,荷重-変位関係に終局状態の変形まで大き な差はなく,設計に用いる範囲においてよく一致していることか		
			<ul> <li>ら,解析コードの節点数の制限を考慮し,板厚方向の分割数を4 分割とすることとした。</li> <li>また,第Ⅱ.6.3-7 図に,板厚方向4分割,スパン方向6分割とし,モデルの寸法を6.1.2 項に示す再現解析の要素寸法と同等となるよう,1/5 に縮小(要素寸法0.3m×0.3m)した場合の荷重漸</li> </ul>		
			<ul> <li>増解析における荷重ステップー変位関係を示す。</li> <li>縮小前の解析モデルと1/5 に縮小した解析モデルを比較する</li> <li>と,終局状態まで大きな差は無く,設計に用いる範囲においてよく一致しており、ほぼ同等の荷重ステップで耐力点となっている。</li> <li>以上より、荷重漸増解析において算出される荷重-変位関係は、</li> <li>要素分割の考え方が同じであれば、モデル寸法(要素寸法)によ</li> </ul>		
			る影響は無いことを確認した。		



~炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	6.4 【課題2-4】に対する検討		
	【課題2-4】「機器・配管及び竜巻防護ネットの影響が適切に考		
	慮されているか?」に対して,既設の機器・配管等の考慮方法及		
	び竜巻防護ネット荷重の評価手順を示し、適切に評価できている		
	ことを確認する。また、竜巻防護ネットについては、動的相互作		
	用の影響についても確認する。		
	6.4.1 既設の機器・配管等の考慮方法		
	機器・配管の質量を地震応答解析モデルにはり要素の付加質量		
	として反映し、地震応答解析を行う。		
	地震応答解析により算定した応答震度(水平震度、鉛直震度)		
	に機器の質量を乗じたものを、機器の慣性力とし、三次元構造解		
	析モデルに節点荷重として作用させる。例として、補機ポンプエ		
	リアに設置された機器の考慮方法を第Ⅱ.6.4-1図に示す。		
	配管荷重については、各エリアのスラブに一様に分布荷重とし		
	て作用させており、実際の配管質量に対し十分に余裕を持った設		
	計とする。		
	ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご     ご<		
	E     F+G     G×2     E     の付加質量として考慮       0     0     0     0     0       E     E     E     E		
	地震応答解析モデル 慣性力を三次元構造解析モデ ルの荷重範囲の節点に作用 		
	第Ⅱ.6.4-1 図 補機ポンプエリアに設置された機器の考慮方法イ		
	メージ		

4条-別紙5-116

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	6.4.2 竜巻防護ネットの評価手順		
	竜巻防護ネットの荷重を考慮した耐震性評価フローを第		
	Ⅱ.6.4-2 図に示す。		
	竜巻防護ネットの質量は、節点の付加質量として地震応答解析		
	モデルに反映させ、地震応答解析により算出された床応答により、		
	設計用床応答スペクトルを作成し竜巻防護ネットの設計を行う。		
	竜巻防護ネットの設計により算出された最大反力を海水ポンプ室		
	の三次元構造解析モデルへ反映し、耐震性評価を行う。竜巻防護		
	ネットの荷重作用イメージを第Ⅱ.6.4-3 図に示す。		
	竜巻防護ネットの荷重は,地盤の剛性等のばらつきを考慮した		
	地震応答解析から得られる床応答に対する最大反力を用いて設計		
	を行う。		
	なお、竜巻防護ネットの形状、設置位置は工事計画認可段階で		
	変わる可能性があり、竜巻防護ネットの反力を入力した照査結果		
	は、工事計画認可段階で示す。		
	海水ボンブ室側         竜巻防護ネット側           ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	竜着防護ネット大衆 大塚用ブラケット 大梁支承位置(海水ボンプ室横断面)		
	展墾支承位置		
	竜巻防護ネットの反力を 三次元構造解析モデルの 荷重範囲の施点に作用 大変用プラケット 日本の一方の「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」		
	第Ⅱ.6.4-3 図 竜巻防護ネットの荷重作用イメージ		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	6.4.3 動的相互作用の影響		
	竜巻防護ネットは補機ポンプエリア南側の東西側壁に大梁用ブ		
	ラケットをそれぞれ設け、その間を渡す形で大梁を設置する。大		
	梁の上部にネット付きのフレームを設置し、大梁と補機ポンプエ		
	リア北側隔壁で支持する構造となっている。竜巻防護ネットの概		
	要図を第Ⅱ.6.4-4 図に示す。		
	動的相互作用の影響を確認するため、海水ポンプ室の入力地震		
	動に対する加速度応答スペクトル比と竜巻防護ネットの主要部材		
	である大梁及びフレームの固有周期(X 方向及びY 方向の1次周		
	期)を第Ⅱ.6.4-5 図に示す。大梁用ブラケットが設置される, 側		
	壁上部の節点のスペクトル比を代表として示す。		
	海水ポンプ室の増幅周期と竜巻防護ネットの主要部材である大		
	梁及びフレームの固有周期は異なっており、双方の応答が互いに		
	影響を与えるような共振等は考えられない。		
	また, 竜巻防護ネットの重量は約500 t で, 海水ポンプ室(約		
	80,000 t)の1%未満であり,竜巻防護ネットの振動が海水ポンプ		
	室の振動へ及ぼす影響は小さい。		
	以上のことから、海水ポンプ室と竜巻防護ネットの連成を考慮		
	する必要はなく、海水ポンプ室から得られる床応答に対する竜巻		
	防護ネットの最大反力を用いた設計は適切である。		
	第Ⅱ.6.4-4 図 竜巻防護ネット概要図		

柏崎刈羽原子力発電所 6/7号炉	〔 (2017. 12. 20 版)	女川原子力発電所 2号	号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		Provide the second seco			
		**************************************			
		第点番号965	節点番号1921		
		第Ⅱ.6.4-5 図 海水ポンプ室	の加速度応答スペクトル比		
		(大梁及びフレームの	1 次周期との比較)		
		6.5 【課題2-5】に対する検討			
		【課題2-5】「荷重をエリアごと	に奥行き一様に載荷させること		
		は適切か?」に対して、各エリア	ごとに奥行き一様の荷重を載荷		
		させた場合と,構造物の変形に伴	う応力再配分を考慮した荷重を		
		載荷させた場合の解析結果を比較	し,奥行き一様の荷重を載荷さ		
		せることが保守的であることを確認	認する。		
		海水ポンプ室の三次元モデル側	面へ地盤ばねを設置し、周辺地		
		盤が一様に変形した場合の、地盤	ばね反力の分布形状を算定し,		
		算定した地盤反力を土圧として三	次元モデルへ作用させることに		
		より、延長方向に一様な土圧と比	較検討する。		
		検討フローを第Ⅱ.6.5-1 凶に示す	°		

柏崎刈羽原子力発電所 6/7号炉 (2017.	12.20版) 女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.	<ul> <li>12.20版) 女川原子力発電所 2 号炉 (2019.11.6 版)</li> <li>13.20 版)</li> <li>13.20 版)</li> <li>13.20 版)</li> <li>13.20 版)</li> <li>13.20 版)</li> <li>13.20 版)</li> <li>14.20 成 2000</li> <li>15.20 000</li> <li>15.2</li></ul>	島根原子力発電所 2 号炉	備考
	算定した(第Ⅱ.6.5-4 図)。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	#壁①       陽壁②       東壁②         ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ● <td< th=""><th></th><th></th></td<>		
	<b>第 II. 6. 5-3</b> 図 土圧分布算定位置		
	第Ⅱ.6.5-4 図 二次元等価剛性モデルへの強制変位		
	<ul> <li>土圧分布の評価結果を第II.6.5-5 図に示す。</li> <li>0.P.+3mの深さでは、中床版に近く、延長方向の挙動がほぼ同 ーとなるため、土圧分布はほぼ一様であるが、循環水ポンプエリ ア内にある隔壁の影響により、他のエリアより剛性が大きく、土 圧も大きくなっている。</li> <li>0.P.+15mの深さでは、側壁のたわみの影響により、隔壁間中央 や隔壁と側壁間の中央において土圧が低減されており、平均土圧 より小さくなっている(延長方向一様土圧を載荷することは、安 全側の評価となっている)。</li> <li>一方、妻壁や隔壁付近においては、土圧が大きくなっており、</li> <li>一様土圧は過小評価となっている。</li> <li>二次元等価剛性モデルにより算定した土圧は、三次元モデルに より算定した土圧分布のおおむね平均となっている。</li> </ul>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	O.P.+15m 要型① 梯型① 爆型② 要型② 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		
	O.P.+8m		
	OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m OP-3m		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	次に, 第Ⅱ.6.5-6 図に示す補機ポンプエリアの隔壁間中央位置		
	と、南側隔壁位置における土圧の鉛直分布を第Ⅱ.6.5-7 図及び第		
	Ⅱ.6.5-8 図に示す。		
	地盤ばね反力で評価した荷重分布1では,隔壁間中央位置では		
	側壁の面外方向へのたわみにより, 0.P.+3m 以浅の荷重は大きく		
	低減されている。		
	一方,隔壁位置では,隔壁が耐震機能を発揮し,荷重を支持す		
	るため,荷重分布1の荷重が大きくなっている。		
	隔壁間中央位置で、側壁が面外方向へたわむことにより低減さ		
	れた土圧は、隔壁位置へ再配分され、結局、隔壁が耐震壁として		
	機能し、荷重を支持することから、隔壁が荷重を分担する領域(エ		
	リア①とエリア②)の荷重の合計値について、荷重分布1と2で		
	比較した。比較結果を第Ⅱ.6.5-1 表に示す。		
	荷重合計は、いずれの隔壁においても、荷重分布1と2でほぼ		
	同等となっている。		
	第Ⅱ.6.5-6 図 荷重評価位置図		
	第II.6.5-7 図 補機ポンプエリア隔壁中央位置に作用する土圧鉛 直分布		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	<ul> <li>第 II. 6. 5-8 図 補機ポンプエリア南側隔壁位置に作用する土圧鉛 直分布</li> </ul>		
	第II.6.5-1 表 エリア①及びエリア②の荷重合計値		
	【STEP 2】三次元材料非線形解析による土圧分布の違いに対する 影響評価 荷重分布1(地盤ばね反力分布)と荷重分布2(一様分布)の 解析結果を第II.6.5-2表に示す。 側壁に発生するひずみは,側壁への荷重が大きい荷重分布2の ほうが大きくなっており,隔壁に発生する面内せん断ひずみは, 荷重の大きさが荷重分布1と荷重分布2で同等であるため,ひず みも同等となっている。 荷重分布1と荷重分布2において,解析結果に大きな差はなく, エリアごとに延長方向一様な土圧を載荷しても,耐震壁として機 能する妻壁や隔壁の耐震性を過大評価することはない。 なお,ここでは海水ポンプ室を代表例に示しているが,他の箱 型構造物についても同様の考え方で,延長方向一様な土圧を載荷 する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原	女川原子力発電所 2号炉(2019.11.6版)			)	島根原子力発電所 2号炉	備考
第Ⅱ.6.5-2 表 荷重分布1及び荷重分布2の解析結果							
	要求指統	ひずみ抽出保護	计编辑网	###D1	80		
			380TA	<b>有重分布1</b> 4012g	有重分布2 4082.x		
	通お規範 (00%、+143m(3/平)	a Co	圧縮ひずみ	687.µ	690 µ		
			せん新ひずみ	4010 p	4140,8		
	E+445	000	圧縮ひずみ	588.µ	510 µ		
	(OP-SONATE)		1807A	089 µ	960 p		
			EBUTA	734.µ	802.0		
	土水議院 (補助だンプエリア)	E.	IBUTA	600.µ	\$15p		
	(10/10/05/23/07)	P.F.	せん新ひずみ	6258,0	4140 x		
		1	圧縮ひずみ	876 µ	919 0		
	支持機能 (補償ポンプエリア)	C.F.M	2807A	1019.0	1362.8		
		SHARDYANESISSIS	面向せん新ひずみ	176.0	185 (1		
	7. 許容限界に係る 許容限界に係る 「許容限界は,要 対して,要求機能 断破壊に対し,既 既工認実績のない 態を想定し,許容 要求機能に応じ ている。	る課題の検討 記録として花 記録機能に応じ 記に応じ 記で記録限 た 正 記容限 界 を 設 て 第 Ⅲ.7-1	曲出した, 第Ⅱ て適切に設定 移材の曲げ・車 ちる許容限界を ついては, 既コ していることを 表に示すとお	. 4-2 表中 されてい 曲力系定して に認認認 2 確認 9 許容限	中の【訳・で 皮になってい 皮になってい 皮になってい うってい うってい うってい うってい うってい うってい うってい う	東題3】 ?」に びせん 一部 限界状	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	笠田 7-1 圭 亜式機能に広じた訖勿阻思		
	<ul> <li>1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.</li></ul>		
	(1)手来した。 (1)手来した。 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
	5 タラスの きた きた をある をある を たた た の た りな た うな た うな た うな た うな た うな た うな た うな		
	<ul> <li>         などは、</li> <li>         ないたい、</li> <li>         ないので、</li> <li>         ないので、<!--</th--><th></th><th></th></li></ul>		
	大学報報。 「なるな」 なのなど、 なのなど、 なのなど、 なのなど、 なのため、 ないたいので、 なのため、 ないたいので、 なのため、 ないたいので、 ないたいで、 なのたいで、 なのため、 ないたいで、 なのため、 ないたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 なのたいで、 ないたいでので、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないで、 ないたいで、 ないで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないたいで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、 ないで、		
	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
	一部の支援にある。		
	土水構造 価額、 一本人構造 配合ない、 のにおいては においては においては しことを目標 作したればす したれば がの のにおいて にたれば がら の において に たかした がで の に が い こ に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいて に おいで に おいで に おいで に おいで に おいで に おいで に おいで に の の の の の の の の の の の の の の の の の の		
	回支持備 回支持備に の支援 に定ったす。 市内の支援 に定ったす。 市内の支援 の大学校 の大学校 の一位では たたす。 市内 の大学校 の の大学校 の の の の の の の の の の の の の の の の の の の		
	S S A A A A A A A A A A A A A A A A A A		
	ない、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 ( )) ( )( ( )) ( )( ( )) ( )( ( )) ( )( ( )) ( )( ( )) ( )( ( ))) ( )( ( )( ( ))) ( )( ( )( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )( ( ))) ( )()) ( )())) ( )()) ( )())) ( )()) ( )())) ( )())) ( )()) ( )())) ( )())) ( )())) ( )())) ( )())) ( )())) ( )())) ( )())) ( )()))		
	(価水機能) 通水機能の不能の不能に回った (価の化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化		
	本の心容にない。 本の心容になる のでした。 御林が勝いたの 御林が勝いた 御子がの 御子がの 御子が 御子が 御子が 御子が 御子が 御子が 御子が 御子が		
	2. 株一しが部門 株 第 米 第 水		
	111. app		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		女川原子力発電所	2 号炉(	2019.11.6版)	島根原子力発電所 2号炉	備考
	7.1 通水機	能				
	通水機能	は、部材が破壊し	通水断面を	閉塞しないことにより満		
	足され、終	局状態に至らない	・部材状態を	き想定している。		
	部材状態	に応じた許容限界	もとして, 面	「外変形に対する層間変形		
	角は1/100	(圧縮縁コンクリー	ートひずみ	1%に相当), 面内変形に		
	対する層間	変形角は2/1000	とし, せん困	所破壊に対してはせん断耐	F	
	力とする (	第Ⅱ.7.1-1 表)。				
	層間変形	角(面外),層間刻	変形角(面印	内)及びせん断耐力は,既		
	工認実績の	ある許容限界であ	っる。			
	通水機能	が要求される箱型	」構造物は,	海水ポンプ室以外に取水		
	口があるが	、取水口について	も同様の部	3材状態を想定し、本許容		
	限界を適用	する。		····		
		, - 0				
		第Ⅱ.7.1-1 表	長 诵水機能	の許容限界		
		Discontra Pill I				
	変形モード	計容限3 指標	許容値	既工認実績		
				土木学会マニュアル 2005 に 相定されており 屋外重要士		
	曲げ	層間変形角(面外)	1/100	木構造物の通水機能の許容限		
				界として既工認実績がある。 TFAC4601-1987において 副標		
				壁の終局耐力に相当する層間		
		屬朋変形角 (而内)	2/1000	変形角 4/1000 に余裕を見込 んだ許容限界として規定され		
		ALL DESCRIPTION OF THE	2,1000	ており、耐震壁の終局耐力に		
	せん断			対する許容限界として既工認 実績がある。		
				土木学会マニュアル 2005 に		
		発生せん断力	せん断耐力	規定されており、屋外重要土 木構造物の通水機能の許容明		
				界として既工認実績がある。		
	曲ば玄の	砂海におやて新伝	マロロレレッ	- 屋間亦形色1/100 た乳		
	曲り糸の	収壊に刈 9 つ 計谷	FPR7FELC	., 唐间変形用1/100 を設		
	正になっ	·	10/ 页小学	日本で日本で在1/100 と		
	上稲稼コ	ンクリートひすみ	*1%の状態	ほ及び増間変形用1/100 に ニンボルトス 立の比較です		
	全る状態は	, かふりコンクリ 日日	ートの刻溶	か発生する則の状態であ		
	ることが,	屋外重要土木構造	国物を模した	フーメン構造の破壊実験		
	及び数値シ	ミュレーション等	^{齢の結果より}	確認されている。これら		
	の状態を限	界値とすることで	:禰适物全体	をしての安定性が確保		
	できるとし	て設定されたもの	)である。 銷	(筋コンクリートはり部材		
	の何重変位   、	関係と損傷状態に	対する概念	\図を第Ⅱ.7.1-1 図に示		
	す。					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	当該限界値は,土木学会マニュアル2005 に規定されており,屋		
	外重要土木構造物の通水機能の許容限界として既工認実績がある		
	限界値である。		
	第日.7.1-1 図 鉄筋コンクリートはり部材の荷重変位関係と損傷 状態に対する概念図(土木学会マニュアルに加筆)		
	面内でわめに対する計符版介として、盾间変形内2/1000 を設定 している		
	している。 IFAC4601 において 第II 7 1-2 図に示すとおり 耐雪時の終		
	JLad4001 において、 第日 $112$ 因に $57239$ 、 耐食 $20\%$ 目時の 亦形 として 層間 亦形 $64/1000$ と 相 完 さわ て なり 二 款 家 限 思		
	同時の変形として層間変形用4/1000 と死足されており、計存限が レーズ		
	2000, ※向状態の層间変形角4/1000 に女王平2を有りるように		
	当前夏形内2/1000 と成足している。 当該限界値は 耐雪時の支持機能の主応限界として呼て認実結		
	当成版介値は、耐震型の文行機能の計谷成介として成工能大傾		
	$M_{z}$ $T_{z}$ $M_{z}$ $T_{z}$ $M_{z}$ $T_{z}$ $M_{z}$ $T_{z}$ $M_{z}$ $T_{z}$ $M_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_{z}$ $T_$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	面外せん断に対する照査は、照査用せん断力がせん断耐力を下		
	回ることにより確認する。		
	せん断耐力式には、複数の安全係数が見込まれていることから,		
	せん断破壊に対して安全余裕を見込んだ評価となっている。		
	当該限界値は,土木学会マニュアル2005 に規定されており,屋		
	外重要土木構造物の通水機能,支持機能及び貯水機能の許容限界		
	として既工認実績がある限界値である。		
	7 9 支持機能		
	支持機能は 部材が終局状能に至らない状能を相定している		
	キキ アンカー定差部周辺においてけ 損傷が部材降伏程度であ		
	れげ定差性能に影響を及ぼさないことから 断面降伏以下の部材		
	*************************************		
	部材状能に応じた許容限界として通水機能で設定した終局状		
	能に対する許容限界に加え、主鉄筋のひずみが降伏強度に対応す		
	るひずみ以下等の許容限界を追加する(第Ⅱ,7,2-1表)。		
	支持機能が要求される箱型構造物は、海水ポンプ室以外に軽油		
	タンク室及び復水貯蔵タンク基礎があるが、いずれも同様の部材		
	状態を想定し、本許容限界を適用する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女	:川原子力発電所	行 2 号炉(	2019.11.6版)	島根原子力発電所 2号炉	備考
		第Ⅱ.7.2-1 表	長 支持機能	の許容限界		
	変形モード	許容限	界許容値	既工認実績		
	±1.4	圧縮ひずみ	2000 µ	本許容値を許容限界とした既 工認実績は無いが、本許容値 はコンクリート標準示方書 2002において、応力-ひずみ関 係として示されている。 本範容明界における状態けお		
	m()	主筋ひずみ	1725 µ (SD345 相当)	おむね弾性範囲であり、おお むね弾性範囲の状態は浸水防 護施設の支持機能に対する許 容限界として既工認実績があ る。		
	せん断	層間変形角 (面内)	2/1000	JEAG4601-1987において, 耐震 壁の支持機能に対する許容限 界として規定されており, 耐 震墜の支持機能の許容限界と して既工認実績がある。		
		発生せん断力	せん断耐力	土木学会マニュアル 2005 に 規定されており,屋外重要土 木構造物の支持機能の許容限 界として既工認実績がある。		
	支持機能に限界はコン	は,部材が断面隆 マクリートの圧縮	各伏しないこ 宮確度に対応	とにより満足され,許容		
	筋の降伏に対	」 「応するひずみ1	13年度に対加 725μとして	$N_{2}$		
	許容限界と	こして設定した値	直をコンクリ	ートの応力-ひずみ曲		
	線,鉄筋及び	が構造用鋼材の応	シカーひずみ	¤曲線で示すと第Ⅱ.7.2-1		
	図及び第Ⅱ."	7.2-2 図のとお	りとなる。			
	本許容限界	^{早における状態に}	は,既工認実	ぼ績のあるおおむね弾性範	i	
	囲と同等の状	犬態である。				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	第11. 7. 2-1 図 エンクリートの応力ーひずみ曲線 $f_{yd}$ $f_{yd}$ $\sigma = f_{yd}$ $\sigma = f_{yd}$ $\sigma = E_s \cdot \varepsilon$ $\varepsilon$ $s_{3450 \text{ Me}}$ $\varepsilon$ $s_{3450 \text{ Me}}$ $\varepsilon$ $\tau_{st} : 3450/\text{ me}}$ $\varepsilon$ $\pi$ $T_{1725 \mu}$ $\varepsilon$ $\pi$ $T_{1725 \mu}$ $\pi$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	7.3 貯水機能		
	貯水機能は, 津波の引き波時に必要となる冷却用水を安全に貯		
	留できることが要求機能である。		
	海水ポンプ室の周辺環境を考慮すると、構造物底面はMMR と、		
	側面は透水性の小さい盛土と接しており、部材を貫通するような		
	ひび割れが生じても、ひび割れからの漏えい量は少なく、貯水機		
	能は満足されることを確認している。		
	しかし、盛土の止水性にすべてを期待し、ひび割れに伴う漏水		
	を許容したうえで貯水機能を適切に評価することは困難であるこ		
	とから、保守的に部材を貫通するようなひび割れが発生しない状		
	態を想定し、許容限界を断面降伏及びせん断耐力とする(第		
	Ⅱ.7.3-1 表)。この許容限界は、第Ⅱ.7.3-2 表に示すとおり、「水		
	道施設耐震工法指針・解説2009」に規定されている照査基準と同		
	じレベルの許容値である。		
	面内変形に対しては,層間変形角が第Ⅱ.7.3-1 図に示す		
	JEAG4601-1991 に規定されているスケルトンカーブの第1折点		
	(γ1)以下であることを許容限界と設定する。		
	第1折点(γ1)の評価式は,壁板の面内せん断実験における		
	中央斜めひび割れ発生時の平均せん断応力度に対応するよう定め		
	られていることから, せん断変形が第1折点(γ1)以下の場合,		
	水密性に影響のあるせん断ひび割れは生じないと考えられる。本		
	許容限界は, 耐震壁の水密性に対する許容限界として既工認実績		
	がある。		
	第1折点(γ1)を超過する場合においては、漏水量を算定し、		
	安全機能を損なうおそれがないことを評価する。		
	貯水機能が要求される箱型構造物は,海水ポンプ室以外に取水		
	口(貯留堰を含む)があり、取水口についても、構造物底面はMMR,		
	側面は透水性の小さい盛土や改良地盤となっており、海水ポンプ		
	室と同じ周辺環境にあるが、同様の部材状態を想定し、本許容限		
	界を適用する。		
			1
			1
			1
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	ф	川原子力発電	⑥所 2 号炉( 	2019.11.6版)	島根原子力発電所 2号炉	備考
	10 Th 40. 10	許	容限界	RT-mtria		
	変形モード	指標	許容值			
	the set	圧縮ひずみ	2000 μ	本許容値を許容限界とした既 工認実績は無いが、本許容値 はコンクリート標準示方書 2002において,応力-ひずみ関 係として示されている。		
	ш.7	主筋ひずみ	1725 µ (SD345 相当)	本許容限界における状態はお おむね弾性範囲であり,おお むね弾性範囲の状態は止水機 能に対する許容限界として既 工認実績がある。		
	せん断	層間変形角 (面内)	第1折点(y ₁ ) 以下 ただし,第1折 点(y ₁ )を超過 する場合は,漏 水量を算定し, 安全機能へ影響 しないことを確 認	JEAG4601-1991 に規定されて おり,耐震壁のせん断変形に 対する水密性評価の許容限界 として既工認実績がある。		
		発生せん断力	せん断耐力	土木学会マニュアル 2005 に 規定されており,屋外重要土 木構造物の貯水機能の許容限 界として既工認実績がある。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	参考に、部材を貫通するようなひび割れが生じても、ひび割れ		
	からの漏水量は少なく、貯水機能は満足されることの確認結果を		
	以下に示す。海水ポンプ室を例に示すが、取水口についても構造		
	物底面はMMR,側面は透水性の小さい盛土や改良地盤となってお		
	り、海水ポンプ室と同じ周辺環境にある。		
	・周辺環境を考慮した漏水量の確認		
	漏水量の計算に用いる各諸元及び計算結果を第Ⅱ.7.3-2 図に		
	示す。		
	部材を貫通するようなひび割れが発生したとしても、第		
	Ⅱ.7.3-3 図に示すとおり底面はMMR と接しているため顕著な漏		
	水は無く,津波の引き波時に取水口敷高を下回る時間183 秒間の		
	間に,盛土と接している側壁から漏えいする水量は23.7m3 で,		
	貯留量の1%未満であり,引き波時に必要となる冷却用水を十分		
	に確保できることから、貯水機能に影響は無いことを確認してい		
	る。		
	取水口敷高 0. P5. 3m		
	引き波時に取水口敷 183秒間		
	高を下回る時間 廃土の透水係数 3.0×10 ⁻⁵ m/s		
	動水勾配 Δh/L=7.5 th		
	貯水機能が要求され 287.6ml (片側)		
	海水ボンブ室貯留量 約3,324m ³		
	<ul> <li>※:hは貯留木位 (0.P5.3m) とドレーン (0.P14.2m)の水頭差</li> <li>Lはドレーンまでの水平距離 (1.2m)</li> </ul>		
	BESS/27257         BES27257         XFI-2x577		
	0.P.+15.000		
	[™] / _P → [™] /		
	101H 007H 1H07		
	貯留水と接している 個壁の面積:287.6m (片側)		
	<ul> <li>183 秒間における側壁から盛土への漏水量</li> </ul>		
	$\Rightarrow 3.0 \times 10^{-5} \times 7.5 \times 183 \times 287.6 \times 2 = 23.7 \text{m}^3$		
	第Ⅱ.7.3-2 凶 漏水量計算諸元		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	本路部頻度は盛 と接している           00-14         と接している           00-14         100           第 II. 7. 3-3 図 補機ポンプエリア断面図		
	<ul> <li>7.4 止水機能</li> <li>止水機能は、以下に示す3つの観点に対し、部材からの漏水により、S クラスの機器及び配管等の安全機能を損なうことがないよう止水できることが要求機能であり、漏水が生じるような顕著な(部材を貫通するような)ひび割れが発生しない状態を想定している。</li> <li>(観点1) 津波の押し波時における外郭防護</li> </ul>		
	(観点1) 年後の計じ後時における内郭防護 (観点2) 屋外タンク損傷時における内郭防護 (観点3) 循環水管単一破損時における内部溢水 部材状態に応じた許容限界として,断面降伏及びせん断耐力と し,そのうえで,地震終了後の除荷時において顕著なひび割れが		
	発生していないことを解析等により確認又は妥当な裕度を持たせ ることとする(第Ⅱ.7.4-1 表)。 面内変形に対しては,貯水機能と同様に層間変形角がスケルト ンカーブの第1折点(γ1)以下であることを許容限界と設定し, 第1折点(γ1)を超過する場合においては,漏水量を算定し, 安全機能を損なうおそれがないことを評価する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)			2019.11.6版)	島根原子力発電所 2号炉	備考
	第Ⅱ.7.4-1 表 止水機能の許容限界					
	変形モード	許領	容限界 許容値	既工認実績		
	#1.2	圧縮ひずみ	2000 µ	本許容値を許容限界とした既 工認実績は無いが、本許容値 はコンクリート標準示方書 2002において,応力-ひずみ関 係として示されている。		
	ш 17	主筋ひずみ	1725 µ (SD345 相当)	本許容限界における状態はお おむね弾性範囲であり,おお むね弾性範囲の状態は止水機 能に対する許容限界として既 工認実績がある。		
	せん断	層間変形角 (面内)	第1折点(y ₁ ) 以下 ただし,第1折 点(y ₁ )を超過 する場合は,漏 水量を算定し, 安全機能へ影響 しないことを確 認	JEAG4601-1991 に規定されて おり,耐震壁のせん断変形に 対する水密性評価の許容限界 として既工認実績がある。		
		発生せん断力	せん断耐力	土木学会マニュアル 2005 に 規定されており,屋外重要土 木構造物の貯水機能の許容限 界として既工認実績がある。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	8. 安全係数に係る課題の検討		
	安全係数に係る課題として抽出した,第Ⅱ.4-2表中の【課題4】		
	「耐震安全性評価に用いる安全係数は三次元静的材料非線形解析		
	に見合う設定がされているか?」に対して、既工認実績のある土		
	木学会マニュアル2005 や、本評価手法と同様の三次元材料非線形		
	解析による照査手法が規定されている土木学会マニュアル2018		
	等を参照して、妥当性を確認する。		
	8.1 安全係数の考え方		
	安全係数は,評価に係る要因の不確かさを第Ⅱ.8.1-1 図に示す		
	5つの安全係数(材料係数,部材係数,荷重係数,構造解析係数,		
	構造物係数)で考慮する。		
	土木学会マニュアル2005 に記載されている, 耐震性照査の基本		
	的な考え方を式で表すと以下となる。		
	$\gamma_i \cdot S_d / R_d \le 1.0$		
	ここに、 $S_d$ : 照査用応答値 $S_d = S(\gamma_f, \gamma_m) \cdot \gamma_a$ $\gamma_1$ : 構造物係数		
	$R_d$ : 照查用限界值 $R_d = R(\gamma_w)/\gamma_b$ $\gamma_z$ : 药和标款		
	<ul> <li>S:応答10の特性値</li> <li>ア。:構造解析係数</li> </ul>		
	A , RC4P ILL V / TTI工ILL Yb : 部材係数		
	また,コンクリート標準示方書2017 では,「非線形有限要素解		
	析を用いた照査では、解析結果の精度に関する安全係数を設定す		
	る。(中略)安全側に考慮された限界値が別途定められている場合		
	には、限界値に対する解析係数を1.0 としてよい。」とされている。		
	なお,この考え方はコンクリート標準示方書2002 でも同様であ		
	る。		
	女川2号炉では、応答値に係る不確実性は応答値側で構造解析		
	係数として考慮し、限界値に係る不確実性は限界値側で部材係数		
	として考慮することを基本とする。一方,材料非線形解析により		
	得られたひずみ等に基づいて照査を行う場合には、限界値に係る		
	不確実性は限界値を安全側に設定することで考慮する。		
	また,変形指標で表された応答値は,係数1.2 で割り増す。こ		
	れは、主として地盤や地盤と構造物の境界に関する不確定性に配		
	慮するためのものである。		
	NT-B& 7'		
	7 115-0+02 15-2+0 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-2		
	第Ⅱ.8.1-1 図 考慮する安全係数		

## 4条-別紙5-139

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	各安全係数の基本的な考え方を以下に示す。		
	・材料係数		
	材料特性の望ましくない方向への変動、供試体と構造物中との		
	差異、限界状態に及ぼす影響、経時変化等を考慮して定めるもの		
	とする。		
	・部材係数		
	部材耐力の計算上の不確実性、部材寸法のばらつきの影響、部		
	材の重要度、すなわち対象とする部材がある限界状態に達したと		
	きに、構造物全体に与える影響等を考慮して定めるものとする。		
	・構造解析係数		
	応答値算定手法の精度や、実物と解析モデルとの差異ほか、応		
	答値算定に関わる不確実性を考慮して定めるものとする。		
	・荷重係数		
	荷重の望ましくない方向への変動,荷重の算定方法の不確実性,		
	設計耐用期間中の荷重の変化,荷重特性が限界状態に及ぼす影響,		
	環境作用の変動を考慮して定めるものとする。		
	・構造物係数		
	構造物の重要度,限界状態に達したときの社会的影響等を考慮		
	して定めるものとする。		
	各安全係数の基本的な考え方を踏まえ、地震応答解析における		
	安全係数,変形による照査における安全係数及び断面力による照		
	査における安全係数を設定する。		
	女川2号炉で採用する三次元静的材料非線形解析を用いた耐震		
	性評価方法の評価体系と安全係数の関係を第Ⅱ.8.1-2 図に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	<complex-block></complex-block>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	8.1.1 地震応答解析における安全係数		
	地震応答解析は、三次元材料非線形解析における「荷重の特性		
	値」を算定するために実施することを勘案し,第Ⅱ.8.1-3 図に示		
	す安全係数を考慮する。		
	物性のばらつきに対しては,対象構造物が地中構造物であり,		
	支配的な地震時荷重が土圧であることから、土圧に影響を及ぼす		
	地盤及び鉄筋コンクリートの物性のばらつきとして、剛性のばら		
	つきを考慮する。		
	三次元構造のねじれの影響については、損傷モードに応じて複		
	数時刻の荷重を抽出することで、影響を考慮する。		
	乾燥収縮による剛性低下については、剛性低下すると土圧が小		
	さくなることから、初期剛性とすることで荷重を保守的に評価し		
	ている。		
	地震応答解析における安全係数を以下に示す。		
	・材料係数		
	応答値算定時に適用する材料係数は、コンクリートと鉄筋の物		
	性値が断面力の算定精度に与える影響は小さいこと、材料物性の		
	特性値の設定おいて照査における応答値算定が安全側となるよう		
	に配慮が行われることを踏まえ1.0とする。		
	地盤物性値のばらつきは別途ばらつきを考慮したパラメータス		
	タディを実施する。		
	・部材係数		
	地震応答解析の結果は、二次元静的材料非線形解析の作用の特		
	性値として扱うことから、部材係数は考慮しない。		
	・ 個垣時11 示数 地震亡ダ敏振の結果は 三次三路的材料非領形敏振の作用の特		
	地展心合性们の相木は、二八九間的相升林の所有の分子		
	工順として扱うことがら、神道神術床数は勾慮しない。		
	・荷重係数		
	地震の影響以外の荷重の評価精度は高いと考えられ、 地震の影響		
	響については入力地震動が最新の研究成果に基づいて合理性をも		
	って設定されており、十分に不確かさやばらつきが考慮されてい		
	ることから荷重係数は1.0とする。		
	· · · · · · · · · · · · · · · · · · ·		

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			・構造物係数		
			地震応答解析の結果は、三次元静的材料非線形解析の作用の特		
			性値として扱うことから、構造物係数は考慮しない。		
			第Ⅱ.8.1-3 図 地震応答解析における安全係数		
			8.1.2 変形による照査における安全係数		
			変形による照査における安全係数は, 第Ⅱ.8.1-4 図に示す安全		
			係数を考慮する。変形による照査を行う限界値は、層間変形角(面		
			外:1/100, 面内:2/1000, 第1折点) とひずみ (圧縮ひずみ:2000		
			μ, 主筋ひずみ:1725μ) である。		
			変形による照査における安全係数を以下に示す。		
			・材料係数		
			コンクリート強度の特性値及び鉄筋の機械的性質の特性値は,		
			実強度に対して小さい値を設定している。		
			コンクリートの圧縮強度が小さくなれば、構造物の応答変位は		
			大きくなると考えられることから、応答値の算定は1.0 とする。		
			鉄筋降伏強度を小さく設定したとき、構造物の応答変位は少な		
			くとも小さくならないと考えられることから、応答値の算定は1.0		
			とする。		
			・部材係数		
			安全側に考慮された限界値が別途定められていることから、1.0		
			とする。		
			・構造解析係数		
			二次元解析において, 地盤パラメータの設定(拘束圧依存性,		
			地盤の剛性-ひずみ関係や履歴減衰-ひずみ関係のモデル化精		
			度、地盤と構造物の境界部の特性)が応答解析結果に及ぼす影響		
			を考え併せ、一般的に1.2 とされており、三次元特有の面内変形		
			による挙動は、面外変形よりも評価精度がよく、面外変形による		
			挙動については、三次元も二次元も大差はないと考えられる。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	6.1.2 項に示す再現解析により、今回の評価対象範囲において		
	は、構造物の変形を精度よく評価できている。また、地震時荷重		
	は若干非線形領域に入るものの、大部分の部材はおおむね弾性範		
	囲である。		
	以上より,構造解析係数は1.2 とする。		
	・荷重係数		
	地震応答解析による荷重の算定において構造物を線形として荷		
	重を保守的に評価していること、荷重の載荷方法を奥行き一様と		
	して保守的に作用させていること、地震時増分荷重は部材の三次		
	元的変形を踏まえ適切に複数の代表時刻を選定すること等から,		
	1.0 とする。		
	・構造物係数		
	原子力施設の場合、別途重要度分類がなされ、それに基づいて		
	入力地震動の選定が行われているので、1.0 とする。		
	第Ⅱ.8.1-4 図 変形による照査にわける女主係数		
	813 断面力に上ろ昭杳におけろ安全係数		
	断面力による照査における安全係数は、第Ⅱ.8.1-5 図に示す安		
	全係数を考慮する。断面力による照査を行う限界値は、せん断耐		
	力である。		
	断面力による照査における安全係数を以下に示す。		
	・材料係数		
	コンクリート強度の特性値及び鉄筋の機械的性質の特性値は,		
	実強度に対して小さい値を設定している。		
	応答値算定時に適用する材料係数は、コンクリートと鉄筋の物性		
	値が断面力の算定精度に与える影響は小さいこと、材料物性の特		
	性値の設定において照査における応答値算定が安全側となるよう		
	に配慮されていることを踏まえて1.0 とする。		
	限界値算定時に適用する材料係数は1.3 を標準とするが、既設		
	構造物において、強度等の材料特性のばらつきを考慮して特性値		
	が設定されていることを実測値により確認した場合は材料係数を		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	1.0~1.3 の間で低減する。		
	・部材係数		
	せん断耐力評価式に基づいてせん断耐力を求める場合、コンク		
	リート寄与分に対して1.3,鉄筋寄与分に対して1.1 とする。		
	・構造解析係数		
	変形に関する応答値の評価精度に比較して、断面力に関する応		
	答値の評価精度は高いと考えられることから、変形照査の場合よ		
	り低減させて1.05とする。		
	・荷重係数		
	地震応答解析による荷重の算定において構造物を線形として荷		
	重を保守的に評価していること、荷重の載荷方法を奥行き一様と		
	して保守的に作用させていること、地震時増分荷重は部材の三次		
	元的変形を踏まえ適切に複数の代表時刻を選定すること等から,		
	1.0 とする。		
	・構造物係数		
	原子力施設の場合、別途重要度分類がなされ、それに基づいて		
	入力地震動の選定が行われているので、1.0 とする。		
	857-568 5%		
	риконая 7- рина ринаная риданая то ринаная ринаная Тараная		
	第Ⅱ.8.1-5 図 断面力による照査における安全係数		
	8.2 規格・基準額との比較		
	女主係数が週切に設定されていることを成上認実績があり、変		
	形照査や断面力による照査手法について規定されている工不学会		
	マーユノル2005 との比較により確認する。また、工木子会マーユ		
	ノル2003 回様, 二次元前材非様形時付による思望手伝が規定され ている供道構造物質型計画準2019 大評価毛汁 トロ捨め二次二		
	くいる		
	1211111111111111111111111111111111111		
	アル2010 及びユンジリート保毕小刀音2011 を参照し、女当性を 施設する 比較に用いる相換・甘進粒の適用性な第Ⅱ 0 9 1 また		
	^{19世記} りる。比較に用いる枕俗・盔牛類の適用性を用1.0.2-1 衣に 示す		
	小?。		
	心辰时の安水磁能唯体に刈りる計画のりち、借用変形用やひり		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
--------------------------------	-----------------------------------	--------------	----
	みなど変形による照査については、規格・基準類の変形に対する		
	照査の際に考慮する安全係数と,断面力による照査については,		
	規格・基準類のせん断に対する照査の際に考慮する安全係数と比		
	較し、妥当性を確認する。変形による照査における安全係数の比		
	較を第Ⅱ.8.2-2 表に,断面力による照査における安全係数の比較		
	を第Ⅱ.8.2-3 表に示す。		
	断面力による照査におけるコンクリートの材料係数以外は、既		
	工認実績のある土木学会マニュアル2005の安全係数と同様の安		
	全係数を設定している。断面力による照査におけるコンクリート		
	の材料係数の考え方については8.3 項に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電	所 2号炉(2019.11.6版	)	島根原子力発電所 2号炉	備考
	第四性 原子の発電所成外重要土木構造物に特化 した規範・集催であり、医外重要土木構造物に特化 他の特徴(過設された長藤ヨンクリート 請述)を十分に考慮されたものであり、通 加性がある。 同社に対する開き方法として二次元決決時 素部形解析を用いた展昇値の第に大売のであり、通 素部形解析を用いた展昇値の第には 加速しき有容量的には低下構造物であるなど、 構造上の特徴が、原外重要土木構造物であるなど、	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	特管理に至るまで確広く店用されてお 9、適用性がある。 非線形有限要素解析による性能風査とし て、三次元材料非線形有限要素解析を用 いた性能風音が宗されている。		
	規格・基準の適用範囲・対象構造物 原子力発電所限外重要上本構造物 (S クラスの機器・配管を支持する鉄筋コン クリート構造物又は, 同等の耐酸安全性が 要求される鉄筋コンクリート構造物) 鉄道の機能, 痛発機, 複合, 補殖, 特殊な条 件下のトンネル等の鉄道構造物	原子力発電所屋外重要土木構造物及び回等 の動業安全性が要求される鉄筋コンクリー ト構造物 (S クラスの機器・配管の開設支持機能が求 かられる鉄筋コンクリート構造物及び、非 素時における海水の造水機能が求められる 鉄筋コンクリート構造物及び、非 素時における海水の造水機能が求められる (第3章 材料非線造物) (第3章 材料非線造物) (第3章 材料非線造物) (第3章 材料非線造物) (第3章 材料非線造物) (第3章 材料非線造物) (1000-1000-1000-1000-1000-1000-1000-100	レストコンクリート構造で構成される構造 物(圧縮速度の物性値 80N/m ² 以下) 「設計編 標準 10篇」に余融形有限要素解 新による性能限査がある。		
	参考とした現格・基準 ①土木学会マニュアル 2006 ②鉄道構造物等設計基準 2012	③土木学会マニュアル 2018	④コンクリート標準示方書 2017		
	解析手法	三次元材料并總把解析			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	第Ⅱ.8.2-2 表 地震時の要求機能確保に対する評価において考慮 する安全係数(変形による照査)		
	●時候時計業形態時代による 直護評価で 実用した値及び設定の妥当件 支払に基づく標準的な値を設定して いる。 文全側に考慮された採用値の切除症 のられていることから L0 としてい る。 が、 単分によづく標準的な値を設定して かられていることから L0 としてい る。 文件に通っく標準的な値を設定して ための社会け影響については、原外 主意しても開かを適用することで している。 している。 自示力をとして L0 をして L0 を として L0 を している。		
	二次元書 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
	(100 mm) 100 mm 100 mm 1		
	<u>11.0</u> 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
	11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00		
	<ul> <li>「コンクリートの 書田福海連を当該</li> <li>一ゴンクリートの</li> <li>一世田福海連を当該</li> <li>一族市(市景大市)</li> <li>一族市(市大市)</li> <li>一族市(市大市)</li> <li>一、孫生山(一小山)</li> <li>一、朱久荷重、定為(二)</li> <li>一、朱久荷重、定為(二)</li> <li>一、大八荷重、定為(二)</li> <li>一、大八荷重、定為(二)</li> <li>一、大八荷重、定為(二)</li> <li>一、大八荷重、定為(二)</li> <li>一、大八荷重、定為(二)</li> <li>一、「小竹(二)</li> <li>一、「小竹(二)</li> <li>一、「小竹(二)</li> <li>一、「小竹(二)</li> <li>一、「小竹(二)</li> <li>一、「小竹(一)</li> <li>一、「小竹(一)</li> <li>一、「小竹(一)</li> <li>「二、「小竹(一)</li> <li>「二、「二、「二、「二、「二、「二、「二、「二、「二、「二、「二、「二、「二、「</li></ul>		
	(保護の職業・ (保護の職業・ 設定に至る経緯 設定に至る経緯 の設計用値の評価 の設計用値の評価 かたのばちのきや情談 体と感染のものきや 体と確認にたらっきや情談 体とが認ったのきや が設計しので感染 での影響がおけ近らの きの影響、約封い社の認可 度を考慮 支行法のばる考慮 支行法のばる考慮 就でたとなず、 設計用値の評価 での設計に用いて必須対 するの影響、約封い社ので必要 が能に及ばす影響、約封の重要 が能に及ばす影響、約封の重要 が能に必にた時の確認の 変化 たいて、対却特性のばらの おいて、対却特性のばらの に、対却特性のばらの のに数量		
	数 は 本 よ よ よ よ よ よ よ よ よ よ よ に よ 、 、 、 、 、 、 、 、 、 、 、 、 、		
	成全派 市社 机 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版) 第Ⅱ.8.2-3 表 地震時の要求機能確保に対する評価において考慮 する安全係数 (断面力による照査)	島根原子力発電所 2号炉	備考
	(福祉的公司 (福祉的公司 ) 1.0 (マレーレー ) 1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0 (1.1.0))))))))))))))))))))))))))))))))))		
	第第四に載っていた。 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3		
	春秋秋後・ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
	(1) 10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
	・ 1 日本市大学会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社		
	「保護の構成・ 設定に定る評論 市成力評価に用いる計 を動たの計画に用いる計 かたのはすつきや供給 体と構造物中との料料 体と構造物中との料料 の独中の施沢、材料特性 の独中の施沢、材料特性の不 一部因力の計算上の不 市成力の計算上の不 市成力の計算上の不 市成力の計算上の不 市成力の指示。 市力の計算上の不 市成力の計算上の不 市成力の計算上の不 市成力の指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの指示。 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利ので 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市利のの 市 市利のの 市 市 市利のの 市 市 市 市 市 市利のの 市 市利のの 市 市 市 市 市 市 市 市 市 市 市 市 市		
	第 大 本 市 大 本 市 ・ 、 、 、 、 、 、 、 、 、 、 、 、 、		
	林 · · · · · · · · · · · · · · · · · · ·		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.	20版) 女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	8.3 コンクリートの材料係数の考え方		
	断面力による照査におけるコンクリートの材料係数は、既工認		
	実績がある1.3を標準とするが、対象構造物は既設であることに鑑		
	みて、コンクリート標準示方書2002 等に記載されている安全係数		
	の主旨を確認のうえ, 第Ⅱ.8.3-1 表に示す事項をすべて確認でき		
	る場合は、材料強度の特性値を設計基準強度(20.5N/mm2)とし、		
	材料係数を低減する。		
	低減する場合は、一軸圧縮試験結果から算定される5%超過特		
	性値を既工認実績がある材料係数1.3 で除した値が,設計基準強		
	度(20.5N/mm2)を低減した材料係数で除した値を上回るように材		
	料係数を1.0~1.3 の間で低減する。		
	各構造物ごとに第Ⅱ.8.3-1 表に示す事項を確認しコンクリー		
	トの材料係数を設定するが、例として、海水ポンプ室の場合は、		
	第Ⅱ.8.3-2 表に示すとおり確認事項をすべて満足することから,		
	材料係数yc を低減する。一軸圧縮試験結果から算定される5%		
	超過特性値が23.4N/mm2 であり,材料係数γc が1.2 であれば,		
	5%超過特性値を既工認実績がある材料係数1.3 で除した値が,		
	設計基準強度(20.5N/mm2)を材料係数(1.2)で除した値を上回		
	ることから, γc=1.2 とする。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電展	所 2号炉(2019.11.6	;版)	島根原子力発電所 2号炉	備考
	<ul> <li>第二十一十月間時日に、社内法律に基づき 100m%に1回の機関でに実体を行成し、2010年1110年1110年1111年111日</li> <li>一時に最近都時により以下のことが確認できれば、材料強度の時代でに実体を行成し、2010年11日</li> <li>・時間30時の一輪圧着的時によりは下のことが確認できれば、材料強度の時代情でのあるからが加速した。</li> <li>・健認時の一輪圧着的時によりは万を最低的な、材料強度の時代情である 20,500mm を上</li> <li>・健認時の一輪圧着的時によりは万を最低的な、材料強度のかた値に、振動電気に上づく、</li> <li>・ 確認時期の一緒に有効確認を定される 就要用の中心情、情報電差に上づく、</li> <li>・ 他に適応時度後によりにつことが確認できれば、満辺筋中においても材料時時点</li> <li>・ 一種に確認確認定 おけちかともが確認できたがある</li> </ul>	<ul> <li>・ 業品等業務シー価に備お使における現在後の1,454月の現代である</li> <li>・ 第四時 業業務シー価に備お使における現在低の1,454月の4月に、1,2,34日の時生産である</li> <li>・ コンタリートではコンタリートの上へ活動力等与が1,1,2,4日の504の10年の第2040年の10,24日の4月の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の10年の10,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日の11,4日,4日,4日,4日,4日,4日,4日,4日,4日,4日,4日,4日,4日,</li></ul>	・業協物業後、社内基準にあった。定課的にコンタリートの品質管理を実施したお ・、一番圧縮関係を実施している。 ・・無圧縮関係により以下のことが確認できれば、総中活化により強度が低下する可能 在はとかさいと考えもわめため料料保養を成実する。 ・素徴物構築後の責任の一種圧縮武績において、営業館の東低値が料料の特性情で ある 30.610mmを上回る。		
	専団の構成 専務実験データの下足を備り、品 営業用の程度後の原因により、強 度が特性能を下回る可能性 進工時の品質管理、指試体と構造 物工時の品質管理、指試体と構造	6、強度法特代能を下回る可能性 材料強度の変動により、不利な影響を受ける可能性 (せん振眠癖に対する配慮)	コンクリートが降中変化により、 施度が低下する可能性		
	専業十八合産団 材料油度の身体能からの留 ましくない分別への変動 体設体と構造物中との材料	特性的感過 材料物性加强界状態に及ぼ 十般	材料物性の厳密変化		
	H 03	e 19	-		

女川原子力発電所 2 号炉(2019.11.6	版)	備考
第Ⅱ.8.3-2 表 海水ポンプ室における確	認結果	
<ul> <li>建設時の一輪圧縮減減減度 (28 目 独良)</li> <li>建設時の一輪圧縮減減減度 (28 目 独良)</li> <li>市 平均能 : 555 × x</li> <li>干均能 : 55 × x</li> <li>5 % 認過物性能 : 23.4 W and &gt; 20.5 W and</li> <li>5 % 認過物性能 : 23.4 W and &gt; 20.5 W and</li> <li>6 % 必過過物性能 : 23.4 W and &gt; 20.5 W and</li> <li>7 % and &gt; 20.5 W and</li> <li>※ 2.4 W and &gt; 20.5 W and</li> <li>※ 2.5 % and</li> <li>※ 在街 : 27.4 W and &gt; 20.5 W and</li> <li>※ 在街 : 27.4 W and &gt; 20.5 W and</li> <li>※ 在街 : 27.4 W and &gt; 20.5 W and</li> <li>※ 在街 : 27.4 W and &gt; 20.5 W and</li> <li>※ 本 : 0.5 K M = &gt; 20.5 W and</li> <li>※ a : 0.5 K M = &gt; 20.5 W and</li> <li>※ a : 0.5 K M = &gt; 20.5 W and</li> <li>W = 10 と 仮花 した 場合の f ' * e </li> <li>* e : 0.5 K M = &gt; 20.5 W and</li> <li>* * e : 0.5 K M = &gt; 20.5 W and</li> </ul>	- T-Fraught : 01.11P und - 最低的::27.4Wnuf - 20.5Wnuf	
<ul> <li>建設時の一種圧縮試験における最低値が、材料通度</li> <li>建設時の一種圧縮試験における最低値が、材料通度</li> <li>建設時の一種圧縮試験におった。</li> <li>建設時の一種圧縮試験拡大のも算法される影響値の</li> <li>建設時の一種圧縮試験におった。</li> <li>建造物性能である30.5%/mi*を上回る。</li> <li>外強度の物性値である30.5%/mi*を上回る。</li> <li>外強度の物性値である30.5%/mi*を上回る。</li> <li>女川2号炉で定める設料基準準強度、23.5%/mi* と近回る。</li> <li>女川2号炉で定める設料基準準強度、23.5%/mi* と近回る。</li> <li>女川2号炉で定める設料基準準強度、23.5%/mi* と近回る。</li> <li>女川2号炉で定める設料基準準強度、23.5%/mi* と近回る。</li> <li>女川2号炉で定める設料基準準強度、23.5%/mi* と近回る。</li> </ul>	ν	
専建すべき専用 材料強度の特任能からの証 ましくない方向への変動 供試体と構造物中との材料 特社の進展 材料特任が原界状態に及ば す影響		
- 01 m 7		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	9. まとめ		
	海水ポンプ室, 取水口, 軽油タンク室, 復水貯蔵タンク基礎は		
	三次元静的材料非線形解析により耐震安全性評価を行うこととし		
	ており、構造が複雑で、要求機能が多岐にわたる海水ポンプ室を		
	代表として、評価方法の妥当性を検討した。		
	二次元地震応答解析により算定した地震時荷重を、三次元モデ		
	ルヘ載荷して耐震安全性評価を行っていること、二次元地震応答		
	解析により算定した床応答を用いて機器・配管類の耐震設計を行		
	っていることから、地震応答解析に係る課題として、以下の3項		
	目について検討し、適切に評価できていることを確認した。		
	、地震吐甚重は、海水ポンプ字の延長十向の携生の亦化た老虎」		
	・地展时何里は、一個小小シノ王の延安万円の構造の変化を考慮して、適切に証何できている		
	し、 週辺に計画してしてる。 ・ 地震時芸重の深字時刻は 一 亜 武懋能を右去る如材ブレに掲進去		
	・地展时何里の歴足時刻は、安水機能を有りる即初ことに損傷で		
	・水亚古向の剛地を笠無とした笠無剛地エデルが砂直古向の庄広		
	* 水十万円の剛住を守恤とした守恤剛住モノルが如直万円の床心		
	合に及はり影響はない。		
	次に、既工認実績のない三次元静的材料非線形解析により構造		
	解析を行っていることから、構造解析に係る課題として以下の5		
	項目について検討し、適切に応答を評価できることを確認した。		
	・二次元前的材料非線形解析に用いる解析ユートCOM3 は、三次元 構造物の線見出能力で証何可能ですり、海力ポンプ定し目前のエ		
	構造物の於向状態よで評価可能であり, 海水ホンノ至と回家のモ ニュルナオの知知条件で特定上ノ東明知れが可能です。		
	アル化力法や脾竹条件で有度よく再現脾竹かり能である。		
	・二次元静的材料非線形解析を週用する構造物の非線形レベルは、		
	わわむね弾性範囲に収まる状態で適用する。		
	• 二次元モアルは要素分割を適切にモアル化し、応答を評価でさ		
	<ul> <li>・機益・配官及び电を防護不ットの影響を適切に評価でさている。</li> <li>ボモの共共主法は、南にた、横に共共されており、但広告も共</li> </ul>		
	・何里の載何方法は、奥11さ一体に載何させてわり、保守的な載 # 十 計でま ス		
	何万法でめる。		
	私区に, 12117 12 DV に PAST 14 CR 且 21 7 ことから 許変限現及び安全低粉について検討1 許変限界及び		
	安全係数を適切に設定できていることを確認した		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	<ul> <li>・既工認実績のある許容限界を採用することを基本としており、</li> </ul>		
	一部おおむね弾性範囲に対する許容限界は既工認実績が無いひず		
	みを採用しているが、既工認実績のある限界状態と同様の許容限		
	界である。		
	・安全係数は三次元材料非線形解析による評価に対するプロセス		
	   ごとに適切な安全係数を設定しており、規格・基準類と比較して		
	も同等の安全係数である。		
	以上の検討により,三次元静的非線形解析による評価手法は,		
	構造物の耐震安全性を安全側に評価できることを確認した。		

柏崎刈羽原子力発電所 6/7号炉 (	2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			参考1	
			免震重要棟遮蔽壁のモデル化方針	・資料構成の相違
				【女川2】
			屋外の上位クラス施設である緊急時対策所の周辺には、波及的	島根2号炉は免震重
			影響を及ぼすおそれのある下位クラス施設である免震重要棟遮蔽	要棟遮蔽壁のモデル化
			壁が位置する。	方針について説明
			免震重要棟遮蔽壁は、免震重要棟廻りに延長約300mに亘り、岩	
			盤上に設置される鉄筋コンクリート造の遮蔽壁であり、このうち	
			緊急時対策所に影響を及ぼすおそれのある範囲は直線状の区間	
			(36m) である。また,免震重要棟遮蔽壁は,地盤面からの高さが	
			9.4m, 厚さは50cm以上であり, 杭基礎 (鋼管杭) 構造である。	
			平面図を図1に、断面図を図2に示す。	
			: 倒壊を想定した 場合の影響範囲	
			<u>原金的金的金的金的金的金的金</u> 星	
			免震重要棟	
			The second second	
			免震重要棟遮蔽壁	
			単位:m	
			図1 免震重要棟遮蔽壁の平面図	

柏崎刈羽原子力発電所 6	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
				500mm 免震重要棟側 マE.L.+60.0m 鉄筋コンクリート造 800mm マE.L.+50.6m 例WVM 鋼管杭 φ1,200mm	
				図2 免震重要棟遮蔽壁の断面図	
				<ul> <li>ALE 元展重安味遮蔽壁の町面凶</li> <li>免震重要棟遮蔽壁は、地盤~杭基礎のモデルをSRモデル、遮蔽壁を質点系モデルとした地盤~杭基礎~遮蔽壁の連成系モデルにより地震応答解析を行う方針とし、「乾式キャスクを用いる使用済燃料中間貯蔵建屋の基礎構造の設計に関する技術規程JEAC4616-2009」に準拠し、杭基礎と地盤の相互作用を考慮できる薄層要素法で地盤ばねを評価することとしていた。</li> <li>免震重要棟遮蔽壁の底面は解放基盤相当の岩盤が出現していることから、SRモデルに適合する地盤である。また、免震重要棟遮蔽壁は、基礎幅に比べて壁の高さが高く、構造物下端のモーメントが大きいため、基礎の安定性を考慮して杭基礎を採用し、基礎幅は狭いものの、奥行き方向に杭が複数存在する構造としている。</li> <li>目地間の標準的な1ブロックは、奥行き方向に5本の杭で構成されている。SRモデルでは地盤ばねを設定する必要があるが、薄層要素法による地盤ばねの算出方法は、群杭と地盤の相互作用が評価可能であることから、本構造物基礎の1×5の杭配置に関して</li> </ul>	
				も適用可能と判断していた。 しかしながら、薄層要素法は杭と地盤の相互作用や群杭の影響 を考慮するために用いられる一般的な手法(入門・建物と地盤と 動的相互作用 日本建築学会1996)であるが、準拠した「乾式キ ャスクを用いる使用済燃料中間貯蔵建屋の基礎構造の設計に関す る技術規程JEAC4616-2009」を用いて、免震重要棟遮蔽壁のように	

<ul> <li>品牌はしいて意からたから、ためないまたな重要する場合ののまたがあい。</li> <li>このからして、作文のかったのない。</li> <li>このからして、作文のかったのないのための、ののコーレーロレーロレーロレーロレーロレーロレーロレーロレーロレーロレーロレーロレーロ</li></ul>	柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉			備考
は、日本の中心では、「「「大学スクシーク」」」では、「大学スクシーク」」」、「大学スクシーク」」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「大学スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「スクシーク」、「ス				基礎幅に比べて壁の高さが高く、岩盤に杭を設置する構造物の既			
				工認実績は	ない。		
				したがっ	て,「乾式キャスクを用い	る使用済燃料中間貯蔵建屋の	
<ul> <li>・、本際ない交互換換及り構造的構造を見まえ、使行等量立法 転合可多な交流工具になっていると意識の登録所に見ます。</li> <li>・大・ 受検査要決応構造のモデルを力からの比較</li> <li>・「「「」」」」」</li> <li>・大・ 受検査要決応構造のモデルを力からの比較</li> <li>・「」</li> <li>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</li></ul>				基礎構造の	設計に関する技術規程JE	AC4616-2009」の適用に関し	
				て,本構造	物の設置環境及び構造的	特徴を踏まえ,先行炉審査実	
				績を有する	2次元FEMモデルによる	る地震応答解析に見直す。	
				表	1 免震重要棟遮蔽壁のヨ	モデル化方針の比較	
					- D = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	<u>EL 60.0</u> 網管机	
				解析モデル(例)		- G. E. 50.6	
				モデル化方針	デー 地盤~杭:SRモデル	2 次元 F E M モデル	
				設計概要	壁: 貿点系モデル ・「乾式キャスクを用いる使用済燃料中間防蔵建屋の 基礎構造の設計に関する技術規程)EAC4616- 2009」に記載の「地盤~杭基礎~建屋連成系の地 慶応答解析モデル」に準拠して設計する。	(鋼管机及び壁:梁要素,地盤:半面ひすみ要素) ・鋼管机が設置される断面(3m間隔)における2次元 FEM解析を実施し,鋼管机及び壁に作用する断面力を 算出する。	
					*地域は44(パキャー回転)は、海管委楽法に基づ、 評価を実施したうえで、「原子力発電所耐震設計審 査指計 JEAG4601-1991追補版」の近似法により 設定する。	・元泉里安保巡嗣堂の安水正地で詰るより、前目和反び 壁に作用する断面力に対して、目標性能(終局状態に 至らない)を満足する設計とする。	
				評価	0	٥	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	添付資料1		
	支持機能に関する実験		
	1. はじめに		
	支持機能に対する許容限界として、鉄筋が降伏しないこと(鉄		
	筋の降伏強度に対応するひずみ:1725μ)としており、本許容限		
	界は既工認実績のある許容限界であるが、最新の知見として、部		
	材を曲げ降伏させた状態でアンカーの耐力を評価する実験を行っ		
	ている事例を示す(1)。		
	本実験は、新たな知見取得のために、土木構造物の面外曲げひ		
	び割れがアンカー耐力に及ぼす影響を確認する目的で行われた実		
	験であり, JEAG4601 に記載されている面内せん断に対する引張荷		
	重載荷による既往の実験とは異なるものである(添付1-1表)。		
	実験の結果,アンカー定着部周辺におけるRC 部材の損傷が曲げ		
	降伏程度であれば、アンカーは本来の定着性能を保持できること		
	が確認されている。		
	本実験は以下の理由により、女川2号炉への適用性が高いと考		
	えられる。		
	・ 美験に用いる試験体は、 アンカーを定着させた鉄筋コンクリー		
	下部材であり、アンカーは主肋よりも深い位置で定者しており、		
	・ 夫験の余件として、		
	まで曲りいい割れを与えているのに対し、女川2方炉では鉄筋が		
	降低しないことを計谷限外としてわり, 夫缺よりも部材が健主な		
	水態を認定している。     ・     宝殿の結果 アンカー際仕が生行する破壊エードであるのに対		
	・ 美歌の紀末, ノンガー 陣伏が元11 りる破壊モート このるのに対		
	し、女川とちがにわけるノンカー設計は、本本的にノンカー岸(人が生行するとうに設計されていることから、破壊エードが敷合)		
	パル119るように設計されていることがら、破壊していが金日している		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	添付資料1		
	2. 実験概要		
	S クラスの機器・配管は, 添付1-1 図に示すとおり基本的に構		
	造物隅角部を避けて設置され、アンカーの長さはコンクリートの		
	かぶりよりも十分深く設定されている。		
	本実験では、上記の条件を満たす海水管を想定し、アンカー定		
	着部周辺で発生し得る構造物の地震時損傷として、構造物の部材		
	降伏程度のひび割れを想定している。		
	主な流れとして, 添付1-2 図に示すとおり, アンカーの定着部		
	付近に2点支持2点載荷の曲げ実験(以下「初期損傷実験」とい		
	う。)によって初期損傷(曲げ降伏)を与えた後、アンカープレー		
	ト上の鋼製サポートを模擬した片持ちばりと配管を模擬した錘を		
	設置し、静的な繰返し載荷実験(以下「静的実験」という。)、及		
	び振動台実験(以下「動的実験」という。)を行い、結果に基づい		
	てアンカーの耐力評価を行う。		
	本語           添付1-1         図         機器・配管設置イメージ		
	第二初期投算実験       本本株: 静的実験 or 影的実験         「ロジョム・ラノク・コーレー」」」       「フジョユーレー」」」         「フジョユーレー」」」」       「フジョユーレー」」」         「フジョユーレー」」」」       「フジョユーレー」」」         「フジョユーレー」」」」       「フジョユーレー」」」         「フジョユーレー」」」」       「フジョユーレー」」」         「アンジョユーレー」」」」       「アンジョユーレー」」」         「アンジョユーレー」」」」       「アンジョコーレー」」」         「アンジョコーレー」」」」       「アンジョコーレー」」」         「アンジョコーレー」」」」       「アンジョコーレー」」」         「アンジョコーレー」」」」       「アンジョコーレー」」         「アンジョコーレー」」」」       「アンジョコーレー」」         「アンジョコーレー」」」       「アンジョコーレー」」         「アンジョコーレー」」」       「アンジョコーレー」」         「アンジョコーレー」」       「アンジョコーレー」」         「アンジョコーレー」」       「アンジョコーレー」」         「アンジョコーレー」」       「アンジョコーレー」         「アンジョコーレー」」       「アンジョコーレー」         「アンジョコーレー」」       「アンジョコーレー」         「アンジョコーレー」」       「アンジョコーレー」         「アンジョコーレー」       「アン		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	添付資料1		
	2.1 試験体及び実験ケース		
	試験体は、アンカーを定着させたRC 部材であり、構造物と機器		
	の境界部を模擬している。試験体を添付1-3 図に示す。		
	アンカーは4本の頭付きアンカーボルト(JIS B 1198, 軸部直		
	径22mm, 頭部直径35mm)と, 幅250mm×奥行き250mm×厚さ60mm の		
	アンカープレート(材質はSS400)で構成されている。女川2号炉		
	においては,厚さ12~36mm のアンカープレートを使用している		
	が、本実験においては、実験時にプレートに塑性変形が生じてア		
	ンカーや周辺コンクリートに荷重が伝達できず、評価できなくな		
	ることを避けるために厚さ60mm と実機より厚いアンカープレー		
	トを使用している。		
	アンカー長は一般的な配管等のアンカー長を想定して250mm と		
	している。女川2号炉においては, アンカー長が130~300mm のア		
	ンカーを使用しており,250mmは平均的な長さとなっている。また,		
	試験体と女川2号炉のアンカーはいずれも主筋位置より十分深い		
	位置で定着しており、類似している。		
	試験体外形は,幅1.2m,奥行き0.9m,高さ0.6m であり,主筋は,		
	D19 (SD345)のネジ鉄筋とし、5本×2列で計10 本配置している。		
	同一仕様の試験体4体に対して、添付1-2表のとおり初期損傷		
	が無い場合と有る場合の静的実験(S-0, S-1)及び動的実験(D-0,		
	D-1)を実施する。		
	添付1-3 図 試験体の形状と寸法		
	添付1-2 表 実験ケーフ		
	S=0 ML at 4. the		
	S-1 有り P-0 有り		
	D-0 黒し 動的実験 D-1 有り		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
添付資料1		
2.2 アンカーの許容耐力		
添付1-3 表に示す材料試験の結果から、「各種合成構造設計指		
針・同解説(日本建築学会,2010)」(以下「構造設計指針2010」		
という。)に基づき算定した、許容引張力、許容せん断力及び水平		
力作用位置における許容耐力を添付1-4表に示す。		
本試験体における許容引張力及び許容せん断力はアンカーの降		
伏で決まっており,許容引張力及び許容せん断力を用いて水平力		
作用位置における許容耐力を算定している。		
なお、構造設計指針2010 とJEAG4601 の許容引張力及び許容せ		
ん断力の算定式は基本的に同一で,一部係数のみ異なっており,		
JEAG4601 に基づき算定する許容耐力が安全側(許容耐力が小さ		
い)となっている。構造設計指針2010により算定した本許容耐力		
は、JEAG4601 に基づき算定した許容耐力よりも大きくなるが、後		
述するとおり最大耐力は本許容耐力を上回っており、実験結果に		
影響を及ぼすことはない。		
添付1-3 表 材料試験の結果		
アンカー (JIS 1198)		
設計 材料 基準 試験		
降伏強度 (MPa) 235 330.2		
引張独度 (MPa) 400 464.1		
コンクリート (24MPa) お料 お料		
注  班 編集度 (MPa) 24 40.9		
主筋 (D19 SD345)		
設定 計十 本才 本斗 14.1 (20) 日本 かか		
医子宫 (MPa) 345 401.9		
引張強度 (MPa) 490 582.9		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2-	号炉(2019	9.11.6版)		島根原子力発電所 2号炉	備考
			添付資	料1		
	添付1-4 表 許容	§耐力算定	結果			
	項日	単位	許容耐力 (材料試験値ベース)			
	許容引張力 (コンクリートの破壊)	kN	142.0			
	許容引養力(アンカーの降伏)	kN	125.5			
	許容引張力 (上記のうち小さい方)	kN	125.5			
	許容せん新力(コンクリートの破壊)	kN	136.3			
	許容せん断力(アンカーの降伏)	kN	87.9			
	許容せん新力(上記のうち小さい方)	kN	87.9			
	水平力作用位置における許容耐力	kN	43.0			
			•			
	2.3 実験の条件					
	静的実験及び動的実験の条件を	以下に示す	<b>す</b> 。			
	・初期損傷の導入					
	鉄筋コンクリート部材の両端に	スパン延長	長治具を設置し,	鉛直		
	方向の500kN アクチュエータを2	本取り付け	ナて,2点支持2	載荷		
	によって、試験体中央のアンカー	定着部付证	丘に鉄筋コンクリ	ート		
	部材が曲げ降伏に達するまで曲け	ひび割れる	を与える。			
	・静的実験の条件					
	アンカープレートトに片持ちは	り形式の領	岡製サポートと錘	(重		
		重心位置に	こ変位制御で与え	へエ		
	本平力作用位置におけろ変位を	ー <u>ー</u> ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー	=~ 二 四 一 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	<u>, 000</u>		
	「mm」で除した値をサポートの変形	(4) 日本 (1) (1) 11 11 11 11 11 11 11 11 11 11 11 11 1	- 変形角を0.5%	, 300		
	で3.0%まで漸増させ、それ以降に	月こ足義で は1.0%刻み	ン,愛形内を0.5元 みで漸増させる。	10/2		
	・動的実験の条件					
	静的実験と同様の鋼製サポート	と錘(質量	量2t)をアンカー	プレ		
	ート上に取り付けた状態で水平一	軸の振動す	台実験を行う。			
	加振に際しては,入力倍率20%	を初期値。	として, 40%, 60	%,		
	80%と、20%ずつ増加させていき	,振動台の	の加振限界(入力・	倍率		
	200%)まで加振を行う。入力倍率	率200%まつ	で上げても損傷が	顕著		
	でない場合には、入力倍率100%。	<u>と200%のた</u>	加振を再度行う。	動的		
	実験における入力加速度の時刻歴	波形及びた	加速度応答スペク	トル		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	添付資料1		
	を添付1-4 図に示す。		
	Aカ加速度の時刻歴波形 Aカ加速度の時刻歴波形 PGA: 709.5cm/e B00 10 20 30 時間 (s) 加速度応答スペクトル (減衰定数2%) 3000 (減衰定数2%) 10 15 20 振動数 (Hz)		
	添付1-4 図 動的実験における入力地震動		
	3. 実験結果		
	3.1 静的実験の結果		
	初期損傷無し(実験ケース S-0)の実験結果を添付1-5 図に示		
	す。		
	初期損傷無しのケースにおいては、アンカーの降伏で決まる許		
	容耐力を上回る最大耐力を発揮しており、ポストピークにおいて		
	も安定したねばり強い履歴特性が得られている。また、載荷に伴		
	っていずれのアンカーも引張側に降伏し、その後も載荷変位の増		
	大に伴ってひずみのレベルは著しく進展している。鉄筋コンクリ		
	ート部材の損傷は、アンカープレート周辺のみに留まっており、		
	アンカープレートの支圧などによるコンクリート表面の剥離と考		
	えられる。		
	次に初期損傷有り(実験ケース S-1)の実験結果を添付1-6 図		
	に示す。		
	初期損傷有りのケースにおいても、アンカーの降伏で決まる許		
	容耐力を上回る最大耐力を発揮しており、初期損傷が無い場合と		
	遜色ない耐力やねばり強さを発揮している。また,載荷に伴って		
	いずれのアンカーも引張側に降伏し、その後も載荷変位の増大に		
	伴ってひずみのレベルは著しく進展している。鉄筋コンクリート		
	部材の損傷は、初期損傷実験によるひび割れの進展は認められず、		
	新たな損傷はアンカープレートの周辺のコンクリート表面の剥離		
	のみに留まっている。		
	初期損傷の有無による結果の違いは見られず、いずれもアンカ の中さいないにはたい。ここここころ		
	一の疋者性能は保持されていると言える。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	添付資料1		
	荷重-変位関係 アンカーひずみ		
	N N N N N N N N N N N N N N N N N N N		
	添付 1-5 図 実験ケース S-0 の実験結果		
	000000000000000000000000000000000000		
	Hat KHOODENE HAL HHHM N N H H H H H H H H H H H H H H H H		
	添付1-6 図 実験ケースS-1 の実験結果		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	添付資料1		
	3.2 動的実験の結果		
	初期損傷無し(実験ケース D-0)の実験結果を添付1-7 図に示		
	す。		
	初期損傷無しのケースにおいて、耐力や履歴特性は、静的実験		
	(S-0)の結果と全体的によく対応しており,損傷入力地震動の増		
	大と加振の繰返しによって応答変位が増大しても粘り強さを発揮		
	している。また、鉄筋コンクリート部材の損傷は、アンカープレ		
	ートの支圧などによるコンクリート表面の剥離のみに留まってい		
	る。		
	初期損傷有り(実験ケース D-1)の実験結果を添付1-8 図に示		
	す。		
	初期損傷有りのケースにおいても、耐力や履歴特性は、静的実		
	験(S-1)の結果と全体的によく対応しており,損傷入力地震動の		
	増大と加振の繰返しによって応答変位が増大しても粘り強さを発		
	揮している。また、鉄筋コンクリート部材の損傷は、初期損傷実		
	験によるひび割れの進展は認められず、新たな損傷はアンカープ		
	レートの周辺のコンクリート表面の剥離のみに留まっている。		
	静的実験と同様に、初期損傷の有無による結果の違いは見られ		
	ず、いずれもアンカーの定着性能は保持されていると言える。		
	静的実験及び動的実験の結果から、アンカーが主筋位置より深		
	い位置で定着しており、かつ、アンカー定着部周辺における構造		
	物の損傷が曲げ降伏程度であれば、初期損傷の有無はアンカーの		
	定着性能に影響を及ぼさないと考えられる。		
	3-0     3-0     2000000       30     3-0     200000       30     3-0     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30       30     30     30 <td< th=""><th></th><th></th></td<>		
	新 <u>新</u> 儒状況		
	添付1-7 図 実験ケースD-0 の実験結果		

添付資料 1	
は ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	



~炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	添付資料2		
	止水機能が要求される部材のひび割れ影響評価方法		
	1. はじめに		
	止水機能に対する面外変形の許容限界として、おおむね弾性範		
	囲(コンクリートの圧縮強度に対応するひずみ:2000μ,鉄筋の		
	降伏強度に対応するひずみ:1725μ)であること,発生せん断力		
	がせん断耐力以下であることを許容限界として設定し、海水ポン		
	プ室隔壁等のRC 部材のみで止水性が必要とされる部材について		
	は、止水機能に影響を及ぼすような顕著なひび割れが発生してい		
	ないことを解析等により確認する方針としている。		
	本資料は、解析より得られる応答から止水性を評価する方法は		
	先行プラントでの実績が無いことから、評価方針として面外荷重		
	を受ける止水機能が要求される部材の止水性の評価方法を示すと		
	共に、解析から得られる応答に保守性を見込んだうえでの試計算		
	の結果を例示し、部材のおおむね弾性範囲下における面外荷重に		
	対する止水機能の見通しを示すものである。		
	本資料では、津波時(押波)に止水機能が要求される部材の代		
	表として, 添付2-1 図に示す海水ポンプ室のスクリーンエリアー		
	補機ポンプエリア間の隔壁(以下,隔壁という。)を例に,止水機		
	能に影響を及ぼすような顕著なひび割れが発生していないことの		
	評価方法を示す。また、評価方法に基づき保守的に評価した試計		
	算の結果を合わせて示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	添付資料2		
	By Mathematic Mathematic		
	平面図		
	縦断図(A-A 断面)		
	4		
	月 例		
	◎ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●		
	横断図 (B−B 断面)		
	添付2-1 図 評価対象部材		
	2. 評価方法		
	2.1 評価フロー		
	評価の方法として、基準地震動Ss を経験した後に基準津波が襲		
	来し、海水ボンプ室スクリーンエリアの水位が上昇し、水位が最		
	高水位(0.P.+19.00m)となった状態に余震が重量することを想定		
	計価ノローを你们 $2-2$ 因に $小 9$ 。		
	まために  基準地震動SS を 経験した後ののの割れ状態を 符 現するために  基準地震動Ss に対する三次一義的材料非線形解析		
	を行う		
	次にstep2 として基準地震動Ss を経験した後に基準津波及び		
	余震を受けることを想定し, step1 の残留ひずみや残留応力を引		
	継いだ状態で、基準津波と余震の重畳に対する三次元静的材料非		
	線形解析を行う。		
	最後にstep3 としてstep2 で発生するガウス積分点でのひび割		
	れ面に直交するひずみ(以下,ひび割れ法線方向ひずみという。)		
	より、ひび割れ幅及びひび割れ長さを算定し、ひび割れに対する		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	添付資料2		
	漏水量を算定する。		
	添付2-2 図に示す評価フローに従った評価方法による試計算の		
	結果を「3.評価例」に示す。		
	なお、ここでは、先行プラントで実績の無い面外荷重を受ける		
	部材の止水性評価方法を示すため面外荷重のみを考慮している		
	が、工事計画認可段階では水平2方向同時入力の影響検討におい		
	て、面内荷重も考慮して評価する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号
	<text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></text>	

~炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	添付資料2		
	2.2 解析モデル		
	三次元静的材料非線形解析の解析モデルは、評価対象である隔		
	壁及び隔壁と直交する壁(以下,側壁という。)の一部をモデル化		
	する。三次元静的材料非線形解析により、隔壁のひび割れ法線方		
	向ひずみを算出し、ひび割れ法線方向ひずみからひび割れ幅を算		
	定することが目的であるため、隔壁を材料非線形要素でモデル化		
	する。境界条件は,底面固定とし,側壁側面は延長方向(X 方向)		
	のみ固定とする。解析モデルを添付2-3 図に示す。		
	ここでは、試計算のため隔壁と側壁の一部をモデル化して評価		
	するが、工事計画認可段階では、海水ポンプ室全体の三次元モデ		
	ルにより評価する。		
	相望 開望 開望 開望 開望 月、例 X 方向闘定: Z 方向闘定: (開望		
	添付2-3 図 解析モデル		
	3. 評価例		
	評価例として、海水ポンプ室縦断方向の応答が大きくなると考		
	えられる基準地震動Ss-D2 を検討地震動とした試計算の結果を示		
	す。ここに示す結果は、試計算であるため、算定した荷重を保守		
	的に簡略化して載荷させるなどして評価を行っている。		
	解析モデルは「2.2 解析モデル」に記載のとおりモデル化した。		
	なお、側壁については照査対象ではなく、隔壁の面外方向荷重に		
	対して非線形化することは無いと考えられるため、線形要素でモ		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	添付資料2		
	デル化した。		
	評価フローに従い, step1 として基準地震動Ss に対する解析を		
	行った。海水ポンプ室の縦断方向について,基準地震動Ss を入力		
	した二次元地震応答解析により、評価対象となる隔壁の応答加速		
	度を算出した。隔壁を構成する節点の応答加速度を添付2-1 表及		
	び添付2-4 図に示す。隔壁の上部に行くほど応答加速度は大きく		
	なり,最大応答加速度は隔壁天端の節点で737gal であった。今回		
	の試計算では, 737gal を保守的に丸めて最大加速度1000gal とし		
	て交番載荷を行った。		
	添付2-1 表 隔壁の応答加速度		
	水平方向		
	節点番号 最大加速度 (gal)		
	1378 737.5		
	1380 684.3 1381 657.0		
	1383 620. 7 1384 601. 5		
	725 1291 1325 1355 1355 1557 1297 725 1158 1214 1233 1355 136 (1414 1506 1 1667		
	222 1150 1216 1294 1333 1563 1416 1510 02 225 1131 1213 1253 1253 1353 1564 417 1511 000		
	■ : 隔壁を構成する節点		
	沃什9-4 网 亡效加油 座管山 竺 占		
	11114 + 凶心谷加还这异山即示		
	評価フローのstep2 として、交番載荷によろ残留ひずみや残留		
	応力を引継いだ状態で、基準津波と余震の重畳に対する解析を行		
	った。津波荷重として、基準津波の最高水位(0.P.+19.00m)にお		
	ける静水圧を考慮した。静水圧は荷重の入力を簡略化するため.		
	隔壁に作用する総荷重が等しくなるような一様荷重とした。また、		
	余震時荷重として,基準津波の最高水位(0.P.+19.00m)における		
	  動水圧と余震時の慣性力を考慮した。動水圧は下式のWestergaard		
	式から算定することとし、保守的に隔壁下端深度で算定した荷重		
	を一様に載荷した。静水圧及び動水圧の載荷イメージを添付2-5		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	添付資料2		
	図に示す。慣性力は, 基準地震動Ss-D2 に係数0.58 を乗じた地震		
	動が弾性設計用地震動であることから、保守的に水平加速度を		
	600gal (1000gal×0.6) として算定し, 一様に載荷した。		
	(Westergaard 式)		
	$p_w = \frac{7}{2} \times c \times \gamma_w \times \sqrt{(h \times y)} \times Kh$		
	$p_w$ : 動水圧 (tf/m ² )		
	Kh : 木平震度		
	c : 補正係数		
	L/h<1.5の場合:c=L/(1.5h) L/h≥1.5の場合:c=1.0		
	L :水路幅(m)		
	γ _w : 内水の単位体積重量(tf/m ² ) h = t ² (-)		
	n : 小(*(m) y : 水面から動水圧を求める点までの深さ(m)		
	P=42, 42k8/m ² P=76, 77k8/m ² P=111, 11k8/m ² P=11, 11k8		
	静水圧は隔壁上端で42.42kN/m ² , 隔壁下端で111.11kN/m ² であるが, 荷重の入力を簡略化するため,総 荷重が等しい一様荷重となるよう 76.77 kN/m ² の一様荷重として載 荷した。		
	添付2-5 図 静水圧及び動水圧の載荷イメージ		
	評価フローのstep3 として,基準津波と余震の重畳に対する解		
	析により発生したひび割れに対する漏水量の算定を行った。基準		
	津波と余震の重畳に対する解析結果を添付2-6 図に示す。添付2-6		
	図はガウス積分点で算出したひび割れ法線方向ひずみを示してい		
	る。ひび割れ幅やひび割れ長さを算定するために、ガウス積分点		
	で算出したひび割れ法線方向ひずみを,1要素につき1本のひび		
	割れとなるよう集約した。要素ごとのひび割れ法線方向ひずみに		
	集約したコンター図を添付2-7 図に示す。添付2-7 図における各		
	要素のひび割れ法線方向ひずみは,ガウス積分点で算出したひび		
	割れ法線方向ひずみの平均値を示している。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	添付資料2		
	添付2-7 図における各要素の鉛直方向の寸法を要素長とし、各		
	要素に発生するひび割れ法線方向ひずみと要素長の積としてひび		
	割れ幅を算定した。ひび割れ幅の算定方法を添付2-8 図に示す。		
	また、ひび割れが発生している要素の範囲の水平方向の寸法をひ		
	び割れ長さとした。ここでは、全てのひび割れが水平方向に発生		
	しているものと仮定した。ひび割れ幅を算定する際は,添付2-7 図		
	の横方向1段ごとに一様なひずみを想定して算定した。例えば、添		
	付2-7 図の最下段は500~1000µのコンターが主体的であるため,		
	保守的に1000μで一様なひずみと想定した。ひび割れ幅及びひび		
	割れ長さの算定結果を添付2-2 表に示す。ここに示す結果は, 隔		
	壁表面の要素に発生するひび割れ幅及びひび割れ長さであるが,		
	保守的に壁厚方向全ての要素に同じひび割れ幅及びひび割れ長さ		
	が発生しているものと仮定した。		
	color bar		
	С 185 µ 188 µ 187 µ 187 µ 187 µ 187 µ		
	添付 2-6 図 ガウス積分点のひび割れ法線方向ひずみ		
	with the set of the		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6 / 7 号炉	(2017. 12. 20 版)	女川原子力発電所 2号炉 (2019.11.6版)         添付資料2            ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	島根原子力発電所 2号炉	備考
		$Q = C_w \frac{L \cdot w^3 \cdot \Delta p}{12v \cdot t}$ ここに、 $Q : : 漏水量 (mm^3/s)$ $C_w : 低減係数$ $L : ひび割れ長さ (mm)$ $W : ひび割れ幅 (mm)$ $\Delta p : 作用圧力 (N/mm^2)$ $v : 水の粘性係数 (Ns/mm^2)$ $t : 部材の厚さ (ひび割れ深さ) (mm)$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	添付資料2		
	漏水量算定時の作用圧力は,作用時間の短い動水圧は考慮せず,		
	基準津波の最高水位(0.P.+19.00m)の静水圧(添付2-9 図)とし		
	た。単位時間当たりの漏水量を算定すると添付2-3 表のとおりと		
	なった。		
	P=111. 111kN/m ² 0. P. +19. 00m		
	添付2-9 図 漏水量算定時の作用圧力		
	添付2-3 表 単位時間当たりの漏水量		
	ひび割れひずみ(μ) 1000 500 300		
	w ひび割れ幅(mm) 1.167 0.584 0.350		
	Cw         低減係数         0.010         0.016         0.031		
	ν 水の粘性係数(N·s/mm ² ) 1.14E-09		
	と声     1     1     0.111     0.111     0.111       t     部材の厚さ(ひび割れ深さ)(mm)     1500     1500     1500		
	単位時間当たりの漏水量(m ³ /s)         0.00213         0.00010         0.00029           単位時間当たりの漏水量(m ³ /s)         0.00213         0.00010         0.00029		
	平位時间当たりの総備水重(町/5) 0.00252		
	作用圧力の継続時間を設定するため,津波時の海水ポンプ室に		
	おける水位の時刻歴波形を添付2-10 図に示す。なお, 添付2-10 図		
	に示す水位は, 平成23 年3 月11 日に発生した東北地方太平洋沖		
	地震による地殻変動に伴い, 牡鹿半島全体で約1mの沈降が発生		
	していることを考慮した記載となっている。基準津波が最高水位		
	となるのは一瞬であるが、保守的に水位が隔壁下端を超える時間		
	(7分間)を作用圧力の継続時間と設定した。漏水量を算定する		
	と総漏水量は1.059m3 となる。		
	仮に隔壁からの漏水が補機ポンプエリアに浸水した場合,補機		
	ポンプエリアの面積は約604m2 であり,浸水高さは0.002m とな		
	る。浸水範囲に設置される原子炉補機冷却海水ポンプのコンクリ		
	ート基礎高さは0.275m であるため,試計算からは漏水による影響		
	は無いものと判断できる。		
			1

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		添付資料2		
		総付資料2		
		<ul> <li>試計算で考慮した保守性</li> <li>・ step1 における応答加速度を保守的に丸めている。(737gal を保守的に丸めて1000gal として評価)</li> <li>・ step2 における動水圧を隔壁下端深度で算定した荷重を一様に載荷している。</li> <li>・ step2 における慣性力を保守的に算定し載荷している。</li> <li>・ step3 におけるひび割れ幅算定時に、コンター図の横方向1 段ごとに一様なひずみを保守的に想定している。(例:500µ~1000µのコンターが主体的である場合は1000µで一様なひずみと想定)</li> <li>・ step3 において隔壁表面に発生するひび割れを貫通しているものとして評価している。</li> <li>・ step3 における漏水量算定時に、最高水位の継続時間を、水位が隔壁下端を超える時間としている。</li> </ul>		

まとめ資料比較表 「第4条 地震による損傷の防止 別紙-6〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)		島根原子力発電所 2号炉		備考
別紙-1.2 屋外重要土木構造物の耐震評価における断面		別紙-6 屋外重要土木構造物等の耐震評価における断面選定に			
選定について		ついて			
1 屋外重要十木構造物の耐震評価におけろ断面選定の考え方		屋外重要十才	は構造物等の耐震評価における断面違定(	の老え方	
		1 古針			
			早め 香西山 七排、生物 笠※1の 計電 荻 伍 に オ	いけて叱声	次約4年代の担当
<u>産外車要工</u> 本構造物の評価対象例面については,構造物の配直,		<u> 半貨料では</u> ,	<u>屋外里安工术博垣初寺</u> "仍附展評恤に		
何  直条  作  及  の  地  盤  条  作  を  考  通 し  、		選定の考え方に	ついて示す。なお、津波防護施設につい	いては「島	【相崎 6/7】
<u>えられる位置を評価対象断面とする。</u>		根原子力発電所	「2号炉 津波による損傷の防止」に示す	<u>す。</u>	島根2号炉では津波
					防護施設の断面選定の
		<u>※1 屋外重</u>	要土木構造物及び重大事故等対処施設の	<u> のうち土木</u>	考え方を「津波による損
		構造物を	「屋外重要土木構造物等」という。		傷の防止」で示すことと
					している
柏崎刈羽発電所6 号及び7 号炉での対象構造物は, スクリーン		本資料で記載	でする屋外重要土木構造物等の一覧を第6	5-1-1表	・対象施設の相違
室、取水路、補機冷却用海水取水路、軽油タンク基礎、燃料移送		に、屋外重要士	:木構造物等に設置される主要な設備一覧	覧を第6-1	【柏崎 6/7】
系配管ダクト、海水貯留堰である。各施設の平面配置図を第12-1-1		-2表に、全体	記置図を第6-1-1図に示す。		対象施設の相違によ
					る記載内容の相違
			第6-1-1書 亚価計免構造物一覧		<ul> <li>         ・         ※料構成の相違     </li> </ul>
					「貝村時成♡加速
		分類	設備名称	構造形式	【相呵 0/ 1】
			・B - ディーゼル燃料貯蔵タンク基礎		局根 Z 方炉 ぐは評価
			<ul> <li>・低圧原子炉代替注水ポンプ格納槽</li> <li>・第1ペントフィルタ格納槽</li> </ul>	箱型構造物	対象構造物を5つの構
			・緊急時対策所用燃料地下タンク		造形式に分類し,それぞ
		屋外重要土木構造物等	<ul> <li>・屋外配管タクト(タービン建物~排気筒)</li> <li>・屋外配管ダクト(タービン建物~放水槽)</li> </ul>		れの構造上の特徴を示
			・屋外配管ダクト(B-ディーゼル燃料貯蔵タンク~原子炉建物)※	線状構造物	し,断面の選定方針を示
			<ul> <li>・ 屋外配官ダリト(ガスタービン発電機用軽油タンリ〜ガスタービン発電機)</li> <li>・ 取水口</li> </ul>	円筒状構造物	している
			<ul> <li>・ガスタービン発電機用軽油タンク基礎</li> <li>・取べ等</li> </ul>	直接基礎	
		※ 燃料移送系配管ダクトと	・RX小E 屋外配管ダクト(復水貯蔵タンク~原子炉建物)を屋外配管ダクト(B -ディーゼル燃料貯蔵タンク・	目時構造初 ~原子炉建物)に統一	
					·

実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6 / 7 号炉 (2017, 12, 20 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考		
		第6-1-2表 評価対象構造物に設置される設備一覧	<ul> <li>資料構成の相違</li> </ul>		
		田介重更 常定量大 常定量大 常定量大 常定量大     アオ更正 常定量大     マカ重更 常定量大     オーボール 名称     マカ重更 常定量大     マカ重 ポージ オーズ 学校主     マカ 電子 オーズ 学校主     マカ 電子 オーズ 学校主     マカ 電子     マカ 電子			
		原子炉補機淘水ボンブ         O         -         -         O           原子炉補機淘水ストレーナ         O         -         -         O	局根2 芳炉では評価		
		原子戸桂樾海水系 記憶・弁 0 ○ 高圧炉ムマブレイ桂樹油水ポンプ 0 0 高圧炉ムマブレイ桂樹油水コンレーナ 0 0	対象構造物を5つの構		
		□     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □	造形式に分類し,それぞ		
		ウービン経機環水系         DE ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	れの構造上の特徴を示		
		除しんがシブ 除しん系 配管・弁 (ポンプ入口配管・ポンプ出口~取水槽海水 - O=** ポンプエリア境界型) O=*	し, 断面の選定方針を示		
		<u>再通部ルネ処策</u> - ○ ²⁰ 取水機能し/繊ェソブ防水壁 - ○ ²⁰ 取水機能し/繊ェソブ水密厚 - ○ ²⁰	している		
		取水槽底ドレン逆止弁         -         O         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td></td></t<>			
		常設重大事故等対処設備:常設新農重要重大事故防止設備,常設重大事故緩和設備又は常設重大事故防止設備(設計基準拡張) 常設重大事故等対処施設:常設設置重要重大事或防止設備,常設重大事故緩和設備又は常設重大事故防止設備(設計基準拡張)が設置される重大事故等対処施設			
		(特定 里天 考成 考 对 效 胞 設 2 都 《 → 可 效 胞 設 2 都 《 ) 新 意: 新 意 重 更 施 股 浸 水 防 止 投 備, 津 波 監 授 股 備 を 除 〈 ) ※ 1: 非常用 取 水 股 備			
		※2:常設重大事故等対処設備に対する浸水防止設備,津波監視設備			
		B - ディーゼル燃料貯蔵シンク基礎 O - O B - ディーゼル燃料貯蔵シンク O O B - ディーゼル燃料貯蔵シンク O O B - ディーゼル燃料貯蔵シンク O O O O			
		低圧原子炉代替注水ポンプ         -         -         -         -         -         O           低圧原子炉代替注水元         0         低圧原子炉代替注水元         配管:弁         -         -         -         O           低圧原子炉代替注水元         配管:弁         -         -         -         O           O            O            O            O            O           O             O               O                                                            <			
		第1ペントフィルタ格納槽 O 圧力開始版 O			
		使物等音ンルシップト素         ロビ・オ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
		屋外重変土木構造物、前堂上重変な機器・配管系の開接支持機能、若い(は非常用における海水の通水機能を求めからな土木構造物) 常設重大事故等対処設備、常設新重要重更大事故防止設備、常設重大事故緩和設備変以常常整重大事故防止設備(設計基準拡張) 常設重大事故等対処施設・常設新重要重大事故防止設備、常設重大事或採和設備又は常常重大等な防止設備(設計基準拡張)が設置される重大事故等対処施設			
		(特定重大事故等対処施設を除く) 耐震・耐震重要施設(浸水防止設備,津波度視設備を除く) ※3:低圧原子炉代替注水ポンプ格納槽のうち低圧原子炉代替注水槽			
		登加重要			
		屋外記管ダクト(タービン建物~排気筒)         O         -         の         #常用ガス処理系 配管・弁         O         -         -         O           ローの         A ーディーゼル送料移送系 配管・弁         O         -         -         O         -         -         O			
		Entraction Control Co			
		C ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (			
		タンク~ガスタービン発電機)         -         -         -         0         川ハフービン光電機用加料や送糸         EE         -         -         -         -         -         O         O           取水口         O         O ⁺¹ -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -			
		ガスタービス常電機用 指点ケンタ基礎         -         -         -         -         -         -         -         O           酸油ケンタ基礎         O         O ⁽¹⁾ -         -         -         -         O           取水管         O         O ⁽¹⁾ -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -			
		屋外重美土木構造物, 新堂上重安板橋亭 紀管系の開接支持機能, 若し(北非常用における海水の通水機能を決められる土木構造物) 常設重大事故等対処設備, 常設新賞重要重大事故防止設備, 常設重大事故板和設備又は常設重大事故防止設備(設計基準站伍) 常設重大事故等対処施設: 常設新賞重要車大事政防止設備, 常定重大事或振和設備又は常定重大事政防止設備(設計基準站伍)が設置される重大事故等対処施設			
		(特定重大事故等対処施設を除く) 耐震:耐震重要施設(浸水防止設備,津波監視設備を除く) ※1.血変用取水均価			
		※2:常設重大事故等対処設備に対する浸水防止設備			
柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所	2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------	----------	-----------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------
海水貯留堰       スクリーン室       取水路       補機冷却用       海水取水路       タービン建屋       タービン建屋       ア号炉       酸料移送系       配管ダクト       軽油タンク基礎       マービン建屋       マービン建屋       マービン建屋       アービン建屋       マービン建屋       アービン建屋       マービン建屋       マービン建屋       マービン建屋				取水間         取水미           四外配管 ダクト (タービン建物・抜水槽)         四小管           四小ビッ建物・披気筒)         配外配管 ダクト (Bーディーゼハ燃料)           日ーディーゼハ燃料         一日           日ーディーゼハ燃料         一日           日ーディーゼハ燃料         一日           日ーディーゼハ燃料         第1ペントフィルタ格納槽           第2の夕基礎         日           日ーディーゼハ燃料         第1ペントフィルタ格納槽           第2の夕基礎         日           日ーディーゼハ燃料         第1ペントフィルタ格納槽           第20時以常所用燃料地下タンク         日           日ーデビン発電機用 堅油タンク基礎         日           日ーデビン発電機用 堅油タンク 基礎         10.00000000000000000000000000000000000	<ul> <li>・資料構成の相違</li> <li>【柏崎 6/7】</li> <li>島根 2 号炉では評価</li> <li>対象構造物を 5 つの構</li> <li>造形式に分類し, それぞ</li> <li>れの構造上の特徴を示</li> <li>し,断面の選定方針を示</li> <li>している</li> </ul>
				<ul> <li>         島根原子力発電所の屋外重要土木構造物等は、箱型構造物、線 北構造物、円筒状構造物、直接基礎及び管路構造物の5つの構造 形式に分類され、構造上の特徴として、明確な強軸及び弱軸を有 するものと、強軸及び弱軸が明確でないものが存在することから、 構造的特徴を踏まえて、2次元地震応答解析により耐震評価を行 う構造物と、3次元モデルにより耐震評価を行う構造物に分けら れる。         通水方向及び配管の管軸方向と直交する断面に構造部材の配置 が少なく、明確に通水方向及び配管の管軸方向と直交する断面が 弱軸となる構造物は、2次元地震応答解析により耐震評価を行う。 よって、耐震評価上厳しくなると考えられる断面を評価対象断面 として選定する。なお、弱軸方向断面を強軸方向断面を評価対象断面 として選定する。なお、弱軸方向断面を耐震評価候補断面とするが、 床応答の観点において強軸方向断面を耐震評価候補断面とするが、 床応答の観点において強軸方向断面も含めて選定する。         また、以下に示す構造的特徴を有する構造物は、3次元モデル を用いて水平2方向及び鉛直方向地震力の組合せの影響を考慮し て耐震評価を行う。よって、3次元モデルに作用させる荷重を適 切に評価することが可能な断面を直交する2方向から評価対象断         </li> </ul>	<ul> <li>・資料構成の相違</li> <li>【柏崎 6/7】</li> <li>島根2号炉では2次</li> <li>元地震応答解析と3次</li> <li>元モデルによる耐震評価を行う構造物について分類し、それぞれの構造上の特徴を示し、断面の選定方針を示している</li> </ul>
				<u> </u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		②複雑な構造を有する構造物	・資料構成の相違
		<ul> <li>・弱軸方向断面において加振方向と平行に配置される壁(以降,</li> </ul>	【柏崎 6/7】
		妻壁と呼ぶ)を複数有する構造物	島根2号炉では2次
		・複数の構造物が一体化している構造物	元地震応答解析と 3 次
		第6-1-3表に示すとおり、屋外重要土木構造物等の耐震設計に	元モデルによる耐震評
		おける解析手法は,既工認実績を有する手法を用いるが,取水槽	価を行う構造物につい
		における3次元静的非線形解析は既工認実績がないことから、審	て分類し,それぞれの構
		<u>査実績を有する</u> 先行サイト(女川2号炉)との比較を行い,適用	造上の特徴を示し,断面
		性について確認する。	の選定方針を示してい
			る
		第6-1-3表 屋外重要土木構造物等の構造物的特徴及び解析手	
		法の整理	
		構造 12年2年 新世界保護通知市 構造的特徴 豊雄の 解析手法	
		形式         取200071100(CHIII)         助用:5項目:5項目         資料目:5項目         資料目:5項目         近期に含解析         構造解析         反上部         支援	
		確認定         (株式原子炉代替注水水ン7括納槽           第総合時         (株工原子炉代替注水水ン7括納槽	
		西小山市の市地市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	
		クシラーガスターとう発電機)         のそのののの         のののののののののののののののののののののののののののののののののののの	
		直接 基礎         ガスターどン発電機用程油9>27基礎         構造物中央を通る団面         IIIIIII (*1474-54)         無し         照し         SRモデルによる務約         3次元戸EVHモデルに なる約約期形解析           管路         m-v※         管線方向         明確な途軌及び筋輪         編u         4u         2 % 二日の直交を向	
		構造物 「パント 」 「 一管構画交方向  助面を有する。  m0  m0  とヘブル ビュレア パム ショック3000 ショウナリ ※ 弱輪方向断面において加振方向と平行に配置される壁	
		<u> 箱型構造物に分類される評価対象構造物は,鉄筋コンクリート</u>	・資料構成の相違
		<u>造で構成されており、主に海水の通水機能や配管等の間接支持機</u>	【柏崎 6/7】
		能を維持するため、通水方向や間接支持する配管の管軸方向に対	島根2号炉では評価
		して空間を保持できるように構造部材が配置されている。通水方	対象構造物を5つの構
		向や配管の管軸方向と直交する方向には構造部材の配置が少ない	造形式に分類し,それぞ
		<u>ことから、構造上の特徴として、明確に通水方向や配管の管軸方</u>	れの構造上の特徴を示
		向が強軸に、通水方向や配管の管軸方向と直交する方向が弱軸と	し,断面の選定方針を示
			している
		と直交する方向の構造物の長さに対する加振方向に平行に配置さ	
		れる壁の厚さの割合が小さい方が弱軸となり、大きい方が強軸と	
		なる。箱型構造物の設計方針として、強軸方向の地震時挙動は、	
		弱軸方向に対して顕著な影響を及ぼさないが,強軸方向断面につ	
		いても、弱軸方向と同じように要求機能があり、間接支持する機	
			1

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所	2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
					器・配管の有無や浸水防護壁等の応答影響評価の必要性があるこ	・資料構成の相違
					とから、耐震評価候補断面に追加する。弱軸方向断面では、配筋	【柏崎 6/7】
					を含め構造的特徴が概ね同様である範囲から代表となる範囲を耐	島根2号炉では評価
					震評価候補断面とする。ただし,加振方向と平行に配置される壁	対象断面の選定の流れ
					が多数ある構造物については、加振方向と平行に配置される壁の	を示している
					影響を考慮するため、必要により壁間の幅を耐震評価候補断面と	
					<u>する。また、強軸方向断面では、加振方向と平行に配置される壁</u>	
					の影響を考慮するため、構造物の奥行幅を耐震評価候補断面とす	
					る。箱型構造物の評価対象断面は、以上の理由により構造の安全	
					性に支配的な弱軸方向及び強軸方向から、後述する評価対象断面	
					の選定の流れに基づき選定する。取水槽は、複数の妻壁を有する	
					複雑な構造となっていることから3次元モデルで耐震評価を実施	
					する。3次元モデルに入力する地震時荷重は、2次元地震応答解	
					析により算定することとし,2次元地震応答解析を実施する断面	
					を、構造的特徴等を踏まえて選定する。	
					<u>線状構造物に分類される評価対象構造物は、鉄筋コンクリート</u>	
					造で構成されており、主に海水の通水機能や配管等の間接支持機	
					能を維持するため、通水方向や間接支持する配管の管軸方向に対	
					して空間を保持できるように構造部材が配置されている。通水方	
					向や配管の管軸方向と直交する方向には構造部材の配置が少ない	
					ことから、構造上の特徴として、明確に通水方向や配管の管軸方	
					向が強軸に、通水方向や配管の管軸方向と直交する方向が弱軸と	
					なる。線状構造物は、加振方向と平行に配置される壁部材が少な	
					い方が弱軸となり、多い方が強軸となる。強軸方向の地震時挙動	
					は、弱軸方向に対して顕著な影響を及ぼさない。弱軸方向断面で	
					は、配筋を含め構造的特徴が概ね同様である範囲から代表となる	
					範囲を耐震評価候補断面とする。線状構造物の評価対象断面は,	
					以上の理由により構造の安全性に支配的な弱軸方向から、後述す	
					<u>る評価対象断面の選定の流れに基づき選定する。屋外配管ダクト</u>	
					(タービン建物~排気筒)は、部位の一部が他の構造物の部位の	
					一部と一体化している複雑な構造を有していることから3次元モ	
					デルで耐震評価を実施する。3次元モデルに入力する地震時荷重	
					は,2次元地震応答解析により算定することとし,2次元地震応	
					答解析を実施する断面を、構造的特徴等を踏まえて選定する。	
					円筒状構造物及び直接基礎に分類される評価対象構造物は、鋼	
					製及び鉄筋コンクリート造の構造物であり,円筒状及び正方形で	
					あるため、箱型構造物や線状構造物と比較して、強軸及び弱軸が	
					明確ではない。評価対象断面の選定においては、構造物中央を通	

柏崎刈羽原子力発電所 6/7号炉 (20)	)17. 12. 20 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			る断面及びその直交方向断面から、後述する評価対象断面の選定	・資料構成の相違
			の流れに基づき選定する。円筒状構造物である取水口及び直接基	【柏崎 6/7】
			礎であるガスタービン発電機用軽油タンク基礎は、強軸及び弱軸	島根2号炉では評価
			が明確でないことから3次元モデルで耐震評価を実施する。3次	対象断面の選定の流れ
			元モデルに入力する地震時荷重は、取水口は構造物を質点系モデ	を示している
			ルとした2次元地震応答解析により算定,またガスタービン発電	
			機用軽油タンク基礎はSRモデルによる地震応答解析により算定	
			することとし、地震応答解析を実施する断面を、構造的特徴等を	
			踏まえて選定する。	
			管路構造物に分類される評価対象構造物は、海水の通水機能を	
			維持するため、通水方向に対して空間を保持できるように構造部	
			材が配置されていることから、構造上の特徴として、明確な弱軸、	
			強軸を有する。評価対象構造物は,鋼製部材で構成されており,	
			管軸方向が強軸方向となり、管軸直交方向が弱軸方向となる。強	
			軸方向の地震時挙動は、弱軸方向に対して顕著な影響を及ぼさな	
			い。弱軸方向断面では、延長方向の構造的特徴が一様であること	
			から、代表となる範囲を耐震評価候補断面とする。管路構造物の	
			評価対象断面は、構造の安全性に支配的な弱軸方向から、後述す	
			る評価対象断面の選定の流れに基づき選定する。なお、「水道施設	
			耐震工法指針・解説(日本水道協会, 1997)」に基づき, 一般的な	
			地中埋設管路の設計で考慮される管軸方向断面についても検討す	
			<u> </u>	
			また、評価対象断面の選定の流れを以下に示す。	
			(1) 耐震評価候補断面の整理	
			評価対象構造物の以下の観点から耐震評価候補断面を整理す	
			<u> </u>	
			①要求機能並びに間接支持する機器・配管の有無及び設置状況	
			・要求機能に各候補断面で差異がある場合、要求機能に応じた	
			許容限界が異なり、評価対象構造物の耐震評価に影響するこ	
			とから、要求機能の差異の有無により候補断面を整理する。	
			・間接支持する機器・配管系の種類及び設置状況に各候補断面	
			で差異がある場合は、構造物に作用する荷重及び床応答特性	
			が異なり、評価対象構造物及び機器・配管系の耐震評価に影	
			響することから、間接支持する機器・配管系の種類や設置状	
			況に係る差異の有無により候補断面を整理する。	
			②構造的特徴(部材厚,内空断面,断面急変部,構造物間の連	
			結部等)	
			・構造的特徴に各候補断面で差異がある場合は、構造物に作用	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		する土圧等の荷重及び床応答特性が各断面で異なり、評価対	・資料構成の相違
		象構造物及び機器・配管系の耐震評価に影響することから,	【柏崎 6/7】
		構造的特徴の差異の有無により候補断面を整理する。	島根2号炉では評価
		③周辺状況(上載荷重,土被り厚,周辺地質,周辺地質変化部,	対象断面の選定の流れ
		隣接構造物,地下水位**)	を示している
		<ul> <li>・周辺地質や周辺地質変化部に各候補断面で差異がある場合は、</li> </ul>	
		構造物に作用する土圧等の荷重、地震波の伝搬特性及び床応	
		答特性が異なり、評価対象構造物及び機器・配管系の耐震評	
		価に影響することから、周辺地質の差異の有無により候補断	
		面を整理する。	
		・MMR(マンメイドロック)は、構造物を支持する又は構造	
		物の周囲を埋め戻すコンクリートである。MMRの分布によ	
		り、構造物に作用する土圧等の荷重、地震波の伝搬特性及び	
		床応答特性に影響を与えることから、周辺地質の中で整理す	
		る。なお、MMRは直下の岩盤の物性値を設定することを基	
		<u>本とする。</u>	
		<ul> <li>・隣接構造物による影響については、2次元FEMにてモデル</li> </ul>	
		化する隣接構造物の有無や種類に各断面で差異がある場合,	
		構造物に作用する土圧等の荷重及び床応答特性が異なり、評	
		価対象構造物及び機器・配管系の耐震評価に影響することか	
		<u>ら、モデル化する隣接構造物の差異の有無により候補断面を</u>	
		整理する。	
		※ 地下水位は解析等による地下水位に係る検討結果を踏まえ	
		て詳細設計段階で設定する。	
		④地震波の伝搬特性	
		・ 地震波の伝搬特性は、周辺状況のうち評価対象構造物下部の	
		岩盤やMMR等の周辺地質の状況により異なることから、観	
		<u>点③の整理を踏まえ、地震波の伝搬特性に係る差異の有無に</u>	
		より候補断面を整理する。	
		⑤床応答特性	
		・観点①~③の整理を踏まえ、床応答特性の差異の有無及び間	
		接支持する機器・配管系の設置状況により候補断面を整理す	
		<u> </u>	
		<ul><li>(2) 評価対象断面の選定</li></ul>	
		<ol> <li>耐震評価候補断面の選定</li> </ol>	
		・(1)にて整理した耐震評価候補断面に対して,①要求機能並	
		びに間接支持する機器・配管の有無及び設置状況,②構造的	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		特徴,③周辺状況を考慮し、耐震評価上厳しいと考えられる	・資料構成の相違
		断面を選定する。	【柏崎 6/7】
		⑦ 耐震評価候補断面の絞り込み	島根2号炉では評価
		・複数の観点から異なる耐震評価候補断面が複数抽出される場	対象断面の選定の流れ
		<u>合は,詳細設計段階で実施する浸透流解析結果を踏まえ,地</u>	を示している
		震応答解析を実施して耐震評価候補断面の絞り込みを行う場	
		合もある。	
		⑧ 床応答算出用の断面の選定	
		・耐震評価上の観点以外に機器・配管系の応答加速度及び応答	
		<u>変位の観点から,床応答算出用の断面を選定する。</u>	
		<ul> <li>・線状構造物については、強軸方向断面も含めて選定する。</li> </ul>	
		<u>評価対象断面のモデル化範囲(2次元FEM解析モデル)につ</u>	
		いては、以下に考え方を示す。	
		<u>2次元FEMによる地震応答解析モデルの範囲が、地盤及び構</u>	
		造物の応力状態に影響を及ぼさないよう、十分広い領域とする。	
		具体的には、「原子力発電所耐震設計技術指針 JEAG4601-1987」を	
		適用し,以下に示すとおりモデル幅を構造物基礎幅の5倍以上,	
		地盤モデルの入力基盤深さを構造物基礎幅の1.5~2倍確保する。	
		<u>2次元FEMにおけるモデル化範囲の考え方を第6-1-2図に</u>	
		<u>示す。</u>	
		構造物基礎幅の5倍以上         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         ( <t< th=""><th></th></t<>	

<ul> <li>第世球機構型のの面子</li> <li>第世球構成のの面子</li> <li>第世球構成のの面子</li> <li>第世球構成のの面子</li> <li>第世球構成の面子</li> <li>第世球域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域</li></ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		2. 屋外重要土木構造物等の耐震評価における断面選定の考え方	・対象施設の相違
		<u>2.1 各施設の配置</u>	【柏崎 6/7】
		本章では屋外重要土木構造物等である, 取水槽, <u>B-</u> ディーゼ	対象施設の相違によ
		ル燃料貯蔵タンク基礎,低圧原子炉代替注水ポンプ格納槽,第1	る記載内容の相違
		ベントフィルタ格納槽,緊急時対策所用燃料地下タンク,屋外配	
		管ダクト (タービン建物~排気筒),屋外配管ダクト (タービン建	
		物~放水槽),屋外配管ダクト(B-ディーゼル燃料貯蔵タンク~	
		原子炉建物),屋外配管ダクト(ガスタービン発電機用軽油タンク	
		~ガスタービン発電機), 取水口, ガスタービン発電機用軽油タン	
		ク基礎及び取水管の断面選定の考え方を示す。	
		第6-2-1-1図に屋外重要土木構造物等の全体配置図を示す。	
		<complex-block></complex-block>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
1.2 スクリーン室の断面選定の考え方		2.2 取水槽	・対象施設の相違
第12-1-2 図, 第12-1-3 図及び第12-1-4 図にスクリーン室の平		取水槽の配置図を第6-2-2-1図に、設置される浸水防止設備	【柏崎 6/7】
面図、断面図及び縦断図を示す。		や津波監視設備の配置図を第6-2-2-2図~第6-2-2-3図に,	対象施設の相違によ
		平面図を第6-2-2-4図に,縦断図を第6-2-2-5図に,断面図	る記載内容の相違
		を第6-2-2-6図~第6-2-2-9図に、地質断面図を第6-2-2	
スクリーン室は、6 号及び7 号炉ともに、延長約23m の鉄筋コ		-10図~第6-2-2-11図に, 岩級断面図を第6-2-2-12図~第6	
ンクリート造の地中構造物であり、取水方向に対して内空寸法が		<u>-2-2-13図にそれぞれ示す。</u>	
一様で、頂版には取水方向におおむね規則的に開口が存在する。		取水槽は、Sクラス設備である原子炉補機海水ポンプ等の間接	
また、スクリーン室は、古安田層洪積粘性土層に直接設置されて		支持機能と、非常用取水設備としての通水機能及び浸水防護重点	
<u>いる。</u>		化範囲の保持及び内部溢水影響評価から止水機能が要求される。	
今回の工事計画認可申請書(以下「今回工認」という。)では、		浸水防護重点化範囲を保持するために止水機能が求められる部	
スクリーン室の取水方向全長で開口を含めた平均的な剛性及び上		位は,ポンプ室に設置される中床版 (EL.+1.1m), スクリーン室	
載荷重を考慮し、基準地震動Ss による耐震評価を実施する。		<u>に設置される中床版(EL.+4.0m)及びスクリーン室南側の取水槽</u>	
<u>スクリーン室の検討断面では、地下水位以下に、液状化層(埋</u>		除じん機エリア防水壁の位置に設置される中壁(EL.+1.1m~EL.	
<u> 戻土層)及び液状化影響評価対象層(古安田層洪積砂質土層)が</u>		+8.8m)である。また、内部溢水影響評価から止水機能が求めら	
分布することから, 耐震評価では有効応力解析を実施する。		<u>れる部位は、ポンプ室の取水槽海水ポンプエリア水密扉を設置す</u>	
		<u>る中壁 (EL.+1.1m~EL.+8.8m) である。</u>	
		<u>取水槽はストレーナ室,ポンプ室,スクリーン室及び漸拡ダク</u>	
		ト部に大別される, 延長47.25m, 幅34.95m, 高さ20.5mの鉄筋コン	
		クリート造の地中構造物である。	
		取水槽はC _M 級以上の岩盤に直接支持されている。	
		<u>取水槽は、通水方向と平行に配置される壁部材が多いため、通</u>	
		水方向が強軸となり、通水直交方向が弱軸となる。	
		<u>取水槽の弱軸方向断面では、配筋を含め構造的特徴が概ね同様</u>	
		である範囲を踏まえ,加振方向と平行に配置される壁の影響を考	
		<u>慮するため,壁間の幅を耐震評価候補断面とする。</u>	
			1

柏崎刈羽原子力発電所 6/7号	<b>}</b> 炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2
			▼EL+8800       マーン       マーン
			RM         :取水槽除じん機工リア防水!         :取水槽除じん機工リア水容!         :取水槽除じん         :取水槽除じる         :取水槽除いすめられる部位         :上水機能が求められる部位         :上水機能が求められる部位         :1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
<u>第12-1-2 図 6 号及び7 号炉</u>	スクリーン室 平面図		① ←」 ② ←」 ③ ←」 <u>第6-2-2-3図 取水槽 設置される設</u> (





柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
				34950       0000       32500       第6-2-2-7図       取水槽
				34950         000000000000000000000000000000000000
				000000000000000000000000000000000000



(加)     (加)
(加速)     (加速)



拍应如可百乙力戏重正	6 /7 旦恒	(2017 12 20 時)	<b>七</b> 川百乙九愁雲正	2 县恒(2010-11-6 版)	1		自力	且百乙力戏	
<b>竹响利尔丁刀光电</b> 月	0 / 7 与沪	(2017.12.20 MX)	<b>女川</b> 原于刀兜电所	2 与沪 (2019.11.0 成)			西个	以尿丁刀光	
					<b>Б</b> . <b>4</b>		E EL.(m) +10.0 -0.0 -10.0 -20.0 -30.0	埋戻土 (掘削ズリ) EL-9.8m <u>MMR</u>	EL+8.8m EL+1.1m CM級以上
						): ^{岩相境界線} 第6一2	2-2-12	取水槽	岩級断面際
						<u> </u>			
					FL691	< :岩相境界線	E EL(m) +10.0 (1) -10.0 (1) -20.0	型戻土 副削ズリ) EL-9.7m <u>MMR</u>	EL+8.8m
						第6-2	2-2-13図	取水槽	岩級断面區
					<u>取</u> び地 (第	<u>水槽に</u> 震力特 6-2-2	ついて,間 性等の観点 2-1表) <u>。</u>	接支持する を踏まえた	<u>設備,構注</u> 耐震評価(
					<u> </u>	6-2-	2-1表 耐	震評価候補	断面の整:
									取水槽
						観点	①-①断面	<ul> <li>②-②断面</li> <li>·通水</li> </ul>	3-3断面
					<ol> <li>①要求機 能並びに 間接支持 する機器・ 配管の有 無及び設 置状況</li> </ol>	要求機能 間接支 持する 設備	<ul> <li>・間接支持</li> <li>・原子炉補機海水ストレーナ</li> <li>・高圧炉心スプレイ補機 海水ストレーナ</li> <li>・原子炉補機海水系配</li> <li>管:井</li> <li>・高圧炉心スプレイ補機 海水系配管・弁</li> <li>他</li> </ul>	<ul> <li>・ 間接支持</li> <li>・ 止水</li> <li>・ 高圧炉心スプレイ補機 海水ポンプ</li> <li>・ 原子炉補機海水ポンプ</li> <li>・ 原子炉補機海水系配</li> <li>・ 高圧炉心スプレイ補機 海水系配管・弁</li> <li>・ 高圧炉心スプレイ補機</li> <li>・ 取水槽海水ホンプエリア 水密扉</li> <li>他</li> </ul>	- 通5 - 1個技支持 - 取水槽水位計 - 取水槽除じん機工リアが 水壁 - 取水槽除じん機工リアオ 密扉 他
						設置 状況	・設備毎に異なる		



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		【取水槽の3次元モデルによる耐震評価の目的と適用性】	・記載の充実
		取水槽は複数の妻壁を有する構造物であることから、妻壁によ	【柏崎 6/7】
		る拘束効果が距離や非線形性に応じて減少すること、妻壁と接合	島根2号炉では取水
		する部位への応力集中及び支持される設備への影響評価や要求機	槽の 3 次元モデルによ
		能に応じた耐震評価について精緻に評価するため、3次元モデル	る耐震評価の目的と適
		による耐震評価を実施する。	用性について記載して
		取水槽における3次元モデルによる耐震評価の適用性につい	いる
		て、審査実績を有する先行サイト(女川2号炉)の海水ポンプ室	
		等との比較を行った結果,第6-2-2-2表に示すとおり,構造的	
		特徴や3次元モデルによる耐震評価に差異はないことから,適用	
		性があると判断する。	
		<u>第6-2-2-2表 先行サイトとの比較結果</u>	
		項目         女川2号炉(海水ホンプ空号)         島根2号炉(池水橋)         支川2号炉2品2号炉の蒸製の石無 及び蒸業分布5場合の風視2号炉への適用性           マーク         マーク <t< th=""><th></th></t<>	
		<ul> <li>激活は、 荷種を好価</li> <li>常価</li> <li>常価</li> <li>常価</li> <li>常確</li> <li>特別造成(信知は非常研行)の2,2次時利度非認形施</li> <li>特別進成(信知は非常研行)の2,2次時利度非認形施</li> <li>ポーパ(構造物理解)に2,03月価</li> </ul>	
		(共通) - 現本語 - 現本 - 現本 - 現本 - 現本 - 現本 - 現本 - 現	
		第法によ ・別総計ジリケ要素でモデルにした時が新作を行い、応 各種英都 ・ 「数本部シリケ要素で手が化した時が新作を行った。」と水機能を要求される要素につび新けが毎組し 都、本様の「基本部シリトを要素にて解析を行った」と水機能を要求される要素にての新たが高に ついては、詳細設計合物において決定する。 ついては、詳細設計合物において決定する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		【取水槽の3次元モデルによる耐震評価フローと照査体系】	・記載の充実
		取水槽の3次元モデルによる耐震評価は第6-2-2-14図に示	【柏崎 6/7】
		<u>すフローのとおり、基準地震動Ssによる2次元地震応答解析に</u>	島根2号炉では取水
		より得られる地震時荷重(土圧、加速度)を3次元モデルへ作用	槽の3次元モデルによ
		させて, 耐震安全性評価を行う。以降, 評価フローにおける内容	る耐震評価フローと照
		を記載するが、詳細については詳細設計段階にて検討する。	査体系について記載し
			ている
		3次元モデルの作成       基準地震動Ss         ・通常運転時の荷重       入力地震動の算定         2次元地震応答解析に用いる       2次元地震応答解析         2次元地震応答解析       2次元地震応答解析         第時解析       2次元地震応答解析         1方向載荷       2方向載荷         第       動震安全性評価         第6-2-2-14図       3次元モデルによる耐震評価フロー         (1) 3次元モデルの作成          ・構造物をシェル又はソリッド要素、地盤をばね要素でモデル化	
		<u>し、3次元モデルを作成する。参考として、取水槽のイメー</u> ジ図を第6-2-2-15図に示す。	
		<u>第6-2-2-15図 取水槽イメージ図</u>	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
				(2)常時解析	・記載の充実
				<ul> <li>・3次元モデルに通常運転時の荷重及び変動荷重を載荷して常時</li> </ul>	【柏崎 6/7】
				の応力状態を再現する。	島根2号炉では取水
				<ul> <li>・静止土圧は2次元地震応答解析における常時応力解析により</li> </ul>	槽の 3 次元モデルによ
				設定し、分布荷重として載荷する。	る耐震評価フローと照
				(3) 2次元地震応答解析に用いる等価剛性モデルの作成	査体系について記載し
				・地震時荷重の算定に用いる2次元地震応答解析の構造物モデ	ている
				ルは、構造物と地盤の相互作用により発生する土圧を正しく	
				評価するため、妻壁の剛性を考慮し、実構造と等価な剛性を	
				持つ2次元等価剛性モデルとする。	
				・各エリアの構造の相違に起因する地震時荷重を正しく算定す	
				るため、エリアごとに等価剛性モデルを作成する。	
				・2次元等価剛性モデルと3次元モデルに同じ荷重を作用させ,	
				2次元等価剛性モデルの変位が3次元モデルの変位と等しく	
				なるように剛性を設定する。	
				・等価剛性モデルは、地震時荷重を保守的に評価するよう線形	
				モデルとする。	
				(4) 2次元地震応答解析	
				<ul> <li>・2次元地震応答解析は、地盤の非線形性を考慮した地盤-構</li> </ul>	
				<u>造物連成の時刻歴非線形解析により行う。2次元地震応答解</u>	
				析のモデル図を第6-2-2-16図に示す。	
				<ul> <li>・等価剛性モデルの構造物モデルは、線形モデルとする。</li> </ul>	
				・埋戻土については、非線形性を考慮する。	
				土木構造物	
				地震 地震 地震 地震 地震 地震 地震 が答 解 析 時 出 世 思 地震 応 答 解 析 時 出 世 思 地震 応 答 解 析 時 出 世 思 地震 応 答 解 析 時 私 性 境 界 地震 応 答 解 析 時 私 性 境 界 地震 近 答 解 析 時 私 性 境 界 地震 近 等 解 析 時 私 性 境 界 地震 近 等 解 析 時 私 性 境 界 地震 地震 た 一 地震 た 一 一 和 日 一 一 日 一 一 日 一 一 日 一 一 日 一 一 日 一 一 一 日 一 一 一 一 一 一 一 一 一 一 一 一 一	
				<u>第6-2-2-16図 2次元地震応答解析(解析モデル図:ポンプ室</u> <u>エリア)</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		(5) 地震時荷重の算定	・記載の充実
		<ul> <li>・2次元地震応答解析において要求機能に対応する着目部位の</li> </ul>	【柏崎 6/7】
		変位や断面力が大きくなり, 照査上厳しくなる時刻を選定し,	島根2号炉では取水
		地震時増分土圧と応答加速度を算定する。	槽の 3 次元モデルによ
		・慣性力は、応答加速度を基に応答震度を算定する。	る耐震評価フローと照
		・地震時荷重の抽出は、要求機能を有する各部位の想定される	査体系について記載し
		損傷モード(曲げ・軸力系の破壊,せん断破壊)に応じた時	ている
		刻の荷重を抽出する。	
		(6) 3次元モデルによる地震時構造解析(1方向載荷)	
		<ul> <li>・2次元地震応答解析において選定した時刻の慣性力及び地震</li> </ul>	
		時増分土圧等を地震時荷重として3次元モデルに載荷する。	
		・慣性力及び地震時増分土圧は、エリア毎に奥行方向に一様な	
		荷重として作用させる。	
		(7) 3次元モデルによる地震時構造解析(2方向載荷)	
		・水平2方向載荷に対する検討として、地震時解析(1方向載	
		荷)に、縦断方向の地震時荷重を同時に載荷する。	
		・縦断方向の土圧は妻壁と地盤の相互作用により発生するが,	
		妻壁の挙動は構造物全体の挙動とは異なり、部材としての応	
		答となるため,等価剛性とはせず鉄筋コンクリート部材の剛	
		性を考慮する。	
		・縦断方向の地震時荷重は、水平2方向載荷の影響が大きい部	
		材のうち,1方向載荷時の照査値が最も厳しい部材・時刻に	
		対し、同時刻の縦断方向の地震時荷重を、位相を変えた地震	
		動により算出して用いる。	
		(8) 耐震安全性評価	
		・地震時荷重を載荷した構造物の変形が、部材ごとに要求され	
		<u>る機能に応じた許容限界を上回らないことを確認する。</u>	
		<ul> <li>各部位の許容限界について、取水槽には第6-2-2-17,18図</li> </ul>	
		に示すとおり止水機能が求められる部位があり、その他の部	
		位では通水機能や支持機能が求められ、部位ごとに要求機能	
		が異なる。したがって、各要求機能に対する目標性能を第6	
		-2-2-3表のとおり整理し、目標性能毎に許容限界を設定す	
		<u>る。</u>	
		・なお, 妻壁を耐震壁とみなし, JEAG4601-1987に基づいた耐震	
		<u>評価を行う。同基準において、耐震壁の終局時の変形として</u>	
		層間変形角4/1000が規定されており,これに安全率2を有す	
		る層間変形角2/1000は、耐震壁の通水機能や支持機能の許容	
		限界として既工認実績がある。なお、止水機能が要求される	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版) 女川原子力発行	<b></b> 1.1.6版)	島根原子力発電所 2号炉	備考
			部位については, JEAG4601-1991に規定されている層間変形角	・記載の充実
			がスケルトンカーブの第1折れ点以下であることを許容限界	【柏崎 6/7】
			とした耐震評価を行うこととし、これについても、耐震壁の	島根2号炉では取水
			せん断変形に対する水密性評価の許容限界として既工認実績	槽の 3 次元モデルによ
			がある。	る耐震評価フローと照
				査体系について記載し
			ストレーナ室 ポンプ室 スクリーン室 漸延ダクト部 ドー・ドー・ドー ドー・ドー・	ている
			47250 ###2: mm	
			✓EL-11700	
			<u>第6-2-2-17図 取水槽 止水機能が求められる部位(縦断図</u> (⑤-⑤断面))	
			通水方向     回     回     回     回     回       通水方向     回     回     回     回     回       通水方向     回     回     回     回     □           □     □           □     □           □     □           □          □     □          □     □	
			第6-2-2-18図 取水槽 止水機能が求められる部位(平面図)	
			第6-2-2-3表 要求機能に応じた許容限界	
			要求機能 医求機能に対する 許容限界 目標性能	
			山が         せん断           通水機能         終局状態に至らない         限界層間変形角又は圧縮緩コンクリート限界のずみ         せん断明力(面外)	
			力以下         エルパンテット・シャルパンティンティンティー         「日日夏ノレノティー         「日日夏ノレノティー	
			(mi) 37	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
1.3 取水路の断面選定の考え方		2.3 <u>B-</u> ディーゼル燃料貯蔵タンク基礎	・対象施設の相違
第12-1-5 図に取水路の平面図を示す。		<u>B-</u> ディーゼル燃料貯蔵タンク基礎(地中部及び半地下部)の	【柏崎 6/7】
取水路は、6 号及び7 号炉ともに、延長約127m の鉄筋コンクリ		配置図を第6-2-3-1図に、平面図を第6-2-3-2図に、縦断	対象施設の相違によ
ート造の地中構造物であり、取水方向に対して複数の断面形状を		図を第6-2-3-3図に、断面図を第6-2-3-4図~第6-2-3	る記載内容の相違
示し、海側から大きく漸縮部、一般部、漸拡部に分けられる。ま		-5 図に,地質断面図を第6-2-3-6 図に,岩級断面図を第6-2	
た、取水路は、古安田層洪積粘性土層に直接設置若しくはマンメ		-3-7図にそれぞれ示す。	
イドロックを介して西山層に設置されている。		<u>B-</u> ディーゼル燃料貯蔵タンク基礎は、Sクラス設備であるB	
今回工認では、構造物の構造的特徴や地盤条件等を考慮した上		一ディーゼル燃料貯蔵タンク等の間接支持機能が要求される。	
で断面を選定し,基準地震動Ss による耐震評価を実施する。		<u>B-</u> ディーゼル燃料貯蔵タンク基礎は,延長約 20m,幅約 19m,	
第12-1-6 図~第12-1-8 図及び第12-1-1 表, 第12-1-2 表に取		高さ約7mの鉄筋コンクリート造の地中及び半地下構造物である。	
水路の縦断図、断面図及び構造諸元を示す。		<u>B-</u> ディーゼル燃料貯蔵タンク基礎は、C _M 級以上の岩盤に直接	
取水路漸縮部は,一体の構造物であるが,取水方向に幅が漸縮		支持されている。	
するとともに、6連のボックスカルバート形状から3連のボック		長辺方向(地中部は南北方向、半地下部は東西方向)に加振し	
スカルバート形状に変わる構造となっている。また、縦断方向で		た場合は、加振方向に直交する方向の構造物の長さに対する加振	
土被り厚は同じであり、その他の設置地盤条件もほぼ一様となっ		方向と平行に配置される壁の厚さの割合が大きくなるので、長辺	
<u>ている。</u>		方向が強軸となり、短辺方向(地中部は東西方向、半地下部は南	
<u>以上のことから、スクリーン室とほぼ同等の設置条件にあるも</u>		北方向)が弱軸となる。	
のの,構造的特徴として6連から3連のボックスカルバート形状		<b>B</b> -ディーゼル燃料貯蔵タンク基礎の弱軸方向断面では、配筋	
に変わることを踏まえ、構造物の幅に対する鉛直部材の割合が少		を含め構造的特徴が概ね同様である範囲から代表となる範囲を耐	
なく耐震上厳しいと判断されるA - A'断面を耐震評価の対象とし		<u>震評価候補断面とする。</u>	
て選定する。			
<u>取水路一般部は、取水方向に幅が一様な3連のボックスカルバ</u>			
<u>ート形状の構造となっていることから、耐震評価の対象は、設置</u>			
地盤条件に着目し、西山層の上限面の高さが深い区間で最も土被			
り厚が大きく耐震上厳しいと判断されるブロック⑤のB-B'断面			
を選定する。			
<u>取水路漸拡部は、取水方向に幅が漸拡する6連のボックスカル</u>			
バート形状の構造となっている。また、縦断方向で土被り厚はほ			
ぼ同等であり、その他の設置地盤条件もほぼ一様となっている。			
以上のことから、耐震評価の対象は、構造的特徴を踏まえ、構造			
物の幅に対する鉛直部材の割合が最も少なく耐震上厳しいと判断			
されるブロック⑩のタービン建屋側のC - C'断面を選定する。			
取水路の検討断面では,地下水位以下に,液状化層(埋戻土層)			
及び液状化影響評価対象層(古安田層洪積砂質土層)が分布する			
ことから,耐震評価では有効応力解析を実施する。			







·炉		備考
		・対象施設の相違
		【柏崎 6/7】
		対象施設の相違によ
		る記載内容の相違
上→		
「掘削ズリ」	EL(m)	
	+20.0	
↓		
E MMR		
─────────────────────────────────────	+10.0	
	0.0	
	0.0	
	-10.0	
	10.0	
	-20.0	
貯蔵 タンカ甘	乙林	
<u>r則蔵クマク茎</u> i)	<u>1175</u>	
<u>I/</u>		
 	FI (m)	
(掘削ズリ) /	+20.0	
MMR	+10.0	
	-	
	0.0	
	0.0	
	10.0	
	-10.0	
	-20.0	
料貯蔵タンク	基礎	
面)		

柏崎刈羽原子力発電所 6/7号炉 (2	2017.12.20版)	女川原子力発電所	2 号炉(2019.11.6 版)	島根原子力発電所 2号炉 備考
				Bーディーゼル燃料貯蔵タンク基礎について 間接支持する設 ・記載の充実
				「加州」、福祉的代展、「周辺代化及び地震力特征等の既然を超なたた所」 電証価値補販売を敷理した(第6-9-9-1主) 自相の号炉では、長め
				第6-2-3-1表 耐震評価(疾補) 助の整理 ける耐震評価(疾補) 助 の しん
				<u>(Bーディーゼル燃料貯蔵タンク基礎)(1/2)</u> の整理結果を記載して
				B-ディーゼル燃料貯蔵タンク基礎 いる
				更式機能         ·開接支持         ① - ①断面         ② - ②断面         ③ - ③断面
				①要求機能     ・B -ディーゼル燃料移送ボンブ     ・B -ディーゼル燃料防蔵タンク       ①要求機能     ・B -ディーゼル燃料移送系     ・B -ディーゼル燃料移送系       節塩支持 する機器・     設備     設備       調査支持 する機器・     設備       調査支援     持する       無及び段     設備         ・B -ディーゼル燃料移送系         ・B -ディーゼル燃料移送系         ・B -ディーゼル燃料移送系         ・B -ディーゼル燃料移送系         ・B -ディーゼル燃料移送系            (B - ディーゼル燃料移送系
				·強軸方向断面(半地下部)         ·弱軸方向断面(地中部)         ·強軸方向断面(地中部)         ·强轴方向断面(半地下部)
				②構造的         ・鉄筋コングリート造の半地下構造物         ・鉄筋コングリート造の地中構造物及び半地下構造物
				i行成 ・隔壁及び中床版を有する ・3連のボックスカルバート(タンク格 ・地中部及び半地下部により構成され 納槽)により構成される る
				→ 寸法 ・幅19.22m,高さ6.50m ・幅19.22m,高さ6.65m ・幅22.90m,高さ4.20m, 6.50m及び6.65m

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
1.4 補機冷却用海水取水路の断面選定の考え方		2.4 低圧原子炉代替注水ポンプ格納槽	・対象施設の相違
第12-1-9 図~第12-1-11 図に補機冷却用海水取水路の平面図,		低圧原子炉代替注水ポンプ格納槽の配置図を第6-2-4-1図	【柏崎 6/7】
縦断図及び断面図を示す。		に,平面図を第6-2-4-2図に,縦断図を第6-2-4-3図に,断	対象施設の相違によ
補機冷却用海水取水路は、6 号及び7 号炉ともに、取水路漸拡		面図を第6-2-4-4図~第6-2-4-5図に、地質断面図を第6-2	る記載内容の相違
部からそれぞれ北側、南側に分岐した鉄筋コンクリート造の地中		-4-6図~第6-2-4-7図に, 岩級断面図を第6-2-4-8図~第6	
構造物であり、取水方向に対して複数の断面形状を示し、直接若		-2-4-9図にそれぞれ示す。	
しくはマンメイドロックを介して西山層に設置されている。		低圧原子炉代替注水ポンプ格納槽のうち低圧原子炉代替注水槽	
今回工認では、構造物の構造的特徴や地盤条件等を考慮した上		は、常設重大事故等対処設備であり、貯水機能が要求される。ま	
で断面を選定し、基準地震動Ss による耐震評価を実施する。		た,低圧原子炉代替注水ポンプ格納槽は常設重大事故等対処設備	
補機冷却用海水取水路(北側)は、取水路漸拡部から2連のボ		である低圧原子炉代替注水ポンプ等の間接支持機能が要求され	
ックスカルバート形状で分岐し、2連から4連(柱部2本)のボ		<u>3.</u>	
ックスカルバート形状に変わるとともに、タービン建屋近傍で幅		低圧原子炉代替注水ポンプ格納槽は, 延長26.6m, 幅13.4m, 高	
が大きくなる構造である。また、補機冷却用海水取水路(南側)		さ16.0m又は19.6mの鉄筋コンクリート造の地中構造物である。	
は、取水路漸拡部から2連のボックスカルバート形状で分岐し、		低圧原子炉代替注水ポンプ格納槽は, C _M 級以上の岩盤に直接支	
2連から5連(柱部2本)のボックスカルバート形状に変わると		持されている。	
ともに、タービン建屋近傍で幅が大きくなる構造である。		長辺方向(東西方向)に加振した場合は、加振方向に直交する	
以上のことから、耐震評価の対象は、構造的特徴を踏まえ、構		方向の構造物の長さに対する加振方向と平行に設置される壁の厚	
<u>造物の幅に対する鉛直部材の割合が最も少なく耐震上厳しいと判</u>		さの割合が大きくなるので,長辺方向が強軸となり,短辺方向(南	
断されるタービン建屋接続位置を選定し、北側4連(柱部2本)		北方向)が弱軸となる。	
ボックスカルバート部のブロック北③及び南側5連(柱部2本)		低圧原子炉代替注水ポンプ格納槽の弱軸方向断面では、配筋を	
ボックスカルバート部のブロック南③を選定する。モデル化にお		含め構造的特徴が概ね同様である範囲から代表となる範囲を耐震	
いては、ブロック全体の妻壁及び柱部を含めた平均的な剛性を考		評価候補断面とする。	
慮し,基準地震動Ss による耐震評価を実施する。			
補機冷却用海水取水路の検討断面では、地下水位以下に、液状			
化層(埋戻土層)が分布することから、耐震評価では有効応力解			
析を実施する。			
		低圧原子炉代替注水ポンプ格納槽	
		0 5 <u>0 100 150 200(m</u> )	
		第6-2-4-1図 低圧原子炉代替注水ポンプ格納槽 配置図	



炉	備考
	・対象施設の相違
	【柏崎 6/7】
	対象施設の相違によ
	る記載内容の相違
. 3	
0	
— 単位 : mm	
〒に配置される壁部材	
ンフ格納槽 平面図	
単位:mm	
<ul> <li>低圧原子炉</li> <li>代替注水ポンプ</li> <li>格納槽</li> </ul>	
世	
(MANAR)	
プ格納槽 縦断図(③	

和畸刈羽原子刀発電所 6/7号炉 (2017.12.20版)	女川原子刀発電所 2 号炉(2019.11.6 版)	局根原子刀発電所 2 <del>2</del>
<complex-block></complex-block>		低圧原子炉 代替注水ポンプ <u>格納槽</u> VEL+15000 WMR 0009E
		<u>第6-2-4-4図 低圧原子炉代替注水ポン</u> <u>一①断面)</u> 低圧原子炉
		代替注水ポンプ 格納槽 13400
		<u>第6-2-4-5図 低圧原子炉代替注水ポン</u> <u>-②断面)</u>



・対象症状の相性 (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557) (1)(557
<u>第6-2-4-7図</u> 低圧原子炉代替注水ポンプ格納槽 地質断面図 <u>(②</u> 一②断面)

	柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
			凡例
			←S
			EL(m) 低圧原子炉 、。。。 代替注水ポンプ
			+30.0 格納槽
第6-2-4-01       低市原子炉(特定未北):         第6-2-4-01       低市原子炉(特定未北):         ① - ○以市前)       10         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ● <th></th> <th></th> <th>+10.0</th>			+10.0
3       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <t< th=""><th></th><th></th><th></th></t<>			
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $			0.0
第6-2-4-8ig 低圧原子炉代替法水式ン       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)			
第6-2-4-9図       近日第7年代日本北部         第6-2-4-9図       近日第7年代日本北部         (1)       (1)         第6-2-4-9図       近日第7年代日本北部         (2)       (2)         第6-2-4-9図       近日第7年代日本北部			-10.0
$\frac{300}{-100}$ $\frac{300}{-100}$ $\frac{300}{-100}$ $\frac{300}{-100}$ $\frac{300}{-100}$ $\frac{300}{-100}$ $\frac{300}{-100}$ $\frac{100}{-100}$			CM級以上
第6-2-4-8回       転車原子好代替法大ポン・         (①-①供面)         第6-2-4-9回       転車原子好代替法大ポン・         (①-①供面)         第6-2-4-9回       低車原子好代替法大ポン・         (②-②供面)       (③-○			-20.0
$\frac{36-2-4-82}{(20-20)5}$			-30.0
			-40.0
第6-2-4-8回 低圧原子炉代替注水式シー       (①-①防油)			0
			第6-2-4-8図 低圧原子炉代替注水ポンプ
			(①-①断面)
$ \frac{1}{2} = 1$			
第6-2-4-9図 低圧原子炉代替注水ポンプ       第6-2-4-9図 低圧原子炉代替注水ポンプ			171 /51
に、(m) 低圧原子炉 松田 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0 ・10.0			←s
第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第300 第 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			EL(m) 低圧原子炉 代表注水ポンプ
第6-2-4-9図 低圧原子炉代替注水ポン       (2)-2(野雨)			+30.0 格納槽
第6-2-4-9図 低圧原子炉代替注水ボン         (2)-2)断面)			
10.0			E
第6-2-4-9図 低圧原子炉代替注水ポン:         (②-②断面)			+10.0
第6-2-4-9図 低圧原子炉代替注水ポン:       (②-②断面)			
-10.0     -10.0       -20.0     -20.0       -30.0     -30.0       -40.0     -0       (2)-2)時面)     (2)-2)時面)			0.0
-10.0     -10.0       -20.0     -20.0       -30.0     -30.0       -40.0     -20.0       第6-2-4-9図 低圧原子炉代替注水ポン:       (②-②断面)			
-20.0     -20.0       -30.0     -30.0       -40.0     -40.0       第6-2-4-9図 低圧原子炉代替注水ポン:       (②-②断面)			-10.0
第6-2-4-9図 低圧原子炉代替注水ポン:       (②-②断面)			CM級以上
-40.0 <u>第6-2-4-9図</u> 低圧原子炉代替注水ポン <u>(②-</u> ②断面)			-30.0
-40.0       0         第6-2-4-9図 低圧原子炉代替注水ポン:         (②-②断面)			
第6-2-4-9図 低圧原子炉代替注水ポンゴ         (②-②断面)			-40.0
<u>第6-2-4-9図</u> 低圧原子炉代替注水ポン (②-②断面)			
(②-②断面)			第6-2-4-9図 低圧原子炉代替注水ポンプ
			(②-②断面)



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)		島根原子	力発電所 2号炉		備考
1.5 軽油タンク基礎の断面選定の考え方		低圧原子均	同代替注水ポンプ	。格納槽について,	間接支持する設備,	・記載の充実
第12-1-12 図及び第12-1-13 図に軽油タンク基礎の平面図及び		構造的特徴,	周辺状況及び地	震力特性等の観点	を踏まえた耐震評	【柏崎 6/7】
断面図を示す。		価候補断面を	- 整理した(第6-	-2-4-1表)。		島根2号炉では,屋外
軽油タンク基礎は、6 号及び7 号炉ともに、鉄筋コンクリート						重要土木構造物等にお
造の基礎版が杭を介して西山層に支持される地中構造物で、幅約		第6-2-4-	1表 耐震評価候	補断面の整理(低	、圧原子炉代替注水	ける耐震評価候補断面
18m (NS 方向) ×約35m (EW 方向), 高さ約1.4mの基礎版を等間隔			ポンプ	各納槽)(1/2)		の整理結果を記載して
に配置した杭で支持する比較的単純な基礎構造物であり、評価対		観点		低圧原子炉代替注水ポンプ格納		いる
象断面方向に一様な構造となっている。また、基礎版及び杭の周		①要求機 要求機能	① - ①断面 ・間接支持		3-3町面 ・間接支持 ・貯水	
辺には地震時における変形抑制対策として地盤改良を実施してい		能並びに 間接支持 する機器・間接支 設備	<ul> <li>・低圧原子炉代替注水ポンプ</li> <li>・低圧原子炉代替注水系 配管</li> </ul>	・なし 弁	・低圧原子炉代替注水ポンプ ・低圧原子炉代替注水系 配管 弁	
るため周辺の地盤が構造物に与える影響はどの断面も大きな差は		配管の有 持する 無及び設 設備 設置 置状況 (14)20	他 ・設備毎に異なる	_	他 ・ 設備毎に異なる	
ないと考えられる。			- 弱軸方向断面		・強軸方向断面	
今回工認では、基礎版の長軸方向及び短軸方向の2 断面を選定		2構造的 特徴 形式	<ul> <li>・鉄筋コンクリート造の地中構造物</li> <li>・中床版を有する</li> </ul>	・水槽により構成される	・隔壁及び中床版を有する	
し、基準地震動Ss による耐震評価を実施する。		寸法	・幅13.40m, 高さ16.00~ 19.60m	・幅13.40m, 高さ16.00m	・幅26.60m, 高さ16.00~ 21.19m	
<u>6</u> 号炉軽油タンク基礎の検討断面では、地下水位以下に、液状						
化影響評価対象層(古安田層洪積砂質土層)が分布することから,		第6-2-4-	1表 耐震評価候	補断面の整理(低	王原子炉代替注水	
耐震評価では有効応力解析を実施する。埋戻土層(Ⅱ)は、建設			ポンプ	客納槽)(2/2)		
時に掘削した西山層泥岩を材料として埋め戻した粘性土であり、		観点		低圧原子炉代替注水ポンプ格納	·	
性状の確認を目的とした物理試験を実施した上で、非液状化層と		構造物下	<ul> <li>① - ①断面</li> <li>部 ・CM級以上の岩盤に直接支持され</li> </ul>	②-②断面 れている	③-③断面	
して扱う。		周辺構造物側	部 ・周辺に埋戻土(掘削ズリ)及び	MMRが分布している		
7 号炉軽油タンク基礎の検討断面では、地下水位以下に、液状		地質 3周辺 状況	・MMRは高さ約16.0mで, 概ね	矩形である		
化影響評価対象層(新期砂層・沖積層,古安田層洪積砂質土層)		地質変化	部 ・ が 解 析 結 果 等 を 踏 ま え て 整 理 す る。			
が分布することから、耐震評価では有効応力解析を実施する		モデル化する 隣接構造物	·原子炉建物		・第1ベントフィルタ格納槽	
		<ol> <li>④地震波の伝搬特性</li> </ol>	<ul> <li>・観点③での整理のとおり、構造物</li> <li>・観点①での整理のとおり、① - ①</li> </ul>	物下部の周辺地質に差異がなく, 地震波 1)及び3 - 3)断面に間接支持する設備か	の伝搬特性は一様である	
		⑤床応答特性	・観点①~③での整理のとおり、 限に差異があることから、各断面	射接支持する設備の種類及び設置状況に の床応答特性が異なる	は一様であるが、構造的特徴及び周辺状	
		以上の整理	<b>里を踏まえ,詳細</b>	設計段階において	,地震応答解析に	
		より耐震評価	話を行ううえで,	構造物の応答が耐	震評価上厳しくな	
		ると考えられ	ιる断面を評価対	象断面として選定	する。なお,詳細	
		設計段階にお	らいて設定する地	下水位等,各断面	で異なる要因があ	
		<u>れば, その</u>	見点で整理を行い	,評価対象断面を	選定する。	



步炉	備考
	・対象施設の相違
5-2-5-1図に, 平面	【柏崎 6/7】
5-3図に, 断面図を第6	対象施設の相違によ
図を第6-2-5-6図~	る記載内容の相違
5-8図~第6-2-5-9	
事故等対処設備である	
支持機能及び遮蔽機能	
n, 幅13.4m, 高さ14.0m	
である。	
してC _M 級以上の岩盤	
加振方向と直交する	
行に配置される壁の割	
り, 短辺方向 (南北方	
面では、配筋を含め構 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	
なる範囲を耐震評価族	
The second	
ALD X	
2 Ale	
A DA	
TIMAN	
0 50 100 150 200(m)	
·格納槽 配置図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	女川原子力発電所 2 号炉 (2019.11.6 版)	島根原子力発電所 2 号炉         単位:mm         「         G子炉塗物         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         () <td< td=""><td><ul> <li>備考</li> <li>・対象施設の相違</li> <li>【柏崎 6/7】</li> <li>対象施設の相違によ</li> <li>る記載内容の相違</li> </ul></td></td<>	<ul> <li>備考</li> <li>・対象施設の相違</li> <li>【柏崎 6/7】</li> <li>対象施設の相違によ</li> <li>る記載内容の相違</li> </ul>
		第6-2-5-3図 第1ベントフィルタ格納槽 縦断図 (③-③断)	
		<u>第6-2-5-3図 第1ベントフィルタ格納槽 縦断図(③-③断</u> <u>面)</u>	

柏崎刈羽原子力発	電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号
柏崎刈羽原子力発	重所 6 ∕ 7 号炉	(2017. 12. 20 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2月     第1ペントフィルタ     格納槽     1340     マEL+19400     マEL+15000     のしい     のい     のしい     のしい     のい     のい
				<u>第6-2-5-5図 第1ベントフィルタ格納</u> <u>面</u> )



柏崎刈羽原子力発電所 6	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
				←S EL(m) +20.0 +10.0 -10.0 -20.0 -40.0 第1ペントフィルタ格納槽 第10m 「理戻士 (掘削ズリ)」 トロー 「加削ズリ」 「日 「加削ズリ」 「日 「加削ズリ」 「日 「加削ズリ」 「日 「加削ズリ」 「日 「加削ズリ」 「日 「加削ズリ」 「日 「加削ズリ」 「日 「加削ズリ」 「日 「加削ズリ」 「日 「加削ズリ」 「日 「加削ズリ」 「日 「加削ズリ」 「日 「加削ズリ」 「日 「加削ズリ」 「日 「日 「加削ズリ」 「日 「日 「日 「日 「日 「日 「日 「日 「日 「日
				 第6-2-5-6図 第1ベントフィルタ格納槽 ①断面)
				<u>Ubrun</u> 

	[]
号炉	備考
$N \rightarrow$	・対象施設の相違
EL(m)	【柏崎 6/7】
+20.0 凡例 □ 埋戻土(掘削ズリ)	対象施設の相違によ
	る記載内容の相違
0.0 / イロルジアex MMR・コンクリート構造物	
-20.0	
-20.0	
-30.0	
-40.0	
<u> 地質断面図(①-</u>	
$N \rightarrow$ EL(m)	
+20.0 凡例	
・10.0         「建戻土(掘削ズリ)                え灰岩・凝灰角礫岩             (八貫台)満層を挟む)             頁岩             (滅灰岩の満層を挟む)	
0.0 / 岩相境界線 / MMR・コンクリート構造物	
-10.0	
-20.0	
-30.0	
-40.0	
<u> 地質断面図(②-</u>	


	<u>第1ベント</u> 的特徴,周辺	フィルタ格納槽は	こついて,間接支持	は ナフ 乳 供 進 生	<ul> <li>・記載の本宝</li> </ul>
	的特徵,周辺			付りつ砇脯, 悟垣	山戰以几天
	的特徴、周辺状況及び地震力特性等の観点を踏まえた耐震評価候			【柏崎 6/7】	
	補断面を整理した(第6-2-5-1表)。		島根2号炉では,屋外		
					重要土木構造物等にお
	第6-2-5-1	表 耐震評価候補	浦断面の整理(第	1ベントフィルタ	ける耐震評価候補断面
		格納相	曹) (1/2)		の整理結果を記載して
			第1ベントフィルタ格納槽		いる
	観点	1-1断面	2-2断面	3-3断面	
	①要求機能         要求機能           能並びに 間接支持 する機器・ 配管の有 無及び設 置状況         間接支 時する 無数び設 設備         設備	<ul> <li>・適置</li> <li>・適置</li> <li>・第1ペントフィルタスクラバ容器</li> <li>・圧力開放板</li> <li>・格納容器フィルタペント系配管・弁</li> <li>他</li> </ul>	・第1へシトフィルタ銀ゼオライト容器 ・格納容器フィルタベント系配管・弁 他	・第1ペントフィルタスクラバ容器 ・圧力間放板 ・格納容器フィルタペント系配管・弁 ・第1ペントフィルタ銀ゼオライト容器 他	
	状況	<ul> <li>・設備毎に異なる。</li> <li>・弱軸方向断面</li> </ul>		• 強軸方向断面	
	②構造的	・鉄筋コンクリート造の地中構造物			
	特徴	<ul> <li>・隔壁及び中床版を有する</li> <li>・幅13.40m,高さ14.00~</li> </ul>	·幅13.40m 高さ14.00m	・幅24.60m, 高さ14.00~	
		18.70m	*#13.40m, aje14.00m	17.60m	
	<u>第6-2-5-</u> 観点 3周辺 状況 周辺 地質 構造物側 部及び上部 地質	表 耐震評価候存 <u>格納</u> ①-①断面 ·MMRを介してCM級以上の岩盤に3 ·MMRは高さ約5.7mで矩形及び台 ·埋戻土(編削ズリ)及びMMRが分 ·MMRは高さ約14.0m~19.7mで	浦断面の整理(第 事)(2/2) ^{第1ペントフィルタ格納槽} ②-②断面 5持されている 形状である か而している 短形である	1ベントフィルタ 3-35mm	
	之。 変化部 地下水位	・なし ・解析結果等を踏まえて整理する。			
	モデル化する 隣接構造物	·原子炉建物		・補助消火水槽 ・低圧原子炉代替注水ポンプ格納槽	
	<ul> <li>④地震波の伝搬特性</li> <li>⑥ 床 床 答告性</li> </ul>	・観点③での整理のとおり、構造物7 ・観点①での整理のとおり、各断面に ・観点①での整理のとおり、各断面に	「部の周辺地質に差異がなく, 地震波の 「間接支持する設備がある	伝搬特性は一様である	
		ることから、各断面の床応答特性が	2019932000000000000000000000000000000000	₩回9 小竹は3型 U1C 同 221人 // UC 左共 // 30	
	<u>以上の整理</u> <u>より耐震評価</u> <u>ると考えられ</u> <u>設計段階にお</u> <u>れば</u> ,その観	<u>を踏まえ,詳細語</u> <u>を行ううえで,</u> る断面を評価対 いて設定する地 いて設定する地 点で整理を行い,	2計段階において, 構造物の応答が耐 象断面として選定 下水位等,各断面 評価対象断面をう	<u>地震応答解析に</u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
1.6 燃料移送系配管ダクトの断面選定の考え方		2.6 緊急時対策所用燃料地下タンク	・対象施設の相違
第12-1-14 図及び第12-1-15 図に燃料移送系配管ダクトの平面		緊急時対策所用燃料地下タンクの配置図を第6-2-6-1図に,	【柏崎 6/7】
図,断面図及び縦断図を示す。		平面図を第6-2-6-2図に,縦断図を第6-2-6-3図に,断面図	対象施設の相違によ
6 号炉燃料移送系配管ダクトは,軽油タンク側は鉄筋コンクリ		を第6-2-6-4図に,地質断面図を第6-2-6-5図に,岩級断面	る記載内容の相違
ート造のダクトが杭を介して,6 号炉原子炉建屋側はマンメイド		図を第6-2-6-6図にそれぞれ示す。	
ロックを介して西山層に支持される地中構造物である。		緊急時対策所用燃料地下タンクは、常設重大事故緩和設備であ	
7 号炉燃料移送系配管ダクトは,鉄筋コンクリート造のダクト		り,鉄筋コンクリート躯体及びライナ(鋼製タンク)で構成され,	
が杭を介して西山層に支持される地中構造物である。また,6号		非常用発電装置に係る燃料の貯蔵が要求される構造物である。な	
及び7 号炉ともにダクト及び杭の周辺には地震時における変形抑		お、要求性能を期待する部位は、鉄筋コンクリート躯体及びライ	
制対策として地盤改良を実施している。		<u>ナ(鋼製タンク)である。</u>	
今回工認では、6 号炉は、軸方向に一様なダクト形状を示すこ		緊急時対策所用燃料地下タンクは,延長12.8m,幅3.85m,高さ	
とから,支持構造に着目し,杭基礎部とマンメイドロックに直接		3.9mの鉄筋コンクリート造の地中構造物である。	
設置するダクトのうち、より曲げ変形が大きくなると考えられる		緊急時対策所用燃料地下タンクは、C _M 級以上の岩盤に直接支持	
杭基礎部の断面を選定し,基準地震動Ss による耐震評価を実施す		<u>されている。</u>	
<u>る。7 号炉は,</u>		長辺方向(東西断面)に加振した場合は、加振方向と直交する	
軸方向に一様な杭支持構造のダクト形状を示しており、ダクトが		方向の構造物の長さに対する加振方向と平行に配置される壁の割	
接する側方及び下方の地盤は軸方向にほぼ同じ条件であることか		合が大きくなるので、長辺方向が強軸となり、短辺方向(南北方	
ら、杭部分の曲げ変形がより大きくなると考えられる最も杭長が		向)が弱軸となる。	
長い断面を選定し、基準地震動Ss による耐震評価を実施する。		緊急時対策所用燃料地下タンクの弱軸方向断面では、配筋を含	
6 号炉燃料移送系配管ダクトの検討断面では、地下水位以下に、		め構造的特徴が概ね同様である範囲から代表となる範囲を耐震評	
<u>液状化層及び液状化影響評価対象層は分布しない。埋戻土層(Ⅱ)</u>		価候補断面とする。	
は,建設時に掘削した西山層泥岩を材料として埋め戻した粘性土			
であり、性状の確認を目的とした物理試験を実施した上で、非液			
<u>状化層として扱う。</u>			
7 号炉燃料移送系配管ダクトの検討断面では,地下水位以下に,			
液状化影響評価対象層(新期砂層・沖積層,古安田層洪積砂質土			
層)が分布することから,耐震評価では有効応力解析を実施する。			
		<u>繁</u> 忌時列東所用燃料地下920	
		0 5 <u>0 10</u> 0 15 <u>0 2</u> 00(m)	
		第6-2-6-1図 緊急時対策所用燃料地下タンク 配置図	



柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号
柏崎刈羽原子力発電所	6 / 7 号炉	(2017. 12. 20 版)	女川原子力発電所 2号炉 (2019.11.6版)	



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		緊急時対策所用燃料地下タンクについて,間接支持する設備,	・記載の充実
		構造的特徴、周辺状況及び地震力特性等の観点を踏まえた耐震評	【柏崎 6/7】
		価候補断面を整理した(第6-2-6-1表)。	島根2号炉では,屋外
			重要土木構造物等にお
		第6-2-6-1表 耐震評価候補断面の整理(緊急時対策所用燃料	ける耐震評価候補断面
		地下タンク) (1/2)	の整理結果を記載して
			いる
		観点 ① - ①断面 ② - ②断面	
		①要求機         要求機能         ・非常用発電装置に係る燃料の貯蔵           能並びに	
		間接支持 する機器・間接支 配接方 配接方	
		②構造的         形式         ・強軸方向断面         ・強軸方向断面	
		特徴     ・鉄助コングリート造の地中構造物       寸法     ・幅3.85m, 高さ3.90m       ・幅12.80m, 高さ3.90m	
		第6-2-6-1表 耐震評価候補断面の整理(緊急時対策所用燃料	
		<u>地下タンク)(2/2)</u>	
		緊急時対策所用燃料地下タンク 観点	
		①-①断面         ②-②断面           構造物         QMERTINE AND	
		(3周辺)         (例部及び)         ・MMRは高さ約4.0mで, 矩形である	
		状況         地質 変化部         ・なし	
		地下水位         ・解析結果等を踏まえて整理する。           モデル化する	
		-  -  -  -  -  -  -  ・  -  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  ・  -  -  -  -  -  -  -  -  -  -  -  -  -	
		③機器・配管系の振動特性 ・観点①での整理のとおり、間接支持する設備がない	
		以上の整理を踏まえ 詳細設計段階において 地震広ダ解析に	
		トの耐雪延価を行うううで 構造物の広気が耐雪延価上厳しくか	
		<u>スレ考うられる断面を評価対象断面レーで選定するか</u> な、詳細	
		<u>れは、ての観点で登埋を打い、評価対象</u> 断面を選足する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
1.7 海水貯留堰の断面選定の考え方		2.7 屋外配管ダクト(タービン建物~排気筒)	・対象施設の相違
第12-1-16 図に海水貯留堰の平面図,第12-1-17 図に海水貯留		屋外配管ダクト(タービン建物~排気筒)の配置図を第6-2-7	【柏崎 6/7】
堰の断面図, 第12-1-18 図に古安田層基底面図を示す。		-1図に,平面図を第6-2-7-2図に,縦断図を第6-2-7-3図に,	対象施設の相違によ
海水貯留堰は、取水口前面の海中に設置する鋼管矢板を連結し		断面図を第6-2-7-4図~第6-2-7-7図に,地質断面図を第6	る記載内容の相違
た構造物であり、取水護岸に接続している。鋼管矢板の根入れは		-2-7-8図に,地質縦断図を第6-2-7-9図に,岩級縦断図を第	
8m であり,西山層若しくは古安田層洪積粘性土層に直接設置され		<u>6-2-7-10図にそれぞれ示す。</u>	
る。鋼管矢板は,海水を貯留するために海底面からA 部で2.0m, B		屋外配管ダクト(タービン建物~排気筒)は、Sクラス設備で	
部で2.5m 突出している。		ある非常用ガス処理系配管・弁等の間接支持機能が要求される。	
海水貯留堰の断面選定においては,海水貯留堰の配置を考慮し		屋外配管ダクト(タービン建物~排気筒)は、延長約20mの鉄筋	
て鋼管矢板が汀線直交方向に連結した部分、汀線平行方向に連結		<u>コンクリート造の地中構造物であり,幅6.7m,高さ3.1mの2連の</u>	
した部分及び取水護岸との接続部から選定する。		ボックスカルバート構造, 幅6.2m, 高さ3.6mのボックスカルバー	
また、地震時の影響を考慮して海底面から突出した部分が長いB		ト構造に大別される延長方向に断面の変化が小さい線状構造物で	
部を優先する。地盤条件としては、地震時の応答が大きくなると		ある(第6-2-7-4図~第6-2-7-7図)。	
考えられる古安田層の基底面が深い位置を選定する。		間接支持する配管の管軸方向と平行に配置される壁部材が多いの	
選定した断面位置を第12-1-16 図に示す。6 号炉海水貯留堰に		で,間接支持する配管の管軸方向が強軸となる。	
おいては汀線平行方向で古安田層の基底面が深い①断面を、汀線		屋外配管ダクト(タービン建物〜排気筒) はMMRを介してC	
直交方向で古安田層の基底面が深く突出長が長い②断面を、取水		<u>м級以上の岩盤に支持されている。</u>	
護岸部との接続部として③断面を選定する。7 号炉海水貯留堰に			
おいては、汀線平行方向及び汀線直交方向において古安田層の基			
<u>底面が深い④断面及び⑤断面を,取水護岸部との接続部として⑥</u> <u>断面を選定する。</u>		は し し し し し し し し し し し し し	



柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉         「クーンオ物」「クーレンオ物」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	<ul> <li>備考</li> <li>・対象施設の相違</li> <li>【柏崎 6/7】</li> <li>対象施設の相違によ</li> <li>る記載内容の相違</li> </ul>

柏蔭圳羽百乙九惑雲武 6 / 7 旦唇 (9017 19 90 屿)	- 一川百二カ惑電託 9 – 5 (2010 11 6 년)	自相百乙九兆索託 0月后
伯响/リイイ/尿丁//光电// 0/ (万)/ (2011.12.20 W)	女川床丁刀光电所 2.5 m (2019.11.0 版)	局限原于刀宪电 <u>例</u> 乙方炉
		+ 5  N→ EL(m) + 200 + 000 + 000
		$\frac{\mathbf{r}_{\mathbf{r}_{\mathbf{r}_{\mathbf{r}_{\mathbf{r}}}}}{\mathbf{r}_{\mathbf{r}_{\mathbf{r}}}} + \frac{\mathbf{r}_{\mathbf{r}_{\mathbf{r}}}}{\mathbf{r}_{\mathbf{r}_{\mathbf{r}}}} + \frac{\mathbf{r}_{\mathbf{r}_{\mathbf{r}}}}{\mathbf{r}_{\mathbf{r}_{\mathbf{r}}}} + \frac{\mathbf{r}_{\mathbf{r}_{\mathbf{r}}}}{\mathbf{r}_{\mathbf{r}}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}_{\mathbf{r}}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}_{\mathbf{r}}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}_{\mathbf{r}}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}}} + \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}} + \frac$

2 号炉	備考
	・対象施設の相違
(m)	【柏崎 6/7】
0	対象施設の相違によ
0	ス記載内容の相違
	る町載り母の相连
0	
0 月朝	
□ 埋戻土(振削ズリ) ■ 凝灰岩・凝灰角礫岩 (百岁の濃密を挟る))	
0 頁岩 · 凝灰岩の互層 頁岩	
<ul> <li>(蔵吹石の滞煙を扱む)</li> <li>一 岩相境界線</li> <li>0</li> <li>MMR・コンクリート構造物</li> </ul>	
ビン建物~排気筒)地質	
<u>(U)</u>	
ッット 建物~排気筒) 	
n→ EL (m)	
10.0	
+5.0	
0.0	
-5.0	
10.0	
15. 0	
20.0	
凡例 25.0 埋戻土(掘削ズリ)	
縦灰岩・凝灰角礫岩 (頁岩の薄層を挟む)	
30.0 頁岩・凝灰岩の互層 頁岩 (短度岩の 葉屋 た 地たい)	
35.0 (凝灰石の薄層を狭む)	
40.0 MMR・コンクリート構造物	
ビン建物~排気筒)地質	
<u>)</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	<u>唐根原子力発電所 2号炉</u> <u>現在土(編研Z))</u> <u>現本(編研Z))</u> <u>現本(編研Z))</u> <u>現本(編</u> ) <u>日</u> <u>日</u> <u>日</u> <u>日</u> <u>日</u> <u>日</u> <u>日</u> <u>日</u>	備考 ・対象施設の相違によ る記載内容の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		屋外配管ダクト(タービン建物〜排気筒)について、間接支持	・記載の充実
		する設備、構造的特徴、周辺状況及び地震力特性等の観点を踏ま	【柏崎 6/7】
		えた耐震評価候補断面を整理した(第6-2-7-1表)。	島根2号炉では,屋外
			重要土木構造物等にお
		第6-2-7-1表 耐震評価候補断面の整理(屋外配管ダクト(タ	ける耐震評価候補断面
		<u>ービン建物~排気筒))(1/2)</u>	の整理結果を記載して
		屋外配管ダクト (タービン建物〜排気筒)           観点         0 - の斯西         0 - の斯西         0 - の斯西	いる
		①要求機         要求機能         ·問接支持         ②         ②         ③         ③         ③         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○ </th <th></th>	
		旧並びに     間接	
		Lielの行 スポッ mのエアリウスクイボナイーといぶれやりムボ ILEl・デ mのエアリウスクイボナイーといぶれやりムボ ILEl・デ 酸価 状況 砂価 状況 ・延長方向に一様に配置されている	
		・強軸方向断面         ・弱軸方向断面	
		・鉄筋コンクリート適の地中構造物           ・鉄筋コンクリート適の地中構造物           ・状物コンクリート           ・状物コンクリート           ・状物コンクリート           ・状物コンクリート           ・大物コンクリート           ・大物コンクリー	
		(2)(病道の) 特徴 (タービン建物へ放水槽)弱 (タービン建物へ放水槽)弱 (カービン建物へ放水槽)強 (カービン建物へ放水槽)強 (カービン建物へ放水槽)強	
		第6-2-7-1表 耐震評価候補断面の整理(屋外配管ダクト(タ	
		-ビン建物~排気筒)) (2/2)	
		屋外配管がりト(タービン建物〜排気筒)	
		観点         ① - ①断面         ② - ②断面         ③ - ③断面         ④ - ④断面           ・MMRを介してCM級以上の岩盤に支持されている         ・MMRを介してCM級以上の岩盤に支持されている         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・	
		構造物 下部         小MRは高之約3.9~6.8mで, 断面方向に一様に分布している         小MRは高之約1.0~3.9mで, 断面方向に一様に分布している         小MRは高之約1.0~3.9mで, 断面方向に一様に分布している         小MRは高之約4.9m~1.0.4m         小MRは高之約4.9mで,構造物	
		地質     構造物問題・     ・理反夫し(堀向ズリ) が分布している       ③ 周辺     地質     ・たく	
		状況         変化部         %           地下水位         ・解析結果等を踏まえて整理する。	
		<ul> <li>・観点①での整理のよおり、各断面に間接支持する設備がある</li> <li>・観点①へごでの整理のとおり、間接支持する設備の種類及び設置状況は一様であるが、構造的特徴及び周辺状況に差異があることから、各断面の床応答特性実現なる</li> </ul>	
		以上の敷理を踏まう 詳細設計段階において 構造的特徴 周	
		辺北辺 地震波の伝搬特性笑を考慮して 3次元モデルに作用さ	
		とい何重を過めた計画することが可能な時間を巨文するとの内か	
		り 間面で 計画 内 家 間面 こして 医 足り る。 なわ, 計 神 取 目 校 間 に わ い て 記 字 オ る 地 下 水 位 竿 タ 艇 五 で 思 わ る 西 田 が ち わ げ こ そ の 細	
		いて成足りる地下水位寺、台内面で美なる安凶がの40は、ての戦 ちの軟理な行い、 証価対角販売な遅空する	
		<u> 二〇世</u> 建 で 10, 計 回 入 家 両 国 を 選 た り る 。	
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		【屋外配管ダクト(タービン建物~排気筒)の3次元モデルによ	・記載の充実
		る耐震評価】	【柏崎 6/7】
		第6-2-7-11図~第6-2-7-13図に示すように,屋外配管ダ	島根2号炉では,屋外
		クト(タービン建物~排気筒)の底版の一部が、屋外配管ダクト	配管ダクト(タービン建
		(タービン建物~放水槽)の頂版の一部と一体化している範囲が	物~排気筒) におけるモ
		あることから、当該部位のような複雑な構造における立体的な作	デル化を含めた耐震評
		用荷重を精緻に評価するため、3次元モデルによる耐震評価を実	価の考え方を記載して
		施する。	いる
		□ : 足外配管ダクトー体化部	
		······································	
		屋外配管ダクト (タービン建物~放水槽)	
		<管軸方向→	
		<u>第6-2-7-11図 屋外配管ダクト(タービン建物〜排気筒)平面</u>	
		単位:mm	
		←E	
		✓ 19090 ✓ EL+8800	
		98 屋外配管ダクト(タービン建物~排気筒) パンパッ	
		ୁ	
		7501	
		三 :屋外配管ダクト一体化部	
		   第6-2-7-12図 屋外配管ダクト(タービン建物~排気筒)断面	
		図(①-①断面)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		エリバスパイノソリノにと)パーシャル         エリバスパイノソリノにと)パーシャル         エリバスパイノソリノにと)パーシャル         エリバスパイノソリノにと)パーシャル         エリバスパイノソリノにと)パーシャル         エリバスパイレッション         エリバスパイレッション         エリジェー         エリジェー         エリジェー         エリジェー         エリジェー         エリシュー         エリシュー         エリシュー         エリシュー         エリショー         エリシュー         エリショー         エリショー     <	<ul> <li>・記載の充実</li> <li>【柏崎 6/7】</li> <li>島根2号炉では,屋外</li> <li>配管ダクト(タービン建</li> <li>物〜排気筒)におけるモ</li> <li>デル化を含めた耐震評</li> <li>価の考え方を記載して</li> <li>いる</li> </ul>
		<u>屋外配管ダクト(タービン建物~放水槽)の一体化部は,屋外</u> <u>配管ダクト(タービン建物~排気筒)を間接支持する構造物であ</u> <u>ることから,屋外配管ダクト(タービン建物~排気筒)と同じ要</u> <u>求機能を満足することを確認する。屋外配管ダクト(タービン建</u> <u>物~放水槽)の一体化部の要求機能,目標性能,許容限界等を第6</u> <u>-2-7-2表に示す。</u>	
		<u>第6-2-7-2表 屋外配管ダクト(タービン建物~放水槽)の一</u> <u>体化部における耐震評価条件</u> <u>要求機能に対する 時間で加速のではん断 解析手法 解析モデル</u> <u>世ん断 常が手法 解析モデル</u> 支持機能 終局状態に至らない 照界層間変形角 又は圧縮線コンクリート限界のずみ せん断耐力 時刻歴応答解析 世質デーのに基づく FEMモデル	
		<u>3次元モデル範囲は,屋外配管ダクト(タービン建物〜排気筒)</u> <u>と屋外配管ダクト(タービン建物〜放水槽)のそれぞれの構造目</u> 地間とし,イメージを第6-2-7-14図に示す。なお,屋外配管ダ クト(タービン建物〜排気筒)における耐震評価は,3次元FE Mモデルによる静的線形解析により評価を行う。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			<ul> <li>・記載の充実</li> <li>【柏崎 6/7】</li> <li>島根 2 号炉では, 屋外</li> <li>配管ダクト (タービン建</li> <li>物~排気筒)におけるモ</li> <li>デル化を含めた耐震評</li> <li>価の考え方を記載して</li> <li>いる</li> </ul>
		P-ビン建物 P-ビン建物 C-ビン建物~排気向 一 大 内 一 で 一 一 一 一 一 一 一 一 一 一 一 一 一	
		<u>(イメージ図方向①)</u> <u> </u> <u> </u> <u></u>	
		* <u>(イメージ図方向②)</u> <u>第6-2-7-14図 屋外配管ダクト(タービン建物~排気筒)</u> <u>イメージ図</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
2. 重大事故等対処施設の土木構造物の耐震評価における断面選			・対象施設の相違
定の考え方			【柏崎 6/7】
2.1 方針			対象施設の相違によ
重大事故等対処施設の土木構造物の評価対象断面については,			る記載内容の相違
構造物の配置や荷重条件及び地盤条件を考慮し、耐震評価上最も			
厳しくなると考えられる位置を評価対象断面とする。			
柏崎刈羽発電所6 号及び7 号炉での対象構造物は, 第一ガスター			
ビン発電機基礎及び第一ガスタービン発電機用燃料タンク基礎で			
ある。各施設の平面配置図を第12-2-1 図に示す。			
2.2 第一ガスタービン発電機基礎及び第一ガスタービン発電機用		2.8 屋外配管ダクト(タービン建物~放水槽)	
燃料タンク基礎の断面選定の考え方		屋外配管ダクト(タービン建物~放水槽)の配置図を第6-2-8	
第12-2-2 図に第一ガスタービン発電機基礎及び第一ガスター		-1図に,平面図を第6-2-8-2図に,縦断図を第6-2-8-3図に,	
ビン発電機用燃料タンク基礎の断面図を示す。		断面図を第6-2-8-4図~第6-2-8-5図に,地質断面図を第6	
		-2-8-6図に、地質縦断図を第6-2-8-7図に、岩級縦断図を第	
第一ガスタービン発電機基礎は,鉄筋コンクリート造の基礎版		<u>6-2-8-8図にそれぞれ示す。</u>	
が杭を介して西山層に支持される地中埋設構造物で,幅約14m (NS		<u>屋外配管ダクト(タービン建物~放水槽)は、Sクラス設備で</u>	
<u>方向)×約33m (EW方向),高さ約3.6~6.0mの基礎版を等間隔に配</u>		ある原子炉補機海水系配管等の間接支持機能が要求される。	
置した杭で支持する比較的単純な基礎構造物であり、評価対象断		屋外配管ダクト(タービン建物~放水槽)は,延長約49mの鉄筋	
<u>面方向に一様な構造となっている。また、基礎版及び杭の周辺に</u>		コンクリート造の地中構造物であり,幅7.6m,高さ4.7mのボック	
は地震時における変形抑制対策として地盤改良を実施しているた		スカルバート構造, 幅7.0m, 高さ4.2mのボックスカルバート構造	
め周辺の地盤が構造物に与える影響はどの断面も大きな差はない		<u>に大別される延長方向に断面の変化が小さい線状構造物である</u>	
<u>と考えられる。</u>		(第6-2-8-4図~第6-2-8-5図)。	
<u>第一ガスタービン発電機用燃料タンク基礎は、鉄筋コンクリー</u>		間接支持する配管の管軸方向と平行に配置される壁部材が多い	
<u>ト造のピットが杭を介して西山層に支持される地中構造物で,幅</u>		ので、間接支持する配管の管軸方向が強軸となる。	
<u>約12m (NS 方向) ×約12m (EW 方向), 高さ約8.3m のピットを等</u>		<u>屋外配管ダクト (タービン建物〜放水槽) はMMRを介してC_M</u>	
間隔に配置した杭で支持する比較的単純な基礎構造物であり、評		<u>級以上の岩盤に支持されている。</u>	
価対象断面方向に一様な構造となっている。また、ピット及び杭			
の周辺には地震時における変形抑制対策として地盤改良を実施し			
ているため周辺の地盤が構造物に与える影響はどの断面も大きな			
差はないと考えられる。			
今回工認では、基礎版及びピットの長軸方向及び短軸方向の2			
断面を選定し,基準地震動Ss による耐震評価を実施する。			
第一ガスタービン発電機基礎及び第一ガスタービン発電機用燃			
料タンク基礎の検討断面では、地下水位以下に、液状化影響評価			
対象層(新期砂層・沖積層、古安田層洪積砂質土層)が分布する			
ことから,耐震評価では有効応力解析を実施する。			





·炉	備考
 単位:mm	・対象施設の相違
$W\!\!\rightarrow\!$	【柏崎 6/7】
	対象施設の相違によ
\	る記載内容の相違
4200	
<u>4 // // // // // // // // //</u> //	
ン建物~放水槽) 縦	
W 4	
單位 : mm E→	
▽FL+8500	
<u>V EL+0/00</u>	
\[\] \[ \] \[ \] EL \[ 1000 \] \[ \]	
<u>▽EL-4000</u>	
<u>-141496</u>	
<u>ノ                                    </u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
1.8.5.L         (5.99)           10.0         1.8.5.L           10.0         1.9.5.L </td <td></td> <td>←N</td>		←N
-**・・ (第一ガスタービン発電機用燃料タンク基礎 NS 断面) <u>第12-2-2 図 第一ガスタービン発電機及び第一ガスタービン発電</u> <u>機用燃料タンク基礎断面図 (3/3)</u>		$_{-0}$ E + 0 E (m) $_{-10,0}$ $_{-5,0}$ $_{-5,0}$ $_{-5,0}$ $_{-10,0}$ $_{-5,0}$ $_{-10,0}$ $_{-5,0}$ $_{-10,0}$ $_{-5,0}$ $_{-10,0}$ $_{-5,0}$ $_{-10,0}$ $_{-5,0}$ $_{-10,0}$ $_{-5,0}$ $_{-10,0}$ $_{-5,0}$ $_{-10,0}$ $_{-5,0}$ $_{-10,0}$ $_{-5,0}$ $_{-10,0}$ $_{-5,0}$ $_{-10,0}$ $_{-5,0}$ $_{-10,0}$ $_{-5,0}$ $_{-10,0}$ $_{-5,0}$ $_{-10,0}$ $_{-5,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0}$ $_{-10,0$

「行	備考
単位 : mm	・対象施設の相違
S→	【柏崎 6/7】
タービン建物~放水槽)	対象施設の相違によ
	る記載内容の相違
\[\] \[ EL+8500	
<u>▽EL+5500</u>	
<u> </u>	
<u>VEL-8000</u>	
ン運物~放水槽)断面	
EL. (m) 10. 0	
+5.0	
0.0	
-5. 0	
10. 0	
凡例 回 埋戻主 (掘削ズリ) 15.0	
(頁岩の薄層を挟む) (頁岩の薄層を挟む) [頁岩・凝灰岩の互層	
頁岩         (凝灰岩の薄層を挟む)           /         岩相境界線	
MMR・コンクリート構造物	
ン建物~放水槽)地質	
-	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2 号炉(2019.11.6版)	島根原子力発電所 25
			屋外配管がりト (タービン建物~排気間)           ーS         (ビーン建物、加気間)
			HL. (n) +10.0 +5.0 
			-16.0
			 第6-2-8-7図 屋外配管ダクト(タービ
			屋外配管约7ト (9-ビン建物~排気筒)
			+6.0 9-ビン建物 埋戻土 (掘削ズリ)
			-5.0 MMR
			-10.0 CM级以上
			-15.0
			第6-2-8-8図 屋外配管ダクト(タービ
			縦断図(①-①断面)
			<u>する設備</u> ,構造的特徴,周辺状況及び地震
			えた耐震評価候補断面を整理した(第6-2
			①断面のうち屋外配管ダクト(タービン建 ル部については、屋外配管ダクト(タービン建
			ける評価対象候補断面として整理する。
			第6-2-8-1表 耐震評価候補
			(屋外配管ダクト(タービン建物~)
			観点         屋外配管ダクト(ター           ① - ②断面
			①要求機能並びに 間接支持する機 器・配管の有無及         ・間接支持 間接支持す。         ・同子炉補機海水系         配管 ・ラーとご補機海水系         ・同子炉補機海水系         配管 ・クーと、補機海水系         ・配管 ・クーと、補機海水系         ・配管 ・分ーと、補機海水系         ・日 ・分ーと、補機海水系         ・回 ・分ーと、補機海水系         ・日 ・分ーと、補機海水系         ・日 ・分ーと、補機海水系         ・日 ・分ーと、補機海水系         ・日 ・分ーと、         ・日 ・分ーと、         ・日 ・分ーと、         ・日 ・分         ・日 ・日 ・分         ・日 ・日 ・分         ・日 ・日 ・分         ・日 ・日 ・分         ・日 ・日 ・日 ・分         ・日 ・日 ・分         ・日 ・日 ・分         ・日 ・日 ・日 ・分         ・日 ・日 ・日 ・日 ・日 ・日 ・日 ・日 ・日 ・日 ・日 ・日 ・日 ・
			②構造的特徴         形式         ・鉄筋コングリート造の地中構造物           ・状筋ウスカルパート         ・ボックスカルパート
			寸法 ·幅7.60m, 高さ4.70m



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		第6-2-8-1表 耐震評価候補断面の整理	・対象施設の相違
		(屋外配管ダクト(タービン建物~放水槽))(2/2)	【柏崎 6/7】
		屋外配管ダクト(タービン建物~放水槽)	対象施設の相違によ
			る記載内容の相違
		構造物         ・MMRを介してCM級以上の岩盤に支持されている           下部         ・MMRは高さ約5.0mで,構造物直下に分布している         ・MMRは高さ約9.2mで,構造物直下に分布している	
		周辺地質 構造物側部及び 上部・理反主 (堀削ズリ)が分布している	
		③周辺状況         地質 変化部         ・なし	
		地下水位         ・解析結果等を踏まえて整理する。           モデル化する         いたって	・資料構成の相違
		序接描述物         ・排文局         ・排文局           ④         ・観点③での整理のとおり、構造物下部の周辺地質が各断面で異なり、地震波の伝搬特性が異なる(MMR高さ	【柏崎 6/7】
			島根2号では屋外重
		⑤休心を行性 ・ 軟用してついたを見いたか、同時を文付するな間の構成などお良くが元は一体にあるが、体短が引きなないのである。 状況に差異があることから、各断面の床に答特性が異なる	要土木構造物及び重大
		以上の整理を踏まえ,詳細設計段階において,地震応答解析に	事故等対処施設のうち
		より耐震評価を行ううえで、構造物の応答が耐震評価上厳しくな	土木構造物を「屋外重要
		ると考えられる断面を評価対象断面として選定する。なお、詳細	十木構造物等  として示
		設計段階において設定する地下水位等。各断面で異たる要因があ	上ている
		れげ その組占で敷理を行い 評価対象断面を選定する	
		40は、ての既応て主任で行す。	
			山舟た弐の村本
			・対象施設の相違
			【柏崎 6/7】
			対象施設の相違によ
			る記載内容の相違
		2.9 屋外配管ダクト(B-ディーゼル燃料貯蔵タンク〜原子炉建	
		物)	
		<u> 一</u> 二 二 に	
		$     \overline{0}$ <u>能</u> 直因を第 $\overline{0}$ - 2 - 9 - 1 因に、十面因を第 $\overline{0}$ - 2 - 9 - 2 因に、 一般的	
		図	1
		図~第6-2-9-10図に、地質断面図を第6-2-9-11図~第6-2	1
		<u>-9-13図に,地質縦断図を第6-2-9-14図~第6-2-9-15図</u>	1
		に, 岩級縦断図を第6-2-9-16図~第6-2-9-17図にそれぞれ	
		示す。	
		<u>屋外配管ダクト (B-</u> ディーゼル燃料貯蔵タンク~原子炉建物)	
		は、Sクラス設備であるB-ディーゼル燃料移送系配管・弁の間	1
			1
			1
		は、延長約75mの鉄筋コンクリート诰の地中構诰物であり 幅2.67m	1
		~3 85m 高さ3 55~4 25mのボックスカルバート構造の延長方向	1
			1
		<u>に即回の変化が小さい稼状</u> 傳垣物でめる(弗b-2-9-5凶~弗b	1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		$(-2-9-10\boxtimes)_{\circ}$	・対象施設の相違
		屋外配管ダクト(B-ディーゼル燃料貯蔵タンク~原子炉建物)	【柏崎 6/7】
		<u>は、一部MMRを介してC_M級以上の岩盤に支持されている。</u>	対象施設の相違によ
		間接支持する配管の管軸方向と直交する方向に配置される壁部	る記載内容の相違
		材が少ないので、間接支持する配管の管軸方向が強軸となり、管	
		軸直交方向が弱軸となる。	
		の       50       100(m)	
		第6-2-9-1図 屋外配管ダクト(B-ディーゼル燃料貯蔵タン	
		ク~原子炉建物) 配置図	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
伯呵利初原于刀光电内 07750	(2017.12.20 hg)	女川床丁乃宪电所 2 5分 (2019.11.0 版)	田田市            田田市            御田市            御田            御田            御田            御田            御田            御田            御田            御田            『田            『田            『田            『田            『田            『日            『日            『日            『日 <tr< th=""></tr<>
			<u>ク~原子炉建物)</u> 平面 ←S <u>B</u> 外配管ダクト (B-ディーゼル燃料貯蔵タン
			←W



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		単位:mm	・対象施設の相違
		屋外配管ダクト(B-ディーゼル 燃料貯蔵タンク~原子炉建物)	【柏崎 6/7】
		EL+15000	対象施設の相違によ
			る記載内容の相違
		Alter and a second and a second and a second a s	
		<u>第6-2-9-5図 屋外配管ダクト(B-ディーゼル燃料貯蔵タン</u>	
		ク~原子炉建物) 断面図(①-①断面)	
		単位 : mm 屋外配管ダクト( B -ディーゼル	
		燃料貯蔵9ンク~原子炉建物) G /	
		2700	
		Astrophil 12	
		<u>第6-2-9-6図 屋外配管ダクト(B-ディーゼル燃料貯蔵タン</u>	
		<u>ク~原子炉建物) 断面凶(2)(2)断面)</u>	
		屋外配管ダクト	
		(日-ディーゼル燃料 貯蔵タンク~原子炉建物)	
		2050	
		EL+15000 単位:mm	
		AUMA ANA ANA ANA ANA ANA ANA ANA ANA ANA A	
		$ $	

<ul> <li>             ・ 「日本の「日本の」             ・ 「日本の」             ・             ・</li></ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所       2号炉         「日 - ジィージル感報」       日 - ジィージル感報         第第80-20-9月子伊建物       日 - ジィージル感報         第990       日 - ジィージル感報         第66-2-9-10区       屋外配管ダクト(B-ディーゼル燃料貯蔵タン         クへ原子炉建物)       断面区(⑦-⑦断面)         第66-2-9-11区       屋外配管ダクト(B-ディーゼル燃料貯蔵タン)         第79729000      ジャージャージャージャージャージャージャージャージャージャージャージャージャージ	<ul> <li>備考</li> <li>・対象施設の相違</li> <li>【柏崎 6/7】</li> <li>対象施設の相違によ</li> <li>る記載内容の相違</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20月	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
相時利羽原于万宠电灯 6/15分 (2011.12.20)		前板原丁乙分电列       2 5 7 / 1 5 0 K H H H H H H H H H H H H H H H H H H	(捕ち) (拍崎 6/7) 対象施設の相違によ る記載内容の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所       2号炉	<u>備</u> 考 ・対象施設の相違 【柏崎 6/7】 対象施設の相違によ る記載内容の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉         ←S       N→         「日、日、日、日、日、日、日、日、日、日、日、日、日、日、日、日、日、日、日、	備考 ・対象施設の相違 【柏崎 6/7】 対象施設の相違によ る記載内容の相違
		第子序建物     0.0       -10.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -0.0       -20.0     -20.0       -20.0     -20.0       -20.0     -20.0       -20.0     -20.0       -20.0     -20.0       -20.0     -20.0       -20.0     -20.0       -20.0     -20.0       -20.0     -20.0       -20.0     -20.0       -20.0     -20.0       -20.0     -20.0       -20.0     -20.0       -20.0     -20.0       -20.0     -20.0       -20.0     -20.0       -20.0     -20.0	・記載の充実 【柏崎 6/7】 島根2号炉では,屋外 重要土木構造物等にお ける耐震評価候補断面 の整理結果を記載して いる

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)			島根原子力発電所	所 2号炉		備考
		第6-2-9-1表 耐震評価候補断面の整理(屋外配管ダクト(B			・記載の充実		
		-	-ディーゼノ	レ燃料貯蔵タンク	~原子炉建物))	) (1/3)	【柏崎 6/7】
				屋外配管ダクト(	B - ディーゼル燃料貯蔵タンク~	原子炉建物)	島根2号炉では,屋外
			観点	①-①断面	Q	9-2断面	香西十木構造物学にお
		①要求機能並 75に間接支持	要求機能	·間接支持	ľ		里安工不博坦初寺にわ
		する機器・配管の有無及び	間接支 設備 持する	<ul> <li>B – ディーゼル燃料移送系 配管</li> </ul>	管·弁 -		ける耐震評価候補断面
		設置状況	設備設置状況	・ 進長万向に一様に配置されてい	ර -		の整理結果を記載して
		②構造的特徴	形式	・ 新助コンクリート這の 地中構造物 ・ ボックスカルバート	J		いる
			寸法	・幅2.70m, 高さ4.25m	・幅2.70m, 高さ3.	.55m	
			構造物下部	<ul> <li>・一部MMRを介してCM級以上の</li> <li>・周辺に埋屋土(掘削プリ)及び</li> </ul>	と考察に支持されている		
			辺 構造物側部及ひ  地  上部	・MMRは高さ約3.6m~13.1m	で, 台形状である		
		③周辺 状況	^資 地質変化部	・なし			
			地下水位	・解析結果等を踏まえて整理する	0		
			モデル化する 隣接構造物	・なし			
		④地震	波の伝搬特性	・観点③での整理のとおり,構造物である	物下部の周辺地質に差異はなく,	地震波の伝搬特性は一様	
		51	末応答特性	<ul> <li>・観点①での整理のとおり、各断で</li> <li>・観点①~③での整理のとおり、「</li> <li>様であるが、構造的特徴に差異</li> </ul>	面に間接支持する設備がある 間接支持する設備の種類及び設 があることから,各断面の床応答	2置状況並びに周辺状況は一 5特性が異なる	
		<u>第6-2-</u>	-9-1表 m -ディーゼノ (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)- (0)-	<b>村震評価候補断面 レ燃料貯蔵タンク 屋</b> 外配管ダクト(B - 7 <b>⑥町面</b> ③-⑤町面 <b>小燃料移送系 配管・弁 一様に配置されている ト造の地中構造物 一ト 高さ4.25m 村震評価候補断面 レ燃料貯蔵タンク 屋外配管ダクト(B - 7 「市 高さ4.25m 村震評価候補断面 レ燃料貯蔵タンク 屋外配管ダクト(B - 7 「市面</b> ⑤-⑤町面 <b>〇小飯以上の岩館に支持されている 12.1m及び19.5mで一様に分布してい 13.1m及び19.5mで一様に分布してい 協志れている 16.1m及び19.5mで一様に分布してい 協志れている 16.1m及び19.5mで一様に分布してい 16.1m及び19.5mで一様に分布してい 16.1m及び19.5mで一様に分布してい 16.1m及び19.5mで一様に分布してい</b>	<ul> <li>の整理(屋外酯)</li> <li>~原子/炉建物))</li> <li>「・一ゼル燃料貯蔵タンク~原子炉建</li> <li>・●●●断面</li> <li>・幅2.67m,高さ3.74m</li> <li>の整理(屋外酯)</li> <li>~原子/炉建物))</li> <li>「・一世ル燃料貯蔵タンク~原子炉建物</li> <li>・●●●断面</li> <li>・・「「「「「「「」」」、</li> <li>・・「「」、</li> <li>・・「「」、</li> <li>・・「「」、</li> <li>・・「「」、</li> <li>・・「「」、</li> <li>・・「「」、</li> <li>・・「「」、</li> <li>・・「「」、</li> <li>・・</li> <li>・・</li> <li>・・</li> <li>・・</li> <li>・・</li> <li>・・</li> <li>・・</li> <li>・・</li> <li>・</li> <li>・</li></ul>	2管ダクト(B) (2/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3/3) (3	
		モデル 隣接 ④地震波の伝	化する 構造物         ・なし           搬特性         ・観点③での整           ・観点①での整	理のとおり,構造物下部の周辺地質が各 理のとおり, 各断面に間接支持する設備。	・原子炉建物 断面で異なり, 地震波の伝搬特性が がある	異なる	
		⑤床応答符	・観点①~③で ることから、各	の整理のたおり、間接支持する設備の種 断面の床応答特性が異なる	類及び設置状況は一様であるが,構改	查的特徵及び周辺状況に差異があ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		以上の整理を踏まえ、詳細設計段階において、地震応答解析に	・記載の充実
		より耐震評価を行ううえで、構造物の応答が耐震評価上厳しくな	【柏崎 6/7】
		ると考えられる断面を評価対象断面として選定する。なお、詳細	島根2号炉では,屋外
		設計段階において設定する地下水位等,各断面で異なる要因があ	重要土木構造物等にお
		れば、その観点で整理を行い、評価対象断面を選定する。	ける耐震評価候補断面
			の整理結果を記載して
			いる

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		2.10 屋外配管ダクト(ガスタービン発電機用軽油タンク~ガス	・対象施設の相違
		タービン発電機)	【柏崎 6/7】
		屋外配管ダクト(ガスタービン発電機用軽油タンク~ガスター	対象施設の相違によ
		ビン発電機)の配置図を第6-2-10-1図に,平面図を第6-2-10	る記載内容の相違
		-2図に、縦断図を第6-2-10-3図に、断面図を第6-2-10-4	
		図~第6-2-10-6図に、地質断面図を第6-2-10-7図に、地質	
		縦断図を第6-2-10-8図に,岩級縦断図を第6-2-10-9図にそ	
		れぞれ示す。	
		屋外配管ダクト(ガスタービン発電機用軽油タンク~ガスター	
		ビン発電機)は、常設重大事故等対処設備であるガスタービン発	
		電機用燃料移送配管・弁の間接支持機能が要求される。	
		屋外配管ダクト(ガスタービン発電機用軽油タンク~ガスター	
		ビン発電機)は、延長58.32m、幅2.8m、高さ1.8mの鉄筋コンクリ	
		一ト造の地中構造物であり、延長方向に断面の変化がない線状構	
		造物である(第6-2-10-4~第6-2-10-6図)。	
		<u>屋外配管ダクト(ガスタービン発電機用軽油タンク~ガスター</u>	
		ビン発電機)は、MMRを介してC _M 級以上の岩盤に支持されてい	
		<u>る。</u>	
		間接支持する配管の管軸方向と直交する方向に配置される壁部	
		材が少ないので、間接支持する配管の管軸方向が強軸となり、管	
		軸直交方向が弱軸となる。	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号	宁炉(2019.11.6版)	島根原子力発電所 2号
柏崎刈羽原子力発電所	6 / 7 号炉	(2017. 12. 20 版)	女川原子力発電所 2号	护炉 (2019.11.6版)	島根原子力発電所 25         ガスタービン発電機用         昭治シンク基礎         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		屋外配管ダクト (ガスタービン発電機用軽油タンク ~ガスタービン発電機)       単位:mm         ペガスタービン発電機)       2800         マEL+47250         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000 <t< th=""><th><ul> <li>・対象施設の相違</li> <li>【柏崎 6/7】</li> <li>対象施設の相違によ</li> <li>る記載内容の相違</li> </ul></th></t<>	<ul> <li>・対象施設の相違</li> <li>【柏崎 6/7】</li> <li>対象施設の相違によ</li> <li>る記載内容の相違</li> </ul>

柏崎刈羽原子力発電所 6/	7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
			EL-45.95m 年 (ガスタービン発電機用軽油タンタ〜 ガスタービン発電機用軽油タンタ〜 がなりービン発電機用 約55.7m EL+45.95m 44.0 44.0 44.0 45.0 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン発電機用 (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービ) (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスタービン (ガスター)) (ガスタービン (ガスター (ガスター))
			<u>ンク~ガスタービン発電機)</u> 地質縦脚 ^{EL(m)} ^{EL+45.95m} ^{EL+47.25m} ^{EL+47.25m} ^{EL+47.25m}
			****.0 ********************************



柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
				屋外配管ダクト(ガスタービン発電機用軽油タンク~ガスター	・記載の充実
				ビン発電機)について、間接支持する設備、構造的特徴、周辺状	【柏崎 6/7】
				況及び地震力特性等の観点を踏まえた耐震評価候補断面を整理し	島根2号炉では,屋外
				た(第6-2-10-1表)。	重要土木構造物等にお
					ける耐震評価候補断面
					の整理結果を記載して
				第6-2-10-1表 耐震評価候補断面の整理(屋外配管ダクト(ガ	いる
				スタービン発電機用軽油タンク〜ガスタービン発電機))	
				①=①断面         ②-②断面         ③-③断面           ①要求機 能均分回期         要求機能         ・間接支持	
				設置状況         ****(投入)「り」(一様)」に置くれている。           2(構造的         形式         ****(投入)「り」(一様)」に置くれている。	
				特徴         寸法         ・幅2.80m,高さ1.80m           ・MRを介してCM級以上の岩盤に支持されている         ・MMRを介してCM級以上の岩盤に支持されている	
				構造物ド部         ・MMRは高さ約0.8~1.0m程度で台形状である。           周辺         地留構造物側部           地留構造物側部         細門士・(伊洲マロ)・ゲンカーマンス	
				③周辺 状況         及び上部         ・生火上         0回用入り         の力している。	
				地下水位         ・解析結果等を踏まえて整理する。           モデル化する	
				隣接構造物         ・&し           ④地震波の伝搬特性         ・観点③での整理のとおり,構造物下部の周辺地質に差異はなく,地震波の伝搬特性は一様である	
				・観点①での整理のとおり、各断面に間接支持する設備がある ・観点①・②での整理のとおり、間接支持する設備がある ・観点①・③での整理のとおり、間接支持する設備の種類及び設置状況は一様であり、構造的特徴及び周辺状況も一様である ことから、各断面の床応答特性に差異はない	
				以上の整理を踏まえ、詳細設計段階において、地震応答解析に	
				より耐震評価を行ううえで、構造物の応答が耐震評価上厳しくな	
				ると考えられる断面を評価対象断面として選定する。なお、詳細	
				設計段階において設定する地下水位等,各断面で異なる要因があ	
				れば,その観点で整理を行い,評価対象断面を選定する。	

柏崎刈羽原子力発電所 6/7号炉 (201	17.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			2.11 取水口	・対象施設の相違
			取水口の配置図を第6-2-11-1図に,平面図を第6-2-11-2	【柏崎 6/7】
			図に、断面図を第6-2-11-3図~第6-2-11-4図に、地質断面	対象施設の相違によ
			図を第6-2-11-5図~第6-2-11-6図に, 岩級断面図を第6-2	る記載内容の相違
			-11-7図~第6-2-11-8図にそれぞれ示す。	
			取水口は,非常用取水設備であり,通水機能が要求される。	
			取水口は, 直径18.6m, 高さ13mの基部をアンカーコンクリート	
			で巻き立てられた鋼製の構造物である。	
			取水口はC _M 級以上の岩盤に直接支持されている。	
			取水口は円筒状構造物であるため、強軸及び弱軸が明確ではな	
			取水口I       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ① <th></th>	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考	
--------------------------------	--------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------	
			<ul> <li>・対象施設の相違</li> <li>【柏崎 6/7】</li> <li>対象施設の相違によ</li> <li>る記載内容の相違</li> </ul>	
		$\frac{1}{96-2-11-32} \text{ B} \times \text{PI} \text{ I}  $		

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
				<u>第6-2-11-6図 取水口 地質断面区</u> ←NE EL(m)
				0.0 -10.0 -20.0 <u>EL-22.0m</u>
				-30.0 -40.0 尺例 :営相境界線 -50.0
				<u>第6-2-11-7図 取水口 岩級断面図</u>
				EL.(m) 0.0 -10.0 -20.0 -30.0 EL-22.0m CM級以上
				-40.0 -50.0 第6-2-11-8図 取水口 岩級断面图



柏崎刈羽原子力発電所 6/7号炉 (201)	7.12.20版)	女川原子力発電所	2号炉(2019.11.6版)			島根原子力発電所 2号
				取水	ロについて.	間接支持する設備、構造
				7114年	古時州卒の金	<u>                                    </u>
				の地震	刀特性寺の衝	<u>現品を踏まえた</u> 胴展評価1
				_(第6-	-2-11-1表	)。
				(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		1表 耐震評価候補断面の
					観点	取水口
				①亜尖綝		①-①断面, ③-③断面
				し安水機 能並びに 間接支持	要求機能	・通水
				する機器・	□ 設備 間接支持	・なし
				部日の月 無及び設 置状況	する設備設置状況	-
				②構造的	形式	・鋼製の円筒状構造物
				特徴	寸法	・Φ18.60m, 高さ13.00m
					構造物下部	・CM級以上の岩盤に直接支持されている
					周辺 構造物側部 地質 及び上部	・アンカーコンクリート及び海底堆積物・風化岩が分
				③周辺	地質変化部	・なし
				状況	地下水位	—(水中構
					モデル化する 隣接構造物	・なし
				④地	国震波の伝搬特性	・観点③での整理のとおり,断面位置により周辺។ 様である
				e	5床応答特性	・観点①での整理のとおり,間接支持する設備が
				<u>以上</u>	の整理を踏る	<u>にたい、詳細設計段階におい</u>
				辺次況	」、地震波の位	「旅行性寺を考慮しく」、
				<u>せる荷</u>	重を適切に記	¥価することが可能な断回
				ら評価	対象断面とし	<u>して選定する。なお,詳約</u>
				<u>定する</u>	地下水位等,	各断面で異なる要因があ
				理を行	い,評価対象	泉断面を選定する <u>。</u>

计炉	備考
造的特徵,周辺状況及	・記載の充実
候補断面を整理した	【柏崎 6/7】
	島根2号炉では,屋外
	重要土木構造物等にお
の整理(取水口)	ける耐震評価候補断面
	の整理結果を記載して
	いる
分布している	
<b>造物)</b>	
取水口は取水管と可撓ジョイントで接続され ており、取水管の影響を受けないことから、 モデル化する隣接構造物はない	
状況に差異がなく、地震波の伝搬特性は一	
<b>がない</b>	
、 一 # * # 45 44 446 国	
3次元モテルに作用さ	
<u>面を直交する2万向か</u>	
細設計段階において設	
あれば <u>,</u> その観点で整	
	1

2017.12.20版) 女川原子	力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		2.12 ガスタービン発電機用軽油タンク基礎	・対象施設の相違
		ガスタービン発電機用軽油タンク基礎の配置図を第6-2-12-	【柏崎 6/7】
		1図に,平面図を第6-2-12-2図に,断面図を第6-2-12-3~第	対象施設の相違によ
		6-2-12-4図に,地質断面図を第6-2-12-5図に,岩級断面図	る記載内容の相違
		を第6-2-12-6図にそれぞれ示す。	
		ガスタービン発電機用軽油タンク基礎は、常設重大事故等対処	
		設備であるガスタービン発電機用軽油タンク等の間接支持機能が	
		要求される。	
		ガスタービン発電機用軽油タンク基礎は、幅18m×18mの鉄筋コ	
		<u>ンクリート造の構造物である。</u>	
		<u>ガスタービン発電機用軽油タンク基礎は、MMRを介してC_M</u>	
		<u>級以上の岩盤に支持されている。</u>	
		ガスタービン発電機用軽油タンク基礎は正方形の直接基礎であ	
		るため、強軸及び弱軸が明確ではない。	
		<image/> <caption></caption>	
2	017.12.20版) 女川原子	<u>017.12.20版</u> ) 女川原子力発電所 2 号炉 (2019.11.6 版)	017.12.20 (k)     医規算子分配量件 235/F       017.12.20 (k)        017.12.20 (k)        12.12.75.76     212.75.76       12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.76        12.12.75.77        12.12.75.77        12.12.77.77        12.12.77.77        12.12.77.77        12.12.77.77        12.12.77.77        12.12.77.77        12.12.77.77       12.12.77.77

19 日本の福田市会の2021年 19 日本の福田市会の2021年 19 日本の福田市会の2021年 19 日本の 19 日	第2-12-23年費用総約9-2月2         第1000         第1000         第1100         第1100
	第6-2-12-4図 ガスタービン発電機用軽油         断面図 (②-②断面)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.2	版) 女川原子力発電所 2号炉(	2019.11.6版) 島根原子力発電	所 2号
柏崎刈羽原子力発電所 6/7号炉 (2017.12.2	版) 女川原子力発電所 2 号炉(	2019. 11.6 版)       島根原子力発電)         パー       東葉: 温尿角爆苦((第スワ))         ドレライト       日本語: 温尿角爆苦((第スワ))         ドレライト       日本語: 温尿角爆苦((第スワ))         アビライト       日本語: 温尿角爆苦((第スワ))         アビライト       日本語: 温尿角爆苦((第スワ))         アビライト       日本語: 温尿角爆苦((第スワ))         中国の       1000         1000       1000         1000       1000         1000       1000         第6-2-12-5図       ガスタービ: 地質断面図(①)         1000       1000         1000       1000         第6-2-12-5図       ガスタービ: 地質断面図(①)         1000       1000         1000       1000         第6-2-12-6図       ガスタービ: 地質断面図(①)         1000       1000         1000       1000         1000       1000         1000       1000         1000       1000         1000       1000         1000       1000         1000       1000         1000       1000         1000       1000         1000       1000         1000       1000         1000       1000         1000       1000	所 2 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		<u>第6-2-12-6図 ガスタービン</u> <u>岩級断面図(①</u> ·	<u>ン発電機</u> 一①断面



柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所	2号炉(2019.11.6版)	島根原子力発電所 2号炉		備考		
					ガスタービン発電機用軽油タンク基礎について、間接支持する			・記載の充実	
					設備、構造的特徴、周辺状況及び地震力特性等の観点を踏まえた		【柏崎 6/7】		
					耐震	評価候補断	面を整理した(第6-2-	12-1表)。	島根2号炉では,屋外
									重要土木構造物等にお
									ける耐震評価候補断面
						第6-	-2-12-1表 耐震評価値	侯補断面の整理	の整理結果を記載して
						(大	iスタービン発電機用軽油	タンク基礎)	いる
						観点	ガスタービン発電	機用軽油タンク基礎	
					<ol> <li>①要求機</li> <li>能並びに間</li> </ol>	要求機能	<ul> <li>① - ① 断面</li> <li>・間接支持</li> </ul>	(2) — (2) (2) (2)	
					接支持する 機器・配管 の有無及び	う 間接支持 する設備	・ガスタービン発電機用軽油タンク ・ガスタービン発電機用燃料移送配管・弁		
					設置状況	設置状況	<ul> <li>・一様に配置されている</li> <li>・鉄筋コンクリート造の地中構造物</li> </ul>		
					2構造的 特徴	形式	・断面急変部は存在しない		
						寸法構造物下部	<ul> <li>・幅18.00×18.00m</li> <li>・MMRを介してCM級以上の岩盤に支持されている</li> </ul>		
						周辺地質構造物側部	・MMRは高さ約0.7mで、矩形である ・岩盤及び一部に埋戻土(掘削ズリ)が分布している		
					③周辺 状況	及び上部 地質変化部	<ul> <li>・南側に岩盤斜面が存在する</li> </ul>	・なし	
						地下水位	・解析結果等を踏まえて整理する。		
					(4	隣接構造物	<ul> <li>・なし</li> <li>・親占③での整理のとおり 構造物下部の周辺地質に差異がな</li> </ul>	2 地震波の伝搬特性は一様である	
						⑤床応答特性	・観点①での整理のとおり、各断面に間接支持する設備がある ・観点①~③での整理のとおり、間接支持する設備の推測及し があるごとから、各断面の床広答特性が異なる	「設置状況並びに構造的特徴は一様であるが、周辺状況に差異	
							NOBCEN JI THIMONOVENTIALIYEE		
					D1	しの敵理ナ		おいて、構造的性強、国	
					<u>以</u>		「		
					<u> 迎</u> 沃	<u>况,                                    </u>	の伝搬特性等を考慮しし	, 3 次元七アルに作用さ	
					せる	何重を適切	に評価することが可能な	断面を直父する2万同か	
					<u>ら評</u>	価対象断面	として選定する。なお、	詳細設計段階において設 いいたい、 アーロー 14	
					<u>定す</u>	<u>る地下水位</u> 〜 ーーー	1等, 各断面で異なる要因	があれは, その観点で整	
					<u>埋を</u>	行い、評価	対象断面を選定する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		2.13 取水管	・対象施設の相違
		取水管の配置図を第6-2-13-1図に,平面図を第6-2-13-2	【柏崎 6/7】
		図に,縦断図を第6-2-13-3図に,輪谷湾周辺の底質分布を第6	対象施設の相違によ
		-2-13-4図に,平面図(詳細図)を第6-2-13-5図に,断面図	る記載内容の相違
		を第6-2-13-6図~第6-2-13-7図に,地質断面図を第6-2-	
		13-8~第6-2-13-11図に、地質縦断図を第6-2-13-12図に、	
		岩級縦断図を第6-2-13-13図にそれぞれ示す。	
		取水管は,非常用取水設備であり,通水機能が要求される。	
		取水管は、取水口と取水槽を結ぶ、管径φ4,300mmの鋼製の構造	
		<u>物であり、北側より、③-③断面(砕石<mark>埋戻部</mark>)、①-①断面(コ</u>	
		<u>ンクリート巻立部</u> )により構成され,通水方向に対して一様の断	
		<u>面形状を示す管路構造物である(第6-2-13-6図~第6-2-13</u>	
		$-7$ ( $\mathbb{Z}$ ).	
		取水管の縦断方向(通水方向)は,通水方向に対して空間を保	
		持できるように構造部材が配置されていることから強軸となり,	
		横断方向(通水方向に対する直交方向)が弱軸となる。	
		輪谷湾の底質土砂は, 岩及び砂礫で構成されているが, 取水口・	
		取水管が設置される周辺は、岩が分布している(第6-2-13-4	
		図)。	
		<u>取水管は、岩盤掘削した中に砕石または参立コンクリートを介</u>	
		<u>してC_M級以上の岩盤に支持されている。</u>	
		$\hat{B}6-2-13-1$ $\mathbb{R}$ $\mathbb{R}$	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所	2 号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所	6 / 7 号炉	(2017. 12. 20 版)	女川原子力発電所	2 号炉 (2019.11.6 版)	島根原子力発電所 2号炉         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●      <	備考         ・対象施設の相違         【柏崎 6/7】         対象施設の相違による記載内容の相違         うご(m)         うご(m)         図

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
		パタ         第           パタ         第           パタ         第           第         9           第         9           第         9           第         9           第         9           第         9           第         9           第         9           第         9           第         9           第         9           第         9           第         9           第         9           第         9           9         9           9         9           9         9           9         9           9         9           9         9           9         9           9         9           9         9           9         9           9         9           9         9           9         9           9         9           9         9           9         9           9         9           9         9
		第100-1-13-5図 取水管 平面E
		<u>取水管</u> 取水管 取水管



柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版) 力	τ川原子力発電所 2 号炉(2019.11.6 版)	島根原子力発電所 2号炉	備考
			マEL+7000 消波ブロック マEL+3500 ひてしていていていていていていていていていていていていていていていていていていて	<ul> <li>・対象施設の相違</li> <li>【柏崎 6/7】</li> <li>対象施設の相違によ</li> <li>る記載内容の相違</li> </ul>
			<figure></figure>	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6	6版)	島根原子力発電所 2号
				←NW	SE→
				EL(m)	EL(m
				0.0	
				-10.0	Ф4.3mФ4.3m/ - EL-12.0m -10.0
				-20.0	EL-17.8m 0 0 -20.0
				-30.0	-30.0
				-40.0	-40.0
				-50.0	
					6-2-13-9図 取水管 地質断面
				~_NW	SE
				EL (m)	EL(m)
				0.0	
				-10.0	- Φ4.3m Φ4.3m10.0
				-20.0	-20.0
				-30.0	-30.0
				-40.0	-40.0
				-50.0	-50.0
					0 10 20 (m)
				<u>第</u> (	6-2-13-10図 取水管 地質断面



前時外到到原子力発電所 6/7号炉 (2017.12.20 夜)     女川原子力発電所 2号炉 (2019.11.6 版)     馬根原子方差電所 2       第6-2-13-11回 取火管 地質附近     第6-2-13-11回 取火管 地質附近       第6-2-13-11回 取火管 地質附近
$\frac{1}{1}$



	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
取去空について、回波支がする波波、感染的特徴、回辺に返去 (第6-2-13-1素).			100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100	<ul> <li>・対象施設の相違</li> <li>【柏崎 6/7】</li> <li>対象施設の相違によ</li> <li>る記載内容の相違</li> </ul>
			取水管について、間接支持する設備、構造的特徴、周辺状況及 び北震力特性等の観点を踏まえた耐震評価候補断面を整理した (第6-2-13-1表)。       第6-2-13-1表<     耐震評価候補断面の整理(取水管)	<ul> <li>記載の充実</li> <li>【柏崎 6/7】</li> <li>島根2号炉では,屋外</li> <li>重要土木構造物等にお</li> <li>ける耐震評価候補断面</li> <li>の整理結果を記載して</li> <li>いる</li> </ul>