島根原子力発電所2号炉 審査資料				
資料番号	EP(E)-071改04			
提出年月	令和3年4月15日			

島根原子力発電所 基準地震動の策定について

令和3年4月15日 中国電力株式会社

概要(基準地震動の策定)

これまでの審査会合での検討及び先行プラントの審査を踏まえ、地下構造モデル、地震発生層、地震動評価における不確かさケース及び震源を特定せず策定する地震動等を変更し、基準地震動を以下のとおり見直した。

申請時(H25.12.25)からの主な変更内容(1/9)

敷地地盤の振動特性及び地下構造モデルの設定

項目	申請時の評価(H25.12.25)	申請後の検討・反映事項(審査会合での主な議論) 最終評価		該当頁
地構		 敷地の地下構造について特異な傾向の有無を確認することを求められ、大深度ボーリング孔を用いた物理探査や地震観測記録を用いた到来方向別のH/Vスペクトル比の検討等により敷地の地下構造を把握 	 各種調査結果より、敷地の地下構造は特異な構造 ではないことを確認 	
	 敷地及び敷地周辺の地下構造が水平 成層構造であることを仮定して、地震観 	 敷地の傾斜構造を水平成層構造とみなすことに ついて説明することを求められ、2次元地下構造 モデルを用いて南北方向の傾斜構造を考慮した 検討を実施 	 2次元地下構造モデルを用いた解析的な検討により、敷地及び敷地周辺の地下構造が水平成層構造 とみなせることを確認 	
モデ ルの 変更	測記録を用いた同定解析及び文献に基 づき地下構造モデルを設定	 大深度ボーリングを用いた調査結果にみられる 高速度層について検討することを求められ、高速 度層を考慮した地下構造モデルを作成 	 2号地盤及び3号地盤それぞれについて大深度 ボーリングにみられる高速度層を反映した地下構 造モデルを設定し、更に、減衰定数を安全側に考 慮すること等により、敷地全体の地震動を安全側に 評価することができる地下構造モデルを設定 	23~95
		 設定した地下構造モデルの妥当性を観測記録を 用いて示すことを求められ, 地震観測記録による シミュレーション解析や微動アレイ観測結果との 整合性の検討を実施 	 設定した地下構造モデルの妥当性を地震観測記録 によるシミュレーション解析や微動アレイ観測結果 との比較等により確認 	

申請時(H25.12.25)からの主な変更内容(2/9)

3

敷地ごとに震源を特定して策定する地震動

	項目 申請時の評価(H25.12.25) 申請後の検討・反映事項(審査会合での主な議論)		最終評価	該当 頁	
断変	層長さの 更	宍道断層∶22km F-Ⅲ断層+F-Ⅳ断層+F _κ -2断層∶51.5km	 敷地周辺の地質・地質構造の審査結果を反映 	宍道断層 : 39km F-Ⅲ断層+F-Ⅳ断層+F-Ⅴ断層 : 48km	117 ~119, 142
地震発生層 上限深さ:2km の変更 下限深さ:15km		上限深さ:2km 下限深さ:15km	 地震発生層の下限深さについて震源インバージョン解析 結果や微小地震の分布状況を踏まえて再検討すること を求められ、2000年鳥取県西部地震の震源インバージョ ン解析結果や気象庁一元化データによる敷地周辺の震 源分布、地震調査研究推進本部による中国地域の長期 評価における知見等を参考に下限深さを検討 	各種知見から下限深さは15kmと考えられるが, 安全側 に20kmと設定(上限深さ:2km, 下限深さ:20km)	97~ 109
宍道断 層によ る地震 不 確	宍道断 層によ る地震	・断層傾斜角 ・中越沖地震の短周期レベル ・破壊開始点	 すべり角の不確かさについて検討することを求められ、トレンチ調査結果による鉛直方向の変位を考慮して不確かさケースとしてすべり角150°のケースを実施 先行プラントにおける審査を踏まえ、不確かさケースとして破壊伝播速度に標準偏差1σを考慮したケース、アスペリティを一塊にしたケース(正方形、縦長)を実施 震源が敷地に極めて近いことから、先行プラントにおける審査を踏まえ、不確かさを組み合わせたケースを実施 不確かさの組合せケースの設定根拠を示すことを求められ、地震動に与える影響が大きい不確かさケースの組合せを検討 	申請当初の不確かさケース(断層傾斜角,中越沖地震 の短周期レベル,破壊開始点)に加え,以下のケースを 追加 ・すべり角 ・破壊伝播速度 ・アスペリティ個数・位置(一塊:正方形,一塊:縦長) ・断層傾斜角と破壊伝播速度の組合せ ・防層傾斜角と横ずれ断層の短周期レベルの組合せ ・破壊伝播速度と横ずれ断層の短周期レベルの組合せ	117 ~132
かさの変更	F 一 断 F 一 断 F 一 m F 一 M F 一 M F ー V F ー V ま の の の の の の の の の の の の の の の の の の	・アスペリティ個数・位置(一塊: 横長) ・中越沖地震の短周期レベル ・破壊開始点	 ・ 断層傾斜角の不確かさについて,地質調査結果(海上 音波探査による約35°)を踏まえて検討することを求められ,不確かさケースとして南側へ35°傾斜したケース を実施 ・ すべり角の不確かさについて検討することを求められ, 宍道断層による地震の不確かさと同様に不確かさケー スとしてすべり角150°のケースを実施 ・ 先行プラントにおける審査を踏まえ,不確かさケースとして破壊伝播速度に標準偏差1σを考慮したケース,アスペリティを一塊・縦長にしたケースを実施 ・ F-Ⅲ断層及びF-Ⅳ断層と地下深部で収斂していると考えられるF-①断層及びF-②断層を考慮したケースを検討することを求められ,不確かさケースとしてF-①断層 及びF-②断層とF-V断層の連動を考慮した位置に断層 面を設定したケースを実施 	申請当初の不確かさケース(アスペリティー塊・横長,中 越沖地震の短周期レベル,破壊開始点)に加え,以下 のケースを追加 ・アスペリティ個数・位置(一塊:縦長) ・断層傾斜角 ・すべり角 ・破壊伝播速度 ・断層位置	142 ~155

震源を特定せず策定する地震動

項目	申請時の評価(H25.12.25)	申請後の検討・反映事項(審査会合での主な議論)	最終評価	該当頁
震特ずす震変源定策る動更をせ定地の	 2004年北海道留萌支庁南部地震(K- NET港町)の検討結果 加藤ほか(2004)による応答スペクトル 	 審査ガイドに示される16地震について整理 先行プラントにおける審査を踏まえ、2004年北海道 留萌支庁南部地震の観測記録に関する追加検討を 実施し、検討結果に保守性を考慮したうえで震源を 特定せず策定する地震動として採用 先行プラントにおける審査を踏まえ、2000年鳥取県 西部地震の観測記録について分析し、賀祥ダム(監 査廊)の記録を震源を特定せず策定する地震動とし て採用 	 2004年北海道留萌支庁南部地震(K-NET港町)の検討結果に保守性を考慮した地震動 2000年鳥取県西部地震の賀祥ダム(監査廊)の観測記録 加藤ほか(2004)による応答スペクトル 	168 ~182

基準地震動Ssの策定

項目	申請時の評価(H25.12.25)	申請後の検討・反映事項(審査会合での主な議論)	最終評価	該当頁
基 地 動 変準 震 の 更	 【敷地ごとに震源を特定して策定する地震動】 〇応答スペクトル手法 基準地震動Ss-1(応答スペクトル手法 による地震動評価結果を包絡:600Gal) 〇断層モデル手法 基準地震動Ss-2(宍道断層による地震 の地震動評価結果:586Gal) 基準地震動Ss-3(F-Ⅲ断層+F-Ⅳ断 層+F_K-2断層による地震の地震動評 価結果:489Gal) 【震源を特定せず策定する地震動】 基準地震動Ss-4(2004年北海道留萌支 庁南部地震(K-NET港町)の検討結果: 585Gal) 	 検討用地震の応答スペクトル手法による地震動評価結果を全て包絡させて基準地震動Ss-Dを設定 検討用地震の断層モデルを用いた手法による地震動評価結果は全て基準地震動Ss-Dに包絡されているが、「震源が敷地に近く、その破壊過程が地震動評価に大きな影響を与えると考えられる地震については、断層モデルを用いた手法を重視すること」という審査ガイドの記載を踏まえ、断層モデル手法による基準地震動の追加を検討 「断層モデルを用いた手法による基準地震動は、施設に与える影響の観点から地震動の諸特性を考慮して、別途評価した応答スペクトルとの関係を踏まえつつ複数の地震動評価結果から策定すること」という審査ガイドの記載を踏まえ、応答スペクトルのピークが基準地震動Ss-Dに近接しており、地震動レベル(主要な施設の固有周期が存在する周期帯における応答スペクトル比(断層モデル/Ss-D)及び剛な機器の耐震設計において着目する最大加速度値)が大きいケースを基準地震動Ss-F1、Ss-F2として設定 先行プラントにおける審査を踏まえて設定した震源を特定せず策定する地震動と基準地震動Ss-Dを設定 	 【敷地ごとに震源を特定して策定する地震動】 〇応答スペクトル手法 基準地震動SsーD(応答スペクトル手法による地震動評価結果を包絡:820Gal) 〇断層モデル手法 基準地震動SsーF1(宍道断層による地震の地震動評価結果:560Gal) 基準地震動SsーF2(宍道断層による地震の地震動評価結果:777Gal) 【震源を特定せず策定する地震動】 基準地震動SsーN1(2004年北海道留萌支庁南部地震の検討結果に保守性を考慮した地震動:620Gal) 基準地震動SsーN2(2000年鳥取県西部地震の賀祥ダムの観測記録:531Gal) 	183 ~195

(4)

申請時(H25.12.25)からの主な変更内容(4/9)

5

申請時(H25.12.25)からの主な変更内容(5/9)

■ 断層モデルを用いた手法による地震動評価(宍道断層による地震)

6

申請時(H25.12.25)からの主な変更内容(6/9)

■ 断層モデルを用いた手法よる地震動評価(F-Ⅲ断層+F-Ⅳ断層+F-Ⅴ断層による地震)

申請時(H25.12.25)からの主な変更内容(7/9)

8

■ 震源を特定せず策定する地震動

項目	申請時の評価	最終評価
震源を特定せず 策定する地震動 の変更	 2004年北海道留萌支庁南部地震(K-NET港町)の検討結果 加藤ほか(2004)による応答スペクトル 	 2004年北海道留萌支庁南部地震(K-NET港町)の検討結果に保守性を 考慮した地震動 2000年鳥取県西部地震の賀祥ダム(監査廊)の観測記録 加藤ほか(2004)による応答スペクトル
評価結果		

申請時(H25.12.25)からの主な変更内容(8/9)

■ 基準地震動の策定

項目	申請時の評価	最終評価
基準地 震動の 変更	 ・Ss-1:600Gal,応答スヘ[°]クトル手法(宍道断層,F-Ⅲ断層+F-Ⅳ断層+F_K-2断層) ・Ss-2:586Gal,断層モデル手法(宍道断層) ・Ss-3:489Gal,断層モデル手法(F-Ⅲ断層+F-Ⅳ断層+F_K-2断層) ・Ss-4:585Gal,2004年北海道留萌支庁南部地震の検討結果 	 ・Ss-D:820Gal,応答スペクトル手法(宍道断層,F-Ⅲ断層+F-Ⅳ断層+F-Ⅴ断層) ・Ss-F1:560Gal,断層モデル手法(宍道断層) ・Ss-F2:777Gal,断層モデル手法(宍道断層) ・Ss-N1:620Gal,2004年北海道留萌支庁南部地震の検討結果に保守性を考慮 ・Ss-N2:531Gal,2000年鳥取県西部地震の賀祥ダムの観測記録
評 結果	Image:	A transformation of the transformation o

申請時(H25.12.25)からの主な変更内容(9/9)

■ 基準地震動の最大加速度

項目	申請時の評価				最終評価			
	基準地震動		最大加速度 (ガル)		甘淮地雪乱		最大加速度 (ガル)	
			水平 方向	鉛直 方向	空干 地 辰 到		水平 方向	鉛直 方向
	Ss−1	応答スペクトル手法による基準地震動	600	400	Ss-D	応答スペクトル手法による基準地震動	820	547
基準地震動の恋	Ss-2 (断層モデル手法による基準地震動 5-2 (宍道断層による地震の中越沖地震の短周期 レベルの不確かさ)	(NS)		Sa_E1	断層モデル手法による基準地震動	(NS) 549	- 337
			493	155	5s-FI	(天道町暦による地震の中越沖地震の短周期) レベルの不確かさ:破壊開始点5)	(EW) 560	
			(EW)	155	Ss-F2	断層モデル手法による基準地震動 (宍道断層による地震の中越沖地震の短周期 レベルの不確かさ:破壊開始点6)	(NS) 522	406
			586				(EW) 777	420
更	Sc-3	Ss-3 断層モデル手法による基準地震動 (F-Ⅲ断層+F-Ⅳ断層+F _K -2断層による 地震の中越沖地震の短周期レベルの不確かさ)	(NS) 489	330	220 —		_	
	Ss-3 (F サ		(EW) 396					
	Ss−4	2004年北海道留萌支庁南部地震(K-NET港町) の検討結果	585	296	Ss-N1	2004年北海道留萌支庁南部地震(K-NET港町) の検討結果に保守性を考慮した地震動	620	320
						2000年鳥取県西部地震の賀祥ダム(監査廊)の	(NS) 528	405
	_	_	_	_	SS-INZ	観測記録	(EW) 531	480

第579回審査会合(H30.6.1)からの変更内容

No.	第579回審査会合(H30.6.1)からの変更内容	頁
1	最新の地震情報の反映	15~17, 19, 36, 42, 43, 47, 48, 101, 102, 205 補足説明 3, 102~104, 164~166

 1. 敷地周辺の地震発生状況 1. 1 地震発生状況 1. 2 被害地震 1. 3 活断層の分布状況
 2. 敷地地盤の振動特性及び地下構造モデルの設定
 3. 敷地ごとに震源を特定して策定する地震動 ・・・・・96 3. 1 地震発生層の設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

目 次

4.	震 4. 4. 4.	原を特定せず策定する地震動 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.	基	隼地震動の策定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・183
	5.	1 敷地ごとに震源を特定して策定する地震動による基準地震動・・・・184
	5.	2 震源を特定せず策定する地震動による基準地震動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	5.	3 基準地震動の策定のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6.	基	隼地震動の年超過確率の参照 ・・・・・・・・・・・・・・・・・・・・・・・・・196
	6.	1 確率論的地震ハザードの評価方針 ・・・・・・・・・・・・・・・・・197
	6.	2 特定震源モデル・・・・・198
	6.	3 領域震源モデル・・・・・・204
	6.	4 地震動伝播モデル・・・・・206
	6.	5 ロジックツリー ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	6.	6 地震ハザード評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	6	7 年 お 過 確 率 の 参 照 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 敷地周辺の地震発生状況

- 1.1 地震発生状況
- 1.2 被害地震
- 1.3 活断層の分布状況

敷地周辺における地震活動(M<3) 1/2

敷地周辺におけるM3未満の地震の震央分布によると、敷地から半径50kmの範囲では鳥取県西部地震の震央位置付近で地震の集中がみられ、半径150kmの範囲では山陰海岸に平行して地震の集中がみられる。

敷地周辺における地震(M<3)の震央分布(1997年10月~2019年8月)

15

1. 敷地周辺の地震発生状況
 1. 1 地震発生状況
 敷地周辺における地震活動(M<3) 2/2

■ 震源鉛直分布によると,敷地周辺で発生する地震の震源深さは、大部分が20km以浅である。なお、発電所の南東方向の深さ約30kmの位置に地震の集中がみられるが、これらの地震は大見ほか(2004)によると、鳥取県西部地震の震源域で本震後に活動が活発化した深部低周波地震で、これは水等の流体の移動を示唆するもので、通常の地震とは異なるとされている。また、四国付近では敷地を含む山陰地域とは異なり、フィリピン海プレートの潜り込みによると考えられる震源深さが約30~70kmの地震が発生している。

第530回審査会合資料1 P17

加筆·修正

16

敷地周辺における地震(M<3)の震源鉛直分布(1997年10月~2019年8月)

敷地から200km以内の範囲で発生した内陸地殻内地震及び海洋プレート内地震の被害地震を対象として、 敷地及び敷地周辺への影響について検討した。

第530回審査会合資料1 P10 加筆·修正

■ 上記被害地震の震央分布図を見ると、敷地周辺ではM8クラスの地震は発生しておらず、M7クラスの地震の発生も少ない。

第530回審査会合資料1 P11 再揭

18

被害地震(内陸地殻内地震,海洋プレート内地震) 2/3

なお、気象庁震度階級関連解説表によると、地震により建物等に被害が発生するのは震度5弱(1996年 以前は震度V)程度以上とされているので、宇佐美ほか(2013)及び気象庁の震度分布図に基づき、前記 被害地震の敷地周辺における震度を調査すると、敷地周辺の揺れが震度5弱(震度V)程度以上と推定 される地震としては、内陸地殻内地震の2000年鳥取県西部地震(M7.3)がある。

気象庁震度階級関連解説表

木造建物(住宅)の状況

震度	木造建物(住宅)		
階級	耐震性が高い	耐震性が低い	
5弱	_	壁などに軽微なひび割れ・亀裂がみられることがある。	
5強	_	壁などにひび割れ・亀裂がみられることがある。	
6弱	壁などに軽微なひび割れ・亀裂がみられることがある。	壁などのひび割れ・亀裂が多くなる。 壁などに大きなひび割れ・亀裂が入ることがある。 瓦が落下したり、建物が傾いたりすることがある。倒れるもの もある。	
6強	壁などにひび割れ・亀裂がみられることがある。	壁などに大きなひび割れ・亀裂が入るものが多くなる。 傾くものや、倒れるものが多くなる。	
7	壁などのひび割れ・亀裂が多くなる。 まれに傾くことがある。	傾くものや、倒れるものがさらに多くなる。	

● 鉄筋コンクリート造建物の状況

震度 階級	鉄筋コンクリート造建物	
	耐震性が高い	耐震性が低い
5強	_	壁、梁(はり)、柱などの部材に、ひび割れ・亀裂が入ることが ある。
6弱	壁、粱(はり)、柱などの部材に、ひび割れ・亀裂が入ることが ある。	壁、梁(はり)、柱などの部材に、ひび割れ・亀裂が多くなる。
6強	壁、梁(はり)、柱などの部材に、ひび割れ・亀裂が多くなる。	壁、葉(はり)、柱などの部材に、斜めや X 状のひび割れ・亀 裂がみられることがある。 1階あるいは中間階の柱が崩れ、倒れるものがある。
7	壁、梁(はり)、柱などの部材に、ひび割れ・亀裂がさらに多く なる。 1 階あるいは中間階が変形し、まれに傾くものがある。	壁、梁(はり)、柱などの部材に、斜めや X 状のひび割れ・亀 裂が多くなる。 1階あるいは中間階の柱が崩れ、倒れるものが多くなる。

[気象庁, 消防庁(2009)による。]

[宇佐美ほか(2013)に一部加筆]

2000年鳥取県西部地震(M7.3)の震度分布図

■ また、Mと震央距離及び敷地で推定される震度の関係図(以下「M-Δ図」という。)に基づき、前記被害地震の敷地における震度を推定すると、敷地の揺れが震度5弱(震度V)程度以上と推定される地震としては、内陸地殻内地震の880年出雲の地震(M7.0)及び2000年鳥取県西部地震(M7.3)がある。なお、海洋プレート内地震については、敷地から遠方に位置することから、敷地に震度5弱(震度V)程度以上の影響を及ぼすと考えられる地震はない。

19

1. 敷地周辺の地震発生状況 1.2 被害地震

被害地震(プレート間地震) 1/2

■ 次に、南海トラフ沿いで発生したプレート間地震の被害地震を対象として、敷地及び敷地周辺への影響について検討した。

第530回審査会合資料1 P13 再掲

宇佐美ほか(2013)の震度分布図に基づき、上記被害地震の敷地周辺における震度を調査すると、敷地周辺の揺れが震度5弱(震度V)程度以上と推定される地震としては、1707年宝永地震(M8.6)及び1854年安政南海地震(M8.4)があるが、地震本部によると「島根県でも沖積層の厚い平野部では、南海トラフ沿いで発生した巨大地震によって、強く長い揺れによる被害を受けることがある。」とされており、地盤条件による特異な震害と考えられる。

1. 敷地周辺の地震発生状況 1. 2 被害地震 ^{第530回審査会合資料1 P14} 加筆·修正 2/2

- 敷地周辺に影響を与えたと考えられるプレート間地震の被害地震について、M-A図に基づき敷地における震度を推定すると、敷地の揺れが震度5弱(震度V)程度以上と推定される地震はない。
- また、プレート間地震に関する最新の知見である南海トラフの巨大地震に関する内閣府(2012)の検討結果 (統計的グリーン関数法及び距離減衰式に基づき震度を評価)によると、発電所が位置する島根半島は概 ね震度4とされている。
- 以上より、プレート間地震については、敷地に震度5弱(震度V)程度以上の影響を及ぼすと考えられる地震はない。

南海トラフの巨大地震モデル検討会における震度の最大分布

(22)

- 敷地周辺の地質・地質構造の調査結果によると、敷地周辺の考慮する活断層のうち、陸域の主な活断層としては、敷地から30km程度の範囲に宍道断層及び大社衝上断層があり、敷地から約150km程度の位置に 山崎断層系がある。
- また,海域の主な活断層としては,連動を考慮したF-Ⅲ断層+F-Ⅳ断層+F-Ⅴ断層及び鳥取沖西部断層 +鳥取沖東部断層,それら以外に大田沖断層及びF57断層がある。

敷地周辺の考慮する活断層

断層名	断層長さ(km)	震央距離 [※] (km)
しんじ 宍道断層	39	12.2
たいしゃしょうじょう 大社衝上断層	28	24.6
ゃ₅さき 山崎断層系	79	162.1
F-II断層+F-IV断層+F-V断層	48	25.1
F _K 一1断層	19	29.3
K-4撓曲+K-6撓曲+K-7撓曲	19	13.8
K-1撓曲+K-2撓曲+F _{Ko} 断層	36	51.5
とっとりおきせいぶとっとりおきとうぶ 鳥取沖西部断層十鳥取沖東部断層	98	85.0
^{おおだおき} 大田沖断層	53	67.6
F57断層	108	103.6
たとての戸断層	5	14.0
ままふなやまひがし 大船山東断層	4	13.6
ぶっきょうさんきた 仏経山北断層	5	22.8
ひがしきまち しんたばた 東来待一新田畑断層	11	17.4
やない 柳井断層	2	13.7
みとやきた 三刀屋北断層	7	29.4
はんば いしはら 半場一石原断層	5	23.3
<u>*</u> ~ 布部断層	8	29.3
ひがしいんべ 東忌部断層	3	13.6
さんのうじ 山王寺断層	3	18.1
^{おおい} 大井断層	5	13.7
	*	断層中央までの距離

敷地周辺における活断層の分布

2. 敷地地盤の振動特性及び地下構造モデルの設定

- 2.1 敷地及び敷地周辺の地質・地質構造の調査
- 2.2 解放基盤表面の設定
- 2.3 観測記録及び物理探査に基づく検討
- 2.4 傾斜構造を考慮した解析による検討
- 2.5 地下構造モデルの設定
- 2.6 地震動評価に用いる地下構造モデルの設定

2. 敷地地盤の振動特性及び地下構造モデルの設定

敷地地盤の振動特性及び地下構造モデルの設定の概要

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.1 敷地及び敷地周辺の地質・地質構造の調査

(1) 敷地周辺陸域の地質・地質構造(文献調査:5万分の1地質図)

■ 鹿野・吉田(1985)及び鹿野・中野(1986)によると,敷地付近には新第三紀中新世の成相寺層が広く分布 し,敷地の南方には,ほぼ東西方向の軸を持つ褶曲構造が示されており,成相寺層の層厚は1200m前 後とされている。敷地は背斜構造の北側に位置し,成相寺層は10~20°北に傾斜している。

25

第204回審査会合資料1

P10.11 加筆·修正

- 文献による深層ボーリング調査結果では、敷地から約8km東方の松江市島根町加賀別所での成相寺層下面は標高約-900m以深であり、地質断面図とも概ね整合的である。
- 敷地において推定される成相寺層の下面は, 標高-1000m以深と考えられる。

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.1 敷地及び敷地周辺の地質・地質構造の調査
 - (2) 敷地地盤の地質・地質構造(敷地地盤の位置関係)

第204回審査会合資料1 P12 加筆·修正

26

| 敷地は1・2号炉が位置するエリアと3号炉が位置するエリアに分かれ, それぞれでボーリ ング調査及び地震観測を行っており, 前者を「2号地盤」, 後者を「3号地盤」とする。

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.1 敷地及び敷地周辺の地質・地質構造の調査

(2) 敷地地盤の地質・地質構造(地質調査)

第204回審査会合資料1 P13 加筆·修正

- 敷地地盤の地質は、新第三紀中新世の堆積岩類から成る成相寺層と貫入岩類及びそれらを覆う 第四紀の崖錐堆積物等から構成される。
- 敷地の南部には、ほぼ東西方向の軸を持つ背斜構造が認められ、敷地地盤を構成する成相寺層は、北に約10°~30°で傾斜している。

2. 敷地地盤の振動特性及び地下構造モデルの設定 2. 1 敷地及び敷地周辺の地質・地質構造の調査

28

(2)敷地地盤の地質・地質構造(2号地盤の速度層断面図:南北断面)^{第204回審査会合資料1 P17 加筆・修正}

2号地盤の南北断面における速度層区分より、2号地盤の南北方向の地下構造は北に傾斜している※。(ガスタービン発電機建物が位置する地盤の速度構造を補足説明資料5ページに示す)

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.1 敷地及び敷地周辺の地質・地質構造の調査
- (2) 敷地地盤の地質・地質構造(2号地盤の速度層断面図:東西断面)
- 2号地盤の東西断面における速度層区分より、2号地盤の東西方向の地下構造は、ほぼ水平成層である。(緊急時対策所が位置する地盤を含む)

29

第204回審査会合資料1 P18 加筆·修正

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.1 敷地及び敷地周辺の地質・地質構造の調査
 - (2) 敷地地盤の地質・地質構造(3号地盤の速度層断面図:南北断面)
- 3号地盤の南北断面における速度層区分より、3号地盤の南北方向の地下構造は北に 緩やかに傾斜している[※]。

30

第204回審査会合資料1 P19 加筆·修正

⑦層

3.80

1.77

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.1 敷地及び敷地周辺の地質・地質構造の調査
 - (2) 敷地地盤の地質・地質構造(3号地盤の速度層断面図:東西断面)
- ■3号地盤の東西断面における速度層区分より、3号地盤の東西方向の地下構造はほぼ 水平成層である。

31

第204回審查会合資料1 P20加筆·修正

⑦層

3.80

1.77

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.1 敷地及び敷地周辺の地質・地質構造の調査

地質・地質構造の調査のまとめ

第204回審査会合資料1 P21 加筆·修正

32

- 敷地周辺の地質調査結果より、敷地付近には第三紀中新世の成相寺層が分布し、北 (日本海側)に傾斜している。
- 文献調査等の結果より、敷地付近の成相寺層は、標高約-900m以深まで分布するものと推定される。
- 敷地内の地質調査結果より、敷地の南部には、ほぼ東西方向の軸を持つ背斜構造が認められ、敷地地盤を構成する成相寺層は北に傾斜している。
- 2号及び3号地盤の速度層区分より、敷地の東西方向の地下構造はほぼ水平成層であり、南北方向の地下構造は北に緩やかに傾斜しているが、敷地全体では大局的に見て ほぼ水平な構造とみなすことができる。
- ▶ 以上の検討結果から、敷地の地下構造としては、硬質な成相寺層が敷地の地下深部 まで十分な拡がりをもって分布しており、東西方向はほぼ水平成層であり、南北方向は 北に緩やかに傾斜しているが、大局的に見てほぼ水平な構造とみなすことができる。

解放基盤表面

(33)

「基準地震動及び耐震設計方針に係る審査ガイド」における「解放基盤表面」の定義

「解放基盤表面」とは、基準地震動を策定するために基盤面上の表層や構造物が無いものとして仮想的に 設定する自由表面であって、<u>著しい高低差がなく、ほぼ水平で相当な拡がりを持って想定される基盤の表面^③</u> をいう。ここでいう「基盤」とは、<u>概ねせん断波速度Vs=700m/s以上^①の硬質地盤であって、著しい風化を受け</u> <u>ていない^②</u>ものをいう。

		①せん断波速度 Vs=700m/s 以上
_	>	・炉心周辺ボーリングのPS検層結果等に基づき設定した速度層断面(34ページ)によると, 敷地地盤の標高-10m以深は, Vs=700m/s以上となることが確認できる。 ・原子炉建物基礎地盤における弾性波速度はVs=1.5~1.6km/s程度であり, 堅硬な岩盤が 平面的に拡がりを持って分布している。(補足説明資料14~15ページ)
		②著しい風化を受けていない
_	>	・敷地地盤の標高-10m以深は, ボーリングコア等から著しい風化を受けていないことを確認 している。
		③著しい高低差がなく,ほぼ水平で相当な拡がりを持って想定される基盤の表面
Ĺ	>	・速度層区分によると,敷地全体では大局的に見てほぼ水平な構造とみなすことができる。

解放基盤表面の設定

解放基盤表面は,敷地地盤においてVs=700m/s以上の著しい風化を受けていない硬質岩盤が,著しい高低 差がなく,ほぼ水平で相当な拡がりを持つ標高-10mの位置に設定した。 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.2 解放基盤表面の設定

34

解放基盤表面

■ 解放基盤表面は,標高-10mの位置に設定した。

P波速度及びS波速度(2号周辺地盤)

速度層	P波速度(m/s)	S波速度(m/s)
1層	800	250
2層	2100	900
3層	3600	1600
4 層	4000	1950
5層	4050	2000
6層	4950	2350

P波速度及びS波速度(3号周辺地盤)

速度層	P波速度(m/s)	S波速度(m/s)	
①層	520	270	
2層	1710	620	
3層	2270	960	
④層	3240	1520	
⑤層	3860	1900	
6層	4150	2100	
⑦層	3800	1770	

速度層断面図(2号地盤)

速度層断面図(3号地盤)

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討

観測記録及び物理探査に基づく検討内容

第204回審査会合資料1 P23 加筆·修正

35

(1) 原子炉建物基礎上端の地震観測記録による検討

各号炉の原子炉建物基礎上端の地震観測記録を用い、それぞれの建物の応答を 比較する。なお、1~3号炉原子炉建物のうち、1号炉と2号炉原子炉建物は隣接して いるので2号炉原子炉建物で代表させ、検討においては2号炉と3号炉原子炉建物基 礎上端の地震観測記録を用いる。

(2) 敷地地盤の地震観測記録による検討

敷地の地盤系の地震観測点としては、2号及び3号観測点の2地点があるため、各 観測点の地震観測記録を用い、地震波の到来方向による増幅特性の傾向を確認する。 また、各観測点の解放基盤表面におけるはぎとり波を比較し、増幅特性の傾向を確認 する。

(3) 敷地地盤の微動観測記録による検討

敷地地盤の微動観測記録を用い、敷地内の空間分布による増幅特性の傾向を確認する。

(4)反射法探査及びオフセットVSP探査による検討

敷地内において反射法探査及びオフセットVSP探査を実施し,敷地地盤の地下構造の反射面や速度構造を把握する。

(5) 微動アレイ探査による検討

敷地及び敷地近傍において微動アレイ探査を実施し、敷地及び敷地近傍地盤の速度構造を把握する。
- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討
- (1) 原子炉建物基礎上端の地震観測記録による検討(検討対象地震)
- 2号炉及び3号炉原子炉建物基礎上端の地震観測記録のうち,最大加速度が1cm/s² 以上で,各建物で同時に観測された6地震を検討対象とした。

地震計設置位置

検討対象地震の諸元

検討対象地震の震央分布

36

33.0°

第204回審査会合 資料1 P24 加筆·修正

No.	年月日	時刻	震央位置	М	震 源深さ (km)	方位角 ()	入射角 (゜)	水平最大加速度(cm/s ²)	
								2号	3号
1	2011.6.4	01:57	島根県東部	5.2	11	212	80	2.1	2.1
2	2011.11.21	19:16	広島県北部	5.4	12	187	81	2.6	1.5
3	2011.11.25	04:35	広島県北部	4.7	12	187	80	1.2	1.7
4	2013. 4. 13	05:33	淡路島付近	6.3	15	126	86	1.8	1.8
5	2016.10.21	14:07	鳥取県中部	6.6	11	102	82	13.4	12.8
6	2018. 4. 9	01:32	島根県西部	6.1	12	224	77	6.1	8.7

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討

37

:地震計設置位置

第204回審査会合

資料1 P25 再掲

(1) 原子炉建物基礎上端の地震観測記録による検討(地震計設置位置)

■ 2号炉及び3号炉原子炉建物基礎上端の地震計設置位置を以下に示す。

2号炉及び3号炉原子炉建物基礎上端の地震計設置位置

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討

(1) 原子炉建物基礎上端の地震観測記録による検討(観測記録:No.1地震)

■ 2011年島根県東部の地震(M5.2)の観測記録の応答スペクトルは同程度である。

38

第204回審査会合

資料1 P26 再揭

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討

(1) 原子炉建物基礎上端の地震観測記録による検討(観測記録:No.2地震)

■ 2011年広島県北部の地震(M5.4)の観測記録の応答スペクトルは同程度である。

39

第204回審査会合

資料1 P27 再揭

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討_

(1) 原子炉建物基礎上端の地震観測記録による検討(観測記録:No.3地震)

■ 2011年広島県北部の地震(M4.7)の観測記録の応答スペクトルは同程度である。

周期(s)

40

第204回審査会合

資料1 P28 再揭

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討

(1) 原子炉建物基礎上端の地震観測記録による検討(観測記録:No.4地震)

■ 2013年淡路島付近の地震(M6.3)の観測記録の応答スペクトルは同程度である。

第204回審査会合

資料1 P29 再掲

- (1) 原子炉建物基礎上端の地震観測記録による検討(観測記録:No.5地震)
- 2016年鳥取県中部の地震(M6.6)の観測記録の応答スペクトルは同程度である。

2号

3号

120

(h=0.05)

09

5 10

(1) 原子炉建物基礎上端の地震観測記録による検討(観測記録:No.6地震)

■ 2018年島根県西部の地震(M6.1)の観測記録の応答スペクトルは同程度である。

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討

(2)敷地地盤の地震観測記録による検討(地震観測点)

第204回審査会合資料1 P30 加筆·修正

敷地地盤の地震観測点としては、2号観測点のA地点と3号観測点のB·C地点がある。 そのうちB地点については、3号建設時に撤去しているので、現在はA地点とC地点の 2地点で地震観測を行っている。

地震計設置位置・観測期間

※2 新第三紀中新世の堆積岩

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討 第106回審査会合 45

資料1-2 P24

加筆·修正

(2) 敷地地盤の地震観測記録による検討(敷地地盤で観測された主な地震:2号)

■ 2号観測点のA地点で観測された2000年鳥取県西部地震の地震観測記録によると岩盤 内で応答スペクトルの顕著な増幅はみられない。

深度別応答スペクトル(2000年鳥取県西部地震(M7.3). 観測点:A地点)

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討 第106回審査会合 46

資料1-2 P72

加筆·修正

(2) 敷地地盤の地震観測記録による検討(敷地地盤で観測された主な地震:3号)

■ 3号観測点のB地点で観測された2000年鳥取県西部地震の地震観測記録によると岩盤 内で応答スペクトルの顕著な増幅はみられない。

深度別応答スペクトル(2000年鳥取県西部地震(M7.3). 観測点:B地点)

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討 (2)敷地地盤の地震観測記録による検討(到来方向別:2号) ^{第204回審査会合資料1 P31 加筆・修正} 47
 - M5以上の内陸地殻内地震の観測記録(標高+10m)に基づき評価した水平/上下スペクトル比(以下「H/Vスペクトル比」という。)を到来方向別に比較すると、検討対象地震の到来方向は東と南の 2方向となり、方向別で顕著な差異はみられない。なお、検討対象地震がない方向については、後述の傾斜構造を考慮した解析による検討により、特異な傾向がないことを確認している。(56~74 ページ参照)

:南方向

:東方向

No.	年月日	時刻	震央地名	深さ (km)	м	震央距離 (km)	方位角 ([°])	入射角 (°)	
1	1989. 10. 27	07:41	鳥取県西部	13	5.3	45.7	131	74	
2	1989.11.2	04:57	鳥取県西部	15	5.5	45.9	132	72	
3	1991. 8.28	10:29	島根県東部	13	5.9	29.2	143	65	
4	1997. 6.25	18:50	山口・島根県境	8	6.6	171.8	225	87	
5	1997. 9. 4	05:15	鳥取県西部	9	5.5	45.7	131	79	
6	2000.10.6	13:30	鳥取県西部	9	7.3	43.2	132	78	
7	2000.10.8	13:17	鳥取県西部	7	5.6	45.8	162	82	
8	2000.10.8	20:51	鳥取県西部	8	5.2	33.7	123	76	
9	2002. 9.16	10:10	鳥取県東部	10	5.5	69.7	105	82	
10	2011. 6. 4	01:57	島根県東部	11	5.2	57.2	212	80	
11	2011. 11. 21	19:16	広島県北部	12	5.4	74.3	187	81	
12	2016. 10. 21	14:07	鳥取県中部	11	6.6	79.8	102	82	
13	2016. 10. 21	14:53	鳥取県中部	9	5.0	81.4	104	84	
14	2018. 4. 9	1:32	島根県西部	12	6.1	54.0	224	77	
15	2018. 6.26	17:00	広島県北部	12	5.0	68.1	190	80	

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討

(2) 敷地地盤の地震観測記録による検討(到来方向別:3号) 第204回審査会合資料1 P32 加筆·修正

M5以上の内陸地殻内地震の観測記録(B地点:標高+8m, C地点:標高+8.5m)に基づき評価した H/Vスペクトル比を到来方向別に比較すると、検討対象地震の到来方向は東と南の2方向となり、 方向別で顕著な差異はみられない。なお、検討対象地震がない方向については、後述の傾斜構造 を考慮した解析による検討により、特異な傾向がないことを確認している。(56~74ページ参照)

:南方向

:東方向

No.	年月日	時刻 震央地名		深さ (km)	М	震央距離 (km)	方位角 ([°])	入射角 (°)	
6	2000.10.6	13:30	鳥取県西部	9	7.3	43. 2	132	78	
7	2000.10.8	13:17	鳥取県西部	7	5.6	45.8	162	82	
8	2000.10.8	20:51	鳥取県西部	8	5.2	33. 7	123	76	
9	2002. 9.16	10:10	鳥取県東部	10	5.5	69.7	105	82	
10	2011. 6. 4	01:57	島根県東部	11	5.2	57. 2	212	80	
11	2011. 11. 21	19:16	広島県北部	12	5.4	74.3	187	81	
12	2016. 10. 21	14:07	鳥取県中部	11	6.6	79.8	102	82	
13	2016. 10. 21	14:53	鳥取県中部	9	5.0	81.4	104	84	
14	2018. 4. 9	1:32	島根県西部	12	6.1	54.0	224	77	
15	2018. 6.26	17:00	広島県北部	12	5.0	68.1	190	80	

48

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討

(2) 敷地地盤の地震観測記録による検討(はぎとり波の比較)

■ 2号観測点(A地点)及び3号観測点(B地点)における2000年鳥取県西部地震の地震 観測記録に基づき,解放基盤表面(標高-10m)におけるはぎとり波※を求めると,応答 スペクトルは同程度である。

2000年鳥取県西部地震の解放基盤表面(標高-10m)におけるはぎとり波の比較

49

第204回審査会合資料1 P33 再掲

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討
 - (3) 敷地地盤の微動観測記録による検討(各観測点の評価結果)
- 発電所敷地内の13箇所(200m間隔)で微動観測を実施し、その観測記録に基づき評価した H/Vスペクトル比の空間分布を確認した。

第204回審査会合資料1

P34, P36 加筆·修正

■ 0.25秒以下の短周期側は表層(盛土・埋土)の影響により若干違いはあるが、1秒以上の 長周期側は一様にフラットであり、敷地内の深部構造に大きな違いはないことを確認した。

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討
 - (4) 反射法探査及びオフセットVSP探査による検討(解析断面)

第204回審査会合資料1

P38, P39 加筆·修正

反射法探査及びオフセットVSP探査の解析断面

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討___
 - (4) 反射法探査及びオフセットVSP探査による検討(検討結果:東西方向)
- 東西方向の反射面は地下深部までほぼ水平に連続しており,特異な構造はみられない。 ■ 深度1200mまでのP波速度はVp=3.5~5km/s程度であり,低速度域はみられない。

第204回審査会合

資料1 P40 再掲

オフセットVSP探査及び反射法探査の評価結果(東西方向)

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討
 - (4) 反射法探査及びオフセットVSP探査による検討(検討結果:南北方向)
- 南北方向の反射面は北に向かって緩やかに傾斜しているが、特異な構造はみられない。

第204回審査会合

資料1 P41 再掲

反射法探査の評価結果(南北方向)

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討

(5) 微動アレイ探査による検討(アレイ配置及び評価結果)

■ 敷地及び敷地近傍における微動アレイ探査(西側・東側アレイ)により,速度構造を推定した。
■ それぞれのアレイにおける速度構造の同定結果を比較すると,概ね同程度の深さに同程度の速度層が分布している。

アレイ配置

微動アレイ探査により同定されたS波速度構造

54

第204回審査会合資料1 P42 加筆·修正

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.3 観測記録及び物理探査に基づく検討

観測記録及び物理探査に基づく検討のまとめ

第204回審査会合資料1 P43 加筆·修正

55

(1)原子炉建物基礎上端の地震観測記録による検討

2号炉及び3号炉の原子炉建物の応答が同程度であり、号炉間で差異がないことを確認した。

- (2) 敷地地盤の地震観測記録による検討
 - 検討対象地震の到来方向は東と南の2方向となり、方向別で増幅特性に違いはみられないことを 確認した。また、2号観測点及び3号観測点の解放基盤表面におけるはぎとり波が同程度であるこ とを確認した。
- (3) 敷地地盤の微動観測記録による検討

H/Vスペクトル比の1秒以上の長周期側が各観測点で一様にフラットであり,敷地の深部構造に 大きな違いはないことを確認した。なお,H/Vスペクトル比の0.25秒以下の短周期側が各観測点で 異なるのは,表層(盛土・埋土)の影響によるものと考えられる。

- (4)反射法探査及びオフセットVSP探査による検討
 - 南北方向の反射面が北に向かって緩やかに傾斜し,東西方向の反射面が地下深部までほぼ水平 に連続しており,特異な構造ではないことを確認した。また,深度1200mまでのP波速度はVp=3.5 ~5km/s程度であり,低速度域がみられないことを確認した。

(5)微動アレイ探査による検討

西側及び東側アレイにおける速度構造の同定結果から、西側と東側では概ね同程度の深さに同 程度の速度層が分布していることを確認した。

▶ 以上より、観測記録及び物理探査に基づく検討結果から、敷地の地下構造は南北方向は北に緩やかに傾斜し、東西方向は水平成層であり特異な構造はみられないことを確認した。

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.4 傾斜構造を考慮した解析による検討

傾斜構造を考慮した解析による検討内容

第204回審査会合資料1 P45 加筆·修正

56

■ 傾斜構造を考慮した解析による検討 敷地及び敷地周辺の地質・地質構造の調査結果及び反射法探査の検討結果より、敷地の南北 方向の地下構造は北に緩やかに傾斜しているため、傾斜構造を考慮した2次元地下構造モデル を用い、その影響を解析的に検討する。

検討モデル	2号	3号	設定方法
敷地内モデル(基本)	0	0	敷地内の速度層断面図に基づき設定
広域モデル(基本)	0	0	敷地内モデル(基本)の範囲を拡大して設定
敷地内モデル(ドレライト考慮)	O*	-	敷地内モデル(基本)に敷地内の地質断面 図にみられるドレライトを考慮して設定
広域モデル(ドレライト考慮)	O*	-	敷地内モデル(ドレライト考慮)の範囲を拡大 して設定
広域モデル(背斜・向斜考慮)	0*	O*	広域モデル(基本)に敷地周辺の地質断面 図にみられる背斜・向斜構造を考慮して設定

検討モデルー覧

※検討結果は補足説明資料16~51ページに記載

(1)2号敷地内モデルの検討(基本:1次元と2次元による増幅特性の比較) 資料1 P55 加筆・修正

■ 2号炉心位置における1次元地下構造モデルの地盤増幅特性が、2号敷地内モデルの 地盤増幅特性(鉛直入射)と比較して、同程度またはそれ以上となっており、1次元と2次 元の増幅傾向に違いはみられない。

地盤増幅特性の比較(2号炉心位置)

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.4 傾斜構造を考慮した解析による検討

(1)3号敷地内モデルの検討(基本:1次元と2次元による増幅特性の比較)

■ 3号炉心位置における1次元地下構造モデルの地盤増幅特性が,3号敷地内モデルの 地盤増幅特性(鉛直入射)と比較して,同程度またはそれ以上となっており,1次元と2次 元の増幅傾向に違いはみられない。

58

第204回審査会合

資料1 P57 再揭

■ 2号広域モデルに地震波を鉛直(O°)及び斜め(±15°,±30°)に入射すると、鉛直入 射の地盤増幅特性が、斜め入射の地盤増幅特性と比較して、同程度またはそれ以上と なっており、斜め入射を考慮しても傾斜構造による特異な増幅傾向はみられない。

■ 3号広域モデルに地震波を鉛直(O°)及び斜め(±15°,±30°)に入射すると、鉛直入 射の地盤増幅特性が、斜め入射の地盤増幅特性と比較して、同程度またはそれ以上と なっており、斜め入射を考慮しても傾斜構造による特異な増幅傾向はみられない。

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.4 傾斜構造を考慮した解析による検討

(2) 広域モデルの検討(伝播特性の検討に用いるRicker波)

第204回審査会合資料1 P70 再掲

61

- 下式のRicker波(最大加速度:1.0m/s²,中心周期:0.2s,最大値生起時刻:5.0s)を用い、2 次元地下構造モデルに対して地震波(SV波)を鉛直(O°)及び斜め(±30°)に入射して 伝播特性を比較する。
- Ricker波は,振幅が特定の周波数帯に比較的均一に分布しており,波の形状が単純で波 形の比較に適している。
- Ricker波の中心周期は,島根サイトでは特徴的な周期帯を持つ地震記録が観測されてい ないことから,建物の固有周期(約0.2s)付近の周期としている。

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.4 傾斜構造を考慮した解析による検討。

(2)2号広域モデルの検討(基本:入射角の違いによるRicker波の検討)

■ 2号広域モデルに地震波を鉛直(0°)に入射した検討結果(スナップショット)によると, 傾斜構造による特異な伝播傾向はみられない。

62

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

振幅

第204回審査会合

資料1 P71 再掲

Ricker波による検討結果(O°入射)

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2. 4 傾斜構造を考慮した解析による検討_____
 - (2)2号広域モデルの検討(基本:入射角の違いによるRicker波の検討)
- 2号広域モデルに地震波を鉛直(0°)に入射した検討結果(炉心及び炉心から約20m, 40m, 60mの加速度波形)によると、傾斜構造による特異な伝播傾向はみられない。

第204回審査会合

資料1 P72 再掲

- (2) 2号広域モデルの検討(基本:入射角の違いによるRicker波の検討) ⁽²⁾ ⁽²⁾ ⁽²⁾ ⁽²⁾ ⁽²⁾
- 2号広域モデルに地震波を斜め(+30°)に入射した検討結果(スナップショット)によると, 傾斜構造による特異な伝播傾向はみられない。

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

振幅

 ■ 2号広域モデルに地震波を斜め(+30°)に入射した検討結果(炉心及び炉心から約20m, 40m, 60mの加速度波形)によると、傾斜構造による特異な伝播傾向はみられない。

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2. 4 傾斜構造を考慮した解析による検討______(
 - (2)2号広域モデルの検討(基本:入射角の違いによるRicker波の検討)
- 2号広域モデルに地震波を斜め(-30°)に入射した検討結果(スナップショット)によると, 傾斜構造による特異な伝播傾向はみられない。

第204回審査会合

資料1 P79 再揭

 ■ 2号広域モデルに地震波を斜め(-30°)に入射した検討結果(炉心及び炉心から約20m, 40m, 60mの加速度波形)によると、傾斜構造による特異な伝播傾向はみられない。

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.4 傾斜構造を考慮した解析による検討

(2)3号広域モデルの検討(基本:入射角の違いによるRicker波の検討)

■ 3号広域モデルに地震波を鉛直(0°)に入射した検討結果(スナップショット)によると, 傾斜構造による特異な伝播傾向はみられない。

68

0.8

0.6

0.4

0.2

Ô

-0.2

-0.4

-0.6

-0.8

振幅

第204回審査会合

資料1 P91 再揭

Ricker波による検討結果(O°入射)

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2. 4 傾斜構造を考慮した解析による検討 (2)3号広域モデルの検討(基本:入射角の違いによるRicker波の検討) ^{第204回審査会合} 資料1 P92 再掲 **69**
- 3号広域モデルに地震波を鉛直(0°)に入射した検討結果(炉心及び炉心から約20m, 40m, 60mの加速度波形)によると、傾斜構造による特異な伝播傾向はみられない。

(2)3号広域モデルの検討(基本:入射角の違いによるRicker波の検討)

■ 3号広域モデルに地震波を斜め(+30°)に入射した検討結果(スナップショット)によると, 傾斜構造による特異な伝播傾向はみられない。

資料1 P97 再揭

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

振幅

 ■ 3号広域モデルに地震波を斜め(+30°)に入射した検討結果(炉心及び炉心から約20m, 40m, 60mの加速度波形)によると、傾斜構造による特異な伝播傾向はみられない。

(2)3号広域モデルの検討(基本:入射角の違いによるRicker波の検討)

■ 3号広域モデルに地震波を斜め(-30°)に入射した検討結果(スナップショット)によると, 傾斜構造による特異な伝播傾向はみられない。

資料1 P99 再揭

0.8

0.6

0.4

0.2

-0.2

-0.6

-0.8

振幅

 ■ 3号広域モデルに地震波を斜め(-30°)に入射した検討結果(炉心及び炉心から約20m, 40m, 60mの加速度波形)によると、傾斜構造による特異な伝播傾向はみられない。

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.4 傾斜構造を考慮した解析による検討

傾斜構造を考慮した解析による検討のまとめ

第204回審査会合資料1 P121 加筆·修正

- 傾斜構造を考慮した2次元地下構造モデルとして、2号及び3号地盤の敷地内モデル、 広域モデルを設定し、地震波の入射角の違いによる地盤増幅特性への影響を検討した。その結果、全ての検討モデルにおいて、鉛直入射の地盤増幅特性が、斜め入射の地盤増幅特性と比較して、同程度またはそれ以上となり、斜め入射を考慮しても傾斜構造による特異な増幅傾向はみられなかった。
- 1次元地下構造モデルによる地盤増幅特性と、上記の2次元地下構造モデルの鉛直入射の地盤増幅特性を比較すると、全ての検討モデルにおいて、1次元地下構造モデルの増幅特性が、2次元地下構造モデルの増幅特性と同程度またはそれ以上となり、 1次元と2次元の増幅傾向に違いはみられなかった。
- 2次元地下構造モデルにRicker波を入射して、地震波の入射角の違いによる伝播特 性への影響を検討すると、全ての検討モデルにおいて、地盤の傾斜構造による特異な 伝播傾向はみられなかった。
- 以上より、南北方向の傾斜構造が敷地の地震動評価に与える影響はほとんどないことを確認できた(結果的に保守的な評価となる)ことから、南北方向の地下構造は水平成層構造とみなすことができると判断した。

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.5 地下構造モデルの設定 地下構造モデルの設定(設定方針)
 - 敷地及び敷地周辺の地質・地質構造の調査結果、観測記録及び物理探査に基づく検討結果より、東西方向の地下構造は水平成層構造であることを確認した。

第204回審査会合資料1 P123

加筆・修正

- 敷地及び敷地周辺の地質・地質構造の調査結果より、南北方向の地下構造は北に緩やかに傾斜しているため、2次元地下構造モデル(南北方向)を用いて検討したところ、 傾斜構造が敷地の地震動評価に与える影響はほとんどないことを確認できたことから、 南北方向の地下構造は水平成層構造とみなすことができると判断した。
- 以上より,敷地の地震動評価に用いる地下構造モデルは、東西・南北方向ともに水平 成層構造として、敷地地盤の物理探査結果及び地震観測記録等に基づき、2号及び3 号の1次元地下構造モデルを設定する。

(1)2号地下構造モデルの設定(速度値,密度の設定)

第204回審査会合資料1 P127 再揭

76

■ 2号地下構造モデルのS波・P波速度,密度については,各種調査結果に基づき設定した。

	微動アレイ探査 大深度ボーリング								炉心周辺ボーリング					2号地下構造モデル						
標高 +50m	層厚 (m)	S波 速度 (m/s)	P波 ^{※1} 速度 (m/s)	密度 ^{※2} (kg/m ³)						」 ⅠⅠ標高 ⅠⅠ	層厚	S波 速度	P波 速度	密度 (hun (nu ³)		標高	層厚	S波 速度	P波 速度	密度 (hur (ur ³)
					標高 	層厚 (m)	S波 速度 (m/s)	P波 速度 (m/s)	密度 (kg/m ³)	<u>+15m</u> 	(m) 10	(m/s)	(m/s) 800	(kg/m ⁻)		<u>+15m</u>	(m) 10	(m/s)	(m/s) 800	(kg/m ⁻)
 					-16 5m	25	760	1870	2150	<u>+5m</u> -4.7m	9.7	900	2100	2350		<u>+5m</u> 4.7m	9.7	900	2100	2350
	310	1890	3390	2300	<u>-51.5m</u>	35	2660	5320	2610		55.3	1600	3600	2500			55.3	1600	3600	2500
						190	1710	3940	2390	<u>–60m</u> 1 <u>–110m</u> 1 <u>–160m</u>	50 50 55	1950 2000 2350	4000 4050 4950	2500 2650 2850		<u>-00m</u> <u>-110m</u> <u>-160m</u>	50 50 55	1950 2000 2350	4000 4050 4950	2500 2650 2850
<u>-260m</u>					<u>-241.5m</u>							高速	度層		-		75	2530	5220	2680
-660m	400	2140	3700	2370	<u>-371.5m</u>	130	2530	5220	2680								610	2190	4350	2650
	390	2220	3840	2400	<u>-981.5m</u>	610	2190	4350	2650							<u>-900m</u>				
<u>-1050m</u>	460	2720	4710	2550	- <u>1191.5m</u>	210	2730	5160	2640								610	2730	5160	2640
<u>-1510m</u>					1											<u>-1510m</u>				
2040m	530	3020	5220	2620	%1 Vp∶3.	5km/s未	:満 Vp=1	.29+1.11	Vs(狐崎	ほか(1990))					-2040m	530	3020	5220	2620
	_	3570	6180	2720	Vp:3. ※2 ρ=1.	.5km/s以 2475+0.3	上 Vp=1 99Vp-0.0	.73Vs 26Vp²(L	udwig et	al.(1970))							-	3570	6180	2720

(1)2号地下構造モデルの設定(同定解析:解析条件)

■ 2号地下構造モデルの設定において、減衰定数については、A地点で観測された5地震の 観測記録を用いて、伝達関数及びH/Vスペクトル比に基づく同定解析により設定した。

					_	_
No.	地 震 (年月日・時刻)	М	震源 深さ (km)	震央 距離 (km)	方位 角 ([°])	入 射角 ([°])
1	鳥取県西部の地震 (2000.7.17 8:00)	4.4	16	42.3	115	69
2	鳥取県西部の地震 (2000.10.6 14:52)	4.5	8	34.1	124	77
3	鳥取県西部の地震 (2000.10.7 6:38)	4.4	8	33.2	125	76
4	鳥取県西部の地震 (2000.10.7 12:03)	4.3	9	33.3	121	75
5	鳥取県西部の地震 (2000.10.8 20:51)	5.2	8	33.7	123	76

検討対象地震

A地点地震計設置位置

設定 第204回審査会合資料1 P129 再掲

78

(1)2号地下構造モデルの設定(同定解析:伝達関数)

■ 観測記録に基づき評価した平均伝達関数と、同定解析により設定した2号地下構造モデルによる理論伝達関数は良く整合している。

伝達関数の比較(水平方向)

伝達関数の比較(鉛直方向)

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.5 地下構造モデルの設定 第204回審査会合資料1 P130 再掲

(1)2号地下構造モデルの設定(同定解析:H/Vスペクトル比)

■ 観測記録に基づき評価した平均H/Vスペクトル比と、同定解析により設定した2号地下 構造モデルによる理論H/Vスペクトル比は良く整合している。

79

H/Vスペクトル比の比較

第204回審査会合資料1 P131 加筆•修正

80

(1)2号地下構造モデルの設定(モデル設定値)

■ 2号地下構造モデルを以下のとおり設定した。なお、標高-1510m以深の減衰については 岩田・関口(2002)で用いられている地下構造モデル^{※1}の値を用いている。

	標高	層厚	S波	P波	宓市	減衰定数(%)										
層番号	(m)	(m)	速度	速度	шљ (kg/m ³)		h _s h _P									
	— +15 —		(m/s)	(m/s)	(1.8, 1.1.)	h(f) ^{※2}	0.05s	0.1s	0.2s	0.5s	h(f) ^{%2}	0.05s	0.1s	0.2s	0.5s	
1	±10	5	250	800	2100	75.8f ^{-0.003}	75.12	75.28	75.43	75.64	77.0f ^{-0.003}	76.31	76.47	76.63	76.84	
2	+10	8.8	900	2100	2350	54.6f ^{-0.319}	21.00	26.19	32.68	43.77	70.4f ^{-0.319}	27.07	33.77	42.13	56.43	
3	-60	61.2	1600	3600	2500	46.0f ^{-0.987}	2.39	4.74	9.39	23.21	83.2f ^{-0.987}	4.33	8.57	16.99	41.98	
4		50	1950	4000	2500	27.3f ^{-0.539}	5.43	7.89	11.47	18.79	77.4f ^{-0.539}	15.40	22.37	32.51	53.27	
5		50	2000	4050	2650	$48.4f^{-0.582}$	8.47	12.67	18.97	32.33	82.9f ^{-0.582}	14.50	21.70	32.49	55.38	
6		73.5	2350	4950	2850	7.62f ^{-0.363}	2.57	3.30	4.25	5.92	8.53f ^{-0.363}	2.88	3.70	4.76	6.63	
7		56.5	2530	5220	2680	7.62f ^{-0.363}	2.57	3.30	4.25	5.92	8.53f ^{-0.363}	2.88	3.70	4.76	6.63	
8	000	610	2190	4350	2650	5.01f ^{-0.497}	1.13	1.60	2.25	3.55	5.40f ^{-0.497}	1.22	1.72	2.43	3.83	
9	1510	610	2730	5160	2640	9.46f ^{-0.920}	0.60	1.14	2.15	5.00	9.67f ^{-0.920}	0.61	1.16	2.20	5.11	
10	2040	530	3020	5220	2620		0.	250			0.125					
11	2040	8	3570	6180	2720	0.185					0.091					

2号地下構造モデル

※1 京都大学防災研究所地震予知センター鳥取地震観測所が震源決定に用いている速度構造(P波速度)を参考に設定された地下構造モデルで,2000年鳥取県西部地震の震源インバージョン 及び強震動シミュレーションに用いられており,強震動シミュレーション結果は観測記録と良く対応することが確認されている。

※2 f は振動数を表す。

※3 炉心周辺ボーリング及び大深度ボーリングのPS検層結果の接続部分であり、PS検層では境界を把握できないため同定解析により設定。

第204回審査会合資料1 P132 加筆·修正

81

(1)2号地下構造モデルの設定(モデルの妥当性確認)

■ 2号地下構造モデルを用いた2000年鳥取県西部地震の地盤応答解析結果(標高-135m→ 標高-5m)と観測記録(標高-5m)を比較すると、同程度となっていることから、2号地下構造 モデルは妥当であることを確認した。

(2)3号地下構造モデルの設定(速度値,密度の設定)

第204回審査会合資料1 P135 再揭

82

■ 3号地下構造モデルのS波・P波速度,密度については,各種調査結果に基づき設定した。

	微動アレイ探査 大深度ボーリング 炉心周辺ボーリング						З	号地 ⁻	下構造	モデノ											
標高 	層厚 (m)	S波 速度 (m/s)	P波 ^{※1} 速度 (m/s)	密度 ^{※2} (kg/m ³)						, 」標語 」	高 46m	層厚 (m)	S波 速度 (m/s)	P波 速度 (m/s)	密度 (kg/m ³)		標高 +46m	層厚 (m)	S波 速度 (m/s)	P波 速度 (m/s)	密度 (kg/m ³)
					標高 <u>+8.5m</u>	層厚 (m)	S波 速度 (m/s)	P波 速度 (m/s)	密度 (kg/m ³)	+; +;	<u>38m</u> 30m	8 8 23	270 620 960	520 1710 2270	2280 2380 2390		<u>+38m</u> +30m	8 8 23	270 620 960	520 1710 2270	2280 2380 2390
	310	1890	3390	2300	<u>-16.5m</u>	25	760	1870	2150	+ + + + + + + + + + + + + + + + + + +	<u>- 7m</u> 24m	31	1520	3240	2500		+ 7m	31	1520	3240	2500
					<u>-51.5m</u>	190	1710	3940	2390	$\frac{-1}{-1}$	40m 72m 15m	116 32 43	1900 2100 1770	3860 4150 3800	2570 2490 2560		<u>-140m</u> <u>-172m</u> -215m	116 32 43	1900 2100 1770	3860 4150 3800	2570 2490 2560
<u>-260m</u>					<u>-241.5m</u>	130	2530	5220	2680				高速	 夏層		÷i.	345m	130	2530	5220	2680
<u>-660m</u>	400	2140	3700	2370	<u>-371.5m</u>					 								610	2190	4350	2650
-1050m	390	2220	3840	2400	<u>-981.5m</u>	610	2190	4350	2650	 							<u>-955m</u>				
-1510m	460	2720	4710	2550	1– <u>1191.5m</u>	210	2730	5160	2640								-1510m	555	2730	5160	2640
-2040m	530	3020	5220	2620	—————————————————————————————————————	5km/s 末	·潇 Vn=1	29+1 11	Ve(狐崎	ほか(1)	990))						-2040m	530	3020	5220	2620
	_	3570	6180	2720	Vp:3 ※2 ρ=1.	5km/s以 2475+0.3	、上 Vp=1 99Vp-0.0	1.73Vs)26Vp²(L	udwig et	al.(197	70))							—	3570	6180	2720

第204回審査会合資料1 P136 再掲

83

(2)3号地下構造モデルの設定(同定解析:解析条件)

■ 3号地下構造モデルの設定において、減衰定数については、B地点で観測された5地震の 観測記録を用いて、伝達関数及びH/Vスペクトル比に基づく同定解析により設定した。

_						
No.	地 震 (年月日・時刻)	М	震源 深さ (km)	震央 距離 (km)	方位角 ([°])	入 射角 ([°])
1	鳥取県西部の地震 (2000.7.17 8:00)	4.4	16	42.3	115	69
2	鳥取県西部の地震 (2000.10.6 14:52)	4.5	8	34.1	124	77
3	鳥取県西部の地震 (2000.10.7 6:38)	4.4	8	33.2	125	76
4	鳥取県西部の地震 (2000.10.7 12:03)	4.3	9	33.3	121	75
5	鳥取県西部の地震 (2000.10.8 20:51)	5.2	8	33.7	123	76

検討対象地震

B地点地震計設置位置

(2)3号地下構造モデルの設定(同定解析:伝達関数)

■ 観測記録に基づき評価した平均伝達関数と、同定解析により設定した3号地下構造モデルによる理論伝達関数は良く整合している。

第204回審査会合資料1 P137 再掲

(2)3号地下構造モデルの設定(同定解析:H/Vスペクトル比)

■ 観測記録に基づき評価した平均H/Vスペクトル比と、同定解析により設定した3号地下 構造モデルによる理論H/Vスペクトル比は良く整合している。

第204回審査会合資料1 P138 再掲

85

H/Vスペクトル比の比較

第204回審査会合資料1 P139 加筆・修正

86

(2)3号地下構造モデルの設定(モデル設定値)

■ 3号地下構造モデルを以下のとおり設定した。なお、標高-1510m以深の減衰については 岩田・関口(2002)で用いられている地下構造モデル^{※1}の値を用いている。

	標高	層厚	S波	P波	一一一一一	減衰定数(%)											
層番号	(m)	(m)	速度	速度	名皮 (kg/m ³)	h _s					h _P						
			(m/s)	(m/s)	(1.6, 111 /	h(f) ^{%2}	0.05s	0.1s	0.2s	0.5s	h(f) ^{%2}	0.05s	0.1s	0.2s	0.5s		
1	+40.7	3.3	270	520	2280	$15.7f^{-0.887}$	1.10	2.04	3.77	8.49	24.9f ^{-0.887}	1.75	3.23	5.97	13.46		
2	+42.7	6.4	620	1710	2380	$8.92f^{-0.845}$	0.71	1.27	2.29	4.97	12.5f ^{-0.845}	0.99	1.79	3.21	6.96		
3		29.3	960	2270	2390	62.9f ^{-0.263}	28.61	34.33	41.19	52.42	$64.5f^{-0.263}$	29.34	35.20	42.24	53.75		
4	+/	31	1520	3240	2500	24.7f ^{-0.733}	2.75	4.57	7.59	14.86	62.0f ^{-0.733}	6.90	11.47	19.06	37.30		
5		116	1900	3860	2570	13.1f ^{-0.463}	3.27	4.51	6.22	9.50	26.9f ^{-0.463}	6.72	9.26	12.77	19.52		
6		32	2100	4150	2490	22.8f ^{-0.739}	2.49	4.16	6.94	13.66	33.8f ^{-0.739}	3.69	6.16	10.29	20.25		
7		43	1770	3800	2560	25.9f ^{-0.817}	2.24	3.95	6.95	14.70	27.8f ^{-0.817}	2.40	4.24	7.46	15.78		
8	215	130	2530	5220	2680	7.62f ^{-0.363}	2.57	3.30	4.25	5.92	8.53f ^{-0.363}	2.88	3.70	4.76	6.63		
9	-055	610	2190	4350	2650	$5.01 f^{-0.497}$	1.13	1.60	2.25	3.55	5.40f ^{-0.497}	1.22	1.72	2.43	3.83		
(10)		555	2730	5160	2640	9.46f ^{-0.920}	0.60	1.14	2.15	5.00	9.67f ^{-0.920}	0.61	1.16	2.20	5.11		
(11)		530	3020	5220	2620		0.	250				0.	125				
(12)	-2040	8	3570	6180	2720	0.185					0.091						

3号地下構造モデル

※1 京都大学防災研究所地震予知センター鳥取地震観測所が震源決定に用いている速度構造(P波速度)を参考に設定された地下構造モデルで,2000年鳥取県西部地震の震源インバー ジョン及び強震動シミュレーションに用いられており,強震動シミュレーション結果は観測記録と良く対応することが確認されている。

※2 f は振動数を表す。

第204回審査会合資料1 P140 加筆·修正

87

(2)3号地下構造モデルの設定(モデルの妥当性確認)

■ 3号地下構造モデルを用いた2000年鳥取県西部地震の地盤応答解析結果(標高-221m→ 標高-13m)と観測記録(標高-13m)を比較すると、同程度となっていることから、3号地下構 造モデルは妥当であることを確認した。

3号地下構造モデルによる地盤応答解析結果と観測記録の比較(2000年鳥取県西部地震)

地下構造モデルの設定のまとめ

第204回審査会合資料1 P141 加筆·修正

88

敷地の傾斜構造を考慮した解析による検討を踏まえ、2号及び3号観測点における地震観測記録及び物理探査結果に基づき、2号及び3号地下構造モデルを設定した。
設定した2号及び3号地下構造モデルに基づき算定した理論伝達関数及びH/Vスペクトル比については、観測記録によるものと良く整合していること、及び2000年鳥取県西部地震の地盤応答解析結果と観測記録を比較すると、同程度となることから、2号及び3号地下構造モデルは妥当であることを確認した。

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.6 地震動評価に用いる地下構造モデルの設定

地震動評価に用いる地下構造モデルの設定の検討内容

第204回審査会合資料1 P143 再揭

- 敷地地盤の物理探査結果及び地震観測記録等に基づき設定した2号及び3号地下構造モデルより、敷地の地震動評価に用いる地下構造モデルを設定する。
- 敷地の地震動評価に用いる地下構造モデルとしては、敷地の地震動を安全側に評価 するように、速度値及び減衰定数等の物性値を設定する。

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.6 地震動評価に用いる地下構造モデルの設定 地震動評価に用いる地下構造モデル(速度値等の物性値) ^{第204回審査会合資料1 P144 再掲}

■ 2号及び3号地下構造モデルの地盤増幅特性(解放基盤表面/地震基盤面)を比較すると、同程度となるが、3号地下構造モデルの方が若干大きくなるため、地震動評価に用いる地下構造モデルの速度値等の物性値は、3号地下構造モデルのものを用いた。

2号地下構造モデル

3号地下構造モデル

90

地盤増幅特性(解放基盤表面/地震基盤面)の比較

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.6 地震動評価に用いる地下構造モデルの設定 地震動評価に用いる地下構造モデル(減衰定数の設定) 第204回審査会合資料1 P145 再掲

地震動評価に用いる地下構造モデルの減衰定数は、地震観測記録に基づく3号地盤の 減衰定数の同定解析結果及び大深度ボーリング孔におけるQ値測定結果を考慮し、地 盤増幅特性が安全側になるように設定した。なお、8層以深の減衰定数も浅部と比較す ると、設定自体は安全側の評価(減衰定数が小さいので地盤増幅特性に対する感度は 小さい)となっている。

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.6 地震動評価に用いる地下構造モデルの設定

地震動評価に用いる地下構造モデル(モデル設定値)

第204回審査会合資料1 P146 加筆·修正

地震動評価に用いる地下構造モデルを以下のとおり設定した。なお、深部の物性値(モデルの網掛け箇所)は岩田・関口(2002)で用いられている地下構造モデル^{※1}の値を用いている。

	標高	層厚	S波	P波	क क		減衰定数(%)									
層番号	(m)	(m)	速度	速度	密度 (kg/m ³)		hs					h _P				
			(m/s)	(m/s)	(Kg/ III /	h(f) ^{**}	0.05s	0.1s	0.2s	0.5s	h(f) ^{※2}	0.05s	0.1s	0.2s	0.5s	
1		14	1520	3240	2500	12.3f ^{-0.733}	1.37	2.27	3.78	7.40	31.1f ^{-0.733}	3.46	5.75	9.56	18.71	\uparrow \uparrow
2		116	1900	3860	2570	$6.53 f^{-0.463}$	1.63	2.25	3.10	4.74	13.5f ^{-0.463}	3.37	4.65	6.41	9.79	統
3		32	2100	4150	2490	11.4f ^{-0.739}	1.25	2.08	3.47	6.83	16.9f ^{-0.739}	1.85	3.08	5.14	10.13	前り
4	-215-	43	1770	3800	2560	13.0f ^{-0.817}	1.12	1.98	3.49	7.38	13.9f ^{-0.817}	1.20	2.12	3.73	7.89	ク リ _珥
5		130	2530	5220	2680	3.81f ^{-0.363}	1.28	1.65	2.12	2.96	$4.27 f^{-0.363}$	1.44	1.85	2.38	3.32	
6		610	2190	4350	2650	2.51f ^{-0.497}	0.57	0.80	1.13	1.78	$2.70 f^{-0.497}$	0.61	0.86	1.21	1.91	関 当 数→
7	1510	555	2730	5160	2640	4.73f ^{-0.920}	0.30	0.57	1.08	2.50	$4.84f^{-0.920}$	0.31	0.58	1.10	2.56	法 法
8	- 2040	530	3020	5220	2620		0.	250				0.	125			
9		13960	3570	6180	2720		0.	.185				0.	091			
10	-38000-	22000	3870	6700	2800	0.125 0.063										
11		∞	4510	7800	3100	0.100 0.050										

地震動評価に用いる地下構造モデル

※1 京都大学防災研究所地震予知センター鳥取地震観測所が震源決定に用いている速度構造(P波速度)を参考に設定した地下構造モデルで,2000年鳥取県西部地震の震源インバー ジョン及び強震動シミュレーションに用いられており,強震動シミュレーション結果は観測記録と良く対応することが確認されている。

※2 f は振動数を表す。

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.6 地震動評価に用いる地下構造モデルの設定 地震動評価に用いる地下構造モデル(地盤増幅特性) ^{第204回審査会合資料1 P147 再掲}

地震動評価に用いる地下構造モデルの地盤増幅特性は、2号及び3号地下構造モデルの地盤増幅特性より大きくなり、敷地の地震動を安全側に評価する地下構造モデルを設定した。

地盤増幅特性(解放基盤表面/地震基盤面)の比較

- 2. 敷地地盤の振動特性及び地下構造モデルの設定 2.6 地震動評価に用いる地下構造モデルの設定 地震動評価に用いる地下構造モデル(物性値の妥当性確認) 第204回審査会合資料1 P148 加筆·修正 94
 - 地震動評価に用いる地下構造モデルから求めた理論位相速度と、微動アレイ観測記録 (西側アレイ)から求めた位相速度を比較すると、同程度となっていることから、地震動 評価に用いる地下構造モデルの深さ2km程度までの物性値は妥当であることを確認した。

微動アレイ探査配置図

層番号	標高 (m)	層厚 (m)	S波 速度 (m/s)	P波 速度 (m/s)	密度 (kg/m ³)
1		14	1520	3240	2500
2		116	1900	3860	2570
3		32	2100	4150	2490
4		43	1770	3800	2560
5	-215	130	2530	5220	2680
6	-055	610	2190	4350	2650
7	-1510	555	2730	5160	2640
8	- 1310	530	3020	5220	2620
9	-2040	8	3570	6180	2720

理論位相速度と観測位相速度の比較

2. 敷地地盤の振動特性及び地下構造モデルの設定 2.6 地震動評価に用いる地下構造モデルの設定

地震動評価に用いる地下構造モデルの設定のまとめ

第204回審査会合資料1 P150 加筆·修正

- 2号及び3号地下構造モデルの地盤増幅特性は同程度であるが、3号地下構造モデルの方が若干大きくなるため、地震動評価に用いる地下構造モデルの速度値等の物性値は、3号地下構造モデルの値を用いて設定した。
- 地震動評価に用いる地下構造モデルの減衰定数は、地震観測記録に基づく3号地盤の減衰定数の同定解析結果及び大深度ボーリング孔におけるQ値測定結果を考慮し、 地盤増幅特性が安全側になるように設定した。
- 地震動評価に用いる地下構造モデルから求めた理論位相速度と、微動アレイ観測記録から求めた位相速度を比較すると、同程度となることから、地震動評価に用いる地下構造モデルの深さ2km程度までの物性値は妥当であることを確認した。
- 地震動評価に用いる地下構造モデルの減衰定数を安全側に設定することにより、地盤 増幅特性は十分な保守性を有していることから、2次元地下構造モデルの深部構造の モデル設定において不確かさがあるとしても、安全側に地震動を評価できるものと考え ている。
- ▶ 以上より, 敷地全体の地震動を安全側に評価することができる地下構造モデルを設定した。