高浜発電所	ŕ(1,	2 号炉)	安全審査資料	
資料番号		3 (R	lev-8)	
提出年月日	令和3年3月18日			

高浜発電所1,2号炉 新知見への適合状況説明資料 (DNP に対する防護)

> 令和3年3月 関西電力株式会社

枠囲みの範囲は機密に係る事項ですので公開することはできません。

<目 次>

- 1. 新知見内容
- 2. 基本方針
 - 2.1 概要
 - 2.2 評価条件の設定
 - 2. 3 評価対象施設の抽出
 - 2. 4 評価すべき影響因子の選定と評価手法
 - 2. 5 各評価対象施設の評価すべき影響因子の選定
 - 2. 6 評価結果
 - 2. 7 まとめ
 - 個別評価-1 建物・構築物に係る影響評価
 - 個別評価-2 復水タンクに係る影響評価
 - 個別評価-3 燃料取替用水タンクに係る影響評価
 - 個別評価-4 海水ポンプに係る影響評価
 - 個別評価-5 主蒸気大気放出弁(消音器)に係る影響評価
 - 個別評価-6 主蒸気安全弁排気管に係る影響評価
 - 個別評価-7 タービン動補助給水ポンプ蒸気大気放出管に係る影響評価
 - 個別評価-8 ディーゼル発電機に係る影響評価
 - 個別評価-9 換気空調設備(給気系外気取入口)に係る影響評価
 - 個別評価-10 排気筒に係る影響評価
 - 個別評価-11 取水設備に係る影響評価
 - 個別評価-12 海水ストレーナに係る影響評価
 - 個別評価-13 計器用空気圧縮機に係る影響評価
 - 個別評価-14 安全保護系計装盤に係る影響評価
- 3. 設置変更許可申請書への反映内容
- 4. 変更申請に係る規則への適合性
- 添付1:高浜発電所1号炉及び2号炉 火山影響評価 補足資料
- 添付2:高浜発電所1号炉及び2号炉 層厚変更に伴う重大事故等対処施設及 び特定重大事故等対処施設への影響評価
- 添付3:高浜発電所1号炉及び2号炉 層厚変更に伴う実用炉規則第八十三条 の第一号で使用する施設への影響評価
- 添付4:条文整理表

1. 新知見内容

1.1 新知見において追加された事項

2019年6月19日に発出された「核原料物質、核燃料物質及び原子炉の規制に関する法律第43条の3の23第1項の規定に基づく命令について」において、下記の事実※を前提として原子炉等規制法第43条の3の6第1項第4号の基準に適合するよう、本件発電用原子炉施設に係る設置変更許可申請書の基本設計ないし基本的設計方針を変更することが求められたものである。

※平成31年度第4回原子炉規制委員会において新たに認定された事実

- ●大山火山の大山生竹テフラ(以下、「DNP」という。)の噴出規模は11km3程度と見込まれること。
- ●大山火山の大山倉吉テフラ(以下、「DKP」という。)と DNP が一連の巨大噴火であるとは認められず、前記噴出規模の DNP は本件発電用原子炉施設の火山影響評価において想定すべき自然現象であること。

基本方針

2.1 概要

原子力規制委員会の定める「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則(平成25年6月28日原子力規制委員会規則第5号)第6条において、外部からの衝撃による損傷防止として、「安全施設は、想定される自然現象(地震及び津波を除く。)が発生した場合においても安全機能を損なわないものでなければならないとしており、敷地周辺の自然環境を基に想定される自然現象の一つとして、火山の影響を挙げている。

火山の影響により原子炉施設の安全性を損なうことのない設計であること を評価するための「原子力発電所の火山影響評価ガイド」を参照し、図 1.1 の フローに従い火山影響評価を行い、安全機能が維持されることを確認する。

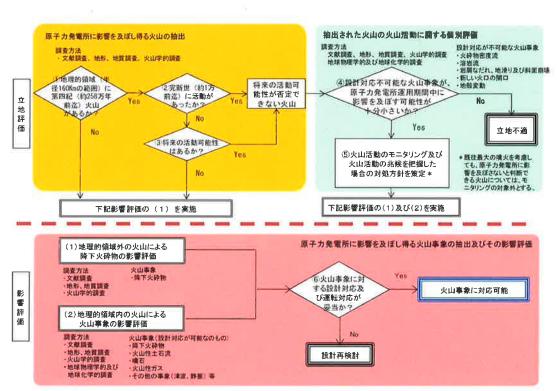


図 1.1 原子力発電所に影響を及ぼす火山影響評価の基本フロー

地理的領域内における将来の活動可能性が否定できない火山(白山、倉吉、扇ノ山、美方火山群、神鍋火山群、上野火山群、経々岳)について評価した結果、高浜発電所敷地との位置関係や火成活動の状況より、設計対応不可能な火山事象のうち、溶岩流、岩屑なだれ、新しい火口の開口、地殻変動については問題ない。また、火砕物密度流についても、高浜発電所に到達する可能性が十分小さいことを評価しており、発電所の立地評価上の問題はない。

したがって、発電所の安全機能に影響を及ぼし得る火山事象は、降下火砕物(以下「火山灰」という。)のみであることから、火山灰による原子炉施設

及び附属設備への影響評価を行う。

なお、上記の内容については、平成28年4月20日付け原規規発第1604201号をもって設置変更許可を受けた高浜1,2号炉の新規制基準適合性審査にて平成28年4月13日に提出した「高浜1,2号炉設置許可基準規則等への適合性について(設計基準対象施設等)」のうち「第6条:外部からの衝撃による損傷の防止(火山)」(以下、既提出資料という。)から変更がないため、既提出資料のうち「1.1 概要」に同じ。

2.2 評価条件の設定

影響評価に用いる条件は、敷地周辺の地質調査結果に文献調査結果も参考にして、表 1.1 のとおり、堆積厚さ $27 \mathrm{cm}$ 、粒径 $1 \mathrm{mm}$ 以下、密度 $0.7 \mathrm{g/cm}^3$ (乾燥状態) $\sim 1.5 \mathrm{g/cm}^3$ (湿潤状態) として、火山灰の特性を設定した。

項目	条件	設定根拠
堆積厚さ	27cm	文献調査、地質調査及び降下火砕物シミュレーション結果を踏まえ、給源から越畑地点及び各発電所までの距離をもとに設定
粒径	1mm 以下	津波堆積物調査で得られた火山灰の粒度試験 結果から設定
密度	乾燥状態 湿潤状態 0.7g/cm ³ ~ 1.5g/cm ³	津波堆積物調査結果、文献調査結果から設定

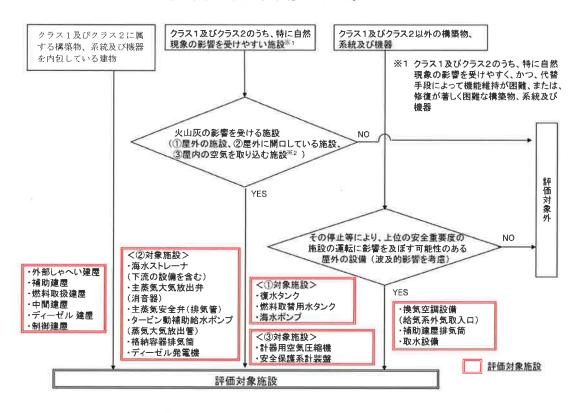
表 1.1 火山灰の特性

なお、火山灰と火山以外の自然現象の組合せについては、荷重の影響において、火山灰、風(台風)及び積雪による組合せを考慮する。

1.3 評価対象施設の抽出

「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則(平成25年6月28日原子力規制委員会規則第五号)」第6条において、「安全施設は、想定される自然現象が発生した場合においても安全機能を損なわないものでなければならない。」とされている。

また、「発電用軽水炉型原子炉施設の安全機能の重要度分類に関する審査指針」(平成2年8月30日原子力安全委員会決定)において安全機能を有する構築物、系統及び機器に対する設計上の考慮として、「クラス1では、合理的に達成し得る最高度の信頼性を確保し、かつ、維持すること。クラス2では、高度の信頼性を確保し、かつ、維持すること。」が定められている。


以上のことから、図 1.2 の抽出フローより、一般産業施設を超える機能維持を要求しているクラス 1 及びクラス 2 に属する構築物、系統及び機器のうち火山灰の影響により、安全機能を損なうおそれがある施設を抽出する。

また、クラス1及びクラス2に属する構築物、系統及び機器を内包している建物についても評価対象施設として抽出するとともに、安全重要度の低い構築物、系統及び機器であっても、火山灰の影響を受けやすく、当該施設の停止等により、上位の安全重要度の施設の運転に影響を及ぼす可能性がある場合は評価対象施設として抽出する。

なお、その他のクラス3に属する施設については、火山灰による影響を受ける場合を考慮して、代替設備により必要な機能を確保できること、又は安全上支障が生じない期間に除灰あるいは修復等による対応も可能である。

評価対象施設の抽出結果を表 1.2 に示すとともに、評価対象施設の設置場所を図 1.3 に示す。

なお、上記の内容については、既提出資料から変更がないため、既提出資料のうち「1.3 評価対象施設の抽出」に同じ。

※2 火山灰を含む外気・室内空気を機器内に取り込む機構を有しない施設又は取り込んだ場合でも、その影響が非常に小さいと考えられる施設(ポンプ、モータ、弁、盤内に換気ファンを有しない制御盤、計器等)については、 評価対象外とする。

図 1.2 評価対象施設の選定フロー

表 1.2 評価対象施設の抽出(1/3)

分類		安全機能の重	要度分類	発下火砕物の影響を受ける設備(矩外の施設、屋外に開	その停止等により上位の安全重要度の設備		
77 HJ	定義	機能	情築物、系統又北機器	口している施設、屋内の空気を機器内に取り込む施設)	の運転に影響を及ぼす可能性のある屋外の 設備	評価対象施設	
	その損傷又は故障により発生す	1) 原子炉冷却材圧力パウンダリ機能	原子炉冷却材圧力パウンダリを構成する機器・配管 (1次冷却材系統)				
ns a	る事象によって、 (a) 炉心の暮しい損傷、又は (b) 燃料の大量の破損を引き起 こすおそれのある構築物、系統	2) 過剰反応度の印加防止機能	制御権駆動装置圧力ハウジング (1次冷却材系)				
	及び機器	3) が心形状の維持機能	pi心支持構造物				
		37 メパロガスへの様子で後継	燃料集合体				
		1)原子炉の緊急停止機能	原子炉停止系の制御棒による系(制御棒クラスタ、制御棒駅動系)			外部しゃへい建屋 (制御株駅動装置を設置)	
	1) 異常状態発生時に原子炉を 第念に停止し、疫育熱を除去 し、原子幹治財材に力バウング りの過程を助し、敷地別辺公 教への過度の放明線の影響を防 比する博鰲物、系統及び機器	2)未雖界維持機能	原子炉停止系 制御株による系 化学体積制即設備のほう機木注人機能 非常用炉心冷却深のほう機水注人機能	in the second se	一補助建屋給氣系	・補助建屋 (ほう酸タンク、ほう酸ポンプ及び充てルポンプを設 次) ・補助建屋給気系	
		3) 原子灯冷却材圧力パウンダリの過圧防止 機能	加上器安全介 (開機能)				
		4)原子が写上後の除熱機能	程信熱を除天する系統 余熱除上系 間助給水系 蒸気発生器 2次側隔欄令までの上蒸気系 = 給水系	- タービン動補助給水ポンプ ・復木タンク	。中国健康給法系	* 補助理屋 (介熱除 上冷 却器、介熱除 上ポンプを設置) * 中間健屋 (電動補助給 木ポンプを設置) * タービン動補助給 木ポンプ * 後水 タンク * 補助給 木ポンプ室給 気系	
MS 1		し、敷地周辺公 別義の影響を防	後僧無を除たする系統 上蒸気逐がし作 (手勤迷がし機能) 上蒸気安全作	◆ 主蒸気大気放出弁 ◆ 主蒸気安全介	* 上蒸気ヘッダ電給気系	* 主蒸気大気放出弁 * 主蒸気安全弁 * 主蒸気公ッダ宝粉気系	
		5) が心冷却隆能	非常用奶心冷爆系 既正性人弟 (余然除力素) 高正性人系 着用性人系		- 補助健屋給気系	力權助維州給 須系	
			原子が格納容器		0		
		原 (6) 放射性物質の閉じ込め機能、放射剤の速 へい及び放出低減機能 ケンタンながはです。 ケンタンながある。 ケンタンながある。	アニュラス 京子が格納客器隔離介 原子炉格納客器スプレイ系		• 補助建屋給気系	- 補助鍵屋給氣系	
			アニュラス空気再構築設備 (アニュラス排気ファン等) 安全補機電空気浄化系 可燃性ガス構度制卸系				
			原子如格納容器排気筒	• 格納容器排気筒		* 格納容器排気筒	

表 1.2 評価対象施設の抽出(2/3)

分類	安全機能の重要度分類			降下火砕物の影響を受ける設備(屋外の施設、屋外に開	その停止等により上位の安全重要度の設備		
<i>37</i> 64	定義	機能	構築物、系統又は機器	川している施設、屋内の空気を機器内に取り込む施設)	の運転に影響を及ぼす可能性のある屋外の 設備	評価対象施設	
		1) 工学的安全施設及び以下炉停止系への作 動信号の発生機能	安个保護系	- 安全保護系計装盤		,安全保護系計装壓	
			MS L関連のもの 制御宝及びその遮へい、換気空調系 (中央制御室非常用約気系被等)		中央制御室給気系	・補助建屋 (中央制御室を設置) ・中央制御室を設置)	
			MS 1 関連のもの 以 / 灯 維 機 冷 均 水 系				
18 1	2) 安全上必須なその他の構築 物、系統及び機器	2) 安全上特に重要な関連機能	MS 1間迷のもの 原子が補機市対徳水系(海水ボンブ等)	。 海水ポンプ - 海水ストレーナ (ド錠の設備合む)	· 版水设编	- 海水ポンプ - 海水ストレーリ (ド旋の設備含む) - 取水設備	
		2.7 灰玉 14年11版公司超速機能	MS 1関連のもの 非常用所内電線系(ディーゼル発電機等)	・ディ・セル発電機	※ディーゼル発電機室輸気系	ディーゼル健県 (ティーゼル発電機を設置)ディーゼル発電機を設置)ディーゼル発電機機関ディーゼル発電機率給気系	
			MS - 1 関連のもの 非常用所内電観系(安全編機関門器等) 直流電線系		- 中央制御室給気系 - バッテリ室給気系	。中央制御室給気系 。バッテリ室給気系	
			M S 1 関連のもの 制御用空気圧縮設備	計器用空気圧縮機	- 中間建屋約 気系	計器用空気圧縮機中間建局給気系	
		1) 原子炉冷局材を内蔵する機能(ただし、 原子炉冷局材化力パウンダ)から除外されて いる計接等の小口径のもの及びパウングリに 直接接続されていないものは除く。)	化学体質制飾設備の抽出系・浄化系		* 補助壁局額延系	- 補助健尿給気系	
	1) その損傷又は危険により発 生する事象によって、がもの者 しい損傷又は進料の大泉の確損 を成ちに引き起こすおそれはな		放射性廃棄物処理施設(放射能インベントリの大きいもの) 放射性気体廃棄物処理系				
	いが、他地外への設度の放射性 物質の設計のおそれのある構造 物、系統及び機器	・ 市地外・の設度の放射性 (の設別のガテれのある場合 はおいていないものであって、放射性物質を貯 減する機能	使用済燃料セット(使用済燃料シックを含む。)		※ 補助建廃給気系	- 燃料取扱健康 (使用が燃料ビットを設置) - 補助健康 (使用が燃料ビット作却器を改置) - 補助健局給気系	
		3) 燃料を安全に取り扱う機能	燃料取扱設備		883	994	
	2) 通常運転率及び運転時の鬼 常な過速変化時に作動を要求さ れるものであって、その故障に より。如心治知が損なわれる可 能性の高い構築物、系統及び機	I) 安全介及び遙がし弁の吹き止より機能	吹き止より機能に関連する部分 加に器を会介 加に器を含介				

表 1.2 評価対象施設の抽出(3/3)

分類		安全機能の重	要度分類	降下火砕物の影響を受ける設備(屋外の施設、屋外に開	その停止等により上位の安全重要度の設備 の運転に影響を及ぼす可能性のある屋外の	155 days to Labor teles teles teles	
77 %	定後	機能	橋築物、系統又は機器	口している施設、屋内の空気を機器内に取り込む施設)	沙原なにの神を及れず 可能性のある地外の 設備	評価対象施設	
	1) PS - 2の博変物、系統及 U機器の損傷又は旋旋により敷 地周辺公衆に与える放射線の影		岐用済燃料ビット觚鉛水系			- 燃料取料用水タンク - 補助建境 (燃料取料用水ポンプを設置)	
	響を上分小さくするようにする 構築物、系統及び機器	2) 放射性物質放出の防止機能	然料集合体落下事故時放射能放出を低減する系、排気筒(補助建屋)		- 補助建聚排気筒	■ 補助建烃排気筒	
MS 2		1) 事故時のプラント状態の把握機能	事故時監視計器の・・部 基納な器半サグモニタ				
	2) 異常状態への対応上特に重 要な構築物、系統及び機器	2) 異常状態の緩和機能	加圧器逃がし弁(千動閉門機能) 加圧器ヒータ(後偏ヒーク) 加圧器迷がし弁元弁			外部しゃへい建屋 (加圧器逃がし介及び加圧器後偏ヒータを設置)	
		3) 制御室外からの安全停止機能	脚御室外原子が停止装置 (安全停止に関連するもの)				
		1) 原子炉冷却材保持機能 (PS-1、PS-2以外のもの)	計装配管。 故料采取管				
	1)異常状態の起因事象となるものであって、PS 1及びド S 2以外の構築物、系統及び 機器		2) 原子が治却材の循環機能	1 次冷却材ポンプ及びその間連系			
		3) 放射性物質の貯藏機能	放射性廃棄物処理施設 (放射値インベントリの小さいもの) 液体廃棄物処理系 関体廃棄物処理系				
		4) 電源供給機能(非常用を除く)	上場気系(隔離弁以後) 給水系(隔離弁以前)		主 煮気ヘッダ室給気系中間建屋給気系	・ 主蒸気ヘッダ宝給気薬・ 中間建屋給気薬	
PS 3			発性機、送性線、変圧器、開閉所				
		5) プラント計測・制御機能(安全保護機能 を除く。)	原子炉制御系、原子炉計装、プロセス計装				
		6)プラント運転補助機能	辅助灌筑系 制御印压缩空気設備 (M.S. 1以外) 極受冷却水系等				
	2) 原子炉冷却材中放射性物質 農度を通常運転に支障のない程	 核分裂生成物の原子炉冷却材中への放散 防止機能 	原料被優不		-		
	度に低く抑える構築物、系統及 び機器	2) 原子炉冷却材の浄化機能	化学体積制御設備の浄化系(浄化機能) 冷却材油床式脱塩塔				
		1) 原子炉圧力の上昇の緩和機能	加圧器逃がし弁(自動操作)				
	1) 連転時の異常な過度変化が あっても、MS I、MS 2 とあいまって、事象を緩和する	2)出力上昇の抑制機能	ターピンワンバック系 原子原列助系上器ラック 制御体引放爪				
MS 3	橋築物、系統及び機器	3) 原子が冷却材の補給機能	化学体積制御設備の充てん系 ほう酸補給タンク				
			1 次冷却系袖給水设偏				
	2) 異常状態への対応上必要な 爆築物、系統及び機器	1) 緊急時対策上重要なもの及び異常状態の 把操機能	原子力発電所緊急時対策所、試料採取系、通信連絡接編、放射線監視設 編、事故時監視計器の一部、消火系、安全避難通路、非常用照明				

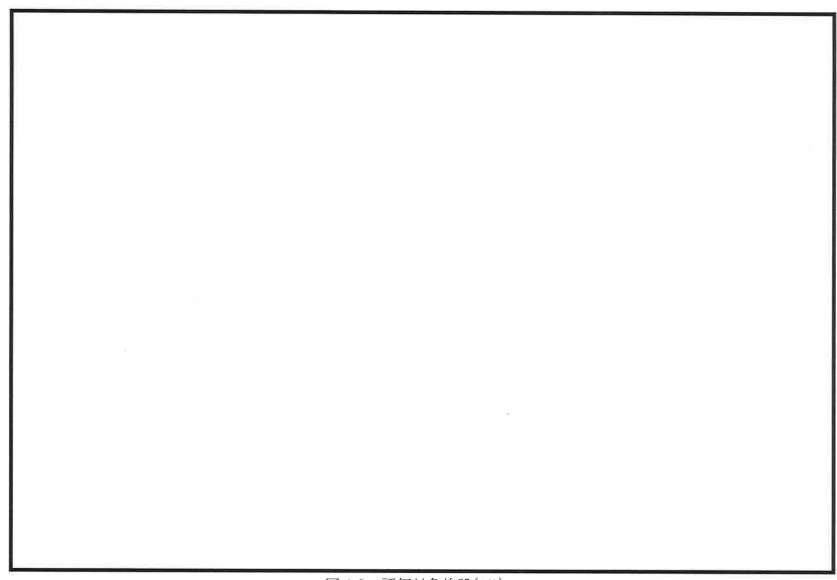


図 1.3 評価対象施設(1/2)

枠囲みの範囲は機密に係る事項ですので公開することはできません。

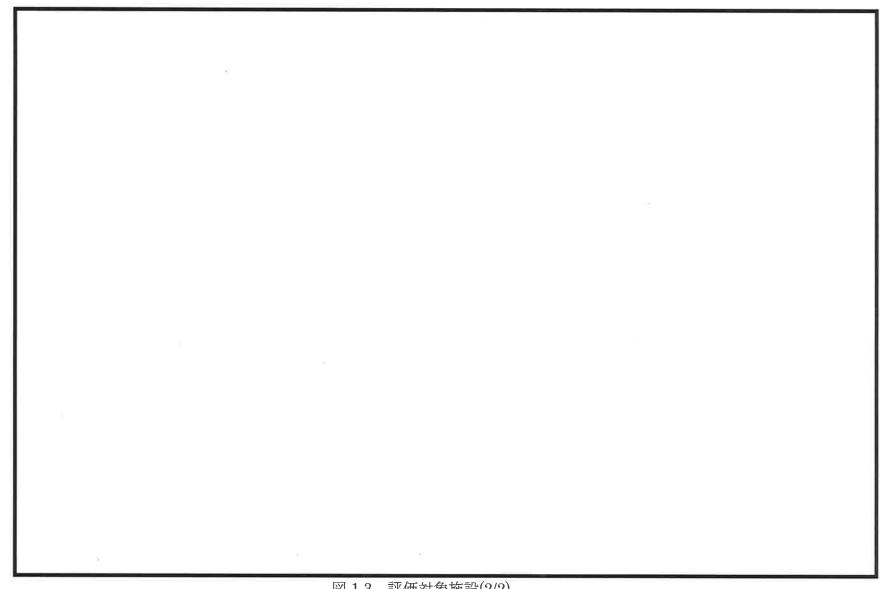


図 1.3 評価対象施設(2/2)

枠囲みの範囲は機密に係る事項ですので公開することはできません。

2.4 評価すべき影響因子の選定と評価手法

(1)直接的影響

火山灰による直接的な影響因子については、原子力発電所の構造物への静的負荷や化学的影響、粒子の衝突、水循環系の閉塞及びその内部における磨耗、換気系、電気系及び計装制御系に対する機械的及び化学的影響、原子力発電所周辺の大気汚染等の影響が考えられるが、高浜発電所 1,2 号炉で想定される火山灰の条件を考慮し、表1.3 に示す項目について評価を実施する。

①構造物への静的負荷(降雨等の影響を含む)

建物・構築物、屋外機器において、火山灰の堆積荷重として影響を考慮すべき要因である。火山灰の堆積を想定し、構造物の許容応力値以下であることを確認する。荷重条件としては、降雨・降雪を考慮し、湿潤状態の火山灰荷重と積雪荷重の組み合わせについて考慮する。なお、構造物の形状等により火山灰が堆積しにくい場合は、火山灰の影響はないと判断する。

また、火山灰の降灰と設計基準事故が同時に発生する頻度は十分小さいことから、設計基準事故荷重と火山灰による荷重との組合せは考慮しない。

仮に、設計対象施設への影響が小さく発生頻度が高い少量の火山灰の 降灰と設計基準事故が同時に発生する場合、設計対象施設のうち設計基 準事故時荷重が生じる施設としては動的機器である海水ポンプが考えら れるが、設計基準事故時においても海水ポンプの圧力、温度が変わらず、 機械的荷重が変化することはないため、設計基準事故時に生じる荷重の 組合せは考慮しない。

なお、建物・構築物、屋外機器について許容層厚に対する余裕が少ない場合には、設工認での静的荷重評価において、許容応力に対する余裕を考慮し、必要に応じて堆積物の除去に必要な作業要員の荷重影響を考慮した評価を実施する。

②構造物の化学的影響 (腐食)

建物・構築物、屋外機器について、火山灰が付着接触し、火山灰から溶 出した成分によって腐食が発生しないことを機器表面の塗装の有無等に よって評価する。

③粒子の衝突

想定する火山灰は微小な粒子であり重量も小さく(粒径約 1mm 以下、密度 1.5g/cm³)、竜巻の影響評価にて包絡されることから、衝突により建物・構築物、屋外機器に影響を与える可能性はなく、個別の評価は不要である。

④水循環系の閉塞

火山灰が内部流体中に混入する可能性を検討し、海水系のような混入

の可能性のある機器の狭隘部に対して、火山灰の粒径との関係から流路 閉塞の可能性を評価する。

また、必要に応じて、海水を供給している下流の設備への影響についても考慮する。

⑤水循環系の内部における磨耗

水循環系において最も磨耗の影響を受けやすい箇所はライニングが施されていない各冷却器の伝熱管と考えられるが、プラントの運用期間中において海水取水中に含まれる砂等の磨耗によるトラブルは発生していないこと、また火山灰は砂等に比べて破砕し易く*1硬度が小さい*2ことから、火山灰粒子による磨耗が設備に影響を与える可能性は小さいため、個別の評価は不要である。

- ※1 武若耕司(2004):シラスコンクリートの特徴とその実用化の現状、コンクリート工学、vol.42、No.3、p.38-47
- ※2 恒松修二・井上耕三・松田応作(1976):シラスを主原料とする結晶化ガラス、窯業協会誌 84[6]、p.32-40

⑥水循環系の化学的影響 (腐食)

火山灰成分が海水中に溶出した場合に懸念される化学的影響(腐食)について、短期的に影響がないことを防汚塗装の有無等により評価する。 また、必要に応じて、海水を供給している下流の設備への影響についても考慮する。

⑦換気系、電気系及び計装制御系に対する機械的影響(降雨等の影響を含む)

屋外設備、屋外に開口部を有する設備について、屋外に連通する開口部の形状等から、火山灰が侵入する可能性と侵入した場合の影響度を評価する。

換気空調設備及び海水ポンプモータについては、フィルタが清掃又は 取替可能な構造となっていること、また、閉塞の有無を点検できることを 確認する。

さらに、必要に応じて換気系からの給気を供給している範囲への影響 についても考慮する。

⑧換気系、電気系及び計装制御系に対する化学的影響(腐食) 屋外設備について、火山灰の付着に伴う腐食により、その機能に影響がないことを塗装の有無等によって評価する。

9発電所周辺の大気汚染

汚染された大気が換気空調系を通じて中央制御室に侵入し、居住性に 影響を与えないことを確認する。

⑩水質汚染(給水の汚染)

発電所では純水装置により水処理した給水を使用しており、火山灰の 影響を受ける可能性のある海水や淡水を直接給水として使用していない。 また、給水は水質管理を行っており、給水の汚染が設備に影響を与える可 能性はないことから、個別の評価は不要である。

⑪絶縁低下

高浜発電所の開閉所は、ガス絶縁開閉装置を使用しており、開閉装置本体に充電露出部はない。また、開閉装置の送電線側は、送電線引出ブッシングを経て碍子により支持している送電線路となっているが、降灰時には巡視を強化し、必要により碍子洗浄装置により洗浄を実施する等の対応が可能である。さらに、絶縁破壊により外部電源が喪失した場合でも非常用発電機等により電源の供給が可能であることから、個別の評価は不要である。

なお、屋内の施設であっても、屋内の空気を取り込む機構を有する計 装盤については、影響がないことを確認する。

表 1.3 直接的影響因子の選定結果

影響を与える可能性のある因子	選定結果	詳細検討 すべき因子
構造物への静的負荷(降雨等の影響を含む)	構築物において火山灰による堆積荷重として影響を考慮すべき因子である。また、降雨、 降雪などにより水を含むことにより負荷が増大するため、湿潤状態における負荷を考慮す る。	0
構造物の化学的影響 (腐食)	屋外設備において影響を考慮すべき因子である。短期的に影響がないことを確認する。	0
粒子の衝突	発電所に到達する火山灰は微小な粒子であり、衝突荷重により施設に影響を与える可能性 は小さい。	==
水循環系の閉塞	海水中に漂う火山灰については取水する可能性があるため、海水系において影響を考慮すべき要因であり、狭隘部等における閉塞の影響を考慮する。また、必要に応じて、海水を 供給している下流の設備への影響についても考慮する。	
水循環系の内部における磨耗	水循環系において最も磨耗の影響を受けやすい箇所はライニングが施されていない各冷 却器の伝熱管と考えられるが、プラントの供用期間中において海水取水中に含まれる砂等 の磨耗によるトラブルは発生していない。火山灰は、砂等に比べて破砕し易く*1、硬度が 小さい*2ことから、火山灰粒子による磨耗が設備に影響を与える可能性は小さい。	_
水循環系の化学的影響(腐食)	海水系において影響を考慮すべき因子であり、火山灰成分が海水中に溶出した場合に懸念 される腐食について短期的に影響がないことを確認する。また、必要に応じて、海水を供 給している下流の設備への影響についても考慮する。	
換気系、電気系及び計装制御系に 対する機械的影響(降雨等の影響 を含む)	屋外設備等において影響を考慮すべき因子である。なお、必要に応じて、換気系の給気を 供給している範囲への影響についても考慮する。	0
換気系、電気系及び計装制御系に 対する化学的影響(腐食)	屋外設備等において影響を考慮すべき因子であり、短期的に影響がないことを確認する。 なお、必要に応じて、換気系の給気を供給している範囲への影響についても考慮する。	0
発電所周辺の大気汚染	外気を取り入れている換気空調系において影響を考慮すべき因子である。	0
水質汚染(給水の汚染)	発電所では、火山灰の影響を受ける可能性のある海水や淡水を給水として直接使用しておらず、水質管理も行っていることから、給水の汚染が設備に影響を与える可能性はない。	=
絶縁低下	碍子洗浄装置により洗浄が可能である。また、絶縁低下により外部電源が喪失した場合で もディーゼル発電機により電源の供給が可能である。なお、屋内の空気を取り込む機構を 有する計装盤については、影響がないことを確認する。	0

※1 武若耕司(2004):シラスコンクリートの特徴とその実用化の現状、コンクリート工学、vol.42、No.3、p.38-47 ※2 恒松修二・井上耕三・松田応作(1976):シラスを主原料とする結晶化ガラス、窯業協会誌 84[6]、p.32-40

(2)間接的影響

火山灰は広範囲に及ぶことから、広範囲に亘る送電網の損傷による長期の 外部電源喪失の可能性、原子力発電所へのアクセス制限事象が発生する可能 性も考慮し、間接的影響を評価する。

なお、上記の内容については、既提出資料から変更がないため、既提出資料のうち「1.4 評価すべき影響因子の選定と評価手法」に同じ。

2.5 各評価対象施設の評価すべき影響因子の選定

評価すべき影響因子については、各評価対象施設ごとにそれぞれ異なるため、火山灰が影響を与える評価対象施設と影響因子の組合せを表 1.4 に整理し、各評価対象施設の特性(構造や設置状況等)を踏まえて評価に必要な影響因子を選定する。

表 1.4 火山灰が影響を与える評価対象施設と影響因子の組合せ(1/2)

影響因子 対象施設	構造物への 静的荷重(降雨 等の影響を 含む)	構造物の 化学的影響 (腐食)	水循環系の 機械的影響 (閉塞・磨耗)	水循環系の 化学的影響 (腐食)	換気系、電気系 及び計装制御系 に対する機械的 影響(閉塞・磨耗)	換気系、電気系 及び計装制御系 に対する化学的 影響(腐食)	発電所周辺の 大気汚染	絶縁低下
外部しゃへい建屋、補助建屋、 燃料取扱建屋、 中間建屋、ディーゼル建屋、 制御建屋	•*	0	_ 3	3	3	<u> </u>	_ 3	3
復水タンク 燃料取替用水タンク	•*	0	3	3	<u> </u>	3	3	3
海水ポンプ	•*	0	〇 ポンプ	〇 ポンプ	○ モータ	○ モータ	3	<u> </u>
主蒸気大気放出弁 (消音器)	0	3	3	3	•	_ ②	3	3
主蒸気安全弁 (排気管)		3	3	3	•	_ ②	<u> </u>	<u> </u>
タービン動補助給水ポンプ (蒸気大気放出管)	_ _	3	<u> </u>	3	O	_ ②	3	<u> </u>

■:影響因子に対する個別評価を実施 ●:最大層厚見直しに伴い評価結果に影響がある

○:最大層厚見直しに伴い評価結果に影響がない

※: 今後申請する設工認にて評価結果を示す

-:影響因子として確認が不要

(不要とする理由)

- ① 静的荷重の影響を受けにくい構造(堆積しにくい、堆積しても機能に有意な影響を受けにくい等)
- ② 腐食があっても、機能に有意な影響を受けにくい
- ③ 影響因子と直接関連しない

表 1.4 火山灰が影響を与える評価対象施設と影響因子の組合せ(2/2)

影響因子評価対象施設	構造物への 静的荷重(降雨 等の影響を 含む)	構造物の 化学的影響 (腐食)	水循環系の 機械的影響 (閉塞・磨耗)	水循環系の 化学的影響 (腐食)	換気系、電気系 及び計装制御系 に対する機械的 影響(閉塞・磨耗)	換気系、電気系 及び計装制御系 に対する化学的 影響(腐食)	発電所周辺の 大気汚染	絶縁低下
ディーゼル発電機 (機関、消音器)	— —	_ ②	3	<u> </u>	0	2	3	3
換気空調設備 (給気系外気取入口)	<u> </u>	_ ②	3	3	0	_ ②	0	<u> </u>
格納容器排気筒 補助建屋排気筒	 ①	 ②	3	3	0 - 1 - 1	0	3	3
取水設備	_ ①	_ ②	0	0	3	3	3	3
海水ストレーナ	_ ①	_ ②	↑ 水循環系機能の一部であり下流の設備を含む	〇 同左	<u> </u>	3	3	3
計器用空気圧縮機	①(屋内)	3	<u> </u>	3	0	_ ②	3	3
安全保護系計装盤	① (屋内)	3	<u> </u>	3	3	_ ②	3	0

■:影響因子に対する個別評価を実施 ●:最大層厚見直しに伴い評価結果に影響がある

○:最大層厚見直しに伴い評価結果に影響がない

※:今後申請する設工認にて評価結果を示す

-:影響因子として確認が不要

(不要とする理由)

- ① 静的荷重の影響を受けにくい構造(堆積しにくい、堆積しても機能に有意な影響を受けにくい等)
- ② 腐食があっても、機能に有意な影響を受けにくい
- ③ 影響因子と直接関連しない

2.6 評価結果

(1)直接的影響の評価結果

表 1.4 の影響因子に基づき評価した結果は表 1.5 のとおりであり、評価対象となる全ての施設において、火山灰による直接的影響がないことを確認した。なお、詳細な評価結果を個別評価 1~個別評価 14 に示す。

- ・火山灰による堆積荷重に対して、外部しゃへい建屋、補助建屋、燃料取扱建屋、中間建屋、ディーゼル建屋、制御建屋、復水タンク及び燃料取替用水タンクの機能に影響を及ぼすことのない設計とすること、並びに海水ポンプ (モータ)の健全性が維持されることを確認した。
- ・火山灰による化学的影響に対して、外部しゃへい建屋、補助建屋、燃料取扱 建屋、中間建屋、ディーゼル建屋、制御建屋、復水タンク、燃料取替用水タ ンク及び海水ポンプ(モータ)等の健全性が維持されることを確認した。
- ・火山灰により、海水ポンプ (モータ)、海水ストレーナ、取水設備及び原子炉 補機冷却海水系統等の安全上重要な設備が閉塞等の機械的影響によりその 機能を喪失しないことを確認した。
- ・火山灰が外気取入口に侵入した場合であっても、平型フィルタ、ダンパ閉止、空調停止、閉回路循環運転によって屋内への侵入を防止することとしており、 給気を供給する系統及び機器への影響を防止でき、さらに、中央制御室空調 系については、外気取入ダンパを閉止し閉回路循環運転をすることにより、 中央制御室の居住性に影響を及ぼさないことを確認した。
- ・火山灰が確認された場合は、必要に応じて、原子力発電所内の構築物、系統 及び機器の点検並びに火山灰の除去等を行うこととしている。

(2)間接的影響の評価結果

高浜発電所 1 号炉および 2 号炉の各号炉の非常用所内交流電源設備は、各号炉 2 台のディーゼル発電機とそれぞれに必要な耐震 S クラスの燃料油貯油 そう(号炉当たり $200k\ell$: 2 基)を有している。

これにより、7 日間の外部電源喪失に対して、原子炉の停止、停止後の冷却に係る機能を担うため、ディーゼル発電機の連続運転に必要な容量以上の燃料を貯蔵する設備を有し、必要とされる電力の供給が継続できる構成となっている。

2.7 まとめ

火山灰による直接的影響および間接的影響のうち、外部しゃへい建屋、補助建屋、燃料取扱建屋、中間建屋、ディーゼル建屋、制御建屋、復水タンク及び燃料取替用水タンクの火山灰による堆積荷重に対しては、機能に影響を及ぼすことのない設計とすること、並びに上記以外の項目について評価した結

果、火山灰による直接的および間接的影響はなく、原子炉施設の安全性を損なうことはない。

表 1.5 火山灰による直接的影響の評価結果

対象設備	評価内容	個別評価
外部しゃへい建屋、補助建屋、 燃料取扱建屋、中間建屋、 ディーゼル建屋、制御建屋	火山灰(厚さ 27cm、密度 1.5g/cm³)と積雪(厚さ 100cm、密度 0.3g/cm³)を考慮して発生する応力等が、許容限界を超えない設計とすることから 火山灰による構造物への静的負荷(降雨等の影響を含む)が機能に影響を及ぼすことはない。また、外装塗装が施されていることから、火山灰による 化学的腐食により直ちに機能に影響を及ぼすことはない。	1)
復水タンク 燃料取替用水タンク	火山灰(厚さ 27cm、密度 1.5g/cm³)と積雪(厚さ 100cm、密度 0.3g/cm³)の堆積荷重 7,050N/m² であり、発生する応力が復水及び燃料取替用水タンクの許容応力より小さくなる設計とすること、また外装塗装を施すことにより火山灰による化学的腐食により影響を及ぼすことのない設計とするため、当該タンクの安全性に影響を及ぼすことはない。	2, 3
海水ポンプ	火山灰が堆積した場合に厳しい条件になると考えられるモータフレームにおいて、発生する応力に対し十分な裕度を有しており、機能に影響を及ぼすことはない。 また、外装塗装及び防汚対策塗装が施されていることから、外面、内面及び水循環系ともに火山灰による化学的腐食により直ちに機能に影響を及ぼすことはない。ポンプ軸受には、異物逃がし溝を設けており、火山灰による軸固着等には至らない。 電気系及び計装制御系について、海水ポンプモータの外気取入口は火山灰が侵入しにくい構造であること、また防塵フィルタ(約5μm)を設置しており、モータ内部に細かな粒径の火山灰が侵入した場合でも、電気系は全て耐食性のある樹脂で保護されていること、また防塵フィルタは外部から点検可能であり必要に応じて清掃及び交換することにより除灰ができることから、機械的影響および化学的影響を受けることはなく、海水ポンプの機能に影響を及ぼすことはない。	4
主蒸気大気放出弁(消音器)	大気開放部には消音器が設置され、配管形状および消音器の構造から火山灰が直接配管内に侵入しにくい構造であり、仮に直接配管内に侵入し配管 を閉塞させた場合でも、火山灰の荷重より主蒸気大気放出弁の噴出力が大きいことから、機能に影響を及ぼすことはない。	(5)
主蒸気安全弁 (排気管)	主蒸気安全弁排気管は、配管形状より火山灰が直接配管内に侵入しにくい構造であり、仮に直接配管内に侵入し配管を閉塞させた場合でも、火山灰 の荷重より主蒸気安全弁の噴出力が大きいことから、機能に影響を及ぼすことはない。	6
タービン動補助給水ポンプ (蒸気大気放出管)	タービン動補助給水ポンプの蒸気大気放出管は、火山灰が侵入しにくい構造であり、仮に一部侵入しても構造から閉塞することはなく、機能に影響 を及ぼすことはない。	7
ディーゼル発電機 (機関、消音器)	機関の吸入空気の流れは火山灰が侵入しにくい構造であり、また、層状フィルタにより火山灰が捕集されること、及び侵入した 場合でも火山灰の硬 度が低く破砕しやすいことから、機能に影響を及ぼすことはない。	8
換気空調設備 (給気系外気取入口)	換気空調設備の給気系外気取入口は、火山灰が侵入した場合であっても、平型フィルタ(5μm)を設置しており、給気を供給する設備に対して、火山灰が与える影響は小さい。なお、中央制御室空調系については、外気取入ダンパを閉止し、外気隔離運転することにより、中央制御室の居住性が維持されることを確認している。また、各フィルタについては、各建屋等からのアクセス性がよく、必要に応じて清掃及び交換することにより除灰ができることを確認した。	
格納容器排気筒 補助建屋排気筒	火山灰が格納容器排気筒及び補助建屋排気筒に侵入した場合であっても、排気筒の構造(配管径)から火山灰により閉塞することはない。また、外装 塗装等による対応を行っていることから、直ちに腐食により格納容器排気筒及び補助建屋排気筒の機能に影響を及ぼすことはない。	10
取水設備	火山灰の粒径は十分小さく、除塵装置を閉塞することはない。	(1)
海水ストレーナ	火山灰の粒径は、ストレーナのメッシュサイズよりも小さく、閉塞することはない。なお、ストレーナのメッシュを通過した火山灰粒子は、下流の機器(ディーゼル発電機機関の冷却器、空調用冷凍機、原子炉補機冷却水冷却器)に対して閉塞等の影響を与えることはない。また、外装塗装が施されていることから、直ちに腐食により機能を喪失することはない。	
計器用空気圧縮機	計器用空気圧縮機が設置された部屋は、中間建屋空調系にて空調管理されており、本空調系の外気取入口には、平型フィルタが設置されているが、 これに加えて下流にさらに細かな粒子を捕集可能な粗フィルタが設置されている。このため、他の空調系に比べて火山灰に対する高い防護性能を有 しており、侵入する火山灰は微細なものに限られ、また火山灰は硬度が低くもろいことから、摺動部に侵入した火山灰により磨耗が発生することは なく、磨耗により摺動部への影響はないことから、計器用空気圧縮機の機能に影響を及ぼすことはない。	13
安全保護系計装盤	安全保護系計装盤が設置された部屋は、中央制御室空調系にて空調管理されており、本空調系の外気取入口には平型フィルタが設置されているが、 これに加えて下流にさらに細かな粒子を捕集可能な粗フィルタが設置されている。このため、他の空調系に比べて火山灰に対する高い防護性能を有 しており、侵入する火山灰は微細なものに限られ、建屋内に侵入する火山灰による影響は小さく、その付着等により短絡等を発生させる可能性はな いことから、安全保護系計装盤の機能に影響を及ぼすことはない。	14

建物・構築物に係る影響評価

火山灰による建物・構築物への影響について以下のとおり評価する。

(1)評価項目および内容

①構造物への静的負荷(降雨等の影響を含む)

火山灰の堆積荷重により外部しゃへい建屋、原子炉周辺建屋、制御建屋及び廃棄物処理建屋の健全性に影響がないことを評価する。なお、堆積荷重には、降雨及び降雪の影響も考慮し、火山灰(湿潤状態)と積雪の組合せについても評価する。

②構造物の化学的影響 (腐食)

火山灰の構造物への付着や堆積による化学的腐食により構造物への影響 がないことを評価する。

(2)評価条件

- ①構造物への静的負荷
 - A) 火山灰条件
 - a. 密度: 1.5g/cm³ (湿潤状態) (火山灰の単位荷重は堆積量 1cm 当たり 150N/m²)
 - b. 降灰層厚: 27cm
 - B) 積雪条件
 - a. 密度:0.3g/cm 3 (積雪の単位荷重は積雪量 1cm 当たり 30N/m 2) *1
 - b. 積雪量:100cm^{*2}
 - ※1: 福井県 建築基準法施行細則に基づく積雪の単位荷重を用いる。
 - ※2: 火山事象と積雪事象は独立の関係にある。組み合わせる積雪量については、建築基準法に基づき特定行政庁(各自治体)が各地域の気象(積雪) 状況に応じた垂直積雪量を定めており、発電所が立地する地域の気象条件により即した、設計に用いられる積雪量であることから、福井県建築基準法施行細則の垂直積雪量「100cm」(以下、「設計積雪」という。)を用いる。

(3)評価結果

①構造物への静的負荷の成立性確認

建物・構築物について想定される火山灰の降灰層厚が許容層厚を超えないことを確認する。

火山灰による荷重については、30日を目処に速やかに火山灰を除去することから、建築基準法の積雪の考え方に基づき、短期の荷重として扱う。 許容層厚は以下いずれかの手法により算出する。

a. 荷重による評価

鋼材の長期許容応力度に対する短期許容応力度の比が 1.5 であることから、常時作用する荷重及び降下火砕物等堆積による鉛直荷重の和が設計時長期荷重の 1.5 倍に等しくなる層厚

b. 応力度による評価

常時作用する荷重及び降下火砕物等堆積による鉛直荷重の和により 発生する応力等が短期許容応力度等と等しくなる層厚

表-1に建物・構築物の許容層厚と火山灰の降灰層厚の比較を示す。 建物・構築物について、想定される火山灰の降灰層厚が許容層厚を超え ないことから、火山灰による建物・構築物への静的負荷(降雨等の影響を 含む)が安全機能及び必要な機能に影響を及ぼすことはない。

表-1 建物・構築物の許容層厚と火山灰の降灰層厚の比較

建屋	許容層厚 (cm) *	降灰層厚(cm)
外部しゃへい建屋	100以上	
原子炉補助建屋	39	
燃料取扱建屋	42	2.7
中間建屋	100 以上	21
ディーゼル建屋	48	
制御建屋	39	

※:応力度による評価

また、表-2に建物・構築物の見直し後の層厚(27cm)での応力等の発生値を換算した結果と許容値の比較を示す。

建物・構築物について、想定される火山灰の降灰層厚での発生値が許容値を超えないことから、火山灰による建物・構築物への静的負荷(降雨等の影響を含む)が安全機能及び必要な機能に影響を及ぼすことはない。(図 - 1 参照)

表-2 建物・構築物の降灰層厚での発生値と許容値の比較

建屋	発生値**	許容値*	裕度	
外部しゃへい建屋	曲げモーメント	許容曲げモーメント	1.72	
外間しや・バー建産	40.2kN⋅m/m	69.3kN·m/m	1. 72	
原子炉補助建屋	曲げモーメント	許容曲げモーメント	1 10	
原于炉桶 即建屋	8.25kN·m/m	9.35kN·m/m	1. 13	
燃料取扱建屋	曲げモーメント	許容曲げモーメント	1 17	
於村以仅是座	8.01kN·m/m	9.35kN·m/m	1. 17	
中間建屋	曲げモーメント	許容曲げモーメント	1 (0	
中间建煌	897kN·m	1,450kN⋅m	1.62	
ディーゼル建屋	曲げモーメント	許容曲げモーメント	1. 23	
ノイービル連座	7.58kN·m/m	9.35kN∙m/m	1. 23	
制御建屋	曲げモーメント	許容曲げモーメント	1 10	
削御建座	268kN·m	303kN·m	1. 13	

※: 許容値に対して発生値の割合が最も大きくなる評価項目について計算している。

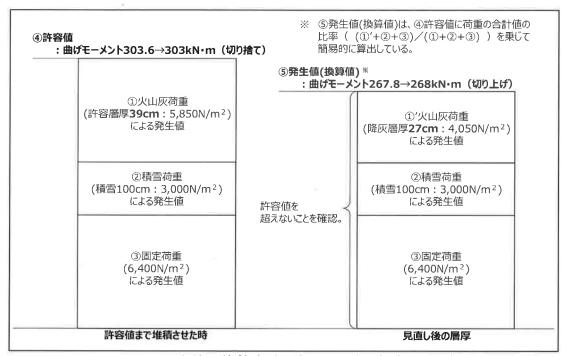


図-1 発生値の換算方法の概要図(制御建屋の例)

②構造物への化学的影響 (腐食)

化学的影響については、外装塗装が施されていることから、火山灰による化学的腐食により直ちに機能に影響を及ぼすことはない。

なお、長期的な影響については堆積した火山灰を除去し、除去後の点検 等において、必要に応じて補修作業を実施する。

以上

復水タンクに係る影響評価

火山灰による復水タンクへの影響について、以下のとおり評価する。

(1)評価項目及び内容

①構造物への静的負荷(降雨等の影響を含む)

火山灰の堆積荷重により復水タンクの機能に影響を及ぼすことがないことを評価する。なお、堆積荷重には、降雪の影響も考慮し、火山灰と積雪の組み合わせも考慮する。火山灰と積雪の荷重条件、並びに荷重評価の考え方は以下のとおりとする。

②構造物の化学的影響 (腐食)

火山灰の復水タンクへの付着や堆積による化学的影響(腐食)により復水 タンクへの影響がないことを評価する。

(2)評価条件

①構造物への静的負荷

A) 火山灰条件

- a. 密度:1.5g/cm³(湿潤状態)(火山灰の層厚 1cm 当たり 150N/m²)
- b. 堆積量:27cm
- B) 積雪条件
 - a. 密度:0.3g/cm 3 (積雪の単位荷重は1cm 当たり30N/m 2) *1
 - b. 堆積量:100cm^{*2}
 - ※1: 福井県 建築基準法施行細則に基づく積雪の単位荷重を用いる。
 - ※2: 火山事象と積雪事象は独立の関係にあることから、組み合わせる積雪量については同建築基準法の設計 積雪「100cm」を用いる。
- C) 火山灰と積雪の荷重条件
 - a. 火山灰荷重=150 (N/m²·cm) ×27 (cm) =4,050 (N/m²)
 - b. 積雪荷重=30 (N/m²·cm) ×100 (cm) =3,000 (N/m²)
 - c. 火山灰と積雪による堆積荷重:7,050 (N/m²)
- D) 評価部位及び評価方法
 - a. 復水タンクのタンク胴板及び屋根板を評価対象部位とし、火山灰と積雪による荷重に対して、応力評価を行う。評価モデルは胴板及び屋根板をFEMによりモデル化する。

復水タンクのFEM解析に用いる解析条件を以下に示す。

- ・解析コード MSC/NASTRAN
- 解析モデル

屋根、胴等の板部材を板要素で、ラフター等を梁要素モデル化する。

b. 許容応力は、JEAG4601-1987 に規定されるクラス 2, 3 容器の許容 応力状態Ⅲ_ASの許容応力に基づき評価する。

(3)評価結果

①構造物への静的負荷の成立性確認

申請時の層厚(25cm)でのFEM解析による発生応力と許容応力から許容層厚を算出した結果、火山灰による構造物への静的荷重(降雨等の影響を含む)が機能に影響を及ぼすことはない。(図-1参照)

降灰層厚 (cm)	許容層厚(cm)
27	72. 7

また、申請時の層厚(25cm)でのFEM解析による発生応力から、見直し後の層厚(27cm)での発生応力を概算した結果、許容応力を下回っていることから、火山灰による構造物への静的荷重(降雨等の影響を含む)が機能に影響を及ぼすことはない。(図-2参照)

発生応力 (MPa)	許容応力(MPa)	裕度
182	360	1. 97

②構造物の化学的影響(腐食)

化学的影響については、外装塗装が施されていることから、火山灰による 化学的腐食により直ちに機能に影響を及ぼすことはない。

また、長期的な影響については堆積した火山灰を除去し、除去後の点検等において、必要に応じて補修作業を実施する。

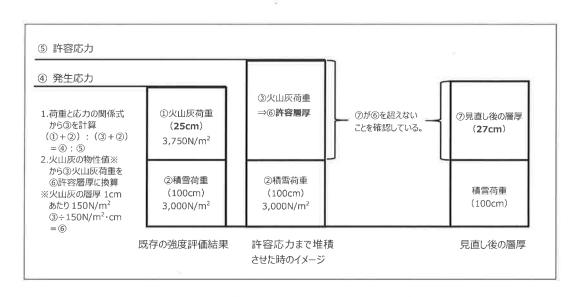
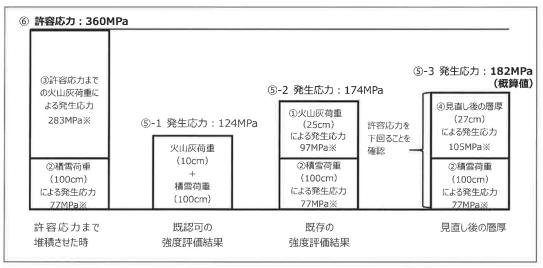



図1 成立性確認の概要図(許容層厚)

※ 既存の強度評価結果(申請時の層厚)による発生応力から比例計算した仮定の応力値である。

図2 成立性確認の概要図(応力換算)

以上

燃料取替用水タンクに係る影響評価

火山灰による燃料取替用水タンクへの影響について、以下のとおり評価する。

(1)評価項目及び内容

①構造物への静的負荷(降雨等の影響を含む)

火山灰の堆積荷重により燃料取替用水タンクの機能に影響を及ぼすことがないことを評価する。なお、堆積荷重には、降雪の影響も考慮し、火山灰と積雪の組み合わせも考慮する。火山灰と積雪の荷重条件、並びに荷重評価の考え方は以下のとおりとする。

②構造物の化学的影響 (腐食)

火山灰の燃料取替用水タンクへの付着や堆積による化学的影響(腐食)により燃料取替用水タンクへの影響がないことを評価する。

(2)評価条件

- ①構造物への静的負荷
 - A) 火山灰条件
 - a. 密度:1.5g/cm³ (湿潤状態) (火山灰の層厚 1cm 当たり 150N/m²)
 - b. 堆積量:27cm
- B) 積雪条件
 - a. 密度:0.3g/cm³ (積雪の単位荷重は 1cm 当たり 30N/m²) *1
 - b. 堆積量:100cm^{※2}
 - ※1: 福井県 建築基準法施行細則に基づく積雪の単位荷重を用いる。
- ※2: 火山事象と積雪事象は独立の関係にあることから、組み合わせる積雪量については同建築基準法の設計 積雪「100cm」を用いる。
- C) 火山灰と積雪の荷重条件
 - a. 火山灰荷重=150 (N/m²·cm) ×27 (cm) =4.050 (N/m²)
 - b. 積雪荷重=30 (N/m²·cm) ×100 (cm) =3,000 (N/m²)
 - c. 火山灰と積雪による堆積荷重:7,050 (N/m²)
- D) 評価部位及び評価方法
 - a. 燃料取替用水タンクのタンク胴板及び屋根板*を評価対象部位とし、 火山灰と積雪による荷重に対して、応力評価を行う。評価モデルは胴板 及び屋根板をFEMによりモデル化する。

燃料取替用水タンクのFEM解析に用いる解析条件を以下に示す。

- ・解析コード MSC/NASTRAN
- 解析モデル

屋根、胴等の板部材を板要素で、ラフター等を梁要素モデル化する。 *:屋根板溶接部の脚長を屋根板の厚さに合わせている。(図1参照)

b. 許容応力は、JEAG4601-1987 に規定されるクラス 2, 3 容器の許容 応力状態Ⅲ_ASの許容応力に基づき評価する。

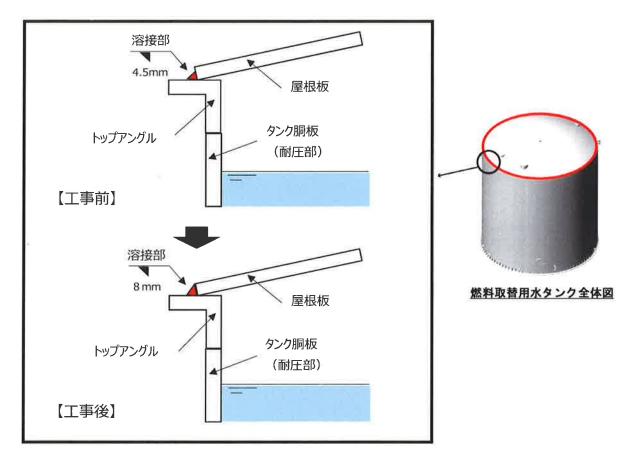


図1 燃料取替用水タンク屋根板溶接補強の概要図

【補足】

・タンク屋根板の溶接部は、タンクの耐圧部ではなく、工認本文(要目表、基本設計方針)の記載事項でもない。よって、タンク屋根板の溶接については、実用炉規則の別表第一に該当する改造及び修理ではなく、工事認可及び事前届出を要する工事ではないため、自主工事にて溶接補強を実施している。

(3) 評価結果

①構造物への静的負荷の成立性確認

申請時の層厚(25cm)でのFEM解析による発生応力と許容応力から許容層厚を算出した結果、火山灰による構造物への静的荷重(降雨等の影響を含む)が機能に影響を及ぼすことはない。(図-2参照)

降灰層厚 (cm)	許容層厚(cm)
27	28. 6

また、申請時の層厚 (25cm) でのFEM解析による発生応力から、見直し後の層厚 (27cm) での発生応力を概算した結果、許容応力を下回っていることから、火山灰による構造物への静的荷重 (降雨等の影響を含む) が機能に影響を及ぼすことはない。(図-3参照)

発生応力 (MPa)	許容応力(MPa)	裕度
250	259	1.03

②構造物の化学的影響(腐食)

化学的影響については、外装塗装が施されていることから、火山灰による 化学的腐食により直ちに機能に影響を及ぼすことはない。

また、長期的な影響については堆積した火山灰を除去し、除去後の点検等において、必要に応じて補修作業を実施する。

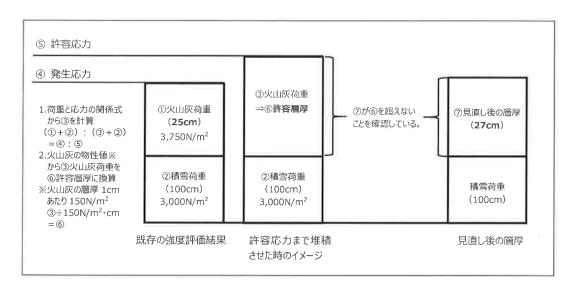
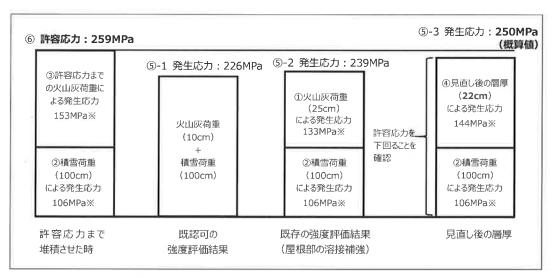



図2 成立性確認の概要図(許容層厚)

※ 既存の強度評価結果(申請時の層厚)による発生応力から比例計算した仮定の応力値である。

図3 成立性確認の概要図(応力換算)

以上

海水ポンプに係る影響評価

火山灰による海水ポンプへの影響について以下のとおり評価する。

(1)評価項目及び内容

①構造物への静的負荷(降雨等の影響を含む)

火山灰が堆積した場合に堆積荷重が厳しい条件となる海水ポンプモータフレームについて健全性に影響がないことを評価する。なお、堆積荷重には、 降雪の影響も考慮し、火山灰と積雪の組み合わせも考慮する。

②構造物の化学的影響 (腐食)

火山灰の海水ポンプへの付着や堆積による化学的腐食により海水ポンプ の機能への影響がないことを評価する。

③水循環系の閉塞による影響

火山灰が混入した海水を海水ポンプにより取水した場合に、流水部、軸受部が閉塞し、機器の機能に影響がないことを評価する。

④水循環系の化学的影響 (腐食)

火山灰が混入した海水を海水ポンプにて取水することによる、内部構造物の化学的影響(腐食)により機器の機能に影響がないことを評価する。

- ⑤電気系及び計装制御系に対する機械的影響(降雨等の影響を含む) 火山灰の電動機冷却空気への侵入による閉塞等、機器の機能に影響がないことを評価する。
- ⑥電気系及び計装制御系に対する化学的影響(腐食) 火山灰の電動機冷却空気への侵入による、内部構造物の化学的影響(腐食) により機器の機能に影響がないことを評価する。

(2)評価条件

- ①火山灰条件
 - a. 密度:1.5g/cm³(湿潤状態)(火山灰の層厚 1cm 当たり 150N/m²)
 - b. 堆積量:27cm
 - c. 粒径:1mm以下
- ② 積雪条件
 - a. 密度:0.3g/cm 3 (積雪の単位荷重は1cm 当たり30N/m 2) *1
 - b. 堆積量:100cm^{*2}
 - ※1: 福井県 建築基準法施行細則に基づく積雪の単位荷重を用いる。
 - ※2: 火山事象と積雪事象は独立の関係にあることから、組み合わせる積雪量については同建築基準法の設計 積雪「100cm」を用いる。
- ③評価部位及び評価内容

火山灰堆積荷重の影響に係る評価部位は、荷重の影響を受けやすいモー

タフレームとする。

モータフレームに生じる応力は、電動機上面の投影面積の最も大きい外扇カバー全面に均等に火山灰が堆積した場合を想定し、その上で運転時荷重 (ポンプスラスト荷重)が加わる状態で荷重評価の導出を行う。(ここでは、想定堆積荷重として、火山灰と積雪を組み合わせた荷重で算出する。)

(3)評価結果

①構造物への静的負荷(降雨等の影響を含む)

火山灰と積雪による堆積荷重に対する海水ポンプモータフレームについ ての荷重評価を以下に示す。

a. 火山灰と積雪による堆積荷重

火山灰と積雪による堆積荷重は外扇カバー全面に均等にかかるが、評価モデルは外扇カバー重心位置への集中荷重とする。

火山灰と積雪の単位堆積荷重:

 $(150 \text{ N/m}^2 \times 27 \text{ cm}) + (30 \text{ N/m}^2 \times 100 \text{ cm}) = 7.050 \text{ N/m}^2$

モータ上面面積: $1/4 \cdot \pi \times 2.0 \text{m} \times 2.0 \text{m} = 3.15 \text{m}^2$

モータ上面の火山灰と積雪による堆積荷重 F_v は次のとおりとなる。 $F_v=7.050\times3.15=2.24\times10^4$ (N)

b. モータフレームに常時作用する荷重

モータ自重と運転時荷重であるポンプスラスト軸方向荷重をモータフレームに常時作用する荷重として算出する。

モータ自重 F_d: 4640kg×9.80665 m/s²=4.55×10⁴(N)

ポンプスラスト軸方向荷重 (運転時荷重)

 $F_n: 10000 \text{kg} \times 9.80665 \text{m/s}^2 = 9.81 \times 10^4 \text{ (N)}$

モータフレームに常時作用する荷重 H は次のとおりとなる。

 $H = F_d + F_p = 1.44 \times 10^5 (N)$

c. モータフレームに作用する曲げモーメント

Fv 及び H はモータフレーム枠内に作用する力であり、モータの中心 (軸中心上)を支点として、最も保守的なモーメントを考慮するために、中心からモータフレーム外枠までの距離を作用点として曲げモーメントを算出する。

M = (F_V + H) ×
$$\frac{D}{2}$$
 = (2.24 × 10⁴ + 1.44 × 10⁵) × $\frac{1080}{2}$
= 8.99 × 10⁷(N·mm)

d. モータフレームに生じる曲げ応力

断面係数 Z は次のように表すことができるので、

$$Z = \frac{\pi}{32} \left(\frac{D^4 - d^4}{D} \right) = \frac{\pi}{32} \times \left(\frac{1080^4 - 1068^4}{1080} \right) = 5.41 \times 10^6 (\text{mm}^3)$$

モータフレームに生じる曲げ応力 σ₀ は次のとおりとなる。

$$\sigma_b = \frac{M}{Z} = \frac{8.99 \times 10^7}{5.41 \times 10^6} = 16.6 = 17 (MPa)$$

e. モータフレームに生じる圧縮応力 フレームの断面積 S は次のように表され、

$$S = \frac{\pi}{4}(D^2 - d^2) = \frac{\pi}{4}(1080^2 - 1068^2) = 2.02 \times 10^4 (mm^2)$$

モータフレームに生じる圧縮応力 σ₀ は以下のとおりとなる。

$$\sigma_c = \frac{F_V + H}{S} = \frac{2.24 \times 10^4 + 1.44 \times 10^5}{2.02 \times 10^4} = 8.24 = 9 \text{(MPa)}$$

f. 結論

火山灰(積雪)が堆積した場合に上部に位置し荷重の影響や運転状態でのポンプの軸方向荷重の影響も受けるモータフレームにおいて、湿潤状態の火山灰(厚さ $27 \, \mathrm{cm}$ 、密度 $1.5 \, \mathrm{g/cm^3}$)と建築基準法における設計積雪(厚さ $100 \, \mathrm{cm}$ 、密度 $0.3 \, \mathrm{g/cm^3}$)の組み合わせによる堆積荷重 $7,050 \, \mathrm{N/m^2}$ により発生する応力に対し、 $\mathrm{JEAG4601-1987}$ の「その他支持構造物」における III_{AS} に基づく許容応力と比較し、いずれも十分な裕度を有しており、機能に影響を及ぼすことはない。

表 1 海水ポンプモータに対する火山灰の堆積荷重による応力評価

モータフレーム に生じる応力	算定応力(MPa) (火山灰+積雪)	許容応力** (MPa)	裕度 (火山灰+積雪)	結果
曲げ応力	17	282	16	0
圧縮応力	9	244	27	0

※: JEAG4601-1987 の「その他の支持構造物」におけるⅢAS の許容応力

表 2 モータの仕様

女 こ フラ 上版		
項目	条件	
モータ全質量m	4,640kg	
ポンプスラスト(常用) P	下向 10.0ton	
フレーム外寸	1,080mm	
フレーム内寸	1,068mm	

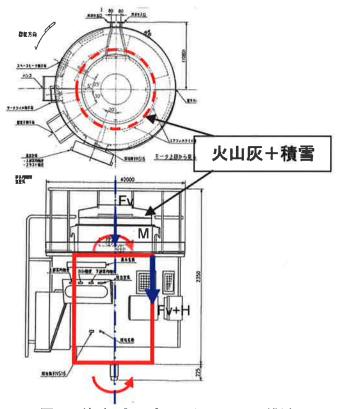


図1 海水ポンプモータフレーム構造

②構造物の化学的影響(降雨等の影響を含む)

外装塗装が施されていることから、火山灰による化学的腐食により直ち に機能に影響を及ぼすことはない。

また、長期的な影響については堆積した火山灰を除去し、除去後の点検において、必要に応じて補修作業を実施する。

③水循環系の閉塞による影響

海水ポンプ軸受潤滑水は、海水ポンプ出口配管から分岐し、ストレーナ(メッシュ間隔:1号炉:約3mm、2号炉:約1mm)を介して保護管から各軸受に注入される。ストレーナは2系統設置しており、海水ポンプ運転中に必要に応じて通水ラインを切り替えることができ、清掃を実施することも可能である。

ストレーナは、ストレーナ以降の設備に影響を与えるものを除去できるように設計されており、ストレーナを通過するものは、以降の設備に影響を与えることはない。

想定する火山灰の粒径は、1mm 以下であり、ほとんどの火山灰はストレーナを通過することになり、閉塞には至らない。また、軸受部には、異物逃がし溝(上部・中間軸受:約3.7mm 以上、下部軸受:約4.5mm 以上)が設けられており、閉塞には至らない。

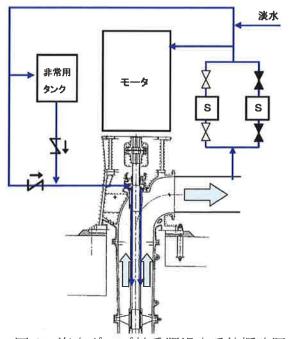


図2 海水ポンプ軸受潤滑水系統概略図

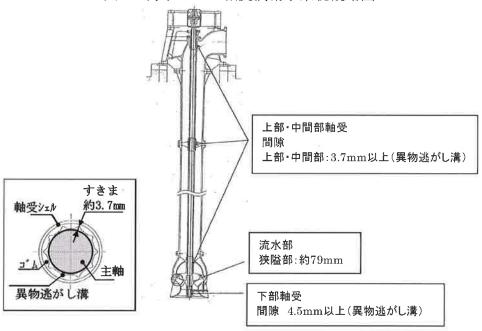


図3 海水ポンプ軸受構造図

④水循環系の化学的影響 (腐食)

海水系の化学的影響については、海水ポンプは防汚塗装等の対応を実施しており、海水と金属が直接接することはないため、腐食により海水ポンプの機能に影響を及ぼすことはない。

⑤電気系及び計装制御系に対する機械的影響(降雨等の影響を含む)

外気を取り入れる開放型の海水ポンプモータでは、吸気系の開口部から 直接雨や雪、粉塵等が電動機内部まで侵入しないよう、屋外での設置に影響 を受けない構造設計となっている。

海水ポンプモータは、外気を屋外カバー底面の吸気口より下から吸気するため火山灰が入りにくい構造であり、屋外カバー内部の通風路は粉塵、雨、雪等が内部に侵入しにくいように仕切板等により3回通風方向が90°以上曲折し急変する構造としている(※1)。火山灰の密度は比較的大きく、水分を含んだ火山灰はさらに密度が増すため、構造的にモータ内部まで侵入することは考えにくい。

また、モータ内部への異物の侵入を防止するため、屋外カバー内には防塵フィルタ(濾材には吸湿しにくく洗浄乾燥が可能な合成樹脂繊維を使用)が設置されており、粒径が約 $5~\mu$ m より大きい粒子を捕集できる性能を有している。このため、ほとんどの火山灰については防塵フィルタにより侵入を阻止することが可能であり、フィルタを通過した細かな粒径の火山灰がモータ内部へ侵入した場合でも、モータ内部の通風路(固定子コアと回転子コア間 1.2mm、コアダクト間 10mm)が閉塞することはない。

さらに、防塵フィルタに火山灰が付着した場合でも、外部点検口から点検することが可能であること、海水ポンプモータは号炉あたり 4 台設置されており、必要に応じて予備機と切り替えて防塵フィルタの清掃や取替えを行うことも可能である。

なお、海水ポンプモータ上下の軸貫通部についても、軸受油槽で密封されていることから軸貫通部からモータ内部に火山灰が侵入することはない。

以上のことから、火山灰により海水ポンプモータに機械的な影響を及ぼすことはない。

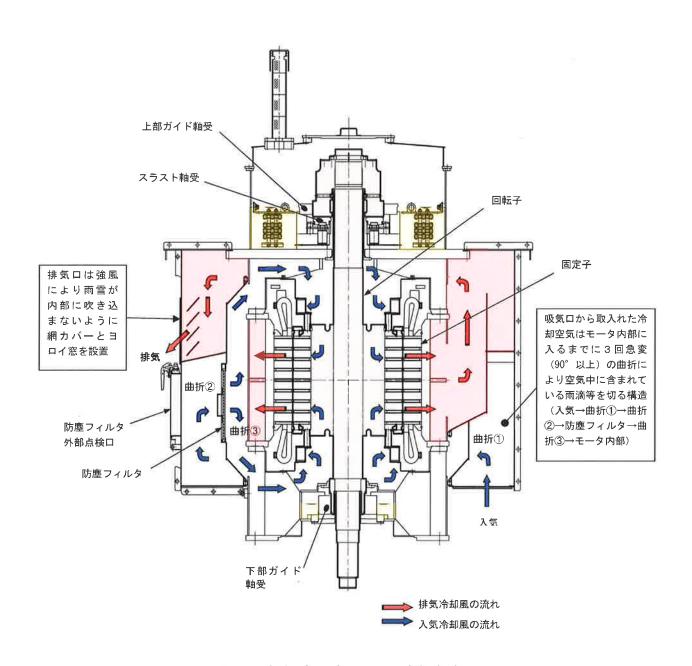
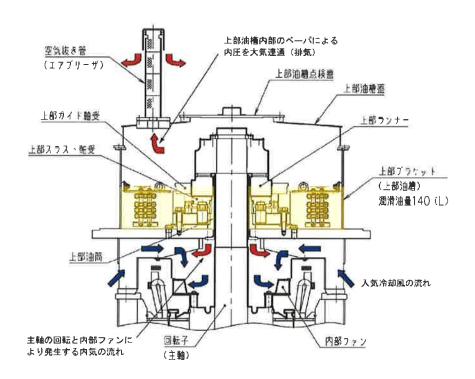



図4 海水ポンプモータの冷却方式

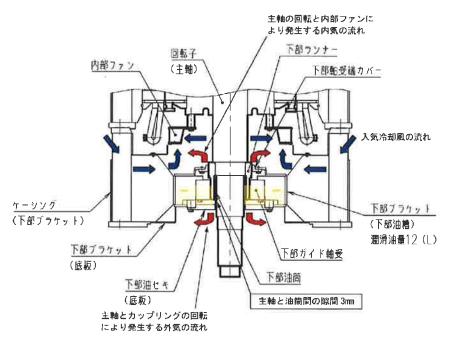


図 5 海水ポンプモータの軸受構造図

(※1) NEMA 規格(Weather Protected Type Ⅱ)の概要

- ①吸気口から取り入れられた冷却空気は、電動機内部に入るまでに 3 回急変 (90° 以上) の曲折により空気中に含まれている水滴等を切る構造となっている。
- ②吸気口は強風により雨・雪等が内部に吹きこまないように、吹抜けを設けている。
- ③通風路内部の風速を小さくする部分を設けて、そこで水滴等を切る構造となっている。

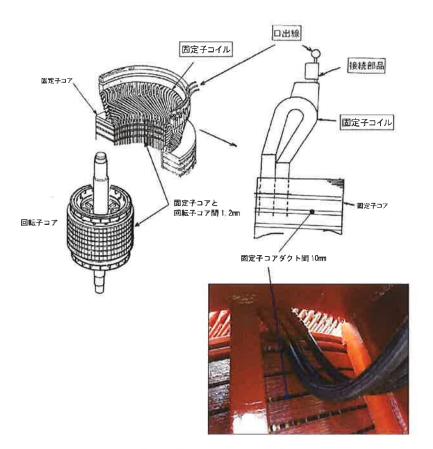


図 6 海水ポンプモータの内部構造

⑥電気系及び計装制御系に対する化学的影響(腐食)

前述のとおり、海水ポンプモータは、外気を屋外カバー底面の吸気口より下から吸気するため、火山灰が入りにくい構造であること、火山灰の密度は比較的大きく、水分を含んだ火山灰はさらに密度が増すため、構造的にモータ内部まで侵入することは考えにくいが、浮遊した一部の火山灰が内部へ侵入することも考えられるため、ここでは防塵フィルタを通過した火山灰がモータ内部へ侵入した場合を想定し、化学的影響について評価する。

屋外設備である海水ポンプモータについては、最も厳しい腐食環境にさらされるため、外表面と内部は全てエポキシ系やウレタン系の塗料が複数層で膜厚 $100\,\mu\mathrm{m}$ 以上塗付されている。エポキシ系およびウレタン系は耐食性が強く、腐食性を有する火山灰が付着したとしても化学的腐食により機能に影響を及ぼすことはない。

さらに、防塵フィルタを通過した細かな粒径の火山灰がモータ内部にまで侵入した場合でも、固定子巻線と固定子コアはエポキシレジンで全含浸方式と呼ばれる真空含浸処理が施されており、また回転子コアについてもエポキシ系の樹脂が施され保護されており、化学的影響を及ぼすことはない。

以上のことから、火山灰により海水ポンプモータに化学的な影響を及ぼすことはない。

主蒸気大気放出弁(消音器)に係る影響評価

火山灰による主蒸気大気放出弁(消音器)への影響について以下のとおり評価する。

(1)評価項目及び内容

①換気系に対する機械的影響(降雨等の影響を含む)

火山灰の主蒸気大気放出弁消音器への侵入により、機器の機能に影響がないことを評価する。具体的には、主蒸気大気放出弁は、火山灰が主蒸気大気放出弁出口配管に侵入しにくい構造であることと、及び主蒸気大気放出弁の噴出力が火山灰の重量よりも大きいことを確認する。

(2)評価条件

- ①火山灰条件
 - a. 密度: 1.5g/cm³ (湿潤状態) (火山灰の層厚 1cm 当たり 150N/m²)
 - b. 堆積量:27cm
- ②積雪条件
 - a. 密度:0.3g/cm 3 (積雪の単位荷重は 1cm 当たり 30N/m 2) *1
 - b. 堆積量:100cm^{*2}
 - ※1: 福井県 建築基準法施行細則に基づく積雪の単位荷重を用いる。
 - ※2: 火山事象と積雪事象は独立の関係にあることから、組み合わせる積雪量については同建築基準法の設計 積雪「100cm」を用いる。

(3)評価結果

①換気系に対する機械的影響(降雨等の影響を含む)

消音器の構造は図 1 の通りパンチ穴が空いたディフューザーと吸音材が入った多孔板で構成されている。

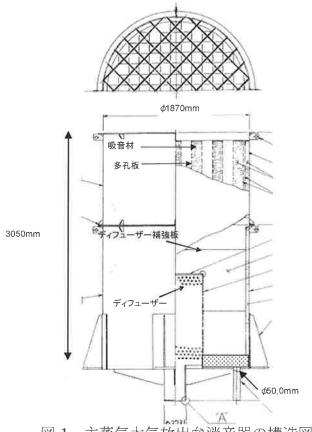


図 1 主蒸気大気放出弁消音器の構造図

仮に火山灰が主蒸気大気放出弁出口配管内に侵入し、配管を閉塞させた 場合についても以下のとおり評価する。

主蒸気大気放出弁の噴出力の評価においては、想定堆積荷重である湿潤 状態の火山灰(厚さ 27cm、密度 1.5g/cm³)と建築基準法における設計積雪 (厚さ 100cm、密度 0.3g/cm³)の組み合わせ荷重が加わるとして確認する。

主蒸気大気放出弁の出口配管外径 ϕ 273.1mm であることから、火山灰の 堆積荷重は以下のとおりである。

$$\pi \times (\frac{27.31}{2})^2 \times (27 \times 1.5 + 100 \times 0.3) = 41,298(g) = 42(kg)$$

主蒸気大気放出弁の噴出力は、クールダウン末期の 177℃の飽和圧力である 8.5kg/cm² と、弁出口側の流体通過断面積が約 180cm² より、以下のとおりである。

$8.5 \times 180 = 1530 (kg)$

以上より、火山灰が直接配管内に侵入し、仮に配管を閉塞させた場合でも、 火山灰(湿潤状態)と積雪の組み合わせ荷重よりも主蒸気大気放出弁の噴出 力が十分大きいことから、主蒸気大気放出弁の機能に影響を及ぼすことはな い。

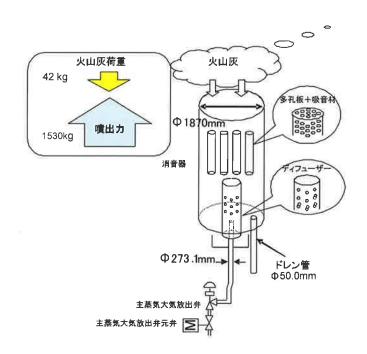


図2 主蒸気大気放出弁出口配管形状および消音器の構造

また、各主蒸気大気放出弁消音器の設置状況より、火山灰の周辺の構築物からの落下による侵入等は考えにくい。

左からCループ、Aループ、Bループ

図3 主蒸気大気放出弁消音器の設置状況(左1号炉、右2号炉(各3系統))

主蒸気安全弁排気管に係る影響評価

火山灰による主蒸気安全弁排気管への影響について以下のとおり評価する。

(1)評価項目及び内容

①換気系に対する機械的影響(降雨等の影響を含む)

火山灰の主蒸気安全弁排気管への侵入により、機器の機能に影響がないことを評価する。具体的には、主蒸気安全弁は、火山灰が侵入しにくい構造であることと、及び主蒸気安全弁の噴出力が火山灰の重量よりも大きいことを確認する。

(2)評価条件

- ①火山灰条件
 - a. 密度:1.5g/cm³(湿潤状態)(火山灰の層厚 1cm 当たり 150N/m²)
 - b. 堆積量:27cm
- ② 積雪条件
 - a. 密度: 0.3g/cm³ (積雪の単位荷重は 1cm 当たり 30N/m²) *1
 - b. 堆積量:100cm^{※2}
 - ※1: 福井県 建築基準法施行細則に基づく積雪の単位荷重を用いる。
 - ※2: 火山事象と積雪事象は独立の関係にあることから、組み合わせる積雪量については同建築基準法の設計 積雪「100cm」を用いる。

(3)評価結果

①換気系に対する機械的影響(降雨等の影響を含む)

主蒸気安全弁の排気管は図 1 のように配管が接続される構造となっている。

仮に火山灰が主蒸気安全弁排気管内部に侵入したと仮定すると、大部分はドレン受皿に溜まり、一部主蒸気安全弁の弁出口管に侵入するが、火山灰により出口配管を閉塞させることはないと考えられるため、主蒸気安全弁の蒸気放出機能に影響を与えることはない。

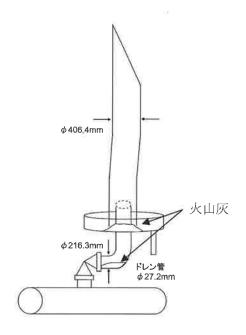


図1 主蒸気安全弁排気管の構造図

なお、仮に火山灰が主蒸気安全弁出口配管内に侵入し、配管を閉塞させた 場合についても以下のとおり評価する。

主蒸気安全弁の噴出力の評価においては、想定堆積荷重である湿潤状態の火山灰(厚さ 27cm、密度 1.5g/cm³)と建築基準法における設計積雪(厚さ 100cm、密度 0.3g/cm³)の組み合わせ荷重により評価する。

主蒸気安全弁の出口配管外径 ϕ 21.63cm であることから、火山灰の堆積 荷重は以下のとおりである。

$$\pi \times (\frac{21.63}{2})^2 \times (27 \times 1.5 + 100 \times 0.3) = 25906(g) = 26(kg)$$

主蒸気安全弁の噴出力は、弁の噴出圧力 76.3kg/cm² と、弁出口側の流体通過断面積が約 323cm² であることから、以下のとおりである。

 $76.3 \times 323 = 24644 \text{(kg)}$

以上より、火山灰が直接配管内に侵入し、仮に配管を閉塞させた場合でも、 火山灰(湿潤状態)と積雪の組み合わせ荷重よりも主蒸気安全弁の噴出力が 十分大きいことから、主蒸気安全弁の機能に影響を及ぼすことはない。

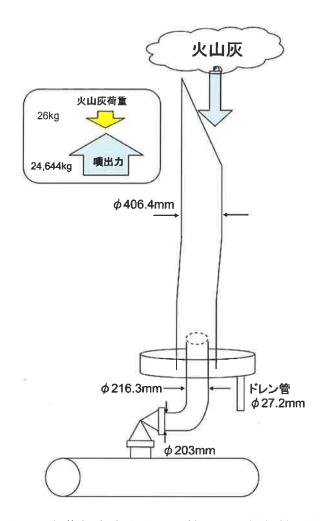


図 2 主蒸気安全弁出口配管および排気管の構造

図3 主蒸気安全弁(排気管)の設置状況(1号炉)

タービン動補助給水ポンプ蒸気大気放出管に係る影響評価

火山灰によるタービン動補助給水ポンプ蒸気大気放出管への影響について以下のとおり評価する。

(1)評価項目及び内容

①換気系に対する機械的影響(降雨等の影響を含む)

火山灰のタービン動補助給水ポンプ蒸気大気放出管への侵入により、機器の機能に影響がないことを評価する。具体的には、タービン動補助給水ポンプ蒸気大気放出管は、火山灰が侵入しにくい構造であることを確認する。

(2)評価条件

①火山灰条件

a. 密度:1.5g/cm³ (湿潤状態) (火山灰の層厚 1cm 当たり 150N/m²)

b. 堆積量:27cm

(3)評価結果

①換気系に対する機械的影響(降雨等の影響を含む)

タービン動補助給水ポンプの蒸気大気放出管は、火山灰が直接侵入しにくい構造であり、仮に一部火山灰が侵入した場合でも、配管の構造等から閉塞することなく機能に影響を及ぼすことはない。

タービン動補助給水ポンプの蒸気大気放出管の設置状況を図 1 に、蒸気 大気放出管の構造を図 2 に各々示す。

図1 タービン動補助給水ポンプ蒸気大気放出管の設置状況

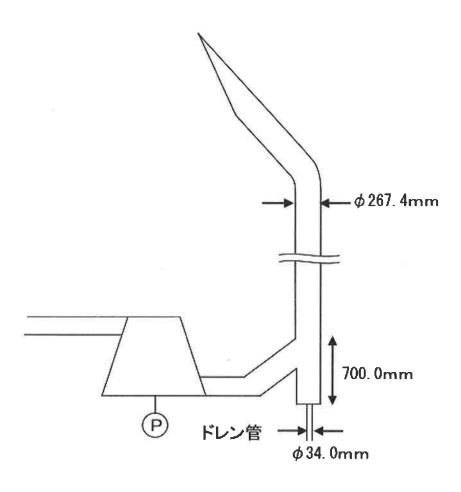


図2 タービン動補助給水ポンプ蒸気大気放出管の構造

ディーゼル発電機に係る影響評価

火山灰によるディーゼル発電機への影響について以下のとおり評価する。

(1)評価項目及び内容

①換気系、電気系及び計装制御系に対する機械的影響(降雨等の影響を含む) 火山灰のディーゼル発電機への侵入等により、機器の機能に影響がない ことを評価する。

(2)評価条件

①火山灰条件

a. 密度:1.5g/cm³(湿潤状態)(火山灰の層厚 1cm 当たり 150N/m²)

b. 堆積量: 27cm c. 粒径: 1mm以下

(3)評価結果

①換気系、電気系及び計装制御系に対する機械的影響(降雨等の影響を含む) 図 1 に示すとおり、ディーゼル発電機機関の吸入空気の流れは下から吸い上げる構造となっており、火山灰が侵入しにくい構造であり、水分を含んだ火山灰は密度が増し、さらに侵入する可能性は小さくなる。さらに、フィルタにより粒径 0.036mm 以上のものは 90%以上捕集できる。

仮に過給機に火山灰が侵入しても、過給機における狭隘部はコンプレッサホイルとケーシングの間隙 (0.24mm) であり、想定する火山灰は侵入する可能性があるが火山灰は破砕しやすく、硬度が低いことから過給機を磨耗させることはない。

また、機関吸気に火山灰等の固形物が混入した場合でも、シリンダライナー及びピストンリングは磨耗に強い鋳鉄(ブリネル硬さ*1230程度(SUS180程度))であること、火山灰は砂と比較して破砕しやすく*2硬度が低く*3、定期検査ごとに行なうシリンダライナー及びピストンリングの点検においても砂等による有意な磨耗影響は確認されていない。長期的な影響についても、シリンダライナー及びピストンの間隙内へ侵入した火山灰は、シリンダとピストン双方の摺動運動が繰り返されるごとに、さらに細かな粒子に破砕され、破砕された粒子はシリンダライナー及びピストンリング間隙に付着している潤滑油により機関外へ除去されること、また火山灰が燃焼室内に一時的に滞留したとしても、排気ガスと共に大気へ放出されることから、火山灰粒子による長期的な影響も小さいと考えられる。

なお、吸気消音器及び空気冷却器 (空気側) についても、狭隘部等はなく、 火山灰により、機能に影響を及ぼすことはない。

- ※1 ブリネル硬さとは、一般的に金属等の工業材料に用いられる硬さの単位
- ※2 武若耕司(2004):シラスコンクリートの特徴とその実用化の現状、コンクリート工学、vol.42、No.3、p.38-47
- ※3 恒松修二・井上耕三・松田応作(1976):シラスを主原料とする結晶化ガラス、窯業協会誌 84[6]、p.32:40



図1 ディーゼル発電機機関の吸入空気の流れ

(4) 関連設備への影響

ディーゼル発電機の関連設備として、ディーゼル発電機燃料油貯油そうがある。

ディーゼル発電機燃料油貯油そうは地下タンクであり、火山灰による直接的影響を受けないが、ベント管については屋外にあることから、ディーゼル発電機燃料油貯油そうのベント管は、開口部を下向きととし、火山灰が侵入しにくい構造とするため、安全性に影響を及ぼすことはない。

さらに、ディーゼル発電機機関の燃料油系統には燃料油こし器*があり、 運転に影響がある大きさの異物は除去される。

なお、燃料油フィルタはストレーナが2台ずつ設置されており、切替えも 可能である。

(※) 燃料油こし器の網目:120メッシュ、200メッシュ

換気空調設備(給気系外気取入口)に係る影響評価

火山灰による換気空調設備(給気系外気取入口)への影響について以下のとおり評価する。

(1)評価項目及び内容

①換気系、電気系及び計装制御系に対する機械的影響(降雨等の影響を含む) 火山灰の換気空調設備(給気系外気取入口)への侵入等により、機器の機能に影響がないことを評価する。

<評価対象設備>

· 換気空調設備(給気系外気取入口)

[中央制御室換気設備、ディーゼル発電機室換気空調設備、中間建屋換 気空調設備、主蒸気ヘッダ室換気空調設備、原子炉格納容器換気設 備、補助建屋換気設備、バッテリ室換気空調設備]

②発電所周辺の大気汚染

火山灰により汚染された発電所周辺の大気が換気空調設備を経て運転員 が常駐している中央制御室の居住性に影響がないことを評価する。

中央制御室換気設備は、火山灰が降灰した際に閉回路循環運転により外気の取り込みを一時的に停止することが可能であるが、その場合の中央制御室内の居住性について、中央制御室内に滞在する運転員の操作環境の劣化を防ぐために、酸素濃度及び炭酸ガス濃度の評価を行う。

(2)評価条件

①火山灰条件

a. 密度: 1.5g/cm³ (湿潤状態) (火山灰の層厚 1cm 当たり 150N/m²)

b. 堆積量: 27cm c. 粒径: 1mm 以下

(3)評価結果

①換気系、電気系及び計装制御系に対する機械的影響(降雨等の影響を含む) 図1に示すとおり、各換気空調設備の給気系外気取入口は、火山灰が直接 侵入しにくい構造であり、水分を含んだ火山灰は密度が増し、さらに侵入す る可能性は小さくなる。

また、各外気取入口には平型フィルタが設置されており、火山灰が外気取入口に侵入した場合であっても、平型フィルタは、数 μ m オーダーの粒子に対し除塵効率が 9 割程度あり、フィルタより大きな火山灰が除去されることから、給気を供給する系統及び機器に対して火山灰が与える影響は小さいと考えられる。図 2 に示すとおり、各フィルタについては、各建屋等からのアクセス性がよく、必要に応じて清掃及び交換することにより除灰ができることも確認している。

屋内への火山灰の侵入について、外気を取り入れしている空調系統として、 中央制御室換気設備、ディーゼル発電機室換気空調設備、中間建屋換気空調 設備、主蒸気ヘッダ室換気空調設備、原子炉格納容器換気設備、補助建屋換 気設備、バッテリ室換気空調設備がある。

各外気取入口には平型フィルタ(主として粒径が 5μ m より大きい粒子を捕集可能)を設置しているため、火山灰が外気取入口に到達した場合であっても、一定以上の粒径の火山灰については、平型フィルタにより侵入を阻止することが可能である。

また、フィルタよりも小さな火山灰が室内へ侵入する可能性が考えられるが、上記の系統のうち、外気取入用ダンパが設置されており閉回路循環運転が可能である中央制御室空調系については、火山灰の侵入が想定される場合には、外気取入ダンパを閉止し、閉回路循環運転を行うことにより、火山灰の侵入を阻止することが可能である。その他の系統については、換気空調設備を停止することにより、火山灰の侵入を阻止することが可能である。

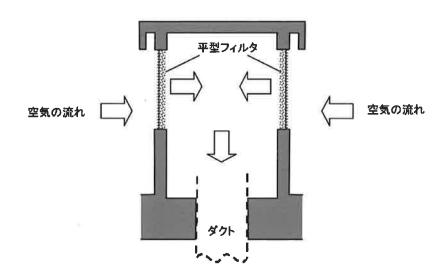


図1 中央制御室外気取入口の空気の流れ

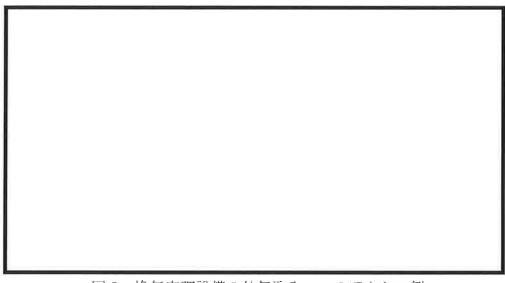


図2 換気空調設備の外気取入口へのアクセス例

枠囲みの範囲は機密に係る事項ですので公開することはできません。

②発電所周辺の大気汚染

中央制御室換気設備については、外気取入ダンパを閉止し、外気隔離運転 することも可能であり、その場合でも中央制御室の居住性が維持されること を確認している。(図3参照)

a. 酸素濃度

「空気調和・衛生工学便覧 空調設備篇」に基づき、酸素濃度は表1のとおり339時間外気取入を遮断したままでも、中央制御室内に滞在する運転員の操作環境に影響を与えないことを確認した。

表 1	中央制御室の酸素濃度評価結果
11	

時間	12 時間	24 時間	36 時間	339 時間
酸素濃度	20.88 %	20.81 %	20.74 %	19.00 %

(評価条件)

- · 在室人員 15 名
- ・中央制御室バウンダリ内体積 17,100m3
- ・空気流入はないものとして評価する。
- ·初期酸素濃度 20.95 %
- ・1人当たりの呼吸量は、事故時の運転操作を想定し、歩行時の呼吸量を適用して、24 ℓ/min とする。
- ・1人当たりの酸素消費量は、呼気の酸素濃度:16.40 %として、 65.52ℓ/hとする。
- ・許容酸素濃度 19 %以上(鉱山保安法施行規則から)

b. 炭酸ガス濃度

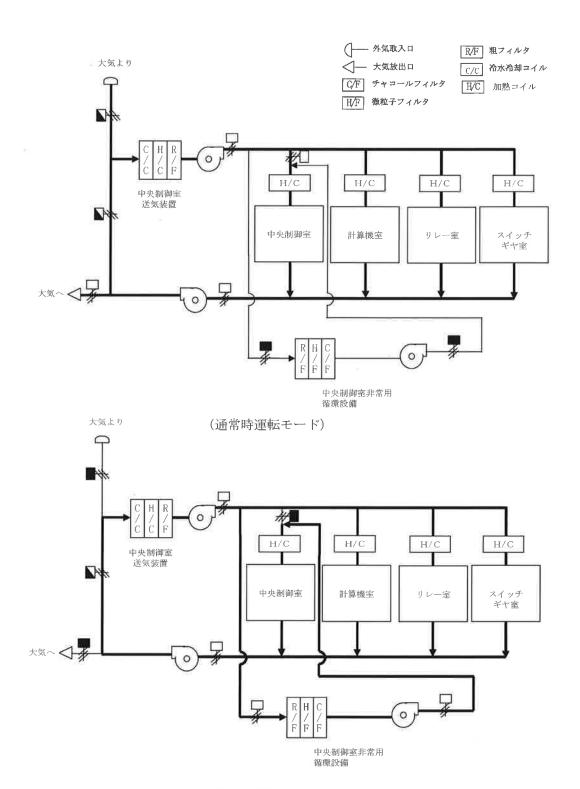

「空気調和・衛生工学便覧 空調設備篇」に基づき、炭酸ガス濃度は表2のとおり66時間外気取入れを遮断したままでも、中央制御室内に滞在する運転員の操作環境に影響を与えないことを確認した。

表 2 中央制御室の炭酸ガス濃度評価結果

時間	12 時間	24 時間	36 時間	66 時間	
炭酸ガス濃度	0.079 %	0.127 %	0.176 %	0.999 %	

(評価条件)

- ・在室人員 15名
- ・中央制御室バウンダリ内体積 17,100m3
- ・空気流入はないものとして評価する。
- ・初期炭酸ガス濃度 0.03 %
- ・1人当たりの炭酸ガス吐出量は、事故時の運転操作を想定し、中等 作業時の吐出量を適用して、0.046 m³/h とする。
- ・許容炭酸ガス濃度 1.0%以下(鉱山保安法施行規則から)

(非常時運転モード)

図3 中央制御室換気設備 概略系統図

排気筒に係る影響評価

火山灰による排気筒(格納容器排気筒、補助建屋排気筒)への影響について以下のとおり評価する。

(1)評価項目及び内容

- ①換気系、電気系及び計装制御系に対する機械的影響(降雨等の影響を含む) 火山灰の排気筒への侵入により、排気筒への機能に影響がないことを評価する。具体的には、排気筒の排気速度が火山灰の降下速度よりも大きく、火山灰が排気筒へ侵入しないことを確認する。また、火山灰が侵入したとしても流路が閉塞しないことを確認する。
- ②換気系に対する化学的影響 (腐食)

火山灰の付着に伴う構造物の腐食により、排気筒の機能に影響がないことを評価する。

(2)評価条件

①火山灰条件

a. 密度: 1.5g/cm³ (湿潤状態) (火山灰の層厚 1cm 当たり 150N/m²)

b. 堆積量:27cm c. 粒径:1mm以下

(3)評価結果

- ①換気系、電気系及び計装制御系に対する機械的影響(降雨等の影響を含む) 火山灰の降下速度と排気筒の排気速度の評価について以下に示す。
 - a. 火山灰の降下速度

火山灰粒子の降下速度を単粒子の自由降下*と考えてモデル化し、以下のとおり導出する。

降下速度 W_f (m/s) は次式で表される。

$$W_{\rm f} = \sqrt{\frac{4}{3}} \times \frac{g}{C_{\rm W}} \times \frac{\rho_{\rm K} - \rho_{\rm L}}{\rho_{\rm L}} \times d_{\rm K}$$

重力加速度 $g = 9.80665 (m/s^2)$

抵抗係数 $C_w = 0.44$

粒子密度 $\rho_{\kappa} = 1500 (kg/m^3)$

空気密度 $\rho_L = 1.1(kg/m^3)$

粒子径 $d_{\nu}(m)$

本評価では排気筒の排気速度(吹き出し風速)との比較を行うことから、 降下速度が大きいほど保守的となるため、上式より粒子密度と粒子径はいず れも大きい方が降下速度も大きくなる。 そのため、本評価では想定される火山灰の特性として設定された、湿潤密度 $1,500 \, \mathrm{kg/m}^3 (1.5 \, \mathrm{g/cm}^3)$ 、粒子径 $0.001 \, \mathrm{m} (1 \, \mathrm{mm})$ の火山灰粒子を用いて降下速度を算出すると以下となる。

$$W_{\rm f} = \sqrt{\frac{4}{3} \times \frac{9.80665}{0.44} \times \frac{1500 - 1.1}{1.1} \times 0.001} = 6.36 \Longrightarrow 6.4 \text{(m/s)}$$

- (※) 単粒子が静止した気体中を自由落下し、粒子の流体抵抗、重力及び浮力の間に 釣り合いの状態が生じたときの粒子の速度
- 【参考文献】「流体-固体二相流-空気輸送と水力輸送-」日刊工業新聞社 森川敬信 著

b. 各排気筒の排気速度

高浜 1、2 号炉の補助建屋排気筒は常時排気があり、格納容器排気筒及び補助建屋排気筒に接続されている排気量及び排気筒サイズは表 1 のとおりである。

表 1 高浜 1、2 号炉の各排気筒に接続されている系統の排気量

	衣 1 尚供 1、2 方炉の合併気同に接続されている糸航の併気重				
	高浜 1 号炉 格納容器排気筒	高浜 1 号炉 補助建屋排気筒	高浜 2 号炉 格納容器排気筒	高浜 2 号炉 補助建屋排気筒	
アニュラス 空気浄化系統	作品が17行名は19年入(日)	邢冽是崖炉风间	— (TD M 1/C 4C 9F X (ID)	冊切足座折入同	
格納容器 排気系統	-				
補助建屋よう 素除去系統		(425m³/min×1 台) *		(425m³/min×1 台) *	
補助建屋排気 系統		1,640m³/min×2 台		1,215m³/min×2 台	
出入管理室 排気系統		410m³/min×1 台			
合計排気量	0m³/min	3,690m³/min	0m³/min	2,430m³/min	
排気筒サイズ	1,500mm×1,200mm	2,300mm×1,200mm	1,500mm×1,000mm	2,300mm×1,000mm	

(※)連続運転ではないので、保守的に吹き出し風速算出に考慮しない

各排気筒の排気量より、排気速度(吹き出し速度)は下式で求められる。

$$V = rac{Q}{A}$$
 排気筒吹き出し速度 $V(m/s)$ 合計排気量 $Q(m^3/s)$ 排気筒断面積 $A(m^2)$

表 2 高浜 1、2 号炉の各排気筒の排気速度

	高浜1号炉	高浜1号炉	高浜2号炉	高浜 2 号炉
	格納容器排気筒	補助建屋排気筒	格納容器排気筒	補助建屋排気筒
排気速度	0m/s	22.2m/s	0m/s	17.6m/s

以上より、補助建屋排気筒については、排気速度(吹き出し速度)が火山灰の降下速度 6.4m/s を上回ることから、火山灰が排気筒内へ侵入することはない。

また、火山灰が連続運転でない格納容器排気筒、並びに換気空調設備が停止中の補助建屋排気筒内に侵入した場合でも、排気筒の構造(配管径)から火山灰により流路を閉塞することはなく、機能に影響を及ぼすことはない。(図1参照)

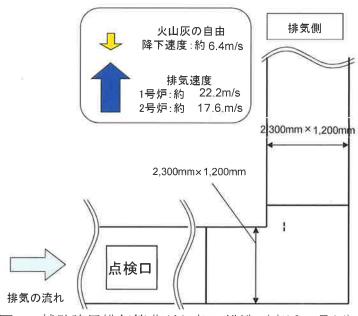


図1 補助建屋排気筒曲がり部の構造(高浜1号炉)

図2 格納容器排気筒点検口(高浜1号炉の例)

②換気系に対する化学的影響 (腐食)

火山灰による化学的腐食を想定しても、屋外設備である排気筒は外装塗装等による対応を行っていることから、直ちに腐食により排気筒の機能に影響を及ぼすことはない。

なお、長期的な影響については、火山灰が排気筒に侵入した場合でも、内部の点検や除去が可能であり、その状況に応じて補修作業を行う。

取水設備に係る影響評価

火山灰による取水設備への影響について以下のとおり評価する。

(1)評価項目及び内容

①水循環系の閉塞

火山灰が混入した海水を取水することにより、取水設備が閉塞しないことを評価する。

②水循環系の化学的影響(腐食)

火山灰が混入した海水を取水することによる構造物内部の腐食により機器の機能に影響がないことを評価する。

(2)評価条件

①火山灰条件

a. 粒径:1mm以下

(3)評価結果

①水循環系の閉塞

取水設備は図1に示すとおり、順にくらげ防止網、レーキ付バースクリーン、ロータリースクリーンとの構成になっており、海水中の大きな塵芥の除去を実施している。表1には取水設備のメッシュの間隔を示す。

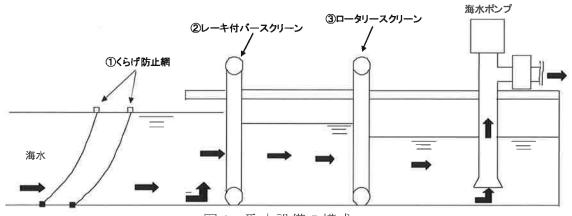


図1 取水設備の構成

表1 取水設備のメッシュ間隔

	①くらげ防止網	②レーキ付バースクリーン	③ロータリースクリーン
メッシュ間隔	メッシュ:45mm	バーピッチ:49mm	メッシュ:6mm

以上より、取水設備のメッシュ間隔に対して、想定する火山灰の粒径は十分小さく、また、粘性を生じさせる粘土鉱物等は含まれていないことから除塵装置が閉塞することはない。

②水循環系の化学的影響 (腐食)

海水系の化学的影響については、海水中の火山灰濃度は非常に希薄であること、除塵装置は防汚塗装等の対応を実施しており、海水と金属が直接接することはなく、直ちに腐食により機能に影響を及ぼすことはない。

なお、上記の内容については、既提出資料から変更がないため、既提出資料のうち「個別評価-11」に同じ。

海水ストレーナに係る影響評価

火山灰による海水ストレーナ (下流設備を含む) への影響について以下のとおり評価する。

(1)評価項目及び内容

①水循環系の閉塞

火山灰が混入した海水を取水することにより、海水ストレーナ(下流設備を含む)が閉塞しないことを評価する。

②水循環系の化学的影響 (腐食)

火山灰が混入した海水を取水することによる構造物内部の腐食により機 器の機能に影響がないことを評価する。

(2)評価条件

①火山灰条件

a. 粒径:1mm以下

(3)評価結果

①水循環系の閉塞

火山灰の粒径は、海水ストレーナのエレメントのメッシュサイズ(直径 6mm)より小さく、海水ストレーナが閉塞することはなく、機能に影響を及ぼすことはない。

海水ストレーナのメッシュを通過した火山灰の粒子は、下流の冷却器の冷却管(表1参照)に対して粒子が十分小さく、冷却管の閉塞により、下流の機器に影響を及ぼすことはない。また、各冷却器に通水される海水の流量は大きいことから、火山灰が冷却管内で堆積し閉塞することは考えにくい。

機器名		冷却管内径	海水流量
	清水冷却器	約 15mm	
ディーゼル発電	潤滑油冷却器	約 15mm	約 240 m³/h
機	燃料弁冷却水冷却器	約 15mm	ボリ 240 mº/n
	空気冷却器	約 10mm	
空調用冷凍機		約 14mm	約 198 m³/h
原子炉補機冷却水冷却器		約 16mm	約 1870 m³/h

表1 冷却器の冷却管の内径及び海水流量

②水循環系の化学的影響(腐食)

化学的影響については、海水ストレーナ下流の機器の冷却器(細管)についても、耐食性のある材料を用いていること、並びに連続通水状態であり著しい腐食環境にはならないことから、腐食により下流の機器に影響を及ぼすことはない。

なお、上記の内容については、既提出資料から変更がないため、既提出資料のうち「個別評価-12」に同じ。

計器用空気圧縮機に係る影響評価

火山灰による計器用空気圧縮機への影響について以下のとおり評価する。

(1)評価項目及び内容

①換気系、電気系及び計装制御系に対する機械的影響 (磨耗) 火山灰が計器用空気圧縮機の摺動部に侵入する可能性を考慮し、侵入 した場合の影響について評価する。

(2)評価条件

①火山灰条件

a. 粒 径:1 mm 以下

(3)評価結果

計器用空気圧縮機が設置されているエリアは、中間建屋換気空調設備にて 空調管理されている。

計器用空気圧縮機は、室内の空気を吸入して圧縮空気を供給しているため、火山灰の降灰の際に、機器内に火山灰が侵入する可能性があるが、中間建屋換気空調設備の外気取入口には、平型フィルタ(粒径がおよそ $5~\mu$ mより大きい粒子を除去)が設置されており、これに加えて下流側にさらに細かな粒子を捕集可能な粗フィルタ(粒径がおよそ $2~\mu$ mより大きな粒子を除去)が設置されている。このため、他の空調設備に比べて、火山灰に対して高い防護性能を有しており、室内に侵入した火山灰の粒径はほぼ $2~\mu$ m以下の細かな粒子であると推定される。

なお、微細な粒子であっても、計器用空気圧縮機のシリンダライナ内面と ピストンリングは直接、接触摺動している状態であり、機器内に吸入された 火山灰がシリンダライナ内面とピストンリングの間に侵入した場合には摩 耗発生が懸念される。

しかしながら、シリンダライナは硬質クロムメッキ処理、ピストンリングはカーボングラファイトであり、火山灰は硬度が低くもろいことから、摺動部に侵入した火山灰により磨耗が発生し、摺動部に損傷を発生させることはない。さらに、火山灰の降灰時には、外気取入ダンパを閉止することにより侵入を阻止することが可能であることから、計器用空気圧縮機の機能に影響を及ぼすことはない。

なお、上記の内容については、既提出資料から変更がないため、既提出資料のうち「個別評価-13」に同じ。

安全保護系計装盤に係る影響評価

火山灰による安全保護系計装盤への影響について以下のとおり評価する。

(1)評価項目及び内容

① 絶縁低下

火山灰が盤内に侵入する可能性及び侵入した場合の影響について評価する。

(2)評価条件

- ① 火山灰条件
 - a. 粒径:1mm以下

(3)評価結果

安全保護系の計装盤が設置されているエリアは、中央制御室換気設備にて空調管理されている。

安全保護系の計装盤には、その発生熱量に応じて盤内に換気ファンを設置している場合があるため、換気に伴い火山灰が計装盤内に侵入する可能性が考えられるが、中央制御室換気設備の外気取入口には平型フィルタ (粒径がおよそ $5~\mu$ mより大きい粒子を除去)が設置されており、これに加えて下流側にさらに細かな粒子を捕集可能な粗フィルタ (粒径がおよそ $2~\mu$ mより大きな粒子を除去)が設置されている。

このため、他の空調系に比べて火山灰に対する高い防護性能を有しており、室内に侵入した火山灰の粒径はほぼ 2μ m以下の細かな粒子であると推定される。

なお、微細な粒子であっても、火山灰が盤内に侵入した場合には、その付着等により短絡等を発生することが懸念されるが、計装盤において数 μ m程度の線間距離となるのは、集積回路(I C など)の内部であり、これら部品はモールド(樹脂)で保護されているため、火山灰が侵入することはない。また、端子台等の充電部が露出している箇所については、端子間の距離が数mm程度あることから、火山灰の付着等により短絡等を発生させる可能性はない。さらに、火山灰の降灰時には、外気取入ダンパを閉止し閉回路循環運転を行うことにより侵入を阻止することが可能であることから、安全保護系計装盤の機能に影響を及ぼすことはない。

なお、上記の内容については、既提出資料から変更がないため、既提出 資料のうち「個別評価-14」に同じ。

3. 設置変更許可申請書への反映内容

設置変更許可申請書の本文五号「ロ.発電用原子炉施設の一般構造」の「(3) その他の主要な構造(i)」について「a.設計基準対象施設」の「(a)外部からの衝撃による損傷の防止」には、最大層厚が記載されており、噴出規模見直しに伴い、最大層厚を変更する。また、その他、添付書類六、八及び十の関連記載も同様に変更する。

設置許可申請書 本文五号 抜粋

- ロ. 発電用原子炉施設の一般構造
 - (3) その他の主要な構造

(i)

- a. 設計基準対象施設
 - (a) 外部からの衝撃による損傷の防止
 - (a-2)安全施設は、発電所の運用期間中において発電所の安全機能に 影響を及ぼし得る火山事象として設定した最大層厚 27cm、粒径 1mm 以下、密度 0.7g/cm³(乾燥状態) ~1.5g/cm³(湿潤状態) の降 下火砕物に対し、その直接的影響である構造物への静的負荷に対 して安全裕度を有する設計とすること、水循環系の閉塞に対して 狭隘部等が閉塞しない設計とすること、換気系、電気系及び計装 制御系に対する機械的影響(閉塞)に対して降下火砕物が侵入し にくい設計とすること、水循環系の内部における磨耗及び換気系、 電気系及び計装制御系に対する機械的影響(磨耗)に対して磨耗 しにくい設計とすること、構造物の化学的影響(腐食)、水循環系 の化学的影響(腐食)及び換気系、電気系及び計装制御系に対す る化学的影響(腐食)に対して短期での腐食が発生しない設計と すること、発電所周辺の大気汚染に対して中央制御室の換気空調 系は降下火砕物が侵入しにくく、さらに外気を遮断できる設計と すること、絶縁低下に対して空気を取り込む機構を有する計装盤 の設置場所の換気空調系は降下火砕物が侵入しにくく、さらに外 気を遮断できる設計とすることにより、安全機能を損なうことの ない設計とする。また、降下火砕物の間接的影響である7日間の 外部電源喪失、発電所外での交通の途絶によるアクセス制限事象 に対し、発電所の安全性を維持するために必要となる電源の供給 が継続でき、安全機能を損なうことのない設計とする。

設置許可申請書 添付書類八 抜粋

- 1. 安全設計
- 1.8 火山防護に関する基本方針
 - 1.8.1 設計方針
 - 1.8.1.3 設計条件の設定
 - 1.8.1.3.1 設計条件に用いる降下火砕物の設定
 - (1) 降下火砕物の層厚、密度及び粒径の設定

地質調査結果に文献調査結果も参考にして、高浜発電所の敷地において考慮する火山事象としては、「添付書類六 7.火山」に示すとおり、最大層厚 27cm、粒径 1mm 以下、密度 0.7g/cm³(乾燥状態)~1.5g/cm³(湿潤状態)の降下火砕物を設計条件として設定する。

4. 変更申請に係る規則への適合性

本申請に伴う原子炉設置変更許可申請書での関係条文を整理した結果を添付4に示す。今回の申請の関係条文は、第六条、第七条、第十一条、第十二条、第三十二条、第三十三条、第三十四条、第四十二条、第四十三条及び第六十一条であるが、これらのうち第六条への適合性は3.に示すとおりである。その他の関係条文については、添付4に示すとおり、外部からの衝撃による損傷の防止の適合性に係る本申請において、既存設備の変更はなく、及びそれらの運用の変更は伴わないこと、また大山生竹テフラの噴出規模見直しに伴い影響を受ける施設はあるが、基本設計方針に変更がないことから、既設置許可の基準適合性確認結果に影響を与えるものではない。

また、本変更については工事を要しない。ただし、燃料取替用水タンクについては、自主工事にて屋根板の溶接補強を行っているが、溶接補強を踏まえても個別評価-3に記載のとおり、機能に影響を及ぼすことのない設計とする。

5. 設置許可申請書の網羅的な確認について

設置許可申請書に記載されている事項は3つに分類され、層厚変更に伴う記載が変更されるものは、①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載となっている。一方、②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの及び③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないものについては、定性的な記載であり層厚変更に伴い記載の変更を要する箇所ではない。

以上を踏まえ、火山事象に関する層厚変更以外の評価項目について、設置許可申請書を網羅的に確認した結果、記載の変更が必要なものはない。 確認した結果を別紙に示す。

	高浜1号炉 設置変更許可申請書 本文	T ·
章	記載	理由
五/イ/(2)	また、外部起因事象として地震による影響(周辺構築物の倒壊、周辺機器の損壊、周辺斜面の崩壊、道路面の滑り)、その他自然現象による影響(津波による漂着物、台風及び竜巻による飛来物、積雪、降灰)を想定し、複数のアクセスルートの中から早期に復旧可能なルートを確保するため、障害物を除去可能なブルドーザ及び油圧ショベル等を保管及び使用する。	2
五/口 /(3)/(i)/a/(a)	安全施設は、発電所敷地で想定される洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地滑り、火山の影響、生物学的事象、森林火災、高潮の自然現象(地震及び津波を除く。) 又はその組合せに遭遇した場合において、自然現象そのものがもたらす環境条件及びその結果として施設で生じ得る環境条件においても、安全機能を損なうことのない設計とする。	3
五/口 /(3)/(i)/a/(a)	また、自然現象の組合せにおいては、風(台風)、積雪及び火山の影響による荷重の組合 せを設計上考慮する。	3
五/口 /(3)/(i)/a/(a-2)	安全施設は、発電所の運用期間中において発電所の安全機能に影響を及ぼし得る火山 事象として設定した最大層厚10cm、粒径1mm以下、密度0.7g/cm3(乾燥状態)~1.5g/cm3 (湿潤状態)の降下火砕物に対し、	1
五/口 /(3)/(i)/a/(a-2)	その直接的影響である構造物への静的負荷に対して安全裕度を有する設計とすること、水循環系の閉塞に対して狭隘部等が閉塞しない設計とすること、換気系、電気系及び計装制御系に対する機械的影響(閉塞)に対して降下火砕物が侵入しにくい設計とすること、水循環系の内部における磨耗及び換気系、電気系及び計装制御系に対する機械的影響(磨耗)に対して磨耗しにくい設計とすること、構造物の化学的影響(腐食)、水循環系の化学的影響(腐食)及び換気系、電気系及び計装制御系に対する化学的影響(腐食)に対して短期での腐食が発生しない設計とすること、発電所周辺の大気汚染に対して中央制御室の換気空調系は降下火砕物が侵入しにくく、さらに外気を遮断できる設計とすること、絶縁低下に対して空気を取り込む機構を有する計装盤の設置場所の換気空調系は降下火砕物が侵入しにくく、さらに外気を遮断できる設計とすることにより、安全機能を損なうことのない設計とする。	3
五/口 /(3)/(i)/a/(a)/(a-2)	また、降下火砕物の間接的影響である7日間の外部電源喪失、発電所外での交通の途絶によるアクセス制限事象に対し、発電所の安全性を維持するために必要となる電源の供給が継続でき、安全機能を損なうことのない設計とする。	3
五/口 /(3)/(i)/b/(c)/(c-1)/(c-1-1)	自然現象については、地震、津波、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災を考慮する。	3
五/口 /(3)/(i)/b/(c)/(c-1)/(c-1-1)	地震及び津波以外の自然現象の組合せについては、風(台風)、積雪及び火山による荷 重の組合せを考慮する。	3

- ①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの 66 -

五/口 /(3)/(i)/b/(c)/(c-1)/(c-1- 1)/(c-1-1-1)	風(台風)及び竜巻のうち風荷重、凍結、降水、積雪及び火山の影響並びに電磁的障害に対して常設重大事故防止設備は、環境条件にて考慮し機能が損なわれない設計とする。	3
五/口 /(3)/(i)/b/(c)/(c-1)/(c-1- 1)/(c-1-1-2)	重大事故等時の環境条件における健全性については「(c-3)環境条件等」に記載する。風(台風)及び竜巻のうち風荷重、凍結、降水、積雪、火山の影響並びに電磁的障害に対して可搬型重大事故等対処設備は、環境条件にて考慮し機能が損なわれない設計とする。	3
五/口 /(3)/(i)/b/(c)/(c-1)/(c-1- 1)/(c-1-1-3)	重大事故等時の環境条件における健全性については「(c-3) 環境条件等」に記載する。風(台風)及び竜巻のうち風荷重、凍結、降水、積雪及び火山の影響並びに電磁的障害に対しては、環境条件にて考慮し機能が損なわれない設計とする。	3
五/口 /(3)/(i)/b/(c)/(c-3)/(c-3-1)	荷重としては重大事故等が発生した場合における環境圧力を踏まえた圧力、温度及び機械的荷重に加えて自然現象(地震、風(台風)、竜巻、積雪及び火山の影響)による荷重を 考慮する。	3
五/口 /(3)/(i)/b/(c)/(c-3)/(c-3-1)	地震以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重 の組合せを考慮する。	3
五/口 /(3)/(i)/b/(c)/(c-3)/(c-3-1)	また、地震、積雪及び降下火砕物による荷重を考慮して、機能を損なうことのない設計とするとともに風(台風)及び竜巻による風荷重に対し、位置的分散を考慮した保管により、機能を損なわない設計とする。	3
五/口 /(3)/(i)/b/(c)/(c-4)/(c-4- 1)/(c-4-1-4)	屋外及び屋内アクセスルートは、自然現象に対して地震、津波、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災を考慮し、外部人為事象に対して近隣の産業施設の火災・爆発(飛来物を含む。)、航空機墜落による火災、火災の二次的影響(ばい煙及び有毒ガス)、輸送車両の発火、漂流船舶の衝突、飛来物(航空機落下)、ダムの崩壊、電磁的障害及び故意による大型航空機の衝突その他のテロリズムを考慮する。	3
五/ロ /(3)/(i)/b/(c)/(c-4)/(c-4- 1)/(c-4-1-4)	屋外アクセスルートに対する地震による影響(周辺構築物の倒壊、周辺機器の損壊、周辺斜面の崩壊及び道路面の滑り)、その他自然現象による影響(津波による漂着物、台風及び竜巻による飛来物、積雪並びに降灰)を想定し、複数のアクセスルートの中から早期に復旧可能なルートを確保するため、障害物を除去可能なブルドーザを2台(1号及び2号炉共用)、予備のブルドーザを1台(1号、2号、3号及び4号炉共用、既設)、油圧ショベルを1台(1号及び2号炉共用)及び予備の油圧ショベルを1台(1号、2号、3号及び4号炉共用、既設)等を保管及び使用する。	3

- ①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの 67 -

五/口 /(3)/(i)/b/(c)/(c-4)/(c-4- 1)/(c-4-1-4)	屋内アクセスルートは、津波、その他自然現象による影響(台風及び竜巻による飛来物、凍結、降水、積雪、落雷、地すべり、降灰、生物学的事象、高潮及び森林火災)及び外部人為事象(航空機墜落による火災、火災の二次的影響、輸送車両の発火、漂流船舶の衝突及び飛来物(航空機落下))に対して、外部からの衝撃による損傷の防止が図られた建屋内に確保する設計とする。	3
五/口 /(3)/(i)/c/(b)/(b-1)/(b-1-1)	自然現象については、地震、津波、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災を考慮する。	3
五/口 /(3)/(i)/c/(b)/(b-1)/(b-1-1)	地震及び津波以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重の組合せを考慮する。	3
五/口 /(3)/(i)/c/(b)/(b-1)/(b-1-1)	風(台風)、凍結、降水、積雪、火山の影響及び電磁的障害に対して、特定重大事故等対 処施設を構成する設備は、環境条件にて考慮し機能が損なわれることのない設計とする。	3
五/口 /(3)/(i)/c/(b)/(b-3)/(b-3-1)	荷重としては原子炉補助建屋等への故意による大型航空機の衝突その他のテロリズムによる重大事故等が発生した場合における環境圧力を踏まえた圧力、温度及び機械的荷重に加えて自然現象(地震、風(台風)、竜巻、積雪及び火山の影響)による荷重を考慮する。	3
五/口 /(3)/(i)/c/(b)/(b-3)/(b-3-1)	地震以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重 の組合せを考慮する。	3
+/ /\ /(1)/(i)/a/(b)	屋外及び屋内アクセスルートは、自然現象に対して地震、津波、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災を考慮し、外部人為事象に対して近隣の産業施設の火災及び爆発(飛来物含む。)、航空機墜落による火災、火災の二次的影響(ばい煙及び有毒ガス)、輸送車両の発火、漂流船舶の衝突、飛来物(航空機落下)、ダムの崩壊、電磁的障害並びに重大事故等時の高線量下を考慮する。	3
+/ /\ /(1)/(i)/a/(b)	屋外アクセスルートに対する、地震による影響(周辺構造物の損壊、周辺機器の損壊、周辺斜面の崩壊、道路面のすべり)、その他の自然現象による影響(津波による漂着物、台風及び竜巻による飛来物、積雪、降灰)を想定し、複数のアクセスルートの中から早期に復旧可能なアクセスルートを確保するため、障害物を除去可能なブルドーザを2台(1号及び2号炉共用)、予備のブルドーザを1台(1号、2号、3号及び4号炉共用、既設)、油圧ショベルを1台(1号及び2号炉共用)及び予備の油圧ショベルを1台(1号、2号、3号及び4号炉共用、既設)等を保管、使用し、それを運転する要員を確保する。	2

- ①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの 68 -

十/ハ /(1)/(i)/a/(b) アクセスルート上の台風及び竜巻による飛来物、積雪、降灰については、ブルドーザ及び 油圧ショベルによる撤去を行う。なお、想定を上回る積雪、降灰が発生した場合は、除雪、 除灰の頻度を増加させることにより対処する。

(2)

①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの - 69 -

	高浜1号炉 設置変更許可申請書 添付書類八	
章	記載	理由
目次	1.8 火山防護に関する基本方針	1.77
1/1.1/1.1.1/1.1 _. 1.4	安全施設は、発電所敷地で想定される洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地滑り、火山の影響、生物学的事象、森林火災、高潮の自然現象(地震及び津波を除く。) 又はその組合せに遭遇した場合において、自然現象そのものがもたらす環境条件及びその結果として施設で生じ得る環境条件においても、安全機能を損なうことのない設計とする。	3
1/1.1/1.1.1/1.1 <u>.</u> 1.4 ⁻	また、自然現象の組合せにおいては、風(台風)、積雪及び火山の影響による荷重の組合 せを設計上考慮する。	3
1/1.1/1.1.8/1.1 <u>.</u> 8.1	自然現象については、地震、津波、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災を考慮する。	3
1/1.1/1.1.8/1.1, 8.1	地震及び津波以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重の組合せを考慮する。	3
1/1.1/1.1.8/1.1. 8.1/a	風(台風)及び竜巻のうち風荷重、凍結、降水、積雪及び火山の影響並びに電磁的障害に対して常設重大事故防止設備は、環境条件にて考慮し機能が損なわれない設計とする。	3
1/1.1/1.1.8/1.1, 8.1/b	風(台風)及び竜巻のうち風荷重、凍結、降水、積雪、火山の影響並びに電磁的障害に対 して可搬型重大事故等対処設備は、環境条件にて考慮し機能が損なわれない設計とす る。	3
1/1.1/1.1.8/1.1. 8.1/c	風(台風)及び竜巻のうち風荷重、凍結、降水、積雪及び火山の影響並びに電磁的障害に対しては、環境条件にて考慮し機能が損なわれない設計とする。	3
1/1.1/1.1.8/1.1. 8.3/(1)	荷重としては重大事故等が発生した場合における環境圧力を踏まえた圧力、温度及び機械的荷重に加えて自然現象(地震、風(台風)、竜巻、積雪及び火山の影響)による荷重を 考慮する。	3
	地震以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重 の組合せを考慮する。	3
1/1.1/1.1.8/1.1, 8.3/(1)	また、地震、積雪及び降下火砕物による荷重を考慮して、機能を損なうことのない設計とするとともに風(台風)及び竜巻による風荷重に対し、位置的分散を考慮した保管により、機能を損なわない設計とする。	3

①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの - 70 -

1/1.1/1.1.8/1.1. 8.4/(1)/d	屋外及び屋内アクセスルートは、自然現象に対して地震、津波、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災を考慮し、外部人為事象に対して近隣の産業施設の火災・爆発(飛来物を含む。)、航空機墜落による火災、火災の二次的影響(ばい煙及び有毒ガス)、輸送車両の発火、漂流船舶の衝突、飛来物(航空機落下)、ダムの崩壊、電磁的障害及び故意による大型航空機の衝突その他のテロリズムを考慮する。	3
1/1.1/1.1.8/1.1. 8.4/(1)/d	屋外アクセスルートに対する地震による影響(周辺構築物の倒壊、周辺機器の損壊、周辺斜面の崩壊及び道路面の滑り)、その他自然現象による影響(津波による漂着物、台風及び竜巻による飛来物、積雪並びに降灰)を想定し、複数のアクセスルートの中から早期に復旧可能なルートを確保するため、障害物を除去可能なブルドーザを2台(1号及び2号炉共用)、予備のブルドーザを1台(1号、2号、3号及び4号炉共用、既設)、油圧ショベルを1台(1号及び2号炉共用)及び予備の油圧ショベルを1台(1号、2号、3号及び4号炉共用、既設)等を保管及び使用する。	2
1/1.1/1.1.8/1.1. 8.4/(1)/d	屋内アクセスルートは、津波、その他自然現象による影響(台風及び竜巻による飛来物、凍結、降水、積雪、落雷、地すべり、降灰、生物学的事象、高潮及び森林火災)及び外部人為事象(航空機墜落による火災、火災の二次的影響、輸送車両の発火、漂流船舶の衝突及び飛来物(航空機落下))に対して、外部からの衝撃による損傷の防止が図られた建屋内に確保する設計とする。	3
1/1.1/1.1.9/1.1. 9.1/(1)	自然現象については、地震、津波、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災を考慮する。	3
1/1.1/1.1.9/1.1. 9.1/(1)	地震及び津波以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重の組合せを考慮する。	3
1/1.1/1.1.9/1.1. 9.1/(1)	風(台風)、凍結、降水、積雪、火山の影響及び電磁的障害に対して、特定重大事故等対 処施設を構成する設備は、環境条件にて考慮し機能が損なわれることのない設計とする。	3
1/1.1/1.1.9/1.1. 9.3/(1)	荷重としては原子炉補助建屋等への故意による大型航空機の衝突その他のテロリズムによる重大事故等が発生した場合における環境圧力を踏まえた圧力、温度及び機械的荷重に加えて自然現象(地震、風(台風)、竜巻、積雪及び火山の影響)による荷重を考慮する。	3
1/1.1/1.1.9/1.1. 9.3/(1)	地震以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重 の組合せを考慮する。	3
	原子炉施設では、自然現象として、落雷、地震、津波、火山の影響、森林火災、竜巻、風 (台風)、凍結、降水、積雪、生物学的事象、地すべり及び洪水が想定される。	3
	凍結、降水、積雪及び生物学的事象は、火源が発生する自然現象ではなく、火山の影響についても、火山から原子炉施設に到達するまでに降下火砕物が冷却されることを考慮すると、火源が発生する自然現象ではない。	3
い山重象に関す	る定量的な記載及び火山事象の影響を受ける定量的な記載	

①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの - 71 -

1/1.5/1.5.2/1.5 2.2/1.5.2.2.3	原子炉施設では、自然現象として、落雷、地震、津波、火山の影響、森林火災、竜巻、風 (台風)、凍結、降水、積雪、生物学的事象、地すべり及び洪水が想定される。	3
1/1.5/1.5.2/1.5, 2.2/1.5.2.2.3	凍結、降水、積雪及び生物学的事象は、火源が発生する自然現象ではなく、火山の影響についても、火山から原子炉施設に到達するまでに降下火砕物が冷却されることを考慮すると火源が発生する自然現象ではない。	3
1/1.5/1.5.3/1.5. 3.2/1.5.3.2.3	原子炉施設では、自然現象として、落雷、地震、津波、火山の影響、森林火災、竜巻、風 (台風)、凍結、降水、積雪、生物学的事象、地すべり及び洪水が想定される。	3
1/1.5/1.5.3/1.5. 3.2/1.5.3.2.3	凍結、降水、積雪及び生物学的事象は、火源が発生する自然現象ではなく、火山についても、火山から原子炉施設に到達するまでに火山灰等が冷却されることを考慮すると火源が発生する自然現象ではない。	3
1/1.8	火山防護に関する基本方針	-
1/1.8/1.8.1/1.8. 1.1	安全施設は、火山事象に対して、原子炉施設の安全性を確保するために必要な機能(以下「安全機能」という。)を損なうことのない設計とする。	3
1/1.8/1.8.1/1.8. 1.1	このため、「添付書類六 7.火山」で評価し抽出された発電所に影響を及ぼし得る火山事象である降下火砕物による直接的影響及び間接的影響について評価を行うとともに、降下火砕物により安全施設が安全機能を損なうことのない設計とする。	3
1/1.8/1.8.1/1.8. 1.2	火山事象に対する設計の基本方針	I
1/1.8/1.8.1/1.8. 1.2	将来の活動可能性が否定できない火山について、運用期間中の噴火規模を考慮し、発電所の安全機能に影響を及ぼし得る火山事象を抽出した結果、「添付書類六 7.火山」に示すとおり該当する火山事象は降下火砕物のみであり、防護すべき設計対象施設が降下火砕物により安全機能を損なうことのない設計とする。以下に、火山事象に対する防護設計の基本方針を示す。	3
1/1.8/1.8.1/1.8. 1.2	(1) 降下火砕物による直接的な影響(荷重、閉塞、磨耗、腐食等)に対して、安全機能を損なうことのない設計とする。 (2) 発電所内の構築物、系統及び機器における降下火砕物の除去等の対応が可能な設計とする。 (3) 降下火砕物による発電所外での間接的な影響(7日間の外部電源の喪失、交通の途絶によるアクセス制限事象)を考慮し、ディーゼル発電機の燃料油の貯蔵設備等により、原子炉及び使用済燃料ピットの安全性を損なうことのない設計とする。	3
1/1.8/1.8.1/1.8. 1.3/1.8.1.3.1	設計条件に用いる降下火砕物の設定	-1

- ①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの

1/1.8/1.8.1/1.8. 1.3/1.8.1.3.1/(1)	降下火砕物の層厚、密度及び粒径の設定	-
1/1.8/1.8.1/1.8. 1.3/1.8.1.3.1/(1)	地質調査結果に文献調査結果も参考にして、高浜発電所の敷地において考慮する火山事象としては、「添付書類六 7.火山」に示すとおり、最大層厚10cm、粒径1mm以下、密度0.7g/cm3(乾燥状態)~1.5g/cm3(湿潤状態)の降下火砕物を設計条件として設定する。	1
1/1.8/1.8.1/1.8. 1.3/1.8.1.3.1/(2)	降下火砕物の特徴	=
1/1.8/1.8.1/1.8. 1.3/1.8.1.3.1/(2)	各種文献の調査結果より、降下火砕物は以下の特徴を有する。 a. 火山ガラス片、鉱物結晶片から成る。ただし、砂よりもろく硬度は低い。 b. 硫酸等を含む腐食性のガス(以下「腐食性ガス」という。)が付着している。ただし、金属腐食研究の結果より、直ちに金属腐食を生じさせることはない。 c. 水に濡れると導電性を生じる。 d. 湿った降下火砕物は乾燥すると固結する。 e. 降下火砕物粒子の融点は、一般的な砂に比べ約1,000℃と低い。	3
1/1.8/1.8.1/1.8. 1.4	降下火砕物の影響から防護する施設	-
1/1.8/1.8.1/1.8. 1.4	降下火砕物の影響から防護する施設は、原子炉施設の安全性を確保するため、「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」で規定されているクラス 1、クラス2及びクラス3に該当する構築物、系統及び機器とする。	3
1/1.8/1.8.1/1.8. 1.4	さらに、当該施設が降下火砕物の影響により安全機能を損なうことのないよう、降下火砕物の影響から防護する施設(以下「防護対象施設」という。)として、各施設の構造や設置状況等を考慮して防護対象施設を以下のとおり抽出する。	3
1/1.8/1.8.1/1.8. 1.4	(1) クラス1及びクラス2に属する施設を内包し、降下火砕物による影響から防護する建屋(2) クラス1及びクラス2に属する施設のうち、屋外に設置されている施設(3) クラス1及びクラス2に属する施設のうち、屋内にあっても屋外に開口し降下火砕物を含む海水及び空気の流路となる施設(4) クラス1及びクラス2に属する施設のうち、屋内の空気を機器内に取り込む機構を有しそれにより降下火砕物の影響を受ける可能性がある施設(5) クラス3に属する施設及びその他の施設のうち、屋外に開口し降下火砕物を含む海水及び空気の流路となって、クラス1及びクラス2に属する施設に影響を及ぼす可能性がある施設なお、その他のクラス3に属する施設については、降下火砕物による影響を受ける場合を考慮して、代替設備により必要な機能を確保すること、又は安全上支障が生じない期間に除灰あるいは修復等の対応が可能とすることにより、安全機能を損なうことのない設計とする。	3

- ①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの

1/1.8/1.8.1/1.8. 1.5	降下火砕物の影響に対する防護対象施設の設計方針	寰
1/1.8/1.8.1/1.8. 1.5	降下火砕物の特徴から、防護対象施設に対し直接的又は間接的に影響を及ぼす可能性 のある降下火砕物の影響に対する防護対象施設の設計方針を以下に示す。	3
1/1.8/1.8.1/1.8. 1.5/1.8.1.5.1	降下火砕物の特徴及び防護対象施設の構造や設置状況等を考慮し、有意な影響を及ぼ す可能性が考えられる直接的な影響因子を以下のとおり選定する。	3
1/1.8/1.8.1/1.8. 1.5/1.8.1.5.1/(1)	「荷重」について考慮すべき影響因子は、建屋又は屋外設備の上に堆積し静的な負荷を 与える「構造物への静的負荷」、並びに建屋又は屋外設備に対し降灰時に衝撃を与える 「粒子の衝突」である。	3
1/1.8/1.8.1/1.8. 1.5/1.8.1.5.1/(1) /b	防護対象施設は、降下火砕物によって設計基準事故の起因とはならない設計とするため、設計基準事故とは独立事象である。	3
1/1.8/1.8.1/1.8. 1.5/1.8.1.5.1/(1) /b	また、降下火砕物の降灰と設計基準事故が同時に発生する頻度は十分小さいことから、設計基準事故時荷重と降下火砕物による荷重との組合せは考慮しない。	3
	仮に、防護対象施設への影響が小さく発生頻度が高い少量の降下火砕物の降灰と設計 基準事故が同時に発生する場合、防護対象施設のうち設計基準事故時荷重が生じる施設 としては動的機器である海水ポンプが考えられるが、設計基準事故時においても海水ポン プの圧力、温度が変わらず、機械的荷重が変化することはないため、設計基準事故時に 生じる荷重の組合せは考慮しない。	3
1/1.8/1.8.1/1.8. 1.5/1.8.1.5.1/(1) /c	降下火砕物と火山以外の自然現象の組合せについては、荷重の影響において、降下火砕物、風(台風)及び積雪による組合せを考慮する。	3
1/1.8/1.8.1/1.8. 1.5/1.8.1.5.1/(2)	「閉塞」について考慮すべき影響因子は、降下火砕物を含む海水が流路の狭隘部等を閉塞させる「水循環系の閉塞」、並びに降下火砕物を含む空気が機器の狭隘部や換気系の流路を閉塞させる「換気系、電気系及び計装制御系の機械的影響(閉塞)」である。	3
	「磨耗」について考慮すべき影響因子は、降下火砕物を含む海水が流路に接触することにより配管等を磨耗させる「水循環系の内部における磨耗」、並びに降下火砕物を含む空気が動的機器の摺動部に侵入し磨耗させる「換気系、電気系及び計装制御系の機械的影響 (磨耗)」である。	3

①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの - 74 -

	W	
1/1.8/1.8.1/1.8. 1.5/1.8.1.5.1/(4)	「腐食」について考慮すべき影響因子は、降下火砕物に付着した腐食性ガスにより建屋及び屋外施設の外面を腐食させる「構造物の化学的影響(腐食)」、海水に溶出した腐食性成分により海水管等を腐食させる「水循環系の化学的影響(腐食)」、並びに換気系、電気系及び計装制御系において降下火砕物を含む空気の流路等を腐食させる「換気系、電気系及び計装制御系に対する化学的影響(腐食)」である。	3
	「大気汚染」について考慮すべき影響因子は、降下火砕物により汚染された発電所周辺の大気が運転員の常駐する中央制御室内に侵入することによる居住性の劣化、並びに降下火砕物の除去、屋外設備の点検等、屋外における作業環境を劣化させる「発電所周辺の大気汚染」である。	3
	「水質汚染」については、給水等に使用する発電所周辺の淡水等に降下火砕物が混入することによる汚染が考えられるが、発電所では純水装置により水処理した給水を使用しており、降下火砕物の影響を受けた淡水等を直接給水として使用しないこと、また水質管理を行っていることから、安全施設の安全機能には影響しない。	3
	「絶縁低下」について考慮すべき影響因子は、湿った降下火砕物が、電気系及び計装制御系に導電性を生じさせることによる「計装盤の絶縁低下」である。	3
	降下火砕物によって発電所周辺にもたらされる影響により、発電所に間接的な影響を及ぼす因子は、湿った降下火砕物が送電線の碍子及び特高開閉所の充電露出部等に付着し絶縁低下を生じさせることによる広範囲における「外部電源喪失」、並びに降下火砕物が道路に堆積し交通が途絶することによる「アクセス制限」である。	3
1/1.8/1.8.1/1.8. 1.6	降下火砕物が発電所の構築物、系統及び機器に及ぼす影響は、前述したとおり、「直接的影響因子」と「間接的影響因子」があり、各々に応じて、各構築物、系統及び機器についてこれらを適切に考慮した設計とする。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(1) /a	防護対象施設のうち、構造物への静的負荷を考慮すべき施設は、以下に示すとおり、降下 火砕物が堆積しやすい屋根構造を有する建屋及び屋外施設である。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(1) /a	当該施設の許容荷重が、降下火砕物による荷重に対して安全裕度を有することにより、構 造健全性を失わず安全機能を損なうことのない設計とする。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(1) /b	防護対象施設のうち屋外施設は、降下火砕物の衝突によって構造健全性が失われないことにより、安全機能を損なうことのない設計とする。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(2) /a	防護対象施設のうち、水循環系の閉塞を考慮すべき施設は、降下火砕物を含む海水の流路となる海水ポンプ、海水ストレーナ及び取水設備(これらの下流の設備を含む。)である。	3

- ①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの

		,
	前述のとおり降下火砕物は粘土質ではないことから水中で固まり閉塞することはないが、 当該施設は、降下火砕物の粒径(最大1mm)に対し十分大きな流水部を設けることにより、 流路及びポンプ軸受部の狭隘部等が閉塞しない設計とする。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(2) /b	防護対象施設のうち、降下火砕物による機械的影響(閉塞)を考慮すべき施設は、以下に 示すとおり、降下火砕物を含む空気を取り入れる可能性がある施設である。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(2) /b	各施設の構造上の対応として、海水ポンプ(海水ポンプモータ)、ディーゼル発電機機関及びディーゼル発電機消音器は開口部を下向きの構造とすること、また主蒸気大気放出弁消音器、主蒸気安全弁排気管等のその他の施設については開口部や配管の形状等により、降下火砕物が流路に侵入した場合でも閉塞しない設計とする。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(2) /b	また、設備対応として、外気を取り入れる海水ポンプ(海水ポンプモータ)、換気空調設備及びディーゼル発電機消音器にそれぞれフィルタを設置することにより、フィルタより大きな降下火砕物が内部に侵入しにくい設計とし、さらに降下火砕物がフィルタに付着した場合でも清掃や取替えが可能な構造とすることで、降下火砕物により閉塞しない設計とする。	3
	主蒸気大気放出弁又は主蒸気安全弁は、開口部に降下火砕物が侵入した場合でも消音器や配管の形状により閉塞しにくい設計とし、また仮に弁出口配管内に降下火砕物が侵入し堆積した場合でも、弁の吹出しにより流路を確保し閉塞しない設計とする。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(2) /b	ディーゼル発電機機関は、フィルタを通過した小さな粒径の降下火砕物が侵入した場合でも、降下火砕物により閉塞しない設計とする。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(2) /b	格納容器排気筒及び補助建屋排気筒は、降下火砕物が侵入した場合でも、排気筒の構造から排気流路が閉塞しない設計とする。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(2) /b	また、降下火砕物が侵入した場合でも、排気筒内部の点検、並びに状況に応じて除去等の対応が可能な設計とする。	3
	防護対象施設のうち、降下火砕物による水循環系の内部における磨耗を考慮すべき施設は、降下火砕物を含む海水を取り込む施設である海水ポンプ、海水ストレーナ及び取水設備(これらの下流の設備を含む。)である。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(3) /a	降下火砕物は砂よりも硬度が低くもろいことから磨耗による影響は小さい。	3

- ①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの 76 -

1/1.8/1.8.1/1.8. また当該施設については、降灰時の特別点検、その後の日常保守管理により、状況に応じて補修が可能であり、磨耗により安全機能を損なうことのない設計とする。 1/1.8/1.8.1/1.8. 防護対象施設のうち、降下火砕物による機械的影響(磨耗)を考慮すべき施設は、降下火砕物を含む空気を取り込む施設で摺動部を有するディーゼル発電機機関、並びに屋内の空気を取り込む機構を有する計器用空気圧縮機である。 1/1.8/1.8.1/1.8. 1/1.8. 1/1.8. 1/1.8. 1/1.8.1/1.8. 1/1.8/1.8. 1/1.8. 1/1.8/1.8. 1/1.8/1.8. 1/1.8/1.8. 1/1.8/1.8. 1/1.8/1.8. 1/1.8. 1/1.8/1.8. 1/1.8/1.8. 1/1.8/1.8. 1/1.8/1.8. 1/1.8/1.8. 1/1.8/1.8. 1/1.8/1.8. 1/1.8
1.6/1.8.1.6.1/(3)
1.6/1.8.1.6.1/(3) 降下火砕物は砂よりも硬度が低くもろいことから、磨耗の影響は小さい。 /b 3
1/1.8/1.8.1/1.8. 構造上の対応として、開口部を下向きとすることにより侵入しにくい構造とし、仮に当該施 1.6/1.8.1.6.1/(3) 設の内部に降下火砕物が侵入した場合でも耐磨耗性のある材料を使用することにより、磨 /b 耗により安全機能を損なうことのない設計とする。
設備対応として、外気を取り入れる換気空調設備及びディーゼル発電機消音器にそれぞ 1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(3) /b 設備対応として、外気を取り入れる換気空調設備及びディーゼル発電機消音器にそれぞれフィルタを設置することにより、フィルタより大きな降下火砕物が内部に侵入しにくい設計とし、また換気空調設備においては、前述のフィルタの設置、さらに外気取入ダンパの閉止、換気空調設備の停止又は閉回路循環運転により、建屋内への降下火砕物の侵入を防止することが可能な設計とする。
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(4) /a 防護対象施設のうち、降下火砕物による構造物の化学的影響(腐食)を考慮すべき施設は、以下に示すとおり、直接的な付着による影響が考えられる施設である。
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(4) 全属腐食研究の結果より、降下火砕物によって直ちに金属腐食を生じないが、外装の塗 装等によって短期での腐食により安全機能を損なうことのない設計とする。
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(4) /a なお、降灰後の長期的な腐食の影響については、日常保守管理等により、状況に応じて 補修が可能な設計とする。
1/1.8/1.8.1/1.8. 防護対象施設のうち、水循環系の化学的影響(腐食)を考慮すべき施設は、降下火砕物を 1.6/1.8.1.6.1/(4) 含む海水を取り込む施設である海水ポンプ、海水ストレーナ及び取水設備(これらの下流 の設備を含む。)である。
1/1.8/1.8.1/1.8. 金属腐食研究の結果より、降下火砕物によって直ちに金属腐食を生じないが、耐食性の 1.6/1.8.1.6.1/(4) ある材料の使用や塗装の実施等によって、腐食により安全機能を損なうことのない設計と /b する。

①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの -77-

1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(4) /b	なお、降灰後の長期的な腐食の影響については、日常保守管理等により、状況に応じて 補修が可能な設計とする。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(4) /c	防護対象施設のうち、降下火砕物による化学的影響(腐食)を考慮すべき施設は、降下火砕物を含む空気を取り入れ、かつ腐食により安全機能に影響を及ぼす可能性が考えられる海水ポンプ(海水ポンプモータ(電気系及び計装制御系))、格納容器排気筒(換気系)及び補助建屋排気筒(換気系)である。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(4) /c	金属腐食研究の結果より、降下火砕物によって直ちに金属腐食を生じないが、塗装の実施等によって、腐食により安全機能を損なうことのない設計とする。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(4) /c	なお、降灰後の長期的な腐食の影響については、日常保守管理等により、状況に応じて 補修が可能な設計とする。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(5) /a	降下火砕物により汚染された発電所周辺の大気が、中央制御室換気設備の外気取入口を通じて中央制御室に侵入しないよう、外気取入口に平型フィルタを設置することにより、 降下火砕物が外気取入口に到達した場合であってもフィルタより大きな降下火砕物が内部 に侵入しにくい設計とする。	3
	これに加えて下流側にさらに細かな粒子を捕集可能な粗フィルタを設置していることから、 降下火砕物の侵入に対して他の換気空調設備に比べて高い防護性能を有しているが、仮 に室内に侵入した場合でも降下火砕物は微量であり、粒径は極めて細かな粒子である。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(5) /a	また、中央制御室換気設備については、外気取入ダンパの閉止及び閉回路循環運転を可能とすることにより、中央制御室内への降下火砕物の侵入を防止すること、さらに外気取入遮断時において室内の居住性を確保するため、酸素濃度及び二酸化炭素濃度の影響評価を実施することにより、安全機能を損なうことのない設計とする。	3
1/1.8/1.8.1/1.8. 1.6/1.8.1.6.1/(6) /a	計装盤のうち、空気を取り込む機構を有する安全保護系計装盤については、屋内に侵入した降下火砕物を取り込むことによる影響を考慮する。	3
	当該機器の設置場所は中央制御室換気設備にて空調管理されており、本換気空調設備の外気取入口には平型フィルタを設置し、これに加えて下流側にさらに細かな粒子を捕集可能な粗フィルタを設置していることから、降下火砕物の侵入に対して他の換気空調設備に比べて高い防護性能を有しているが、仮に室内に侵入した場合でも降下火砕物は微量であり、粒径は極めて細かな粒子である。	3

- ①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの

1/1.8/1.8.1/1.8. また、本換気空調設備については、外気取入ダンパの閉止及び閉回路循環運転を可することにより、リレー室内への降下火砕物の侵入を防止することが可能である。 1/1.8/1.8.1/1.8. これらフィルタの設置により侵入に対する高い防護性能を有すること、また外気取入/	能と	(3)
	*	<i>ن</i>
1.6/1.8.1.6.1/(6) の閉止及び閉回路循環運転による侵入防止が可能な設計とすることにより、降下火液の付着による絶縁低下による影響を防止し、安全保護系計装盤の安全機能を損なうのない設計とする。	卆物 📗	3
降下火砕物による間接的影響には、広範囲にわたる送電網の損傷による7日間の外 1/1.8/1.8.1/1.8 源喪失、発電所外での交通の途絶によるアクセス制限事象に対し、原子炉の停止、 に停止後の原子炉及び使用済燃料ピットの冷却に係る機能を担うために必要となる の供給が燃料油貯油そう及びディーゼル発電機により継続でき、安全機能を損なうこ ない設計とする。	たび 	3
降下火砕物の降灰時における手順については、降灰時の特別点検、除灰(資機材をむ。)等の対応を適切に実施するため、以下について定める。 (1) 降灰が確認された場合には、建屋や屋外の構築物等に長期間降下火砕物の荷置け続けないこと、また降下火砕物の付着による腐食等が生じる状況を緩和するために護対象施設等に堆積した降下火砕物の除灰を実施する。 (2) 降灰が確認された場合には、防護対象施設に対する特別点検を行い、降下火砕降灰による影響が考えられる設備等があれば、状況に応じて補修等を行う。 (3) 降灰が確認された場合には、外気取入口に設置している平型フィルタ、外気取入パの閉止、換気空調設備の停止又は閉回路循環運転により、建屋内への降下火砕に侵入を防止する。 (4) 降灰が確認された場合には、換気空調設備の外気取入口の平型フィルタについた検によりフィルタ差圧を確認するとともに、状況に応じて清掃や取替えを実施する。 (5) 降灰が確認された場合には、水循環系のストレーナについて、差圧を確認するとに、状況に応じて洗浄を行う。 (6) 降灰が確認された場合には、開閉所設備の碍子洗浄を行う。 (7) 降灰後の腐食等の中長期的な影響については、日常巡視点検や定期点検等による実による異常がないか確認を行い、異常が確認された場合には、状況に応じて塗装等の対応を行う。 (8) 火山事象に対する運用管理に万全を期すため、必要な技術的能力を維持・向上でとを目的とし、降下火砕物による施設への影響を生じさせないための運用管理に関教育を実施する。	き、勿ず勿こ、も、りきせかの、つの、点、ののである。	2
1/1.11/1.11.10/ 1.11.10.1/第六 条 電所敷地で想定される自然現象は、洪水、風(台風)、竜巻、凍結、降水、積雪、落 地滑り、火山の影響、生物学的事象、森林火災又は高潮である。	雷、	3
1/1.11/1.11.10/ 1.11.10.1/第六 条/(9)		
1/1.11/1.11.10/ 1.11.10.1/第六 条/(9) 安全施設は、火山事象が発生した場合においても安全機能を損なうことのない設計と る。	क	3

①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの - 79 -

	将来の活動可能性が否定できない火山について、運用期間中の噴火規模を考慮し、発電所の安全機能に影響を及ぼし得る火山事象を抽出した結果、「添付書類六 7.火山」に示すとおり該当する火山事象は降下火砕物のみであり、地質調査結果に文献調査結果も参考にして、高浜発電所の敷地において考慮する火山事象としては、最大層厚10cm、粒径1mm以下、密度0.7g/cm3(乾燥状態)~1.5g/cm3(湿潤状態)の降下火砕物を考慮する。	1
1/1.11/1.11.10/ 1.11.10.1/第六 条/(9)	降下火砕物による直接的影響及び間接的影響のそれぞれに対し、安全機能を損なわないよう以下の設計とする。	3
1/1.11/1.11.10/ 1.11.10.1/第六 条/(9)/a	安全施設は、直接的影響である降下火砕物の構造物への静的負荷に対して安全裕度を有する設計とすること、水循環系の閉塞に対して狭隘部等が閉塞しない設計とすること、換気系、電気系及び計装制御系に対する機械的影響(閉塞)に対して降下火砕物が侵入しにくい設計とすること、水循環系の内部における磨耗及び換気系、電気系及び計装制御系に対する機械的影響(磨耗)に対して磨耗しにくい設計とすること、構造物の化学的影響(腐食)、水循環系の化学的影響(腐食)及び換気系、電気系及び計装制御系に対する化学的影響(腐食)に対して短期での腐食が発生しない設計とすること、発電所周辺の大気汚染に対して中央制御室の換気空調系は降下火砕物が侵入しにくく、さらに外気を遮断できる設計とすること、絶縁低下に対して空気を取り込む機構を有する計装盤の設置場所の換気空調系は降下火砕物が侵入しにくく、さらに外気を遮断できる設計とすることにより、安全機能を損なうことのない設計とする。	3
	また、安全施設は、降下火砕物の除去や換気空調設備外気取入口のフィルタの点検、清掃や取替、ストレーナの洗浄、換気空調系の閉回路循環運転、必要な保守管理等により安全機能を損なうことのない設計とする。	3
1/1.11/1.11.10/ 1.11.10.1/第六 条/(9)/b	安全施設は、降下火砕物の間接的影響である7日間の外部電源喪失、発電所外での交通 の途絶によるアクセス制限事象に対し、原子炉の停止、並びに停止後の原子炉及び使用 済燃料ピットの冷却に係る機能を担うために必要となる電源の供給が燃料油貯油そう及び ディーゼル発電機により継続でき、安全機能を損なうことのない設計とする。	3
	上記の考えを基に組合せの評価を行った結果、考慮が必要とされた風(台風)、積雪及び 火山の影響による荷重の組合せに対しては、安全施設の安全機能を損なうことのない設 計とする。	3
1/1.11/1.11.10/ 1.11.10.1/第十 条	当該操作が必要となる理由となった事象が有意な可能性をもって同時にもたらされる環境 条件及び原子炉施設で有意な可能性をもって同時にもたらされる環境条件(地震、内部火 災、内部溢水、外部電源喪失及び外部火災に伴うばい煙や有毒ガス、降下火砕物)を想 定しても、運転員が運転時の異常な過渡変化及び設計基準事故に対応するための設備を 中央制御室において容易に操作することができる設計とするとともに、現場操作について も設計基準事故時に操作が必要な箇所は環境条件を想定し、容易に操作することができ る設計とする。	3
1.11.10.1/第十	地震、竜巻・風(台風)、積雪、落雷、外部火災、降下火砕物の降下に伴い外部電源が喪失した場合には、ディーゼル発電機が起動することにより操作に必要な照明用電源を確保し、容易に操作することができる設計とする。	3
	3 完善的な記載 及び心山車角の影響を受ける完善的な記載	

- ①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの 80 -

	外部火災によるばい煙や有毒ガス及び降下火砕物による中央制御室内の操作環境の悪化に対しては、中央制御室換気設備を閉回路循環運転とし、外気を遮断することにより運転操作に影響を与えず容易に操作することができる設計とする。	3
1/1.11/1.11.10/ 1.11.10.1/第二 十六条/(3)	中央制御室は、中央制御室外の火災により発生するばい煙や有毒ガス及び降下火砕物 を想定しても中央制御室換気設備の外気取入れを手動で遮断し、閉回路循環方式に切り 替えることにより、運転員を外部からの自然現象等から防護できる設計とする。	3
1/1.11/1.11.10/ 1.11.10.1/第四 十三条/(1)/a	自然現象については、地震、津波、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災を考慮する。	3
1/1.11/1.11.10/ 1.11.10.1/第四 十三条/(1)/a	地震及び津波以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重の組合せを考慮する。	3
1/1.11/1.11.10/ 1.11.10.1/第四 十三条 /(1)/a/(a)	風(台風)及び竜巻のうち風荷重、凍結、降水、積雪及び火山の影響並びに電磁的障害に対して常設重大事故防止設備は、環境条件にて考慮し機能が損なわれない設計とする。	3
1/1.11/1.11.10/ 1.11.10.1/第四 十三条 /(1)/a/(b)	風(台風)及び竜巻のうち風荷重、凍結、降水、積雪、火山の影響並びに電磁的障害に対 して可搬型重大事故等対処設備は、環境条件にて考慮し機能が損なわれない設計とす る。	3
1/1.11/1.11.10/ 1.11.10.1/第四 十三条 /(1)/a/(c)	風(台風)及び竜巻のうち風荷重、凍結、降水、積雪及び火山の影響並びに電磁的障害に対しては、環境条件にて考慮し機能が損なわれない設計とする。	3
1.11.10.1/第四	荷重としては重大事故等が発生した場合における環境圧力を踏まえた圧力、温度及び機械的荷重に加えて自然現象(地震、風(台風)、竜巻、積雪及び火山の影響)による荷重を 考慮する。	3
1/1.11/1.11.10/ 1.11.10.1/第四 十三条/(3)/a	地震以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重 の組合せを考慮する。	3

①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの - 81 -

	また、地震、積雪及び降下火砕物による荷重を考慮して、機能を損なうことのない設計とするとともに風(台風)及び竜巻による風荷重に対し、位置的分散を考慮した保管により、機能を損なわない設計とする。	3
1/1.11/1.11.10/ 1.11.10.1/第四 十三条 /(4)/a/(d)	屋外及び屋内アクセスルートは、自然現象に対して地震、津波、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災を考慮し、外部人為事象に対して近隣の産業施設の火災・爆発(飛来物を含む。)、航空機墜落による火災、火災の二次的影響(ばい煙及び有毒ガス)、輸送車両の発火、漂流船舶の衝突、飛来物(航空機落下)、ダムの崩壊、電磁的障害及び故意による大型航空機の衝突その他のテロリズムを考慮する。	3
1/1.11/1.11.10/ 1.11.10.1/第四 十三条 /(4)/a/(d)	屋外アクセスルートに対する地震による影響(周辺構築物の倒壊、周辺機器の損壊、周辺斜面の崩壊及び道路面の滑り)、その他自然現象による影響(津波による漂着物、台風及び竜巻による飛来物、積雪並びに降灰)を想定し、複数のアクセスルートの中から早期に復旧可能なルートを確保するため、障害物を除去可能なブルドーザを2台(1号及び2号炉共用)、予備のブルドーザを1台(1号、2号、3号及び4号炉共用、既設)、油圧ショベルを1台(1号及び2号炉共用)及び予備の油圧ショベルを1台(1号、2号、3号及び4号炉共用、既設)等を保管及び使用する。	2
1/1.11/1.11.10/ 1.11.10.1/第四 十三条 /(4)/a/(d)	屋内アクセスルートは、津波、その他自然現象による影響(台風及び竜巻による飛来物、凍結、降水、積雪、落雷、地すべり、降灰、生物学的事象、高潮及び森林火災)及び外部人為事象(航空機墜落による火災、火災の二次的影響、輸送車両の発火、漂流船舶の衝突及び飛来物(航空機落下))に対して、外部からの衝撃による損傷の防止が図られた建屋内に確保する設計とする。	3
1/1.11/1.11.11/ 1.11.11.1/四十 二条/(1)/a	自然現象については、地震、津波、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災を考慮する。	3
1/1.11/1.11.11/ 1.11.11.1/四十 二条/(1)/a	地震及び津波以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響に よる荷重の組合せを考慮する。	3
1/1.11/1.11.11/ 1.11.11.1/四十 二条/(1)/a	風(台風)、凍結、降水、積雪、火山の影響及び電磁的障害に対して、特定重大事故等対 処施設を構成する設備は、環境条件にて考慮し機能が損なわれることのない設計とする。	3
1/1.11/1.11.11/ 1.11.11.1/四十 二条/(3)/a	荷重としては原子炉補助建屋等への故意による大型航空機の衝突その他のテロリズムによる重大事故等が発生した場合における環境圧力を踏まえた圧力、温度及び機械的荷重に加えて自然現象(地震、風(台風)、竜巻、積雪及び火山の影響)による荷重を考慮する。	3

- ①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの 82 -

1/1.11/1.11.11/ 地震以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重	
1.11.11.1/四十 二条/(3)/a の組合せを考慮する。	3
1/1.11/1.11.14/ 1.11.14.1/第四 十三条/(1)/a 自然現象については、地震、津波、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地す べり、火山の影響、生物学的事象、高潮及び森林火災を考慮する。	3
1/1.11/1.11.14/ 1.11.14.1/第四 十三条/(1)/a 地震及び津波以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響に よる荷重の組合せを考慮する。	3
1/1.11/1.11.14/ 1.11.14.1/第四 十三条 /(1)/a/(a) 風(台風)のうち風荷重、凍結、降水、積雪、火山の影響並びに電磁的障害に対して蓄電 池(3系統目)は、環境条件にて考慮し機能が損なわれない設計とする。	3
1/1.11/1.11.14/ 1.11.14.1/第四 十三条 /(1)/a/(b) 風(台風)及び竜巻のうち風荷重、凍結、降水、積雪、火山の影響並びに電磁的障害に対 して可搬型重大事故等対処設備は、環境条件にて考慮し機能が損なわれない設計とす る。	3
1/1.11/1.11.14/ 荷重としては重大事故等が発生した場合における環境圧力を踏まえた圧力、温度及び機 1.11.14.1/第四	3
1/1.11/1.11.14/ 1.11.14.1/第四 十三条/(3)/a 地震以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重 の組合せを考慮する。	3
第1.8.1表 火山影響評価の対象施設	=
第1.8.1表 安全機能の重要度分類クラス1及びクラス2に属する施設を内包し、降下火砕物による影響から防護する建屋	₩.
安全機能の重要度分類クラス1及びクラス2に属する施設のうち、屋外に設置されている 第1.8.1表 施設、並びに屋内にあっても屋外に開口し降下火砕物を含む海水及び空気の流路となる 施設	=
第1.8.1表 安全機能の重要度分類クラス1及びクラス2に属する施設のうち、屋内の空気を機器内に 取り込む機構を有し、それにより降下火砕物の影響を受ける可能性がある施設	8
安全機能の重要度分類クラス3に属する施設及びその他の施設のうち、屋外に開口し降 第1.8.1表 下火砕物を含む海水及び空気の流路となって、安全機能の重要度分類クラス1及びクラス 2に属する施設に影響を及ぼす可能性のある施設	Ξ.

- ①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの 83 -

6/6.10/6.10.1/6 .10.1.2/6.10.1.2. 1/(2)	中央制御盤の配置及び操作器具の盤面配置等については人間工学的な操作性を考慮し設計する。また、中央制御室にて同時にもたらされる環境条件(地震、内部火災、内部溢水、外部電源喪失及び外部火災に伴うばい煙や有毒ガス、降下火砕物並びに有毒ガス)を想定しても安全施設を容易に操作することが可能なように設計する。	3
6/6.10/6.10.1/6 .10.1.2/6.10.1.2. 2/(2)	中央制御室は、当該操作が必要となる理由となった事象により有意な可能性をもって同時にもたらされる環境条件及び原子炉施設で有意な可能性をもって同時にもたらされる環境条件(地震、内部火災、内部溢水、外部電源喪失及び外部火災に伴うばい煙や有毒ガス、降下火砕物並びに有毒ガス)を想定しても、適切な措置を講じることにより運転員が運転時の異常な過渡変化及び設計基準事故に対応するための設備を容易に操作することができるものとする。	3
6/6.10/6.10.1/6 .10.1.2/6.10.1.2. 2/(2)	また、現場操作が必要な添付書類十の設計基準事故(蒸気発生器伝熱管破損)時の操作場所である主蒸気管ヘッダ室及び設計基準事故(原子炉冷却材喪失)時の操作場所である原子炉補機冷却水設備トレン分離箇所においても、環境条件(地震、内部火災、内部溢水、外部電源喪失及び外部火災に伴うばい煙や有毒ガス、降下火砕物)を想定しても容易に操作ができるとともに、操作に必要な照明(アクセスルート上の照明を含む。)は、内蔵の蓄電池からの給電により外部電源喪失時においても点灯を継続する。	3
	運転操作に必要な照明は、地震、竜巻・風(台風)、積雪、落雷、外部火災、降下火砕物に伴い外部電源が喪失した場合には、ディーゼル発電機が起動することにより操作に必要な照明用電源を確保し、容易に操作できるものとする。	3
6/6.10/6.10.1/6 .10.1.2/6.10.1.2. 2/(2)	中央制御室外の火災により発生するばい煙や有毒ガス及び降下火砕物による中央制御室内の操作環境の悪化を想定しても、中央制御室換気設備の外気取入を手動で遮断し、 閉回路循環方式に切り替えることにより、運転操作に影響を与えず容易に操作できる設計 とする。	3
6/6.10/6.10.1/6 .10.1.2/6.10.1.2. 2/(2)/a	想定される自然現象等(地震、津波、洪水、風(台風)・竜巻通過後の設備周辺における飛散状況、降水、積雪、落雷、地すべり、降下火砕物、火災、飛来物)に加え発電所構内の状況(海側、山側)を昼夜にわたり把握するために屋外に暗視機能等を持った監視カメラを設置する。	3

①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの - 84 -

章	高浜1号炉 設置変更許可申請書 添付書類十 記載	理由
5/5.1/5.1.1/(2)	屋外及び屋内アクセスルートは、自然現象に対して地震、津波、洪水、風(台風)、竜巻、 凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災を考 慮し、外部人為事象に対して近隣の産業施設の火災及び爆発(飛来物含む。)、航空機墜 落による火災、火災の二次的影響(ばい煙及び有毒ガス)、輸送車両の発火、漂流船舶の 衝突、飛来物(航空機落下)、ダムの崩壊、電磁的障害並びに重大事故等時の高線量下 を考慮する。	3
5/5.1/5.1.1/(2)/ a	屋外アクセスルートに対する、地震による影響(周辺構造物の損壊、周辺機器の損壊、周辺斜面の崩壊、道路面のすべり)、その他の自然現象による影響(津波による漂着物、台風及び竜巻による飛来物、積雪、降灰)を想定し、複数のアクセスルートの中から早期に復旧可能なアクセスルートを確保するため、障害物を除去可能なブルドーザを2台(1号及び2号炉共用)、予備のブルドーザを1台(1号、2号、3号及び4号炉共用、既設)、油圧ショベルを1台(1号及び2号炉共用)及び予備の油圧ショベルを1台(1号、2号、3号及び4号炉共用、既設)等を保管、使用し、それを運転する要員を確保する。	2
5/5.1/5.1.1/(2)/ a	アクセスルート上の台風及び竜巻による飛来物、積雪、降灰については、ブルドーザ及び油圧ショベルによる撤去を行う。なお、想定を上回る積雪、降灰が発生した場合は、除雪、除灰の頻度を増加させることにより対処する。	2
5/5.1/5.1.1/(2)/ b	屋内のアクセスルートは、地震、津波、その他の自然現象による影響(台風及び竜巻による飛来物、凍結、降水、積雪、落雷、降灰、生物学的事象、森林火災)及び外部人為事象(航空機墜落による火災、火災の二次的影響、輸送車両の発火、漂流船舶の衝突、飛来物(航空機落下))に対して、外部からの衝撃による損傷の防止が図られた建屋内に確保する。	3
5/5.1/5.1.4/(1)/ d	なお、降灰、竜巻等の自然災害による重大事故等対処設備への影響を低減させるため、 火山灰の除灰及び竜巻時の固縛等の対処を行う手順についても整備する。	3
5/5.2/5.2.1/5.2. 1.1/(1)	その内の自然災害53事象の中で、原子炉施設の安全性に影響を与える可能性のある自然災害として、地震、津波、豪雪(降雪)、暴風(台風)、竜巻、火山(火山活動、降灰)、凍結、森林火災、生物学的事象、落雷及び隕石の11事象(以下「自然災害11事象」という。)を選定する。	3
5/5.2/5.2.1/5.2. 1.1/(1)/a/(f)	火山(火山活動、降灰)	-
5/5.2/5.2.1/5.2. 1.1/(1)/a/(f)	設計想定である10cmの降灰を超えるような降灰が発生する可能性は低いが、設計想定である10cmを超える規模を想定する。	1
5/5.2/5.2.1/5.2. 1.1/(1)/a/(f)	なお、火山(降灰)は事前に予測し、除灰等の必要な安全措置を講じることができる。	2

①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの - 85 -

5/5.2/5.2.1/5.2, 1.1/(1)/a/(m)	火山(降灰)と豪雪(降雪)との重畳	-		
5/5.2/5.2.1/5.2, 1.1/(1)/a/(m)	. 火山(降灰)、豪雪が重畳した場合においても、事前に予測し、要員を確保して除雪及び除灰等の対策を講じることにより、プラントの安全性に影響を与える可能性は低い。			
5/5.2/5.2.1/5.2. 1.1/(1)/a/(m)	火山(降灰)と豪雪(降雪)との重畳による影響は、豪雪(降雪)での評価に包含される。	3		
5/5.2/5.2.1/5.2. 1.1/(1)/c/(f)	豪雪(降雪)、火山(火山活動、降灰)			
5/5.2/5.2.1/5.2. 1.1/(1)/c/(f)	降雪、火山活動及び降灰によって、送電系統の異常等による外部電源喪失が発生する可能性がある。	3		
5/5.2/5.2.1/5.2. 1.1/(1)/c/(f)	ただし、これらの自然災害2事象については、事前に予測し、要員を確保して除雪及び除灰等の必要な安全措置を講じることにより、プラントの安全性に影響を与える可能性は低い。	3		
屋外及び屋内アクセスルートは、自然現象に対して地震、津波、洪水、風(台風)、竜巻 凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災 慮し、外部人為事象に対して近隣の産業施設の火災及び爆発(飛来物含む。)、航空 落による火災、火災の二次的影響(ばい煙及び有毒ガス)、輸送車両の発火、漂流船 衝突、飛来物(航空機落下)、ダムの崩壊、電磁的障害並びに重大事故等時の高線量 を考慮する。		3		
5/5.2/5.2.2/5.2. 2.4/(1)	屋内のアクセスルートは、地震、津波、その他の自然現象による影響(台風及び竜巻による飛来物、凍結、降水、積雪、落雷、降灰、生物学的事象、森林火災)及び外部人為事象(航空機墜落による火災、火災の二次的影響、輸送車両の発火、漂流船舶の衝突、飛来物(航空機落下))に対して、外部からの衝撃による損傷の防止が図られた建屋内に確保する。	3		
第5.2.1表	④火山(火山活動·降灰)	2		
【影響評価に当たっての考慮事項】 ・降下火砕物については、敷地において想定される火砕物として層厚10cmとしている。・事前に予測し、除灰等の必要な安全措置を講じることができる。 【設計基準を超える場合の影響評価】 ・降下火砕物が発生した場合は、外部電源供給設備の損傷に伴う長期間の外部電源到に至る可能性がある。 ・火山の状態に異常(顕著な変化)が生じた場合は、破局的噴火への発展性を評価するともに、破局的噴火の準備段階である可能性が確認された場合は、原子炉停止、燃料等の搬出等に向けた適切な対応を実施する。		1		
第5.2.1表	【10cmを超える規模の降灰】 -外部電源	1		

- ①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの 86 -

第5.2.2表	火山(降灰)と豪雪(降雪)との重畳	
第5.2.2表	【影響評価に当たっての考慮事項及び設計基準を超える場合の影響評価】 ・火山(降灰)、豪雪が重畳した場合においても、事前に予測し、要員を確保して除雪及び 除灰等の対策を講じることにより、プラントの安全性に影響を与える可能性は低いものと判 断する。 ・火山(降灰)と豪雪(降雪)との重畳による影響は、豪雪(降雪)での評価に包含される。	
第5.2.2表 【10cmを超える規模の降灰及び100cmを超える規模の積雪量】 ・外部電源		1
第5.2.3表	④火山(火山活動·降灰	122
第5.2.18表	⑥火山(火山活動·降灰)	-
第5.2.2図	火山(降灰)	_

①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの - 87 -

高浜1、2号炉 設置変更許可申請書 本文 <特定重大事故等対処施設>					
章	記載				
五/口 /(3)/(i)/c/(b)/(b-1)/(b-1-1)	自然現象については、地震、津波、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災を考慮する。	3			
五/口 /(3)/(i)/c/(b)/(b-1)/(b-1-1)	地震及び津波以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重の組合せを考慮する。	3			
五/口 /(3)/(i)/c/(b)/(b-1)/(b-1-1)	風(台風)、凍結、降水、積雪、火山の影響及び電磁的障害に対して、特定重大事故等対 処施設を構成する設備は、環境条件にて考慮し機能が損なわれることのない設計とする。	3			
五/ロ /(3)/(i)/c/(b)/(b-3)/(b-3-1)	荷重としては原子炉補助建屋等への故意による大型航空機の衝突その他のテロリズムによる重大事故等が発生した場合における環境圧力を踏まえた圧力、温度及び機械的荷重に加えて自然現象(地震、風(台風)、竜巻、積雪及び火山の影響)による荷重を考慮する。	3			
五/口 /(3)/(i)/c/(b)/(b-3)/(b-3-1)	地震以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重 の組合せを考慮する。	3			

①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの - 88 -

高浜1、2号炉 設置変更許可申請書 添付書類八 <特定重大事故等対処施設>				
章	記載	理由		
1/1.1/1.1.9/1.1. 9.1/(1)	自然現象については、地震、津波、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災を考慮する。	3		
1/1.1/1.1.9/1.1. 9.1/(1)	地震及び津波以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重の組合せを考慮する。	3		
1/1.1/1.1.9/1.1. 9.1/(1)	風(台風)、凍結、降水、積雪、火山の影響及び電磁的障害に対して、特定重大事故等対 処施設を構成する設備は、環境条件にて考慮し機能が損なわれることのない設計とする。	3		
1/1.1/1.1.9/1.1. 9.3/(1)	荷重としては原子炉補助建屋等への故意による大型航空機の衝突その他のテロリズムによる重大事故等が発生した場合における環境圧力を踏まえた圧力、温度及び機械的荷重に加えて自然現象(地震、風(台風)、竜巻、積雪及び火山の影響)による荷重を考慮する。	3		
1/1.1/1.1.9/1.1. 9.3/(1)	地震以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重 の組合せを考慮する。	3		
1/1.5/1.5.3/1.5. 3.2/1.5.3.2.3	原子炉施設では、自然現象として、落雷、地震、津波、火山の影響、森林火災、竜巻、風 (台風)、凍結、降水、積雪、生物学的事象、地すべり及び洪水が想定される。	3		
1/1.5/1.5.3/1.5. 3.2/1.5.3.2.3	凍結、降水、積雪及び生物学的事象は、火源が発生する自然現象ではなく、火山についても、火山から原子炉施設に到達するまでに火山灰等が冷却されることを考慮すると火源が 発生する自然現象ではない。	3		
1/1.11/1.11.11/ 1.11.11.1/第四 十二条/(1)/a	自然現象については、地震、津波、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災を考慮する。	3		

①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの - 89 -

1/1.11/1.11.11/ 1.11.11.1/第四 十二条/(1)/a	地震及び津波以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重の組合せを考慮する。	3
1/1.11/1.11.11/ 1.11.11.1/第四 十二条/(1)/a	風(台風)、凍結、降水、積雪、火山の影響及び電磁的障害に対して、特定重大事故等対 処施設を構成する設備は、環境条件にて考慮し機能が損なわれることのない設計とする。	3
1/1.11/1.11.11/ 1.11.11.1/第四 十二条/(3)/a	荷重としては原子炉補助建屋等への故意による大型航空機の衝突その他のテロリズムによる重大事故等が発生した場合における環境圧力を踏まえた圧力、温度及び機械的荷重に加えて自然現象(地震、風(台風)、竜巻、積雪及び火山の影響)による荷重を考慮する。	3
1/1.11/1.11.11/ 1.11.11.1/第四 十二条/(3)/a	地震以外の自然現象の組合せについては、風(台風)、積雪及び火山の影響による荷重 の組合せを考慮する。	3

①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの - 90 -

Ė	[浜1、2号炉 設置変更許可申請書 添付書類十 <特定重大事故等対処施設>	
章	記載	理由
2.4/(1)	屋外及び屋内アクセスルートは、自然現象に対して地震、津波、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地すべり、火山の影響、生物学的事象、高潮及び森林火災を考慮し、外部人為事象に対して近隣の産業施設の火災及び爆発(飛来物含む。)、航空機墜落による火災、火災の二次的影響(ばい煙及び有毒ガス)、輸送車両の発火、漂流船舶の衝突、飛来物(航空機落下)、ダムの崩壊、電磁的障害並びに重大事故等時の高線量下を考慮する。	3
5/5.2/5.2.2/5.2. 2.4/(1)	屋内のアクセスルートは、地震、津波、その他の自然現象による影響(台風及び竜巻による飛来物、凍結、降水、積雪、落雷、降灰、生物学的事象、森林火災)及び外部人為事象(航空機墜落による火災、火災の二次的影響、輸送車両の発火、漂流船舶の衝突、飛来物(航空機落下))に対して、外部からの衝撃による損傷の防止が図られた建屋内に確保する。	3

①火山事象に関する定量的な記載及び火山事象の影響を受ける定量的な記載 ②層厚変更によって詳細設計における評価結果、手順等が影響を受けるが、記載の変更を伴わないもの ③火山の評価概要、各施設・設備の設計方針等の定性的な記載で層厚変更の影響を受けないもの - 91 -

高浜発電所1号炉及び2号炉 火山影響評価 補足資料

枠囲みの範囲は機密に係る事項ですので公開することはできません。

目 次

- 1. 評価ガイドとの整合性について
- 2. 火山灰の特徴から抽出される直接的影響因子と評価対象施設の組合せ
- 3. 原子炉の高温停止及び低温停止に必要な設備に関する火山灰の影響評価について
- 4. 建物・構築物及び屋外設備に対する荷重評価の基本的な考え方について
- 5. 火山灰によるその他設備への影響について
- 6. 火山灰の除灰に要する時間について
- 7. 灰置場の場所及び容量について
- 8. アイスランド火山を用いる基本的考え方とセントヘレンズ火山による影響 評価
- 9. 大山生竹テフラの噴出規模見直しに係る事故シーケンスグループ抽出に当たって考慮すべき起因事象への影響について

1. 評価ガイドとの整合性について

原子力発電所の火山影響評価ガイドと降下火砕物(火山灰)に対する設備影響の評価の整合性について、以下の表に示す。

高浜 1,2 号炉に対する火山事象の影響評価(降下火砕物の影響評価)

1. 総則

本評価ガイドは、原子力発電所への火山影響を適切に評価するため、原子力発電所に影響を及ぼし得る火山の抽出、抽出された火山の火山活動に関する個別評価、原子力発電所に影響を及ぼし得る火山事象の抽出及びその影響評価のための方法と確認事項をとりまとめたものである。

1. 1 一般

原子力規制委員会の定める「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則」第6条において、外部からの衝撃による損傷の防止として、安全施設は、想定される自然現象(地震及び津波を除く。)が発生した場合においても安全機能を損なわないものでなければならないとしており、「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈」第6条において、敷地周辺の自然環境を基に想定される自然現象の一つとして、火山の影響を挙げている。

火山の影響評価としては、2009年に日本電気協会が「原子力発電所火山影響評価技術指針」(JEAG4625-2009)を制定し、2012年にIAEAがSafety Standards "Volcanic Hazards in Site Evaluation for Nuclear Installations"(No. SSG-21)を策定した。近年、火山学は基本的記述科学から、以前は不可能であった火山システムの観察と複雑な火山プロセスの数値モデルの使用に依存する定量的科学へと発展しつつあり、これらの知見を基に、原子力発電所への火山影響を適切に評価する一例を示すため、本評価ガイドを作成した。

本評価ガイドは、新規制基準が求める火山の影響により原子炉施設の安全性を損なうことのない設計であることの評価方法の一例である。また、本評

1. はじめに

原子力規制委員会の定める「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則(平成 25 年 6 月 28 日原子力規制委員会規則第五号)」第6条において、外部からの衝撃による損傷防止として、安全施設は、想定される自然現象(地震及び津波を除く。)が発生した場合においても安全機能を損なわないものでなければならないとしており、敷地周辺の自然環境を基に想定される自然現象の一つとして、火山の影響を挙げている。

火山の影響により原子炉施設の安全性を損なうことのない設計であることを評価するための「原子力発電所の火山影響評価ガイド」を参照し、以下のとおり火山影響評価を行い、安全機能が維持されることを確認する。

- 立地評価
- ・影響評価

高浜1,2号炉に対する火山事象の影響評価(降下火砕物の影響評価)

価ガイドは、火山影響評価の妥当性を審査官が判断する際に、参考とするものである。

1. 2 適用範囲

本評価ガイドは、実用発電用原子炉及びその附属施設に適用する。

1. 3 関連法規等

本評価ガイドは、以下を参考としている。

(1) 実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則

(平成25年原子力規制委員会規則第5号)

(2) 使用済燃料中間貯蔵施設の安全審査における「自然環境」の考え方について

(平成 20 年 10 月 27 日 原子力安全委員会了承)

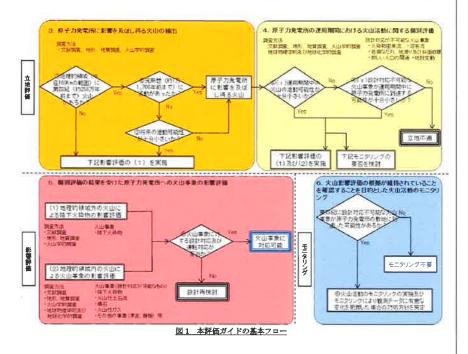
- (3) 日本電気協会 「原子力発電所火山影響評価技術指針」(JEAG4625-2009)
- (4) IAEA Safety Standards "Volcanic Hazards in Site Evaluation for Nuclear Installations" (No. SSG-21, 2012)
- 2. 本評価ガイドの概要

火山影響評価は、2.1に示す立地評価と影響評価の2段階で行う。 また、火山影響評価のほか、評価時からの状態の変化の検知により評価の 根拠が維持されていることを確認することを目的として、2.2のとおり、 火山活動のモニタリングの実施方針及びモニタリングにより観測データの有 意な変化を把握した場合の対処方針を策定することとする。 2. 原子力発電所に影響を及ぼす火山影響評価の流れガイドに従い評価

原子力発電所の火山影響評価ガイド	高浜 1, 2 号炉に対する火山事象の影響評価 (降下火砕物の影響評価)
本評価ガイドの基本フローを図1に示す。	
2. 1 原子力発電所に影響を及ぼす火山影響評価の流れ	
(1) 立地評価	
まず、原子力発電所に影響を及ぼし得る火山の抽出を行う。すなわち、	
原子力発電所の地理的領域において第四紀に活動した火山(以下「第四紀	
火山」という。)を抽出し(図1①)、その中から、完新世に活動があっ	
た火山(図1②)及び完新世に活動を行っていないものの将来の活動可能	
性が否定できない火山(図1③)は、原子力発電所に影響を及ぼし得る火	
山として4.の個別評価対象とする(解説-1)。具体的には、3.のとおり	
とする。	
次に、3. で原子力発電所に影響を及ぼし得る火山として抽出した火山	
について原子力電所の運用期間における火山活動に関する個別評価を行	
う。すなわち、運用期間中の火山の活動可能性が十分小さいとは評価でき	
ず(図1④(i))、かつ、設計対応不可能な火山事象が運用期間中に原子	
力発電所に到達する可能性が十分小さいとも評価できない場合(図1④	
(ii)) は、原子力発電所の運用期間中において設計対応が不可能な火山事	
象が原子力発電所に影響を及ぼす可能性が十分小さいとはいえず、原子力	
発電所の立地は不適となる(解説-2、3)。具体的には、4.のとおりとす	
る。	
(2) 影響評価	
4. の個別評価において立地が不適とならない場合は、原子力発電所の	

安全性に影響を与える可能性のある火山事象を抽出し、各火山事象に対す

原子力発電所の火山影響評価ガイド	3
------------------	---


高浜1,2号炉に対する火山事象の影響評価(降下火砕物の影響評価)

る設計対応及び運転対応の妥当性について評価を行う(図1⑤)。

ただし、火山事象のうち降下火砕物に関しては、原子力発電所の敷地及びその周辺調査から求められる単位面積当たりの質量と同等の火砕物が降下するものとする。なお、敷地及び敷地周辺で確認された降下火砕物の噴出源である火山事象が同定でき、これと同様の火山事象が原子力発電所の運用期間中に発生する可能性が十分に小さい場合は考慮対象から除外する。具体的には、5.のとおりとする。

- 解説-1. 本評価ガイドにおける「地理的領域」とは、火山影響評価が実施される原子力発電所周辺の領域をいい、原子力発電所から半径160kmの範囲の領域とする。
- 解説-2. IAEA SSG-21 において、火砕物密度流、溶岩流、岩屑なだれ・地滑り及び斜面崩壊、新しい火道の開通及び地殻変動を設計対応が不可能な火山事象としており、本評価ガイドでも、これを適用する。
- 解説-3. 「火山活動に関する個別評価」は、設計対応不可能な火山事象が発生する時期及びその規模を的確に予測できることを前提とするものではなく、現在の火山学の知見に照らして現在の火山の状態を評価するものである。
- 2. 2 火山活動のモニタリングの流れ
- 4. の個別評価により原子力発電所の運用期間中において設計対応が不可能な火山事象が原子力発電所に影響を及ぼす可能性が十分小さいと評価した火山であっても、この評価とは別に、第四紀に設計対応が不可能な火山事象が原子力発電所の敷地に到達した可能性が否定できない火山に対し

ては、評価時からの状態の変化の検知により評価の根拠が維持されている ことを確認することを目的として、運用期間中のモニタリングの実施方針 及びモニタリングにより観測データの有意な変化を把握した場合の対処方 針を策定することとする(図1⑥)。具体的には、6.のとおりとする。

高浜1,2号炉に対する火山事象の影響評価(降下火砕物の影響評価)

原子力発電所の火山影響評価ガイド	高浜 1, 2 号炉に対する火山事象の影響評価 (降下火砕物の影響評価)
【立地評価】(項目名のみ記載)	【立地評価】
	ガイドに従い評価
3. 原子力発電所に影響を及ぼし得る火山の抽出	at the second se
3. 1 文献調査	
3. 2 地形・地質調査及び火山学的調査	
3.3 将来の火山活動可能性	
4. 原子力発電所の運用期間における火山活動に関する個別評価	ra .
4. 1 設計対応不可能な火山事象を伴う火山活動の評価	
4. 2 地球物理学的及び地球化学的調査	
6. 火山影響評価の根拠が維持されていることの確認を目的とした火山活動の	
モニタリング	
6. 1 監視対象火山	
6. 2 監視項目	
6. 3 定期的評価	
6. 4 観測データの有意な変化を把握した場合の対処	

高浜 1, 2 号炉に対する火山事象の影響評価 (降下火砕物の影響評価)

5. 個別評価の結果を受けた原子力発電所への火山事象の影響評価

4.1において原子力発電所の運用期間中に設計対応不可能な火山事象が原子力発電所の安全性に影響を及ぼす可能性が十分小さいと評価された火山について、それが噴火した場合に原子力発電所の安全性に影響を与える可能性のある火山事象を表1に従い抽出し、各火山事象に対する設計対応及び運転対応の妥当性について評価を行う。

ただし、降下火砕物に関しては、原子力発電所の敷地及びその周辺調査から求められる単位面積当たりの質量と同等の火砕物が降下するものとする。なお、敷地及び敷地周辺で確認された降下火砕物の噴出減である火山事象が同定でき、これと同様の火山事象が原子力発電所の運用期間中に発生する可能性が十分小さい場合は考慮対象から除外する。

また、降下火砕物は浸食等で厚さが小さく見積もられるケースがあるので、文献等も参考にして、第四紀火山の噴火による降下火砕物の堆積量を評価すること。(解説-17)

抽出された火山事象に対して、4. 個別評価を踏まえて、原子力発電所への影響評価を行うための、各事象の特性と規模を設定する。(解説-18) 以下に、各火山事象の影響評価の方法を示す。

解説-17. 文献等には日本第四紀学会の「日本第四紀地図」を含む。 解説-18. 原子力発電所との位置関係について

表 1 に記載の距離は、原子力発電所火山影響評価技術指針 (JEAG4625) から引用した。JEAG4625 では、調査対象火山事象と原子力発電所との距離は、わが国における第四紀火山の火山噴出物の既往最大到達距離を参考に設定している。また、噴出中心又は発生源の位置が不明な場合には、第四紀

6. 原子力発電所への火山事象の影響評価

原子力発電所の運用期間中において設計対応不可能な火山事象によって原子力発電所の安全性に影響を及ぼす可能性が十分小さいと評価された火山について、それが噴火した場合、原子力発電所の安全性に影響を与える可能性のある火山事象を抽出した結果、降下火砕物(火山灰)、火砕物密度流が抽出される。

抽出された火山事象のうち、火砕物密度流については、「設計対応不可能な火山事象を伴う火山活動の評価」において、高浜発電所に到達する可能性が十分小さいことを評価している。

以上のことから、降下火砕物(火山灰)による影響評価を行う。

なお、降下火砕物(火山灰)の影響評価では、敷地周辺の地質調査結果等より、火山灰の堆積物厚さを 27cm、並びに火山灰の粒径及び密度をそれぞれ以下のとおり設定している。なお、降雨等の同時期に想定される気象条件が火山灰等特性に及ぼす影響についても考慮している。

粒径は、高浜発電所の近傍である中山湿地における津波堆積物調査で得られた火山灰の粒度試験結果より、1 mm 以下と設定する。

また、密度は、降雨等水分を含むことにより増大することから湿潤状態を想定する。高浜発電所の近傍である菅湖における津波堆積物調査における火山灰データの単位体積重量、及び「火山噴火と災害(財団法人東京大学出版会、1997)」を参照し、1.5g/cm³と設定する。

火山の火山噴出物等の既往最大到達距離と噴出物の分布を参考にしてその 位置を想定する。

例えば、噴出中心と原子力発電所との距離が、表中の位置関係に記載の距離より短ければ、火山事象により原子力発電所が影響を受ける可能性があると考えられる。

5. 1 降下火砕物

- (1) 降下火砕物の影響
- (a) 直接的影響

降下火砕物は、最も広範囲に及ぶ火山事象で、ごくわずかな火山灰の堆積でも、原子力発電所の通常運転を妨げる可能性がある。降下火砕物により、原子力発電所の構造物への静的負荷、粒子の衝突、水循環系の閉塞及びその内部における磨耗、換気系、電気系及び計装制御系に対する機械的及び化学的影響、並びに原子力発電所周辺の大気汚染等の影響が挙げられる。

降雨・降雪などの自然現象は、火山灰等の堆積物の静的負荷を著しく増大させる可能性がある。火山灰粒子には、化学的腐食や給水の汚染を引き起こす成分(塩素イオン、フッ素イオン、硫化物イオン等)が含まれている。

(b) 間接的影響

前述のように、降下火砕物は広範囲に及ぶことから、原子力発電所周辺の 社会インフラに影響を及ぼす。この中には、広範囲な送電網の損傷による長期の外部電源喪失や原子力発電所へのアクセス制限事象が発生しうること も考慮する必要がある。

高浜1,2号炉に対する火山事象の影響評価(降下火砕物の影響評価)

6. 1 降下火砕物(火山灰)

(1) 降下火砕物 (火山灰) の影響

(a) 直接的影響

降下火砕物は、最も広範囲に及ぶ火山事象で、ごくわずかな降下火砕物(火山灰)の堆積でも、原子力発電所の通常運転を妨げる可能性がある。 降下火砕物により影響を与える可能性のある影響因子としては、原子力発電所の構造物への静的負荷及び化学的影響、水循環系の閉塞、磨耗及び化学的影響、換気系、電気系及び計装制御系に対する機械的及び化学的影響、並びに原子力発電所周辺の大気汚染等の影響が考えられる。

(b) 間接的影響

降下火砕物(火山灰)は広範囲に及ぶことから、広範囲にわたる送電網の損傷による長期の外部電源喪失の可能性、原子力発電所へのアクセス制限事象が発生する可能性も考慮し、間接的影響を確認する。

(2) 降下火砕物による原子力発電所への影響評価

降下火砕物の影響評価では、降下火砕物の降灰量、堆積速度、堆積期間及び火山灰等の特性などの設定、並びに降雨等の同時期に想定される気象条件が火山灰等特性に及ぼす影響を考慮し、それらの発電用原子炉施設への影響を評価し、必要な場合には対策がとられ、求められている安全機能が担保されることを評価する。(解説-19、21)

(3) 確認事項

- (a) 直接的影響の確認事項
- ① 降下火砕物堆積荷重に対して、安全機能を有する構築物、系統及び機器 の健全性が維持されること。
- ② 降下火砕物により、取水設備、原子炉補機冷却海水系統、格納容器ベント設備等の安全上重要な設備が閉塞等によりその機能を喪失しないこと。
- ③ 外気取入口からの火山灰の侵入により、換気空調系統のフィルタの目詰まり、非常用ディーゼル発電機の損傷等による系統・機器の機能喪失がなく、加えて中央制御室における居住環境を維持すること。(解説-20)
- ④ 必要に応じて、原子力発電所内の構築物、系統及び機器における降下火 砕物の除去等の対応が取れること。

高浜 1,2 号炉に対する火山事象の影響評価(降下火砕物の影響評価)

(2) 降下火砕物 (火山灰) による原子力発電所への影響評価

降下火砕物(火山灰)の影響を考慮すべき設備として、重要安全施設のうち、屋外の構築物、系統及び機器、又は屋内設置であるが屋外に開口している設備を選定し、評価対象施設としている。ただし、その他の構築物、系統及び機器であっても、その停止により、当該施設の運転に影響を及ぼす場合は評価対象施設として抽出する。なお、建屋については、クラス1及びクラス2に属する構築物、系統及び機器を内包している建屋を評価対象として抽出する。

選定した評価対象施設について影響を評価し、原子炉施設の安全性 を損なわないことを確認する。

(3) 確認結果

- (a) 直接的影響の確認結果
- ① 降下火砕物堆積荷重に対して、外部しゃへい建屋、補助建屋、燃料 取扱建屋、中間建屋、ディーゼル建屋、制御建屋、復水タンク、燃 料取替用水タンク及び海水ポンプの健全性が維持されることを確 認する。
- ② 降下火砕物による化学的影響に対して、外部しゃへい建屋、補助建 屋、燃料取扱建屋、中間建屋、ディーゼル建屋、制御建屋、復水タ ンク、燃料取替用水タンク及び海水ポンプ等の健全性が維持される ことを確認した。
- ③ 降下火砕物により、海水ポンプ、海水ストレーナ、取水設備、原子 炉補機冷却海水系統等の安全上重要な設備が閉塞等によりその機 能を喪失しないことを確認した。

高浜 1,2 号炉に対する火山事象の影響評価(降下火砕物の影響評価)

④ 外気取入口からの火山灰の侵入により、換気空調系統のフィルタの 目詰まり、ディーゼル発電機機関の損傷等による系統・機器の機能 喪失がなく、加えて中央制御室における居住環境を維持できること を確認した。

なお、設置許可においては、米国セントヘレンズ火山の噴火(1980年)の観測値を用いて試算しているが、測定機器の性能を上回っていることも考えられること、堆積厚との整合性を考慮する必要があることから、これの見直しも考えられるが、より高い参考濃度で機能維持が担保されるため、見直す必要はなく、設計基準は既往最大を用いるとされている。

⑤ 各建屋の屋上及び復水タンクの屋根部には階段により容易にアクセスでき、必要に応じて火山灰を除去できることを確認した。

ディーゼル発電機室を除く換気空調設備の外気取入口は各建屋の屋上等に設置されており、容易にアクセスできること、また外気取入口は火山灰が侵入しにくい構造であり、仮に侵入した場合であっても、平型フィルタの状態を確認し、必要に応じて清掃及び交換することにより、火山灰を除去できることを確認した。

また、降下火砕物(火山灰)が確認された場合は、必要に応じて、 構築物、系統及び機器の点検等を行うこととしている。

(b) 間接的影響の確認事項

原子力発電所外での影響(長期間の外部電源の喪失及び交通の途絶)を考慮し、燃料油等の備蓄又は外部からの支援等により、原子炉及び使用済燃料 プールの安全性を損なわないように対応が取れること。

(b) 間接的影響の確認結果

① 原子力発電所外での影響(長期間の外部電源の喪失及び交通の途 絶)を考慮し、燃料油等の備蓄等により、原子炉及び使用済燃料プ ールの安全性を損なわないように対応が取れることを以下のとお

- 解説-19. 原子力発電所内及びその周辺敷地において降下火砕物の堆積が観測されない場合は、次の方法により降灰量を設定する。
 - ✓類似する火山の降下火砕物堆積物の情報を基に求める。
 - ✔対象となる火山の総噴火量、噴煙柱高度、全粒径分布、及びその領域における風速分布の変動を高度及び関連パラメータの関数として、原子力発電所における降下火砕物の数値シミュレーションを行うことより求める。数値シミュレーションに際しては、過去の噴火履歴等の関連パラメータ、並びに類似の火山降下火砕物堆積物等の情報を参考とすることができる。
- 解説-20. 堆積速度、堆積期間については、類似火山の事象やシミュレーション等に基づいて評価する。また、外気取入口から侵入する火山灰の想定に当たっては、添付1の「気中降下火砕物濃度の推定方法について」を参照して推定した気中降下火砕物濃度を用いる。堆積速度、堆積期間及び気中降下火砕物濃度は、原子力発電所への間接的な影響の評価にも用いる。
- 解説-21. 火山灰の特性としては粒度分布、化学的特性等がある。
- (「5.2 火砕物密度流」以降省略)

以上

高浜1,2号炉に対する火山事象の影響評価(降下火砕物の影響評価)

り確認した。

高浜発電所 1, 2 号炉の各号炉の非常用所内交流電源設備は、各号炉 2 台のディーゼル発電機とそれぞれに必要な耐震 S クラスの燃料油貯油そう(号炉当たり $200 \, \mathrm{k} \, \ell$: 2 基)を有している。

7日間の外部電源喪失に対して、原子炉の停止、停止後の冷却に 係る機能を担うため、ディーゼル発電機の連続運転に必要な容量以 上の燃料を貯蔵する設備を有し、必要とされる電力の供給が継続で きる構成となっている。

以上のことから、降下火砕物(火山灰)による直接的及び間接的影響 はなく、原子炉施設の安全性を損なうことはない。

以上

2. 火山灰の特徴から抽出される直接的影響因子と評価対象施設の組合せ

火山灰の特徴とその特徴から抽出される直接的影響因子、さらに影響因子の影響を受ける可能性のある評価対象施設との関係について、p.山-別添-1·14,15「表 1.4 火山灰が影響を与える評価対象施設と影響因子の組合せ」において、影響評価すべき組合せを検討した結果を図のフローに示す。

なお、上記の内容については、既提出資料から変更がないため、既提出資料のうち「補足資料-2」 に同じ。

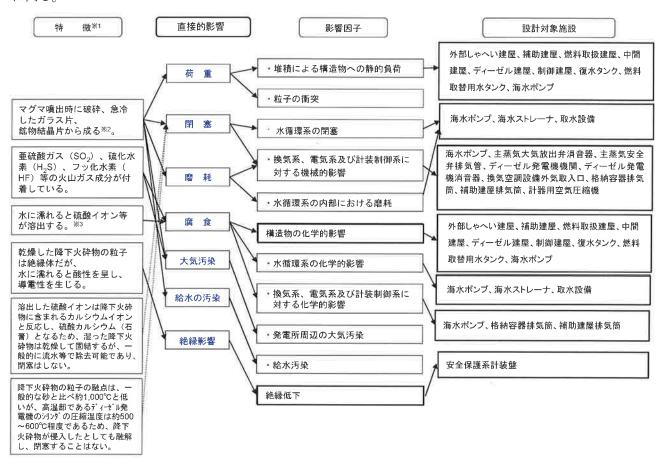


図 火山灰の特徴から抽出される影響因子と評価対象施設の関連フロー

※1:(参考文献) 広域的な火山防災対策に係る検討会(第3回)(資料2)

※2: 粘性を生じさせる粘土鉱物等は含まれていない。

※3: 〔火山灰による金属腐食の研究報告の例〕

4 種類の金属材料(Zn メッキ、Al、SS41、Cu)に対して、桜島火山灰による金属腐食の程度は、実際の自然条件より厳しい条件においても表面厚さに対して十数 μm のオーダーの腐食。

〈試験条件・・・温度、湿度、保持時間 [① (40□,95%,4h) ~② (20□,80%,2h) ×18 サイクル]〉(「参考文献〕出雲茂人 末吉季一他 火山環境における全屋材料の廃食 1990 防食技術 Vol 39 pp. 2/2

(〔参考文献〕出雲茂人、末吉秀一他、火山環境における金属材料の腐食、1990、防食技術 Vol.39,pp.247-253)

⇒設計時の腐食代(数 mm オーダー)を考慮すると、構造健全性に影響を与えることはないと考えられる。

以 上

3. 原子炉の高温停止及び低温停止に必要な設備に関する火山灰の影響評価について

火山灰に起因する外部電源喪失事象により、原子炉の停止が想定されることから、原子炉の高温停止及び低温停止に必要な機能を以下のとおり抽出した。

- (1) 原子炉停止:原子炉停止系
- (2) ほう酸添加:原子炉停止系(化学体積制御系のほう酸注入機能)
- (3) 崩壊熱除去:補助給水系、主蒸気系、余熱除去系
- (4) 上記系統の関連系(安全保護系、中央制御室換気空調系、制御用圧縮空気系、非常用 所内電源系、原子炉補機冷却水系、直流電源系、原子炉補機冷却海水系 等)

以上の機能を達成するために必要な設備は、次頁以降の防護対象に含まれていることを確認した。

なお、上記の内容については、既提出資料から変更がないため、既提出資料のうち「補足資料-3」に同じ。

表 原子炉の高温停止及び低温停止に必要な設備に関する防護対象 (1/3)

分類	安全機能の重要度分類			設備設	置場所	高温停止及び低温停止に
	定義	機能	構築物、系統乂は機器	建屋内設置	屋外設備	必要な機能
	その損傷又は故障により発生する事象によって、	1) 原子炉冷却材圧カバウンダリ機能	原子炉冷却材圧力バウンダリを構成する機器・配管 (1次冷却材系統)	0		_
P S - 1	(a) ダ心の著しい損傷、又は (b) 燃料の大量の破損を引き起こすおそれのある構築	2) 過剰反応度の印加防止機能	制御棒駆動装置圧力ハウジング (1次冷却材系)	0	=	-
	物、系統及び機器	3) 炉心形状の維持機能	炉心支持構造物	0	-	-
		C / D C / D C / Nac / I India	燃料集合体	0	-	-
		1) 原子炉の緊急停止機能	原子炉停止系の制御棒による系(制御棒クラスタ、制御棒駆動系)	0	-	原子炉停止系
	1) 異常状態発生時に原子炉を緊急に停止し、残留無 を除去し、原子好着却材圧力パウンダリの過圧を防止 し、敷地周辺公衆への過度の放射線の影響を防止する 博豪物、系統及び機器	2) 未廢界維持機能	原子好吟止系 制御棒による系 化学体積制御設備のほう酸水注人機能	0	-	原子炉停止系 ほう酸添加
			原子炉停止系 非常用炉心冷却系のほう酸水注入機能	0	-	=
		3) 原子炉冷却材圧力バウンダリの過圧防止機能	加圧器安全介 (開機能)	0	-	=
10,5		常状態発生時に原子炉を緊急に停止し、残留熱 ム、原子炉冷却材圧力パウンダリの適圧を防止 4)原子炉停止後の除熱機能	残	0	-	崩壊熱除よ
			残留熱を除去する系統 主法気速がした(手動速がし機能) 上法気安全弁	0		前級熱除去
		5) が心冷却機能	非常用好心冷却系 低压注入系 (余熱除去系) 高压注入系 溶压注入系	0	-	=
		6) 放射性物質の閉じ込め機能、放射線の遊へい及び放出低減機能	原子如格納容器	-	0	
			アニュラス 原子炉格納容器属離介 原子炉格納容器スプレイ系	0	æ.	-
			アニュラス空気再質量設備(アニュラス排気ファン等) 安全補機率空気浄化系 可燃性ガス濃度制御系	0	-	=
			原子炉格納容器排気筒	0	0	

表 原子炉の高温停止及び低温停止に必要な設備に関する防護対象(2/3)

分類		安全機能の重要度分類		設備設置場所		高温停止及び低温停止に
	定義	機能	構築物、系統又は機器	建屋内設置	些外設備	必要な機能
		1) 工学的安全施設及び原子炉停止系への作動信号の発生機能	安全保護系	0	- 1	関連系
			MS-I関連のもの 制御室及びその遊へい・換気空調系 (中央制御室非常用給気系統等)	0	-	関連系
		MS-1 関連のもの 原子が補機合却水系 MS-1 関連のもの 原子が補機合却水系 2) 安全上特に重要な関連機能		0	-	関連系
MS - 1	2)安全上必須なその他の構築物、系統及び機器		0	0 1	関連系	
		と) 女主』 付に 男女は財理機能	MS-1 関連のもの 非常用所内電額系(ディーゼル発電機等) MS-1 関連のもの 非常用所内電額系(安全補機開閉器等) 直流電源系	0	1-	関連系
				0	=	関連系
			MS-1 関連のもの 制御用空気圧縮設備	0		関連系

表 原子炉の高温停止及び低温停止に必要な設備に関する防護対象 (3/3)

分類		安全機能の重要度分類			置場所	高温停止及び低温停止に
// M	定義	機能	構築物、系統又は機器	建屋内設置	屋外設備	必要な機能
		1) 原子が冷却材を内蔵する機能(ただし、原子炉冷却材圧力パウン ダリから除外されている計談等の小山径のもの及びパウンダリに直接 接続されていないものは除く。)	化学体質制御設備の抽出系・浄化系	0		及业系
	1) その損傷又は故障により発生する事業によって、 が心の考しい損傷又は燃料の大量の破損を直ちに引き 起こすおそればないが、敷地外への過度の放射性物質		放射性廃棄物処理施設(放射能インベントリの大きいもの) 放射性気体廃棄物処理系	0	=	166
P S - 2	の放出のおそれのある構築物、系統及び機器	2)原子が冷却材圧力パウンダリに直接接続されていないものであって、放射性物質を貯蔵する機能	使用济燃料ビット (使用济燃料ラックを含む。)	0	-	:=
		3) 燃料を安全に取り扱う機能	燃料取扱設備	0	=	遠
	2) 通常運転時及び運転時の異常な過渡変化時に作動を要求されるものであって、その故障により、炉心冷 固が損なわれる可能性の高い構築物、系統及び機器		吹き止まり機能に関連する部分 加圧器な全弁 加圧器逃がし介	0		18
		1) 燃料プール水の補給機能	使川济燃料ビット補給水系	0	-	(#
	1) PS-2の構築物、系統及び機器の損傷又は故障 により敷地周辺公衆に与える放射線の影響を十分小さ くするようにする構築物、系統及び機器		燃料集合体落下事故時放射能放出を低減する系	0	-	Sec
M S - 2	2) 放射性物質放出の防止機能	2) がますいた中の以次はロジャリーに付金担告	排気(筒(補助処量)	-	-	(ie
W 3 - 2		1) 事故時のプラント状態の把操機能	事故時監視計器の一部 格納容器エリアモニタ	0	-	
	2) 異常状態への対応 L 特に重要な構築物、系統及び 機器	2) 異常状態の緩和機能	加圧器透がしか(下動則閉機能) 加圧器と一タ(後備ヒータ) 加圧器透がし弁元弁	0		:
		3) 制御室外からの安全停止機能	制御室外原子が停止装置 (安全停止に関連するもの)	0	-	3#

4. 建物・構築物及び屋外設備に対する荷重評価の基本的な考え方について

1. 荷重評価の基本的な考え方

火山灰による荷重については、30日を目処に速やかに除灰する運用とすることから、建築基準法の積雪の考え方に基づき、短期の荷重として取り扱う。

想定される堆積荷重に対する発生応力と許容応力を比較し裕度評価することにより、 健全性を確認する。

2. 評価方法

(1) 建物·構築物

建物・構築物については、固定荷重及び積載荷重並びに火山灰及び積雪による荷重 を組み合わせて発生する応力等が許容限界を超えないことを確認する。許容限界については、「原子力施設鉄筋コンクリート構造計算規準」及び「鋼構造設計規準 - 許容 応力度設計法 - 」に基づく短期許容応力度等を用いる。

(2) 屋外タンク類

荷重を受けるタンクの屋根板は支持構造部材が複雑な形状であり、支持構造物を考慮した評価を実施するため、FEM解析モデルを用いて屋根板及び胴板の応力を算出する。

許容応力は原子力設備に対する評価基準として用いられる規格基準 JEAG4601-1987 に準拠し、保守的に弾性範囲内として許容応力状態ⅢAS を用いる。

なお、屋外の防護対象施設である復水タンク及び燃料取替用水タンクについては、 火山灰による荷重、自重を組み合わせる。

(3) その他屋外設備

荷重を受ける部材構造が比較的単純である屋外設備については、部材構造に応じて 一般的な材料力学に基づく評価式を用いて応力を算出する。

許容応力は上記(2)同様に弾性範囲内の許容応力を用いる。

なお、屋外の防護対象施設である海水ポンプ(モータフレーム)については、火山 灰による荷重、自重に加え、ポンプの運転に伴って重畳するポンプスラスト軸方向の 運転時荷重を組み合わせる。

3. 想定堆積荷重

荷重評価に用いる想定堆積荷重の考え方を以下に示す。

(1) 火山灰の堆積荷重

- ・密度: 1.5g/cm³(湿潤)(火山灰の単位荷重は堆積量 1cm 当たり 150N/m²)
- 堆積量: 27cm

火山灰堆積荷重=150 (N/m²·cm) ×27 (cm) =4,050 (N/m²)

(2) 火山灰堆積と積雪の組合せ荷重

①火山灰

- ・密度:1.5g/cm3(湿潤)(火山灰の単位荷重は堆積量1cm当たり150N/m2)
- · 堆積量: 27cm

火山灰堆積荷重=150 (N/m²·cm) ×27 (cm) =4,050 (N/m²)

②積雪

- ・密度: 0.3g/cm3 (積雪の単位荷重は積雪量 1cm 当たり 30N/m²) **1
- · 積雪量: 100cm^{*2}

積雪荷重=30 (N/m²·cm) ×100 (cm) =3,000 (N/m²)

※1: 福井県 建築基準法施行細則に基づく積雪の単位荷重を用いる。

%2: 火山事象と積雪事象は独立の関係にあることから、組み合わせる積雪量については福井県

建築基準法施行細則の垂直積雪量「100cm」を用いる。

③火山灰と積雪の組み合わせ荷重

火山灰堆積荷重+積雪荷重=7,050 (N/m²)

以上より、火山灰と積雪を組み合わせた堆積荷重が大きく保守的であることから、 組合せによる堆積荷重(7,050 N/m²)を想定する堆積荷重として評価する。

以上

5. 火山灰によるその他設備への影響について

火山灰によるその他設備(モニタリング設備、消火設備、緊急時対策所、通信設備) に対する影響評価について以下に示す。

1. モニタリング設備

下図のとおり、モニタリングポストの検出器は、上部が半球型であり、火山灰が堆積 しにくい構造となっていることから、火山灰の荷重により機能に影響を及ぼすことはない。

また、モニタリングカーによる測定も可能である。

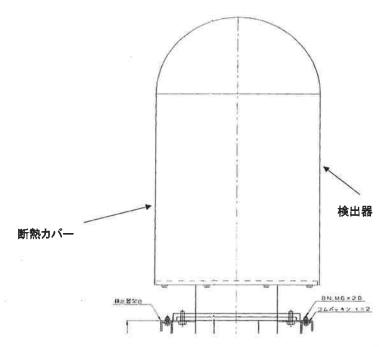


図 モニタリングポストの外観図

2. 消火設備

(1) ディーゼル消火ポンプ

建屋内設備であり、給気設備もなく、火山灰の影響を受けない。

(2) 電動消火ポンプ

建屋内設備であり、給気設備もなく、火山灰の影響を受けない。

仮に、上記消火設備に影響が生じた場合でも、消防自動車を用いた自衛消防隊による、消火が可能。

3. 緊急時対策所

緊急時対策所が設置される緊急時対策所建屋について、想定される火山灰の降灰層厚が許容層厚を超えないことを確認することで、健全性を評価する。許容層厚は以下いずれかの手法により算出する。

a. 荷重による評価

鋼材の長期許容応力度に対する短期許容応力度の比が 1.5 であることから、常時作用する荷重及び降下火砕物等堆積による鉛直荷重の和が設計時長期荷重の 1.5 倍に等しくなる層厚

b. 応力度による評価

常時作用する荷重及び降下火砕物等堆積による鉛直荷重の和により発生する応力等が短期許容応力度等と等しくなる層厚

次の評価結果より、火山灰堆積及び積雪を考慮した荷重に対しても緊急時対策所の 健全性を維持することが可能である。

【評価結果】

火山灰降灰層厚 27cm < 許容層厚* 150cm (裕度 5.5)

*:応力度による評価

4. 通信設備

通信設備は、発電所内・発電所外用として有線、無線の多種多様な連絡手段を有しており、火山灰の影響により、通信機能を喪失することは考えにくい。なお、衛星電話については、天候(雲、霧、雨、雪、風、煙など)による影響を受けにくい周波数帯を利用していることから、降灰時においても通信機能を維持することが可能と考えられる。

表 発電所内外の各種通信設備

発電所内の通信設備	発電所外の通信設備
・運転指令設備	・加入電話、携帯電話
・トランシーバー	・保安電話
・携行型通話装置	・衛星電話(固定、携帯)
・衛星電話 (固定、携帯)	・統合原子力防災ネットワーク専用回線に接続する
・保安電話	通信連絡設備 (IP電話)

以上

6. 火山灰の除灰に要する時間について

火山灰の除灰に要する概算時間について、土木工事の人力作業**を参考に試算した結果を以下に示す。

表 除灰に要する概算時間

	項目	評価諸元
①堆積面積 (m²)	外部しゃへい建屋(1,2号炉)	約 3,200 m ²
	補助建屋(1,2号炉)	約 4,100 m ²
	燃料取扱建屋(1,2号炉)	
	中間建屋(1,2号炉)	約 2,100 m ²
	ディーゼル建屋 (1, 2 号炉)	約 1,000 m ²
	制御建屋(1,2号炉)	約 900m ²
	合計	約 12,800 m ²
②堆積厚さ (m)	*	0.27m
③堆積量=①×②(r	m ³)	約 3,456m ³
④ 1 m³当たりの作業	美 人工 [*] (人日∕m³)	0.39 人日/m³

- 1. 作業量(上記のとおり)
 - 0.39 人日/m³×3,456m³=約1,348 人日
- 2. 作業日数(試算例)
- (1) 作業人数: 78人(6人/組×13組)

【内訳】、外部しゃへい建屋(2組)、補助建屋(4組)、燃料取扱建屋(2組)、中間建屋(3組)、ディーゼル発電機建屋(1組)、制御建屋(1組) [計 13組]

- (2) 所要日数: 約18日
 - (※)「国土交通省土木工事積算基準 (H24)」における人力掘削での人工を保守的に採用

なお、屋外タンクの堆積面積は、約320m²と建屋の堆積面積に対して十分小さいことから、30日に除灰することが可能である。

以 上

7. 灰置場の場所及び容量について

灰置場として、積み上げた火山灰が崩れるなど、発電所の重要安全施設やSA時に必要となるアクセスルートに影響を及ぼすことがないように、それらから離れ、かつ、低い場所にある放水口近傍のエリアを選定しており、除去した火山灰が灰置場に現実的に集積可能かどうか試算を行った。

図に示す範囲に高さ約 1.4 m で集積した場合、その容量は約 $11,480 \text{m}^3$ となる。ここで、層厚 27 cm の火山灰を想定した場合、表のとおり火山灰の除去が必要となる施設の屋根部に堆積する火山灰の量は約 $3,543 \text{m}^3$ であり、3,49 m 号炉の火山灰の除去が必要となる施設の屋根部に堆積する火山灰の量約 $4,887 \text{m}^3$ と合わせても約 $8,430 \text{m}^3$ であることから、灰置場として容量があると考えられる。

項目 屋外タンク 建层 合計 外部しゃへい建屋(1,2号炉) 対象施設 復水タンク · 補助建屋(1, 2 号炉) (1, 2 号炉) · 燃料取扱建屋(1, 2 号炉) ・燃料取替用水タンク · 中間建屋(1, 2 号炉) (1, 2 号炉) ・ディーゼル建屋 (1, 2号炉) ·制御建屋(1, 2 号炉) 約 1.2800m² 約 13,120m² 面積 約 320m² 降灰量(層厚 27cm) 約 3,456m³ 約87m³ 約 3,543m³

表 火山灰の除去が必要な施設の屋根部に堆積する火山灰の量

図 高浜発電所の平面図

枠囲みの範囲は機密に係る事項ですので公開することはできません。

以上

8. アイスランド火山を用いる基本的考え方とセントへレンズ火山による影響評価

高浜1,2号炉において、フィルタ閉塞の評価対象となる施設は、ディーゼル発電機 吸気消音器のフィルタ、換気空調設備のフィルタ(外気取入口)が該当するが、ディーゼル発電機吸気消音器のフィルタについては給気口が下向きに設置されており、降下火砕物が内部に侵入しにくい構造となっている。また、換気空調設備については降灰が確認された場合には外気取入口のダンパを閉止する運用としており、フィルタへの降下火砕物の付着を抑制できる設計となっている。

この前提のもと、降下火砕物によるフィルタ閉塞に対する評価に当たっては、参考としてアイスランド南部エイヤヒャトラ氷河で発生(H22年4月)した火山噴火地点から約 40 k m離れたヘイマランド地区において観測された大気中の降下火砕物濃度のピーク値、3,241 μ g/m³ を用いている。

これは、

- ①比較的規模が大きい噴火であること(VEI4以上)
- ②原子力施設が設置されている地表レベルで観測された降下火砕物の大気中濃度 がデータとして存在すること

という条件に照らして、学会誌等の関係図書を確認したところ、上記のアイスランド南部のエイヤヒャトラ氷河で発生した大規模噴火における噴火口より約 40km 程度離れた地域での地表における大気中濃度を参照したものである。

また、高浜発電所で想定する降下火砕物の給源となる火山については、大山等いずれも発電所から 40km 以遠にある(第四紀火山のうち発電所から最も近い火山は約57km 離れた宝山である)ことから、参照したアイスランド火山の観測データは噴火口からより近距離の観測データである。

なお、噴火口からの観測地点の距離が 135km であるセントへレンズ火山噴火の観測データ (観測濃度 $33,400\,\mu$ g/m³) について、当該濃度による影響評価を以下のとおり行った。

各施設のフィルタが閉塞するまでの時間は、ディーゼル発電機吸気消音器のフィルタで約2.5 時間、換気空調設備のフィルタで約3.3 時間となる。フィルタ交換に要する時間は最も時間を要するディーゼル発電機吸気消音器のフィルタでも、約1時間程度で交換が可能である。換気空調設備のフィルタについても、より短時間で取替えることが可能であり、セントヘレンズ火山の濃度を用いて評価を行った場合でも影響が生じることはない。

なお、ディーゼル発電機吸気消音器は、下方向から吸気することにより降下火砕物を吸い込みにくい構造としているが、上記試算では、こうした点を考慮せず、しかも大気中を降下・浮遊する火砕物の粒子が粒径にかかわらず、大気中濃度のまますべて吸い込まれてフィルタに捕集されることを前提とした計算となっているため、実際には吸気フィルタが閉塞するまでの時間にはさらに余裕があると考えられること、さらに、換気空調設備のフィルタに関しては、フィルタを通過する降下火砕物は細かな微細粒子ではあるが、降下火砕物が建屋内へ侵入することを抑制するため、降灰が確認された時点で空調停止やダンパ閉止の運用により影響防止を図ることとしており、機能に影響を及ぼすことはないと考える。

なお、上記の内容については、高浜1号炉及び2号炉の安全審査にて平成28年11月10日提出した「高浜1号炉及び2号炉設置許可基準規則等への適合性について(設計基準対象施設等)-抜粋(第6条 外部からの衝撃による損傷の防止(火山))-」から変更がないため、「補足説明資料-21」に同じ。

以上

9. 大山生竹テフラの噴出規模見直しに係る 事故シーケンスグループ抽出に当たって考慮すべき起因事象への影響について

I. はじめに

新規制基準に係る原子炉設置変更許可申請書に記載の確率論的リスク評価を補足する資料である、追補2. Iのうち別紙1の添付-6「火山活動が原子炉施設へ与える影響について」の「起因事象の特定」において、「火山灰の堆積荷重による静的負荷」に対する検討結果について言及している。以降で、大山生竹テフラ(以下、DNPという)の噴出規模見直しに伴う既許可申請への影響について考察する。

Ⅱ. DNPの噴出規模見直しに伴う影響について

DNPの噴出規模見直しに伴い、建屋および屋外タンクへの火山灰の堆積荷重による静的負荷が変更となることから、事故シーケンスグループ抽出に当たって考慮すべき起因事象への影響について、別紙で確認を行った。

別紙に示すとおり、DNPの噴出規模見直しに伴う建屋および屋外タンクへの影響について 確認したところ、新たな事故シーケンスグループ抽出に当たって考慮すべき起因事象はなく、 火山事象を要因として発生しうる有意な頻度又は影響のある事故シーケンスグループは新たに 生じないと判断した、既許可申請での結論に変更はない。

<別紙>

高浜発電所1、2号機におけるDNPの噴出規模見直しの影響

以上

高浜発電所1、2号機におけるDNPの噴出規模見直しの影響

DNPの噴出規模見直しに伴い、建屋および屋外タンクへの火山灰の堆積荷重による静的負荷が変更となることから、事故シーケンスグループ抽出に当たって考慮すべき起因事象への影響について、以下のとおり確認を行った。

・ 建屋の機能不全

火山灰の荷重により建屋が崩落した場合に、建屋内に設置している機器等に影響が及ぶ。確率 論的リスク評価ではタービン建屋の損傷を考慮し、地震PRAの検討を踏まえ、外部電源喪失事 象、2次冷却系の破断事象、主給水流量喪失事象を考慮する。

なお、タービン建屋以外の天井が崩落するような事象については、火山灰堆積荷重によるハザードの設定が困難であるが、第1表に示すとおり設計基準において考慮している火山灰による荷重と比較して裕度があること、また火山灰が堆積した場合は屋上での除却作業が可能であることから起因事象の特定の対象外とした。

・復水タンクの機能喪失

火山灰の荷重による復水タンクへの影響については、火山灰堆積荷重によるハザードの設定が 困難であるが、第2表に示すとおり設計基準において考慮している火山灰による荷重と比較して 裕度があること、また火山灰が堆積しても除却作業が可能であることから起因事象の特定の対象 外とした。

・燃料取替用水タンクの機能喪失

火山灰の荷重による燃料取替用水タンクへの影響については、火山灰堆積荷重によるハザードの設定が困難であるが、第2表に示すとおり設計基準において考慮している火山灰による荷重と比較して裕度があること、また火山灰が堆積しても除却作業が可能であることから起因事象の特定の対象外とした。

上記の検討により、DNPの噴出規模見直しを行った場合の起因事象は以下の通りとなり、DNPの噴出規模の見直し前から変更はない。

- ・ タービン建屋の損傷による 2 次冷却系の破断
- ・タービン建屋の損傷による主給水流量喪失
- ・タービン建屋損傷あるいは外部送電系の機能喪失による外部電源喪失

上記シナリオの単独または重畳での発生は、内部事象レベル1PRA、地震PRA及び津波PRAにて考慮しているものであり、新たに追加すべきものはない。

以上から、事故シーケンス抽出に当たって考慮すべき起因事象は、2次冷却系の破断、主給水流量喪失、外部電源喪失であり、補助給水系、非常用所内交流電源等の必要な影響緩和設備の機能維持が図られるため、火山事象を要因として発生しうる有意な頻度又は影響のある事故シーケンスグループは新たに生じないと判断する。

第1表 各建屋の設計基準で考慮している降灰層厚と許容層厚の比較

<高浜1号機>

建屋	許容層厚(cm)*1	設計基準で考慮して いる降灰層厚(cm)	結果
外部しゃへい建屋	100以上	V・3件八眉字(CIII)	3
原子炉補助建屋	57		
燃料取扱建屋	42	1	降灰層厚に対して
中間建屋	100以上	27	余裕がある
ディーゼル建屋		48	
制御建屋	39		

<高浜2号機>

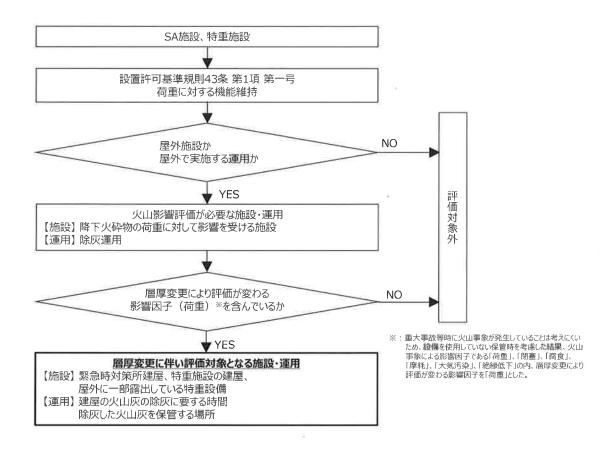
建屋	許容層厚(cm)**1	設計基準で考慮して いる降灰層厚(cm)	結果	
外部しゃへい建屋	100 以上			
原子炉補助建屋	39		降灰層厚に対して	
燃料取扱建屋	94	27		
中間建屋	100 以上		余裕がある	
ディーゼル建屋	73			

※1:積雪との重畳を踏まえた層厚を記載。

第2表 各機器の設計基準で考慮している降灰層厚と許容層厚の比較

機器	許容層厚(cm) ^{※2}	設計基準で考慮して いる降灰層厚(cm)	結果
復水タンク (屋根板)	72.7	27	降灰層厚に対して
燃料取替用水タンク (屋根板)	28.6	27	余裕がある

※2:積雪との重畳を踏まえた層厚を記載。


高浜発電所1号炉及び2号炉 層厚変更に伴う重大事故等対処施設及び 特定重大事故等対処施設への影響評価

目 次

- 1. 層厚変更に伴い評価対象となる施設・運用の整理
- 2. 層厚変更に伴い評価対象となる施設の成立性確認
- 3. 火山灰の除灰に要する時間について
- 4. 灰置場の場所及び容量について

1. 層厚変更に伴い評価対象となる施設・運用の整理

重大事故等対処施設(特定重大事故等対処施設を除く。)(以下、「SA施設」という。)及び特定重大事故等対処施設(以下、「特重施設」という。)の内、層厚変更に伴い評価対象となる施設・運用の抽出結果を以下に示す。

2. 層厚変更に伴い評価対象となる施設の成立性確認

SA施設及び特重施設の内、層厚変更に伴い評価対象となる施設の成立性確認を以下に示す。

(1) SA施設

a. 緊急時対策所建屋

建物・構築物の許容層厚については、以下いずれかの手法により算出する。

1. 荷重による評価

鋼材の長期許容応力度に対する短期許容応力度の比が 1.5 であることから、常時作用する荷重及び降下火砕物等堆積による鉛直荷重の和が設計時長期荷重の 1.5 倍に等しくなる層厚

2. 応力度による評価

常時作用する荷重及び降下火砕物等堆積による鉛直荷重の和により発生する 応力等が短期許容応力度等と等しくなる層厚

緊急時対策所建屋の許容層厚が見直し後の層厚を上回り、想定する降下火砕物による静的荷重に対して必要な機能を損なうことはない。

許容層厚*	成立性確認
100cm 以上	見直し後の層厚(27cm)に対して、十分な裕度があることから、建屋強度への影響はない。

※:応力度による評価

また、緊急時対策所建屋の見直し後の層厚 (27cm) での応力等の発生値を換算した結果、発生値が許容値を超えないことから、想定する降下火砕物による静的荷重に対して必要な機能を損なうことはない。(算出方法の概要は個別評価-1 「建物・構築物に係る影響評価」の図-1を参照)

発生値※	許容値**	裕度
曲げモーメント	許容曲げモーメント	1.00
679kN·m/m	869kN·m/m	1.28

※:許容値に対して発生値の割合が最も大きくなる評価項目について計算している。

(2) 特重施設

a. 特重施設の建屋

建物・構築物の許容層厚については、以下いずれかの手法により算出する。

1. 荷重による評価

鋼材の長期許容応力度に対する短期許容応力度の比が 1.5 であることから、常時作用する荷重及び降下火砕物等堆積による鉛直荷重の和が設計時長期荷重の 1.5 倍に等しくなる層厚

2. 応力度による評価

常時作用する荷重及び降下火砕物等堆積による鉛直荷重の和により発生する 応力等が短期許容応力度等と等しくなる層厚

特重施設建屋の許容層厚が見直し後の層厚を上回り、想定する降下火砕物による静的 荷重に対して必要な機能を損なうことはない。

許容層厚※	成立性確認		
	見直し後の層厚(27cm)に対して、十分な裕度があることから、建屋強度への影響はない。		

※:荷重による評価

また、特重施設建屋の見直し後の層厚(27cm)での応力等の発生値を換算した結果、発生値が許容値を超えないことから、想定する降下火砕物による静的荷重に対して必要な機能を損なうことはない。(算出方法の概要は個別評価-1「建物・構築物に係る影響評価」の図-1を参照)

発生値**	許容値*	裕度

※:「荷重による評価」により部材断面によらず荷重のみで許容層厚を求めていることから、評価項目を使用材料の短期許容応力度として設定している。

b. 屋外に一部露出している特重設備

既存の強度評価結果の裕度を用いて、屋外に一部露出している特重設備の許容層厚を 逆算し、見直し後の層厚が許容層厚以下であることを確認する。

なお、プラント間で評価に有意な影響を及ぼすような差がないことから、大飯3,4 号機の構造を代表モデルとし、見直し後の層厚として最も大きい層厚である27cmを考慮する。

屋外に一部露出している特重設備の許容層厚が見直し後の層厚を上回り、想定する降下火砕物による静的荷重に対して必要な機能を損なうことはない。

評価部位	見直し後の層厚	許容層厚
屋外露出部位	27cm	

また、代表モデルによる発生応力は、許容応力を下回っていることから、想定する降下火砕物による静的荷重に対して必要な機能を損なうことはない。

評価部位	発生応力	許容応力	裕度
屋外露出部位			

以上

3. 火山灰の除灰に要する時間について

火山灰の除灰に要する概算時間について、土木工事の人力作業*を参考に試算した結果を以下 に示す。

表 除灰に要する概算時間

	項 目	評価諸元
①堆積面積(m²)	緊急時対対策所建屋	約 500 m ²
	特重施設の建屋(1,2 号炉)	
	特重施設の建屋(3,4 号炉)	
	合計	
②堆積厚さ (m)		0.27m
③堆積量=①×②(m³)		
④1 m³当たりの作	業人工 [※] (人日/m³)	0.39 人日/m³

1. 作業量(上記のとおり)
0.39 人日 ∕ m ³ ×
2. 作業日数 (試算例)
(1) 作業人数:
【内訳】、緊急時対策所建屋(1組)、特重施設の建屋 1,2 号炉
特重施設の建屋 3,4 号炉
(2) 所要日数: 約16日
(*)「国土交通省土木工事精質基準(H24)」における人力操削での人工を保守的に採用

以 上

4. 灰置場の場所及び容量について

灰置場として、積み上げた火山灰が崩れるなど、発電所の重要安全施設やSA時に必要となるアクセスルートに影響を及ぼすことがないように、それらから離れ、かつ、低い場所にある放水口近傍のエリアを選定しており、除去した火山灰が灰置場に現実的に集積可能かどうか試算を行った。

図に示す範囲に高さ約 1.4m で集積した場合、その容量は約 11,480m³ となる。ここで、層厚 27cm の火山灰を想定した場合、表のとおり火山灰の除去が必要となる施設の屋根部に堆積する火山灰の量は であり、火山灰の除去が必要となる設計基準対象施設の屋根部に堆積する火山灰の量約 8,430m³ (1,2 号炉約 3,543m³、3,4 号炉約 4,887m³) と合わせても約であることから、灰置場として容量があると考えられる。

表 火山灰の除去が必要な施設の屋根部に堆積する火山灰の量

項目	建屋	
対象施設	・緊急時対策所建屋	
	・特重施設の建屋(1,2 号炉)	
	・特重施設の建屋(3,4号炉)	
面積		
降灰量(層厚 27cm)		

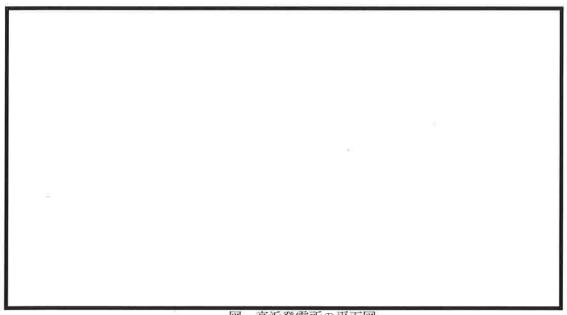
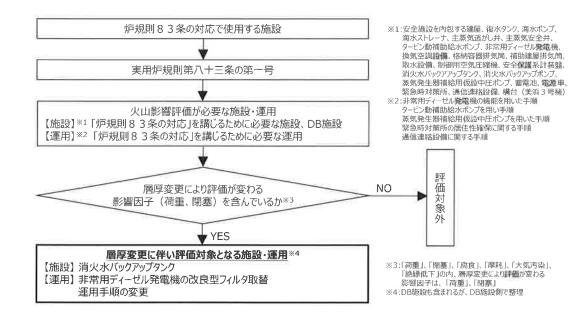


図 高浜発電所の平面図

以上


高浜発電所1号炉及び2号炉 層厚変更に伴う実用炉規則第八十三条の第一号で 使用する施設への影響評価

目 次

- 1. 層厚変更に伴い評価対象となる施設・運用の整理
- 2. 層厚変更に伴い評価対象となる施設の荷重評価
- 3. 層厚変更に伴い評価対象となる運用の評価
- 4. 非常用ディーゼル発電機の改良型フィルタ試験結果に対する考察
- 5. 層厚変更に伴い見直された運用の既認可保安規定への影響確認
- 6. 海水ポンプ及び海水ストレーナに対する気中降下火砕物濃度の影響について
- 7. 火山灰除けテントについて

1. 層厚変更に伴い評価対象となる施設・運用の整理

実用炉規則第八十三条の第一号(以下、「炉規則83条の対応」という。)で使用する施設の内、 層厚変更に伴い評価対象となる施設・運用の抽出結果を以下に示す。

2. 層厚変更に伴い評価対象となる施設の荷重評価

炉規則83条の対応で使用する施設の内、層厚変更に伴い評価対象となる施設について、炉規 則改正に伴う保安規定変更認可申請(以下、「バックフィット保安規定」という。)における補足 説明資料での評価に対し、層厚変更に伴う評価結果を以下に示す。

(1) 消火水バックアップタンクにおける降下火砕物荷重の影響評価

a. 概 要

本資料は、消火水バックアップタンクが降下火砕物等堆積時においても、主要な構造部材 が構造健全性を有することを確認する。

b. 構造概要

高浜1,2号炉の消火水バックアップタンクは横置き円筒タンクであり、上面が曲面となっていることから、タンク上面に降下火砕物が堆積しにくい構造であるため、影響は軽微と考えられる。

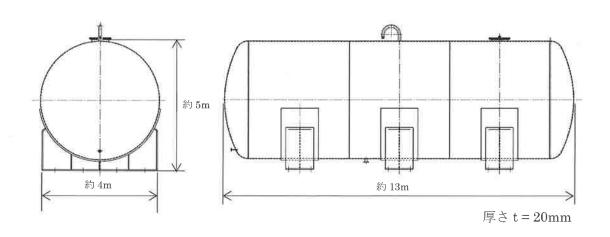


図1 消火水バックアップタンクの構造

c. 強度評価

本資料では、保守的な想定としてタンク上面に、積雪 100cm、火山灰 27cm を堆積させた条件で、消火水バックアップタンクの胴板ならびに支持脚の評価を行う。

消火水バックアップタンクは、「工事計画認可申請書 資料 13 別添 1 火災防護設備の耐震性に関する説明書」にて耐震評価を実施している。具体的には、基準地震動 S_8 設計用加速度(水平 8.47m/s^2 (=約 0.87 G)、鉛直 5.65m/s^2 (=約 0.58 G))に対して、胴板の裕度は 2.5 以上、支持脚の裕度は 7.3 以上であることを確認している。

タンク上面への堆積を想定した火山灰及び積雪の質量は 38,410kg であり、消火水バック

アップタンクの質量 216,000kg の約 18%に相当する。

つまり、タンク上面に積雪および火山灰を堆積させた状態は、胴板および支持脚に対して、 タンク単体の自重による荷重に鉛直加速度 <u>0.18G</u> を加えた状態と等価である。

一方で、耐震評価では、タンク単体の自重に鉛直加速度 0.58G を加えた状態で応力評価を行っており、その結果、十分な裕度を有していることを確認している。

以上のことから、耐震評価は、火山灰及び積雪を堆積させた強度評価を包含しているものと考えられる。

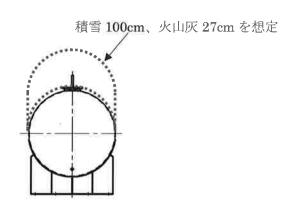


図2 強度評価における積雪・火山灰の想定

表1 消火水バックアップタンクの耐震評価結果

評価部位 材料	++40	卧 応力	基準地震動 S。による応力		松库
	171 177		評価応力(MPa)	許容応力(MPa)	裕度
胴板 SM400B	一次一般膜	15	240	16. 00	
	SM400B	一次	54	360	6. 66
		一次十二次	86	215	2. 50
支持脚 SM400	SMAOOD	組合せ	38	279	7. 34
	SM400D	座屈	0. 10	1	10.00

3. 層厚変更に伴い評価対象となる運用の評価

炉規則83条の対応で使用する施設の内、層厚変更に伴い評価対象となる運用について、バックフィット保安規定における補足説明資料での評価に対し、層厚変更に伴う評価結果を以下に示す。

(1) 改良型フィルタのフィルタ取替の着手時間について

ディーゼル発電機については、屋外に設置している吸気消音器の吸気フィルタの閉塞が想定されるため、高濃度の降下火砕物濃度に対して確実にディーゼル発電機の機能を維持できるよう、改良型フィルタを配備している。

本資料では、改良型フィルタのフィルタ取替の基準となる着手時間を計算する。

a. 対策の概要及び改良型フィルタの仕様

火山現象による影響が発生し、又は発生するおそれがある場合、ディーゼル発電機の吸気 消音器前に着脱可能な改良型フィルタを取付ける。

改良型フィルタはディーゼル発電機運転中においても容易にスライド式のフィルタを取替え・清掃することが可能である。また、フィルタには、300メッシュの金属フィルタをプリーツ状にすることで面積を拡大させたフィルタを使用する。取替え・清掃時には、火山灰の侵入を防止するため、取替え・清掃するフィルタの流路を塞ぐ閉止板を装填する。

改良型フィルタ及びフィルタの主な仕様を以下に示す。また、改良型フィルタの外形図を図1に、フィルタの性能試験の概要及び結果を別紙1に示す。

改良型フィルタ台数(台)※1	1
フィルタ個数(個)**2	12
フィルタ外形寸法**3	上段 318、下段 483 高さ 668、幅 148
フィルタ有効面積(m²)*3	
フィルタの最大捕集容量(g/m²)	405, 314

- ※1 ディーゼル発電機1台当たり
- ※2 改良型フィルタ1台当たり
- ※3 フィルタ1個当たり

b. 改良型フィルタの取付時間について

(a) 降灰到達時間

気象条件等を考慮し、噴火から降下火砕物が発電所敷地に到達するまでの時間を 60 分とする。降灰到達時間の考え方について別紙 2 に示す。

(b) 改良型フィルタの取付時間

改良型フィルタ取付けに要する時間は、 $\underline{Nックフィット保安規定の</u>補足説明資料<math>-33$ -1 の「別紙 4 作業の成立性について」に示すとおり 50 分である。

したがって、改良型フィルタの取付は降下火砕物が発電所敷地に到達する前に実施可能である。

c. フィルタ取替の着手時間の計算に用いる気中降下火砕物濃度

計算に用いる気中降下火砕物濃度は、「原子力発電所の火山影響評価ガイド」(以下「ガイド」とする)の添付1「気中降下火砕物濃度の推定手法について」に定められた手法により推定した気中降下火砕物濃度とする。

気中降下火砕物濃度の算出方法及び算出結果を別紙3に示す。

別紙3の結果より、高浜発電所における気中降下火砕物濃度を3.78g/m³とする。

d. フィルタの基準捕集容量到達までの時間の計算について

別紙1に示すフィルタ性能試験の結果では、フィルタの最大捕集容量が、 $405,314g/m^2$ となるが、フィルタ差圧曲線の差圧が高い領域を避け、差圧上昇が時間的に十分なだらか領域となるように、フィルタ取替の目安として基準捕集容量を保守的に $250,000g/m^2$ とする。フィルタの基準捕集容量到達までの時間は、以下の条件に基づいて計算した結果、479分である。

①フィルタ取替の目安となる基準捕集容量 (g/ m²)	250, 000
②ディーゼル発電機吸気流量 (m³/h)	
③ディーゼル発電機 フィルタ表面積 (m²)	
=個数×有効面積=12(個)×	
④ディーゼル発電機 フィルタ部の流速 (m/s)	2. 21
=2/3/3,600	≑ 2. 3
⑤降下火砕物の大気中濃度 (g/m³)	3. 78
⑥フィルタの基準捕集容量到達までの時間 (min)	470
=①/④/⑤/60	479

e. フィルタ取替の着手時間の計算について

フィルタ取替に要する時間は、<u>バックフィット保安規定の</u>補足説明資料-33-1の「別紙4 作業の成立性について」に示すとおり 1 ユニットあたり要員 4 名で 20 分程度を見込んでいる。したがって、フィルタの基準捕集容量到達までの時間は 479 分であったことから、フィルタ取替に要する時間(20 分)を差し引くと、フィルタ取替の着手時間は 459 分となるが、450 分でフィルタ取替を着手することとする。

f. フィルタの取替・清掃回数について

実機での作業時間は降灰継続時間である 24 時間 (1,440分)を想定している。フィルタ取替に要する時間 20 分とフィルタ取替に着手する時間 450 分を踏まえると、フィルタ取替が完了する時間は 470 分である。フィルタは 2 セット (12 枚/セット) 配備していることを踏まえると、フィルタ 1 セット当たり火山灰を捕集する回数は 2回(1,440分/470分/2セット)となり、フィルタの清掃回数は 1回必要である。

フィルタは1回清掃して繰り返し使用することとなるが、繰り返しフィルタを使用したとしても、フィルタの性能は十分確保できていることを別紙4の検証試験にて確認している。

g, <u>炉規則第八十三条 第一号 ロ(3)</u>の対応におけるディーゼル発電機の機能を期待する時間について

本対応においては、気中降下火砕物濃度の 2 倍の濃度を想定し、ディーゼル発電機の機能を期待する時間を設定する。具体的には、フィルタの基準捕集容量到達までの時間 $(479 \ \text{分})$ を 1/2 にした $230 \ \text{分}$ とする。

(2) 改良型フィルタの火山灰捕集について

改良型フィルタは、300 メッシュの金属フィルタをプリーツ状にすることで面積を拡大させ、火山灰を捕集する構造としている。

改良型フィルタによる火山灰捕集の概要を図2に示す。

(3)火山灰捕集による設備への影響について

別紙1によるフィルタの性能試験結果から、火山灰捕集の量を確認すると、以下のとおりであった。

確認項目	火山灰の量
灰受け及び上流ダクト内への堆積	約 18.5kg
改良型フィルタへの付着	<u>0.1kg以下</u>
改良型フィルタ内部への堆積 ※	約 1. 3kg
通過灰回収フィルタ及び下流ダクト内への堆積	0.05kg 以下

※試験装置のフィルタは、横置きに取付けているため、フィルタ内の下部に火山灰が堆積する。

改良型フィルタに付着する火山灰の量は100g以下であるが、フィルタ内部に堆積する量を合わせても約2kg程度の重量増加となる。改良型フィルタは、金属製のフィルタであることから、約2kg程度の重量増加によるフィルタへの影響はない。

また、改良型フィルタを設置するディーゼル発電機の吸気消音器の下部はグレーチングであり、周辺に他の設備もないことから、改良型フィルタ近傍への火山灰集積による影響はない。

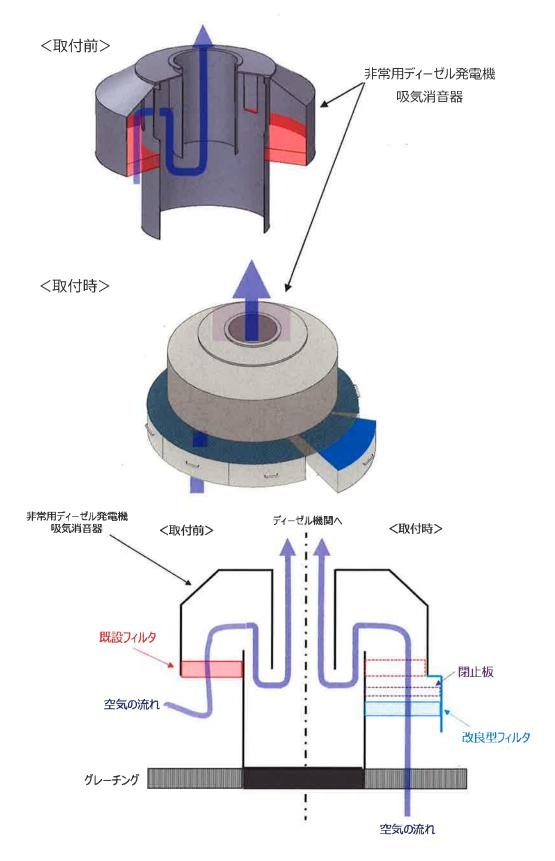
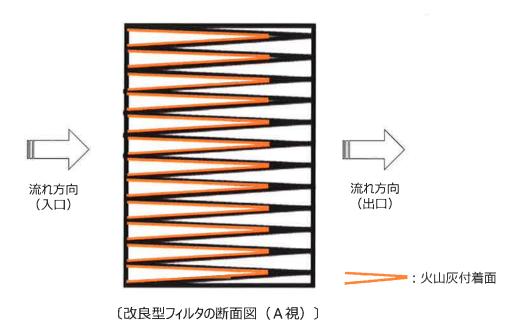



図1 改良型フィルタ外形図

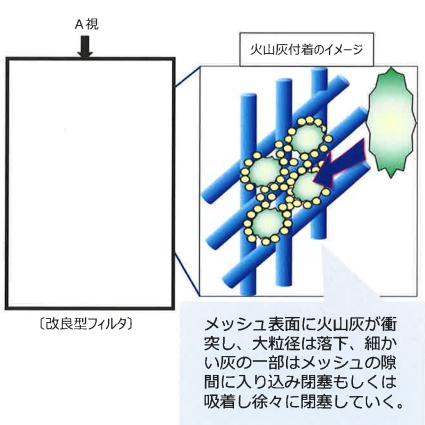


図2 改良型フィルタの火山灰捕集の概要図

フィルタの性能試験について

1 試験の概要

ディーゼル発電機改良型フィルタのフィルタには、300 メッシュの金属フィルタをプリーツ 状にすることで面積を確保したフィルタを使用する。

本試験では、フィルタの性能を確認するため、ディーゼル発電機改良型フィルタの吸気口を 模擬した試験装置によりフィルタの閉塞時間を測定する。

2 試験方法

(1) 試験装置

図1に示す試験装置にフィルタを挿入し、フィルタ通過風速がディーゼル発電機運転時と同じになるよう流量調整した後、上流より火山灰を供給する。

試験は流量を一定に保ってフィルタの圧力損失を連続的に測定し、許容差圧に到達した時 点で装置を停止し、試験終了時の最大捕集容量を算出する。

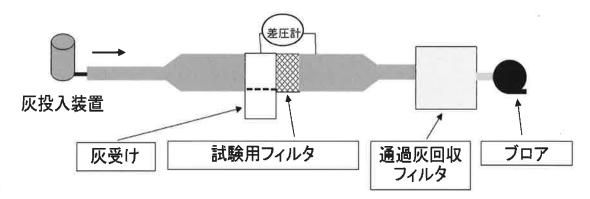
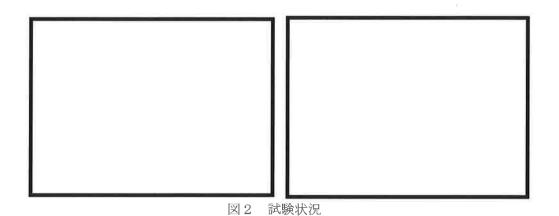



図1 試験装置概要

枠囲みの範囲は機密に係る事項ですので公開することはできません。

(2) 試験条件

試験条件を表1に示す。

フィルタ性能試験では、実機で使用している 300 メッシュプリーツ型金属フィルタの試験体(W180mm×H290mm) を用いて行う。

試験風速は、ディーゼル発電機の吸気流量が最大となる定格出力時の吸気流量から 2.3m/s と算出している。なお、ディーゼル発電機の吸気流量は、別紙 4 に示すとおり出力に応じて変化するものであり、通常時の出力は定格出力以下であることから、保守性を有している。

フィルタ許容差圧は、ディーゼル発電機が定格出力運転時において、最低限必要とする吸気流量に到達する際のフィルタ前後の差圧 と設定している。

使用する火山灰は、実際の火山灰を模擬するため、別紙3に示す数値シミュレーション (Tephra2) による粒径分布の計算結果となるように流径調整を行っている。

火山灰濃度は、別紙3に基づき $3.78 g/m^3$ としている。

| 試験フィルタ | 300 メッシュプリーツ型金属フィルタ | フィルタ寸法 | W180mm×H290mm | 試験風速 | 2.3m/s | 許容差圧 | 使用火山灰 | Tephra2 シミュレーション結果をもとに粒径 | 調整※1 | 火山灰濃度 | 3.78g/m³

表1 試験条件

※1 火山灰をふるいで粒径毎に分けた後、粒径分布の割合で調合する。

3 試験結果

試験結果を表2、図3に示す。

試験結果に基づき、フィルタ取替の着手時間の計算に用いる基準捕集容量は保守的に 250,000g/m²とする。

表 2 試験結果

許容差圧到達時間	<u>777min</u>
最大捕集容量※2	405,314g/m ²

※2 最大捕集容量 (g/m²) = 試験濃度(g/m³)×試験風速(m/s)×閉塞時間(s)

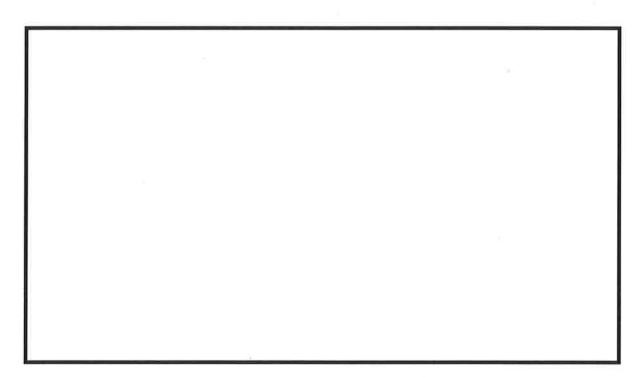


図3 フィルタ性能試験結果の圧損曲線

以上

降灰到達時間について

高浜発電所において給源火山の対象としている大山火山(高浜発電所から約180km)が噴火した後、保守的に当該地域の最大風速約60m/s でそのまま火山灰が飛散すると仮定して計算した場合、約1時間程度で発電所に到達する可能性があることから、火山の噴火から高浜発電所で降灰が開始する最短時間を約1時間とする。

高浜発電所から大山火山までの距離を図1に示す。

図1 高浜発電所から大山火山までの距離

以上

気中降下火砕物濃度の算出手法及び算出結果

原子力発電所の火山影響評価ガイド(以下「ガイド」という。)が改正され、設計及び運用等による安全施設の機能維持が可能かどうかを評価するための基準である気中降下火砕物濃度を推定する手法が示された。

高浜発電所について、ガイドに基づき気中降下火砕物濃度の算出を行った。

1 気中降下火砕物濃度の推定手法

ガイドにおいては、以下の2つの手法のうちいずれかにより気中降下火砕物を推定すること が求められている。

- a. 降灰継続時間を仮定して降灰量から気中降下火砕物濃度を推定する手法
- b. 数値シミュレーションにより気中降下火砕物濃度を推定する手法

これらの手法のうち、設置許可段階での降灰量(層厚)の数値シミュレーション(Tephra2)との連続性の観点から、「a. 降灰継続時間を仮定して降灰量から気中降下火砕物濃度を推定する手法」により気中降下火砕物濃度を推定する。

「a. 降灰継続時間を仮定して降灰量から気中降下火砕物濃度を推定する手法」については、粒径の大小に関わらず同時に降灰が発生すると仮定していること、粒子の凝集を考慮しないことから、保守的な手法となっている。また、気中降下火砕物濃度の算出に用いている降下火砕物の層厚 27cm は、文献調査及び地質調査では敷地付近で想定する火山噴火(大山)の降下火砕物は確認されているものの、その噴火履歴と地下構造の検討により発電運用期間に噴火の可能性は十分低いと評価されていること、噴出源が同定できない降下火砕物が 10cm 以下であること、補助的に実施した大山を対象とする数値シミュレーション(Tephra2)の計算結果が最大でも 21.9cm 程度であることを踏まえて保守的に評価した値であり、これを前提として算出する「a. 降灰継続時間を仮定して降灰量から気中降下火砕物濃度を推定する手法」による気中降下火砕物濃度は保守的である。

なお、「b. 数値シミュレーションにより気中降下火砕物濃度を推定する手法」については、数値シミュレーション(3次元の大気拡散シミュレーション)で使用する噴煙高さの設定や噴出率の時間変化等に課題を残しているため、必要なパラメータを設定することが困難であり、その結果の妥当性を評価することが困難である。

2 気中降下火砕物濃度の算出方法

ガイドに基づく気中降下火砕物濃度の算出方法を以下に示す。

①粒径iの降灰量

 $W_i = p_i W_T$

 $(p_i: 粒径iの割合 W_T: 総降灰量)$

②粒径iの堆積速度

 $v_i = \frac{W_i}{L}$

(t:降灰継続時間)

③粒径iの気中濃度

 $C_i = \frac{v_i}{r_i}$

(ri: 粒径iの降下火砕物の終端速度)

④気中降下火砕物濃度

 $C_T = \sum_i C_i$

3 入力条件及び計算結果

入力条件及び計算結果を表1に示す。

表 1 の計算結果より、高浜発電所における気中降下火砕物濃度を $3.78g/m^3$ とする。

なお、気中降下火砕物濃度は、大山 DNP の噴出規模 11km³の数値シミュレーション (Tephra2) 結果による層厚 21.9cm の条件において、越畑地点における DNP の評価層厚と距離の関係をもとにした検討結果から設定した設計層厚 27cm にて計算する。

表1 入力条件及び計算結果

入力条件		備考
設計層厚	27cm	見直し後の層厚
総降灰量 W_T	$329,400 \text{g/m}^2$	設計層厚×降下火砕物密度 1.22g/cm³(Tephra2 による計算値)
降灰継続時間t	24h	Carey and Sigurdsson(1989)参考
粒径 i の割合 p_i	VI	Tephra2 による粒径分布の計算値
粒径 i の降灰量 W_i		式①
粒径 i の堆積速度 v_i	別表1参照	式②
粒径 i の終端速度 r_i		Suzuki (1983) 参考 (図 1 参照)
粒径 i の気中濃度 C_i		式③
気中降下火砕物濃度 C_T	3. 78g/m³	式④

別表1 粒径ごとの入力条件及び計算結果

が終する国際では、大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大								
粒径i Φ	0~1	1~2	2~3	3~4	4~5	5~6	6~7	合計
(μ m)	(707)	(354)	(177)	(88)	(44)	(22)	(11)	
割合 p i(wt%)	57. 0	27. 0	13. 0	2. 4	0.64	0.03	8. 7×10^{-4}	100
降灰量 W_i (g/ m^2)	1.9×10^{5}	8.9×10^4	4. 3×10^4	7. 9×10^3	2.1×10^3	1.0×10^{2}	2. 9	$W_T = 329,400$
堆積速度 v_i (g/s・m²)	2. 2	1. 0	5. 0×10^{-1}	9. 1×10^{-2}	2.4×10^{-2}	1. 2×10^{-3}	3.3×10^{-5}	_
終端速度 r_i (m/s)	1.8	1.0	0.5	0. 35	0. 1	2.6×10^{-2}	1. 0×10^{-2}	-
気中濃度 C_i (g/m 3)	1. 2	1. 0	9.9×10^{-1}	2.6×10^{-1}	2.4×10^{-1}	4. 5×10^{-2}	3.3×10^{-3}	$C_T = 3.78$

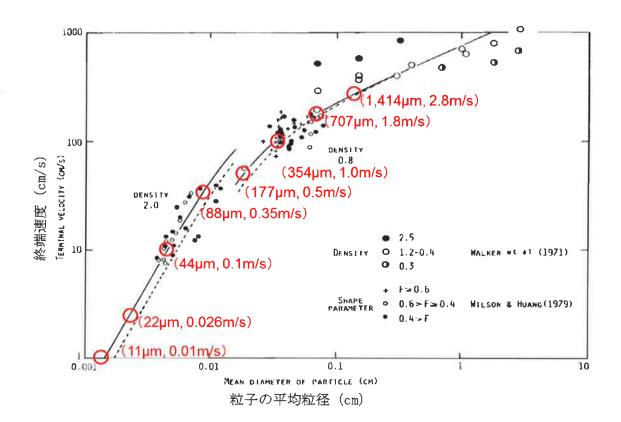


図1 Suzuki (1983) ※における降下火砕物の粒径と終端速度との関係図 (粒径iの終端速度を赤丸表示)

Suzuki, T. (1983) A theoretical model for dispersion of tephra, Arc Volcanism: Physics and Tectonics: 95-116, Terra Scientific Publishing.

以上

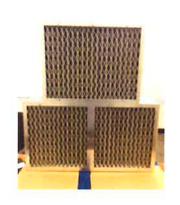
改良型フィルタのフィルタ取替・清掃作業の検証

1 目的

<u>ディーゼル発電機の改良型フィルタのフィルタは、降灰時に取替・清掃を行い繰り返し使用することとしているが、フィルタを繰り返し使用したとしても、24時間の降灰継続に対して、十分な性</u>能が確保されていることを確認する。

2 検証内容

検証試験の内容としては、別紙1の試験装置を用いてフィルタに 671 分間(フィルタの基準捕集 容量到達までの時間)、火山灰を付着させ、フィルタ清掃を1回行う。その後、671 分間火山灰を付 着させたとしても許容差圧に到達しないか確認する。


検証試験におけるフィルタの清掃回数は、実機での作業において、24 時間に1回、取替・清掃を 行う想定であることから、試験での清掃回数を1回とした。清掃方法は、火山灰が付着した面を下 向きにして床に置き、フィルタの側面を手で叩き、フィルタに衝撃を加えることで火山灰を落とす。 衝撃の印加は、1 秒間に2回の頻度にて手で叩き、30 秒間続ける。

清掃作業の条件を表1に、衝撃を印加する面を図1に示す。

<u>なお、層厚変更後においても、フィルタの清掃方法及び清掃時間は従来と同様で行い、表2の試験データが得られているため、これまで設定しているフィルタ清掃時間(60分)の変更はない。</u>

表1 清掃作業の条件

清掃回数	<u>1 II</u>
清掃方法	火山灰が付着した面を下向きにして床に置き、フィルタの側面を手で
	叩き、フィルタに衝撃を加えることで火山灰を落とす。衝撃の印加は、
	1秒間に2回の頻度にて手で叩き、30秒間続ける。

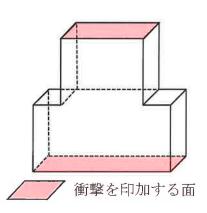


図1 衝撃を印加する

3 検証結果

火山灰を基準捕集容量到達時間 (671 分) まで付着させて確認 (1回実施) したところ、フィルタ清掃前の差圧挙動が大きく変化せずに許容差圧に対して十分余裕があり、これまでと同様に 30 秒間フィルタを手で叩いて火山灰を除去した後のフィルタ清掃後の差圧も回復していることから、24 時間降灰継続時のフィルタ清掃は問題なく実施可能であることを確認できた。

検証結果を表2に示す。

なお、基準捕集容量到達時間は 479 分であるが、火山灰付着時間がより厳しい条件で検証しているため、その結果をもって 24 時間降灰継続時のフィルタ清掃は問題なく実施可能であると判断できる。

表2 高浜発電所で想定する粒径分布を用いた検証結果

清掃回数	<u>状態</u>	<u>差圧</u>
0回目(初期)		<u>2.55mmAq</u>
1 6 5	清掃前	6.83mmAq
1 回目	清掃後	<u>2.65mmAq</u>

以上

(4) 蒸気発生器補給用仮設中圧ポンプ(電動)を用いた蒸気発生器への注水による炉心冷却の成立性について

a. はじめに

火山影響等発生時において、気中降下火砕物濃度を超える降下火砕物濃度を想定した場合、前項「(1) 改良型フィルタのフィルタ取替の着手時間について」の「g. 炉規則第八十三条 第一号ロ(3) の対応におけるディーゼル発電機の機能を期待する時間について」に示すとおり、非常用ディーゼル発電機が降灰到達から 230 分間機能維持するものと設定する。

上記設定を踏まえて、降灰と同時に外部電源喪失が発生し、自動起動した非常用ディーゼル発電機が 230 分間運転継続した後、非常用ディーゼル発電機が停止することにより全交流動力電源喪失が発生した場合でも、蒸気発生器補給用仮設中圧ポンプ (電動) (以下、「仮設中圧ポンプ」という。)により蒸気発生器へ注水することで、炉心の著しい損傷を防止できることについて確認した。

b. 主要解析条件等

第1表に主要な解析条件を示す。また、第1図に対応手順と事象進展を示す。なお、第1表以外の主要解析条件は、原子炉設置変更許可申請書 添付書類十のうち、事故シーケンスグループ「全交流動力電源喪失」における重要事故シーケンス「外部電源喪失+非常用所内交流電源喪失+原子炉補機冷却機能喪失」と同様であり、参考表1に示す。

第1表 主要解析条件

項目	主要解析条件	条件設定の考え方
解析コード	M-RELAP5	新規制基準適合性確認審査で実績のある コードを使用。(主要条件のため記載)
炉心崩壊熱	FP:日本原子力学会推奨値 アクチニド:ORIGEN2 (サイクル末期を仮定)	サイクル末期炉心の保守的な値を設定。燃 焼度が高いと高次のアクチニドの蓄積が 多くなるため長期冷却時の崩壊熱は大き くなる。このため、燃焼度が高くなるサイ クル末期時点を対象に崩壊熱を設定。また 炉心平均評価用崩壊熱を用いる。
起因事象	原子炉手動停止 (解析上の時刻 0 秒)	降灰予報「多量」から 5 分後 (噴火から 15 分後) を設定。
原子炉手動停止後 の対応	高温停止状態維持	原子炉手動停止後、1次系濃縮完了までは高温停止状態を維持。
安全機能の喪失 に対する仮定(1)	外部電源喪失 (原子炉手動停止から 45 分後)	発電所への降灰到達時(噴火から60分後) に外部電源が喪失することを仮定。
安全機能の喪失 に対する仮定 (2)	非常用所内交流動力電源喪失 (原子炉手動停止から 275 分後)	降灰到達から 230 分間の非常用ディーゼル発電機の機能維持を考慮。気中降下物濃度の 2 倍濃度の火山灰による閉塞を想定した場合の非常用ディーゼル発電機の機能維持時間をフィルタ試験結果より保守的に設定。
補助給水機能の喪失 に対する仮定	全交流動力電源喪失と同時に 機能喪失	全交流動力電源喪失により電動補助給水 ポンプが停止。タービン動補助給水ポンプ には期待しない。
2次系強制冷却開始 (主蒸気大気放出弁開)	原子炉手動停止から 345 分後 (全交流電源喪失から 70 分後)	仮設中圧ポンプ準備完了時間に弁の操作時間 10 分を加えた時間を設定。(全交流電源喪失後に操作現場に移動したのち、仮設中圧ポンプ準備完了の連絡を現場で受けてからの手動操作を想定)
仮設中圧ポンプ による蒸気発生器へ の注水	蒸気発生器2次側圧力 3.0MPa[gage]にて注入開始	設備の仕様から設定

c. 解析結果

2次系関係の主要な事象進展を第 2 図から第 5 図に、1次系関係の主要な事象進展を第 6 図から第 8 図に示す。

原子炉の手動停止後、補助給水ポンプによる蒸気発生器への注水及び主蒸気大気放出弁による 1次系温度の維持等により、高温停止状態を維持する。

原子炉の手動停止から 45 分後に発生する外部電源喪失以降も非常用ディーゼル発電機からの給電により高温停止状態を維持する。

原子炉の手動停止から 275 分後に、非常用ディーゼル発電機が機能喪失することにより全交流電源喪失および補助給水機能喪失が発生するが、原子炉の手動停止から 345 分後に主蒸気大気放出弁による 2 次系強制冷却を開始することで蒸気発生器の圧力が低下し、仮設中圧ポンプによる蒸気発生器への注水は原子炉の手動停止から約 361 分後から開始される。それまでの約 86 分間は蒸気発生器への注水が停止するが、仮設中圧ポンプによる注水の効果により、蒸気発生器の水位は、事象進展中、約 19%以上に保たれる。

仮設中圧ポンプによる蒸気発生器への注水により蒸気発生器2次側の保有水を確保できること、 1次系の保有水が十分確保されていること、主蒸気安全弁の作動及び主蒸気大気放出弁による2 次系強制冷却により1次系の自然循環が維持されることから、継続的な炉心冷却が可能であり、 炉心の著しい損傷を防止できる。

以降は、1次系圧力 1.7MPa[gage]にて蓄圧タンク出口弁を閉止し、1次系温度 170° C、1次系圧力 0.7MPa[gage]の状態まで減温・減圧し、安定停止状態に移行する。これらの主要な事象進展と解析結果を第2表に示す。

第2表 主要な事象進展と解析結果

労 る				
解析上の経過	火山噴火からの			
時間 (分)	想定時間(分)			
0	15			
45	60			
975	290			
275	290			
0.45	200			
345	360			
%h 001	ýh 050			
ポソ 301	約 376 			
% 5 200	¥5 40°			
新り 3 9 0	約 405			
	解析上の経過 時間(分) 0			

d. 不確かさの影響評価

c. で実施した解析結果に対して、原子炉設置変更許可申請書 添付書類十と同等の不確かさの 影響評価を実施し、運転員等操作時間及び評価結果に与える影響を確認した。

不確かさの影響評価方法について、参考図1に示す。

不確かさの影響を確認する運転員等操作は、蒸気発生器の水位が回復に転じるまでに実施する操作を対象とする。具体的には、「外部電源喪失後の対応」、「2次系強制冷却開始」、「仮設中圧ポンプによる蒸気発生器への注水」を対象に影響を確認する。

(a) 解析コードにおける重要現象の不確かさの影響評価

本解析に対して不確かさの影響評価を行う重要現象は、「蒸気発生器 2 次側水位変化・ドライアウト」であり、当該重要現象に対する不確かさの影響評価は以下のとおりである。

ア. 運転員等操作時間に与える影響

「蒸気発生器 2 次側水位変化・ドライアウト」は、LOFTL9-3 試験の結果から、蒸気発生器水位の低下に伴う伝熱量の低下傾向を適切に模擬できており、不確かさは十分小さいと評価している。また、蒸気発生器水位を起点としている運転員等操作はないことから、運転員等操作時間に与える影響はない。

イ. 評価結果に与える影響

ア. に記載しているとおり、「蒸気発生器 2 次側水位変化・ドライアウト」は、LOFTL 9-3 試験の結果から、蒸気発生器水位の低下に伴う伝熱量の低下傾向を適切に模擬できており、不確かさは十分小さいと評価している。このため、評価結果に与える影響は十分小さい。

(b) 解析条件の不確かさの影響評価

ア. 初期条件、事故条件及び機器条件

初期条件、事故条件及び機器条件は第1表に示す条件のうち「原子炉手動停止後の対応」及び「2次系強制冷却開始」以外の条件であり、それらの条件設定を設計値等、最確条件(現実的な条件)とした場合の影響を評価する。

① 運転員等操作時間に与える影響

炉心崩壊熱の変動を考慮し、現実的な条件の崩壊熱を用いた場合、解析条件として設定している崩壊熱より小さくなるため、蒸気発生器水位は高めに推移する。しかしながら、蒸気発生器水位を起点としている運転員等操作はないことから、運転員等操作時間に与える影響はない。

起因事象及び安全機能の喪失に対する仮定の変動を考慮し、最確条件の起因事象及び安全機能の喪失に対する仮定を用いた場合、非常用ディーゼル発電機フィルタの捕集容量を現実的に考えると、全交流動力電源喪失発生時刻は想定より遅れる。このように、現実的な条件で起因事象や安全機能の喪失を仮定した場合、事象進展が緩やかになるため、崩壊熱の低下により蒸気発生器水位は高めに推移する。しかしながら、蒸気発生器水位を起点としている運転員等操作はないことから、運転員等操作時間に与える影響はない。

補助給水機能の喪失については、全交流動力電源喪失発生と同時に電動補助給水ポンプは 停止し、また、タービン動補助給水ポンプに期待しないことは前提条件であることから、不 確かさはない。なお、さらなる考察のため、補助給水機能の喪失に対する仮定の変動を考慮 し、仮にタービン動補助給水ポンプがある期間使用できる場合も考えると、その期間は補助 給水が停止しないことから、事象進展が緩やかになるため、蒸気発生器水位は高めに推移 する。しかしながら、蒸気発生器水位を起点としている運転員等操作はないことから、運転 員等操作時間に与える影響はない。

仮設中圧ポンプによる蒸気発生器への注水については、設備仕様から設定していることから不確かさはない。このため、運転員等操作時間に与える影響はない。

② 評価結果に与える影響

炉心崩壊熱の変動を考慮し、現実的な条件の崩壊熱を用いた場合、解析条件として設定している崩壊熱より小さくなり、蒸気発生器水位は高めに推移するため、評価結果の余裕は大きくなる。

起因事象及び安全機能の喪失に対する仮定の変動を考慮し、最確条件の起因事象及び安全機能の喪失に対する仮定を用いた場合、非常用ディーゼル発電機フィルタの捕集容量を現実的に考えると、全交流動力電源喪失発生時刻は想定より遅れる。このように、現実的な条件で起因事象や安全機能の喪失を仮定した場合、事象進展が緩やかになることにより、崩壊熱の低下により蒸気発生器水位は高めに推移するため、評価結果の余裕は大きくなる。

補助給水機能の喪失については、全交流動力電源喪失発生と同時に電動補助給水ポンプは停止し、また、タービン動補助給水ポンプに期待しないことは前提条件であることから、不確かさはない。なお、さらなる考察のため、補助給水機能の喪失に対する仮定の変動を考慮し、仮にタービン動補助給水ポンプがある期間使用できる場合も考えると、その期間は補助給水が停止しないことから、事象進展が緩やかになることにより、蒸気発生器水位は高めに推移するため、評価結果の余裕は大きくなる。

仮設中圧ポンプによる蒸気発生器への注水については、設備仕様から設定していることから不確かさはない。このため、評価結果に与える影響はない。

イ. 操作条件

操作条件の不確かさとして、解析コード及び解析条件の不確かさが運転員等操作時間に与える影響並びに解析上の操作開始時間と実際に見込まれる操作開始時間等の操作時間の変動を考慮して、要員の配置による他の操作に与える影響及び評価結果に与える影響を確認する。

① 要員の配置による他の操作に与える影響

「原子炉手動停止後の対応(運転員操作)」に対して、「仮設中圧ポンプによる蒸気発生器への注水(運転員操作)」及び「2次系強制冷却開始(運転員操作)」は全交流動力電源喪失発生を起点に切り替わる操作であり、作業は重複しないことから、要員の配置による他の操作に与える影響はない。また、「仮設中圧ポンプによる蒸気発生器への注水(運転員操作・緊急安全対策要員操作)」は、「2次系強制冷却開始(運転員操作・緊急安全対策要員操作)」とは異なる要員による操作であり、作業は重複しないため、要員の配置による他の操作に与える影響はない。

② 評価結果に与える影響

「原子炉手動停止後の対応」については、原子炉手動停止の発生を起点とし、全交流動力 電源喪失の発生までの間高温停止状態を維持する操作であることから、評価結果に与える 影響はない。

「2次系強制冷却開始」及び「仮設中圧ポンプによる蒸気発生器への注水」については、解析上の開始時間に対して実際に見込まれる開始時間は早くなる。具体的には、仮設中圧ポンプの準備操作完了を受けて、主蒸気大気放出弁開操作を開始し、主蒸気大気放出弁の開放による2次系強制冷却開始後、蒸気発生器2次側が既定の圧力まで減圧されれば、仮設中圧ポンプによる蒸気発生器への注水が開始されるが、仮設中圧ポンプの準備操作及び主蒸気大気放出弁開操作のそれぞれの操作時間は実際には短くなることを訓練等で確認していることから、2次系強制冷却開始時間は、解析上の想定に対して早くなる。このため、蒸気発生器2次側減圧が早まり、仮設中圧ポンプから蒸気発生器への注水が早期に開始されることから、評価結果の余裕は大きくなる。

(c) 操作時間余裕

不確かさの影響を確認する運転員等操作のうち「原子炉手動停止後の対応」については、原子炉手動停止を起点とし、全交流動力電源喪失の発生までの間、高温停止状態を維持する操作であることから、十分な操作時間余裕がある。

また、「2次系強制冷却開始」については、解析コード及び解析条件の不確かさによる操作開始時間への影響がないこと、解析上の操作開始時間として電源系統切替に要する時間 60 分と主蒸気大気放出弁開操作時間 10 分を設定しており、実際に見込まれる操作開始時間は早くなる (注1) ことから、操作が遅れた場合の時間余裕を確認する必要はないが、どの程度の操作時間余裕があるかを把握する観点から、評価結果に対して、対策の有効性が確認できる範囲内での操作時間余裕を確認する。

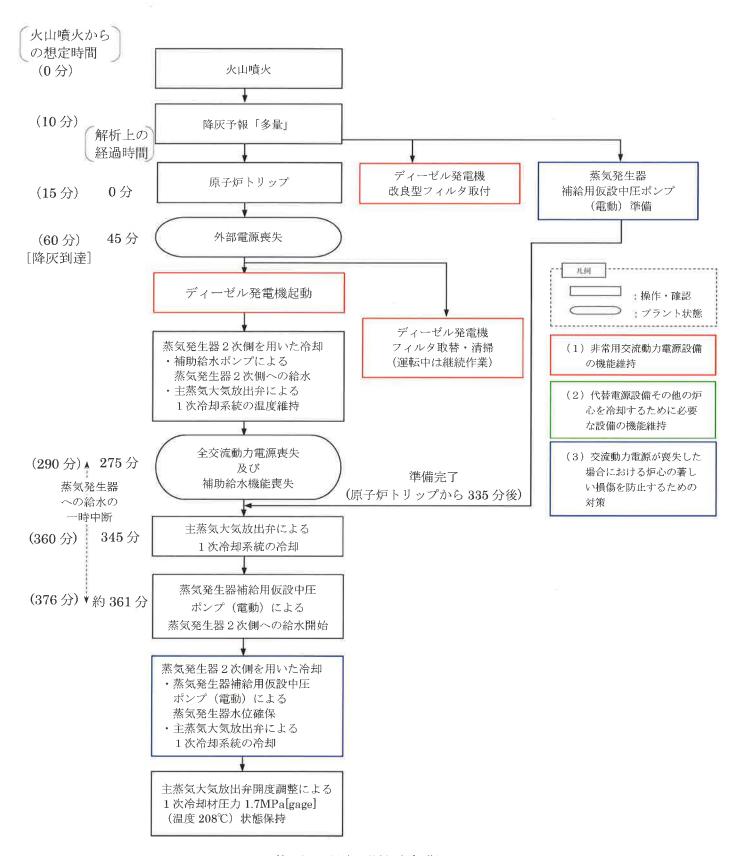
(注1):電源系統切替が含まれる「電源車による給電準備及び給電開始」作業の想定時間 190 分に対して実績 164 分であること、および、弁の中間開度での蒸気放出に解析上期待していないことから、実際の操作開始は早まるとしている。

「2次系強制冷却開始」に対する操作時間余裕としては、当該操作が遅れることにより主蒸気安全弁からの蒸気放出が継続することを仮定し、解析上の蒸気発生器の最低水位である約19%に相当する液相保有水である約15tonが、主蒸気安全弁から放出される蒸気として全て消費される時間を算出して概算する。

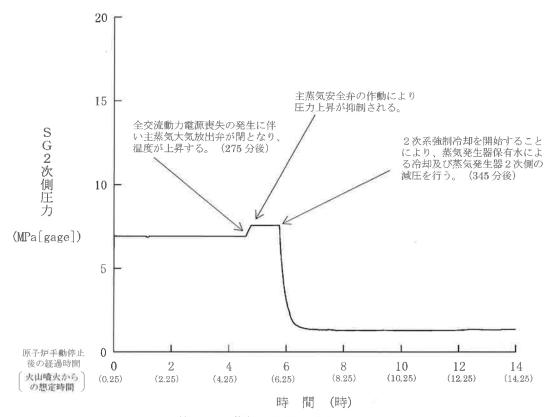
第4図に示す蒸気発生器保有水量(液相)の時間変化より、主蒸気安全弁動作時のSG保有水量低下率は約0.32ton/minであることから、余裕時間は以下の通りとなる。

【評価結果】

約 15ton ÷ 約 0.32ton/min = 約 47 分

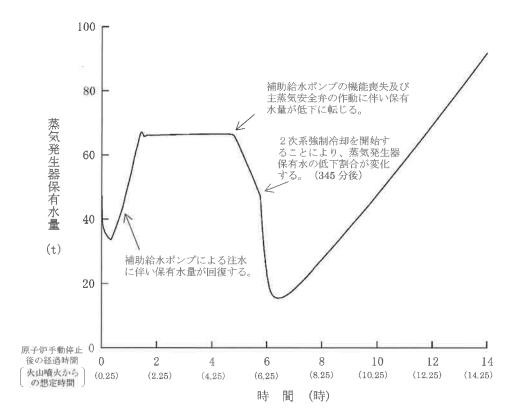

評価の結果、操作時間余裕として全交流電源喪失から 70 分後に実施する「2次系強制冷却の開始」に対して、約 47 分の時間余裕が確保できる。

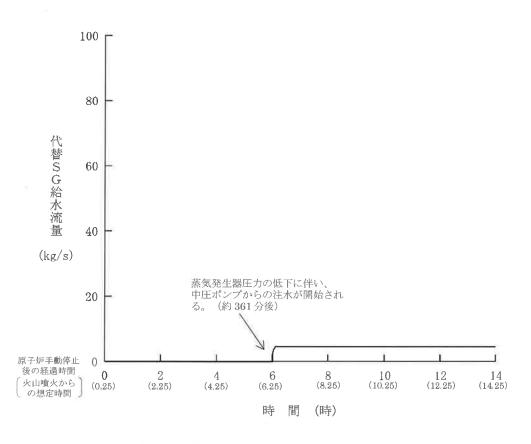
また、「仮設中圧ポンプによる蒸気発生器への注水」に関しては、仮設中圧ポンプの準備完了後に「2次系強制冷却開始」を行うことから、前述の「2次系強制冷却開始」にかかる時間余裕約47分は仮設中圧ポンプの準備にかかる時間余裕としても扱うことができる。

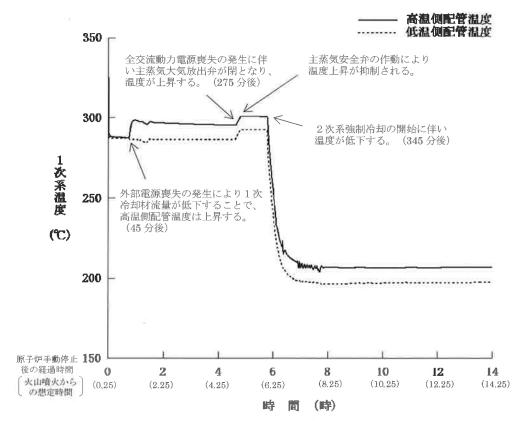

e. まとめ

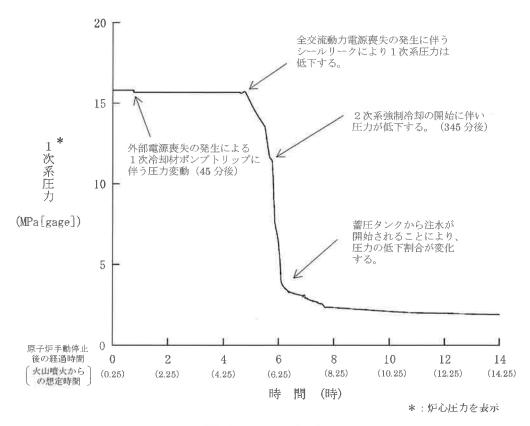
降灰予報「多量」を受けて原子炉を手動停止させた後、降灰到達により外部電源喪失が発生し、その230分後に全交流動力電源喪失および補助給水機能喪失に至るものと想定した場合でも、仮設中圧ポンプによる蒸気発生器への注水により蒸気発生器2次側の保有水を確保できること、1次系の保有水が十分確保されていること、主蒸気安全弁の作動及び主蒸気大気放出弁による2次系強制冷却により1次系の自然循環が維持されることから、継続的な炉心冷却が可能であり、炉心の著しい損傷を防止できる。また、解析コード及び解析条件の不確かさを考慮した場合でも、蒸気発生器水位に対する余裕が大きくなる。

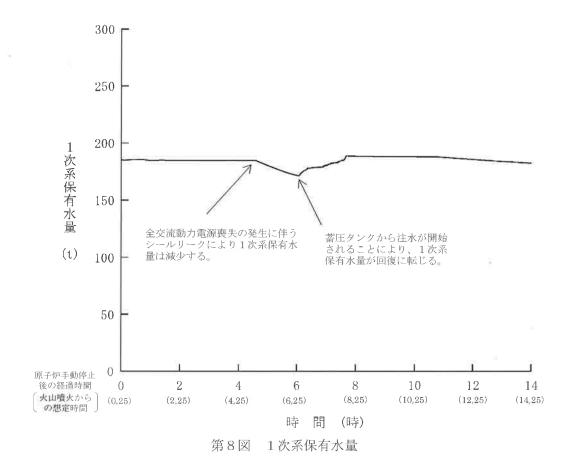

このため、仮設中圧ポンプを用いた蒸気発生器への注水により、炉心の著しい損傷を防止できることを確認した。


第1図 対応手順と事象進展


第2図 蒸気発生器2次側圧力


第3図 蒸気発生器水位(広域)


第4図 蒸気発生器保有水量(液相)


第5図 蒸気発生器2次側への注水流量

第6図 1次系温度(高温側、低温側)

第7図 1次系圧力

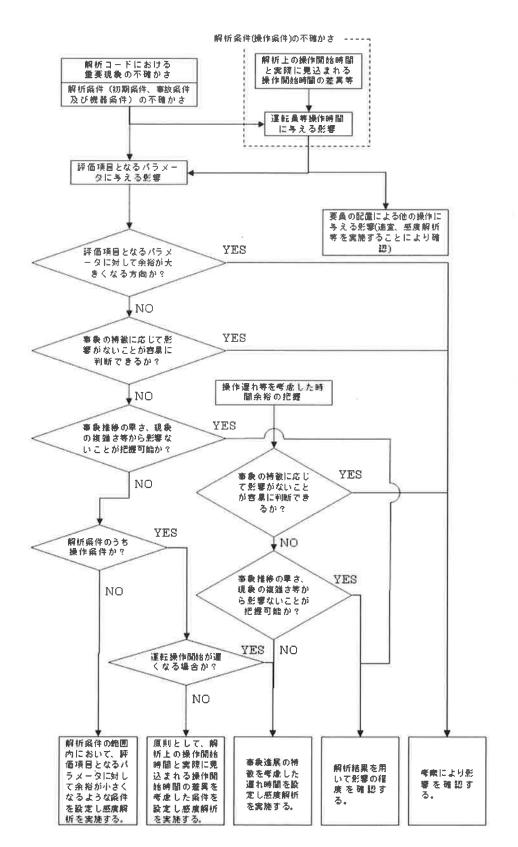
- 161 -

参考表 1 外部電源喪失+非常用所內交流電源喪失+原子炉補機冷却機能喪失の解析条件(1/3)*

	項目	主要解析条件	条件設定の考え方
	解析コード	M-RELAP5	本重要事故シーケンスの重要現象である炉心における沸 騰・ボイド率変化、気液分離・対向流等を適切に評価す ることが可能であるコード。
	炉心熱出力 (初期)	100%(2.432MWt)×1.02	評価結果を厳しくするように、定常誤差を考慮した上限 値として設定。炉心熱出力が大きいと崩壊熱が大きくな り、1次冷却材の蒸散量及び燃料被獲管温度の評価の観 点から厳しい設定。
	1 次冷却材圧力 (初期)	15.41+0.21MPa[gage]	評価結果を厳しくするように、定常誤差を考慮した上限値として設定。1次冷却材圧力が高いと2次冷却系強制冷却による減温、減圧が遅くなるとともに、蓄圧注入のタイミングが遅くなり、比較的低温の1次冷却材が注水されるタイミングが遅くなることから、厳しい設定。
初期条件	1 次冷却材平均温度 (初期)	305.7℃+2.2℃	評価結果を厳しくするように、定常誤差を考慮した上限値として設定。1次冷却材平均温度が高いと2次冷却系強制冷却による減温、減圧が遅くなるとともに、蓄圧注入のタイミングが遅くなり、比較的低温の1次冷却材が注水されるタイミングが遅くなることから、厳しい設定。
	炉心崩 壞熱	FP: 日本原子力学会推奨値 アクチニド: ORIGEN2 (サイクル末期を仮定)	サイクル末期炉心の保守的な値を設定。燃焼度が高いと 高次のアクチニドの蓄積が多くなるため、長期冷却時の 崩壊熱は大きくなる。このため、燃焼度が高くなるサイ クル末期時点を対象に崩壊熱を設定。
	蒸気発生器 2次側保有水量 (初期)	51t(1 基当たり)	設計値

※:原子炉設置変更許可申請書 添付書類十から抜粋した

参考表 1 外部電源喪失+非常用所內交流電源喪失+原子炉補機冷却機能喪失の解析条件(2/3)*


	項目	主要解析条件	条件設定の考え方
	起因事象	外部電源喪失	外部電源喪失が発生するものとして設定。
	安全機能の喪失 に対する仮定	非常用所內交流電源喪失 原子炉補機冷却機能喪失	非常用所内交流電源が喪失し、原子炉補機冷却機能喪失 するものとして設定。
事故条	外部電源	外部電源なし	起因事象として、外部電源が喪失するものとしている。
件:	R C P シール部からの 漏えい率 (初期)	定格圧力において 約 4.8m³/h (21gpm) (1 台当たり) 相当となる口径 約 0.3cm (約 0.13 インチ) (1 台当たり) (事象発生時からの漏えいを想定)	WCAP-15603 のうちシールが健全な場合の漏えい率の値 として設定。
重大	原子炉トリップ信号	1次冷却材ポンプ電源電圧低 (定格値の 65%、応答時間 1.2 秒)	トリップ設定値に計装誤差を考慮した低い値として解析 に用いるトリップ限界値を設定。検出遅れや信号発信遅 れ時間等を考慮して、応答時間を設定。
市故等	タービン動補助給水	事象発生の 60 秒後に注水開始	タービン動補助給水ポンプの作動時間は、信号遅れとポ ンプの定速達成時間に余裕を考慮して設定。
対 策 に	ボンプ	75m³/h (蒸気発生器 3 基合計)	タービン動補助給水ポンプ1台運転時に、3基の蒸気発 生器へ注水される流量から設定。
関連する	主蒸気大気放出弁容量	定格ループ流量(ループ当たり)の 10%(1個当たり)	定格運転時において、設計値として各ループに設置している主蒸気大気放出弁1個当たり定格主蒸気流量(ループ当たり)の約10%を処理できる流量として設定。
る機器	アキュムレータ保持圧力	4.04MPa [gage] (最低保持圧力)	炉心への注水のタイミングを遅くする最低の圧力として 設定。
条件	アキュムレータ保有水量	29.0m³ (1 基当たり) (最低保有水量)	最低の保有水量を設定。
71	漏えい停止圧力	0.83MPa[gage]	1次冷却材ポンプ封水戻りラインに設置している逃がし 弁の閉止圧力を基に設定。

※:原子炉設置変更許可申請書 添付書類十から抜粋した

参考表 1 外部電源喪失+非常用所内交流電源喪失+原子炉補機冷却機能喪失の解析条件(3/3)*

	項目	主要解析条件	条件設定の考え方
	2 次冷却系強制冷却開始(主蒸気大気放出弁開)	事象発生から 40 分後	運転員等操作時間として、事象発生の検知及び判断に 10分、主蒸気大気放出弁の現場開操作に30分を想定し て設定。
	交流電源確立	事象発生の 24 時間後	_
重大事故等対策に関連す	1 次冷却材温度 208℃ (約 1.7MPa[gage]) 到達時 及び 1 次冷却材温度 170℃ (約 0.7MPa[gage]) 到達時		208℃については、蒸気発生器 2 次側冷却による 1 次冷却系の自然循環を阻害するおそれがある窒素の混入を防止するために、アキュムレータから 1 次冷却系に窒素が混入する圧力である約 1.2MPa[gage]に対して、0.5MPaの余裕を考慮して設定。また、170℃については、余熱除去系への切替え等を考慮して設定。
	アキュムレータ出口弁閉止	1 次冷却材圧力約 1.7MPa[gage]到達 及び代替交流電源確立(24 時間) から 10 分後	運転員等操作時間として、アキュムレータ出口弁の駆動 源である代替交流電源確立の検知及び判断に 10 分を想 定し設定。
る操作条件	2 次冷却系強制冷却再開 (主蒸気大気放出弁開)	アキュムレータ出口弁閉操作から 10 分後	運転員等操作時間として、主蒸気大気放出弁の調整操作 に 10 分を想定し設定。
	補助給水流量の調整	蒸気発生器狭域水位内	運転員操作として、蒸気発生器狭域水位内に維持するように設定。

※:原子炉設置変更許可申請書 添付書類十から抜粋した

参考図1 解析コード及び解析条件の不確かさの影響評価フローについて**

※: 新規制基準適合性確認審査 安全審査資料 「重大事故等対策の有効性評価」添付資料 1.7.1 から抜粋した 以 上

4. ディーゼル発電機の改良型フィルタ試験結果に対する考察

(1) 概 要

高浜1,2号炉の改良型フィルタ試験結果では、許容差圧の到達時間が突出して長くなっていることから、その要因を他プラントのフィルタ試験結果から考察する。

(2) フィルタ試験の結果

これまで確認しているフィルタ試験の結果は、下表のとおりである。

プラント名	層厚 (cm)	火山灰 濃度 (g/m³)	許容差圧 (mmAq)	許容差圧 到達時間 (分)	フィルタ 流速 (m/s)	火山灰の 粒径分布
高浜1,2号炉※1	27	3.78		777	2.3(遅い)	小粒径(少)
美浜 3 号炉 ※ 1	22	3.91		256	2.3(遅い)	小粒径(多)
高浜3,4号炉※2	25	3.50		114	3.3(速い)	小粒径(少)
大飯3,4号炉※2	25	3.60		126	2.8(速い)	小粒径(少)

※1 見直し後の層厚にて確認したフィルタ試験のデータ

※2 設置変更許可申請時の層厚にて、自主的に確認したフィルタ試験のデータ

(3) フィルタ試験結果からの考察

a. 火山灰の条件が同じプラントの比較(高浜1, 2号炉と高浜3, 4号炉)

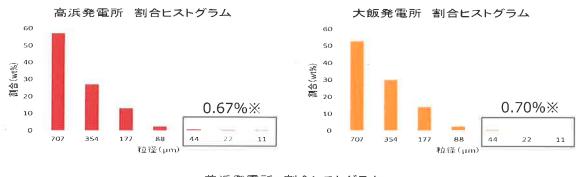
火山灰の条件が同じ高浜1,2号炉と高浜3,4号炉の許容差圧到達時間は、高浜3,4号炉の114分に対して、高浜1,2号炉は777分と長くなっている。

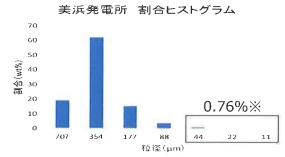
この要因は、フィルタ流速が速いと火山灰がフィルタに目詰まりしやすいことから、フィルタ流速の違いで許容差圧到達時間が長くなっているものと考えられる。

b. フィルタ流速が同じプラントの比較(高浜1,2号炉と美浜3号炉)

フィルタ流速が同じ高浜1,2号炉と美浜3号炉の許容差圧到達時間は、美浜3号炉の 256分に対して、高浜1,2号炉は777分と長くなっている。


この要因は、小粒径の火山灰が多いとフィルタが目詰まりしやすいことから、火山灰の 粒径分布の違いで許容差圧到達時間が長くなっているものと考えられる。また、高浜1, 2号炉は、小粒径の火山灰が少なく、大粒径の火山灰が多いことから、フィルタに到達し ない火山灰があることも考えられる。


c. フィルタ流速と小粒径火山灰の割合の関係(図1参照)


フィルタ流速と小粒径火山灰の割合の関係では、流速が速く小粒径の火山灰の割合が高くなると、フィルタは閉塞しやすく、流速が遅く小粒径火山灰の割合が低くなると、フィルタは閉塞しにくい傾向にある。

高浜1,2号機は、流速が遅く小粒径火山灰の割合が低く、フィルタが閉塞しにくい領域にあることから、許容差圧到達時間が長くなっているものと考えられる。

枠囲みの範囲は機密に係る事項ですので公開することはできません。

※改良型フィルタの仕様は、300 メッシュ(開き目 $45\,\mu\mathrm{m}$ 程度)であるため、数値シミュレーション(Tephra2) 結果の粒径分布による $44\,\mu\mathrm{m}$ 以下の小粒径割合となる。

図1 フィルタ流速と小粒径火山灰の割合の関係

以上

5. 層厚変更に伴い見直された運用の保安規定への影響確認

(1) 概 要

層厚変更に伴い気中降下火砕物濃度が増加することを踏まえ、ディーゼル発電機の改良型 フィルタの性能試験にて許容差圧の到達時間を確認した結果、運用に係わる時間を見直した ため、バックフィット保安規定の添付2への影響を確認する。

- (2) バックフィット保安規定の添付2への影響確認
 - a. 火山影響等発生時の「手順書の整備」

火山影響等発生時における「手順書の整備」を定めているが、バックフィット保安規定では、降灰前に電源車を移動する場所をより頑健な燃料取扱建屋内としているため、層厚変更に伴う手順の見直しは必要ない。

なお、バックフィット保安規定の記載内容は、以下のとおりである。

<バックフィット保安規定の抜粋>

- 3 火山影響等、降雪発生時
 - 3.4 手順書の整備
 - g. 蒸気発生器補給用仮設中圧ポンプ(電動)を用いた炉心の著しい損傷を 防止するための対策

火山影響等発生時において、外部電源喪失およびディーゼル発電機が 機能喪失し、かつタービン動補助給水ポンプが機能喪失した場合は、蒸 気発生器補給用仮設中圧ポンプ(電動)を使用し、蒸気発生器2次側に よる1次冷却系の冷却を行う。

(a) 蒸気発生器補給用仮設中圧ポンプ(電動)の準備作業 各課(室)長は、1号炉および2号炉については、電源車^{×2}を降 下火砕物の影響を受けることのない燃料取扱建屋内へ、3号炉およ び4号炉については、電源車^{×3}を降下火砕物の影響を受けることの ない燃料取扱建屋内へそれぞれ移動し、準備作業を行う。

i. 通信連絡設備に関する対策

火山影響等発生時における通信連絡について、降下火砕物の影響を受けない有線系の設備を複数手段確保することにより機能を確保する。ディーゼル発電機の機能が喪失した場合においては、1号炉および2号炉については、燃料取扱建屋内に配置した電源車*2から、3号炉および4号炉については、3号炉および4号炉タービン建屋内に配置した電源車*4からそれぞれ給電する。

(a) 電源車^{※2}および電源車^{※4}の準備作業

各課(室)長は、1号炉および2号炉については、電源車 *2 を降下火砕物の影響を受けることのない燃料取扱建屋内へ、3号炉および4号炉については、電源車 *4 を降下火砕物の影響を受けることのない3号炉および4号炉タービン建屋内へそれぞれ移動し、準備作業を行う。

b. 火山影響等発生時の対策における主な作業

火山影響等発生時の対策における主な作業では、対応手段及び想定時間等が定められており、層厚変更に伴い影響があるのは「フィルタ取替・清掃作業」、「電源車からの給電作業」となる。(下表参照)

層厚変更に伴う気中降下火砕物濃度の増加を踏まえたフィルタ試験結果から、「フィルタ取替の着手時間」を 720 分から 450 分に、「ディーゼル発電機の機能喪失時間」を 400 分から 230 分に見直しており、図 1 「火山影響等発生時における対応のタイムチャート(高浜 1, 2 号炉)」では、作業に着手する時間の変更はあるが、火山影響等発生時の対策における主な作業の想定時間の見直しは必要ない。

<バックフィット保安規定の抜粋>

火山影響等発生時の対策における主な作業

作業 手順 No	対応手段	対象号炉	要員	要員数	想定時間
	ディーゼル発電機への改良型フィルタ取付	各号炉	緊急安全対策要員	8	50 分
e (a)	海水ポンプ除塵フィルタの取り外し	1号炉および 2号炉	緊急安全対策要員	2 (1号炉および 2号炉合計)	50 分
e (b)	ディーゼル発電機改良型フィルタのフィルタ取替	各号炉	緊急安全対策要員	4	20 分
e (D)	ディーゼル発電機改良型フィルタのフィルタ清掃*8	各号炉	緊急安全対策要員	2	60 分
g (a)	電源車*2および電源車(可搬式代替低圧注水ポンプ用) *5の移動	1号炉および 2号炉	緊急安全対策要員	5 (1 号炉および 2 号炉合計)	50 分
j (a)	電源車 ^{※3} 、電源車 ^{※4} 、電源車(可搬式代替低圧注水ポンプ用) ^{※6} および電源車(緊急時対策所用) ^{※7} の移動	型フィルタ取付 各号炉 緊急安全対策要員 1号炉および 2号炉 1号炉および 2号炉 1号炉および 2号炉 1号炉および 4号炉 緊急安全対策要員 1号炉および 4号炉 1号炉および 2号炉 1号炉および 2号炉 1号炉および 4号炉 1号炉および 4号炉 1号炉および 4号炉 1号炉および 4号炉 1号炉および 4号炉 1号炉および 2号炉 運転員等 (中央制御室、現場) 1号炉および 2号炉 運転員等 (中央制御室、現場) 1号炉および 2号炉 運転員等 (中央制御室、現場) 1号炉および 2号炉 運転員等 (中央制御室、現場) 1号炉および 2号炉 1号がおよび 2号炉 1号が 2号が 2号が 2号が 2号が 2号が 2号が 2号が 2号が 2号が 2	4 (3号炉および 4号炉合計)	50 分	
g (a) i (a)	蒸気発生器補給用仮設中圧ポンプ(電動)の準備作業 ^{※®} 電源車の準備作業 ^{※®} (給電用ケーブル敷設・接続)		緊急安全対策要員	4	80 分
1 (a)	蒸気発生器補給用仮設中圧ポンプ(電動)の準備作業 (ホース接続・系統構成)	2574	緊急安全対策要員	4	97分
g (a)	蒸気発生器補給用仮設中圧ポンプ (電動) の準備作業 ^{×10} (給電用ケーブル敷設・接続)		緊急安全対策要員	2	80 分*11
g (u/	(船電用ケーフル敷設・接続) 3号炉および 表気発生器補給用仮設中圧ポンプ (電動) の準備作業 4号炉 緊急安全対策要員 緊急安全対策要員	5	60 分		
h (a)	緊急時対策所の居住性確保(仮設フィルタ取付)	炉、3号炉お	緊急安全対策要員	2 (1号炉、2号 炉、3号炉およ び4号炉合計)	50 分
	電源車*2からの給電開始 (不要負荷切り離し・受電操作)			3	60 分
i (b)	電源車*4からの給電開始*10 (給電用ケーブル敷設・接続)		緊急安全対策要員	4 (3 号炉および 4 号炉合計)	60 分
	電源車 ^{※4} からの給電開始 (不要負荷切り離し・受電操作)	4.2%-		3	90 分
			緊急安全対策要員	2 (1 号炉および 2 号炉合計)	40 分
k (a)	消火水バックアップタンクから復水タンクへの補給	2号炉		3 (1号炉および 2号炉合計)	10 //
(4)	このでは、アファックでは、アファックTMやロ	3号炉および	緊急安全対策要員	2 (3 号炉および 4 号炉合計)	40 分
		4号炉	運転員等 (中央制御室、現場)	3 (3 号炉および 4 号炉合計)	10 /3

※2:1号炉および2号炉 蒸気発生器補給用仮設中圧ポンプ(電動)および通信連絡設備への給電用、※3:3号炉および4号炉 蒸気発生器補給用仮設中圧ポンプ(電動)への給電用、※4:3号炉および4号炉 通信連絡設備(緊急時対策所を含む)への給電用、※5:電源車^{※2}への燃料補給用、※6:電源車^{※3}への燃料補給用、※6:電源車^{※3}への燃料補給用、※8:1班2名で2班が交代して実施する。、※9:可搬式排気ファンおよび仮設ダクト等設置作業は、1箇所あたり上表とは別に緊急安全対策要員4名が60分以内、※10:可搬式排気ファンおよび仮設ダクト等設置作業は、1箇所あたり上表とは別に緊急安全対策要員6名が40分以内、※11:屋外作業は50分以内で実施する。

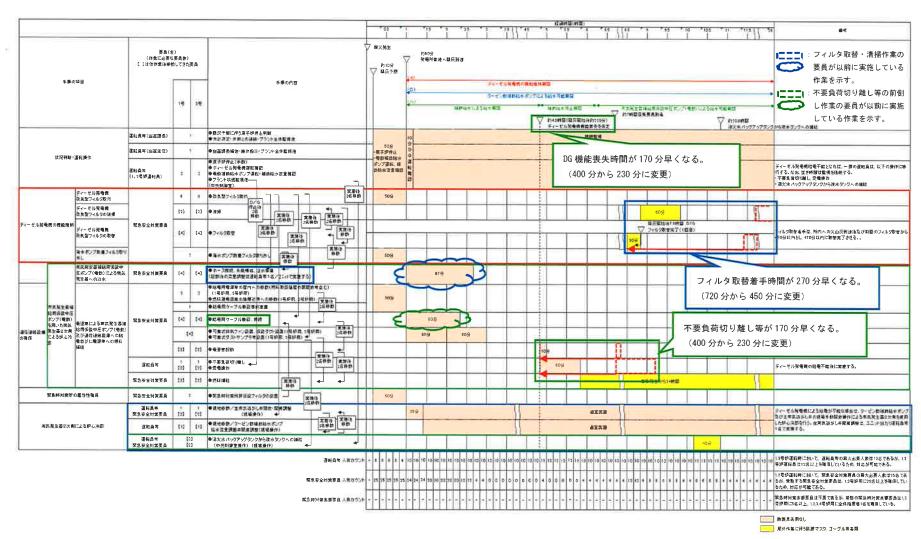


図1 火山影響等発生時における対応のタイムチャート (高浜1,2号炉)

6. 海水ポンプ及び海水ストレーナに対する気中降下火砕物濃度の影響について

(1) 概 要

海水ポンプ及び海水ストレーナに対する降下火砕物の影響として、新規制基準適合性審査 時において荷重、閉塞、腐食、磨耗による影響評価を実施しているが、実用炉規則の改正を 踏まえ気中降下火砕物濃度を考慮した影響評価を実施する。

(2) 気中降下火砕物濃度に対して評価が必要な影響因子

海水ポンプ及び海水ストレーナに対する降下火砕物による影響因子(荷重、閉塞、腐食、 磨耗)について、新規制基準適合性審査時の評価結果を踏まえ、気中降下火砕物濃度を考慮 した評価を行う。

a. 海水ポンプ (海水ポンプモータに関する評価はb. に記載)

① 荷重

【新規制基準適合性審査時における評価】

設置許可において設定した層厚「<u>27cm</u>」に積雪及び風を考慮して荷重評価を行い、問題ないことを評価している。

【気中降下火砕物濃度を考慮した評価】

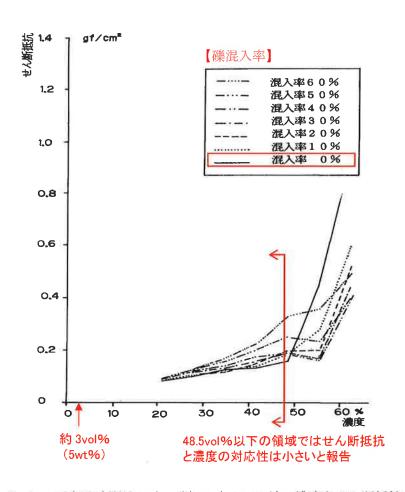
想定する降下火砕物の層厚「27cm」は変わらないことから、荷重に対する評価に影響はない。

② 閉塞

【新規制基準適合性審査時における評価】

設置許可において設定した降下火砕物の粒径「1mm以下」に対し、海水ポンプ軸受の 間隙(異物逃がし溝)が降下火砕物の粒径より大きいことから閉塞するおそれはない。

【気中降下火砕物濃度を考慮した評価】


想定する降下火砕物の粒径「1mm以下」は変わらないことから、閉塞に対する評価に 影響はない。

なお、海水ポンプについては、気中降下火砕物濃度を考慮すると、短期間で降下火砕物が海面に降ることにより、海水中の降下火砕物濃度が上昇する可能性が懸念されるが、以下の理由により閉塞に対する評価に影響はない。

- ・降下火砕物は、粒径分布に関わらず、海水との密度差により海水面に浮くか又は 短時間で海底に沈むため、海水中の降下火砕物濃度が極めて高くなることは考え にくい。
- ・海水中の降下火砕物の性質(沈むものの割合、沈降速度等)は粒径により変化するものと考えられるが、想定する層厚「 $27\,\mathrm{cm}$ 」に対して海水ポンプ室底面は十分な深さ(1 号炉: $9.5\,\mathrm{m}$ 、2 号炉: $9.6\,\mathrm{m}$)があり、仮に降下火砕物が海水中に均一に分散したとしても、濃度は $5\,\mathrm{wt}$ %程度である。(表-1 参照)
- ・層厚増加に伴い濃度が 2wt%程度から 5wt%程度に増加するが、図-1で示す火山 灰の容積濃度とせん断抵抗の関係図では、火山灰濃度が 5wt%程度の領域で、せん 断応力の著しい増加はないことから、火山灰層厚の増加に伴う海水の著しい粘性 増加は起こらない。したがって、火山灰層厚の増加が海水ポンプの運転に影響を 及ぼすことはない。
- ・海水ポンプ室へ入る降下火砕物は、取水口から海水取水トンネルを通って海水ポンプ室へ流入するものが想定されるが、海水取水トンネルの形状により、海水ポンプ室外の海面へ降った降下火砕物が海水ポンプ室へ多量流入する可能性は低い。 (海水ポンプ室及び海水取水トンネルの形状を図—2に示す。)
- ・海水ポンプ吸い込み口は海水ポンプ室底面より 1m 以上高いレベルにある。したがって、降下火砕物が海水ポンプ室底面に堆積しても海水ポンプの取水に影響を及ぼすことはない。

表-1 層厚と海水中の濃度

プラント	見直し後 の層厚	海水ポンプ 底面の深さ	濃度	【参考】 層厚見直し前 の濃度
高浜1,2号炉	27 c m	9.5m	5wt%	2wt%

<u>図-1 Taniguchi (1994) ※における礫混入火山灰泥流の濃度とせん断抵抗の関係</u> ※谷口 義信 (1994): 桜島火山灰泥流のレオロジー特性、新砂防、Vol. 47 (195)、P28-P35

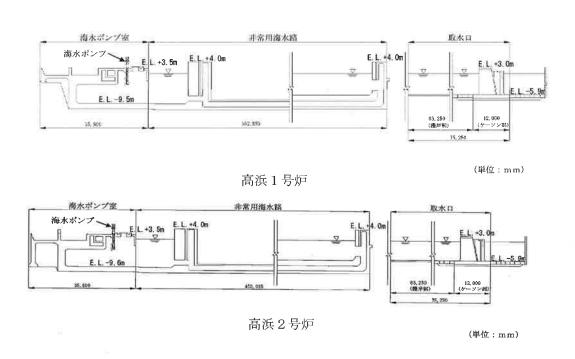


図-2 海水ポンプ室及び海水取水トンネルの形状

③ 腐食

【新規制基準適合性審査時における評価】

海水ポンプは防汚塗装を施しており、降下火砕物の付着による化学的影響(腐食)はない。

【気中降下火砕物濃度を考慮した評価】

気中降下火砕物濃度を考慮しても、腐食に対する評価に影響はない。

④ 磨耗

【新規制基準適合性審査時における評価】

設置許可において設定した降下火砕物の粒径「1mm以下」に対し、海水ポンプ軸受には、異物逃がし溝を設けており、火山灰による軸固着等には至らない。

【気中降下火砕物濃度を考慮した評価】

降下火砕物は、砂より硬度が低くもろいことから、短期での磨耗への影響はない。 なお、海水ポンプについては、気中降下火砕物濃度を考慮すると、短期間で降下火 砕物が海面に降ることにより、海水中の降下火砕物濃度が上昇する可能性が懸念され るが、以下の理由により磨耗に対する評価に影響はない。

- ・海水ポンプは通常運転時においても磨耗を引き起こす要因となりうる砂を含む海水を通水しながら運転しており、特に台風等の強風時は海底の砂を多量に含んだ海水を通水しているが、海水ポンプの磨耗によるトラブルは発生していない。
- ・降下火砕物は海水との密度差により海水面に浮くか又は短時間で海底に沈むため、海水中の降下火砕物濃度が極めて高くなることは考えにくい。したがって、短期(24 時間)でポンプの運転に支障をきたすような磨耗が発生することは考えにくい。

b. 海水ポンプモータ

① 荷重

【新規制基準適合性審査時における評価】

設置許可において設定した層厚「<u>27cm</u>」に積雪及び風を考慮して荷重評価を行い、 問題ないことを評価している。

【気中降下火砕物濃度を考慮した評価】

想定する降下火砕物の層厚「<u>27cm</u>」は変わらないことから、荷重に対する評価に影響はない。

② 閉塞

【新規制基準適合性審査時における評価】

設置許可において設定した降下火砕物の粒径「1mm以下」に対し、電動機は外気を屋外カバー底面の吸気口より下から吸気するため火山灰が入りにくい構造であり、屋外

カバー内部の通風路は粉塵、雨、雪等が内部に侵入しにくいように冷却風を曲折、急変させる内部構造としている。海水ポンプモータの構造を<u>図-3</u>に示す。火山灰の密度は比較的大きく、水分を含んだ火山灰はさらに密度が増すため、構造的にモータ内部まで侵入することは考えにくい。

また、海水ポンプモータ内部への異物の侵入を防止するため、屋外カバー内には除塵フィルタが設置されており、粒径が約 5μ mより大きい粒子(海水・塩分等を含んだ塵埃等)を捕集できる性能を有している。なお、冷却風の取り込み量や目詰まりやすさを考慮し、約 5μ mに設定している。

このため、ほとんどの火山灰については除塵フィルタにより侵入を阻止することが可能であり、除塵フィルタを通過した細かな粒径の火山灰が海水ポンプモータ内部へ侵入した場合でも、海水ポンプモータ内部の通風路(回定子コアと回転子コア間1.2mm、コアダクト間10mm)が閉塞することはない。海水ポンプモータの通風路を<u>図ー4</u>に示す。

なお、海水ポンプモータ上下の軸貫通部についても、軸受油槽で密封されていることから軸貫通部からモータ内部に火山灰が侵入することはない。

【気中降下火砕物濃度を考慮した評価】

想定する降下火砕物の粒径「Imm以下」は変わらないが、海水ポンプモータについては、除塵フィルタの目詰まりを考慮して除塵フィルタを取り外すこととする。除塵フィルタを取り外しても、短期間であれば降下火砕物による影響を受けることはない。詳細評価は表-2に記載する。

③ 腐食

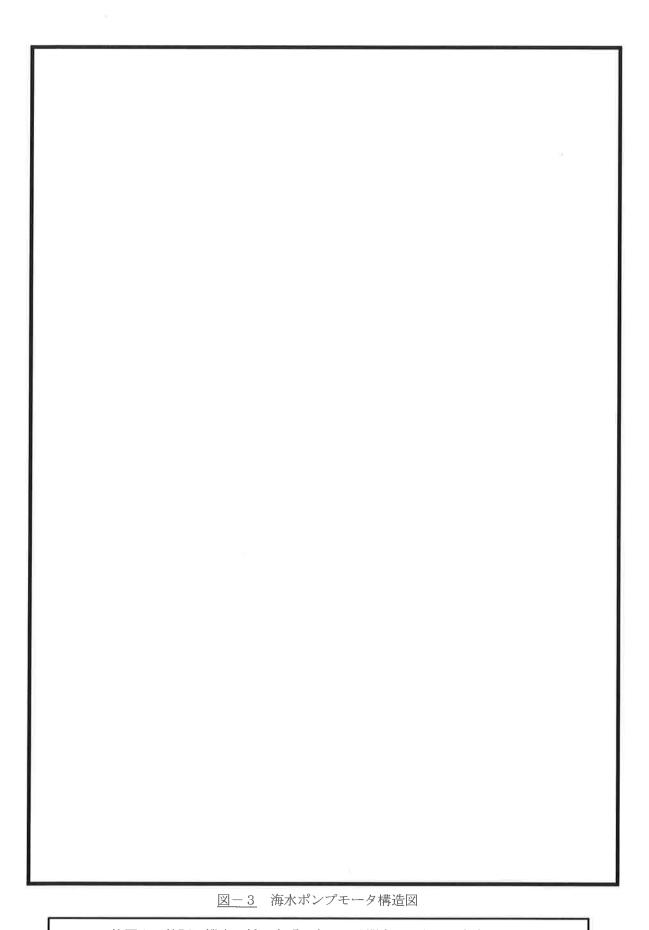
【新規制基準適合性審査時における評価】

海水ポンプモータは防汚塗装を施しており、降下火砕物の付着による化学的影響(腐食)はない。

【気中降下火砕物濃度を考慮した評価】

気中降下火砕物濃度を考慮し、除塵フィルタを取り外しても、短期間であれば腐食 に対する評価に影響はない。詳細評価は表-2に記載する。

④ 磨耗


【新規制基準適合性審査時における評価】

設置許可において設定した降下火砕物の粒径「1mm以下」に対し、海水ポンプモータは外気を屋外カバー底面の吸気口より下から吸気するため火山灰が入りにくい構造であり、屋外カバー内部の通風路は粉塵、雨、雪等が内部に侵入しにくいように冷却風を曲折、急変させる内部構造としている。海水ポンプモータの構造を<u>図ー3</u>に示す。火山灰の密度は比較的大きく、水分を含んだ火山灰はさらに密度が増すため、構造的にモータ内部まで侵入することは考えにくい。

なお、海水ポンプモータ上下の軸貫通部についても、軸受油槽で密封されていることから軸貫通部からモータ内部に火山灰が侵入することはない。

【気中降下火砕物濃度を考慮した評価】

気中降下火砕物濃度を考慮し、除塵フィルタを取り外しても、降下火砕物は、砂より硬度が低くもろいことから、短期間であれば磨耗への影響はない。詳細評価は<u>表</u>2に記載する。

枠囲みの範囲は機密に係る事項ですので公開することはできません。

図-4 海水ポンプモータ通風路

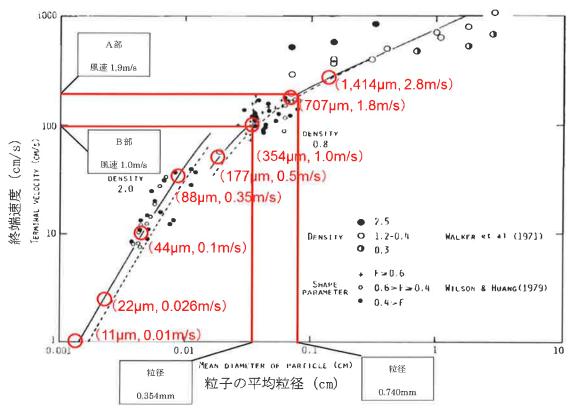


図-5 Suzuki (1983) ※における降下火砕物の粒径と終端速度との関係図

**Suzuki, T. (1983) A theoretical model for dispersion of tephra, Arc Volcanism: Physics and Tectonics: 95-116, Terra Scientific Publishing.

枠囲みの範囲は機密に係る事項ですので公開することはできません。

表 2 気中降下火砕物濃度を考慮した海水ポンプモータの詳細評価

影響因子	詳細評価
閉 塞	外気を取り入れる開放型の海水ポンプモータでは、吸気系の開口部から直接
	粉塵、雨、雪等がモータ内部まで侵入しないよう、規格に準拠した通風路の構造
	(冷却風を曲折、急変させる内部構造)となっている。海水ポンプモータの構造
	を <u>図-3</u> に示す。
	短期間であれば、気中降下火砕物濃度を考慮し、除塵フィルタを取り外した場
	合においても、回転子が回転していることに加え、固定子と回転子の隙間
	(1.2mm) 及びコアダクト間 (10mm) は降下火砕物の粒径 (1mm 以下) より大き
	いため、通風路が閉塞することはない。また、通風路の構造(風が曲折、急変す
	る構造)により、モータ内部まで侵入してくる火砕物は、降下火砕物の粒径 1mm
	以下より、さらに小さいものとなると考えられる。海水ポンプモータの構造を図
	-3に、海水ポンプモータの通風路を $図-4$ に示す。
腐食	海塩粒子等の影響を考慮して、モータの外表面と内部は全て耐食性に優れた
	複数層のエポキシ系及びウレタン系の塗料を塗布しており、降下火砕物が付着
	したとしても、直ちに腐食が進むことはない。また、モータの固定子巻線と固
	定子コアは耐薬品性に優れたダイヤエポキシ絶縁(DF絶縁)で保護されてお
	り、モータや通風路(コアダクト)に降下火砕物が付着した場合を考慮して
	も、短期間であれば、モータが降下火砕物による化学的影響を受けることはな
	٧ ٠°
磨耗	降下火砕物の気中濃度の増加に伴い、除塵フィルタを取り外して運転するこ
	とから、火山灰混合空気による磨耗の影響が考えられるが、降下火砕物は砂よ
	り硬度が低くもろいことから、短期間であれば、磨耗によるモータの機能への
	影響はない。

なお、降下火砕物到達後24時間以降の海水ポンプの運転については、24時間経過以降に 除塵フィルタを取り付けた後、屋外設備として状況確認及び除灰等を行うこととしている。

火山影響等発生時に除塵フィルタを取り外して運転したことによって、モータ内部に降下 火砕物が付着していた場合においても、24時間経過以降に取り付けた除塵フィルタを通した 清浄な冷却風によって、付着していた降下火砕物もモータ外部へ排出されていくため、運転 継続は可能と考えている。

海水ポンプ運転中の健全性については、日常巡視点検にて外観点検、異音・異臭の有無及 び現場温度計による排気温度、軸受温度の確認を行うことで、モータ内部の異常(閉塞、磨 耗、腐食)を確認できる。

また、海水ポンプモータに異常が確認された場合には、待機中の海水ポンプに切替えることや海水ポンプモータを予備機と取り替えることができる。

以上のことから、**24** 時間以降の海水ポンプの運転についても、問題ないことを確認した。

降下火砕物の粒径については、既許可において文献及び地質調査結果を踏まえ、粒径は 1mm 以下と設定している。

また、海水ポンプモータの冷却風の吸気は下から吸い込む設計となっていること、かつ、モータ内部(冷却風が曲折、急変する)構造によって、降下火砕物が落下することにより、モータ内部に入り込む降下火砕物の粒径は1mm以下より十分小さくなるといえる。さらに回転子が回転していることを踏まえると、硬度が低くもろい降下火砕物で閉塞することは考えにくい。以上のことから、通風路が降下火砕物によって閉塞することはない。

なお、仮に海水ポンプモータの通風路が閉塞した場合は、モータの冷却が阻害されることとなるが、その場合のモータ固定子巻線温度は最高温度135℃程度と推定されるが、海水ポンプモータはF種絶縁で設計されており、F種絶縁の最高連続使用温度155℃ (JIS C4003による)より低い。また、メーカー解析では、モータ固定子巻線温度250℃において、約100時間の継続運転が可能であるという結果が出ている。以上のことより、短期間(24 時間)であれば、閉塞を考慮しても問題ない。

c. 海水ストレーナ

① 閉塞

【新規制基準適合性審査時における評価】

設置許可において設定した降下火砕物の粒径「1mm以下」に対し、海水ストレーナメッシュが大きいことから、閉塞するおそれはないと評価している。また、下流設備である非常用ディーゼル機関の冷却器、チラーユニット、一次系冷却水クーラにおいても閉塞することはないと評価している。

【気中降下火砕物濃度を考慮した評価】

想定する降下火砕物の粒径「1mm以下」は変わらないことから、閉塞に対する評価に 影響はない。

なお、気中降下火砕物濃度を考慮すると、短期間で降下火砕物が海面に降ることにより、海水中の降下火砕物濃度が上昇する可能性が懸念されるが、以下の理由により閉塞に対する評価に影響はない。

- ・降下火砕物は、粒径分布に関わらず、海水との密度差により海水面に浮くか又は 短時間で海底に沈むため、海水中の降下火砕物濃度が極めて高くなることは考え にくい。
- ・海水中の降下火砕物の性質(沈むものの割合、沈降速度等)は粒径により変化するものと考えられるが、想定する層厚「 $27\,\mathrm{cm}$ 」に対して海水ポンプ室底面は十分な深さ(1 号炉: $9.5\,\mathrm{m}$ 、2 号炉: $9.6\,\mathrm{m}$)があり、仮に降下火砕物が海水中に均一に分散したとしても、濃度は $5\,\mathrm{wt}$ %程度である。 (表-1 参照)
- ・<u>層厚増加に伴い濃度が2wt%程度から5wt%程度に増加するが、図-1で示す火山</u> 灰の容積濃度とせん断抵抗の関係図では、火山灰濃度が5wt%程度の領域で、せん 断応力の著しい増加はないことから、火山灰層厚の増加に伴う海水の著しい粘性

増加は起こらない。したがって、火山灰層厚の増加が海水ポンプの運転に影響を 及ぼすことはない。

・海水ポンプ室へ入る降下火砕物は、取水口から海水取水トンネルを通って海水ポンプ室へ流入するものが想定されるが、海水取水トンネルの形状により、海水ポンプ室外の海面へ降った降下火砕物が海水ポンプ室へ多量流入する可能性は低い。 (海水ポンプ室及び海水取水トンネルの形状を図—2に示す。)

(3) まとめ

海水ポンプ及び海水ストレーナに対する降下火砕物の影響は、荷重、閉塞、腐食、磨耗が 想定されるが、各影響因子の閉塞に対して気中降下火砕物濃度を考慮した影響評価を実施し た結果、健全性に問題がないことを確認した。

以上

7. 火山灰除けテントについて

(1) テント設営手順について

a. テント運搬について

テント保管場所は図1に示すとおりフィルタ清掃エリア近傍であり、重量は約30kgで容易に運搬可能である。

b. テント設営について

図2に示すとおり、組立てが容易な折畳み式であり、緊急安全対策要員4人が約5分以内に設営可能である。

なお、テント設営作業は降下火砕物が発電所敷地に到達する前に実施するため降灰による影響はない。

(2) 火山灰荷重の考慮について

<u>層厚見直し(27cm)に伴い火山灰荷重が増加することになるが、テント天井部は傾斜を設け、防汚処理としてフッ素系表面処理を行うことにより、火山灰がテント天井部に積もらないようにしていることから、火山灰荷重による影響はない。</u>

<u>また、テント内にはフィルタ清掃要員がプラント毎に2人いることから、万が一、テント</u> <u>天井部に火山灰の堆積が確認された場合においても、除灰することで火山灰荷重による影響</u> がないようにする。

一方、火山灰は水蒸気の凝縮に伴い火山灰粒子が集結すること(火山豆石)が知られているが、火山豆石に関する文献※によると、火山から 50km 以上離れると火山豆石の大きさは 2mm を下回るとされている。大山から高浜発電所までの距離は約 180km であるが、仮に 2mm の火山豆石が到達したとしても火山灰除けテントに衝突し、グラスファイバー製のテント(引張強度 約 360kgf/幅 3cm)を貫通することは考えにくい。

※早川 由紀夫(1983):火山豆石として降下堆積した十和田火山八戸火山灰 (火山 第2集 第28巻 (1983) 第1号33頁)

火山豆石の保存状態が最もよい HP 1 上部の各露頭における火山豆石の最大粒径を Fig. 9

に示す。必ずしも火口に近いほど火山 豆石の粒径が大きいとは限らず、火口 から $20\sim30\,\mathrm{km}$ 離れた地点の粒径が 大きい傾向が読みとれる。 $50\,\mathrm{km}$ 以上 離れると、火山豆石の大きさは小さく なり、火山礫(lapilli)の下限 $2\,\mathrm{mm}$ を下回るようになる。

HP はよく成層しているが、傾斜 30°を超える急斜面上に堆積しながら その成層構造を全く乱さずに整然と堆

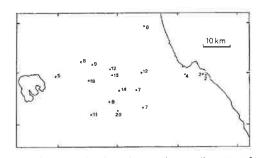


Fig. 9. Map showing the maximum diameter of accretionary lapilli in the upper part of HP1 ash unit. Values are in millimeters.

(3) 風の考慮について

図2のとおり、ロープ及びフックによる固定を併用することにより、風の影響を受けにくい設計とする。

(4) その他の考慮事項について

テントは耐火シートとする。また、出入口はファスナー式とし、降灰による影響を受けず に出入りが可能な設計とする。

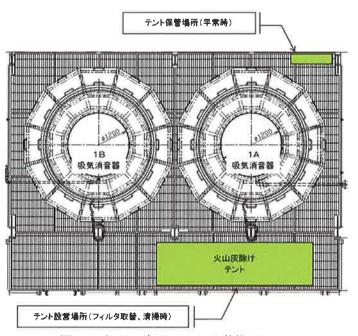


図1 火山灰除けテント設営位置図

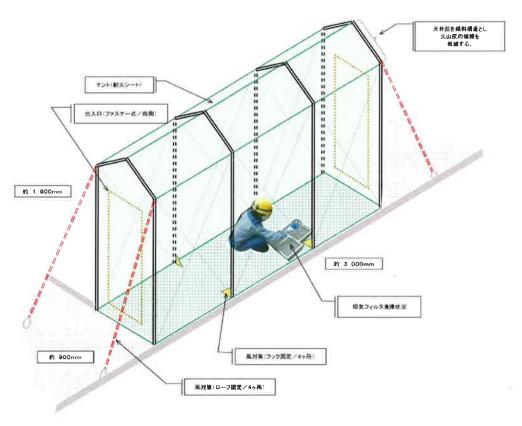


図2 火山灰除けテントイメージ図

以 上

高浜 1、 2号炉「大山火山の大山生竹テフラの噴出規模の見直しに係る設置許可申請について」に伴う条文の整理表

関係性揺の凡例			
今回申請での関係条文	0		
今回申請での無関係の条文	×		

 既許可変更有機欄の凡例

 既許可変更無し

	条文	関係性	既許可 変更有無	備考
第1条	一条 適用範囲	×	×	適用する基準(法令)についての説明であり、要求事項ではない。
第2条	二条 定義	×	×	言葉の定義であり、要求事項ではない。
第3条	三条 設計基準対象施設の地盤	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないこと から、設計基準対象施設の地盤に係る既設置許可の基準適合性確認結果に影響を与えるものでは ない。
第4条	四条 地震による損傷の防止	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないこと から、地震による損傷の防止に係る既設置許可の基準適合性確認結果に影響を与えるものではな い。
第5条	五条 津波による損傷の防止	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないこと から、津波による損傷の防止に係る既設置許可の基準適合性確認結果に影響を与えるものではな い。
第6条	六条 外部からの衝撃による損傷の防止 (想定される自然現象)	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの連用変更は伴わないこと から、外部からの衝撃による損傷の防止 (火山以外) に係る既設置許可の基準適合性確認結果に 影響を与えるものではない。
第6条	六条 外部からの衝撃による損傷の防止 (火山)	0	0	本条文は火山に係る条文であり、大山火山の大山生竹テフラの噴出規模の見直しに伴い本条文に 対する適合性を示すため、設置許可申請書の記載を変更する。
第7条	七条 発電用原子炉施設への人の不法な侵入等 の防止	0	×	本条文は発電用原子炉施設全般に関係するが、本変更においては、本条文に関係する設備に変更 はなく、及びそれらの適用変更は伴わないことから、発電用原子炉施設への人の不法な侵入等の 防止に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第8条	八条 火災による損傷の防止	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないこと から、火災による損傷の防止に係る既設置許可の基準適合性確認結果に影響を与えるものではな い。
第9条	九条 溢水による損傷の防止等	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないことから、溢水による損傷の防止等に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第10条	十条 誤操作の防止	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないことから、誤操作の防止に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第11条	十一条 安全避難通路等	0	×	本条文は発電用原子炉施設全般に関係するが、本変更においては、本条文に関係する設備に変更 はなく、及びそれらの運用変更は伴わないことから、安全避難通路等に係る既設置許可の基準適 合性確認結果に影響を与えるものではない。
第12条	十二条 安全施設	0	×	大山生竹テフラの噴出規模の見直しに伴い影響を受ける施設(安全施設を内包している建屋、復水タンク、燃料取替用水タンンク、海水ポンプ、主蒸気逃がし弁、主蒸気安全弁)があるが、安全施設の基本設計方針に変更がないため、安全施設に係る既設置許可の基準適合性確認結果に影響はない。
第13条	十三条 運転時の異常な過渡変化及び設計基準 事故の拡大の防止	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの適用変更は伴わないこと から、運転時の異常な過度変化及び設計基準事故の拡大の防止に係る既設置許可の基準適合性確 認結果に影響を与えるものではない。
第14条	十四条 全交流動力電源喪失対策設備	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないことから、全交流動力電源喪失対策設備に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第15条	十五条 炉心等	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないこと から、炉心等に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第16条	十六条 燃料体等の取扱施設及び貯蔵施設	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないことから、燃料体等の取扱施設及び貯蔵施設に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第17条	十七条 原子炉冷却材圧カバウンダリ	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないことから、原子炉冷却材圧力パウンダリに係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第18条	十八条 蒸気タービン	*	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないことから、蒸気タービンに係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第19条	十九条 非常用炉心冷却設備	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないことから、非常用炉心冷却設備に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第20条	二十条 一次冷却材の減少分を補給する設備	×	*	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないことから、一次冷却材の減少分を補給する設備に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第21条	二十一条 残留熱を除去することができる設備	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないことから、残留熱を除去することができる設備に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第22条	二十二条 最終ヒートシンクへ熱を輸送する ことができる設備	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないことから、最終ヒートシンクへ熱を輸送することができる設備に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第23条	二十三条 計装制御系統施設	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないことから、計装制御系統施設に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第24条	二十四条 安全保護回路	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないこと から、安全保護回路に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第25条	二十五条 反応度制御系統及び原子炉停止系統	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないことから、反応度制御系統及び原子炉停止系統に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第26条	二十六条 原子炉制御室等	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないこと から、原子炉制御室等に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第27条	二十七条 放射性廃棄物の処理施設	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないことから、放射性廃棄物の処理施設に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第28条	二十八条 放射性廃棄物の貯蔵施設	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないこと から、放射性廃棄物の貯蔵施設に係る既設置許可の基準適合性確認結果に影響を与えるものでは ない。

	条文	関係性	既許可 変更有無	编考
第29条	二十九条 工場等周辺における直接ガンマ線等 からの防護	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの達用変更は伴わないこと から、工場等周辺における直接ガンマ線等からの防護に係る既設置許可の基準適合性確認結果に 影響を与えるものではない。
第30条	三十条 放射線からの放射線業務従事者の防護	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの適用変更は伴わないこと から、放射線からの放射線業務従事者の防護に係る既設置許可の基準適合性確認結果に影響を与 えるものではない。
第31条	三十一条 監視設備	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないこと から、監視設備に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第32条	三十二条 原子炉格納施設	0	×	大山生竹テフラの噴出規模の見直しに伴い影響を受ける施設(外部しゃへい建屋)があるが、原 子炉格納施設の基本設計方針に変更がないため、原子炉格納施設に係る既設置許可の基準適合性 確認結果に影響を与えるものではない。
第33条	三十三条 保安電源	0	×	大山生竹テフラの噴出規模の見直しに伴い影響を受ける施設(非常用ディーゼル発電機)があるが、保安電源の基本設計方針に変更がないため、保安電源に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第34条	三十四条 緊急時対策所	0	×	大山生竹テフラの頃出規模の見直しに伴い影響を受ける施設(緊急時対策所建屋)があるが、緊急時対策所の基本設計方針に変更がないため、緊急時対策所に係る既設置許可の基準適合性確認 結果に影響を与えるものではない。
第35条	三十五条 通信連絡設備	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないこと から、通信連絡設備に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第36条	三十六条 補助ボイラー	*	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないこと から、補助ボイラーに係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第37条	三十七条 重大事故等の拡大の防止等	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの適用変更は伴わないこと から、有効性評価に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第38条	三十八条 重大事故等対処施設の地盤	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないこと から、重大事故等対処施設に係る既設置許可の基準適合性確認結果に影響を与えるものではな い。
第39条	三十九条 地震による損傷の防止	×	×	同上
第40条	四十条 津波による損傷の防止	×	×	同上
第41条	四十一条 火災による損傷の防止	×	×	同上
第42条	四十二条 特定重大事故等対処施設	0	×	大山生竹テフラの噴出規模の見直しに伴い影響を受ける施設(特重施設の建屋)があるが、特定 重大事故等対処施設の基本設計方針に変更がないため、特定重大事故等対処施設に係る既設置許 可の基準適合性確認結果に影響を与えるものではない。
第43条	四十三条 重大事故等対処設備	0	×	大山生竹テフラの噴出規模の見直しに伴い影響を受ける施設(緊急時対策所建屋)があるが、重 大事故等対処施設の基本設計方針に変更がないため、重大事故等対処施設に係る既設置許可の基 準適合性確認結果に影響を与えるものではない。
第44条	四十四条 緊急停止失敗時に発電用原子炉を 未臨界にするための設備	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの適用変更は伴わないこと から、 重大事故等対処施設に係る既設置許可の基準適合性確認結果に影響を与えるものではな い。
第45条	四十五条 原子炉冷却材圧力パウンダリ高圧時 に発電用原子炉を冷却するための設備	×	×	同上
第46条	四十六条 原子炉冷却材圧カバウンダリを減圧 するための設備	×	×	同上
第47条	四十七条 原子炉冷却材圧カバウンダリ低圧時 に発電用原子炉を冷却するための設備	×	×	同上
第48条	四十八条 最終ヒートシンクへ熱を輸送する ための設備	×	×	同上
第49条	四十九条 原子炉格納容器内の冷却等のため の設備	:×:	×	同上
第50条	五十条 原子炉格納容器の過圧破損を防止する ための設備	×	×	同上
第51条	五十一条 原子炉格納容器下部の溶融炉心を 冷却するための設備	(X)	×	同上
第52条	五十二条 水素爆発による原子炉格納容器の 破損を防止するための設備	×	*	同上
第53条	五十三条 水素爆発による原子炉建屋等の損傷 を防止するための設備	×	×	同上
第54条	五十四条 使用済燃料貯蔵槽の冷却等のための 設備	×	×	同上
第55条	五十五条 工場等外への放射性物質の拡散を 抑制するための設備	×	×	同上
第56条	五十六条 重大事故等の収束に必要となる水の 供給設備	x	×	同上
第57条	五十七条 電源設備	×	×	同上
第58条	五十八条 計装設備	×	×	同上
第59条	五十九条 運転員が原子炉制御室にとどまる ための設備	×	×	同上
第60条	六十条 監視測定設備	×	×	同上
第61条	六十一条 緊急時対策所	0	×	大山生竹テフラの噴出規模の見直しに伴い影響を受ける施設(緊急時対策所建屋)があるが、緊急時対策所の基本設計方針に変更がないため、童大事故等対処施設に係る既設置許可の基準適合性確認結果に影響を与えるものではない。
第62条	六十二条 通信連絡を行うために必要な設備	×	×	本変更においては、本条文に関係する設備に変更はなく、及びそれらの運用変更は伴わないこと から、重大事故等対処施設に係る既設置許可の基準適合性確認結果に影響を与えるものではな い。