資料3

大飯発電所3号炉 高経年化技術評価 照射誘起型応力腐食割れ

関西電力株式会社

2021年3月4日

目 次

1. 概要	2
2. 基本方針	2
3. 評価対象と評価手法	
3. 1 評価対象	3
3. 2 評価手法	6
4. 技術評価	
4.1 健全性評価	9
4. 2 現状保全	10
4.3 総合評価	11
4. 4 高経年化への対応	11
5. まとめ	
5. 1 審査ガイド適合性	12
5. 2 長期施設管理方針として策定する事項	12

1. 概要 および 2. 基本方針

1. 概要

本資料は、「実用発電用原子炉の設置、運転等に関する規則」第82条第1項の規 定に基づき実施した、運転を断続的に行うことを前提とした高経年化技術評価のうち、 照射誘起型応力腐食割れ(以下、IASCC)の評価結果を補足説明するものである。

2. 基本方針

評価対象部位においてIASCCの発生の可能性について評価し、その発生の可能 性が将来にわたって否定できない場合は、その発生または進展に係る健全性評価 を行い、運転開始後60年時点までの期間において「実用発電用原子炉施設におけ る高経年化対策審査ガイド」および「実用発電用原子炉施設における高経年化対策 実施ガイド」の要求事項を満たすことを確認することである。

3. 評価対象と評価手法(1/6)

3.1 評価対象

- ・材料がステンレス鋼で、IASCC感受性の発生が考えられる中性子照射量10²¹n/cm² [E>0.1MeV]オーダー以上(運転開始後60年時点)を受ける機器を抽出した結果、対象 機器は炉内構造物のみであった。
- ・炉内構造物の各部位の中性子照射量、温度、応力レベルを次頁の表1に整理した。これらの部位のうち、中性子照射量と温度が最も高く、応力レベルも大きく、海外での損傷事例もあるバッフルフォーマボルトを最も厳しい評価部位として選定した。

3. 評価対象と評価手法(2/6)

表1 ステンレス鋼のIASCCの可能性評価(1/2)

		実機条件		海外の	可能性評価	
部位	中性子照射量 レベル* ¹ [n/cm ² :E>0.1MeV]	応カレベル* ² (応力支配因子)	温 度 [℃]	」 損傷 事例		
バッフルフォー マボルト	9 × 10 ²²	大 (締付+熱曲げ +照射スウェリング)	325	有	発生可能性有り。炉心バッフルの照射スウェリング により応力増加が生じるため亀裂発生の可能性が 大きくなる。海外損傷事例もあり最も厳しい。	
炉心バッフル	9 × 10 ²²	小 (熱応力)	325	無	バッフルフォーマボルトよりも応力レベルが小さいた め、バッフルフォーマボルトに比べて発生の可能性 は小さい。	
炉心バッフル 取付板	9 × 10 ²²	小 (熱応力)	325	無	バッフルフォーマボルトよりも応力レベルが小さいため、バッフルフォーマボルトに比べて発生の可能性 は小さい。	
バレルフォーマ ボルト	8 × 10 ²¹	大 (締付+熱曲げ)	325	無	応力レベルは大きいが、バッフルフォーマボルトより も中性子照射量が小さいため、バッフルフォーマボ ルトに比べて発生の可能性は小さい。	
炉心そう	1 × 10 ²²	大 (溶接部) (溶接残留応力)	325	兼	溶接残留応力が存在し応力レベルは大きいが、バッ フルフォーマボルトよりも中性子照射量が小さいた め、バッフルフォーマボルトに比べて発生の可能性 は小さい。	
上部炉心板	1 × 10 ²¹	小 (熱応力)	325	無	バッフルフォーマボルトよりも中性子照射量および 応力レベルが小さいため、バッフルフォーマボルトに 比べて発生の可能性は小さい。	

*1:中性子照射量レベルは運転開始後60年時点での各部位の推定最大中性子照射量レベルを示す。

*2:応カレベルは各部位の最大応力値を示す。【大:>Sy(非照射材の降伏応力) 中:≒Sy(非照射材の降伏応力) 小:<Sy(非照射材の降伏応力)】

3. 評価対象と評価手法(3/6)

表1	ステンレス鋼のIASCCの可能性評価	(2/2)
----	--------------------	-------

		ミ機条件		海外の		
部位	中性子照射量 レベル* ¹ [n/cm ² :E>0.1MeV]	[*] 量 応カレベル* ² (応力支配因子) [℃]		損傷 事例	可能性評価	
上部燃料集合体 案内ピン	1 × 10 ²¹	小 (締付け)	325	無	バッフルフォーマボルトよりも中性子照射量およ び応カレベルが小さいため、バッフルフォーマ ボルトに比べて発生の可能性は小さい。	
下部燃料集合体 案内ピン	9 × 10 ²¹	小 (締付け)	289	無	バッフルフォーマボルトよりも中性子照射量、応 カレベルおよび温度が小さいため、バッフル フォーマボルトに比べて発生の可能性は小さい。	
下部炉心板	9 × 10 ²¹	大 (熱応力)	289	無	応力レベルは大きいが、バッフルフォーマボルト よりも中性子照射量および温度が小さいため、 バッフルフォーマボルトに比べて発生の可能性 は小さい。	
下部炉心支持柱	4 × 10 ²¹	中 (曲げ)	289	無	バッフルフォーマボルトよりも中性子照射量、応力 レベルおよび温度が小さいため、バッフルフォー マボルトに比べて発生の可能性は小さい。	
熱遮蔽材	5 × 10 ²¹	小 (熱応力)	289	無	バッフルフォーマボルトよりも中性子照射量、応力 レベルおよび温度が小さいため、バッフルフォー マボルトに比べて発生の可能性は小さい。	
熱遮蔽材 取付ボルト	5 × 10 ²¹	大 (締付+熱曲げ)	289	無	応カレベルは大きいが、バッフルフォーマボルト よりも中性子照射量および温度が小さいため、 バッフルフォーマボルトに比べて発生の可能性は 小さい。	

*1:中性子照射量レベルは運転開始後60年時点での各部位の推定最大中性子照射量レベルを示す。

*2:応力レベルは各部位の最大応力値を示す。【大:>Sy(非照射材の降伏応力) 中:≒Sy(非照射材の降伏応力) 小:<Sy(非照射材の降伏応力)】

3. 評価対象と評価手法(4/6)

3.2 評価手法

- (1) 適用規格
 - ・原子力安全基盤機構「平成20年度 照射誘起応力腐食割れ(IASCC)評価技術に関する報告書」
 - ・PWR 炉内構造物点検評価ガイドライン[バッフルフォーマボルト](第3版)
 - 一般社団法人 原子力安全推進協会
 - ·発電用原子力設備規格 維持規格(JSME S NA1-2012) 日本機械学会

(2) バッフルフォーマボルトの損傷予測評価

「平成20年度照射誘起型応力腐食割れ(IASCC)評価技術に関する報告書」に示された評価 ガイド(案)および、原子力安全推進協会「PWR 炉内構造物点検評価ガイドライン[バッフルフォー マボルト](第3版)」に基づき、以下のとおり評価する。

3. 評価対象と評価手法(5/6)

図2 バッフルフォーマボルトの応力評価手法

3. 評価対象と評価手法(6/6)

 大飯3号炉のバッフルフォーマボルトの仕様は下図のとおり。
 ・維持規格では、バッフルフォーマボルトの仕様等に応じて、IASCCに対する感受性の高い 順にプラントをグループ1~4に分類しており、大飯3号炉はこのうちのグループ4に属する。

【大飯3号炉のバッフルフォーマボルトの仕様】

- •材料 :G316CW1
- ・首下形状 : パラボリック
- ・シャンク長さ:64mm(ベントホール有)

グループ	ループ数	ボルト 本数	シャンク 長さ	ボルト材料 ¹⁾	首下形状	シャンク部 ベントホー ルの有無	燃料タイプ	1) 相当品含む 2) 冷温加工材含む
グループ1	2	624	25mm	SUS347	1R	無	14×14 燃料	
/// /1	2	728	25mm	SUS347	1R	無	14×14 燃料	
ゲループク	3	1088	35mm	SUS316 ²⁾	2R	無	15×15 燃料	
	4	832	64mm	SUS316 ²⁾	2R	無	17×17 燃料	
グループ3	2	832	35mm	SUS316 ²⁾	N° ラホ [*] リック	無	14×14 燃料	
	3	1080	35mm	SUS316 ²⁾	N° ラホ リック	有	17×17 燃料	
グループ4	4	936	64mm	SUS316 ²⁾	い ラボ リック	有	17×17 燃料	◀━━ 大飯3号炉
	2	800	35mm	SUS316 ²⁾	N° ラホ [*] リック	有	14×14 燃料	

表2 バッフルフォーマボルト仕様に基づく分類

出典:発電用原子力設備規格 維持規格(JSME S NA1-2012) 日本機械学会

4. 技術評価(1/3)

4.1 健全性評価

〇バッフルフォーマボルトの損傷予測評価

 ・評価の結果、運転開始60年時点(約42.6万時間(48.6EFPY))までにバッフルフォーマボルト (全数)の応力履歴がIASCC発生しきい線を超えることはなく、IASCC発生の可能性が小さ いことを確認した(図3)。

図3 バッフルフォーマボルトの応力履歴とIASCC発生しきい線の重ね合わせ(応力履歴は50万時間まで)

4. 技術評価(2/3)

4.2 現状保全

(1) 現状保全の内容

炉内構造物のステンレス鋼のIASCCについては、維持規格に従い供用期間中検査として目視検査 (VT-3)を実施している。(表3)

表3 炉内構造物の供用期間中検査計画

【目視試験の試験要領】

項目番号 ^{※1} 試験カテゴリ	試験部位	試験対象 (IASCC想定部位)	試験 方法	頻度	=+ F ◆	水中テレビカメラによって、可視範 囲に対して遠隔目視試験を行って	
G1.10 G-P-1	容器内部	・炉心そう ・炉心バッフル ・下部炉心板	VT-3 ^{%2}	3回/10年	 武 顿 方 法 	いる。その際、試験対象部の表面 において18%中性灰色カード上の 幅0.8mmの黒線が識別できること を確認。	
G1.40 G-P-1	内部 取付け物	 ・炉心バッフル ・熱遮蔽材 	VT−3 ^{%2}	1回/10年	 試験 項目	過度の変形、心合わせ不良、傾き、 部品の破損、隙間の異常、ボルト 締め付け部の緩み、機器表面に	
G1.50	炉心支持	•上部炉心板				るりる異常わよい脱落の有無を 確認。	
G-P-2	構造物	・炉心そう ・下部炉心板	VT-3 ^{%2}	1回/10年	 判定	過度の変形、心合わせ不良、傾き、 部品の破損、隙間の異常、ボルト	
※1 :維持規格2012年版、2013年追補、2014年追補の番号を示す。						締め付け部の緩み、機器表面に おける異党および脱落がたいこと	

※2 :水中テレビカメラによる遠隔目視試験。

(2) 炉内構造物の検査結果

大飯3号炉の炉内構造物に対して実施した目視検査において、これまで異常が認められたことはない。

4. 技術評価(3/3)

4.3 総合評価

健全性評価結果から判断して、バッフルフォーマボルトについては、IASCCが発生する可能性は否定できないと考えられる。

ただし、「照射誘起型応力腐食割れ(IASCC)評価技術に関する報告書」で得られた知見を 用いて評価した結果、運転開始後60年時点でのボルトの損傷本数は0本となり、バッフル フォーマボルトのIASCCが炉内構造物の構造強度・機能の健全性に影響を与える可能性 は小さいと考える。

バッフルフォーマボルト以外の部位については、バッフルフォーマボルトに比べて、中性 子照射量、応力、温度の実機条件が相対的に低いレベルであるため、IASCC発生の可能 性は小さいと考える。

4.4 高経年化への対応

炉内構造物のIASCCについては、高経年化対策の観点から現状保全項目に追加すべき 項目はない。

5. まとめ

5.1 審査ガイド適合性

「2. 基本方針」で示した要求事項について技術評価を行った結果、全ての要求を満足していることを確認した。

5.2 長期施設管理方針として策定する事項

今後も現状の保全方針により健全性を確認していくものとし、現状保全項目に高経年 化対策の観点から追加すべきものはなく、長期施設管理方針として策定する事項はない。