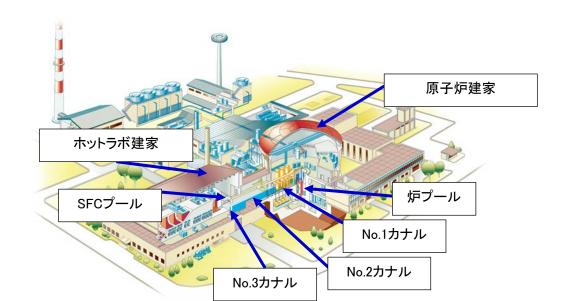


国立研究開発法人日本原子力研究開発機構 大洗研究所のJMTRにおける放射性同位元素の 許可使用に係る変更許可申請について


2020年10月27日

日本原子力研究開発機構 大洗研究所 材料試験炉部

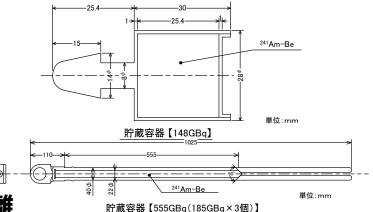
(AMD) 1. JMTR概要

- 〇 材料試験炉(JMTR)は、昭和43年に初臨界を達成して以来、発電用軽水炉を中心に、新型転換炉、高速炉、高温ガス炉、核融合炉などの燃料・材料の照射試験等に広く利用されてきた。JMTRは、試験研究炉、核燃料物質使用施設及び放射性同位元素(使用)の規制を受けている。令和元年9月18日に廃止措置計画認可申請を行い、現在、審査中である。
- JMTRには、使用済燃料要素が約500体保管されており、その全てを4回に分けて、米国に引渡す計画である。これまでの使用済燃料搬出は、原子炉の運転中においてもホットラボ施設から燃料搬出が可能であるため、全てホットラボ建家から搬出を実施してきたが、廃止措置計画の認可後は、原子炉の運転を行わないことから、作業時間の短縮や合理性から原子炉建家から搬出することとした。

@@2.変更許可申請の概要

- 〇 輸送前作業に使用する既に使用を許可されている密封線源(241Am-Be)は、ホットラボ建家(SFCプール)において使用・貯蔵してきたが、輸送前作業を原子炉建家で行う計画のため、密封線源(241Am-Be)を原子炉建家(カナルNo.1)で使用・貯蔵可能とするためにRI使用変更許可申請を行う。
- 〇 主な変更内容としては、既存の密封線源(241Am-Be)の「使用の場所」及び 「貯蔵施設」として、「No.1カナル」を追加する(線源の増減は無し)。本変更にあ たり、施設の工事は伴わない。
- 今回の変更は、放射性同位元素を密封した物1個当たりの数量が10TBq未満の密封線源(241Am-Be:148GBq×1、185GBq×3)の「使用場所」及び「貯蔵場所」の追加であり、施設検査は要しない。
- JMTRの変更許可に係るスケジュール(概略)を示す。
 - ・変更許可申請 :2020年12月中旬
 - ・変更許可申請の許可取得希望時期:2021年 4月中旬
 - ・輸送前作業(原子炉建家) :2021年 5月頃

(No.1カナルで²⁴¹Am-Be使用)


🝱 3.カナルNo.1の線量評価(1)

「No.1カナル」において密封線源(241Am-Be)を使用・貯蔵した場合と、既に使用・貯蔵 場所として許可を得ている「SFCプール」で使用・貯蔵した場合を比較した結果、「SFCプ ール」の方が保守的となることから、(241Am-Be)を使用・貯蔵した場合の代表評価箇所 は「SFCプール」とする。なお、総合評価は、「No.1カナル」と現状の許可の評価値を比較し た結果、現状の許可の評価値の方が保守的であるため変更は無い。

○該当する既存の密封線源

線源	数量×個数	使用目的	使用場所
²⁴¹ Am-Be	148 GBq×1	放射線測定器 の校正	SFCプール
²⁴¹ Am-Be	185 GBq×3 (計:555 GBq)	使用済燃料輸 送容物の未臨 界確認用線源	炉プール及び SFCプール

ONo.1カナル及びSFCプールの線源から評価点までの距離

使用・貯蔵した場合の線源から評価点までの距離

	評価		(1)SFCプール* ¹ (許可の値)	(2)No.1カナル
1	人が常時	水遮蔽	4m	4m
2	立ち入る場所	コンクリート遮蔽	2m	2m
3	管理区域境界		5m	6.65m
4	事業所境界*2		200m	200m

^{*1:}SFCプールと炉プールの代表箇所(線源から評価点までの距離がSFCプールの方が短くなる)。

^{*2:}事業所境界は、JMTRの全ての評価点(「測定室」、「ホット実験室」、「炉室B1F扇形室」、「カナル」、「SFCプール」、)で200mとしてい

る。評価点の中で事業所境界に一番近いのは扇形室であるため、No.1カナルの200mは保守的である。

(本型) 3.カナルNo.1の線量評価(2)

OSFCプール及びNo.1カナルの線源から評価点までの距離(概略図)

国立研究開発法人日本原子力研究開発機構 大洗研究所の高速実験炉における 放射性同位元素の許可使用に係る変更許可申請について

2020年10月27日

日本原子力研究開発機構 大洗研究所 高速実験炉部

変更対象のRI施設(高速実験炉)の概要

既許可におけるRIの種類と使用等の目的

4F G5: ±4	Kr-85	トレーサとして使用・貯蔵・廃棄
非密封	Xe-133	検出器性能確認に使用・貯蔵・廃棄
	Sb-124	原子炉起動用中性子源として使用・貯蔵
	Sr-90	
	²⁴¹ Am-Be	チェッキングソースとして使用・貯蔵
	Ra-226	
	²³⁷ Np+F. P. ①	
	Am-241	放射化はくとして使用・貯蔵
	Am-243	放射にはくとして使用・貯蔵
	Cm-244	
 密封	²³⁷ Np+F. P. ②	
在計	Coの放射化物	
	Feの放射化物	
	Niの放射化物	
	Cuの放射化物	放射化はく* ¹ を貯蔵
	Tiの放射化物	カメタリー はん こった 出土物
	Taの放射化物	
	Rhの放射化物	
	Nbの放射化物	
	Scの放射化物	

*1:放射化はくとして貯蔵している 密封RI(プラスチック容器に封入)の一例

変更許可申請の概要

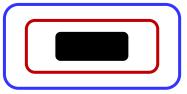
- ① 保有する密封RIを非 密封RIとして、検出器の 性能確認に使用する。
 - ※ 実線矢印(→)参照
- ② 所定の試験等が完了した R I を廃止する。
 - ※ 点線矢印(→)参照
- ③ 記載の適正化を行う。

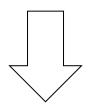
【施設検査有無】

非密封RIにおいて、以下に該当するため、施設検査を必要とする。

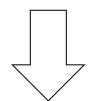
- ・ 貯蔵施設の貯蔵能力の変更であつて、 当該貯蔵施設の使用をする工場又は事 業所の密封されていない放射性同位元 素に係る貯蔵能力を下限数量に十万を 乗じて得た数量未満から下限数量に十 万を乗じて得た数量以上とするもの
- ・ 密封されていない放射性同位元素を 廃棄する廃棄施設の増設

【密封】	既許可			【非密封】
	北京の土土	Kr-85	}	► Kr-85 廃止
	非密封	Xe-133]	► Xe-133 廃止
Sb-124		Sb-124]	∢ Am-241 追加
Sr-90 廃止 ◆		- Sr-90		▼ Am-243 追加
²⁴¹ Am-Be		²⁴¹ Am-Be		▼ Cm-244 追加
Ra-226 廃止 ◆		- Ra-226		▲ ²³⁷ Np+F.P. 追加
²³⁷ Np+F. P. ① 廃止 ◀		^{- 237} Np + F. P. ①		▼ Coの放射化物 追加
Am-241		Am-241		▼ Feの放射化物 追加
Am-243		Am-243		▼ Niの放射化物 追加
Cm-244		Cm-244		▼ Cuの放射化物 追加
237Np+F. P.	密封	237Np+F. P. ②		▼ Tiの放射化物 追加
Coの放射化物	100 E)	Coの放射化物		▲ Nbの放射化物 追加
Feの放射化物		Feの放射化物		▲ Scの放射化物 追加
Niの放射化物		Niの放射化物		
Cuの放射化物		Cuの放射化物 ′		
Tiの放射化物		Tiの放射化物		
Taの放射化物		Taの放射化物		
Rhの放射化物		Rhの放射化物		
Nbの放射化物		Nbの放射化物 ′		
Scの放射化物		Scの放射化物 /		


追加する非密封RIの使用等の流れ



放射化はくとして貯蔵している密封RI(プラスチック製容器他に封入)



【成形・使用】

【貯蔵】

【保管廃棄】

線源をプラスチックフィルム等でオーバーラッピ ングした試料を成形し、検出器の性能確認に使用

- ※ 成形の際の入熱・加工により、既許可の密封 容器が開放される恐れが否定できないため、非 密封RIとして使用等の許可を取得するものと した。放射性同位元素の保有量は同じであるが、 許可上、『密封されていない放射性同位元素』 の貯蔵能力等が増加する(下限数量の10万倍と の比の合計値:10.8)。
- ※ 試料の成形にフードを使用する。使用施設は、 既許可の「Kr-85」に同じである。

※ 貯蔵施設は、既許可の「Kr-85」に同じである。

保管廃棄設備として、鍵付き鉄製保管庫を追加

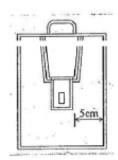
- ※ 保管廃棄の容器には、金属製200円筒型容器 を使用する。保管廃棄設備に保管廃棄し、許可 廃棄業者に引き渡す。
- ※ 廃棄施設は、基本的に、既許可の「Kr-85」 に同じである。原子炉施設と共用するフィルタ を追加した。

貯蔵容器は、 密封RIと 共用する。

追加する非密封RIの種類及び数量等

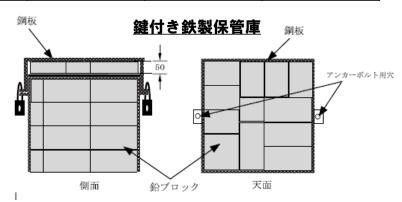
核種		物理的状態	化学形等				 月間 月数量		——————— 日 !用数量	使用の目的	使用の方法*1
²³⁷ Np+F. P.	237Np 233Pa 137Cs 90Sr 90Y 147Pm	固体 バナジウムキャプセルに封入	単体及び 無機化合物	3. 3GBq	0. 8GBq 0. 8GBq 1. 15GBq 0. 19GBq 0. 19GBq 0. 17GBq	3. 3GBq	0. 8GBq 0. 8GBq 1. 15GBq 0. 19GBq 0. 19GBq 0. 17GBq	74MBq	17. 9MBq 17. 9MBq 25. 7MBq 4. 31MBq 4. 31MBq 3. 88MBq	検出器の 性能確認	線源と検出器を種々の 距離に保って測定する。
²⁴¹ Am	-	固体 金属製キャプセルに溶封	単体及び 無機化合物	150MBq	150MBq	150MBq	150MBq	50MBq	50MBq	検出器の 性能確認	線源と検出器を種々の 距離に保って測定する。
²⁴³ Am	-	固体 金属製キャプセルに溶封	単体及び 無機化合物	15MBq	15MBq	15MBq	15MBq	5MBq	5MBq	検出器の 性能確認	線源と検出器を種々の 距離に保って測定する。
²⁴⁴ Cm	-	固体 金属製キャプセルに溶封	単体及び 無機化合物	1GBq	1GBq	1 GBq	1GBq	1GBq	1 GBq	検出器の 性能確認	線源と検出器を種々の 距離に保って測定する。
Coの放射化物	⁶⁰ Co	固体 プラスチック容器に封入	単体及び 無機化合物	19. 3MBq	19. 3MBq	19. 3MBq	19. 3MBq	1. 48MBq	1. 48MBq	検出器の 性能確認	線源と検出器を種々の 距離に保って測定する。
Feの放射化物	⁵⁵ Fe	固体 プラスチック容器に封入	単体及び 無機化合物	6. 66MBq	6. 66MBq	6. 66MBq	6. 66MBq	2. 22MBq	2. 22MBq	検出器の 性能確認	線源と検出器を種々の 距離に保って測定する。
Niの放射化物	⁵⁵ Fe ⁶⁰ Co ⁶³ Ni	固体 プラスチック容器に封入	単体及び 無機化合物	3. 33GBq	1. 88GBq 0. 73GBq 0. 72GBq	3. 33GBq	1. 88GBq 0. 73GBq 0. 72GBq	111MBq	62. 4MBq 24. 6MBq 24MBq	検出器の 性能確認	線源と検出器を種々の 距離に保って測定する。
Cuの放射化物	⁶³ N i	固体 プラスチック容器に封入	単体及び 無機化合物	148kBq	148kBq	148kBq	148kBq	148kBq	148kBq	検出器の 性能確認	線源と検出器を種々の 距離に保って測定する。
Tiの放射化物	⁴⁵ Ca	固体 プラスチック容器に封入	単体及び 無機化合物	7. 4MBq	7. 4MBq	7. 4MBq	7. 4MBq	7. 4MBq	7. 4MBq	検出器の 性能確認	線源と検出器を種々の 距離に保って測定する。
Nbの放射化物	⁹⁴ Nb	固体 プラスチック容器に封入	単体及び 無機化合物	88. 8MBq	88. 8MBq	88. 8MBq	88. 8MBq	22. 2MBq	22. 2MBq	検出器の 性能確認	線源と検出器を種々の 距離に保って測定する。
Scの放射化物	⁴⁵ Ca	固体 プラスチック容器に封入	単体及び 無機化合物	37MBq	37MBq	37MBq	37MBq	37MBq	37MBq	検出器の 性能確認	線源と検出器を種々の 距離に保って測定する。

^{*1} 使用時間数は、40時間/週及び520時間/3月間

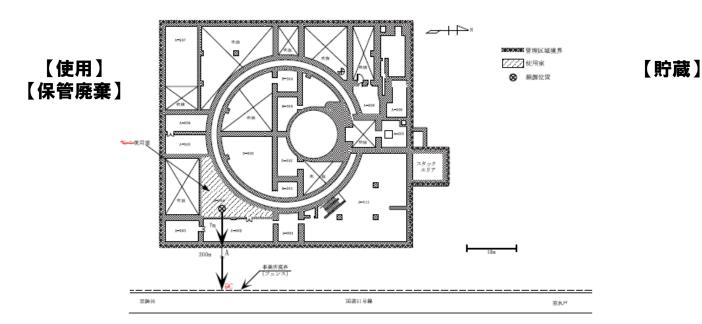

追加する非密封RIによる被ばく①

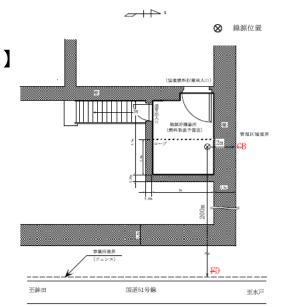
<u>人が常時立ち入る場所における実効線量:最大で267μSv/週 (a)+(b)+(c)+(d)+(e)</u>

評価位置	線源強度*1	鉛遮蔽体 厚さ (cm)	コンクリート 遮蔽体厚さ (cm)	距離 (m)	時間 (h)	γ線による 実効線量率 (μSv/週)	中性子線による 実効線量率 (µSv/週)	実効線量の合計 (µSv/週)
運搬作業	放射化検出器 *2 256 MBq ²⁴¹ Am 50 MBq ²⁴³ Am 5 MBq ²⁴⁴ Cm 1 GBq	5	なし	0. 5	1	4. 05	2. 18×10 ⁻¹	4. 27 (a)
成形作業	放射化検出器*2 256MBq ²⁴¹ Am 50 MBq ²⁴³ Am 5 MBq ²⁴⁴ Cm 1 GBq	0	なし	0. 5	1	213	2. 18×10 ⁻¹	214 (b)
測定作業	放射化検出器*2 256MBq ²⁴¹ Am 50 MBq ²⁴³ Am 5 MBq ²⁴⁴ Cm 1 GBq	5	なし	1	1	1. 01	5. 45×10⁻²	1. 07 (c)
貯蔵 (燃料取扱 予備室)	放射化検出器 *2 7.0 GBq ²⁴¹ Am 150 MBq ²⁴³ Am 15 MBq ²⁴⁴ Cm 1 GBq	7	なし	1	1	4. 29	5. 45×10⁻²	4. 35 (d)
保管廃棄	放射化検出器 *2 256 MBq ²⁴¹ Am 50 MBq ²⁴³ Am 5 MBq ²⁴⁴ Cm 1 GBq	5	なし	1	40	40. 4	2. 18	42. 6 (e)


- *1: 使用(運搬、成形、測定)及び 保管廃棄には、各核種の1日最大使用 数量を使用。貯蔵には、各核種の年間 使用数量を使用。
- *2: 放射化検出器については、線量 計算上の核種は、数量が最も多い「Ni の放射化物」で代表。

貯蔵容器


追加する非密封RIによる被ばく②


管理区域境界の実効線量:8. 25 μ Sv ∕ 3月間 (f) + (g) + (h) / 事業所境界の実効線量 : 0. 009 μ Sv ∕ 3月間 (i) + (j) + (k)

	評価位	置*1*2	鉛遮蔽体 厚さ (cm)	コンクリート 遮蔽体厚さ (cm)	距離 (m)	時間 (h)	γ線による 実効線量率 (μSv/3月間)	中性子線による 実効線量率 (µSv/3月間)	実効線量の合計 (μSv/3月間)
管理	線源使用時	評価位置A	0	180	7	40×13	4. 23×10 ⁻⁶	5. 78×10 ⁻¹	0. 58 (f)
区域	線源貯蔵時	評価位置B	7	180	2	40×13	1. 09×10 ⁻⁵	7. 08	7. 08 (g)
境界	保管廃棄時	評価位置A	5	180	7	40×13	3. 91×10 ⁻⁷	5. 78×10 ⁻¹	0. 58 (h)
事	線源使用時	評価位置C	0	180	200	168×13	8. 92×10 ⁻⁹	2. 98×10 ⁻³	2. 98×10 ⁻³ (i)
業所	線源貯蔵時	評価位置D	7	180	200	168×13	1. 70×10 ⁻⁹	2. 98×10 ⁻³	2. 98×10 ⁻³ (j)
境 界	保管廃棄時	評価位置C	5	180	200	168×13	8. 42×10 ⁻¹⁰	2. 98×10 ⁻³	2. 98×10 ⁻³ (k)

*1: 使用(運搬、成形、測定)及び保管廃棄には、各核種の1日最大使用数量を使用。貯蔵には、各核種の年間使用数量を使用。

*2: 放射化検出器については、線量計算上の核種は、数量が最も多い「Niの放射化物」で代表。

追加する非密封R I に係る排気設備の能力①

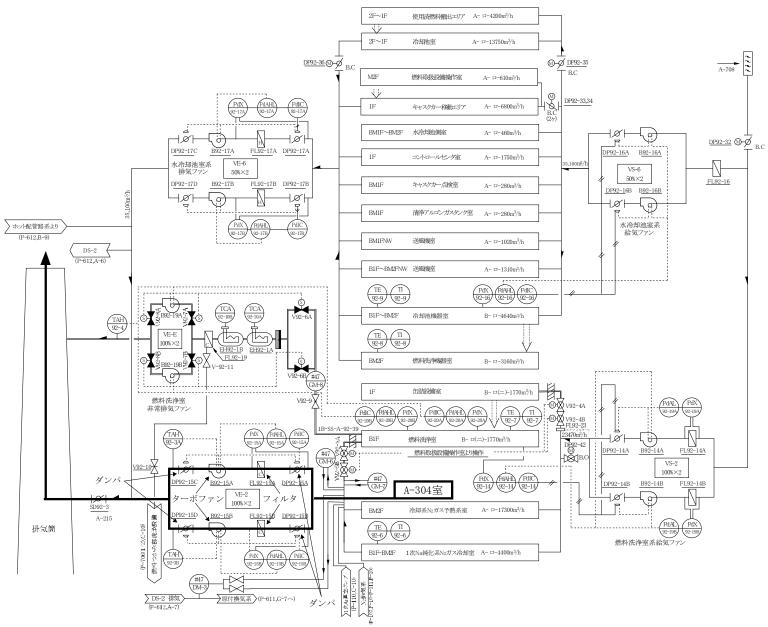


図 6-1 ⁸⁵Krの使用に係る排気系統図

追加する非密封RIに係る排気設備の能力②

人が常時立ち入る場所の空気中の放射性同位元素の濃度

核種		1日最大 使用数量	空気中 放射能濃度 (Bq/cm³)	空気中 濃度限度 (Bq/cm³)	空気中濃度と 空気中濃度限度 の比
²³⁷ Np+F. P.	237Np 233Pa 137Cs 90Sr 90Y 147Pm	17.9MBq 17.9MBq 25.7MBq 4.31MBq 4.31MBq 3.88MBq	7. 17×10^{-11} 7. 17×10^{-11} 1. 03×10^{-10} 1. 73×10^{-11} 1. 73×10^{-11} 1. 56×10^{-11}	1×10^{-6} 7×10^{-3} 3×10^{-3} 7×10^{-4} 1×10^{-2} 7×10^{-3}	7. 17×10^{-5} 1. 03×10^{-8} 3. 44×10^{-8} 2. 47×10^{-8} 1. 73×10^{-9} 2. 22×10^{-9}
²⁴¹ Am ²⁴³ Am		5 OMB q 5 MB q	2. 01×10 ⁻¹⁰ 2. 01×10 ⁻¹¹	8×10 ⁻⁷ 8×10 ⁻⁷	2. 51×10 ⁻⁴ 2. 51×10 ⁻⁵
244Cm Coの放射化物	— 60 C o	1 GBq 1. 48MBq	4. 01×10 ⁻⁹ 5. 93×10 ⁻¹²	1×10 ⁻⁶ 1×10 ⁻³	4. 01×10 ⁻³ 5. 93×10 ⁻⁹
Feの放射化物	⁵⁵ F e	2. 22MBq	8. 90×10 ⁻¹²	6×10 ⁻²	1. 49×10 ⁻¹⁰
Niの放射化物	⁵⁵ Fe ⁶⁰ Co ⁶³ Ni	62. 4MBq 24. 6MBq 24MBq	2. 50×10 ⁻¹⁰ 9. 86×10 ⁻¹¹ 9. 63×10 ⁻¹¹	2×10 ⁻² 1×10 ⁻³ 7×10 ⁻²	1. 25×10 ⁻⁸ 9. 86×10 ⁻⁸ 1. 38×10 ⁻⁹
Cuの放射化物	⁶³ N i	148kBq	5. 93×10 ⁻¹³	7×10 ⁻²	8. 48×10 ⁻¹²
Tiの放射化物	⁴⁵ Ca	7. 4MBq	2. 97×10 ⁻¹¹	9×10 ⁻³	3.30×10^{-9}
Nbの放射化物 Scの放射化物	⁹⁴ Nb ⁴⁵ Ca	22. 2MBq 37MB q	8. 90×10 ⁻¹¹ 1. 49×10 ⁻¹⁰	8×10 ⁻⁴ 9×10 ⁻³	1. 12×10 ⁻⁷ 1. 65×10 ⁻⁸
and the same of th	, , ,	合計	.,,		4.36×10^{-3}

- ・ 1日最大使用数量の²³⁷Np+F. P. 、²⁴¹Am、²⁴³Am、²⁴⁴Cm、Coの放射化物、Feの放射化物、Niの放射化物、Cuの放射化物、Tiの放射化物、Nbの放射 化物、Scの放射化物が破損した場合を想定する。
- · 空気中放射能濃度(Cs)の計算式は、以下とする。

Cs = Q×P×S×F / V Cs:空気中放射能濃度(Ba/cm³)

Q :1日最大使用数量(Bq)

P:飛散率(10⁻³) S:形態係数(0.1)

F : 取扱行為係数 $(10^{-2} (=$ 取扱行為係数 (1) / 修正係数 (100))

V :換気能力(390m³×16回/h×40h)

追加する非密封R I に係る排気設備の能力③

排気口における放射性同位元素の濃度

核種		3月間 使用数量	排気中 濃度 (Bq/cm³)	排気中 濃度限度 (Bq/cm³)	排気中濃度と 排気中濃度限度 の比
²³⁷ Np+F. P.	237Np 233Pa 137Cs 90Sr 90Y 147Pm	0.8GBq 0.8GBq 1.15GBq 0.19GBq 0.19GBq 0.17GBq	1. 78×10^{-10} 1. 78×10^{-10} 2. 55×10^{-10} 4. 28×10^{-11} 4. 28×10^{-11} 3. 85×10^{-11}	6×10 ⁻⁹ 3×10 ⁻⁵ 3×10 ⁻⁵ 5×10 ⁻⁶ 8×10 ⁻⁵ 3×10 ⁻⁵	2. 96×10^{-2} 5. 92×10^{-6} 8. 50×10^{-6} 8. 56×10^{-6} 5. 36×10^{-7} 1. 29×10^{-6}
²⁴¹ Am	_	150MBq	3. 34×10 ⁻¹¹	3×10 ⁻⁹	1. 11×10 ⁻²
²⁴³ Am	_	15MBq	3.34×10^{-12}	3×10 ⁻⁹	1. 11 × 10 ⁻³
²⁴⁴ Cm	_	1 GB q	2.23×10^{-10}	5 × 10 ⁻⁹	4.44×10^{-2}
Coの放射化物	60 C o	19. 3MBq	4. 28×10^{-12}	4×10 ⁻⁶	1. 07×10^{-6}
Feの放射化物	⁵⁵ Fe	6. 66MBq	1. 48×10 ⁻¹²	3×10 ⁻⁴	4. 94×10 ⁻⁹
Niの放射化物	⁵⁵ Fe ⁶⁰ Co ⁶³ N i	1. 88GBq 0. 73GBq 0. 72GBq	4. 16×10^{-10} 1. 65×10^{-10} 1. 61×10^{-10}	2×10 ⁻⁴ 4×10 ⁻⁶ 3×10 ⁻⁴	2. 08×10^{-6} 4. 11×10^{-5} 5. 35×10^{-7}
Cuの放射化物	63N i	148kBq	3. 29×10 ⁻¹⁴	3×10 ⁻⁴	1. 10×10 ⁻¹⁰
Tiの放射化物	⁴⁵ Ca	7. 4MBq	1. 65×10 ⁻¹²	5×10 ⁻⁵	3. 29×10 ⁻⁸
Nbの放射化物	⁹⁴ Nb	88. 8MBq	1. 98×10 ⁻¹¹	3×10 ⁻⁶	6. 58×10 ⁻⁶
Scの放射化物	⁴⁵ Ca	37MB q	8. 23×10 ⁻¹²	5×10 ⁻⁵	1. 65×10 ⁻⁷
		合計			8.63×10^{-2}

・ 3月間使用量の²³⁷Np+F. P. 、²⁴¹Am、²⁴³Am、²⁴⁴Cm、Coの放射化物、Feの放射化物、Niの放射化物、Cuの放射化物、Tiの放射化物、Nbの放射化 物、Scの放射化物が排気筒から放出されると仮定して、排気口における3月間平均の空気中放射能濃度を種類毎に計算する。

・ 空気中放射能濃度(Cs)の計算式は、以下とする。

 $Cs = Q \times P \times S \times F \times (1 - \eta) / V$ Cs : 空気中放射能濃度 (Bq/cm³)

Q :3月間使用数量(Bq)

P : 飛散率(10⁻²) S : 形態係数(保守的に1に設定) F : 取扱行為係数(保守的に1に設定)

V :換気能力 (206000 m³/h×24h×91d) n:排気系のフィルター捕集効率 (0.99)

密封RIの一部廃止による被ばくへの影響

評価	対象	線量計算結果	線量限度等
	⁹⁰ Sr に係る作業	— (廃止)	
	¹²⁴ Sbに係る作業	5.6×10 ⁻⁶ μSv/週	
が常	²⁴¹ Am-Beに係る作業	401 µ Sv/週	
人が常時立ち入る場所	²²⁶ Ra に係る作業	— (廃止)	1mSv/週
ハ る 場 所	²³⁷ Np+F. P. に係る作業	— (廃止)	
***	放射化検出器に係る作業	57 µ Sv/週	
	TRU核種に係る作業	129 µ Sv/週	
管理区域境界		819 µ Sv/3 月間	1. 3mSv/3 月間
事業所	听境界	0. 5μSv/3 月間	250 µ Sv/3月間

非密封RIと密封RIに係る総合線量評価

· 人が常時立ち入る場所における実効線量 :最大で670 µ Sv / 週

※ 旧:最大で662 µ Sv/週

→ 保守的に内部被ばくを考慮しても、線量限度又は濃度限度に対する割合 の和は0.68

・ 管理区域境界の実効線量

: 0.828mSv/3 月間

※ 旧:0.853mSv/3 月間

・ 事業所境界の実効線量

: 0.51 µSv/3 月間

※ 旧:0.7μSv/3 月間