第三編 (耐津波設計方針の検討経緯)

- 1. はじめに
  - 1.1 耐津波設計方針の検討経緯
  - 1.2 各章における検討事項の概要
- 2. 取水路防潮ゲート開状態での敷地への影響と津波波形の特徴
  - 2.1 背景
  - 2.2 評価条件
  - 2.3 評価結果
- 3. 取水路防潮ゲート開状態の津波水位計算結果に対する施設影響の整理
  - 3.1 背景
  - 3.2 評価条件
  - 3.3 評価結果
- 4. 施設影響を踏まえた対策案の検討
  - 4.1 背景
  - 4.2 検討条件
  - 4.3 検討結果
- 5. 取水路防潮ゲート閉止の起因となる津波襲来判断方法の検討
  - 5.1 背景
  - 5.2 検討条件
  - 5.3 検討結果
- 6. 津波襲来の判断基準 (トリガー) の網羅性・妥当性確認
  - 6.1 背景
  - 6.2 検討内容・結果
  - 6.3 取水路防潮ゲートの閉止判断基準 (トリガー) による誤検知の可能性について
  - 6.4 後段規制における取水路防潮ゲートの閉止判断基準 (トリガー) の網羅性・妥当性の確認及び入力津波設定に関する位置付けについて
- 7. 運用成立性の確認
  - 7.1 運転操作等の成立性確認
  - 7.2 取水路防潮ゲート閉止に対する余裕時間
  - 7.3 潮位観測システム (防護用) の基準適合性
  - 7.4 大津波警報と潮位観測システム (防護用) による津波襲来判断の同等 性
- 8. 基準津波の選定

- 8.1 背景
- 8.2 基準津波の選定方針
- 8.3 津波警報等が発表されない場合の評価
- 8.4 基準津波の選定
- 9. 取水路防潮ゲート対策の採用による施設影響の確認
- 10. 津波警報等が発表されない津波に可能な限り早期に対応するための運用
  - 10.1 発電所構外の観測潮位を用いた運用
  - 10.2 更なる安全性向上に係る取り組み
  - 10.3 発電所構外の観測潮位欠測時の対応

### 1. はじめに

### 1. 1 耐津波設計方針の検討経緯

2018年12月22日にインドネシアのスンダ海峡にある火山島のアナク・クラカタウの噴火に伴い津波が発生した。本津波の規模の割に被害が大きい要因として、津波警報等が発表されずに津波が来襲したことにもあると考えられている。

新規制基準では、基準津波について、地震以外の要因による津波として、今回インドネシアで発生したような火山現象による津波と地すべり(陸上及び海底)による津波も考慮して策定することを要求している。また、地震による津波と地震以外の要因による津波の組合せを考慮することも要求している。

2019年1月16日時点で、設置変更許可申請し、許可を得た当社の美浜、高 浜、大飯発電所では、火山現象による津波も検討対象に含めて申請しているが、 火山と原子力発電所との距離や位置関係等により、結果的に基準津波として 選定していない。また、地すべりによる津波については、美浜、高浜、大飯発 電所のいずれにおいても、その敷地への影響が大きいことから、地震による津 波との組合せで、基準津波として選定した。

このような状況の中、高浜発電所については、その敷地が他発電所に比べて低いことから、他発電所で実施している津波防護に加え、取水路防潮ゲートを閉止することによる対策も採用している。具体的には、津波が到達するまでに時間的に余裕のある基準津波の波源である「若狭海丘列付近断層と隠岐トラフ海底地すべり」の組合せの場合には、大津波警報が発表された後に取水路防潮ゲートを閉止する状態で津波高さを評価し、津波防護を達成している。

しかしながら、2018 年のインドネシア・スンダ海峡での津波から得られた知見を踏まえると、「隠岐トラフ海底地すべり」を発生要因とする津波の場合には、津波警報等が発表されない可能性がある。

この場合、現状の大津波警報が発表された後に取水路防潮ゲートを閉止する対策では、取水路防潮ゲートが閉止されず、津波が敷地へ到達する可能性があることから、まず、取水路防潮ゲートが閉止できない前提で「隠岐トラフ海底地すべり」を発生要因とする津波の水位計算を行い、押し波時に敷地へ遡上するかの確認と、引き波時に海水ポンプの取水性に影響を与えるかの確認を行った。

その結果、施設影響が生じることを確認したため、発電所構内に津波が浸入することを前提に施設に影響を与えない対策を検討することとした。

対策として、津波警報等が発表されない可能性がある津波の 1 波目を確認して取水路防潮ゲートを閉止することにより、施設影響が生じることを回避できると考えられたため、本対策の採否を判断するにあたり、取水路防潮ゲート閉止の起因となる津波襲来判断の方法、津波襲来の判断基準(トリガー)の網羅性・妥当性、運用成立性(津波を確認してから、施設影響が生じる潮位に至る前に取水路防潮ゲート閉止の運転操作が完了するか)について検討を行った。

その後、これらの検討結果を踏まえて基準津波を設定し、取水路防潮ゲート

閉止対策の採用による施設影響を確認するとともに、津波警報等が発表されない津波に可能な限り早期に対応するための運用も検討した。

これら検討項目の概要と検討の流れは、「1.2 各章における検討事項の概要」に示している。

本編は、このような津波警報等が発表されない可能性がある「隠岐トラフ海 底地すべり」を発生要因とする津波の敷地への影響を踏まえた高浜発電所の 耐津波設計について、その詳細をまとめたものである。

# 1. 2 各章における検討事項の概要

本章ではまず、本編で行った検討の概要を示す。津波警報等が発表されない可能性がある津波を、高浜発電所の耐津波設計に取り入れるに当たっては、本章の(1)から(9)の順序で検討を行った。検討フローを図1に示す。

なお、図1のフロー図における2.~10.の検討事項と本章の(1)~(9)の記載内容は対応しており、本編の2章~10章に示す詳細な検討事項の概要を(1)~(9)にそれぞれ示す構成としている。

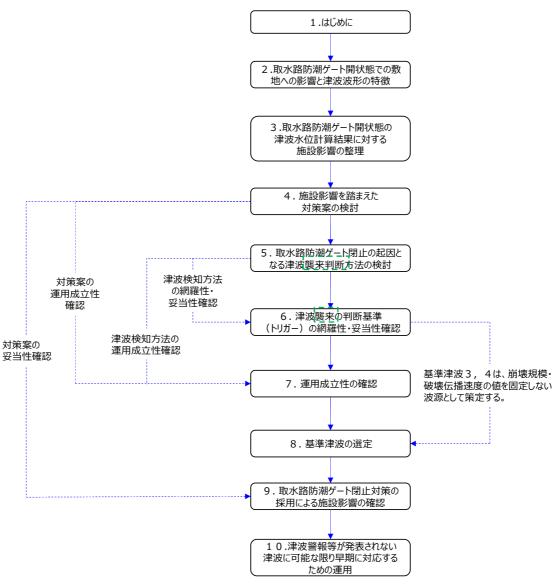



図1津波警報等が発表されない可能性のある津波の防護方針に係る検討フロー

- (1) 取水路防潮ゲート開状態での敷地への影響と津波波形の特徴
  - 高浜発電所には津波防護施設として取水路防潮ゲートが設置されている。取水路防潮ゲートは、大津波警報が発表された場合にゲート扉体を取水路中に落下させて取水路防潮ゲートを閉止することにより、発電所敷地への津波の流入防止及び海水ポンプの取水性を確保する設計としているが、津波警報等の発表されない津波が襲来した際には、現状の運用では取水路防潮ゲートを閉止することができないため、津波が敷地へ到達する可能性がある。
  - ・ 取水路防潮ゲート開状態で津波警報等が発表されない可能性のある津波が襲来する場合に既許可時に評価対象とした隠岐トラフ海底地すべりのエリアA~Cの最大規模のものに対して、各評価点の津波水位計算を実施した。その結果、「隠岐トラフ海底地すべりエリアB(Es-K5、Kinematicモデル)」と「隠岐トラフ海底地すべりエリアC(Es-T2、Kinematicモデル)」について、敷地高さ(T.P.+3.5m)を上回る水位及び、海水ポンプの取水可能水位(1,2号炉海水ポンプ:T.P.-3.21m、3,4号炉海水ポンプ:T.P.-3.52m)を下回る水位となることを確認した。なお、以降の説明において、「敷地高さ(T.P.+3.5m)を上回る、もしくは、海水ポンプの取水可能水位(1,2号炉海水ポンプ:T.P.-3.21m、3,4号炉海水ポンプ:T.P.-3.52m)を下回る」水位となることを「施設影響が生じる」という。また、「敷地高さ(T.P.+3.5m)を上回る、もしくは、海水ポンプの取水可能水位(1,2号炉海水ポンプ:T.P.-3.21m、3,4号炉海水ポンプ:T.P.-3.52m)を下回る」水位とならないことを「施設影響が生じない」という。
  - これらの津波の波形は、「1波目より2波目以降のほうが、水位変動量が大きい」、「1波目の水位変動量では施設影響が生じない」ことを確認した。
- (2) 取水路防潮ゲート開状態の津波水位計算結果に対する施設影響の整理 高浜発電所は、襲来のおそれのある津波に対し、敷地が比較的低いとい う特徴を有するため、(1)で計算した水位の最大値を用い、外郭防護1、 外郭防護2、内郭防護及び水位変動に伴う取水性低下への影響を確認す る。
  - 上記に対する影響確認については、「①既許可で確認済みの対策での評価」と、「②既許可で確認していないが、実力的に発生防止・事象緩和機能を持つ設備や、既許可での評価条件の保守性(水位上昇側では、海水ポンプ・循環水ポンプの全台停止を想定している)から、実運転の条件で機能影響を考慮した評価(以下、実力評価という。)」の場合に分けて整理した。
  - この①、②については、津波水位計算結果に潮位のばらつき(上昇側+0.15m、下降側-0.17m)及び高潮裕度(上昇側+0.49m)を考慮した水位で 影響を確認した。
  - この結果、既許可で確認済みの対策での評価の場合は、水位上昇側、水

位下降側ともに、施設影響が生じることを確認した。

• この評価結果を踏まえ、対策を検討した。

### (3) 施設影響を踏まえた対策案の検討

- (2)の施設影響の評価結果と高浜発電所の敷地が比較的低いという 特徴を踏まえ、津波防護対策案として、まず、防護壁や貯水堰、海水ポンプ改造等を検討した。その結果、「防護壁と貯水堰の組み合わせ」又 は「防護壁と海水ポンプ(改造・移設)の組み合わせ」が必要と整理した。
- 「防護壁と貯水堰の組み合わせ」又は「防護壁と海水ポンプ(改造・移設)の組み合わせ」の対策はいずれも対応に長期間を要する。また、水位下降側の対策である貯水堰の設置や海水ポンプの改造・移設は、海水ポンプの取水を長期間停止させる必要がある。
- 一方、「防潮ゲート」は既設であり、これを活用した対策は、設備対策面では、速やかにプラントの安全性向上が可能である。また、(2)の結果より、津波警報等が発表されない可能性のある津波の1波目を確認し、取水路防潮ゲートを閉止することにより施設影響が生じることを回避できるものと考えられる。ただし、津波警報等が発表されない可能性のある津波の特性を考慮すると、「防潮ゲート」による対策の採否の判断に当たり、取水路防潮ゲート閉止の起因となる津波襲来判断について検討する必要がある。

# (4) 取水路防潮ゲート閉止の起因となる津波襲来判断方法の検討

- 発電所構内には、津波監視設備である津波監視カメラ及び潮位計を保有する。このうち、津波襲来判断として、定量的に潮位を測定できる潮位計の活用を検討した。
- 潮位計を活用した津波襲来判断を採用する場合、「施設影響が生じるケースを見逃すことがないか、津波以外の潮位変動を誤判断することはないか」という津波襲来の判断基準(トリガー)の網羅性・妥当性の確認が必要である。また、「津波を確認してから、施設影響が生じる潮位に至る前に取水路防潮ゲート閉止の運転操作が完了するか」という運用成立性の確認が必要である。
- ・ 従って、津波シミュレーションによる隠岐トラフ海底地すべりの波源 特性及び若狭湾における津波の伝播特性に関するパラメータスタディ を実施し、潮位計による過去の観測データ等を踏まえた上で、津波襲 来の判断基準(トリガー)の網羅性・妥当性及び運用成立性について確 認し、潮位計を活用した津波襲来判断の採否を判断することとした。
- ・ また、今回の運用では、津波襲来の判断基準(トリガー)に到達したことを1号及び2号炉当直課長と3号及び4号炉当直課長が連携し、確認することから、この連携に用いる通信連絡設備を衛星電話(津波防護用)等とする。
- これらの取水路防潮ゲート閉止に用いる潮位計及び衛星電話(津波防

# 護用)を潮位観測システム(防護用)とする。

- (5) 津波襲来の判断基準 (トリガー) の網羅性・妥当性確認
  - 津波襲来の判断基準 (トリガー) の設定に当たっては、「施設影響が生じるケースを見逃すことがないか、津波以外の潮位変動を誤判断することはないか」といった観点で、網羅性・妥当性を確認する必要がある。津波襲来の判断基準 (トリガー) の網羅性・妥当性の確認は以下の順序で行った。
    - ① :施設影響が生じる波源の津波波形の特徴を確認。
    - ② : 通常(平常時、台風時)の潮位変動の確認。
    - ③:①と②から津波襲来の判断基準(トリガー)の仮設定の実施。
    - ④:隠岐トラフ海底地すべりのうち、エリアA~Cの各エリアで規模が2位以下の海底地すべりに対し津波水位計算を行った結果、(1)で計算したエリアBとエリアCの最大規模のもの(エリアB(Es-K5, Kinematic モデル)及びエリアC(Es-T2, Kinematic モデル))のみが施設影響が生じる波源であることを確認した。その上で、この2つの波源に対し、「海底地すべりの波源特性」及び「若狭湾における津波の伝播特性」に関するパラメータスタディを実施し、施設影響が生じるケースが全て確認できるかの確認を行った。
      - ①、②の確認結果と、④の「海底地すべりの波源特性」及び「若狭湾における津波の伝播特性」のパラメータスタディ結果を全て踏まえ、「パラメータスタディ波高の観点」、「非線形性の観点」、「増幅比率の観点」(これらの観点については6章で詳述する)で、再度、安全側に仮設定値を設定した。そのうち、津波の時刻歴波形を有するケースについては、設備形状による影響評価及び管路解析による影響評価を行い、仮設定値を再設定した。

これらに対し、過去観測データから算出した 10 分間の潮位のゆらぎの最大約 0.10m を考慮した上で、さらに余裕を加味し、津波襲来の判断基準(トリガー)(以下「取水路防潮ゲートの閉止判断基準(トリガー)」という。)を以下のとおり設定した。

・ 潮位観測システム(防護用)のうち、2 台の潮位計の観測潮位が 10 分以内に 0.5m 以上下降し、その後、最低潮位から 10 分以内に 0.5m 以上上昇する。

### または

- ・潮位観測システム(防護用)のうち、2台の潮位計の観測潮位が10分以内に0.5m以上上昇し、その後、最高潮位から10分以内に0.5m以上下降する。
- 今回の申請では、取水路防潮ゲートの閉止判断基準(トリガー)は設置 許可としての基本設計の条件において、施設影響が生じるおそれがあ る津波を網羅的に確認できるよう、裕度をもって設定した。
- 取水路防潮ゲートの閉止判断基準 (トリガー) による誤検知の可能性 はないことを確認した。

- 設置許可段階では、施設に対して最も影響を及ぼす津波を耐津波設計に用いる入力津波として設定するが、それだけではなく、津波高さとしては小さくても施設に対して影響を及ぼす津波についても、その津波の第1波の水位変動量を設置許可で設定する取水路防潮ゲートの閉止判断基準で確認できることが必要となる。その際、設置許可段階では評価することができない計装誤差を考慮するため、この入力津波は詳細設計段階で作成することとする。
- (6) 運用成立性(津波を確認してから、施設影響が生じる潮位に至る前に取水 路防潮ゲート閉止の運転操作が完了するか)の確認
  - 潮位観測システム(防護用)のうち潮位計で津波を確認した後は、その情報に基づき、運転操作が必要であることから、「津波を確認してから、施設影響が生じる潮位に至る前に取水路防潮ゲート閉止の運転操作が完了するか」を評価する必要がある。
  - 運用成立性の確認に当たっては、潮位変動開始から取水路防潮ゲートの閉止判断基準(トリガー)に達するまでの所要時間が短く、最も運用上の時間的な対応が短くなるケースとして、崩壊規模・破壊伝播速度を最大とした場合の「海底地すべりエリアB(Es-K5、Kinematicモデル)」による津波を選定した。
  - 取水路防潮ゲートの閉止判断基準 (トリガー) に到達するまでの対応 について取水路防潮ゲートの閉止完了までの一連の対応を含め、以下 に示す。
    - (a) 潮位観測システム (防護用) のうち潮位計が 10 分以内に 0.5m 以上下降、又は上昇した時点の警報発信 (1 台目)
      - ・1台目の潮位計において観測潮位が10分以内に0.5m以上下降、 又は上昇した時点で1号及び2号炉中央制御室又は3号及び4号 炉中央制御室に警報が発信する。
      - ・この時点で1号及び2号炉運転員又は3号及び4号炉運転員は1 号及び2号炉当直課長又は3号及び4号炉当直課長へ警報発信し たことを報告する。
      - ・1号及び2号炉当直課長又は3号及び4号炉当直課長は他方の中央制御室の当直課長へ潮位観測システム(防護用)のうち衛星電話(津波防護用)を用いて、警報発信したことを報告する。なお、衛星電話(津波防護用)の補助設備として運転指令設備、保安電話(固定)、保安電話(携帯)を活用する。((b)から(e)も同様)
      - ・その後、1号及び2号炉当直課長並びに3号及び4号炉当直課長は 潮位の継続的な集中監視を行うために、1号及び2号炉運転員又 は3号及び4号炉運転員に潮位の継続監視、循環水ポンプ停止準 備、プラント停止準備及び取水路防潮ゲート閉止準備に備えるよ う指示する。
      - ・1号及び2号炉運転員並びに3号及び4号炉運転員はそれぞれの 中央制御室の監視モニタへ移動し、潮位計の潮位変化量やトレン

- ドグラフを継続的に目視確認し、1号及び2号炉当直課長又は3号及び4号炉当直課長に速やかに状況を報告する。
- ・なお、安全性向上のための補助機能として、1号及び2号炉当直課長と3号及び4号炉当直課長は、潮位観測システム(補助用)から警報が発信した時点で、他号炉の観測潮位の動向を把握する。((b)から(d)も同様)
- (b) 潮位観測システム(防護用)のうち潮位計が10分以内に0.5m以上下降、又は上昇した時点の警報発信(2台目)
  - ・2台目の潮位計において観測潮位が10分以内に0.5m以上下降、 又は上昇した時点で1号及び2号炉中央制御室又は3号及び4号 炉中央制御室に警報が発信する。
  - ・この時点で1号及び2号炉運転員又は3号及び4号炉運転員は1 号及び2号炉当直課長又は3号及び4号炉当直課長へ警報発信し たことを報告する。
  - ・1号及び2号炉当直課長と3号及び4号炉当直課長は潮位観測システム(防護用)のうち衛星電話(津波防護用)を用いた連携により、他方の中央制御室の当直課長へ警報発信したことを報告する。
  - ・1号及び2号炉運転員並びに3号及び4号炉運転員はそれぞれの中央制御室の潮位計の潮位変化量やトレンドグラフを継続的に目 視確認し、1号及び2号炉当直課長又は3号及び4号炉当直課長 に速やかに状況を報告する。
- (c) (a) 又は(b) で警報発信した潮位観測システム(防護用)のうち潮位計が、その後最低潮位から10分以内に0.5m以上上昇、又は最高潮位から10分以内に0.5m以上下降した時点の警報発信(1台目)
  - ・1台目又は2台目の潮位計において観測潮位が 10 分以内に 0.5m 以上上昇、又は下降した時点で1号及び2号炉中央制御室又は3 号及び4号炉中央制御室に警報が発信する。
  - ・この時点で1号及び2号炉運転員又は3号及び4号炉運転員は1 号及び2号炉当直課長又は3号及び4号炉当直課長へ警報発信 したことを報告する。
  - ・1号及び2号炉当直課長と3号及び4号炉当直課長は潮位観測システム(防護用)のうち衛星電話(津波防護用)を用いた連携により、他方の中央制御室の当直課長へ警報発信したことを報告する。
- ・1号及び2号炉運転員並びに3号及び4号炉運転員はそれぞれの中央制御室の潮位計の潮位変化量やトレンドグラフを継続的に目視確認し、1号及び2号炉当直課長又は3号及び4号炉当直課長に速やかに状況を報告する。
- (d) (a) 又は(b) で警報発信した潮位観測システム(防護用) のうち潮位計が、その後最低潮位から 10 分以内に 0.5m 以上上昇、又は最高潮位から 10 分以内に 0.5m 以上下降した時点の警報発信(2台

- 目)、取水路防潮ゲート閉止判断(循環水ポンプ停止及びプラント 停止判断を含む)
- ・(c)の潮位計に引き続き、もう1台の潮位計の観測潮位が10分以内に0.5m以上上昇、又は下降した時点で、1号及び2号炉中央制御室又は3号及び4号炉中央制御室に警報が発信する。
- ・この時点で1号及び2号炉運転員又は3号及び4号炉運転員は1 号及び2号炉当直課長又は3号及び4号炉当直課長へ警報発信し たことを報告する。
- ・1号及び2号炉当直課長と3号及び4号炉当直課長は潮位観測システム(防護用)のうち衛星電話(津波防護用)を用いた連携により、他方の中央制御室の当直課長へ警報発信したことを報告する。
- ・この時点で、1号及び2号炉当直課長は、1号炉から4号炉の観測潮位を確認し、取水路防潮ゲートの閉止判断基準(トリガー)に到達したこと、循環水ポンプ停止(プラント停止)を判断し、1号及び2号炉運転員に循環水ポンプ停止(プラント停止)を指示する。
- ・合わせて、1号及び2号炉当直課長は3号及び4号炉当直課長に、 取水路防潮ゲートの閉止判断基準を到達したこと、並びに1号及 び2号炉運転員に循環水ポンプ停止(プラント停止)を指示したこ とを、潮位観測システム(防護用)のうち衛星電話(津波防護用) を用いて報告する。
- ・3号及び4号炉当直課長は、1号及び2号炉当直課長の報告を受け、3号及び4号炉運転員に循環水ポンプ停止(プラント停止)を指示する。

### (e)取水路防潮ゲートの閉止

- ・1号及び2号炉運転員並びに3号及び4号炉運転員は循環水ポンプ停止(プラント停止)操作が完了すれば、1号及び2号炉当直課 長並びに3号及び4号炉当直課長に報告する。
- ・3号及び4号炉当直課長は1号及び2号炉当直課長に循環水ポンプ停止(プラント停止)操作が完了したことを、潮位観測システム (防護用)のうち衛星電話(津波防護用)を用いて報告する。
- ・1号及び2号炉当直課長は1号及び2号炉運転員に取水路防潮ゲート閉止を指示し、1号及び2号炉運転員から取水路防潮ゲート 閉止操作が完了した報告を受ける。
- ・1 号及び2号炉当直課長は、3号及び4号炉当直課長に、取水路 防潮ゲート閉止操作が完了したことを、潮位観測システム(防護 用)のうち衛星電話(津波防護用)を用いて報告する。
- 上記の対応を踏まえ、(a)の警報発信から(d)の取水路防潮ゲートの閉 止判断基準(トリガー)に到達するまで最短でも約5分であり、この間 に取水路防潮ゲートの閉止判断基準(トリガー)に到達したことを確

認することと、1号及び2号炉当直課長並びに3号及び4号炉当直課長が取水路防潮ゲートの閉止判断基準(トリガー)に到達したことを確認した場合に速やかに対応するための情報連携ができることを確認した。

- 以降、本章において、取水路防潮ゲートの閉止判断基準(トリガー)の 条件成立を1号及び2号炉当直課長と3号及び4号炉当直課長の潮位 観測システム(防護用)のうち衛星電話(津波防護用)を用いた連携に より確認することを「取水路防潮ゲートの閉止判断基準(トリガー)を 確認」という。
- 取水路防潮ゲートの閉止判断基準(トリガー)を確認した後は、循環水ポンプ停止及びユニットトリップ操作等の運転操作及び機器動作を 5分で完了後、取水路防潮ゲートを 1分で閉止する運用としている。なお、取水路防潮ゲート閉止に要する時間は20秒程度と算定しているが、余裕を考慮して1分としている。
- (5)で実施した取水路防潮ゲートの閉止判断基準(トリガー)の網羅性・妥当性における海底地すべりの波源特性(崩壊規模・破壊伝播速度)のパラメータスタディ結果のうち、施設影響が生じるケースについて、運転操作により取水路防潮ゲートが閉止される時刻から、閉止後に施設に影響する水位の波が取水路防潮ゲート前面に到達するまでの時刻を算出し、運転操作による取水路防潮ゲート閉止に対する余裕時間を評価した結果、約9~15分の余裕時間があり、施設影響が生じる前に確実に取水路防潮ゲートを閉止できることを確認した。

### (7) 基準津波の選定

(1)  $\sim$  (6) の検討を踏まえ、基準津波については、以下のA $\sim$ Cの方針に基づき、波源を選定する。

A) 施設影響が生じる波源がない場合の選定方針

施設影響が生じる波源がない場合には、各評価点において最高水位・最低水位となる波源を基準津波として選定する。ただし、同一の評価点における最高水位・最低水位が同程度のケースが複数ある場合は、基準津波としては、他の評価点における最高水位・最低水位の影響が大きなケースを代表として選定する。

- B) 施設影響が生じる波源がある場合の選定方針
  - 耐津波設計における津波防護の観点では、施設影響が生じる全てのケースに対して安全機能を損なわないことが求められる。耐津波設計では基準津波を用いて検討を行うことから、施設影響が生じる波源がある場合は、それらを全て基準津波として選定する。
- C) 津波警報等が発表されない場合の留意点

津波警報等が発表されない場合には津波警報等に基づく取水路防潮ゲート閉止ができないため、耐津波設計においては、ゲート内への津波の浸入を前提としながら施設の安全性を損なわない設計とする必要がある。したがって、耐津波設計において施設影響が生じる

津波波形を網羅的に確認できるように基準津波を策定する必要がある。

具体的には、津波警報等が発表されない場合の対象波源である海底地すべりでは、施設影響の確認のための津波水位計算で設定する崩壊規模及び破壊伝播速度に対して部分的な崩壊や遅い崩壊となる可能性があり、その場合でも施設影響が生じる津波は発生し得る。このため、B)に基づいて施設影響が生じる波源を基準津波として選定する場合には、基準津波の波源としては、施設影響が生じる全ての海底地すべりを選定した上で、それぞれの海底地すべりにおける崩壊規模及び破壊伝播速度の値は固定しないこととする。

具体的には、①、②の評価を行う。また、②の評価結果を踏まえて③で これを用いた耐津波設計での検討内容を記載する。

### ①既許可時の評価

- 既許可時の評価では、津波警報等に基づく取水路防潮ゲート閉止を前提とする。
- 大津波警報を受け、津波到達前に取水路防潮ゲートを閉止することで、施設影響が生じる波源はない。なお、津波到達に対して取水路防潮ゲート閉止が間に合わない波源もあるが、その場合でも施設影響は生じない。
- 取水路防潮ゲート前面、放水口前面、放水路(奥)で最高水位となる 波源は「福井県モデル(若狭海丘列付近断層)と海底地すべりエリ アBの組み合わせ」であり、これを基準津波1として選定した。
- 各海水ポンプ室及び3,4号炉循環水ポンプ室で最高水位・最低水位となる波源は「 $FO-A\sim FO-B\sim$ 熊川断層と陸上地すべり (No.14)の組み合わせ」であり、これを基準津波2として選定した。

### ②津波警報等が発表されない場合(今回評価)

- 津波警報等が発表されない津波の場合は、津波警報等に基づく取水 路防潮ゲート閉止ができない前提とする。
- 津波警報等が発表されない場合の基準津波の選定は、施設影響が生じる波源を網羅的に抽出するため、既許可時に評価対象としたエリアA~Cの最大規模の海底地すべりに加え、各エリアで規模が2位・3位の海底地すべりや発電所方向に崩壊する海底地すべりについても評価対象とした。
- 評価の結果、施設影響が生じる波源は「海底地すべりエリアB(Es-K5、Kinematic モデル)」及び「海底地すべりエリアC(Es-T2、Kinematic モデル)」のみであり、これらの波源をそれぞれ基準津波3、基準津波4として選定した。なお、規模が2位以下の波源は施設影響が生じないことを確認した。
- 選定方針の C) に基づき、基準津波の波源としては、施設影響が生じるケースを全て包含する波源とするために、基準津波 3 及び基準津

波4は、「海底地すべりエリアB(Es-K5、Kinematic モデル)」及び「海底地すべりエリアC(Es-T2、Kinematic モデル)」において崩壊規模及び破壊伝播速度の値を固定しない波源として策定する。ただし、崩壊規模及び破壊伝播速度は、施設影響が生じる波源の確認において用いた値を上限とする。

③津波警報等が発表されない場合の基準津波の選定結果を踏まえた耐 津波設計での検討事項

②で選定した基準津波3及び基準津波4では施設影響が生じること から、耐津波設計において対策を講じる。具体的には、若狭湾における 津波の伝播特性により高浜発電所の取水路から海水ポンプ室に至る経 路では襲来する津波の第1波より第2波以降の振幅が大きくなること 及び、基準津波3及び基準津波4では第2波以降の水位変動で施設影 響が生じる結果となっていることを踏まえ、取水路防潮ゲートの閉止 判断基準(トリガー)を確認した場合に、取水路防潮ゲートを閉止し、 施設影響が生じる後続波の浸入を防止することで施設影響を回避する。 よって、安全設計上、施設影響が生じるケースをすべて確認できる取水 路防潮ゲートの閉止判断基準(トリガー)の設定が必須である。そこで、 耐津波設計では、基準津波3及び基準津波4を用いて施設影響が生じ るケースをすべて確認できるように取水路防潮ゲートの閉止判断基準 (トリガー)を設定する。海底地すべりを波源とする津波は、崩壊規模 が小さくなると振幅が小さくなり、破壊伝播速度が小さくなると振幅 が小さくなって周期が長くなる。基準津波3及び基準津波4は崩壊規 模及び破壊伝播速度を固定値としないことから、これらのパラメータ スタディによって施設影響が生じるケースを網羅的に確認できる取水 路防潮ゲートの閉止判断基準(トリガー)を設定する。

これらの基準津波 3 及び基準津波 4 を用いた耐津波設計における検討結果は  $(1) \sim (5)$  のとおり。

### (8) 取水路防潮ゲート閉止対策の採用による施設影響の確認

- ・上述の(1)~(6)の検討結果より、設置許可の基本設計の条件下で、 取水路防潮ゲート対策採用の前提条件である取水路防潮ゲートの閉止 判断基準(トリガー)の網羅性・妥当性及び運用成立性のいずれも満足 することを確認した。従って、津波襲来判断に潮位観測システム(防護 用)を活用することとし、取水路防潮ゲートの閉止判断基準(トリガー)を、「潮位計のうち、2台の観測潮位がいずれも10分以内に0.5 m以上下降(または上昇)し、その後、最低潮位から10分以内に0.5 m以上上昇(または下降)」と設定する。
- この取水路防潮ゲートの閉止判断基準(トリガー)を確認した場合に、 取水路防潮ゲートを閉止する対策を踏まえ、(7)で選定した基準津波3, 4に対し、「施設、設備に最も影響が大きい入力津波」を評価した結果、 3,4号炉海水ポンプ室前面の入力津波高さ(水位下降側)が既許可の

評価から変更となることを確認した。

- 入力津波高さの変更に伴う海水ポンプの取水性への影響については、 入力津波高さが海水ポンプの設計取水可能水位を上回っているため、 海水ポンプは機能保持できることを確認した。
- 漂流物による影響について、構内の一般車両は、既許可では津波防護施設に対する漂流物となる可能性は否定できないものとして整理していたが、車両のモバイル性を活用し、必要に応じ、当社敷地内の津波が到達しない場所へ退避する運用を定めることにより、津波防護施設に影響を及ぼさない方針とする。なお、退避運用の必要性及び成立性については、詳細設計段階で確認する。
- 以上より、設定した取水路防潮ゲートの閉止判断基準(トリガー)により敷地遡上を生じず、かつ海水ポンプの取水性に影響がないことを確認した。
- (9) 津波警報等が発表されない津波に可能な限り早期に対応するための運用
  - 基準津波3,4は、津波警報等が発表されない可能性があるため、発電所への津波襲来をより早く確認することで、発電所の安全性向上につながると考えられる。そのため、リアルタイムに潮位の観測が可能であること等の条件を踏まえ、発電所構外における潮位観測活用の候補地点を抽出した。
  - 高浜発電所より早期に、津波を確認できる候補地点は、三国、津居山、経ヶ岬である。候補地点のうち、三国地点及び津居山地点では、フロート式水位計が1台設置されている。津居山地点は既往潮位データの分析から、潮汐と津波の区別が可能であり、リアルタイムデータの入手も可能なため、高浜発電所1,2号炉の再稼働までに当該潮位データを活用した運用を以下のとおり定めることとした。なお、その他の候補地点については、将来的な更なる安全性向上の取り組みとして検討していくこととした。
  - (1)~(8)までの取水路防潮ゲート閉止判断基準を確認する対応に加え、発電所構外の観測潮位を用い、可能な限り早期に津波に対応するため、以下の①、②の「運用」を定め、設置許可申請書の添付書類八に記載し、運用の具体的な内容は、保安規定以下で定めることとする。
    - ① 発電所構外にて「プラント影響のある津波(津居山の場合 10 分以内 1.0m の上昇又は下降)」を確認した場合

潮位計での取水路防潮ゲートの閉止判断基準(トリガー)を「2台の観測潮位がいずれも10分以内0.5mの「変動(下げ、もしくは、上げ)のみ)」」とし、取水路防潮ゲート閉止判断を早期化する。

② 発電所構外にて「プラント影響の可能性のある津波 (津居山の場合 10 分以内 0.5m の上昇又は下降)」を確認した場合

取水路防潮ゲートの落下機構の健全性確認など(取水路防潮ゲートの保守作業の中止、構内の一般車両の退避、輸送船の退避、輸送車両の退避、津波監視カメラによる監視)、津波関連施設の状況を確認

し津波襲来に備える。

- 上記の運用のうち、①の発電所構外における「プラント影響のある津波」は、観測潮位で大津波警報相当の津波高さ (津波高さ 3.0m 超) 予測値を把握することで判断するが、水位 T.P.+3.0m、T.P.+2.0m 及び T.P.+1.0m の判断基準案から、津居山地点の観測潮位の観測範囲を加味して、安全側の判断基準となる T.P.+1.0m を採用する。ただし、過去最高潮位が台風時の T.P.+1.68m であり、津波以外の場合に誤判断する可能性があることから、時間軸の判断基準を加えて、「10 分以内に 1m 上昇又は下降」した場合を判断基準とする。
- ・ また、②の発電所構外における「プラント影響の可能性のある津波」は、(5)で実施した崩壊規模・破壊伝播速度のパラメータスタディにおいて高浜発電所に施設影響が生じるケースの、津居山地点の津波シミュレーションを実施し、第1波の水位低下量を確認した。この結果、いずれも第1波の水位低下量は、0.6m以上であることを確認したことから、これに10分間の潮位のゆらぎの最大約0.10mを考慮し、「10分以内0.5m上昇又は下降」を判断基準とする。
- なお、発電所構外の観測潮位は可能な限り早期に基準津波3及び基準 津波4に対応する観点で活用するものであるため、発電所構外の観測 潮位が欠測した場合は、一時的に津居山地点での観測潮位を用いずと も津波対応上の問題がないと評価できる場合は欠測時の対応を除外す る。また、津波対応上の問題があるが、津波襲来を判断した際と同等の 対応が可能な場合は、津波襲来を判断した際と同等の対応を実施する。 津波襲来を判断した際と同等の対応ができないものは、個別に代替手 法を検討し対応する。

2. 取水路防潮ゲート開状態での敷地への影響と津波波形の特徴

### 2. 1 背景

1. 1章で示した通り、2018年のインドネシア・スンダ海峡での津波から得られた知見を踏まえると、「隠岐トラフ海底地すべり」を発生要因とする津波の場合は、津波警報等が発表されずに津波が敷地に到達し、施設に影響を及ぼす可能性がある。しかしながら、既許可では、取水路防潮ゲートが開いた状態における津波高さ、遡上域及び津波防護の評価は行っていない。

以上の状況を踏まえ、本章では、「海底地すべりに起因する津波」について「津波警報等が発表されない場合」の、津波高さ、遡上域及び津波防護の評価を新たに実施する。

### 2. 2 評価条件

既許可の津波評価では、「敷地周辺に影響を及ぼした過去の津波」、「地震に起因する津波」、「地震以外に起因する津波」及び「地震に起因する津波と地震以外に起因する津波の組み合わせ」について検討している。一方で、今回の評価対象である津波警報等が発表されない可能性のある津波は、波源が「隠岐トラフ海底地すべり」であることから「地震以外に起因する津波」に該当する。このため、本検討では、既許可の津波評価における「地震以外に起因する津波」のうち、「海底地すべりに起因する津波」について「津波警報等が発表されない場合」の評価を新たに実施する。

津波水位計算の実施にあたり、計算手法および計算条件は基本的には既許可(2016.4.20 許可)の基準津波の策定で実施した計算手法および計算条件と同じとする。ただし、津波警報等が発表されない場合の津波水位計算については、取水路防潮ゲートの開閉条件、ポンプ取水条件について次に示す条件で実施する。

取水路防潮ゲートの開閉条件については、津波警報等が発表されない場合は取水路防潮ゲート閉止ができないことから、取水路防潮ゲートは「開(4門開)」とする。ポンプ取水条件については、津波警報等が発表されない前提を踏まえ、水位下降側の水位評価では循環水ポンプは「取水あり」とし、水位上昇側の水位評価では循環水ポンプは保守的に「取水なし」とする。

津波警報等が発表されない場合の津波として、「隠岐トラフ海底地すべり」による津波について、津波水位計算を実施した。評価対象とする海底地すべりは、隠岐トラフ付近に分布する38の海底地すべり跡を位置及び向きによってエリアA~Cに分けた上で、エリア毎に最大規模となる海底地すべり地形として、エリアAのEs-G3、エリアBのEs-K5、エリアCのEs-T2を選定した。この際、海底地すべりの規模の比較では、海底地すべり地形における崩壊部の鉛直断面積を指標とした。海底地すべりによる津波の評価では、初期水位形状の算出を複数の手法により行うこととし、Watts他の予測式及びKinematicモデルを用いた。

### 2. 3 評価結果

津波水位計算の結果を表1に示す。各評価点における水位は、海底地すべり

エリアB (Es-K5、Kinematic モデル) による津波が最も大きい結果となり、各ポンプ室位置で、敷地高さ (T.P.+3.5m) を上回る水位及び、海水ポンプの取水可能水位 (1,2 号炉海水ポンプ: T.P.-3.21m、3,4 号炉海水ポンプ: T.P.-3.52m) を下回る水位となった。エリア C (Es-T2、Kinematic モデル) でも、3,4 号炉海水ポンプ室で敷地高さ (T.P.+3.5m) を上回る水位となった。また、表 1 の津波水位計算結果に、耐津波設計で考慮される潮位のばらつき(水位上昇側: +0.15m、水位下降側: -0.17m) と高潮の裕度 (水位上昇側: +0.49m) を加味した値を、表 2 に示す。

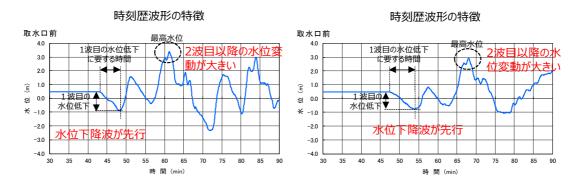
また、各ポンプ室位置で、敷地高さ(T.P.+3.5m)を上回る水位及び、海水ポンプの取水可能水位(1,2 号炉海水ポンプ:T.P.-3.21m、3,4 号炉海水ポンプ:T.P.-3.52m)を下回る水位となった海底地すべりエリアB(Es-K5、Kinematic モデル)と海底地すべりエリアC(Es-T2、Kinematic モデル)の時刻歴波形を確認した結果、図1のとおり、主な特徴として、「1 波目より 2 波目以降のほうが水位変動量が大きい」、「1 波目の水位変動量では施設影響は生じない」ということが確認できた。

本津波水位計算結果を踏まえ、3章では、表2の値を用いて、外郭防護1、 外郭防護2、内郭防護及び水位変動に伴う取水性低下のうち、海水ポンプ取水 性への影響の確認を行う。

また、図1に記載の海底地すべりエリアB(Es-K5、Kinematic モデル)と 海底地すべりエリアC(Es-T2、Kinematic モデル)の津波波形の特徴を踏ま え、4章にて津波防護対策案の検討、5章にて津波襲来判断方法の検討を行う。

表1 海底地すべりの津波評価結果

数字は、T.P.(m)


|         |                   |                  |                    | 水位上昇         |                   |                   |                     |       |         | 水位下降              |      |                     |
|---------|-------------------|------------------|--------------------|--------------|-------------------|-------------------|---------------------|-------|---------|-------------------|------|---------------------|
|         |                   | 取水路<br>防潮<br>ゲート | 取水路<br>防潮ゲート<br>前面 | 3,4号炉循環水ポンプ室 | 1号炉<br>海水<br>ポンプ室 | 2号炉<br>海水<br>ポンプ室 | 3,4号炉<br>海水<br>ポンプ室 | 放水口前面 | 放水路 (奥) | 1号炉<br>海水<br>ポンプ室 | 海水   | 3,4号炉<br>海水<br>ポンプ室 |
| エリアA    | Watts他の予測式        | 開                | 0.6                | 0.6          | 0.6               | 0.6               | 0.6                 | 0.6   | 0.6     | -0.5              | -0.6 | -1.1                |
| (Es-G3) | Kinematicモデルによる方法 | 開                | 2.0                | 2.3          | 2.1               | 2.2               | 2.6                 | 1.6   | 1.8     | -1.2              | -1.4 | -2.2                |
| エリアB    | Watts他の予測式        | 開                | 2.2                | 2.5          | 2.3               | 2.4               | 2.5                 | 1.9   | 2.1     | -1.4              | -1.5 | -2.1                |
| (Es-K5) | Kinematicモデルによる方法 | 開                | 3.6                | 3.9          | 3.7               | 3.8               | 3.8                 | 3.7   | 4.0     | -3.6              | -3.7 | -3.7                |
|         | Watts他の予測式        | 開                | 1.4                | 1.8          | 1.4               | 1.6               | 1.8                 | 1.1   | 1.4     | -1.3              | -1.4 | -2.2                |
|         | Kinematicモデルによる方法 | 開                | 3.2                | 3.7          | 3.3               | 3.5               | 3.6                 | 3.7   | 3.9     | -2.4              | -2.5 | -2.8                |

# 表2 海底地すべりの津波評価結果(潮位のばらつき、高潮裕度を加味した値)

| 数字はT.P.(m)、青字は施設影響が生じる値 |                                        |           |                |                     |               |               |                  |       |        |               |               |                   |
|-------------------------|----------------------------------------|-----------|----------------|---------------------|---------------|---------------|------------------|-------|--------|---------------|---------------|-------------------|
|                         |                                        |           |                | 水位上昇                |               |               |                  |       |        | 水位下降          |               |                   |
|                         |                                        | 防潮<br>ゲート | 取水路防潮<br>ゲート前面 | 3 , 4 号炉<br>循環水ポンプ室 | 1号炉<br>海水ポンプ室 | 2号炉<br>海水ポンプ室 | 3, 4号炉<br>海水ポンプ室 | 放水口前面 | 放水路(奥) | 1号炉<br>海水ポンプ室 | 2号炉<br>海水ポンプ室 | 3 , 4号炉<br>海水ポンプ室 |
| エリアA                    | Watts他の予測式                             | 開         | 1.2            | 1.3                 | 1.2           | 1.2           | 1.3              | 1.3   | 1.3    | -0.6          | -0.7          | -1.3              |
| (Es-G3)                 | Kinematicモデルによる方法                      | 開         | 2.6            | 3.0                 | 2.8           | 2.8           | 3.2              | 2.3   | 2.4    | -1.4          | -1.5          | -2.4              |
| エリアB                    | Watts他の予測式                             | 開         | 2.8            | 3.1                 | 3.0           | 3.0           | 3.1              | 2.6   | 2.8    | -1.5          | -1.6          | -2.3              |
| (Es-K5)                 | Kinematicモデルによる方法                      | 開         | 4.3            | 4.5                 | 4.4           | 4.4           | 4.4              | 4.4   | 4.6    | -3.7          | -3.8          | -3.8              |
| エリアC                    | Watts他の予測式                             | 開         | 2.0            | 2.4                 | 2.1           | 2.2           | 2.5              | 1.8   | 2.0    | -1.5          | -1.6          | -2.4              |
| (Es-T2)                 | Kinematicモデルによる方法                      | 開         | 3.8            | 4.3                 | 4.0           | 4.1           | 4.3              | 4.3   | 4.5    | -2.5          | -2.6          | -2.9              |
| (上昇側:敷地                 | 施設影響が生じる高さ<br>高さ・防潮ゲート高さ・防潮堤高さ、下降側:取水i | 8.5       | 3.5            | 3.5                 | 3.5           | 3.5           | 8.0              | 8.0   | -3.2   | -3.2          | -3.5          |                   |

### ●水位上昇側: エリアB (Es-K5、Kinematic)

### ●水位上昇側: エリアC (Es-T2、Kinematic)



### ●水位下降側: エリアB (Es-K5、Kinematic)

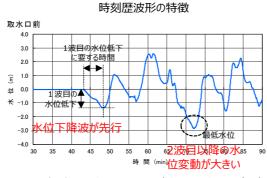



図1 隠岐トラフ海底地すべりを波源とする津波の波形の特徴

3. 取水路防潮ゲート開状態の津波水位計算結果に対する施設影響の整理

# 3.1 背景

高浜発電所は、襲来のおそれのある津波に対し、敷地が比較的低いという特徴を有する。本章では、2章で実施した取水路防潮ゲート開状態の津波水位計算結果に対して施設影響が生じるか否かを確認する。

### 3. 2 評価条件

取水路防潮ゲート開状態の津波水位計算結果に対して施設影響が生じるか否かの確認については、「①既許可で確認済みの対策での評価」と、「②既許可で確認していないが、実力的に発生防止・事象緩和機能を持つ設備や、既許可での評価条件の保守性(上昇側で、海水ポンプ・循環水ポンプを全台停止している)から、実運転の条件で考慮した機能影響を考慮した評価(以下、実力評価という。)」の場合に分けて整理した。

この①、②について、最も津波水位が厳しくなる海底地すべりエリアB (Kinematic モデル)の津波水位計算結果に潮位のばらつき(上昇側+0.15m、下降側-0.17m)及び高潮裕度(上昇側+0.49m)を考慮した水位(2章の表2の水位)に対し、外郭防護1、外郭防護2、内郭防護及び水位変動に伴う取水性低下への影響を確認した。

# 3. 3 評価結果

- (1) 外郭防護1における評価結果
  - a) 地上部からの到達流入評価結果への影響

評価結果を以下の表1に示す。評価結果より、取水路防潮ゲート開状態では、一部設備において、既許可で確認済みの対策による評価及び実力評価のいずれにおいても、地上部からの津波の到達・流入が否定できないことを確認した。

表1 外郭防護1のうち、地上部からの到達流入評価結果

|                  |                                   |                                | 状況                                                                          | 津波水位(防潮ゲート開)               | 評価                                       |  |  |
|------------------|-----------------------------------|--------------------------------|-----------------------------------------------------------------------------|----------------------------|------------------------------------------|--|--|
|                  |                                   |                                | T.P.+3.5m以上の敷地に設置されている。                                                     | T.P.+4.4m(1号炉海水ポンプ室)       |                                          |  |  |
|                  | 設計基準対象施設の津波防護対象設備を内               |                                | 放水口側は高さT.P.+8.0mの放水口側防潮堤及び防潮                                                |                            | <b>── </b><br>到達・流入が否定できない <sup>※1</sup> |  |  |
|                  | 包する建屋                             |                                | 扉並びに設計高さT.P.+8.0mの1号及び2号炉放水ピット<br>止水板を設置する。                                 | T.P.+4.6m(放水路(奥))          |                                          |  |  |
|                  |                                   |                                | T.P.+3.5m以上の敷地に設置されている。                                                     | T.P.+4.4m(1号炉海水ポンプ室)       |                                          |  |  |
| 1 =              |                                   | 海水ポンプ室                         | 放水口側は高さT.P.+8.0mの放水口側防潮堤及び防潮<br>扉並びに設計高さT.P.+8.0mの1号及び2号炉放水ピット              | T.P.+4.4m (2号炉海水ポンプ室)      | —<br>到達・流入が否定できない                        |  |  |
| 号炉及び             |                                   |                                | 止水板を設置する。                                                                   | T.P.+4.6m(放水路(奥))          |                                          |  |  |
| ਹਿੰ<br>2         | 凯乱甘油分布炸乳                          |                                | T.P.+5.2m以上の敷地に設置されている。                                                     | T.P.+4.4m(1号炉海水ポンプ室)       |                                          |  |  |
| 号                | 設計基準対象施設<br>の津波防護対象設              | 復水タンク                          | 放水口側は高さT.P.+8.0mの放水口側防潮堤及び防潮<br>扉並びに設計高さT.P.+8.0mの1号及び2号炉放水ピット              | T.P.+4.4m(2号炉海水ポンプ室)       | ──<br>到達・流入しない                           |  |  |
| "                | 備のうち屋外設備                          |                                | 止水板を設置する。                                                                   | T.P.+4.6m(放水路(奥))          | 7                                        |  |  |
|                  |                                   |                                | T.P.+24.9m以上の敷地に設置されている。                                                    | T.P.+4.4m(1号炉海水ボンプ室)       |                                          |  |  |
|                  |                                   | 燃料油貯油そう                        | 放水口側は高さT.P.+8.0mの放水口側防潮堤及び防潮<br>扉並びに設計高さT.P.+8.0mの1号及び2号炉放水ピット              | T.P.+4.4m (2号炉海水ポンプ室)      | 到達・流入しない                                 |  |  |
|                  |                                   |                                | 止水板を設置する。                                                                   | T.P.+4.6m(放水路(奥))          |                                          |  |  |
|                  | =n.= 1 + // + / - 6 + /r =n. o /d | N-10-5                         | T.P.+3.5m以上の敷地に設置されている。                                                     | T.P.+4.5m(3, 4号炉循環水ポンプ室前面) |                                          |  |  |
|                  | 設計基準対象施設の津波防護対象設備を内<br>包する建屋      |                                | 放水口側は高さT.P.+8.0mの放水口側防潮堤及び防潮<br>扉並びに設計高さT.P.+8.0mの1号及び2号炉放水ピット<br>止水板を設置する。 | T.P.+4.6m(放水路(奥))          | 到達・流入が否定できない*1                           |  |  |
|                  |                                   |                                | T.P.+3.5m以上の敷地に設置されている。                                                     | T.P.+4.5m(3,4号炉循環水ポンプ室前面)  |                                          |  |  |
| 3<br>号<br>炉<br>及 |                                   | 海水ポンプ室                         | 放水口側は高さT.P.+8.0mの放水口側防潮堤及び防潮<br>扉並びに設計高さT.P.+8.0mの1号及び2号炉放水ピット<br>止水板を設置する。 | T.P.+4.6m(放水路(奥))          | 到達・流入が否定できない                             |  |  |
| び<br>4           | 設計基準対象施設                          |                                | T.P.+3.5m以上の敷地に設置されている。                                                     | T.P.+4.5m(3, 4号炉循環水ポンプ室前面) |                                          |  |  |
| 号炉               | の津波防護対象設<br>備のうち屋外設備              | の津波防護対象設 燃料油貯油そう 放水口側は高さ1.2.+8 | 放水口側は高さT.P.+8.0mの放水口側防潮堤及び防潮<br>扉並びに設計高さT.P.+8.0mの1号及び2号炉放水ピット<br>止水板を設置する。 | T.P.+4.6m(放水路(奥))          | 到達・流入が否定できない**2                          |  |  |
|                  |                                   |                                | T.P.+3.5m以上の敷地に設置されている。                                                     | T.P.+4.5m(3, 4号炉循環水ポンプ室前面) |                                          |  |  |
|                  | 復水タンク                             |                                | 放水口側は高さT.P.+8.0mの放水口側防潮堤及び防潮<br>扉並びに設計高さT.P.+8.0mの1号及び2号炉放水ピット<br>止水板を設置する。 | T.P.+4.6m(放水路(奥))          | 到達・流入しない*3                               |  |  |

<sup>※1:</sup>建屋境界壁には、水密扉及び貫通部止水処置を施している(1,2号:既許可で確認済みの対策、3,4号:既許可で未確認の対策)ことから、建屋への津波の流入はないと考えられる。 ※2:燃料油貯油そうの蓋にかかる水圧を評価した結果(既許可で未確認の評価)、津波の流入はないと考えられる。

<sup>※3:</sup>復水タンクはT.P.15.0mの高台に設置されており、津波の到達・流入はない。

# b) 各経路からの流入評価結果

評価結果を以下の表 2 に示す。評価結果より、取水路防潮ゲート開状態では、既許可で確認済みの対策での評価及び実力評価のいずれにおいても、一部の経路からの津波の流入が否定できない。

表2 外郭防護1のうち、各経路からの流入評価結果

|     |               | エリア                    |                       | 津波水位<br>(防潮ゲート開)                 | 許容津波水位      | 裕度            | 評価                    |  |
|-----|---------------|------------------------|-----------------------|----------------------------------|-------------|---------------|-----------------------|--|
|     | 1 P.15        | 海水系 海水ポンプ室             |                       | T.P.+4.4m                        | T D + 2 Fm  |               | 経路からの津波の流入が否          |  |
|     | 1号炉           | 循環水系                   | 循環水ポンプ室               | (1号炉海水ポンプ室)                      | T.P.+3.5m   | <b>▲</b> 0.9m | 定できない                 |  |
|     | 2号炉           | 海水系                    | 海水ポンプ室                | T.P.+4.4m                        | T.P.+3.5m   | <b>▲</b> 0.9m | 経路からの津波の流入が否          |  |
|     | 2 亏炉          | 循環水系                   | 循環水ポンプ室               | (2号炉海水ポンプ室)                      | 1.2.+3.5111 | <b>▲</b> 0.9m | 定できない                 |  |
|     |               |                        | 点検用トンネル               | T.P.+4.1m*                       | T.P.+12.1m  | 8.0m          | 流入しない                 |  |
| 取水路 | <br>  3号及び4号炉 | 海水系                    | 海水ポンプ室                | T.P.+4.4m                        | T.P.+3.5m   | <b>▲</b> 0.9m | 経路からの津波の流入が否<br>定できない |  |
|     | 3 亏及U 4 亏沪    | 循環水系                   | 循環水ポンプ室               | T.P.+4.5m                        | T.P.+3.5m   | ▲1.0m         | 経路からの津波の流入が否<br>定できない |  |
|     |               |                        | 取水路防潮ゲート前面            | T.P.+4.3m                        | T.P.+8.5m   | 4.2m          | 流入しない                 |  |
|     | 1号及び2号炉       | その他配管<br>(クリーンアップ排水管等) |                       | T.P.+4.5m                        | T D + 2 F== | <b>▲</b> 1.0m | 経路からの津波の流入が否<br>定できない |  |
|     | 3号及び4号炉       |                        |                       |                                  | T.P.+3.5m   |               |                       |  |
|     |               |                        | 放水口付近                 | T.P.+4.4m                        | T.P.+8.0m   | 3.6m          | 流入しない                 |  |
|     | <br>  1号及び2号炉 | 放水路                    | 防潮扉前                  | T.P.+4.6m(放水路(奥))                | T.P.+8.0m   | 3.4m          | 流入しない                 |  |
| 放水路 | 15次U25炉<br>   |                        | 放水路 (奥)               | T.P.+4.6m                        | T.P.+8.0m   | 3.4m          | <b>本コーナ</b> い         |  |
|     |               |                        | 放水ピット                 | 1.2.+4.011                       | 1.2.40.0111 | 3.4111        | 流入しない                 |  |
|     | 3号及び4号炉       |                        | 放水口付近                 | T.P.+4.4m                        | T.P.+8.0m   | 3.6m          | 流入しない                 |  |
|     | 屋外排水路         |                        | 水路に連接される系統            | T.P.+4.5m                        | T.P.+3.5m   | ▲1.0m         | 経路からの津波の流入が否<br>定できない |  |
| )   |               |                        | 号炉放水路に連接される系統         | T.P.+4.6m(放水路(奥)) T.P.+8.0m 3.4m |             | 流入しない         |                       |  |
|     |               |                        | <b>岸から直接海に連接される系統</b> | T.P.+4.4m(放水口前面)                 | T.P.+8.0m   | 3.6m          | 流入しない                 |  |

※:取水口前面の水位

# (2) 外郭防護2における評価結果

評価結果を表3に示す。外郭防護2の評価において設定した浸水想定範囲\*\*は、取水路防潮ゲート開の状態では津波が流入すると考えられる。

上記の津波の流入を想定した場合における津波水位と海水ポンプの機能保持水位との比較を実施した結果、既許可で確認済みの対策での評価において、1号炉及び2号炉海水ポンプの機能保持水位は津波水位を上回ることから、1号炉及び2号炉海水ポンプが機能喪失することはない。一方、既許可で確認済みの対策での評価において、3号炉及び4号炉海水ポンプの機能保持水位は津波水位を下回ることから、3号炉及び4号炉海水ポンプが機能保持できない。参考として、実力評価まで考慮した場合は、3号炉及び4号炉海水ポンプの機能保持水位は津波水位を上回ることから、3号炉及び4号炉海水ポンプが機能喪失することはない。

なお、以上の評価結果は取水路防潮ゲート開状態におけるものであり、4章から7章の評価結果より、外郭防護1の津波防護施設として、潮位観測システム(防護用)を登録し、潮位観測システム(防護用)による津波情報をもとに、取水路防潮ゲート(既許可において外郭防護1として登録済み)を閉止する対策を採用する。これにより、1号炉海水ポンプ室前面の水位上昇側の入力津波高さはT.P.+2.6m(高潮裕度を考慮した場合、T.P.+3.1m)、2号炉海水ポンプ室前面の水位上昇側の入力津波高さは、T.P.+2.6m(高潮裕度を考慮した場合、T.P.+3.1m)、3,4号炉海水ポンプ室前面の水位上昇側の入力津波高さは、T.P.+2.9m(高潮裕度を考慮した場合、T.P.+2.9m(高潮裕度を考慮した場合、T.P.+3.4m)となる。この結果より、いずれの水位(高潮裕度を考慮した場合含む)も各号炉の海水ポンプ機能保持水位(1号炉及び2号炉:T.P.+3.4m)となる。この結果より、いずれの水位(高潮裕度を考慮した場合含む)も各号炉の海水ポンプ機能保持水位(1号炉及び2号炉:T.P.+4.67m、3号炉及び4号炉:T.P.+3.85m)を下回ることから、潮位観測システム(防護用)及び取水路防潮ゲートは、外郭防護2としては、登録しない。

入力津波設定の詳細は、第二編別添1の1.6章を、入力津波に対する 外郭防護2の評価結果の詳細は、第二編別添1の2.3章を参照。

※:1号炉海水ポンプ室、1号炉循環水ポンプ室、2号炉海水ポンプ室、2 号炉循環水ポンプ室及び3,4号炉海水ポンプ室を指す。詳細は、第二 編別添1の2.3章を参照。

表3 外郭防護2における評価結果

|       | 海水ポンプ機能保持水位 | 津波水位                                                                   | 評価                                                                                                        |  |  |  |  |  |
|-------|-------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1号炉   | T.P.+4.67m  | T.P.+4.4m<br>(1号炉海水ポンプ室前面)                                             | 海水ポンプ機能保持水位は津波水位を上回る                                                                                      |  |  |  |  |  |
| 2号炉   | T.P.+4.67m  | T.P.+4.4m<br>( 2 号炉海水ポンプ室前面)                                           | ことから、海水ポンプが機能喪失することはない。                                                                                   |  |  |  |  |  |
| 3,4号炉 | T.P.+3.85m  | T.P.+4.5m(T.P.+3.7m <sup>※2</sup> )<br>(3,4号炉循環水ポンプ室前面 <sup>※1</sup> ) | 海水ポンプ機能保持水位は津波水位を下回ることから、海水ポンプが機能保持できない。<br>(ただし、海水ポンプ及び循環水ポンプの運転台数、解析モデルを実態に合わせた評価では、海水ポンプが機能喪失することはない。) |  |  |  |  |  |

<sup>※1:3,4</sup>号炉海水ポンプ室床面はT.P.+6.0mの水位を想定し設計した浸水防止蓋を設置していることから、海水ポンプ室頂版からの津波の流入はないため、3,4号炉海水ポンプ室前面の値ではなく、3,4号炉循環水ポンプ室前面の値を記載している

<sup>※2:</sup>ポンプの運転台数(循環水ポンプ1号2台運転、3号2台運転、海水ポンプ1号炉2台運転、2~4号炉各1台運転)及び解析モデルを実態に合わせた場合(2019年6月13日、第1回警報が発表されない可能性のある津波への対応の現状聴取に係る会合の資料1に記載のポンプ運転台数及び解析条件における津波水位T.P.+3.0mに潮位のばらつき0.15mと高潮裕度0.49mを考慮)の3,4号炉循環水ポンプ室の津波水位

### (3) 内郭防護における評価結果

外郭防護2の評価と同様に、内郭防護において設定した浸水防護重点化範囲\*\*の境界壁まで、取水路防潮ゲート開の状態では津波が直接流入すると想定した場合においても、1,2号炉は、既許可で確認済みの対策での評価において、浸水防護重点化範囲の境界壁には、水密扉を設置し、貫通部止水処置を施していることから、津波の流入はないと考えられる。一方、3,4号炉は、既許可で確認済みの対策での評価において、津波は流入すると考えられる。参考として、実力評価まで考慮した場合は、3,4号炉にも、水密扉を設置し、貫通部止水処置を施していることから、津波の流入はないと考えられる。既許可においては、循環水配管の破断箇所からの津波流入を想定していたが、隠岐トラフ海底地すべりを発生要因とする津波は、地震随伴津波ではないことから、当該箇所の破断は想定されないため、上記の津波の流入以外については考慮する必要はない。

なお、以上の評価結果は取水路防潮ゲート開状態におけるものであり、4章から7章の評価結果より、外郭防護1の津波防護施設として、潮位観測システム(防護用)を登録し、潮位観測システム(防護用)による津波情報をもとに、取水路防潮ゲート(既許可において外郭防護1として登録済み)を閉止する対策を採用する。これにより、1号炉海水ポンプ室前面の水位上昇側の入力津波高さはT.P.+2.6m(高潮裕度を考慮した場合、T.P.+3.1m)、2号炉海水ポンプ室前面の水位上昇側の入力津波高さは、T.P.+2.6m(高潮裕度を考慮した場合、T.P.+3.1m)、3,4号炉海水ポンプ室前面の水位上昇側の入力津波高さは、T.P.+2.9m(高潮裕度を考慮した場合、T.P.+3.4m)、3,4号炉循環水ポンプ室前面の入力津波高さはT.P+2.9m(高潮裕度を考慮した場合、T.P.+3.4m)となる。この結果より、いずれの水位(高潮裕度を考慮した場合含む)も浸水防護重点化範囲\*の境界壁が設置されているT.P.+3.5mを下回ることから、潮位観測システム(防護用)及び取水路防潮ゲートは、内郭防護としては、登録しない。

入力津波設定の詳細は、第二編別添1の1.6章を、入力津波に対する 内郭防護の評価結果の詳細は、第二編別添1の2.4章を参照。

- ※:津波防護対象設備(津波防護施設、浸水防止設備、津波監視設備及び非常用取水設備を除く。)を内包する建屋及び区画を指す。詳細は、第二編別添1の2.4章を参照。
- (4) 水位変動に伴う取水性低下のうち、海水ポンプ取水性に対する評価結果への影響

評価結果を表 4 に示す。取水路防潮ゲート開状態では、既許可で確認済みの対策での評価及び実力評価のいずれにおいても、海水ポンプの取水可能水位を下回るため、海水ポンプの取水性が確保できない。

表 4 水位変動に伴う取水性低下のうち、海水ポンプ取水性に対する評価結果への影響

|       | 取水可能水位                                | 津波水位                   | 評価                              |
|-------|---------------------------------------|------------------------|---------------------------------|
| 1号炉   | T.P3.21m <sup>*</sup> 1               | T.P3.7m(1号炉海水ポンプ室前面)   | 津波水位が海水ポンプの取水                   |
| 2号炉   | T.P3.21m <sup>*</sup> 1               | T.P3.8m (2号炉海水ポンプ室前面)  | 可能水位を下回るため、水位<br>低下によって海水ポンプが機能 |
| 3,4号炉 | T.P3.52<br>(T.P3.55m <sup>* 1</sup> ) | T.P3.8m(3,4号炉海水ポンプ室前面) | 保持できない。                         |

※1:実験から設定した取水可能水位(1,2号炉:既許可で確認済みの数値、3,4号炉:既許可で未確認の数値)

# (5) 評価結果まとめ

(1)~(4)の評価結果のまとめを表 5 に示す。施設への影響という観点において、既許可で確認済みの対策での評価の場合、水位上昇側、水位下降側ともに、施設影響が生じることを確認した。

参考として、実力評価まで考慮した場合、水位上昇側については、施設影響は生じないと考えられるが、水位下降側については、実力評価まで考慮しても施設影響が生じることを確認した。

上記の評価結果を踏まえ、4章では、津波防護対策案の検討を実施する。

表 5 取水路防潮ゲート開状態の津波水位計算結果に対する施設影響まとめ

|                             |                   |                      | 施設に対する具体的な影響                                                                                                                                                                                                                                                                                              |                                                                                                       |
|-----------------------------|-------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                             | 評価項目              |                      | 水位上昇側(防護対象施設への浸水)                                                                                                                                                                                                                                                                                         | 水位下降側(海水ポンプの取水性)                                                                                      |
| (E s – K 5、K – n c 隠岐トラフ海底地 | 高浜 1, 2号          | 既許可で確認済み<br>の対策のみに担保 | 建屋:津波が到達する(津波水位T.P.+4.4m>敷地高さT.P.+3.5m)が建屋に水密扉、貫通部止水処置を施しており、流入しない<br>海水ポンプ:津波が到達・流入するが、モータ下端まで到達しない(津波水位T.P.+4.4m<モータ下端T.P.+4.67m) ため、機能喪失しない<br>復水タンク:津波は到達・流入しない(津波水位T.P.+4.4m<復水タンクT.P.+5.2m)<br>燃料油貯油そう:津波は到達・流入しない(津波水位T.P.+4.4m<燃料油貯油そうT.P.+24.9m)                                                 | 津波水位が実験から設定した海水ポンプの取水可能水位を下回る(津波水位T.P3.8m<取水可能水位T.P3.21m)ことから海水ポンプは機能保持できない                           |
| ヾヺ                          |                   | (参考)実力評価             | 同上                                                                                                                                                                                                                                                                                                        | 同上                                                                                                    |
| m š                         | 高浜                | 既許可で確認済み<br>の対策のみに担保 | 建屋:津波の到達・流入が否定できない(津波水位T.P.+4.5m>敷地高さT.P.+3.5m)<br>海水ポンプ:津波の到達・流入が否定できず、モータ下端まで到達(津波水位T.P.+4.5m>モータ下端T.P.+3.85m)し、<br>機能保持できない<br>復水タンク:津波は到達・流入しない(津波水位T.P.+4.5m<復水タンクT.P.+15.0m)<br>燃料油貯油そう:津波の到達・流入が否定できない(津波水位T.P.+4.5m>燃料油貯油そうT.P.+3.5m)                                                             | 津波水位が海水ボンブのベルマウス径から計算した海水<br>ボンブの設計取水可能水位を下回る(津波水位T.P<br>3.8m<設計取水可能水位T.P3.52m)ことから海<br>水ボンブは機能保持できない |
| Cモデル)                       | 3 <sub>,</sub> 4号 | (参考)実力評価             | 建屋:津波が到達するが <u>建屋に水密扉、貫通部止水処置を施しており</u> 、流入しない<br>海水ポンプ:実態を踏まえたボンプ条件等による津波水位結果においては、津波は到達・流入しない(津波水位<br>T.P.+3.7m<モータ下端T.P.+3.85m)<br>復水タンク:同上<br>燃料油貯油そう:津波は到達するが <u>燃料油貯油そうの蓋に係る水圧の評価</u> より流入しない                                                                                                       | 津波水位が実験から設定した海水ポンプの取水可能水位(津波水位T.P3.8m取水可能水位T.P3.55m)を下回ることから海水ポンプは機能保持できない                            |
|                             | 高浜 1, 2号          | 既許可で確認済み<br>の対策のみに担保 | <b>建屋</b> : 津波が到達する(津波水位T.P.+4.4m以上>敷地高さT.P.+3.5m)が建屋に水密扉、貫通部止水処置を施しており、流入しないと考えられる<br>海水ポンプ: 津波の到達・流入が否定できない (津波水位T.P.+4.4m以上に対し、モータ下端T.P.+4.67m)<br><b>復水タンク</b> : 津波は到達・流入が否定できない (津波水位T.P.+4.4m以上に対し、復水タンクT.P.+5.2m)<br><b>燃料油貯油そう</b> : 津波は到達・流入しないと考えられる (津波水位T.P.+4.4m以上に対し、燃料油貯油そう<br>T.P.+24.9m) | 津波水位が実験から設定した海水ポンプの取水可能水位を下回る(津波水位T.P3.8m以下<取水可能水位T.P3.21m)ことから海水ポンプは機能喪失する。                          |
| (参<br>考                     |                   | (参考)実力評価             | 同上                                                                                                                                                                                                                                                                                                        | 同上                                                                                                    |
| )基準津波 1                     | (参考) 基準津波1高浜3,4号  | 既許可で確認済み<br>の対策のみに担保 | 建屋:津波の到達・流入が否定できない (津波水位T.P.+4.5m以上>敷地高さT.P.+3.5m)<br>海水ポンプ:津波の到達・流入が否定できず、モータ下端まで到達 (津波水位T.P.+4.5m以上>モータ下端<br>T.P.+3.85m) し、機能保持できない<br>復水タンク:津波は到達・流入しないと考えられる (津波水位T.P.+4.5m以上に対し、復水タンクT.P.+15.0m)<br>燃料油貯油そう:津波の到達・流入が否定できない (津波水位T.P.+4.5m以上>燃料油貯油そうT.P.+3.5m)                                       | 津波水位が海水ポンプのベルマウス径から計算した海水ポンプの設計取水可能水位を下回る(津波水位T.P3.8m以下<設計取水可能水位T.P3.52m)ことから海水ポンプは機能喪失する。            |
|                             |                   | (参考)実力評価             | 建屋:津波が到達するが建屋に水密扉、貫通部止水処置を施しており、流入しないと考えられる<br>海水ポンプ:実態を踏まえたポンプ条件等による津波水位結果においても、津波は到達・流入が否定できないと考えられる<br>(津波水位T.P.+3.7m以上に対し、モータ下端T.P.+3.85m)<br>復水タンク:同上<br>燃料油貯油そう:津波は到達するが燃料油貯油そうの蓋に係る水圧の評価より流入しないと考えられる                                                                                              | 津波水位が実験から設定した海水ポンプの取水可能水位を下回る(津波水位T.P3.8m以下<取水可能水位T.P3.55m)ことから海水ボンブは機能喪失する。                          |

<sup>※</sup>赤字は評価結果より影響が生じるもの。建屋は「津波防護対象施設を内包する建屋」を示す。基準津波2は「ゲート開」の状態で津波が敷地遡上せず、ポンプ取水性も影響はない。

### 4. 施設影響を踏まえた対策案の検討

# 4.1 背景

3章の施設影響が生じるか否かの評価結果より、隠岐トラフ海底地すべりによる津波は津波警報等が発表されないことから、取水路防潮ゲートが「開」となり、この場合、水位上昇側、水位下降側ともに施設影響が生じることを確認した。この確認結果と高浜発電所は敷地が比較的低い特徴を有することを踏まえ、津波防護対策案を検討する。

### 4. 2 検討条件

高浜発電所は、襲来のおそれのある津波に対し、敷地が比較的低い特徴を有する。よって、取水路からの既許可の基準津波1,2に対する外郭防護については、取水路防潮ゲートを活用した津波防護を設計方針の基本に据えているが、これ以外の対策(防護壁、貯水堰等)を含め、成立性の検討を行った。

## 4. 3 検討結果

津波防護対策案の検討結果を表1に示す。まず、防潮壁や貯水堰、ポンプ改修等を検討した結果、水位上昇側及び水位下降側ともに防護するには、「①防護壁+②貯水堰」又は「①防護壁+③海水ポンプ(改造・移設)」の組み合わせ(④)が必要と整理した。

①~③の対策は、水位上昇側に関しては、「運転操作によらず、防護可能」、水位下降側に関しては、「取水路防潮ゲート閉止操作が不要(ただし、運転操作としては、海水ポンプの取水性確保のため、循環水ポンプの停止操作(プラント停止操作)が必要。)」というメリットがある一方、①防護壁と②貯水堰は「耐震性を確保した防護壁の設置が条件」となること、②貯水堰と③海水ポンプ(改造・移設)については「海水ポンプ取水性の確保」といった課題がある。

したがって、これらの対策の組み合わせである④の対策はいずれも対応に長期間を要する。また、下降側の対策である貯水堰の設置や海水ポンプの改造・移設は、重要な安全施設である海水ポンプの取水を停止させる必要がある。海水ポンプはプラント停止中も稼働が必要な設備であることから、停止による部分的な安全機能の喪失が長期にわたるため、プラント安全性の観点からは④の対策は、極力回避すべきと判断した。

一方、「⑤防潮ゲート」での対策は取水路防潮ゲートが既設であることから、 設備対策面では、速やかにプラントの安全性向上が可能であり、本対策のみで、 水位上昇側及び水位下降側ともに防護できる可能性がある。

したがって、「⑤防潮ゲート」の活用を前提とするが、隠岐トラフ海底地すべりによる津波は津波警報等が発表されずに襲来すること、また、2章で確認した「1波目より2波目以降の方が水位変動量が大きい」、「1波目の水位変動量では施設影響は生じない」という特徴を踏まえると、「取水路防潮ゲート閉止の起因となる津波襲来判断方法、判断基準(トリガー)の妥当性・網羅性」及び「津波を確認してから施設影響が生じる潮位に至る前に取水路防潮ゲートの閉止ができる時間的成立性(運用成立性)」の確認が必要であり、これらを評価の上で、津波襲来判断の不確実性に対する対応を設計に反映し、取水路防潮

ゲート活用の採否を判断することとする。(津波襲来判断方法の妥当性及び時間的成立性の確認結果は、後述。)

表1 津波防護対策案の検討結果

|                          | <b>公工 件以为股</b> 为水未少层的相木 |                                    |                               |                                                                   |                                |                                     |                                                                                                             |  |  |
|--------------------------|-------------------------|------------------------------------|-------------------------------|-------------------------------------------------------------------|--------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
|                          |                         |                                    |                               |                                                                   |                                |                                     |                                                                                                             |  |  |
|                          |                         | 対策なしの場合                            | ①<br>防護壁(取水路沿い)               | ②<br>貯水堰                                                          | ③<br>海水ポンプ(改造・移設)              | ④<br>①防護壁+②貯水堰<br>or<br>①防護壁+③海水ポンプ | ⑤<br>防潮ゲート<br>(既許可対策)                                                                                       |  |  |
| 隠岐トラフ海底<br>地すべりエリア B     | 上昇側                     | ・敷地遡上するが、実力<br>上、設備の機能に影響<br>なし    | ・運転操作なし・敷地遡上しない               | ・運転操作なし<br><u>・敷地遡上する</u>                                         | ・運転操作なし<br><u>・敷地遡上する</u>      | ・運転操作なし<br>・敷地遡上しない                 | ・運転操作あり<br>・敷地遡上しない                                                                                         |  |  |
| (Es-K5、<br>Kinematicモデル) | 下降側                     | ・取水可能水位を下回<br>り、海水ポンプの機能保<br>持できない | ・運転操作なし<br><u>・取水可能水位を下回る</u> | ・運転操作なし<br>・取水可能水位を下回らな<br>い                                      | ・運転操作なし<br>・取水可能水位を下回らな<br>い   | ・運転操作なし<br>・取水可能水位を下回らな<br>い        | ・運転操作あり<br>・取水可能水位を下回らない                                                                                    |  |  |
| (参考)                     | 上昇側                     |                                    | ・運転操作なし・敷地遡上しない               | ・運転操作なし<br>・ <u>敷地遡上する</u>                                        | ・運転操作なし<br><u>・敷地遡上する</u>      | ・運転操作なし<br>・敷地遡上しない                 | ・運転操作あり<br>・敷地遡上しない                                                                                         |  |  |
| 基準津波 1                   | 下降側                     | ・取水可能水位を下回<br>り、海水ポンプの機能保<br>持できない | ・運転操作なし<br><u>・取水可能水位を下回る</u> |                                                                   | ・運転操作なし<br>・取水可能水位を下回らな<br>い   | ・運転操作なし<br>・取水可能水位を下回らな<br>い        | ・運転操作あり<br>・取水可能水位を下回らない                                                                                    |  |  |
|                          | メリット                    |                                    | ・運転操作によらず、防護<br>可能            | ・防潮ゲート閉止操作が不<br>は、海水ポンプの取水性確化<br>止操作が必要。)                         | 要(ただし、運転操作として<br>呆のため、循環水ポンプの停 |                                     | ・既設設備であり、 <u>速やかにプラント安全性向上が可能</u> ・本対策のみで、敷地遡上及び、海水ポンプの取水性への影響を防止可能                                         |  |  |
| 対策方針上の論点                 | デメリット                   | _                                  | ・耐震性雑保した防護壁の設置が条件             | ・海水ポンプ取水性確保 ・循環水ポンプによる海水ポンプ取水性能への影響回避 ・耐震性を確保した貯水堰の設置(配置成立性の確認含む) | ・海水ポンプ取水性確保<br>・海水ポンプ設計の抜本的    |                                     | ・防潮ゲート閉止の起因となる<br>津波襲来判断方法の妥当性・<br>網羅性(津波襲来判断の不<br>確実性に対する対応含む)の<br>確認が必要<br>・津波襲来判断からゲート閉止<br>の時間成立性の確認が必要 |  |  |

※基準津波2は「ゲート開」の状態で津波が敷地遡上せず、ポンプ取水性も影響はない

### 5. 取水路防潮ゲート閉止の起因となる津波襲来判断方法の検討

# 5.1 背景

4章で述べたとおり、津波警報等が発表されない津波に対しては、取水路防潮ゲートの閉止により対応するが、これには、津波襲来の確認が必須である。

既許可では、大津波警報の発表を受け、取水路防潮ゲートを閉止することとしているが、海底地すべりを波源とする津波は、津波警報等が発表されない可能性があるため、海底地すべりを波源とする津波襲来を確認し、適切に取水路防潮ゲートを閉止するための津波襲来判断方法の設定が必要であり、これを検討する。

### 5. 2 検討条件

発電所構内には、津波監視設備である津波監視カメラ及び潮位計を保有しているため、これらの活用をまず、検討する。なお、レーダー技術を用いたリアルタイムな潮位観測や、GPSを用いた波浪計といった機器は、現時点では信頼性の確保が困難と考えられることから、運用としては構内で信頼性を確保した設備の活用を前提として考える。

既許可の津波監視カメラ及び潮位計の設置位置及び仕様は以下のとおりである。

### (1) 設置位置

津波監視設備は、津波襲来を監視でき、かつ津波の影響を受けにくい位置に設置されている。図1に示すとおり、1号炉、2号炉、3号炉及び4号炉共用設備である津波監視カメラは、敷地への津波襲来監視を目的として、取水口側は3号炉原子炉格納施設壁面 T.P.+46.8m、放水口側は4号炉原子炉補助建屋壁面 T.P.+36.2mに設置する。津波高さ計測を目的として、1号炉及び2号炉共用設備である潮位計は、1号炉海水ポンプ室 T.P.+7.1mに1台、3号炉及び4号炉共用設備である潮位計は、3,4号炉海水ポンプ室 T.P.+4.6mに2台設置する。津波監視カメラ設置位置は津波遡上範囲になく、潮位計設置高さも、波力及び漂流物の影響を受けない設計とする。

### (2) 仕様

津波監視カメラは、取水口・放水口側を監視できるものを各1台設置し、暗視機能等を有し、1号及び2号炉中央制御室並びに3号及び4号炉中央制御室から監視可能である。既許可の津波監視カメラの設備構成を図2に示す。

1号炉及び2号炉共用設備である潮位計は、上昇側及び下降側の津波高さを計測できるよう、T.P.約-9.9m~T.P.約+6.6mを測定範囲とし、1号及び2号炉中央制御室にて監視可能な設計としている。3号炉及び4号炉共用設備である潮位計は、T.P.約-4.0m~T.P.約+4.0mを測定範囲とし、3号及び4号炉中央制御室にて監視可能な設計としている。既許可の潮位計の設備構成を図3に示す。

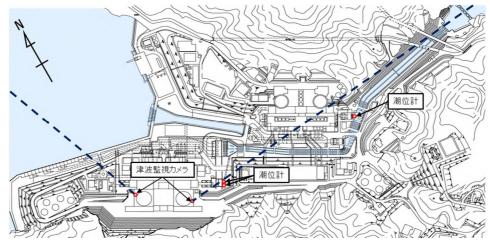



図1 既許可の津波監視関係設備配置図

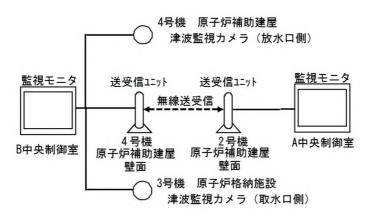
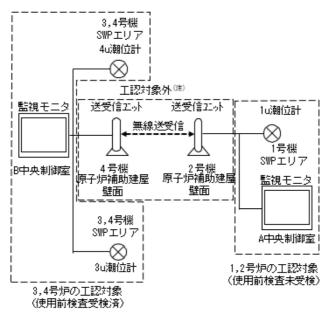




図2 既許可の津波監視カメラの設備構成



注:技術基準適合上は必須ではないが、申請範囲外にて送受信ユニットを用い、1,2号炉及び3,4号炉中央制御室にて他号炉の潮位を参照できるようにしている。

図3 既許可の潮位計の設備構成

### 5. 3 検討結果

### (1) 取水路防潮ゲート閉止のための設備選定

津波襲来判断後に取水路防潮ゲートを閉止する場合、取水路防潮ゲートが 閉止されている状態で循環水ポンプの運転を継続した場合、同じ取水路を共 有する海水ポンプの取水性に影響が出るため、取水路防潮ゲート閉止前の循 環水ポンプの停止及び原子炉トリップ操作が必要である。したがって、津波監 視カメラ及び潮位計の設置位置と仕様並びに、津波以外の場合に誤判断した 場合の影響(「相当数の系統負荷を切り離す必要があり、ライフラインへの電 力供給への支障が生じること。」、「外部電源への影響から、隣接する他プラン トの一次冷却材ポンプなどのポンプ回転数に影響の出るおそれがあり、一時 的とはいえ原子炉冷却機能に影響が生じる可能性があること。」)を踏まえ、定 量的な潮位把握が困難な津波監視カメラではなく、定量的に潮位を把握可能 な潮位計の活用を検討する。

ただし、潮位計を活用した取水路防潮ゲート閉止トリガーの検討は、構内で 津波を確認し、その情報に基づき、取水路防潮ゲートを閉止することから、「施 設影響が生じるケースの見逃し、津波以外の誤判断の観点で問題ないか」、ま た、「津波を確認してから、施設影響が生じる潮位に至る前に取水路防潮ゲー ト閉止の運転操作が完了するか」を評価する必要がある。

したがって、津波シミュレーションによる隠岐トラフ海底地すべりの波源 特性及び若狭湾の伝播特性に関するパラメータスタディと、潮位計による過 去の観測データから、これらを評価し、採否を判断することとした。この検討 結果を6章で述べる。

なお、本章以降では、上記のとおり構内の潮位観測系統を活用し、取水路防潮ゲートの閉止が可能かを検討することから、以降、取水路防潮ゲートの閉止判断に活用する潮位計及び衛星電話(津波防護用)を「潮位観測システム(防護用)」と表現する。潮位観測システム(防護用)は、(2)及び(3)に記載の通り、この情報に基づきMS-1設備である取水路防潮ゲートの閉止を判断することから、津波防護機能を直接的に有する津波防護施設と位置付ける。

# (2) 潮位観測システム(防護用)のうち潮位計の仕様

潮位計は、潮位検出器、電源箱、演算装置、監視モニタ及び有線電路(電源系含む)で構成しており、この構成を図4に示す。

なお、電源箱及び演算装置は、監視モニタの盤内機器であり、監視モニタの機能を実現する構成部品である。潮位計は、取水路防潮ゲートを閉止するために、津波の襲来を海水ポンプ室において確認し、かつ、潮位の有意な変動を1号及び2号炉中央制御室並びに3号及び4号炉中央制御室において把握するために用いる。

潮位計は、取水路防潮ゲートと同等の設計にすることから多重化(2 台目) し、またこれに加えて信頼性向上を図る(試験可能性や単一故障を考慮する) 設計(3 台目)とし、単一故障を想定しても動作を保証する設備数(3 チャンネル)を所要チャンネルとする。ただし、実運用を考慮し、運用性の更なる向上のため、予備の潮位計を1台追加することから、2 号炉にも1台追加し、4 台構成とする。潮位計の仕様を表1に示す。

なお、4台の潮位計のうち、1号炉海水ポンプ室及び2号炉海水ポンプ室に設置している潮位計は、1号及び2号炉中央制御室の監視モニタに表示され、3、4号炉海水ポンプ室に設置している潮位計は、3号及び4号炉中央制御室の監視モニタに表示される。このため、1号及び2号炉当直課長と3号及び4号炉当直課長は、通信連絡手段を用いて連携し、他方の中央制御室の当直課長へ警報発信したことを報告する。

また、7.3章の「7.3.8 潮位計の測定点の妥当性」で述べるとおり、いずれの潮位計でも施設影響が生じるケースを漏れなく確認でき、2チャンネルによる検知がどのような組み合わせでも、取水路防潮ゲート閉止判断に差異を生じないものとすることを確認している。よって、閉止判断に用いる潮位計は4台中3台の機能が健全であれば良く、予備は固定しない。潮位計の各構成機器の基準適合性、基準適合性を踏まえた潮位計の設計方針及び仕様等の詳細は、7.3章で述べる。

# (3) 潮位観測システム(防護用)のうち衛星電話(津波防護用)及び通信連絡設備の仕様

取水路防潮ゲートの閉止判断の際に、1号及び2号炉当直課長と3号及び4号炉当直課長の連携により使用する通信連絡設備には、衛星電話(津波防護用)を用いる。また、衛星電話(津波防護用)の補助設備として運転指令設備、保安電話(固定)及び保安電話(携帯)を活用する。これらの通信連絡設備を表2と図4に示す。

なお、衛星電話(津波防護用)は、MS-1設備である取水路防潮ゲートと同等の設計にすることから多重化(2台目)し、またこれに加えて信頼性向上を図る(試験可能性を考慮する)設計(3台目)とし、単一故障を想定しても動作を保証する設備数(2台)を所要チャンネルとする。

衛星電話(津波防護用)は、1号及び2号炉中央制御室に3台、3号及び4号炉中央制御室に3台設置する。

衛星電話(津波防護用)の基準適合性、基準適合性を踏まえた設計方針及び 仕様等の詳細は、7.3章で述べる。

### (4)津波監視設備のうち潮位計の仕様

既許可の潮位計は、7.3.10(2)に示すとおり、津波高さ計測を目的とした「津波監視設備」としての機能に変更はない。ただし、7.3.10(3)のとおり、2号炉海水ポンプ室に設置する潮位計の追加並びに3号炉及び4号炉潮位モニタを分離する設計とする。(3,4号炉の申請の場合も同様である。)この設備構成を図4に示す。

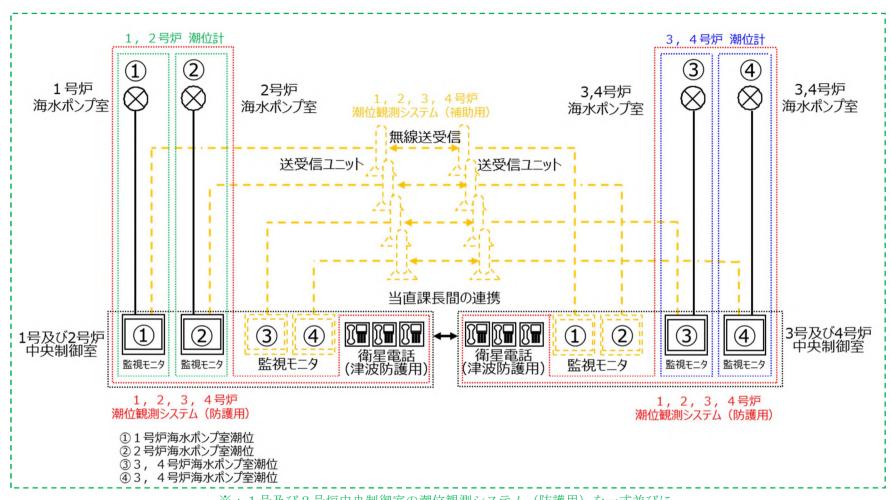
### (5) 潮位観測システム(補助用)の仕様

潮位観測システム(補助用)は、潮位観測システム(防護用)の機能を補助する設備として、他号炉の海水ポンプ室の潮位を確認することで取水路防潮

ゲートの閉止判断基準の確認を補助するために設置し、1号炉海水ポンプ室の潮位検出器からの信号が演算装置で分岐されてから、送受信ユニットを用いた無線を介して、3号及び4号炉中央制御室に設置する監視モニタにデータを送信する設計とする。

これと同様に、2号炉海水ポンプ室の潮位検出器からの信号についても送受信ユニットを用いた無線を介して3号及び4号炉中央制御室に設置する監視モニタにデータを送信し、3,4号炉海水ポンプ室の潮位検出器からの信号についても送受信ユニットを用いた無線を介して1号及び2号炉中央制御室に設置する監視モニタにデータを送信する設計とする。

この設備構成を図4に示す。


表1 潮位観測システム(防護用)のうち潮位計の仕様

| 名称         | 主要構成品 | 個数 | 設置場所         | 種類      | 測定範囲                                                  |
|------------|-------|----|--------------|---------|-------------------------------------------------------|
| 1号炉潮位計     | 潮位検出器 | 1  | 1号炉海水ポンプ室    | 非接触式検出器 | E. L. −9. 9m ∼ E. L. +6. 6m                           |
| 1 夕》例145日  | 監視モニタ | 1  | 1,2号炉中央制御室   | 監視モニタ   | _                                                     |
| 0. 巴尼湖(大利, | 潮位検出器 | 1  | 2号炉海水ポンプ室    | 非接触式検出器 | E. L. $-9.9 \text{m} \sim \text{E. L.} +6.6 \text{m}$ |
| 2号炉潮位計     | 監視モニタ | 1  | 1,2号炉中央制御室   | 監視モニタ   | _                                                     |
| 3号炉潮位計     | 潮位検出器 | 1  | 3, 4号炉海水ポンプ室 | 非接触式検出器 | E. L. $-4.0$ m $\sim$ E. L. $+4.0$ m                  |
| 3 夕》(例)丛山  | 監視モニタ | 1  | 3, 4号炉中央制御室  | 監視モニタ   | _                                                     |
| 4 巴尼湖 伏卦   | 潮位検出器 | 1  | 3, 4号炉海水ポンプ室 | 非接触式検出器 | E. L. −4. Om ∼ E. L. +4. Om                           |
| 4号炉潮位計     | 監視モニタ | 1  | 3, 4号炉中央制御室  | 監視モニタ   | _                                                     |

表2 取水路防潮ゲートの閉止判断に活用する通信連絡設備の仕様

| 名称           | 個数 | 設置場所           |
|--------------|----|----------------|
| 運転指令設備**     | 1  | 1号及び2号炉中央制御室   |
|              | 1  | 3 号及び4 号炉中央制御室 |
| 保安電話(固定)*    | 5  | 1号及び2号炉中央制御室   |
|              | 5  | 3 号及び4 号炉中央制御室 |
| 保安電話(携帯)*    | 7  | 1号及び2号炉中央制御室   |
|              | 7  | 3 号及び4 号炉中央制御室 |
| 衛星電話 (津波防護用) | 3  | 1 号及び2 号炉中央制御室 |
|              | 3  | 3号及び4号炉中央制御室   |

※運転指令設備、保安電話(固定)及び保安電話(携帯)は、潮位観測システム(防護用)のうち衛星電話(津波防護用) の補助設備として活用する。



※:1号及び2号炉中央制御室の潮位観測システム(防護用)を一式並びに 3号及び4号炉中央制御室の潮位観測システム(防護用)を一式とし、合わせて二式と定義する。

図4 潮位観測システム(防護用)、潮位計及び潮位観測システム(補助用)の概要図

#### 6. 津波襲来の判断基準(トリガー)の網羅性・妥当性確認

#### 6.1 背景

5章にて津波警報等が発表されない可能性のある津波に対する取水路防潮 ゲート閉止のための津波襲来判断方法として、潮位を定量的に測定できる潮 位計を活用することとした。本章では、施設影響が生じるケースを確実に確認 するための設定値である津波襲来の判断基準(トリガー)について検討する。

潮位計を活用した取水路防潮ゲート閉止の起因となる津波襲来の判断基準 (トリガー)は、「敷地高さ (T.P+3.5m)を上回る、もしくは、海水ポンプの取水可能水位 (1,2号炉海水ポンプ:T.P.-3.21m、3,4号炉海水ポンプ:T.P.-3.52m)を下回る津波の見逃しがないか」(施設影響が生じる津波の見逃しがないか)、「津波以外の事象を誤判断するおそれがないか」という観点で、網羅性・妥当性を確認した上で設定する必要がある。

2章における取水路防潮ゲート開状態での敷地への影響評価において、施設影響が生じる波源を確認したことから、施設影響が生じる波源を用いて津波波形の1波目と2波目以降の水位変動量の関係を確認することにより、施設影響が生じるケースを網羅的に確認できる津波襲来の判断基準(トリガー)を設定する。

#### 6.2 検討内容・結果

津波襲来の判断基準(トリガー)の設定に関する検討フローを図1に示す。まず、2章の取水路防潮ゲート開状態での敷地影響の検討において、隠岐トラフ付近に分布する38の海底地すべり跡を位置及び向きによってエリアA~Cに分けた上で、各エリアの最大規模の海底地すべり地形として、エリアAのEs-G3、エリアBのEs-K5及びエリアCのEs-T2を選定し、津波水位計算を実施した。その結果、施設影響が生じる波源として、海底地すべりエリアB(Es-K5, Kinematicモデル)と海底地すべりエリアC(Es-T2, Kinematicモデル)を抽出した。この計算結果から(1)施設影響が生じる波源の津波波形の特徴を確認し、潮位計の観測記録から(2)通常の潮位変動も確認した上で、(3)津波襲来の判断基準(トリガー)を仮設定する。

次に、隠岐トラフ海底地すべりエリアA~Cのうち、各エリアで規模が2位以下の海底地すべりでも、施設影響が生じる波源があるかを確認する。

その上で、施設影響が生じる波源に対して、崩壊規模及び破壊伝播速度を様々に設定して施設影響が生じるケースの津波波形を検討し、仮設定した津波襲来の判断基準(トリガー)での検知可否を整理することで、<u>(4)仮設定</u>した津波襲来の判断基準(トリガー)の網羅性を確認する。

最後に、網羅性の確認結果を踏まえて安全側の設定となるように仮設定値を設定し、そのうち津波の時刻歴波形を有するケースについて、設備形状による影響評価及び管路解析による影響評価を行い、1波目の水位低下量が小さくなる場合は、仮設定値を再設定する。さらに平常時の潮位のゆらぎを考慮して余裕を加味することで、施設影響が生じるケースに対して網羅的且つ妥当な設定値として(5)津波襲来の判断基準(トリガー)を設定する。

なお、本検討において施設影響の有無を確認する場合には、津波水位計算結

果に対して潮位のばらつきと高潮の裕度を考慮した。

上記の(1)~(5)の具体的な検討内容と結果を以下に示す。なお、(1)~(4)までの検討で用いる津波水位計算の計算手法、計算条件については2 章で実施した津波水位計算のそれらと同じとする。

Step 2



津波襲来の判断基準(トリガー)の網羅性・妥当性に関する検討フロー 図 1

#### (1) 施設影響が生じる波源の津波波形の特徴の確認

施設影響が生じる波源であるエリアBのEs-K5(Kinematicモデル)とエ リアCの Es-T2 (Kinematic モデル) による津波の時刻歴波形を確認した結 果、主な特徴として、「1波目より2波目以降のほうが水位変動量が大きい」、 「1波目の水位変動量では施設影響は生じないが、2波目以降では施設影響 が生じる」、「1 波目の水位変動量は 0.7m 以上」、「1 波目の水位低下に要す る時間は10分以内」ということが確認された。(図2)

#### ●水位上昇側: エリアB (Es-K5、Kinematic) ●水位上昇側: エリアC (Es-T2、Kinematic) 時刻歴波形の特徴 時刻歴波形の特徴 取水口前 取水口前 4.0 4.0 1波目の水位低下 1波目の水位低下 2波目以降の水 に要する時間 要する時間 位変動が大き 動が大きい 2.0 2.0 1.0 1.0 $\widehat{\underline{\epsilon}}$ Œ 1波目の▲ 1 波目の▲ 0.0 0.0 拉 拉 水位低下 ▼ 水位低下 **∺** -1.0 ₭ -1.0 -2.0 -2.0 水位下降波が先行 水位下降波が先行 -3.0 -3.0 -4.0 35 40 45 50 55 60 65 80 85 30 35 40 45 55 60 65 80 85 時間(min) 時間 (min) 各ポンプ室位置での1波目の挙動 各ポンプ室位置での1波目の挙動 12 -0.2 -0.2 1波目の水位低下に要する時間(分) 1波目の水位低下に要する時間(分) -0.4 -0.4 10分以内 10分以内 1波目の水位低下量(m) 1波目の水位低下量(m) -0.6 -0.6 -0.8 -1 -1.2 -1.4 -0.8 m以上 m以」 -1 -1.2 -1.4 -1.6 -1.6 2 -1.8 3,4号炉箱水ボンブ室 3,4号炉箱水ポンプ室 ●水位下降側: エリアB (Es-K5、Kinematic) 時刻歴波形の特徴 取水口前 4.0 3.0 1波目の水位低下 に要する時間 |**⋖ ▶**| 2.0

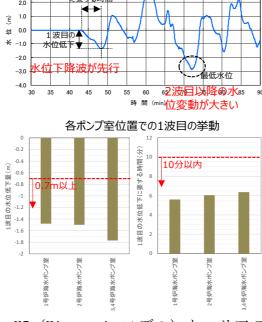



図2 エリアBのEs-K5 (Kinematic モデル) とエリアCのEs-T2 (Kinematic モデル) の津波波形の特徴の確認

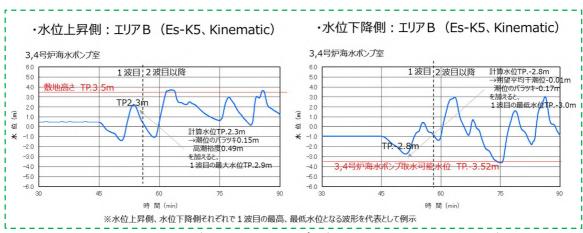



図 2 エリアBのEs-K5 (Kinematic モデル) とエリアCのEs-T2 (Kinematic モデル) の津波波形の特徴の確認 (2)

# (2) 通常(平常時、台風時)の潮位変動の確認

潮位計で観測された潮位データについて、潮位変化をより細かくみるため瞬時値データ(瞬時値データの保存期間である過去3か月分を全て対象とした)を確認した結果、平常時では10分間の潮位変動は最大で10cm程度であり、台風時(2018年台風21号、2019年台風19号)では10分間の潮位変動は最大で30cm程度である(図3)。

なお、潮位計で観測された過去7年分の潮位データ(1分間データ)を確認した結果、作業起因のケースを除くと、2台の潮位計において10分間に0.7m以上の潮位変動が生じたケースはなかった。(表1)



通常時の潮汐の変動 ■2019年9月 (瞬時値5秒間隔採取)(3,4号炉プラント稼動中)

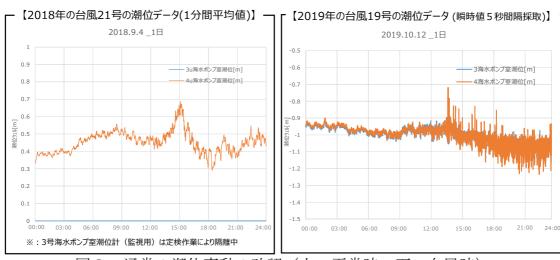



図3 通常の潮位変動の確認(上:平常時、下:台風時)

表1 0.7m以上の潮位変動の観測実績

#### 1波目が下げ波の場合

| 1 / / / / / / / / / / / / / / / / / / / |                 |                                              |  |  |  |  |  |
|-----------------------------------------|-----------------|----------------------------------------------|--|--|--|--|--|
| 判断基準                                    | 10分以内に0.7m以上下降  | 10分以内に0.7m以上下降し、その後、最低<br>潮位から10分以内に0.7m以上上昇 |  |  |  |  |  |
| 潮位計(監視用)1台が変動                           | <b>0件</b> (64件) | <b>0件</b> (24件)                              |  |  |  |  |  |
| 潮位計(監視用)2台が変動                           | <b>0件</b> (6件)  | <b>0件</b> (2件)                               |  |  |  |  |  |

- 潮位変化は、すべて作業によるものであった。
- 作業による潮位変化のうち、2つの潮位計(監視用)が同時に10分以内に0.7m以上低下し、その後、最低潮位から10分以内に0.7m以上上昇するケースが最も少なかった。

#### 1波目が上げ波の場合

| 判断基準          | 10分以内に0.7m以上上昇    | 10分以内に0.7m以上上昇し、その後、最高<br>潮位から10分以内に0.7m以上下降 |  |  |  |  |  |
|---------------|-------------------|----------------------------------------------|--|--|--|--|--|
| 潮位計(監視用)1台が変動 | <b>96件</b> (147件) | <b>52件</b> (74件)                             |  |  |  |  |  |
| 潮位計(監視用)2台が変動 | 0件(3件)            | 0件                                           |  |  |  |  |  |

- 潮位変化は、作業によるものに加え、クラゲ襲来時の取水路への排水により、4号海水ボンプ室潮位計(監視用)のみ、影響を受けるケースがあった。
- 作業要因及び排水要因による潮位変化のうち、2つの潮位計(監視用)が同時に10分以内に0.7m以上上昇し、その後、最高潮位から10分以内に0.7m以上下降するケースはなかった。
- ・ 潮位計(監視用) 1台が10分以内に0.7m以上上昇し、その後、最高潮位から10分以内に0.7m以上下降に該当するものが排水要因として52件あったが、潮位変化の特徴として、通常潮位から、一旦潮位上昇後、上昇前の潮位に戻る傾向であった。

#### (3) 津波襲来の判断基準(トリガー)の仮設定

(1)において、エリアBの Es-K5 (Kinematic モデル)とエリアCの Es-T2 (Kinematic モデル)による津波では、1 波目よりも2 波目以降の水位変動が大きく、1 波目の水位変動では施設影響が生じないが、2 波目以降の水位変動では施設影響を及ぼすことを確認した。これを踏まえ、1 波目の水位変動によって津波を確認して取水路防潮ゲートを閉止することで、2 波目以降で施設影響が生じることを防止する対策とする。

津波襲来の判断基準(トリガー)とする1波目の水位変動量は、(1)及び(2)の確認結果から、施設影響が生じる波源を確認でき、且つ通常の潮位変動を津波と誤判断しない変動量として、10分以内に0.7m以上の変動量とする。なお、誤判断を防止する観点から、津波襲来と判断するのは、潮位が10分以内に0.7m以上下降した後に、潮位が最低潮位から上昇に転じた時点から更に10分以内に0.7m以上の上昇が確認された場合とする。また、同様の観点で、津波襲来と判断するのは、2台以上の潮位計が上記を観測した場合とする。

なお、隠岐トラフの海底地すべりはほとんどが発電所から遠ざかる方向に崩壊する形状となっている中で、崩壊の方向が異なる海底地すべりとして、崩壊方向が発電所方向に近いと想定されるエリア A の Es-G101、エリア C の Es-T13 及び Es-T14 を抽出し、津波波形を確認した。その結果、Watts 他の予測式を用いた評価で上昇波先行の波形となっており、上昇波が先行する波源もあることを確認したものの、津波高さは小さく、(1) の考え方を変更する必要はなかった。しかし、施設影響が生じる波源から得られる波形は、全て津波の第 1 波が下降波であるものの、自然事象に対する不確実性をより広く取り入れる観点から、「1 波目の水位が上昇し、その後、最高潮位から下降した場合」も津波襲来の判断基準(トリガー)として考慮することとする。

以上より、次のとおり、津波襲来の判断基準(トリガー)を仮設定する。

・ 潮位観測システム (防護用) のうち、2 台の潮位計の観測潮位が 10 分以内に 0.7m 以上下降し、その後、最低潮位から 10 分以内に 0.7m 以上上昇する。

#### または

・ 潮位観測システム(防護用)のうち、2台の潮位計の観測潮位が10分以内に0.7m以上上昇し、その後、最高潮位から10分以内に0.7m以上下降する。

# (4) 津波襲来の判断基準 (トリガー) の網羅性の確認

(3)で仮設定した津波襲来の判断基準(トリガー)が、施設影響が生じる波源の様々な津波波形に対していずれの場合も確認できることを確認する。

網羅性の確認においては、まず、2章にて、隠岐トラフ付近に分布する38の海底地すべり跡を位置及び向きによってエリアA~Cに分けた上で、エリア毎に最大規模となる海底地すべり地形として、エリアAのEs-G3、エリアBのEs-K5及びエリアCのEs-T2を選定し、津波水位計算を実施した結果、エリアBのEs-K5及びエリアCのEs-T2が施設影響が生じる波源であることを確認しているため、各エリアで規模が2位以下の海底地すべりでも、施設影響が生じる波源があるかを確認する。

施設影響が生じる波源を抽出するため、影響検討(以下、「パラメータス タディ」という。)を実施する。パラメータスタディは海底地すべりによる 津波の津波高さに影響する因子を用いて行う。津波高さに影響する因子と しては、海岸・海底地形、対象とする地すべり、潮位・水位、崩壊規模 (Kinematic モデルにおいて設定する海底地形変化量分布)、破壊伝播速度・ 破壊継続時間 (Kinematic モデルにおいて設定する海底地形変化の速度及び 継続時間)が考えられるが、海岸・海底地形は変動させるものでないこと、 潮位・水位は高潮裕度まですでに考慮していること、破壊継続時間は破壊伝 播速度に従属する因子であることから対象とせず、パラメータスタディに おいては対象とする地すべり、崩壊規模、破壊伝播速度を用いる。施設影響 が生じる波源を抽出するパラメータスタディとしては対象とする地すべり を用い、その際には崩壊規模及び破壊伝播速度は保守的に最大値で実施す る。具体的には、崩壊規模は判読した海底すべり地形の崩壊部が一度にすべ て崩壊するものとして設定し、破壊伝播速度は Watts 他の予測式から求ま る海底地すべりの速度の最大値(Umax)を採用した。敷地に影響のある波源 を抽出できたら、その波源を用いて、海底地すべりの波源特性のパラメータ スタディを実施する。海底地すべりの波源特性のパラメータスタディにつ いては、施設影響が生じる波源を抽出するパラメータスタディでは水位変 動が最も大きくなるように保守的に最大値で設定していた崩壊規模及び破 壊伝播速度をパラメータスタディの対象とすることで網羅的な確認を行う。 さらに津波の初期の周期や振幅の特性によっては、伝播特性の影響を受け

て評価位置での波形の特徴が変わる可能性があることから、若狭湾における津波の伝播特性に着目した津波の周期・振幅に関するパラメータスタディも行う。

以上より、波源特性の不確かさを考慮した場合の施設影響が生じる波源の様々な津波波形の検討として①海底地すべりの波源特性に関するパラメータスタディを、1波目より2波目以降のほうが大きいことに関する津波の伝播特性の観点での検討として②若狭湾における津波の伝播特性に関するパラメータスタディを、それぞれ実施する。(図4)

#### ①海底地すべりの波源特性に関するパラメータスタディ

隠岐トラフ海底地すべりのうち、生じる津波が施設に影響する海底地すべりを全て抽出し、それらのパラメータスタディを実施することによって、生じる津波波形の不確かさを踏まえても、施設に影響するケースを網羅的に検知できる判断基準となっていることを確認する。

#### ①-1 施設に影響する海底地すべりの抽出

位置・向き・規模の特性を踏まえて複数の海底地すべりを選定し、発生する津波によって施設影響が生じる波源を抽出する。

#### ①-2 崩壊規模のパラメータスタディ

- ➤ 基本ケースでは確認された地すべり跡に基づいて崩壊規模を 設定していることから、崩壊規模を徐々に小さくしたパラメータ スタディを実施する。
- 施設に影響するケースについて、設定した判断基準で検知できることを確認する。

#### ①-3 破壊伝播速度のパラメータスタディ

- ▶ 基本ケースでは破壊伝播速度を最大値で設定していること から、破壊伝播速度を徐々に小さくしたパラメータスタディを 実施する。
- ▶ 施設に影響するケースについて、設定した判断基準で検知できることを確認する。

#### ②若狭湾の伝播特性に関するパラメータスタディ

振幅・周期を様々に変えた正弦波を用いて津波水位計算を実施し、1波目と2波目以降の関係について以下を確認する。

- ・「1波目よりも2波目以降の水位変動が大きい」という津波波形の特徴が津波波形の一般的な傾向であることを確認する。
- ・2波目以降の増幅の程度や影響する周期について、波源特性のパラメータスタディと異なる傾向がないか確認する。

#### 図4 津波襲来の判断基準(トリガー)の網羅性確認の考え方

① 海底地すべりの波源特性に関するパラメータスタディ

本検討においては、まず、隠岐トラフ海底地すべりのうち、生じる津波により施設影響が生じる海底地すべりを全て抽出し、それらに対し、パラメータスタディを実施することによって、生じる津波波形の不確かさを踏まえても、施設影響が生じるケースを網羅的に確認できる判断基準になっていることを確認する。

まず、パラメータスタディに用いる地すべりとして、施設影響が生じる 海底地すべりを検討用波源として全て抽出する。その上で、これらに対し、 崩壊規模及び破壊伝播速度のパラメータスタディを実施することで、津波 波形を複数作成し、それらのうち、施設影響が生じるケースが(3)で仮 設定した津波襲来の判断基準(トリガー)で検知できるかを確認すること で、津波波形の不確かさを考慮しても、施設影響が生じるケースを網羅的 に確認できる津波襲来の判断基準(トリガー)となっているかを確認する。 (図5)

|                 |                                         | 海底                                                                                                                                                                     | 地すべりの波源特性                                                                              |                                                                                       |  |  |  |  |  |
|-----------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|
|                 |                                         |                                                                                                                                                                        | 崩壊特性                                                                                   |                                                                                       |  |  |  |  |  |
|                 |                                         | 位置・向きの特性<br>(38の海底地すべり)                                                                                                                                                | 【静的】<br>崩壊の規模<br>(崩壊断面積)                                                               | 【動的】<br>崩壊の進展速度<br>(破壊伝播速度)                                                           |  |  |  |  |  |
|                 | <目的>                                    | エリア毎のチャンピオンを選定                                                                                                                                                         | 最大値で設定                                                                                 | 最大値で設定                                                                                |  |  |  |  |  |
| 検討用波源<br>の設定    | <u>最大規模の</u><br><u>津波</u> 波源の<br>選定。    | ➤ 隠岐トラフ海底地すべりを位置・向きによりエリアA~Cに分類し、各エリアで最大規模のものを選定。                                                                                                                      | 複数回の斜面崩壊で形成されたとされるものも含め、一度に全て崩壊するものとして最大規模で評価。                                         | » Kinematicモデルにおける<br>破壊伝播速度は最大値<br>で評価。(Watts他の予<br>測式による海底地すべりの<br>速度の最大値)          |  |  |  |  |  |
|                 |                                         | 施設に影響するケースを網羅的に                                                                                                                                                        | <b>倹知できることを確認するため</b> に枝                                                               | 検討を充実化                                                                                |  |  |  |  |  |
| 判断基準の<br>網羅性の検討 | <目的><br>施設に影響<br>する津波波<br>源の網羅的<br>な確認。 | 施設影響が生じる ケースを抽出 (①-1)  > 隠岐トラフ海底地すべりを位置・向きによりエリア A ~ C に分類し、各エリアで規模1位~3位のものを選定。  > エリアに関わらず、発電所方向に崩壊するものを選定。  ⇒ これらの津波計算結果から、施設影響が生じるケースを抽出。(各地すべりの崩壊規模・破壊伝播速度は最大値で設定) | パラメータスタディを実施 (①-2)  > 地すべりの進展が途中で止まる場合を考慮し、 Kinematicモデルにおける崩壊規模を徐々に小さくしたパラメータスタディを実施。 | パラメータスタディを実施(①-3)  > 地すべりの進展が比較的遅い場合を考慮し、Kinematicモデルにおける破壊伝播速度を徐々に小さくしたパラメータスタディを実施。 |  |  |  |  |  |

図5 波源特性のパラメータスタディによる検討

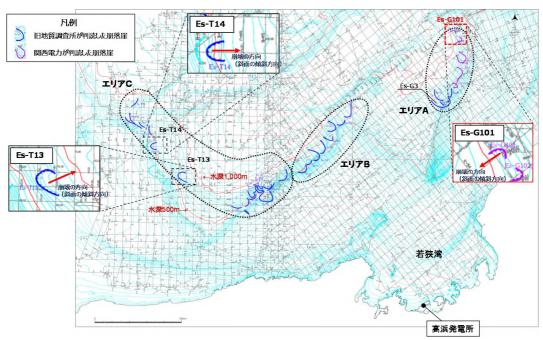
#### ① -1 施設に影響する海底地すべりの抽出

2章の取水路防潮ゲート開状態での敷地影響の検討において、隠岐トラフ付近に分布する 38 の海底地すべり跡を位置及び向きによってエリアA~Cに分けた上で、各エリアの最大規模の海底地すべりとして、エリアAのEs-G3、エリアBのEs-K5及びエリアCのEs-T2を選定し、津波水位計算を実施した。その結果、施設影響が生じるケースとして、海底地すべりエリアB(Es-K5, Kinematic モデル)と海底地すべりエリアC(Es-T2, Kinematic モデル)を抽出した。

このため、各エリアで規模が2位以下の海底地すべりも対象とした上で、津波警報等が発表されない場合において施設に影響する海底地すべりの抽出を行う。施設影響の確認においては、耐津波設計で考慮される潮位のばらつき(水位上昇側:+0.15m、水位下降側:-0.17m)と高潮の裕度(水位上昇側:+0.49m)を津波水位計算結果に加味した値を、敷地高さ及び取水可能水位と比較する。

施設に影響する海底地すべりの抽出は、以下の①~③の手順で実施する。

- ① 隠岐トラフ海底地すべりを位置・向きによりエリアA~Cに分類し、 各エリアで規模が1位~3位のものを選定する。
- ② 隠岐トラフ海底地すべりのうち、エリアに関わらず、発電所方向に崩壊するものを選定する。
- ③ ①及び②で選定した海底地すべりによる津波の計算結果から、施設影響が生じる波源を確認する。

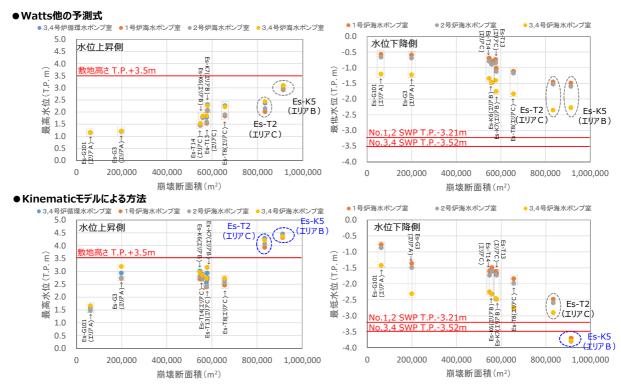

上記①及び②によって選定した海底地すべりを図6に示す。

- ①では、断面積による規模評価結果を参照し、エリアA~Cの最大規模の海底地すべりに加えて、エリアBで規模が 2 位及び 3 位の海底地すべりとして Es-K7 及び Es-K6 を、エリアCで規模が 2 位及び 3 位の海底地すべりとして Es-T8 及び Es-T13 を、それぞれ選定した。エリアAについては、最大規模の Es-G3 による津波でも施設影響が生じないことから、規模が 2 位及び 3 位の海底地すべりは選定しない。
- ②では、隠岐トラフの海底地すべりはほとんどが発電所から遠ざかる方向に崩壊する形状となっている中で、崩壊の傾向が異なる海底地すべりとして、崩壊方向が発電所方向に近いものを選定した。その結果、②ではエリアAのEs-G101、エリアCのEs-T13及びEs-T14を選定した。
- ①の各エリアで規模が 1 位~3 位の海底地すべり及び②の発電所方向に崩壊する海底地すべりによる津波水位計算結果を表 2 に示す。また、各波源の津波水位計算結果に潮位のばらつき及び高潮の裕度を加味した値と敷地高さ及び海水ポンプの取水可能水位を比較した結果を、図 7 に示す。この結果より、施設影響が生じる波源は、水位上昇側ではエリア Bの Es-K5 (Kinematic モデル)とエリア Cの Es-T2 (Kinematic モデル)、水位下降側ではエリア Bの Es-K5 (Kinematic モデル)であることを確認した。

#### ●地すべり地形の規模の算出結果(断面積上位20個)

| 見模の<br>順位 | 地すべり地形  | エリア | 測線    | 地すべり<br>長さ(m) | 地すべり<br>厚さ(m) | 地すべり長さ<br>×厚さ(m²) |
|-----------|---------|-----|-------|---------------|---------------|-------------------|
| 1         | Es-K5   | В   | K-120 | 7,135         | 128           | 913,324           |
| 2         | Es-T2   | С   | GA-23 | 8,592         | 97            | 833,402           |
| 3         | Es-T8   | С   | GA-22 | 4,374         | 150           | 656,141           |
| 4         | Es-K7   | В   | K-119 | 3,618         | 160           | 578,850           |
| 5         | Es-T13  | С   | GA-20 | 4,966         | 116           | 576,038           |
| 6         | Es-K6   | В   | K-120 | 5,420         | 103           | 558,225           |
| 7         | Es-T14  | С   | GA-15 | 8,970         | 61            | 547,200           |
| 8         | Es-K8   | В   | K-119 | 6,557         | 76            | 498,312           |
| 9         | Es-K4   | В   | K-120 | 4,418         | 81            | 357,855           |
| 10        | Es-K3   | В   | K-121 | 7,596         | 45            | 341,839           |
| 11        | Es-T6   | С   | GA-21 | 5,343         | 62            | 331,267           |
| 12        | Es-T17  | С   | GA-11 | 1,979         | 158           | 312,678           |
| 13        | Es-K2   | В   | K-120 | 4,462         | 67            | 298,932           |
| 14        | Es-T15  | С   | GA-13 | 8,326         | 33            | 274,765           |
| 15        | Es-K1   | В   | K-121 | 5,198         | 52            | 270,276           |
| 16        | Es-G3   | Α   | K-115 | 6,856         | 29            | 198,822           |
| 17        | Es-G103 | Α   | K-118 | 6,172         | 30            | 185, 161          |
| 18        | Es-T12  | С   | GA-T  | 6,284         | 29            | 182,237           |
| 19        | Es-G104 | А   | K-51  | 3,584         | 46            | 164,876           |
| 20        | Es-G102 | А   | K-119 | 4,413         | 36            | 158,864           |

① 各エリアで規模が1位~3位の海底地すべり




②発電所方向に崩壊する海底地すべり

図6 施設影響が生じる可能性のある海底地すべりの選定

表2 海底地すべりの津波評価結果 (規模が2位以下の波源を含む)

|      |                   |                   |                    |                      |                    |                    |                     |       |        |                    |                    | 数字(                 | ‡、T.P.(m) |
|------|-------------------|-------------------|--------------------|----------------------|--------------------|--------------------|---------------------|-------|--------|--------------------|--------------------|---------------------|-----------|
|      |                   |                   |                    |                      |                    |                    | 水位上昇                |       |        |                    |                    | 水位下降                |           |
|      | 海底地すク             | 取水路<br>防潮<br>ゲート  | 取水路<br>防潮ゲート<br>前面 | 3,4号炉<br>循環水<br>ポンプ室 | 1 号炉<br>海水<br>ポンプ室 | 2 号炉<br>海水<br>ボンプ室 | 3,4号炉<br>海水<br>ボンプ室 | 放水口前面 | 放水路(奥) | 1 号炉<br>海水<br>ポンプ室 | 2 号炉<br>海水<br>ボンプ室 | 3,4号炉<br>海水<br>ポンプ室 |           |
|      | Es-G3             | Watts他の予測式        | 開                  | 0.6                  | 0.6                | 0.6                | 0.6                 | 0.6   | 0.6    | 0.6                | -0.5               | -0.6                | -1.1      |
| TUZA | (規模1位)            | Kinematicモデルによる方法 | 開                  | 2.0                  | 2.3                | 2.1                | 2.2                 | 2.6   | 1.6    | 1.8                | -1.2               | -1.4                | -2.2      |
| エリアA | Es-G101           | Watts他の予測式        | 開                  | 0.6                  | 0.6                | 0.6                | 0.6                 | 0.6   | 0.6    | 0.6                | -0.4               | -0.5                | -1.1      |
|      | (発電所方向)           | Kinematicモデルによる方法 | 開                  | 0.9                  | 1.0                | 0.9                | 0.9                 | 1.1   | 8.0    | 0.9                | -0.6               | -0.7                | -1.3      |
|      | Es-K5             | Watts他の予測式        | 開                  | 2.2                  | 2.5                | 2.3                | 2.4                 | 2.5   | 1.9    | 2.1                | -1.4               | -1.5                | -2.1      |
|      | (規模1位)            | Kinematicモデルによる方法 | 開                  | 3.6                  | 3.9                | 3.7                | 3.8                 | 3.8   | 3.7    | 4.0                | -3.6               | -3.7                | -3.7      |
| エリアB | Es-K7             | Watts他の予測式        | 開                  | 1.4                  | 1.7                | 1.5                | 1.5                 | 1.7   | 1.1    | 1.2                | -0.9               | -1.0                | -1.6      |
| TUYB | (規模2位)            | Kinematicモデルによる方法 | 開                  | 2.1                  | 2.3                | 2.1                | 2.2                 | 2.6   | 2.2    | 2.4                | -1.5               | -1.6                | -2.4      |
|      | Es-K6             | Watts他の予測式        | 開                  | 1.1                  | 1.2                | 1.2                | 1.2                 | 1.2   | 1.0    | 1.0                | -0.7               | -0.8                | -1.3      |
|      | (規模3位)            | Kinematicモデルによる方法 | 開                  | 2.0                  | 2.3                | 2.1                | 2.1                 | 2.3   | 1.7    | 1.9                | -1.4               | -1.5                | -2.2      |
|      | Es-T2             | Watts他の予測式        | 開                  | 1.4                  | 1.8                | 1.4                | 1.6                 | 1.8   | 1.1    | 1.4                | -1.3               | -1.4                | -2.2      |
|      | (規模1位)            | Kinematicモデルによる方法 | 開                  | 3.2                  | 3.7                | 3.3                | 3.5                 | 3.6   | 3.7    | 3.9                | -2.4               | -2.5                | -2.8      |
|      | Es-T8             | Watts他の予測式        | 開                  | 1.3                  | 1.7                | 1.2                | 1.3                 | 1.6   | 0.9    | 1.1                | -1.0               | -1.0                | -1.7      |
| エリアC | (規模2位)            | Kinematicモデルによる方法 | 開                  | 1.8                  | 2.1                | 1.9                | 2.0                 | 2.1   | 2.4    | 2.5                | -1.7               | -1.9                | -2.6      |
| 1970 | Es-T13<br>(規模3位、発 | Watts他の予測式        | 開                  | 0.9                  | 1.2                | 0.9                | 1.0                 | 1.3   | 0.9    | 0.9                | -0.6               | -0.7                | -1.3      |
|      | (規模3位、発<br>電所方向)  | Kinematicモデルによる方法 | 開                  | 1.8                  | 2.0                | 1.8                | 1.8                 | 2.1   | 2.3    | 2.4                | -1.5               | -1.6                | -2.3      |
|      | Es-T14            | Watts他の予測式        | 開                  | 0.8                  | 0.9                | 0.9                | 0.9                 | 0.9   | 8.0    | 0.8                | -0.6               | -0.7                | -1.2      |
|      | (発電所方向)           | Kinematicモデルによる方法 | 開                  | 2.0                  | 2.4                | 2.1                | 2.2                 | 2.4   | 1.9    | 2.0                | -1.5               | -1.6                | -2.1      |



(上昇側:ばらつき+0.15m 及び高潮裕度+0.49m 考慮、下降側:ばらつき-0.17m 考慮)

図7 施設影響が生じる波源の確認

# ① -2 崩壊規模のパラメータスタディ

Kinematic モデルによって海底地すべりによる津波を計算する場合、検討用波源の設定においては複数の斜面崩壊で形成されたとされるものも含め、一度に全て崩壊するものとして崩壊規模を最大値(100%)で計算している。網羅性の確認においては、地すべりによって発生する津波の波形の不確かさを確認する観点から、Kinematic モデルにおいて地すべりの進展が途中で止まる場合を考慮し、エリアBのEs-K5(Kinematic モデル)とエリアCのEs-T2(Kinematic モデル)の崩壊規模を最大値から徐々に小さくしたパラメータスタディを実施した(図8)。

崩壊規模のパラメータスタディの結果、崩壊規模が小さくなるほど水位変動が小さくなることが確認されたが(図 9)、いずれの場合でも施設影響が生じるケースは仮設定した津波襲来の判断基準 (トリガー) で検知できることを確認した。(図 10、図 11)

なお、潮位のばらつき及び高潮の裕度を考慮した場合に、津波の第 2 波以降の潮位が、施設影響が生じる敷地高さである T. P. +3.5m に最近接するパラメータスタディ結果のうち、T. P. +3.5m をわずかに超えるケースとしては、海底地すべりエリア B の Es-K5 (Kinematic モデル) の崩壊規模 40%であり、この場合の最高水位は、3.54m、第 1 波の水位低下量は、0.73m であることを確認した。また、T. P. +3.5m をわずかに下回るケースとしては、海底地すべりエリア C の Es-T2 (Kinematic モデル) の崩壊規模 40%であり、この場合の最高水位は、3.48m、第 1 波の水位低下量は、0.69m であることを確認した。

| 海底地までり       | 崩壊規模のパラメータスタディケース                    |                  |  |  |  |  |  |  |  |  |
|--------------|--------------------------------------|------------------|--|--|--|--|--|--|--|--|
| 海底地すべり       | 水位上昇側                                | 水位下降側            |  |  |  |  |  |  |  |  |
| Es-K5 (エリアB) | 100%(基本ケース), 80%, 70%, 60%, 50%, 40% | 100%(基本ケース), 80% |  |  |  |  |  |  |  |  |
| Es-T2 (エリアC) | 100%(基本ケース), 80%, 60%, 50%, 45%, 40% |                  |  |  |  |  |  |  |  |  |

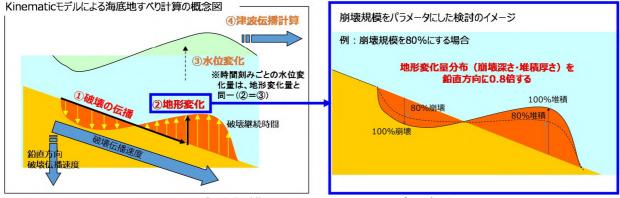



図8 崩壊規模のパラメータスタディ方法

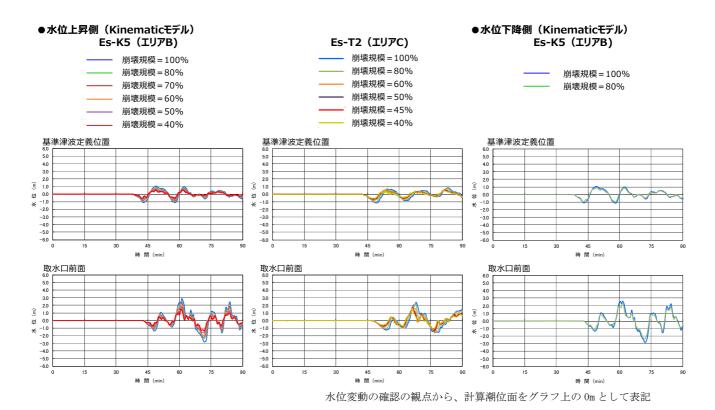



図9 崩壊規模のパラメータスタディ結果 (時刻歴波形)

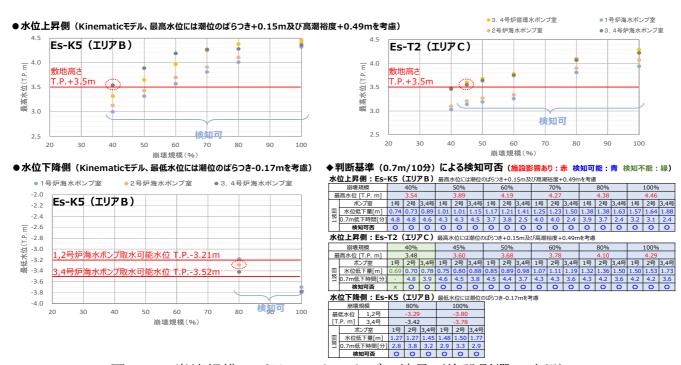



図10 崩壊規模のパラメータスタディ結果(施設影響の確認)

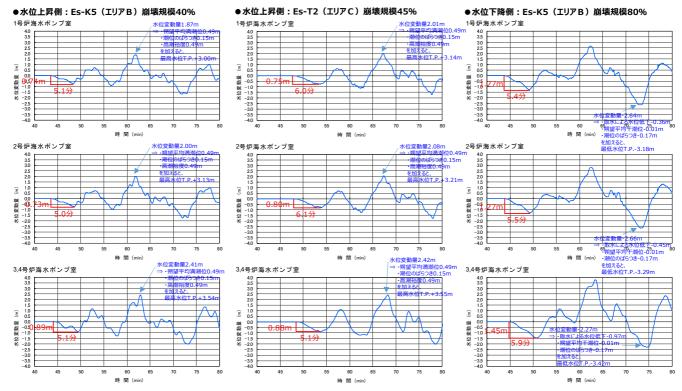



図11 崩壊規模のパラメータスタディ結果 (津波襲来の判断基準 (トリガー) による検知可否の確認)

## ① -3 破壊伝播速度のパラメータスタディ

Kinematic モデルによって海底地すべりによる津波を計算する場合、検討用波源の設定においては、破壊伝播速度として Watts 他の予測式による海底地すべりの速度の最大値 Umax を採用している。網羅性の確認においては、地すべりによって発生する津波の波形の不確かさを確認する観点から、Kinematic モデルにおいて地すべりの進展が比較的遅い場合を考慮し、エリアBの Es-K5 (Kinematic モデル) とエリア Cの Es-T2 (Kinematic モデル)の破壊伝播速度を最大値から徐々に小さくしたパラメータスタディを実施した(図12)。

破壊伝播速度のパラメータスタディの結果、破壊伝播速度が小さくなるほど水位変動が小さくなり、周期は長くなることが確認されたが(図13)、いずれの場合でも施設影響が生じるケースは仮設定した津波襲来の判断基準(トリガー)で検知できることを確認した。(図14、図15)

なお、パラメータスタディ結果のうち、エリアBの Es-K5 (Kinematic モデル)による津波水位計算(上昇側)の破壊伝播速度 0.5m/s~0.6m/s の間では、1 波目の水位低下量の大小が破壊伝播速度の大小と整合していない。この間での1波目の水位低下量は概ね同程度で 0.8m 程度であるところ、取水路周辺の詳細地形の影響等で水位変動がやや増減しているものと考えられるが、施設影響が生じない破壊伝播速度 0.5m/s のケースも含めていずれも水位低下量が 0.70m 以上であり、検知可能であることを確認している。

津波の 1 波目の水位低下量の大小が破壊伝播速度の大小と整合していない非線形性領域については、

- a) 第 1 波の非線形性が見られる区間は、破壊伝播速度 0.50m/s $\sim$ 0.60m/s であること。
- b) 破壊伝播速度 0.40m/s~1.00m/s 全体を通しては、線形性があること。

から、aの区間の1波目の水位低下量を下回る、破壊伝播速度0.40m/sのケースにおいて、非線形区間よりも低い水位で線形性が回復することを確認した。なお、破壊伝播速度0.40m/sの場合の潮位のばらつき及び高潮の裕度を考慮した最高水位は2.52m、第1波の水位低下量は、0.67mである。(図16)

| 海底              | 破壊伝播速度(鉛直方向                                                  | 可) のパラメータスタディケース                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|-----------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 地すべり            | 水位上昇側                                                        | 水位下降側                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Es-K5<br>(エリアB) | 1.0m/s(基本ケース)、0.8m/s、0.7m/s、0.6m/s、<br>0.55m/s、0.5m/s、0.4m/s | 1.0m/s(基本ケース)、0.8m/s、0.7m/s、0.6m/s、0.5m/s、0.4m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Es-T2<br>(エリアC) | 0.5m/s(基本ケース)、0.4m/s、0.3m/s、0.2m/s                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| (参考) 既許可        | 時の検討       Watts他の予測         基本ケース(エリアBの場合)       海底地すべり速度   | の時間変化 5.0 エリアム 基本ケース (国産力制度等負債を 0.2m/4) エリアム 海皮 パラス (国産力制度等) 原産 (0.2m/4) 1.0 エリアム 海皮 パラス (国産力制度等) 原産 (0.2m/4) 1.0 日本 (1.2m/4) 1.0 日本 (1.2m/4 |  |  |  |  |

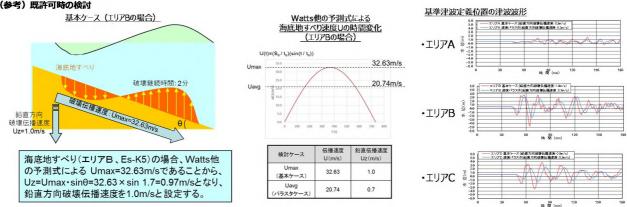



図12 破壊伝播速度のパラメータスタディ方法

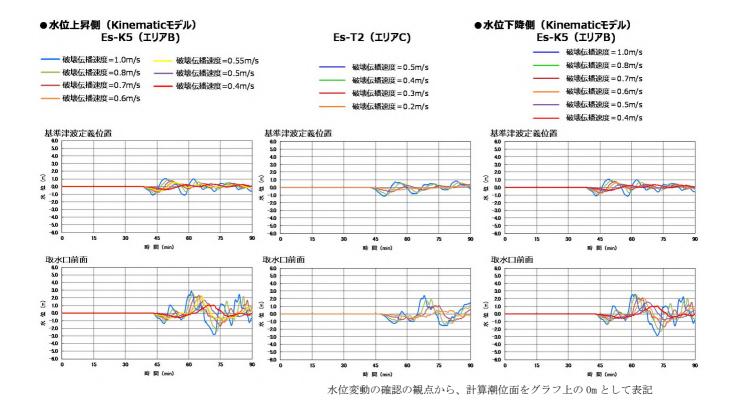



図13 崩壊規模のパラメータスタディ結果 (時刻歴波形)

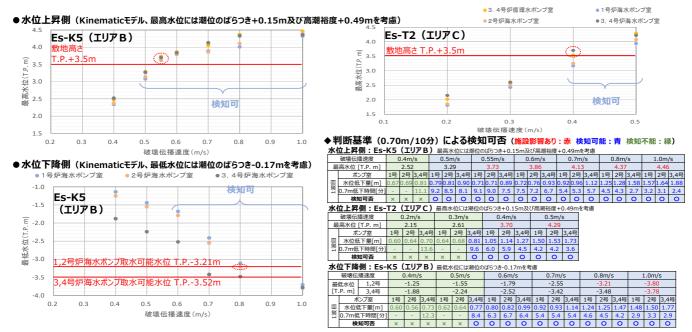
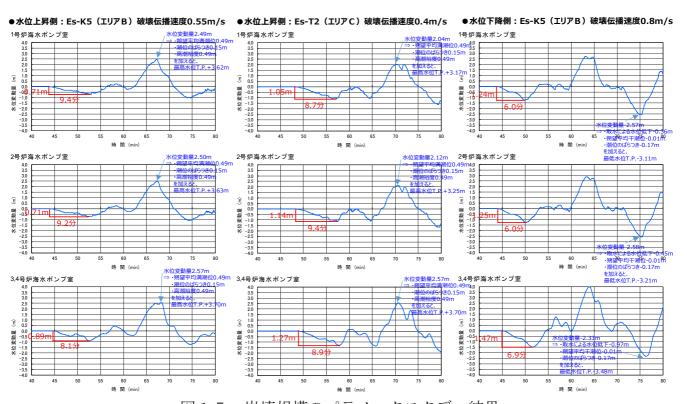
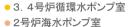


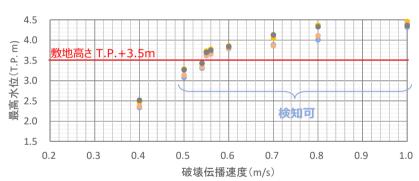

図14 破壊伝播速度のパラメータスタディ結果(施設影響の確認)



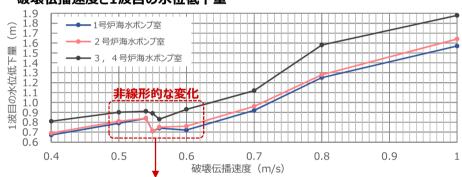


図15 崩壊規模のパラメータスタディ結果 (津波襲来の判断基準 (トリガー) による検知可否の確認)

### ●水位上昇側: Es-K5 (Kinematicモデル、最高水位には潮位のばらつき+0.15m及び高潮裕度+0.49mを考慮)

# **0.70m/10分による検知可否 (施設影響あり: 赤 検知可能: 青 検知不能: 緑)**


|     | 破壊伝播速度        |      | 0.4m/s |      |      | 0.5m/s |      | (    | 0.54m/s | 5    |      | 0.55m/s | 5    |      | 0.56m/s | s    |      | 0.6m/s |      |      | 0.7m/s |      |      | 0.8m/s |      |      | 1.0m/s |      |
|-----|---------------|------|--------|------|------|--------|------|------|---------|------|------|---------|------|------|---------|------|------|--------|------|------|--------|------|------|--------|------|------|--------|------|
|     | 最高水位 [T.P. m] |      | 2.52   |      |      | 3.29   |      |      | 3.43    |      |      | 3.73    |      |      | 3.78    |      |      | 3.86   |      |      | 4.13   |      |      | 4.37   |      |      | 4.46   |      |
|     | ポンプ室          | 1号   | 2号     | 3,4号 | 1号   | 2号     | 3,4号 | 1号   | 2号      | 3,4号 | 1号   | 2号      | 3,4号 | 1号   | 2号      | 3,4号 | 1号   | 2号     | 3,4号 | 1号   | 2号     | 3,4号 | 1号   | 2号     | 3,4号 | 1号   | 2号     | 3,4号 |
| □ [ | 水位低下量[m]      | 0.67 | 0.69   | 0.81 | 0.79 | 0.81   | 0.90 | 0.84 | 0.84    | 0.91 | 0.71 | 0.71    | 0.89 | 0.74 | 0.75    | 0.83 | 0.72 | 0.76   | 0.93 | 0.92 | 0.96   | 1.12 | 1.25 | 1.28   | 1.58 | 1.57 | 1.64   | 1.88 |
| 13  | 0.7m低下時間[分]   | 1    | -      | 11.1 | 9.2  | 8.5    | 8.1  | 8.3  | 7.4     | 7.5  | 9.1  | 9.0     | 7.5  | 8.2  | 8.2     | 7.4  | 7.5  | 7.2    | 6.7  | 5.4  | 5.3    | 5.7  | 4.5  | 4.3    | 2.7  | 3.2  | 3.1    | 2.4  |
| l I | 検知可否          | ×    | ×      | ×    | 0    | 0      | 0    | 0    | 0       | 0    | 0    | 0       | 0    | 0    | 0       | 0    | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      | 0    |

#### 破壊伝播速度と最高水位




#### • 1号炉海水ポンプ室

室 ● 3, 4号炉海水ポンプ室



# 破壊伝播速度と1波目の水位低下量



非線形的な区間(0.5~0.6m/s)の1波目の水位低下量

|      | 1号炉海水ポンプ室 | 2号炉海水ポンプ室 | 3,4号炉海水ポンプ室 |  |  |  |  |
|------|-----------|-----------|-------------|--|--|--|--|
| 平 均  | 0.76m     | 0.77m     | 0.90m       |  |  |  |  |
| ばらつき | 0.05m     | 0.05m     | 0.04m       |  |  |  |  |

図16 破壊伝播速度パラメータスタディにおける1波目の非線形性

# ② 若狭湾における津波の伝播特性に関するパラメータスタディ

仮設定した津波襲来の判断基準(トリガー)では、「1波目よりも2波目 以降の水位変動が大きい」という前提に基づき、1波目の水位変動を検知す ることとしている。よって、この伝播特性の妥当性について検証する。

まず、海底地すべりによる津波の計算結果では、いずれのケースでも、基準津波定義位置の時刻歴波形では2波目以降の水位変動が1波目と同程度以下なのに対して、取水口前の時刻歴波形では2波目以降の水位変動の増幅が見られるが、これは1波目では波源からの直達波のみが到達するのに対して、2波目以降では大島半島等からの反射波との重畳が生じているためと考えられる。(図17)

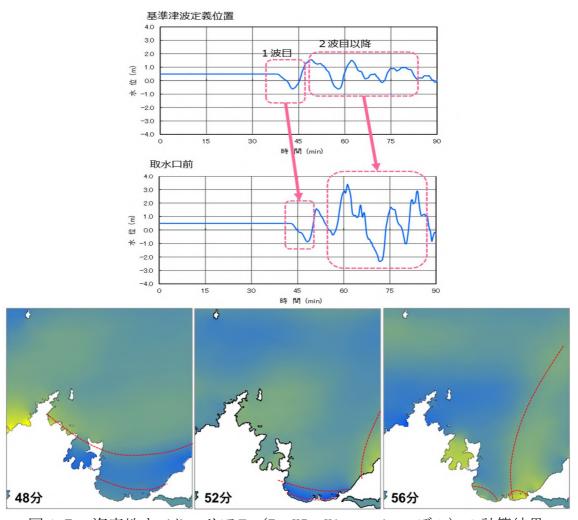
つぎに、波源特性に関するパラメータスタディでは、パラメータの変動に 応じて生成される振幅・周期が異なる様々な津波波形においていずれの場合も取水口位置で2波目以降が増幅することが確認されているが、これは 2波目以降の増幅は若狭湾における津波の伝播特性に起因する高浜発電所 位置の津波波形の一般的な傾向であると考えられる。

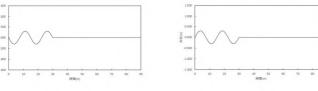
この傾向をより網羅的に確認し、特に「波源のパラメータスタディ結果とは異なるような特異的に大きな増幅傾向がないこと」及び「1波目の水位低下が 10 分を超えるような周期の長い波 (周期 40 分以上)では大きな増幅はしないこと」を確認するため、振幅・周期を様々に変えた正弦波を用いて津波水位計算を実施し、1波目と 2波目以降の関係を確認した。計算条件を図18に示す。この検討では1波目と2波目以降の振幅の比(以下、増幅比率という)を指標として確認を行った。

正弦波によるパラメータスタディの結果、増幅比率は入力波の周期が 10 分~20 分程度の場合で特に大きく、周期 40 分以上では 1 に近づくことを確認した。また、増幅比率は、入力波の振幅を変えてもほとんど変化しない。 (図 1 9)

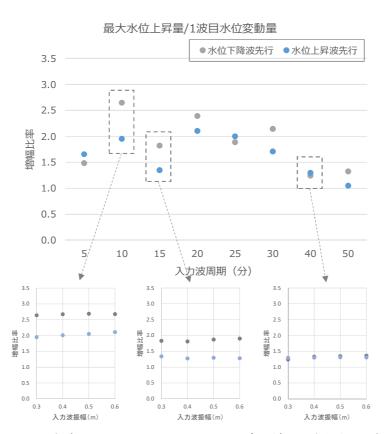
正弦波の検討による 2 波目以降の増幅の程度や影響する周期の傾向は、波源特性のパラメータスタディ結果と同じであり、仮設定した津波襲来の判断基準(トリガー)の 10 分以内に 0.7m の水位変動では検知できないような特異な増幅傾向はなく、1 波目の水位低下が 10 分を超えるような周期の長い波では増幅が小さいことを確認した(図 2 0)。なお、破壊伝播速度のパラメータスタディにおける各ポンプ室での増幅比率の増幅率の最大値は 3.7 であったが、このケースでも設定した津波襲来の判断基準(トリガー)で検知できることを確認している。

上記確認結果より、正弦波によるパラメータスタディの結果、増幅比率は入力波の周期が 10 分~20 分程度の場合で特に大きく、周期 40 分以上では 1 に近づくことを確認している。各ポンプ室での第 1 波と第 2 波以降の最大の増幅比率は、海底地すべりエリア B (Es-K5) の破壊伝播速度 0.60m のケースにおける 3.7 倍であるが、これが、第 2 波以降が敷地高さ T.P.+3.5m を わずかに超えるケースに生じたと仮定すると、その第 1 波の水位低下量は 0.64m となる。





図 1 7 海底地すべりエリア B (Es-K5、Kinematic モデル) の計算結果 (津波波形、スナップショット)

| 正弦波のパラメータ | 設定                   | 考え方                                                                                                                     |  |  |  |  |  |  |
|-----------|----------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 波数        | 2波                   | 海底地すべりによる津波の基準津波定義位置の波形及びスナップショットから、入力波として明瞭な振幅が存在する波数として2波とする。                                                         |  |  |  |  |  |  |
| 初動方向      | ·水位下降波先行<br>·水位上昇波先行 | 隠岐トラフでは地形的にほとんどの地すべりが発電所とは逆方向に崩壊していることから水位下降<br>波先行と考えられるが、発電所方向に崩壊する一部の地すべりではわずかに水位上昇波が先行<br>する計算結果となることから、両パターンを設定する。 |  |  |  |  |  |  |
| 振幅        | 0.3~0.6m             | ・取水口位置での1波目の振幅が各周期で概ね0.7m程度となる振幅として0.3mとする。<br>・周期10分・15分・40分については、施設影響が大きくなる場合の確認として0.3~0.6mのパラメータスタディを行う。             |  |  |  |  |  |  |
| 周期        | 5~50分                | 海底地すべりによる津波の周期を踏まえ、5~50分とする。                                                                                            |  |  |  |  |  |  |


入力波形の例 ◆波数2·水位下降波先行・周期15分・振幅0.3m

# ◆波数2·水位上昇波先行·周期15分·振幅0.3m





正弦波によるパラメータスタディの計算条件 図18



正弦波によるパラメータスタディ結果 (取水口前面) 図19

#### ●破壊伝播速度と1波目の周期(基準津波定義位置)の関係

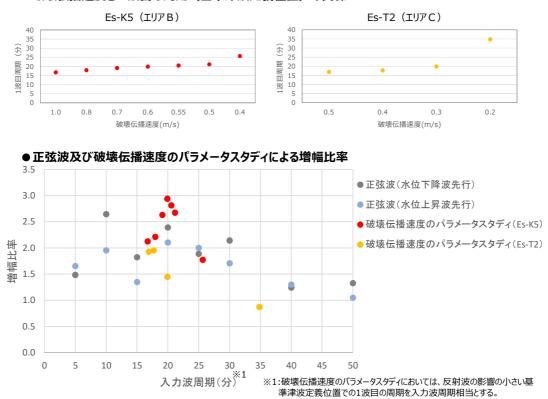



図20(1/2) 正弦波と海底地すべりによる津波の増幅比率の比較(取水口前面)

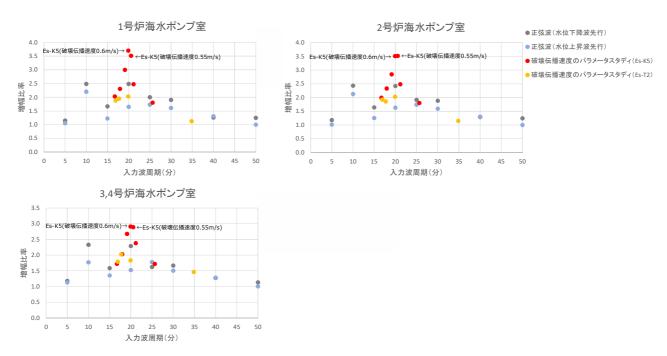
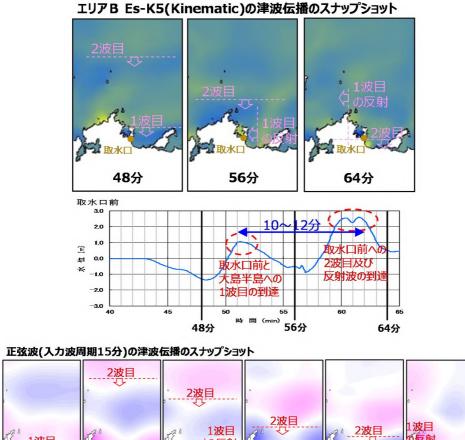



図20(2/2) 正弦波と海底地すべりによる津波の増幅比率の比較(各ポンプ室)

これまでの検討結果から、海底地すべりによる津波及び正弦波のいずれの場合でも、2波目以降が増幅し、その増幅比率は周期によって異なる傾向が見られたことを踏まえ、取水口位置での2波目以降の波形に対する大島半島からの反射波の影響について、波の重畳及び波の励起の観点で確認を行った。


図21に海底地すべりによる津波(Es-K5, Kinematic モデル)及び正弦波(入力波周期15分)の計算における若狭湾内のスナップショットと取水口位置の時刻歴波形を示す。それぞれの津波の伝播状況から、波源からの1波目及び2波目は南向きに進行すること、大島半島からの反射波は西向きに進行すること、取水口位置では大島半島からの1波目の反射波と波源からの2波目が重畳すること、大島半島で反射した波が取水口に到達するまでの時間は10~12分程度と考えられること、が確認された。

これを踏まえ、図22のように取水口位置までの津波の伝播経路を①~ ③に分類した上で、波が重畳する条件を検討した。

伝播経路①と伝播経路②が同じように津波を伝播させると仮定すると、 伝播経路③の進行に要する伝播時間と津波の周期が一致する場合において、 伝播経路②及び伝播経路③を通じて到達する 1 波目のピークと伝播経路① を通じて到達する 2 波目のピークが取水口前で重畳する。伝播経路③の進 行に要する伝播時間は、スナップショット及び時刻歴波形の確認結果から 10~12 分程度と考えられる。これは伝播距離及び波速に基づく次式の試算 とも概ね一致する。

伝播時間 = 伝播距離 L/波速 c =  $L/\sqrt{gh}$ =  $9500/\sqrt{(9.8 \times 20 \text{ or } 30)}$  $\div 554 \sim 678 \text{ [sec]} \Rightarrow 9.2 \sim 11.3 \text{ [min]}$ 

したがって、周期 10~15 分程度の波において他の周期よりも 2 波目以降の増幅比率が高くなる傾向は、大島半島から 10~12 分程度で取水口前に到達する反射波との重畳が影響していると考えられる。一方、周期が 10~15 分よりも大幅に長い場合に増幅比率が低くなるのは、伝播経路①を通じて 2 波目のピークが到達する前に大島半島からの反射波が到達してしまうことで、ピーク同士の重畳が生じないためと考えられる。



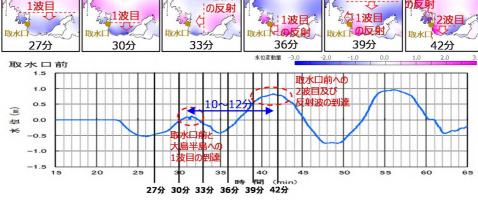



図21 大島半島からの反射波との重畳(海底地すべりによる津波、正弦波)

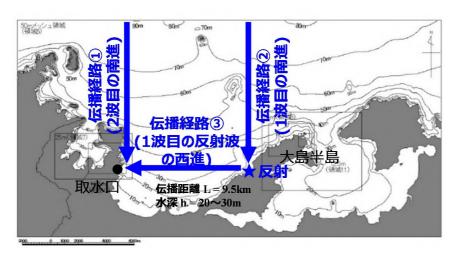



図22 取水口位置までの津波の伝播経路

また、高浜湾における固有振動(セイシュ)によって大島半島からの反射波の振幅が励起される可能性についても検討を行った。

図22において、伝播経路③を西進した1波目の反射波が取水口位置で反射する際に、波の周期が高浜湾の固有周期と一致する場合において、波の固有振動(セイシュ)によって振幅が励起される。両端が岸(腹)となるセイシュが発生する固有周期 Tn は、伝播距離 L と水深 h から、 $Tn=2L/n\sqrt{gh}$  の式で求められる。高浜湾の伝播経路③の場合、L=9500m、 $h=20\sim30m$  とすると、1 次固有周期が  $18\sim23$  分程度、2 次固有周期が  $9\sim11$  分程度となる。

図20(1)の再掲になるが、図23に正弦波と海底地すべりによる津波の 取水口位置の増幅比率と周期の関係を示す。

正弦波による検討結果では、特に周期 10 分と周期 20 分において他の周期よりも増幅比率が大きい。これらは伝播経路③の1次・2次の固有周期に近い波である。

一方、海底地すべりによる津波では、周期 20 分程度のケースで高い増幅 比率となっている傾向がみられる。ただし、Es-K5 (破壊伝播速度 0.6m/s) と Es-T2 (破壊伝播速度 0.3m/s) はともに、1 波目の周期が 20 分程度であ るが、Es-T2 では増幅比率が 1.5 程度と比較的小さい。図 2 3 で示す周期 は、海底地すべりによる津波の基準津波定義位置の時刻歴波形から求めた 周期であるが、正弦波の入力位置と異なっており、周期を正確に捉えられて いない可能性がある。このため、海底地すべりによる津波について、正弦波 の入力位置と同じ位置の時刻歴波形を用いて FFT 解析を実施した(図 2 4)。 その結果、Es-K5 は周期 18 分程度が卓越する波、Es-T2 は周期 26 分程度が 卓越する波であった。したがって、実際に含まれている波が湾の固有周期に 近い Es-K5 では増幅比率が大きく、湾の固有周期とは異なる周期の Es-T2 では増幅比率が小さい結果となっている。

よって、取水口位置における 2 波目以降の増幅には、大島半島から反射 して到達する波の振幅がセイシュによって励起されることが影響している 可能性がある。

以上の検討結果から、取水口位置での2波目以降の振幅の増幅には、大島 半島からの反射波と波源からの1波目の重畳及び、高浜湾の固有振動によ る大島半島からの反射波の励起が影響している可能性がある。ただし、いず れの場合も2波目以降が増幅しやすい周期は10~20分程度であるため、こ れよりも周期が大幅に長い波の場合には2波目以降の増幅は生じにくいと 考えられる。

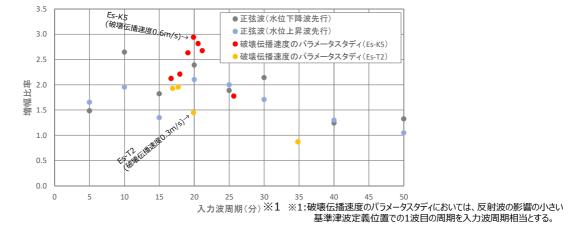



図23 増幅比率と周期の関係(注:図20(1)の下側の図の再掲)

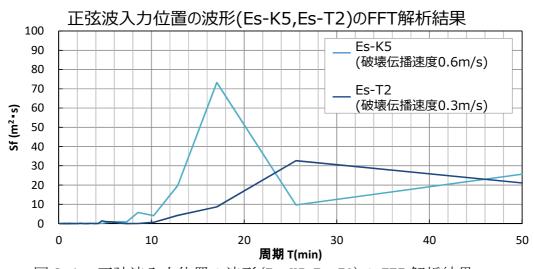



図24 正弦波入力位置の波形(Es-K5, Es-T2)の FFT 解析結果

#### (5) 津波襲来の判断基準(トリガー)の設定

- (4) におけるエリアBの Es-K5 (Kinematic モデル) とエリアCの Es-T2 (Kinematic モデル) に関する隠岐トラフ海底地すべりの波源特性及び若狭湾における津波の伝播特性のパラメータスタディの結果より、以下のことが確認できた。
  - ・①-2崩壊規模のパラメータスタディ結果においては、施設影響が生じる敷地高さである T.P.+3.5m に最近接するパラメータスタディ結果のうち、T.P.+3.5m をわずかに超えるケースとしては、海底地すべりエリアBのEs-K5 (Kinematic モデル) の崩壊規模 40%であり、この場合の最高水位は、3.54m、第 1 波の水位低下量は、0.73m であることを確認した。また、T.P.+3.5m をわずかに下回るケースとしては、海底地すべり津波エリア C の Es-T2 (Kinematic モデル) の崩壊規模 40%であり、この場合の最高水位は 3.48m、第 1 波の 10 分間の水位低下量は 0.69m であることを確認した。
  - ・①-3破壊伝播速度のパラメータスタディ結果においては、津波の1波目の水位低下量の大小が破壊伝播速度の大小と整合していない非線形性領域が海底地すべりエリアBのEs-K5(Kinematicモデル)の破壊伝播速度のパラメータスタディから確認された。具体的には、
    - a) 第 1 波の非線形性が見られる区間は、破壊伝播速度 0.50m/s~ 0.60m/s であること。
    - b) 破壊伝播速度  $0.40 \text{m/s} \sim 1.00 \text{m/s}$  全体を通しては、線形性があること。

から、a の区間の 1 波目の水位低下量を下回る、破壊伝播速度 0.40 m/s のケースにおいて、非線形区間よりも低い水位で線形性が回復することを確認した。なお、破壊伝播速度 0.40 m/s の場合の潮位のばらつき及び高潮の裕度を考慮した最高水位は 2.52 m、第 1 波の水位低下量は、0.67 m である。ただし、破壊伝播速度 0.40 m/s の場合に第 1 波が 0.67 m 水位低下するのに要する時間は 10 分をわずかに超えており、10 分間の水位低下量については 0.65 m となる。

・②若狭湾における津波の伝播特性のパラメータスタディ結果においては、正弦波により、増幅比率は入力波の周期が10分~20分程度の場合で特に大きく、周期40分以上では1に近づくことを確認している。また、各ポンプ室での第1波と第2波以降の最大の増幅比率は、海底地すべりエリアB(Es-K5)の破壊伝播速度0.60mのケースにおける3.7倍であるが、これが、第2波以降が敷地高さT.P.+3.5mをわずかに超えるケースに生じたと仮定すると、その第1波の水位低下量は0.64mとなる。

以上の結果を踏まえ、崩壊規模のパラメータスタディから得られた「パラメータスタディ波高の観点」、破壊伝播速度のパラメータスタディから得られた「非線形性の観点」及び若狭湾における津波の伝播特性のパラメータスタディから得られた「増幅比率の観点」から求めた1波目の水位低下量を仮設定値として設定する。次に、「パラメータスタディ波高の観点」、「非線形

性の観点」及び「増幅比率の観点」で抽出した仮設定値3ケースのうち、津波の時刻歴波形を有するケースについて、設備形状による影響評価及び管路解析による影響評価を行い、仮設定値を再設定する。

設定した仮設定値に対して、不確かさとして潮位のゆらぎを考慮の上、さらに余裕を考慮し、津波襲来の判断基準(トリガー)を設定する。詳細を以下に示す。

#### a. 3つの観点での仮設定値

# (a) パラメータスタディ波高の観点

パラメータスタディにおいて、1波目の水位低下量と2波目以降の津波水位は相関関係にあることを踏まえ、敷地に影響を及ぼす波を漏れなく確認できる観点から、安全側の設定として、高潮の裕度を津波水位計算結果に考慮した条件での最高水位が敷地高さ(T.P.+3.5m)を下回り、施設影響が生じないケースの中で、2波目以降の最高水位が敷地高さ(T.P.+3.5m)に最近接するケースの1波目の水位低下量を「パラメータスタディ波高の観点」での仮設定値とする。具体的には、隠岐トラフ海底地すべりエリアC(Es-T2)の崩壊規模40%のケースでは潮位のばらつきと高潮の裕度を考慮した最高水位がT.P.+3.48mとなることから、隠岐トラフ海底地すべりエリアC(Es-T2)の崩壊規模40%のケースの1波目の10分間の水位低下量である0.69mを仮設定値①とする。仮設定値①(エリアC(Es-T2)の崩壊規模40%のケース)は津波の時刻歴波形を有することから、b.において設備形状による影響評価及び管路解析による影響評価を行う。

#### (b) 非線形性の観点

パラメータスタディでの非線形性の傾向を踏まえ、敷地に影響を及ぼす波を漏れなく確認できる観点から、安全側の設定として、敷地影響はないが、1波目の水位低下量の傾向に非線形性が見られる破壊伝播速度 0.5m/s~0.6m/s の区間の水位に対して、その影響を受けず、非線形性が回復する範囲内にある、破壊伝播速度 0.4m/s のケース (潮位のばらつきと高潮の裕度を考慮した最高水位が T.P.+2.52m) の 1 波目の 10 分間の水位低下量である 0.65m を仮設定値②とする。仮設定値②(エリアB(Es-K5)の破壊伝播速度 0.4m/s のケース)は津波の時刻歴波形を有することから、b.において設備形状による影響評価及び管路解析による影響評価を行う。

#### (c) 増幅比率の観点

隠岐トラフ海底地すべりの破壊伝播速度のパラメータスタディにおける各ポンプ室での増幅比率の最大値は 3.7 であることを踏まえ、実際のパラメータスタディで発生している結果ではないものの、施設影響が生じる T.P.+3.5m を第 2 波目以降の最高水位と仮定(朔望平均満潮位 T.P.+0.49m を初期水位として潮位のばらつき (0.15m) と高潮の裕度 (0.49m) を考慮した最高水位を T.P.+3.5m と仮定することから、水位低下量は 2.37m (3.5m-0.49m-0.15m-0.49m=2.37m) となる。)し、最大の増幅比率 (3.7 倍) を用い

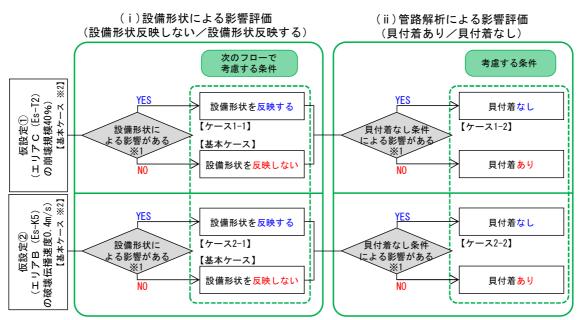
て逆算した第 1 波の水位低下量として 0.64m (2.37m/3.7=0.64m) を仮設定値③とする。なお、上記のとおり、実際のパラメータスタディで発生している結果ではないことから、時刻歴波形は存在しないため、設備形状による影響及び管路解析による影響の評価対象としない。

「パラメータスタディ波高の観点」、「非線形性の観点」及び「増幅比率の観点」で設定した仮設定値を表3に示す。

|                        |       | パラメータスタディから得られた仮設定値                                                                                                                                                                                       |
|------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 仮設定①                   | 数値(m) | 0.69                                                                                                                                                                                                      |
| パラメータス<br>タディ波高の<br>観点 | 考え方   | パラメータスタディにおいて、施設影響が生じるケースは、第1波の水位変動量10分以内<br>0.70mで検知できることを確認。<br>さらに、施設影響が生じないケースも含め、安全側に <b>T.P.+3.5mに最近接するケース</b><br>(海底地すべりエリアCのEs-T2の崩壊規模40%、最高水位T.P.+3.48m) における第<br>1波の10分間の水位低下量を、第1波の水位変動量として設定。 |
|                        | 数値(m) | 0.65                                                                                                                                                                                                      |
| 仮設定②<br>非線形性の<br>観点    | 考え方   | 海底地すべりエリアBのEs-K5の破壊伝播速度のパラメータスタディから、 ①第1波の水位変動量の非線形性が見られる区間は、0.50m/s~0.60m/sの間であること。 ②0.4~1.0m/sを通し全体的な傾向は線形傾向があること。 から、区間①を下回る、破壊伝播速度0.40m/s(最高水位T.P.+2.52m)の第1波の10分間の水位低下量を、非線形性の観点での最低値に設定。            |
| 仮設定③<br>増幅比率の<br>観点    | 数値(m) | 0.64                                                                                                                                                                                                      |
|                        | 考え方   | 崩壊規模および破壊伝播速度のパラメータスタディから得られた第2波以降/第1波の最大の増幅比率(3.7倍)を、施設影響が生じるT.P.+3.5mから逆算したものを第一波の波高として仮定し、設定。                                                                                                          |

表3 3つの観点での仮設定値

#### b. 設備形状による影響評価及び管路解析による影響評価


#### (a) 評価方法

a. に示す「パラメータスタディ波高の観点」、「非線形性の観点」及び「増幅比率の観点」で抽出した仮設定①~③の3ケースのうち、津波の時刻歴波形を有する「パラメータスタディ波高の観点」、「非線形性の観点」で抽出した仮設定①(エリア C (Es-T2) の崩壊規模 40%のケース)及び仮設定②(エリア B (Es-K5) の破壊伝播速度 0.4m/s のケース)の2ケースを対象とする。ここで、仮設定③については、津波の時刻歴波形を有するケースではなく、隠岐トラフ海底地すべりの崩壊規模と破壊伝播速度のパラメータスタディ及び振幅若しくは周期を変えた正弦波によるパラメータスタディから得られた第 1 波と第 2 波以降の水位増幅比率の最大値を用いて仮設定を行っていることから、実在する時刻歴波形が無いため、評価対象としない。

また、解析モデルに関しては、2.2でも述べたとおり、取水路防潮ゲート開状態での検討においては既許可(2016.4.20許可)の基準津波の策定で実施した計算手法及び計算条件と同じとしていたが、津波による影響を適

切に評価するため、設備形状による影響を踏まえたうえで、管路解析による 影響も考慮し、津波シミュレーションを実施する。

設備形状による影響評価及び管路解析による影響評価のフローを図25に示す。(i)設備形状による影響評価及び(ii)管路解析による影響評価は、いずれも取水口~取水路(非常用取水路)~海水ポンプ室に至る経路上の条件であることから、これらの組合せを考慮する。組合せに当たっては、管路解析の条件(貝付着なし)については、非常用取水路清掃後の一時的な期間で発生する条件であることを踏まえ、まずは設備形状による影響評価を行い、次に、管路解析による影響評価を行う。影響評価の各フローでは、各フローの条件を考慮した方が、1波目の水位低下量が小さくなる場合、次のフローの影響評価において、津波シミュレーションのモデルに考慮する。

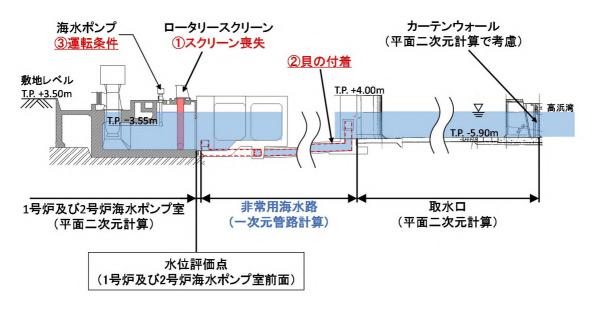


※1 各条件を考慮した方が1波目の水位低下量が小さくなる場合に影響があるとして次のフローでの解析に考慮する。
※2 基本ケースは「設備形状反映しない」+「貝付着あり」を指す。

図25 影響評価フロー

# (i) 設備形状による影響評価

既許可(2016.4.20 許可)の基準津波検討における津波シミュレーションモデルでは、取水路防潮ゲートについては、取水口側からの津波の流入を保守的に評価する観点から取水路防潮ゲートの開口幅を実寸より広く設定したことに加え、取水口については、取水口ケーソン重量コンクリートを考慮していない。このため、設備形状による影響評価においては、取水路防潮ゲートの開口幅を実寸で設定し、取水口ケーソン重量コンクリートを考慮する条件としたモデルで1波目の水位低下量に及ぼす影響も評価することとした。設備形状による影響評価の条件を表4に示す。


表 4 設備形状による影響評価の条件

| 大は               |                                             |                                                   |  |  |
|------------------|---------------------------------------------|---------------------------------------------------|--|--|
|                  | 設備形状を反映しない<br>(基準津波検討条件)                    | 設備形状を反映する                                         |  |  |
| 取水路<br>防潮<br>ゲート | 津波の流入を保守的に評価するため、ゲート開口幅を実寸より広く設定している。    株式 |                                                   |  |  |
| 取水口              | ·                                           | カーテンウォール (津波影響軽減施設) に加えて取水ロケーソン重量コンクリートをモデルに考慮する。 |  |  |

# (ii) 管路解析による影響評価

既許可(2016.4.20 許可)の基準津波検討における津波シミュレーションモデルでは、海水ポンプ室内の水位に影響を与える管路部分について、図26に示す施設状況を考慮し、表5に示す条件を設定している。

本項では、管路部分について、【火力・原子力発電所土木構造の設計】(電力土木技術協会(1995)) p. 788 表 17-3-1 を参考に、貝付着を考慮した条件として粗度係数を 0.02 と設定しているが、実際には定期的に除貝作業を実施していることから、貝付着を考慮しない条件として粗度係数を 0.015 としたケースについても津波シミュレーションモデルに反映し、1波目の水位低下量に及ぼす影響も評価する。



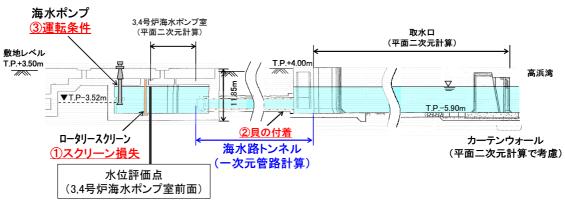



図26 取水路断面図

表 5 津波計算条件設定について

|   | 計算条件           | 条件設定                                                                                         |
|---|----------------|----------------------------------------------------------------------------------------------|
| 1 | スクリーン損失        | ・海水ポンプ室内のロータリースクリーンについては、津波<br>影響軽減施設等ではないことから、スクリーン損失を考慮しない条件とする。                           |
| 2 | 貝付着            | ・一般に設計に用いられる粗度係数(粗度係数:n=0.02)を<br>採用する。                                                      |
| 3 | 海水ポンプの<br>運転条件 | ・海水ポンプ室内の水位が評価上厳しくなる条件とする。<br>すなわち、<br>○水位上昇側:海水ポンプの取水なし<br>○水位下降側:海水ポンプの取水あり<br>として解析を実施する。 |

# (b) 評価結果

# (i) 設備形状による影響評価

設備形状による影響評価における1波目水位低下量を表6に示す。

仮設定①のエリアC (Es-T2) の崩壊規模 40%のケースでは、設備形状を反映することで、各海水ポンプ室の1波目の水位低下量が増加する結果が得られた。

仮設定②のエリアB(Es-K5)の破壊伝播速度 0.4m/sのケースでは、設備形状を反映することで 3,4号炉海水ポンプ室前面の 1 波目の水位低下量はわずかに減少するものの、各海水ポンプ室の中で最小となる 1 号炉海水ポンプ室の 1 波目の水位低下量は増加する結果が得られた。

以上より、設備形状を反映した場合、1波目の水位低下量は増加する傾向にあることから、次の管路解析による影響評価においては設備形状を反映しない。

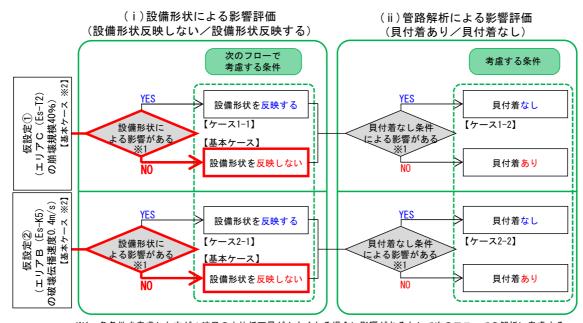

設備形状による影響評価結果を図27に示す。

表6 設備形状による影響評価における1波目水位低下量の比較

赤字:設備形状を考慮した場合に水位低下量が減少したケース

|             |                                        | 取水路                   |                       | 1波目の水位低下量(10分間)(m) |                 |                   |  |
|-------------|----------------------------------------|-----------------------|-----------------------|--------------------|-----------------|-------------------|--|
| 海底均         | 地すべり(警報なし)                             | 防潮ゲート<br>※1           | ケース                   | 1号炉海水<br>ポンプ室前面    | 2号炉海水<br>ポンプ室前面 | 3,4号炉海水<br>ポンプ室前面 |  |
| <b>仮設定①</b> | エリアC(Es-T2) Kinematicモデル による方法 崩壊規模40% | 【基本ケース】<br>設備形状を反映しない | 0.69                  | 0.70               | 0.78            |                   |  |
| 灰灰座①        |                                        | 1713                  | 【ケース1-1】<br>設備形状を反映する | 0.86               | 0.91            | 0.97              |  |
| 仮設定②        | エリアB(Es-K5) Kinematicモデル               | 開                     | 【基本ケース】<br>設備形状を反映しない | 0.65               | 0.67            | 0.73              |  |
| 以以足包        | による方法<br>破壊伝播速度0.4m/s                  | 用                     | 【ケース2-1】<br>設備形状を反映する | 0.69               | 0.70            | 0.72              |  |

%1 開:ゲートが開いた状態であるがT.P. $\pm 0$ m $\sim$ +6.5はカーテンウォールあり



%1 各条件を考慮した方が 1 波目の水位低下量が小さくなる場合に影響があるとして次のフローでの解析に考慮する。 %2 基本ケースは「設備形状反映しない」 + 「貝付着あり」を指す。

図27 設備形状による影響評価結果

# (ii) 管路解析による影響評価

管路解析による影響評価における1波目水位低下量を表7に示す。

仮設定①のエリア C (Es-T2) の崩壊規模 40%のケースでは、貝付着なしとした場合でも、各海水ポンプ室の1波目の水位低下量は概ね同等となる結果が得られた。

仮設定②のエリアB(Es-K5)の破壊伝播速度 0.4m/sのケースでは、貝付着なしとすることで、1波目の水位低下量が減少する結果が得られた。 管路解析による影響評価結果を図28に示す。

表7 管路解析による影響評価における1波目水位低下量の比較

赤字:設備形状を考慮した場合に水位低下量が減少したケース

|              |                               | 取水路               |                  |                   | 1波目の水位低下量(10分間)(m) |                 |                   |  |
|--------------|-------------------------------|-------------------|------------------|-------------------|--------------------|-----------------|-------------------|--|
| 海底地すべり(警報なし) |                               | 防潮ゲート<br>※1       |                  | ケース               | 1号炉海水<br>ポンプ室前面    | 2号炉海水<br>ポンプ室前面 | 3,4号炉海水<br>ポンプ室前面 |  |
| 仮設定①         | エリアC(Es-T2)<br>Kinematicモデル   | Kinematicモデル 調 設備 | 設備形状を            | 【基本ケース】<br>貝付着あり  | 0.69               | 0.70            | 0.78              |  |
| 仪仪足①         | による方法<br>崩壊規模40%              | 1713              | 反映しない            | 【ケース1-2】<br>貝付着なし | 0.69               | 0.71            | 0.78              |  |
| 仮設定②         | エリアB(Es-K5)<br>Kinematicモデル 開 | 設備形状を             | 【基本ケース】<br>貝付着あり | 0.65              | 0.67               | 0.73            |                   |  |
| 以以足包         | による方法<br>破壊伝播速度0.4m/s         | 拼                 | 反映しない            | 【ケース1-2】<br>貝付着なし | 0.63               | 0.66            | 0.68              |  |

<sup>※1</sup> 開:ゲートが開いた状態であるがT.P.±0m~+6.5はカーテンウォールあり

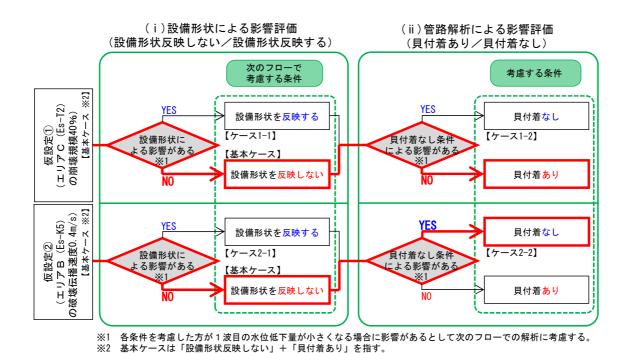



図28 管路解析による影響評価結果

# (iii) 評価結果のまとめ

表6に示す設備形状による影響評価結果及び表7に示す管路解析による影響評価結果のまとめを表8に示す。

仮設定①のエリアC (Es-T2) の崩壊規模 40%のケースは、設備形状による影響評価及び管路解析による影響評価の結果を踏まえても1波目の水位低下量に影響はなく、1波目の水位低下量の最小値は0.69m である。

仮設定②のエリアB (Es-K5) の破壊伝播速度 0.4m/s のケースは、設備 形状による影響評価及び管路解析による影響評価の結果、1波目の水位低 下量の最小値は 0.63m となる。

以上より、「非線形性の観点」である仮設定②の仮設定値を、0.63mとして再設定する。

表8 評価結果のまとめ

赤字: 各仮設定の1波目の水位低下量最小値

|      |                                                  | 1波目の水位低下量(10分間) (m)   |                 |                 |  |  |  |
|------|--------------------------------------------------|-----------------------|-----------------|-----------------|--|--|--|
|      |                                                  | a. に示す仮設定値<br>(基本ケース) | 設備形状による<br>影響評価 | 管路解析による<br>影響評価 |  |  |  |
| 仮設定① | エリアC(Es-T2)<br>Kinematicモデルによる方法<br>崩壊規模40%      | 0. 69                 | 0.86            | 0.69            |  |  |  |
| 仮設定② | エリアB(Es-K5)<br>Kinematicモデルによる方法<br>破壊伝播速度0.4m/s | 0.65                  | 0.69            | 0.63            |  |  |  |

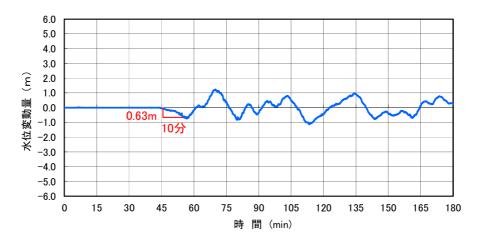
#### c. 津波襲来の判断基準 (トリガー) の設定

a.では、「パラメータスタディ波高の観点」、「非線形性の観点」及び「増幅比率の観点」で仮設定値(仮設定①:0.69m、仮設定②:0.65m、仮設定③:0.64m)を設定した。b.では、「パラメータスタディ波高の観点」及び「非線形性の観点」で抽出した仮設定①及び仮設定②の2ケースに対して設備形状による影響評価及び管路解析による影響評価を行い、「非線形性の観点」で抽出した仮設定②については、仮設定値を0.65mから0.63mに再設定した。時刻歴波形を有する仮設定値のうち、1波目の水位低下量が最小(0.63m)となるケース(仮設定②のエリアB(Es-K5)の破壊伝播速度0.4m/sに対して管路解析による影響評価として貝付着なしを考慮したケース)の時刻歴波形を図29に示す。

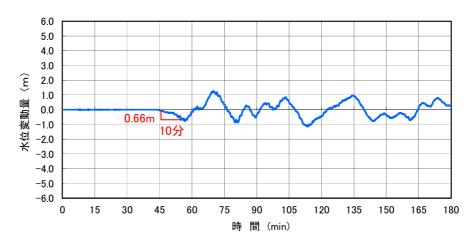
これらの仮設定値に対して、不確かさとして潮位のゆらぎを考慮の上、さらに余裕を考慮し、津波襲来の判断基準(トリガー)を設定する。

不確かさとして考慮する潮位のゆらぎは、10 分間の潮位の変動と取水路内の水面変動を含んでおり、図30のとおり、平常時における10分間の潮位のゆらぎが、潮位観測データから10分間の差分の中央値+標準偏差として0.04mと見積もられることから、保守的に0.10mとする。また、潮位のゆらぎの具体的な算出方法を図31に示す。

以上より、「パラメータスタディ波高の観点」、「非線形性の観点」及び「増幅比率の観点」で設定した仮設定値の 0.69m, 0.63m, 0.64m に潮位のゆらぎ 0.10m を考慮した場合、0.59m, 0.53m, 0.54m となることから(表9)、さらに余裕を加味して津波襲来の判断基準(トリガー)(以下「取水路防潮ゲートの閉止判断基準(トリガー)」という。)を以下のとおり設定する。また、取水路防潮ゲートの閉止判断基準(トリガー)の概念図を図32に示す。


・潮位観測システム(防護用)のうち、2台の潮位計の観測潮位が10分以内に0.5m以上下降し、その後、最低潮位から10分以内に0.5m以上上昇する。

#### または


・潮位観測システム(防護用)のうち、2台の潮位計の観測潮位が10分以内に0.5m以上上昇し、その後、最高潮位から10分以内に0.5m以上下降する。

以上の検討により、取水路防潮ゲートの閉止判断基準(トリガー)については、(1) ~ (4) で施設影響が生じるケースを網羅的に確認できることを確認した。また、(5) において取水路防潮ゲートの閉止判断基準(トリガー)をさらに安全側に仮設定し、設備形状による影響評価及び管路解析による影響評価を踏まえた上で、不確かさとして潮位のゆらぎや工学的余裕を適切に考慮し、取水路防潮ゲートの閉止判断基準(トリガー)を設定している。

# 1号炉海水ポンプ室前面



# 2号炉海水ポンプ室前面



# 3, 4号炉海水ポンプ室前面

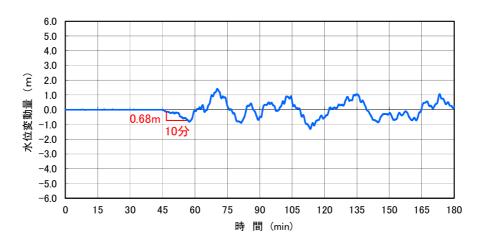



図29 1波目の水位低下量が最小(0.63m)となるケースの時刻歴波形

平常時における短時間の潮位のゆらぎの考え方を以下に示す。

- ・検討用波源の設定にて考慮する「朔望平均潮位」及び入力津波評価にて考慮する「潮位のばらつき」は、それぞれ 過去の潮位データから平均値、標準偏差として算出。
- これに倣い、過去6ケ月分の夏季/冬季の潮位データ観測から、統計的なばらつきを考慮した波高は下表の結果から0.04mと見積もられる。
- •これを踏まえつつ、10分間の潮位のゆらぎについては、より保守的に、過去観測のデータの3σの値よりも大きい 0.10mを適用。

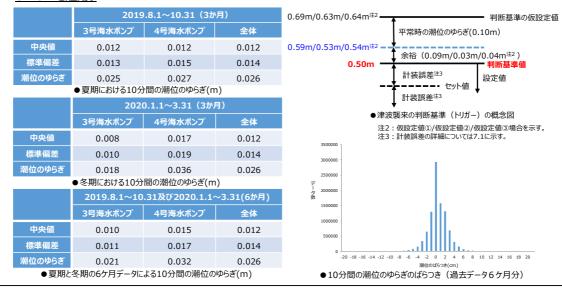



図30 潮位計の平常時における10分間の潮位のゆらぎ

平常時における短時間の潮位のゆらぎの具体的な算定方法を以下に示す。

- •10分前の瞬間潮位値と現在時刻の潮位値の差を取る。(例:2019/9/1 0時10分05秒と2019/9/1 0時20分05秒の差を取り、10分差を-0.008mと算定する。)
- •変動差のばらつきを見るため上記差の絶対値を算定する。
- •夏期、冬期、全体の期間における10分間潮位のばらつきの絶対値を統計的に処理し、中央値と標準偏差を算出する。潮位のゆらぎは中央値と標準偏差の和とする。
- これを踏まえつつ、10分間の潮位のゆらぎについては、より保守的に、過去観測のデータの3 σと中央値の和よりも大きい 0.10mを適用する。

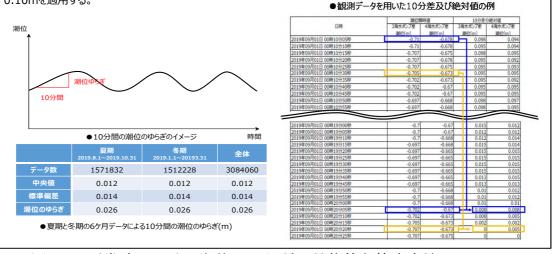



図31 平常時における潮位のゆらぎの具体的な算定方法について

表 9 不確かさを考慮した再設定値

|                    |           |                         | 设定値                                     |                                                                 | <del></del>                |  |
|--------------------|-----------|-------------------------|-----------------------------------------|-----------------------------------------------------------------|----------------------------|--|
|                    |           | パラメータスタディから得<br>られた仮設定値 | 設備形状による影響評価<br>及び管路解析による影響<br>評価による仮設定値 | 不確かさの考慮<br>(10分間の潮位のゆらぎ)                                        | 不確かさ<br>を考慮した<br>再設定値      |  |
| 仮設定①               | ** !*     |                         | <br>                                    | 0.10m                                                           | 0.60.0.10                  |  |
| パラメータスタディ波<br>高の観点 | 数値<br>(m) | 0.69                    | 0.69                                    | ・検討用波源の設定にて考慮する「朔<br>望平均潮位」及び入力津波評価に<br>て考慮する「潮位のばらつき」は、それ      | 0.69-0.10<br>= <b>0.59</b> |  |
| 仮設定②               | 数値        | 0.65                    | 0.63                                    | ぞれ過去の潮位データから平均値、<br>標準偏差として算出。                                  | 0.63-0.10                  |  |
| 非線形性の観点            | (m)       | 0.65                    | U.63                                    | • これに倣い、夏季/冬季の潮位データ観測から、統計的なばらつきを考慮                             | = <u>0.53</u>              |  |
| 仮設定③<br>増幅比率の観点    | 数値<br>(m) | 0.64                    | _                                       | した波高は0.04mと見積もられる。 ・これを踏まえつつ、 <b>10分間の潮位の 炒らぎについては、より保守的に、過</b> | 0.64-0.10<br>= <b>0.54</b> |  |
| 垣幅ル半の観点            |           |                         | <br>                                    | 去観測の最大約0.10mを適用。                                                |                            |  |



※:仮設定値①/仮設定値②/仮設定値③場合を示す。

図32 取水路防潮ゲートの閉止判断基準(トリガー)の概念図

- 6.3 取水路防潮ゲートの閉止判断基準 (トリガー) による津波以外の事象に おける誤判断の可能性について
- 6. 2にて設定した取水路防潮ゲートの閉止判断基準(トリガー)である 10 分以内 0.5m以上の潮位変動にて確実に取水路防潮ゲートの閉止判断を行うために、計装誤差(最大で±約 5cm)を考慮した実機のセット値は 10 分以内 0.45m以上の潮位変動となる。このセット値に対し、計装誤差(最大で±約 5cm)を考慮した場合、10 分以内 0.4m以上の潮位変動にて取水路防潮ゲートの閉止判断基準を確認する可能性があることから、これによる津波以外の事象での誤判断の可能性について潮位計で観測された過去 7 年分の潮位データ(1 分間データ)により確認した結果を表 1 0 に示す。同表に示すとおり作業起因を除くと、2 台の潮位計において 10 分間に 0.4m以上の潮位変動が生じたケースはないことから、設定した取水路防潮ゲートの閉止判断基準(トリガー)において津波以外の事象による誤判断の可能性はないと言える。

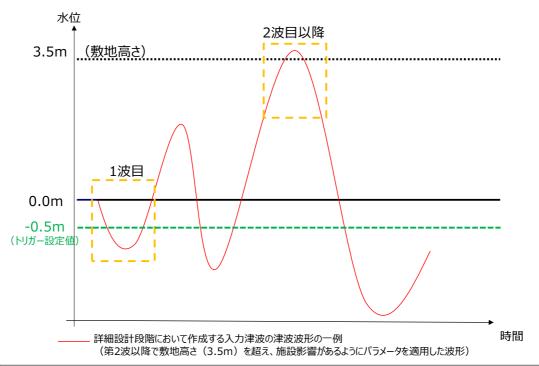
なお、取水路防潮ゲートの閉止判断基準 (トリガー) に対する実機のセット値 の考え方については7.1.3 に詳細を示す。

|              | アニ 。 ・ ・ ・ ・ ・                                               | 74 1940 47 4/24                                              |
|--------------|--------------------------------------------------------------|--------------------------------------------------------------|
| 判断基準         | 【1波目が下げ波の場合】<br>10分以内に0.4m以上下降し、その後、最低<br>潮位から10分以内に0.4m以上上昇 | 【1波目が上げ波の場合】<br>10分以内に0.4m以上上昇し、その後、最高<br>潮位から10分以内に0.4m以上下降 |
| 潮位計<br>2台が変動 | <b>0件</b> (8件*1)                                             | <b>0件</b> (6件*²)                                             |

表10 0.4m以上の潮位変動の観測実績

# 6.4 後段規制における取水路防潮ゲートの閉止判断基準(トリガー)の網羅性・妥当性の確認に関する位置付けについて

設置許可段階では、施設に対して最も影響を及ぼす津波を耐津波設計に用いる入力津波として設定するが、それだけではなく、津波高さとしては小さくても施設に対して影響を及ぼす津波についても、その津波の第1波の水位変動量を設置許可で設定した取水路防潮ゲートの閉止判断基準で確認できることが必要となる。その際、設置許可段階では評価することができない計装誤差を考慮するため、詳細設計段階で作成をすることとする。(図33参照。)


具体的には「崩壊規模」及び「破壊伝播速度」、「設備形状の影響評価及び管路解析の影響評価」を考慮して津波シミュレーションを行い、入力津波を作成する。この入力津波の第1波の水位変動量が、設置許可で設定した取水路防潮ゲートの閉止判断基準に、計装誤差を考慮した場合でも確認できることを評価する。

<sup>\*1:</sup>潮位変化は、すべて作業によるものであった。

<sup>\* 2:</sup>潮位変化は、作業によるものに加え、クラゲ襲来時の取水路への排水により、4号海水ポンプ室潮位計のみ、影響を受けるケースがあった。

今回の申請における取水路防潮ゲートの閉止判断基準(トリガー)の網羅性・ 妥当性の確認の位置付けについては、図34に示すとおりであり、設置許可の 段階で、取水路防潮ゲートの閉止判断基準(トリガー)を設定し、基本設計の 条件下で施設に最も影響が大きい入力津波を設定し、施設の基本設計を行う。 また、詳細設計段階において作成する入力津波の方針と作成方法について示す。 詳細設計段階では、取水路防潮ゲートの閉止判断基準(トリガー)の網羅性・ 妥当性を確認したうえで、詳細設計段階において作成する入力津波の第1波の

妥当性を確認したうえで、詳細設計段階において作成する入力津波の第1波の水位変動を取水路防潮ゲートの閉止判断基準(トリガー)に、計装誤差を考慮した場合でも確認できることを評価し、詳細設計の条件下で施設に最も影響が大きい入力津波を設定し、施設の詳細設計を行うこととする。



詳細設計段階では、2波目が敷地高さ(3.5m)を超え、施設影響があるようにパラメータを適用し、津波波形を作成する。 その津波波形の第1波の水位変動量が取水路防潮ゲートの閉止判断基準(トリガー)で確認できることを評価する。

この「年成成」がの光 1 成の小位を到重か成小面的用ゲートの別正刊的基準(トッカー)(唯能に含むことです)

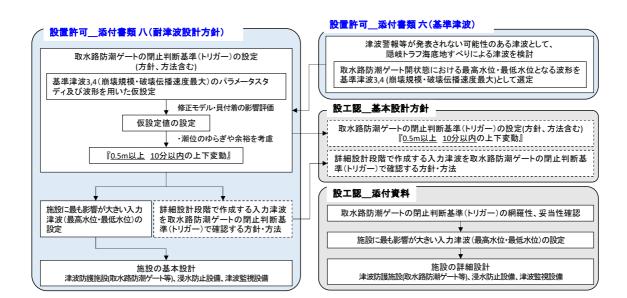



図33 詳細設計段階において作成する入力津波について

図34 今回申請における取水路防潮ゲートの閉止判断基準 (トリガー)の網 羅性・妥当性確認の位置付けについて

#### 7. 運用成立性の確認

4章及び5章の検討の結果、潮位観測システム(防護用)を取水路防潮ゲートの閉止判断基準(トリガー)として活用するためには、以下の2点が必要であることを確認した。6章において、以下の2点のうちの①を実施し、取水路防潮ゲートの閉止判断基準(トリガー)を設定したため、7.1章においては、②を実施する。

- ①施設影響が生じるケースの見逃し、津波以外の誤判断の観点で問題ないか (取水路防潮ゲートの閉止判断基準(トリガー)の妥当性・網羅性)の確認
- ②津波を確認してから、施設影響が生じる潮位に至る前に取水路防潮ゲート 閉止の運転操作が完了するか (運用成立性)の確認

また、7.1章においては、運転操作により取水路防潮ゲートが閉止される時刻から施設影響が生じる潮位に至る時刻までの余裕時間を確認する。

その上で、5章から7.2章までの検討において、今回の潮位観測システム(防護用)による取水路防潮ゲート閉止運用の成立性が確認できたことから、7.3章では、本運用を成立させる上で求められる潮位観測システム(防護用)の安全機能等の基準適合性について整理した。

さらに、7.4章において、既許可での大津波警報の発表を受けての取水路防潮ゲート閉止と今回の潮位観測システム(防護用)による取水路防潮ゲート閉止の同等性について述べる。

#### 7. 1 運転操作等の成立性確認

## 7.1.1 背景

6章の検討結果より、取水路防潮ゲートの閉止判断基準(トリガー)は、「潮位観測システム(防護用)のうち、2台の潮位計の観測潮位がいずれも10分以内に0.5m以上下降し、その後、最低潮位から10分以内に0.5m以上上昇」又は「潮位観測システム(防護用)のうち、2台の潮位計の観測潮位がいずれも10分以内に0.5m以上上昇し、その後、最高潮位から10分以内に0.5m以上下降」した場合とすることで、網羅的に施設影響が生じるケースを確認できることを確認した。

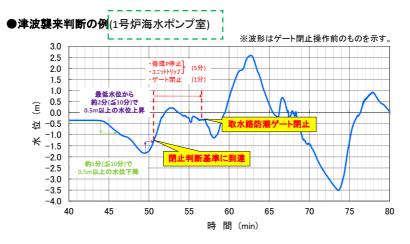
本章においては、「津波を確認してから、施設影響が生じる潮位に至る前 に取水路防潮ゲート閉止の運転操作が完了するか(運用成立性)の確認」を 行う。

具体的には、1~4 号炉の 4 プラント運転時において、取水路防潮ゲートは 4 門を常時開としており、取水路防潮ゲートの閉止判断基準 (トリガー)に到達した場合、1 号及び 2 号炉中央制御室並びに 3 号及び 4 号炉中央制御室(以下、各中央制御室)で循環水ポンプ停止及びユニットトリップ操作が完了した後、1 号及び 2 号炉中央制御室から遠隔操作により取水路防潮ゲートを全門閉止する運用としていることから、これらの一連の対応に係る運転操作等が、施設影響の生じる潮位に至る前に完了するかを確認する。

#### 7.1.2 検討内容

今回の津波警報等が発表されない津波襲来時の津波波形の一例を図1に示す。本図に、取水路防潮ゲートの閉止判断基準(トリガー)の確認、循環水ポンプ停止、ユニットトリップ操作、取水路防潮ゲート閉止までの一連の流れをあわせて記載する。また、図2に運転員の潮位計モニタの監視及び各種操作に係る一連の動作の所要時間を示し、図3に取水路防潮ゲートの閉止判断基準(トリガー)に到達したことを確認するための設備構成を示す。

図1、図2に示すとおり、今回の対策における取水路防潮ゲート閉止に必要な運転操作は次のとおりである。まず、取水路防潮ゲートの閉止判断基準(トリガー)に到達した後、各中央制御室にて、循環水ポンプ停止及びユニットトリップ操作を実施する。操作及びポンプ停止に要する時間は5分である。次に、1号及び2号炉中央制御室から遠隔操作により取水路防潮ゲート閉止を実施する。操作及び取水路防潮ゲート閉止に要する時間は1分である。以上より、一連の運転操作及び機器の動作完了に要する時間は、計6分である。


したがって、一連の運転操作及び機器の動作完了に要する時間の成立性 を、以下の項目ごとに検討する。

- ① 潮位観測システム (防護用) において取水路防潮ゲートの閉止判断基準 (トリガー) の到達を確認するまでの対応の成立性
- ② 取水路防潮ゲートの閉止判断基準 (トリガー) に到達した後の循環水ポンプ停止及びユニットトリップ操作に要する時間の成立性
- ③ 取水路防潮ゲート閉止に要する時間の成立性

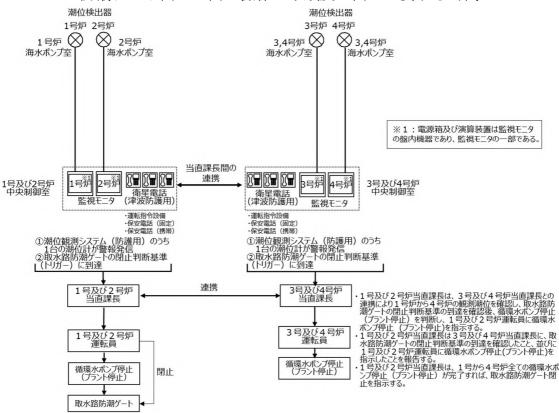
上記のうち、①の取水路防潮ゲートの閉止判断基準(トリガー)の到達を確認するまでの対応は、既許可の大津波警報発表時の対応とは異なる対応となっており、成立性の確認が必要であるため、7.1.3章(1)にて確認結果の詳細を示す。また、①の対応の成立性の確認には、潮位観測システム(防護用)のシステム構成及び、これを用いた潮位変化率の算出方法等の確認が必要であるため、7.1.3章(2)にて検討結果の詳細に示す。

②については、常用取水路が取水路防潮ゲートにて閉止されている状態で循環水ポンプの運転を継続した場合、同じ取水路を共有する海水ポンプの取水性に影響が出るため、取水路防潮ゲート閉止前の循環水ポンプの停止等が必須であることから実施しているものであり、これに要する時間は、循環水ポンプ停止と循環水ポンプ出口弁の全開から全閉に要する時間の合計の設計値である約3分に余裕を持たせ5分と評価している。なお、本評価時間は既許可と同様であり、7. 1. 3章(2)にて詳細を示す。

また、③の取水路防潮ゲート閉止は、②の循環水ポンプ停止及びユニットトリップ操作の実施後に行う必要がある。取水路防潮ゲートはゲート扉体に取り付けられたラック棒がラック式開閉装置に固定された構造である。 既許可においては、保守的に長さ6mの長尺のラック棒を用いて、揚程6mの高さをラック式開閉装置により落下・閉止することとしており、取水路防 潮ゲート閉止に要する時間を 3 分と評価していたが、今回の評価においては、現場の設備実態が長さ 1 mの短尺ラック棒であることを反映して取水路防潮ゲート閉止に要する時間を 1 分と評価した。具体的には、この長さ 1 mの短尺のラック棒を用いて、揚程 1 mの高さをラック式開閉装置により落下し、その後の 5 mは自由落下するものとして、これらの時間を足し合わせて 1 分と評価しており、本評価の妥当性について 7 . 1 . 3 章 (4) に示す。



| 図1 | 津波警報が発表されない津波襲来時の津波波形の一例 | (エリアB(Es-K5、Kinematic モデル)、破壊伝播速度 1.00m/s、水位下降側)


# (今回の対策における対応)

|                      |              |          | 経過時間   | 引 (分)    |          |       |     | 対応に係る各ステップに要する時間および説明 |                                                                                                          |   |
|----------------------|--------------|----------|--------|----------|----------|-------|-----|-----------------------|----------------------------------------------------------------------------------------------------------|---|
|                      | <br><u>-</u> | <u> </u> | -<br>- | 1        | 0 — 1    | 2 — 1 | 4 — | 時間                    | 説明                                                                                                       |   |
| 潮位変動を検知              |              |          |        |          |          |       |     | 0分                    | 通常潮汐から0.5m変動を検知すれば、中央制御室に警報発信                                                                            |   |
| 潮位変動の判断<br>運転員の指示等   |              |          |        |          |          |       |     | 5分                    | 警報発信後、運転員は潮位の継続的な重点監視を行うとともに、2 台の観測潮位がいずれも10分以内に0.5m以上下降し、最低潮位から0.5m上昇した時点でゲート閉止等の操作を行うことを当直課長が運転員へ指示する。 |   |
| 循環水ポンプ停止             |              | -        |        | <b>-</b> |          |       |     | 5分                    | 循環水ボンブ停止、出口弁の設計値(全開から全閉)の約3分に余<br>裕を持たせ5分と評価している。                                                        |   |
| ユニットトリップ             |              | 4        |        | <b></b>  |          |       |     | 3%                    | 原子炉トリップスイッチによるユニット停止                                                                                     |   |
| 取水路防潮ゲート閉止<br>(遠隔操作) |              |          |        |          | 11分<br>又 |       |     | 1分                    | 短尺のラック棒(長さ1m)であることから、ラック式開閉装置による落下時間は約20秒であり、その後、5mの高さをゲートが自由落下する時間は約2秒であることから余裕を考慮して、1分で閉止すると評価している。    | 3 |

(参考:既許可の大津波警報発表時の対応)

|                       |       | 地震·津波発生加                                          | らの経過時間(分)    |      |      | 対応に係る各ステップに要する時間および説明 |                                                                                                      |     |
|-----------------------|-------|---------------------------------------------------|--------------|------|------|-----------------------|------------------------------------------------------------------------------------------------------|-----|
|                       | — į — | 4 — 6 —                                           | 8 — 10 -     | 12 - | 14 — | 時間                    | 説明                                                                                                   |     |
| 津波情報入手                |       |                                                   | 1            |      |      | 3分                    | 気象庁から津波情報入手。地震が発生してから約3分を目標に、大津<br>波警報、津波警報または津波注意報を、津波予報区単位で発表<br>(気象庁ホームページより)                     |     |
| 防潮ゲート閉止判断<br>運転員への指示等 |       | <del>                                      </del> | !            |      |      | 2分                    | ゲート閉止等の操作を行うことを当直課長が運転員へ指示する。                                                                        |     |
| 循環水ポンプ停止              |       | <del>                                      </del> | <del> </del> |      |      | 5分                    | 循環水ポンプ停止、出口弁の設計値(全開から全閉)の約3分に余<br>裕を持たせ5分と評価している。                                                    | ]]  |
| ユニットトリップ操作            |       | ; <b>*</b> +                                      | +            |      |      |                       | 原子炉トリップスイッチによるユニット停止操作                                                                               |     |
| 防潮ゲート閉止<br>(遠隔操作)     |       |                                                   | -            | ▽13分 | •    | 3分                    | 保守的に長尺のラック棒(長さ6m)を用いて、揚程6mの高さをラック式開閉装置により閉止することとしており、その落下にかかる時間を約2分としていることから、余裕を考慮して、3分で閉止すると評価している。 | ] 1 |

図2 取水路防潮ゲートの閉止判断基準 (トリガー) に到達した場合の取水路



防潮ゲート閉止の閉止操作の手順及び閉止に要する時間

図3 取水路防潮ゲートの閉止判断基準 (トリガー) に到達したことを確認するための一連の設備

# 7. 1. 3 検討結果

(1) 潮位観測システム(防護用)において取水路防潮ゲートの閉止判断基準 (トリガー)の到達を確認するまでの対応の成立性

## a. 検討対象とする津波の選定

6章の検討結果より、取水路防潮ゲートの閉止判断基準(トリガー)を、潮位観測システム(防護用)のうち2台の潮位計の観測潮位がいずれも10分以内に0.5m以上下降し、その後、最低潮位から10分以内に0.5m以上上昇した場合、又は10分以内に0.5m以上上昇し、その後、最高潮位から10分以内に0.5m以上下降することとしている。

本項目において検討対象とする津波は、潮位変動開始から取水路防潮ゲートの閉止判断基準(トリガー)に到達するまでの所要時間が短く、最も運用上の時間的な対応が短くなる「海底地すべりエリアB(Es-K5、Kinematic モデル)」による津波とする。表1に、検討対象とする津波の潮位変動開始から取水路防潮ゲートの閉止判断基準(トリガー)に到達までの所要時間を示す。

表1 潮位変動開始から取水路防潮ゲートの閉止判断基準 (トリガー) に到達するまでの所要時間

|        |                      |                 | 敷地内             |                 |
|--------|----------------------|-----------------|-----------------|-----------------|
|        |                      | 1号炉海水ポンプ室前      | 2号炉海水ポンプ室前      | 3 , 4 号炉海水ポンプ室前 |
| 下げ側・   | 最初の0.5m <sup>※</sup> | 2.55分           | 2.50分           | 1.95分           |
|        | (図4の①の時間)            | (43.35分~45.90分) | (43.55分~46.05分) | (44.25分~46.20分) |
| 下り1則 1 | 全体                   | 6.00分           | 6.10分           | 6.30分           |
|        | (図4の①+②の時間)          | (43.35分~49.35分) | (43.55分~49.65分) | (44.25分~50.55分) |
| 上げ側    | 最初の0.5m              | 1.00分           | 0.80分           | 0.75分           |
|        | (図4の③の時間)            | (49.35分~50.35分) | (49.65分~50.45分) | (50.55分~51.30分) |

- ※:1台の潮位計において観測潮位が 0.5m 以上下降、又は上昇した時点で各中央制御室に警報が発信
  - b. 取水路防潮ゲートの閉止判断基準(トリガー)の到達を確認するまでの 対応
    - a. で設定した津波襲来時において、警報発信から取水路防潮ゲートの 閉止判断基準 (トリガー) に到達するまでの対応について取水路防潮ゲートの閉止完了までの一連の対応を含め、以下に示す。
  - (a) 潮位観測システム (防護用) のうち潮位計が 10 分以内に 0.5m 以上下降、又は上昇した時点の警報発信 (1 台目)
    - ・1台目の潮位計において観測潮位が10分以内に0.5m以上下降、又は 上昇した時点で1号及び2号炉中央制御室又は3号及び4号炉中央制 御室に警報が発信する。
    - ・この時点で1号及び2号炉運転員又は3号及び4号炉運転員は1号及び2号炉当直課長又は3号及び4号炉当直課長へ警報発信したことを報告する。
    - ・1号及び2号炉当直課長又は3号及び4号炉当直課長は他方の中央制御室の当直課長へ潮位観測システム(防護用)のうち衛星電話(津波防護用)を用いて、警報発信したことを報告する。なお、衛星電話(津波防護用)の補助設備として運転指令設備、保安電話(固定)、保安電話(携帯)を活用する。((b)から(e)も同様)
    - ・その後、1号及び2号炉当直課長並びに3号及び4号炉当直課長は潮位の継続的な集中監視を行うために、1号及び2号炉運転員又は3号及び4号炉運転員に潮位の継続監視、循環水ポンプ停止準備、プラント停止準備及び取水路防潮ゲート閉止準備に備えるよう指示する。
    - ・1号及び2号炉運転員並びに3号及び4号炉運転員はそれぞれの中央 制御室の監視モニタへ移動し、潮位計の潮位変化量やトレンドグラフを 継続的に目視確認し、1号及び2号炉当直課長又は3号及び4号炉当直 課長に速やかに状況を報告する。
    - ・なお、安全性向上のための補助機能として、1号及び2号炉当直課長と3号及び4号炉当直課長は、潮位観測システム(補助用)から警報が発信した時点で、他号炉の観測潮位の動向を把握する。((b)から(d)も同

様)

- (b) 潮位観測システム(防護用)のうち潮位計が10分以内に0.5m以上下降、又は上昇した時点の警報発信(2台目)
  - ・2台目の潮位計において観測潮位が 10 分以内に 0.5m 以上下降、又は 上昇した時点で1号及び2号炉中央制御室又は3号及び4号炉中央制 御室に警報が発信する。
  - ・この時点で1号及び2号炉運転員又は3号及び4号炉運転員は1号及び2号炉当直課長又は3号及び4号炉当直課長へ警報発信したことを報告する。
  - ・1号及び2号炉当直課長と3号及び4号炉当直課長は潮位観測システム(防護用)のうち衛星電話(津波防護用)を用いた連携により、他方の中央制御室の当直課長へ警報発信したことを報告する。
  - ・1号及び2号炉運転員並びに3号及び4号炉運転員はそれぞれの中央 制御室の潮位計の潮位変化量やトレンドグラフを継続的に目視確認し、 1号及び2号炉当直課長又は3号及び4号炉当直課長に速やかに状況 を報告する。
- (c) (a) 又は(b) で警報発信した潮位観測システム(防護用) のうち潮位計が、 その後最低潮位から 10 分以内に 0.5m 以上上昇、又は最高潮位から 10 分以内に 0.5m 以上下降した時点の警報発信(1台目)
  - ・1台目又は2台目の潮位計において観測潮位が10分以内に0.5m以上 上昇、又は下降した時点で1号及び2号炉中央制御室又は3号及び4 号炉中央制御室に警報が発信する。
  - ・この時点で1号及び2号炉運転員又は3号及び4号炉運転員は1号及び2号炉当直課長又は3号及び4号炉当直課長へ警報発信したことを報告する。
  - ・1号及び2号炉当直課長と3号及び4号炉当直課長は潮位観測システム(防護用)のうち衛星電話(津波防護用)を用いた連携により、他方の中央制御室の当直課長へ警報発信したことを報告する。
  - ・1号及び2号炉運転員並びに3号及び4号炉運転員はそれぞれの中央 制御室の潮位計の潮位変化量やトレンドグラフを継続的に目視確認し、 1号及び2号炉当直課長又は3号及び4号炉当直課長に速やかに状況 を報告する。
- (d) (a) 又は(b) で警報発信した潮位観測システム(防護用)のうち潮位計が、その後最低潮位から10分以内に0.5m以上上昇、又は最高潮位から10分以内に0.5m以上下降した時点の警報発信(2台目)、取水路防潮ゲート閉止判断(循環水ポンプ停止及びプラント停止判断を含む)
  - ・(c)の潮位計に引き続き、もう1台の潮位計の観測潮位が 10 分以内に 0.5m 以上上昇、又は下降した時点で、1号及び2号炉中央制御室又は 3号及び4号炉中央制御室に警報が発信する。
  - ・この時点で1号及び2号炉運転員又は3号及び4号炉運転員は1号及び2号炉当直課長又は3号及び4号炉当直課長へ警報発信したことを報告する。

- ・1号及び2号炉当直課長と3号及び4号炉当直課長は潮位観測システム(防護用)のうち衛星電話(津波防護用)を用いた連携により、他方の中央制御室の当直課長へ警報発信したことを報告する。
- ・この時点で1号及び2号炉当直課長は1号炉から4号炉の全ての観測潮位を確認し、取水路防潮ゲートの閉止判断基準(トリガー)に到達したこと、循環水ポンプ停止(プラント停止)を判断し、1号及び2号炉運転員に循環水ポンプ停止(プラント停止)を指示する。
- ・合わせて、1号及び2号炉当直課長は3号及び4号炉当直課長に、取水路防潮ゲートの閉止判断基準(トリガー)に到達したこと、並びに1号及び2号炉運転員に循環水ポンプ停止(プラント停止)を指示したことを、潮位観測システム(防護用)のうち衛星電話(津波防護用)を用いて報告する。
- ・3号及び4号炉当直課長は、1号及び2号炉当直課長の報告を受け、3号及び4号炉運転員に循環水ポンプ停止(プラント停止)を指示する。

#### (e) 取水路防潮ゲートの閉止

- ・1号及び2号炉運転員並びに3号及び4号炉運転員は循環水ポンプ停止(プラント停止)操作が完了すれば、1号及び2号炉当直課長並びに3号及び4号炉当直課長に報告する。
- ・3号及び4号炉当直課長は1号及び2号炉当直課長に循環水ポンプ停止(プラント停止)操作が完了したことを、潮位観測システム(防護用) のうち衛星電話(津波防護用)を用いて報告する。
- ・1号及び2号炉当直課長は1号及び2号炉運転員に取水路防潮ゲート 閉止を指示し、1号及び2号炉運転員から取水路防潮ゲート閉止操作が 完了した報告を受ける。
- ・1 号及び 2 号炉当直課長は、3 号及び 4 号炉当直課長に、取水路防潮ゲート閉止操作が完了したことを、潮位観測システム(防護用)のうち衛星電話(津波防護用)を用いて報告する。

上記の対応を踏まえ、(a)の警報発信から(d)の取水路防潮ゲートの閉止判断基準(トリガー)に到達するまで最短でも約5分であり、この間に取水路防潮ゲートの閉止判断基準(トリガー)に到達したことを確認することと、1号及び2号炉当直課長並びに3号及び4号炉当直課長が取水路防潮ゲートの閉止判断基準(トリガー)に到達したことを確認した場合に速やかに対応するための情報連携ができることを確認した。潮位トレンドイメージについて図4に、運転員タイムチャートを図5に示す。

以降、第三編において、取水路防潮ゲートの閉止判断基準(トリガー)の条件成立を1号及び2号炉当直課長と3号及び4号炉当直課長の潮位観測システム(防護用)のうち衛星電話(津波防護用)を用いた連携により確認することを「取水路防潮ゲートの閉止判断基準(トリガー)を確認」という。

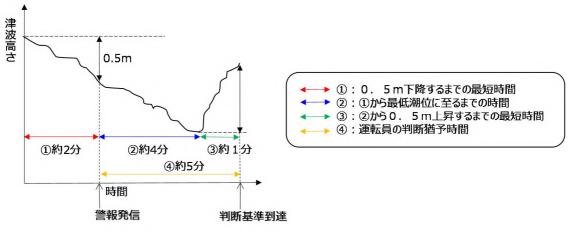



図4 潮位トレンドイメージ

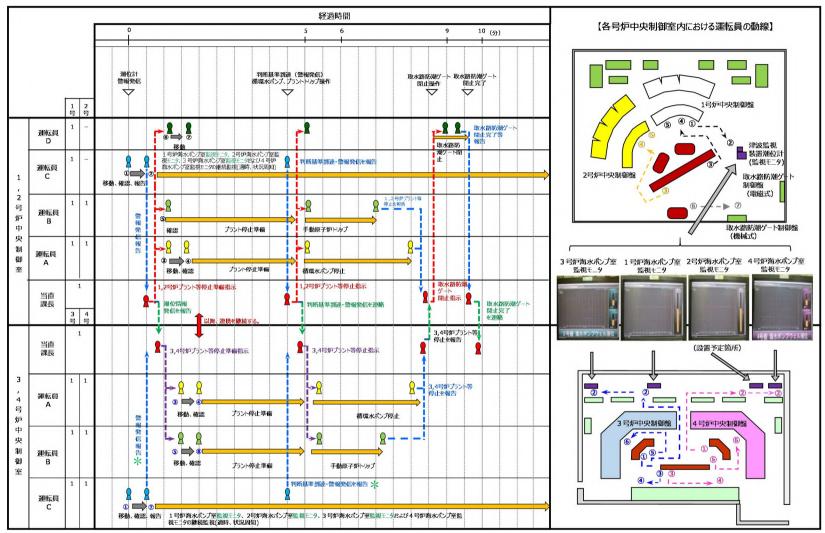



図5 運転員タイムチャート (1~4号炉)

\*潮位観測システム(補助用)による警報発信

(1号及び2号炉潮位計で警報発信し、取水路防潮ゲートの閉止判断基準(トリガー)を確認した場合)

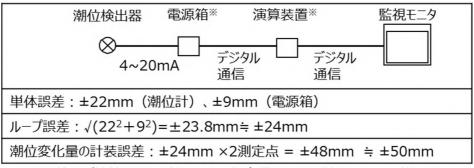
(2) 潮位観測システム(防護用)のシステム構成及び津波襲来判断の成立性

発電所構内の潮位変動により津波襲来を判断するためには、潮位観 測システム (防護用) が津波襲来を判断できる設計であることを確認す る必要がある。

潮位観測システム(防護用)は、潮位が平常時においても潮の満ち引きや波浪等により変動するため、ある潮位を基準とした相対的な潮位の上昇及び下降の監視ではなく、一定時間における潮位の最大値と最小値の比較により、津波を確実に確認する事が可能な設計とする。

潮位観測システム(防護用)の具体的なシステム構成及び津波襲来判断の成立性については以下のとおり。

a. 潮位観測システム(防護用)のシステム構成及び潮位変化量の算出方法


今回の対策においては、潮位観測システム(防護用)のうち、2台の潮位計の観測潮位がいずれも10分以内に0.5m以上下降し、その後、最低潮位から10分以内に0.5m以上上昇すること、又は10分以内に0.5m以上上昇し、その後、最高潮位から10分以内に0.5m以上下降することを取水路防潮ゲートの閉止判断基準(トリガー)とすることから、10分以内の潮位変動を確実に捉える必要があり、これについて説明する。

潮位観測システム(防護用)のうち潮位計は図6に示すシステム構成であり、潮位計のサンプリング周期は約3秒である。潮位計の信号については演算装置において計測時点(t)からその10分前(t-10)の間における潮位を3秒おきに収集・演算し、その間の最大潮位と最小潮位の差(潮位変化量)が0.5mに達した時点で監視モニタに警報発信する(図7参照)。この仕組みにより、短時間で潮位の上げ又は下げの変動を繰り返したとしても、10分以内に±0.5mの潮位変動を確実に検知することが可能である。

この警報が発信した時点で、1号及び2号炉運転員並びに3号及び4号炉運転員が、監視モニタで集中監視する体制を構築するため、それ以降の監視モニタにおける潮位の目視確認により、速やかに取水路防潮ゲートの閉止判断基準(トリガー)を確認することが可能である。

また、10 分以内の±0.5m の潮位変動後、最大潮位又は最小潮位に達した時点から10 分以内に、潮位変化量が0.5m に達した時点で、その潮位計の監視モニタに警報発信する(図8参照)。

なお、各潮位計の故障時の表示は「レンジの下限値以下に振り切り」 となり、この時点で警報発信するため、運転員は故障の有無について も確認が可能である。



※電源箱及び演算装置は監視モニタの盤内機器であり監視モニタの一部である。

図6 潮位計のシステム構成図及び計装誤差の考え方

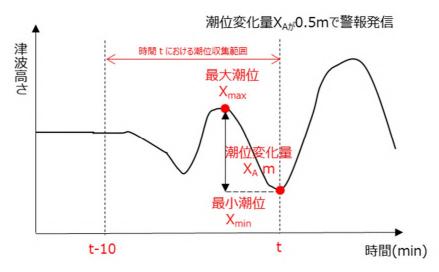



図7 潮位変化量の算出方法

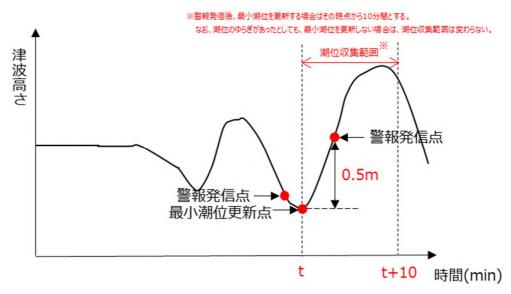



図8 潮位計の警報発信に関する考え方

b. 潮位変化量の計装誤差等を踏まえた運転操作等への影響とセット値 潮位変化量の計装誤差は図6のとおり最大で±約5cmであること から、これによる遅れが運転員の対応時間に影響するかの確認を行った。

計装誤差の最大±約 5cm による遅れ時間は最大約 30 秒であるが、図4のとおり、取水路防潮ゲートの閉止判断基準(トリガー)を確認するまでに、最短でも約5分の対応時間を有しており、これに比べ時間遅れは十分に小さいことから計測誤差による運転操作等への影響はない。

また、潮位変化量の計装誤差は図6のとおり最大で±約5cmであることから、これを踏まえた取水路防潮ゲートの閉止判断基準(トリガー)の実機のセット値は0.45mとし、これらの概念図を図9に示す。なお、警報発信値についても、計装誤差(0.05m)を考慮し、実機のセット値は0.45mとする。

なお、計装誤差の詳細については、詳細設計段階において説明する。

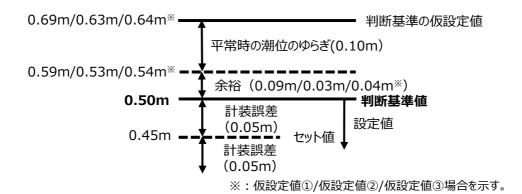



図9 潮位計の判断基準値の概念図

(3)取水路防潮ゲートの閉止判断基準 (トリガー)の到達を確認した後の対応

1号及び2号炉当直課長並びに3号及び4号炉当直課長が取水路防潮 ゲートの閉止判断基準(トリガー)を確認した後の循環水ポンプ停止、ユニットトリップ操作に要する時間は既許可の大津波警報発表時の対応時間と同様であることから、ここでは、循環水ポンプ停止、ユニットトリップ操作、取水路防潮ゲート閉止の各操作の対応の成立性について確認する。

1号及び2号当直課長が取水路防潮ゲート閉止判断基準(トリガー)を確認した後の対応は、(1) b. (d)から(e)の記載のとおりであり、循環水ポンプ停止、ユニットトリップ操作、取水路防潮ゲート閉止の一連の操作が時間内に対応できることを確認している。なお、取水路防潮ゲート閉止に要する時間の成立性については(4)に詳細を示す。

# (4) 取水路防潮ゲート閉止に要する時間の成立性

図1に示すとおり、取水路防潮ゲートの閉止判断基準(トリガー)を確認し、循環水ポンプ停止及びユニットトリップ操作完了後、取水路防潮ゲートを1分で閉止する運用としている。1号炉~4号炉の4プラント運転時における取水路防潮ゲートの状況を図10及び図11に示す。取水路防潮ゲートは防潮壁、ゲート扉体、ゲート落下機構等で構成されており、ゲート扉体はラック棒によりゲート落下機構に固定されている。

ゲート扉体の落下距離は 6m であるが、図11に示すとおりゲートが開の状態では短尺ラック棒が装着されており、この場合、短尺ラック棒がゲート落下機構を通過する間の区間(以下「区間①」という。)は 1m である。区間①においては、ゲート扉体はゲート落下機構によって機械的に落下速度を制限された状態で落下し、その後の 5m 区間(以下「区間②」という。)についてはほぼ自由落下となる。

ここで、既許可では、ゲート扉体は長尺ラック棒 (6m) によりゲート落下機構に固定し、揚程 6m の高さをゲート落下機構により閉止することとしていたため、長尺ラック棒 (6m) がゲート落下機構を通過する時間は 3m/分 (検査等で確認済) であることを踏まえ、大津波警報発表時の取水路防潮ゲート閉止時間は 2 分 (6m/ (3m/分) = 2 分)に余裕を考慮して 3 分としていた。その後、審査の中でラック棒を長尺ラック棒 (6m) から短尺ラック棒 (1m) に変更したが、大津波警報発表時の取水路防潮ゲート閉止時間については、保守的に長尺ラック棒 (6m) がついていることを想定し、3 分のままとしていた。

1号及び2号炉運転員並びに3号及び4号炉運転員が取水路防潮ゲートの閉止判断基準(トリガー)を確認した場合の取水路防潮ゲート閉止時間については、現場の設備実態に合わせ、長さ1mの短尺のラック棒による運用を踏まえると、取水路防潮ゲートを閉止(ゲート扉体が6m落下)するまでに要する時間は20秒程度であるものの、余裕を考慮して1分と評価している。

区間①及び区間②の落下時間の詳細については以下に示す。

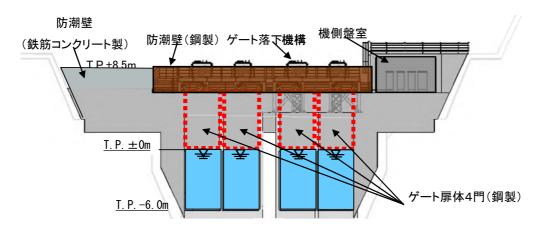



図10 4プラント運転時における取水路防潮ゲートの状況(正面図)

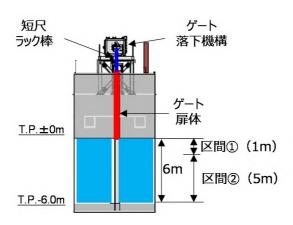



図11 4プラント運転時における取水路防潮ゲートの状況 (断面図)

## a. 区間①の落下時間

区間①は、ラック棒がゲート落下機構を通過する区間であり、ゲート 扉体は落下速度を制限された状態で落下する。ラック棒がゲート落下 機構を通過する速度については、大津波警報が発表された場合の検討 において、閉止速度 3m/分であることを検査等により確認していること から、区間①の落下時間は、1m のラック棒がゲート落下機構を通過す る時間である 20 秒(3m を 1 分で落下するため、1m の落下時間は 20 秒) と算定できる。

なお、閉止速度 3m/分は静水中でのゲート閉止を検査等で確認したものであり、前半 1m 区間の落下時にはすでに津波が到達していることから、津波による流水抵抗を受ける可能性がある。しかし、ゲート落下機構によって機械的に落下速度が制限されることから、津波による流水抵抗があったとしても、閉止時間 3m/分に変わりはないものと考える。

#### b. 区間②の落下時間

区間②の落下時においても、すでに津波が到達していることから、津 波による流水抵抗等を考慮した条件で落下時間を算定する。

落下時間の算定においては、ダム堰・堰施設技術基準(案)基準解説編(ダム・堰施設技術協会,平成28年10月)(以下「ダム堰基準解説編」という。)に記載されている開閉荷重を適切に考慮することで、津波襲来時の取水路防潮ゲート閉操作にかかる荷重を設定する。

今回の取水路防潮ゲート閉操作は津波が襲来している状況下での操作となり、一般のゲートにおいても流水時にゲート閉操作を実施することがあるため、今回想定している状況と同じであると考える。また、取水路防潮ゲートの支承部は戸当たりと平面で摺動しながら開閉される形式であり、図12に示すとおりスライドゲートの形式をとっていることから、ダム堰基準解説編を適用できると考える。

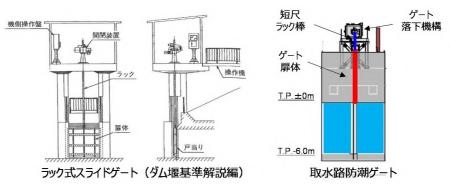



図12 ゲート形式について

## (a) 開閉荷重について

ダム堰基準解説編では水門扉の扉体の開閉荷重として考慮する荷重は、扉体の自重、支承・水密ゴム及び堆泥の摩擦力、浮力、越流水による上・下向力、下端放流水による上・下向力、その他の荷重とされている。

上記の開閉荷重の組み合わせは水門扉の形式ごとに例示されており、今回の取水路防潮ゲートに類似した形式として、スライドゲートの閉操作時における開閉荷重の組合せを考慮する。開閉荷重の組合せを表2に示す。

# 表 2 開閉荷重の組合せ

【ダム堰基準解説編に示す開閉荷重の組合せ】スライドゲート閉操作時 (ダム堰基準解説編 P.189)

|         |       |            | יוואנונטוו כווי | · () — ET- | -/J-D/U/IIII 1 1100 | ,                     |                 |               |
|---------|-------|------------|-----------------|------------|---------------------|-----------------------|-----------------|---------------|
| 開精重形式   | 扉体の自重 | 支承部<br>摩擦力 | 水密部<br>摩擦力      | 浮力         | 越流水による上・下向力         | 下端放流水<br>による<br>上・下向力 | 波(風波浪)<br>による荷重 | 開閉時の水<br>の抵抗力 |
| スライドゲート | 0     | 0          | 0               | 0          | Δ                   | Δ                     | Δ               |               |

#### 【取水路防潮ゲートに考慮する開閉荷重の組合せ】

| 取水路防潮ゲート 〇 - ※1 ○ - ※2 | _*3 _*4 O*5 |
|------------------------|-------------|
|------------------------|-------------|

- ※1 支承部に水密ゴムはないため考慮不要。
- ※2 越流が発生しないため考慮不要。
- ※3 下向きのダウンプルフォースが発生するが、保守的に考慮しない。
- ※4 外海に面していない取水路内の流れ場であり、風波浪による影響は軽微と考えられるため考慮しない。
- ※5 落下時にゲート底面に作用する水の抗力を考慮。

# (b) 落下時間の算定について

ゲート扉体に作用する荷重を考慮した以下の運動方程式により、 ゲート扉体の落下加速度を求め、落下時間を算定する。取水路防潮ゲートの開閉時の検討に考慮する荷重を図13に示す。

$$m\frac{d^2z}{dt^2} = F(\downarrow) - F(\uparrow)$$

*こ*こで、m : ゲート扉体質量(t)

z : ゲート扉体の落下距離(m)  $F(\downarrow)$ : 下向きに作用する力(kN)  $F(\uparrow)$ : 上向きに作用する力(kN)

|          | 扉体の自重 | 支承部<br>摩擦力 | 水密部<br>摩擦力 | 浮力 | 越流水による上・下向力 | 下端放流水 による 上・下向力 | 波(風波浪) | 開閉時の水<br>の抵抗力 |
|----------|-------|------------|------------|----|-------------|-----------------|--------|---------------|
| 取水路防潮ゲート | 1     | 2,3        | =          | 4  | =           |                 |        | (5)           |

#### O開閉荷重の作用イメージ図



図13 考慮する開閉荷重及び荷重作用イメージ

図13に示す荷重を考慮した運動方程式は以下のとおりとなる。

$$m\frac{d^{2}z}{dt^{2}} = mg - \mu Fa - \mu Fb - Fc - Fd$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

ここで、m : ゲート扉体質量(t)

z : ゲート扉体の落下距離 (m) Fa : 流速による抵抗力 (kN) Fb : 水位差による抵抗力 (kN)

Fc:浮力(kN)

Fd:鉛直方向の水の抗力(kN)

μ : 摩擦係数

(=0.4 ※ダム堰基準解説編 P.182)

ここで、摩擦係数については、ダム堰基準解説編において、「水密部または支承部金属間のすべり摩擦」として 0.4 が標準とされている。ただし、「高速流下での使用頻度が高く、摺動面が損傷しやすい状況であれば必要に応じ 0.5 程度を採用する」とされているが、取水路防潮ゲートは津波襲来時にのみ使用するゲートであり、使用頻度が少なく摺動面が損傷しにくい状況であるため、摩擦係数は 0.4 を採用する。

なお、摩擦が生じる主な部位は、ゲートと戸当たりの接触面になる。接触面は通常、海水に接しているため、貝などの海生物の付着が想定される。これについては、取水路防潮ゲートと戸当たり金物は密着し、ほぼ隙間がない状態で設置されており(図14)、その状態のまま取水路防潮ゲートは落下することから、仮に戸当たり金物に貝が付着していたとしても、落下時にゲート底面で貝は削ぎ落され、摺動面に摩擦影響があるものは残らないため、影響はないと考える。また、取水路においては、ストレーナの閉塞防止等の観点から定検毎に清掃(除貝)する運用である。

① ~⑤の各荷重の詳細を以下に示す。

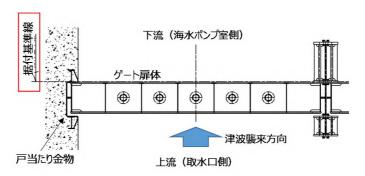



図14 取水路防潮ゲート据付図

# ① 扉体の自重

ゲート扉体質量7.133tによる自重を考慮する。

# ② 流速による抵抗力

以下の式により流速による抵抗力を算定する(ダム・堰施設技術 基準(案)水門扉・放流管・付属施設設計マニュアル(ダム・堰施 設技術協会,平成23年7月)(以下「ダム堰マニュアル編」とい う。) P.597)。

図15に示すとおり、ゲート閉止時の流速は $0.1\sim0.7$ m/s 程度であるが、抵抗力を保守的に評価するため、流速3.0m/s を考慮する。

Fa= $1/2 \times \rho_0 \times v_a^2 \times C \times B \times z$ = $1/2 \times 1.03 \times 3^2 \times 1.0 \times 3.9 \times z$ = $18.077 \times z$  (kN)  $\times z = 6m \text{ C} \text{ $\sharp$ Fa} = 108.5 \text{ (kN)}$  ここで、v<sub>a</sub>:流速(3.0m/s) C:水に対する抵抗係数(=1.0) ※ダム堰マニュアル編 P.597

B:作用幅(3.9m) z:落下距離(m)

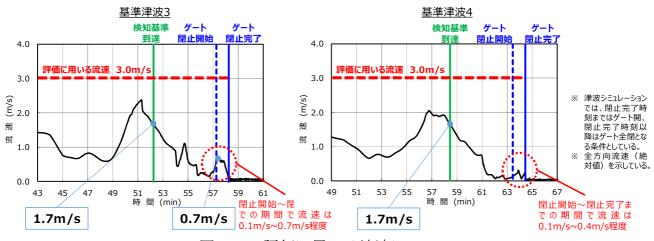



図15 評価に用いる流速について

# ② 水位差による抵抗力

以下の式により水位差による抵抗力を算定する(ダム堰基準解 説編 P. 181)。なお、水位差による抵抗力については、取水路防潮 ゲート前面と背面における静水圧の差分を考慮する(図16)。

 $Fb=P\times B\times z$ 

 $=1.03\times9.80665\times0.459\times3.9\times z$ 

 $=18.082 \times z \text{ (kN)}$ 

※z=6mではFb=108.5 (kN)

ここで、P: 水位差による水圧(評価に用いる 流速3.0m/sが作用した場合の、 ゲート前面の水位上昇による水位 差を考慮する。 $h=v_a^2/2g=0.459m$  より、 $P=\rho_0gh$ ( $kN/m^2$ )を扉体に

作用させる。) B:作用幅(3.9m) z:落下距離(m)

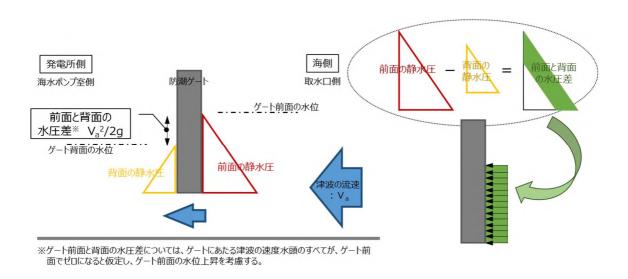



図16 水位差について

## ③ 浮力

扉体はスキンプレート(片面)をH鋼等で補強している構造(図17)であり、落下時に鋼材間の空気は水と入れ替わることから、扉体に作用する浮力は鋼材体積から算定した浮力とする。

 $Fc = \rho_0 \times g \times V \times z/6$ 

 $=1.03\times9.80665\times0.847\times z/6$ 

 $=1.426 \times z (kN)$ 

※z=6mではFc=8.56 (kN)

ここで、V: 扉体の体積(0.847m3)

z:落下距離(m)



図17 取水路下流側から見たゲート扉体の構造

# ⑤ 鉛直方向の水の抗力

以下の式により鉛直方向の水の抗力を算定する(ダム堰マニュアル編 P.597)。

 $Fd=1/2 \times \rho_0 \times v_b^2 \times C \times A$ =1/2×1.03× $v_b^2$ ×1.0×2.125 =1.0944× $v_b$ (z)<sup>2</sup> (kN) ここで、v<sub>b</sub>(z): z(m)地点の落下速度(m/s) ※落下距離に応じた速度を考慮する

> C:水に対する抵抗係数(=1.0) ※ダム堰マニュアル編 P.597

A:ゲート底面積(2.125m²)

z:落下距離(m)

①~⑤より、運動方程式は以下のとおりとなる。ここで、保守的な評価として、区間②における自由落下開始時の速度を 0m/s とすると、区間② (5m) の落下時間は約1.79 秒となる。区間②のゲート落下速度及び落下加速度を図18に示す。

$$m\frac{d^2z}{dt^2} = mg - \mu Fa - \mu Fb - Fc - Fd$$

 $7.133 \times \frac{d^2z}{dt^2} = 7.133 \times 9.80665 - 0.4 \times 18.077 \times z - 0.4 \times 18.082 \times z - 1.426 \times z - 1.0944 \times (\frac{dz}{dt})^2$ 

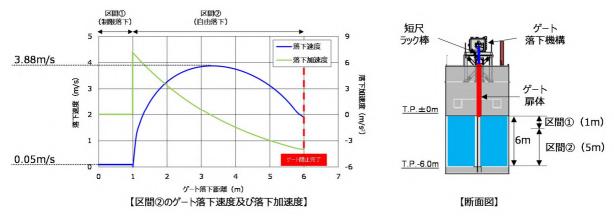



図18 区間②のゲート落下速度及び落下加速度

# (c) ゲート落下時間の変動幅による取水路防潮ゲート閉止時間への影響 について

流速については閉止タイミングにより可変することから、保守性を 考慮して 3.0m/s と設定するが、取水路防潮ゲート閉止タイミングの 不確実性を考慮した流速によるパラメータスタディを実施し、ゲート 落下時間の変動幅による取水路防潮ゲート閉止時間への影響を確認 した。なお、ゲート落下時間を算定する際の流速については、定常状 熊で取水路防潮ゲートに作用する条件とする。

図15に示すとおり、「海底地すべりエリアB(Es-K5、Kinematic モデル)」及び「海底地すべりエリアC(Es-T2、Kinematic モデル)」を波源とした津波シミュレーションにおいて、取水路防潮ゲートが閉まる時間帯の最大流速は 0.7m/s である。また、取水路防潮ゲート閉止タイミングの不確実性を考慮し、取水路防潮ゲートの閉止判断基準(トリガー)を確認した際に取水路防潮ゲートを閉止する状況を想定した場合(循環水ポンプが全停止していて、取水路防潮ゲートの閉止判断基準(トリガー)を確認したと同時に取水路防潮ゲートを閉止することが可能な状況を想定した場合)の最大流速は 1.7m/s である。これらの流速を用いたパラメータスタディの結果を表 3 に示す。いずれのケースも自由落下区間(区間②)におけるゲート落下時間は 1 秒~2 秒である。

上記のゲート落下時間に、ゲート落下機構(ラック式)により落下する区間(区間①)のゲート落下時間を含めた取水路防潮ゲート閉止時間は20秒程度である(図19)のに対し、保守的に取水路防潮ゲート閉止時間を1分と評価していることから、40秒程度の時間的な裕度がある。従って、自由落下区間(区間②)のゲート落下時間が多少変動したとしても、取水路防潮ゲート閉止時間への影響はない。

表3 取水路防潮ゲート閉止タイミングの不確実性を考慮した 流速によるパラメータスタディ結果

|                 | 取水路防潮ゲート閉止時 | 閉止タイミングの不確実性 | 基本ケース       |  |
|-----------------|-------------|--------------|-------------|--|
|                 | 間帯における流速    | を考慮した流速      | (流速を保守的に設定) |  |
| 流速(m/s)         | 0.7         | 1.7          | 3.0         |  |
|                 |             |              | <b>→</b>    |  |
| 区間②(5m)の落下時間(s) | 1.19        | 1.28         | 1.79        |  |

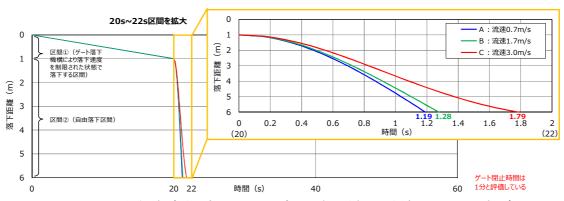



図19 取水路防潮ゲート閉止時間(1分)の評価における裕度

# 7. 2 取水路防潮ゲート閉止に対する余裕時間

# 7. 2. 1 背景

7.1章において、津波を確認してから、施設影響が生じる潮位に至る前に取水路防潮ゲート閉止の運転操作が完了することを確認しているが、さらに、本章においては、取水路防潮ゲート閉止時刻から、施設影響が生じる潮位に至る時刻までにどれだけの余裕時間があるかを評価し、安全上の裕度を確認する。

#### 7. 2. 2 検討内容

## (1) 余裕時間の考え方及び算出方法

海底地すべりに伴う津波のうち、津波警報等が発表されない場合の評価について、取水路防潮ゲートが閉止される時刻、及び施設に影響する水位の波が取水路防潮ゲート前面に到達するまでの時刻を算出し、取水路防潮ゲート閉止に対する余裕時間を確認する。

水位上昇側及び水位下降側における算出例を図20、図21に示す。なお、算出例に示す海底地すべりの検討ケースは以下のとおり。

(「隠岐トラフ海底地すべりエリアB (Es-K5、Kinematic モデル)」を波源とする津波)

・海底地すべり:エリア B (Es-K5)

・計算モデル:Kinematic モデル

·崩壊規模:100%(最大)

·破壊伝播速度:1.0m/s(最大)

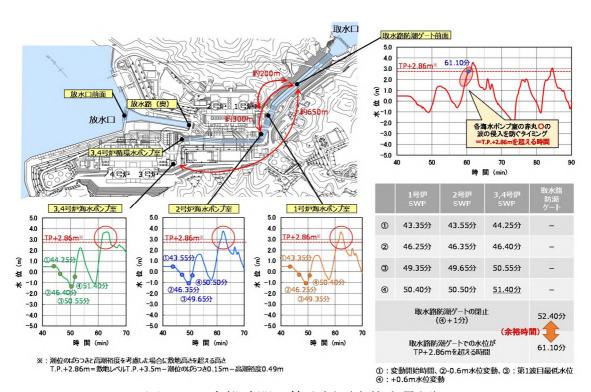



図20 余裕時間の算出例(水位上昇側)

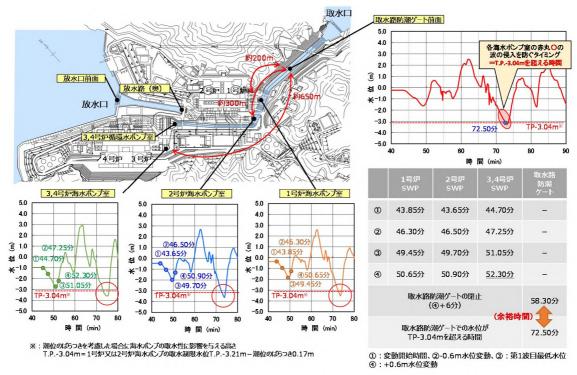



図21 余裕時間の算出例(水位下降側)

# (2) 余裕時間の算出結果

海底地すべりエリア A、B、C において 2 種類 (Watts 他の予測式, Kinematic モデル) の手法及び海底地すべりの波源特性に関するパラメータスタディ (崩壊規模のパラメータスタディ・破壊伝播速度のパラメータスタディ) で確認した波形のうち、取水路防潮ゲートを閉止しない場合に施設への影響が生じる可能性がある全てのケースの余裕時間を表 4、表 5 に示す。

表4 余裕時間(崩壊規模パラメータスタディ)

|       | 波源            |                    | 潮位変動の時刻     |                         |                                   | 取水路防潮             | 取水路防  |         |
|-------|---------------|--------------------|-------------|-------------------------|-----------------------------------|-------------------|-------|---------|
|       | 海底地すべり        | 崩壊規模               | 潮位計         | 0.5mの<br>水位低下<br>[分](②) | 0.5mの<br>水位上昇<br>(判断基準)<br>[分1(④) | ゲート閉止<br>時刻[分]**1 | 面への到  | 余裕時間[分] |
|       |               | 100<br>%           | 1号炉海水ポンプ室   | 45.85                   | 50.35                             |                   | 61.10 | 8.80    |
|       |               |                    | 2号炉海水ポンプ室   | 46.05                   | 50.45                             |                   |       |         |
|       |               |                    | 3,4号炉海水ポンプ室 | 46.20                   | 51.30                             |                   |       |         |
|       |               | 00                 | 1号炉海水ポンプ室   | 45.95                   | 49.85                             | 1                 | 61.30 | 9.35    |
|       |               | 80                 | 2号炉海水ポンプ室   | 46.00                   | 50.05                             |                   |       |         |
|       |               | 96                 | 3,4号炉海水ポンプ室 | 46.20                   | 50.95                             |                   |       |         |
|       |               | 70                 | 1号炉海水ポンプ室   | 46.10                   | 49.65                             | 4                 | 61.35 |         |
|       |               | 70<br>96           | 2号炉海水ポンプ室   | 46.15                   | 49.85                             |                   |       | 9.60    |
|       | エリアB          | 70                 | 3,4号炉海水ポンプ室 | 46.20                   | 50.75                             |                   |       |         |
|       | Es-K5         |                    | 1号炉海水ポンプ室   | 46.70                   | 49.50                             | 4                 | 61.50 | 9.95    |
|       |               | 60<br>96           | 2号炉海水ポンプ室   | 46.30                   | 49.55                             |                   |       |         |
|       |               | 90                 | 3,4号炉海水ポンプ室 | 46.25                   | 50.55                             |                   |       |         |
|       |               | 50<br>96           | 1号炉海水ポンプ室   | 47.10                   | 49.15                             | 4                 | 61.40 | 10.00   |
|       |               |                    | 2号炉海水ポンプ室   | 47.05                   | 49.35                             |                   |       |         |
| 76    |               |                    | 3,4号炉海水ポンプ室 | 46.25                   | 50.40                             |                   |       |         |
| 水位上昇側 |               | 40<br>96           | 1号炉海水ポンプ室   | 47.30                   | 49.20                             | 51.55             | 61.30 | 9.75    |
| Ē     |               |                    | 2号炉海水ポンプ室   | 47.35                   | 50.55                             |                   |       |         |
| 見     |               |                    | 3,4号炉海水ポンプ室 | 48.40                   | 50.25                             |                   |       |         |
| 侧     |               |                    | 1号炉海水ポンプ室   | 51.30                   | 56.55                             | 4                 | 68.15 | 10.15   |
|       |               | 100<br>96          | 2号炉海水ポンプ室   | 51.20                   | 56.70                             |                   |       |         |
|       |               |                    | 3,4号炉海水ポンプ室 | 51.45                   | 57.00                             |                   |       |         |
|       |               | 80<br>%            | 1号炉海水ポンプ室   | 51.30                   | 56.00                             | 57.65             | 68.10 | 10.45   |
|       |               |                    | 2号炉海水ポンプ室   | 51.20                   | 56.15                             |                   |       |         |
|       |               |                    | 3,4号炉海水ポンプ室 | 51.45                   | 56.65                             |                   |       |         |
|       |               |                    | 1号炉海水ポンプ室   | 51.30                   | 55.80                             | 57.10             | 67.20 | 10.10   |
|       | エリアC          | EJアC 60<br>Es-T2 % | 2号炉海水ポンプ室   | 51.20                   | 55.80                             |                   |       |         |
| Es-1  | ES-12         |                    | 3,4号炉海水ポンプ室 | 51.45                   | 56.10                             |                   |       |         |
|       |               | 50<br>96           | 1号炉海水ポンプ室   | 51.35                   | 55.40                             | 56.80             | 67.05 | 10.25   |
|       |               |                    | 2号炉海水ポンプ室   | 51.25                   | 55.40                             |                   |       |         |
|       |               |                    | 3,4号炉海水ポンプ室 | 51.45                   | 55.80                             |                   |       |         |
|       | 1             | 45<br>%            | 1号炉海水ポンプ室   | 51.45                   | 55.55                             |                   | 66.95 | 10.20   |
|       |               |                    | 2号炉海水ポンプ室   | 51.35                   | 55.55                             |                   |       |         |
|       |               |                    | 3,4号炉海水ポンプ室 | 51.50                   | 55.75                             |                   |       |         |
|       | IU7B<br>Es-K5 | 100<br>%           | 1号炉海水ポンプ室   | 46.00                   | 50.55                             | 58.20             | 72.50 |         |
|       |               |                    | 2号炉海水ポンプ室   | 46.15                   |                                   |                   |       | 14.30   |
| 下降便   |               |                    | 3,4号炉海水ポンプ室 | 47.00                   |                                   |                   |       |         |
| 隨位    |               |                    | 1号炉海水ポンプ室   | 46.05                   |                                   | 57.95             | 72.85 | 14.90   |
| RU    |               |                    | 2号炉海水ポンプ室   | 46.30                   | 50.60                             |                   |       |         |
|       |               |                    | 3,4号炉海水ポンプ室 | 47.00                   | 51.95                             |                   |       | -510:00 |

※1:水位上昇側は、循環水ポンプ全停条件としているため、取水路防潮ゲートの閉止判断基準(トリガー)を確認してから1分後に閉止。水位下降側は、循環水ポンプが取水している条件のため、取水路防潮ゲートの閉止判断基準(トリガー)を確認してから6分後に閉止。

※2:取水路防潮ゲート前面に施設に影響する水位の波が到達する時刻。

表5 余裕時間(破壊伝播速度パラメータスタディ)

|       | 波源            |                          | 潮位変動の時刻                |                         | 取水路防潮                             | 取水路防              | - 1            |                 |
|-------|---------------|--------------------------|------------------------|-------------------------|-----------------------------------|-------------------|----------------|-----------------|
|       | 海底地すべり        | 破壊<br>伝播<br>速度           | 潮位計                    | 0.5mの<br>水位低下<br>[分](②) | 0.5mの<br>水位上昇<br>(判断基準)<br>[分](④) | ゲート閉止<br>時刻[分]**1 | 面への到           | 余裕<br>時間<br>[分] |
|       |               | 1.0<br>m/s               | 1号炉海水ポンプ室<br>2号炉海水ポンプ室 | 45.85<br>46.05          | 50.35<br>50.45                    | 52.30             | 61.10          | 8.80            |
|       |               |                          | 3,4号炉海水ポンプ室            | 46.20                   | 51.30                             |                   |                |                 |
|       |               | 0.8<br>m/s               | 1号炉海水ポンプ室              | 46.40                   | 51.10                             | 52.90             | 61.95          | 9.05            |
|       |               |                          | 2号炉海水ポンプ室              | 46.45                   | 51.30                             |                   |                |                 |
|       |               |                          | 3,4号炉海水ポンプ室            | 46.40                   | 51.90                             |                   |                |                 |
|       | -1170         | 0.7                      | 1号炉海水ポンプ室              | 47.85                   | 52.75                             | 54.25             | 64.40          | 10.15           |
|       | エリアB          | 0.7<br>m/s               | 2号炉海水ポンプ室              | 47.55                   | 52.90                             |                   |                |                 |
| zk    | Es-K5         |                          | 3,4号炉海水ポンプ室            | 47.40                   | 53.25                             |                   |                |                 |
| 位     |               | 0.6<br>m/s               | 1号炉海水ポンプ室              | 49.15                   | 54.75                             | 55.75             | 65.85          | 10.10           |
| 水位上昇側 |               |                          | 2号炉海水ポンプ室              | 49.20                   | 54.60                             |                   |                |                 |
|       |               |                          | 3,4号炉海水ポンプ室            | 47.95                   | 54.00                             |                   |                |                 |
|       |               | 0.55<br>m/s              | 1号炉海水ポンプ室              | 50.45                   | 55.95                             | 57.00             | 67.00          | 10.00           |
|       |               |                          | 2号炉海水ポンプ室              | 50.65                   | 56.00                             |                   |                |                 |
|       |               |                          | 3,4号炉海水ポンプ室            | 51.40                   | 54.80                             |                   |                |                 |
|       | ェリアC<br>Es-T2 |                          | 1号炉海水ポンプ室              | 51.30                   | 56.55                             | 58.00<br>59.85    | 68.15<br>71.50 | 10.15           |
|       |               |                          | 2号炉海水ボンプ室              | 51.20                   | 56.70                             |                   |                |                 |
|       |               |                          | 3,4号炉海水ボンプ室            | 51.45                   | 57.00                             |                   |                |                 |
|       |               |                          | 1号炉海水ポンプ室              | 52.25                   | 58.05                             |                   |                |                 |
|       |               |                          | 2号炉海水ボンプ室              | 52.35                   | 58.15                             |                   |                |                 |
|       |               |                          | 3,4号炉海水ボンプ室            | 52.35                   | 58.85                             |                   |                |                 |
|       | エリアB          | 1.0 m/s<br>ES-K5 0.8 m/s | 1号炉海水ポンプ室              | 46.00                   | 50.55                             | 58.20             |                | 14.30           |
| 下降側   |               |                          | 2号炉海水ポンプ室              | 46.15                   | 50.80                             |                   |                |                 |
|       |               |                          | 3,4号炉海水ボンプ室            | 47.00                   | 52.20                             |                   |                |                 |
| 侧位    | Es-K5         |                          | 1号炉海水ボンプ室              | 46.55                   | 51.30                             |                   |                |                 |
|       |               |                          | 2号炉海水ポンプ室              | 46.70                   | 51.65                             |                   |                |                 |
|       |               |                          | 3,4号炉海水ポンプ室            | 47.40                   | 53.10                             |                   |                |                 |

※1:水位上昇側は、循環水ポンプ全停条件としているため、取水路防潮ゲートの閉止判断基準(トリガー)を確認してから1分後に閉止。水位下降側は、循環水ポンプが取水している条件のため、取水路防潮ゲートの閉止判断基準(トリガー)を確認してから6分後に閉止。

※2:取水路防潮ゲート前面に施設に影響する水位の波が到達する時刻。

余裕時間について検討した結果、崩壊規模のパラメータスタディ、破壊伝播速度のパラメータスタディのいずれにおいてもパラメータ値が最大のケースが最も余裕時間が短く、取水路防潮ゲート閉止時刻から施設に影響する水位の波が取水路防潮ゲート前面に到達するまでに約9~14分の余裕があることを確認した。なお、循環水ポンプを停止(プラント停止)から取水路防潮ゲート閉止までの時間については、水位上昇側では、循環水ポンプ全停条件であることから取水路防潮ゲートの閉止判断基準(トリガー)を確認した1分後に取水路防潮ゲートを閉止することとし、循環水ポンプが稼働している水位下降側では6分後としている。仮に水位上昇側で循環水ポンプ稼働時と同様の6分後に取水路防潮ゲートを閉止することとしても、約3分の余裕があることを確認している。

#### 7. 3 潮位観測システム(防護用)の基準適合性

#### 7. 3. 1 背景

高浜発電所における取水路防潮ゲート閉止にかかる対応について、既許可では、大津波警報の発表を受信する設備として、1号及び2号炉中央制御室並びに3号及び4号炉中央制御室に設置しているFAX等(TV、インターネット)による大津波警報発表を受け、当直課長の判断により、取水路防潮ゲートを閉止することとしている。

今回の対策では、潮位計の情報及び衛星電話(津波防護用)を用いた当直 課長間の連携に基づき取水路防潮ゲートを閉止するため、潮位観測システム(防護用)の基準適合性について確認する。

## 7. 3. 2 設備の重要度分類を踏まえた整理

取水路防潮ゲートは、施設影響が生じるおそれがある津波が襲来した場合に、津波が敷地へ到達・流入すること及び水位変動に伴う取水性低下による海水ポンプへの影響を防止し、防護対象設備が機能喪失することのない設計とするために設置する津波防護施設である。また、可動部・駆動部を有していることから、重要度分類指針上のMS-1の「安全上必須なその他の構築物、系統及び機器」の「安全上特に重要な関連機能」に該当する。表6に重要度分類指針の付表を示す。

取水路防潮ゲートが津波防護施設であること、重要度分類指針上において、MS-1設備に該当することを念頭に、潮位観測システム(防護用)に要求される安全機能を整理した。

今回の運用では、潮位計の情報及び衛星電話(津波防護用)を用いた当直課長間の連携に基づき、MS-1設備である取水路防潮ゲートの閉止を判断することから、潮位観測システム(防護用)は取水路防潮ゲートと同様に、津波防護機能を直接的に有する津波防護施設と位置付け、申請書の第5条に明記する。また、潮位観測システム(防護用)は取水路防潮ゲートの閉止判断にかかわるものとして、MS-1設備である取水路防潮ゲート及び潮位観測システム(防護用)に対する第12条の各項の適用要否を表7に示す。潮位観測システム(防護用)は、取水路防潮ゲートの閉止判断にかかわる直接関連系であることから、重要安全施設として第1項から第6項までを適用対象とする。また、取水路防潮ゲート及び潮位観測システム(防護用)に対する第12条への適合性を表8に示す。

取水路防潮ゲート及び潮位観測システム(防護用)の設計項目は表9のと おり。潮位観測システム(防護用)は取水路防潮ゲートの設計項目を網羅し ており、取水路防潮ゲートと同等の信頼性を確保している。

表 6 重要度分類指針の付表(抜粋)

|        |   |                                 |       | 異                                               | 常                          | 影                                              | 響                                     | 緩                  | 和                                                                                                                                                                                                                                                                                        | 系                                  |                                           |   |   |
|--------|---|---------------------------------|-------|-------------------------------------------------|----------------------------|------------------------------------------------|---------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------|---|---|
| 分      | 類 | 定義                              | 機     | 能                                               | 構築物、は機器                    | 系統又<br>(PWR)                                   | 特記すべ<br>系 (P                          | き関連<br>WR)         |                                                                                                                                                                                                                                                                                          | 系統又<br>(BWR)                       | 特記すべき関連<br>系 (BWR)                        | 備 | 考 |
| MS - 1 |   | 5)能                             | 炉心冷却機 | 系(低圧                                            | 戸心冷却<br>注入系、<br>入系、蓄<br>系) |                                                |                                       | 系(低圧プレイジ           |                                                                                                                                                                                                                                                                                          |                                    |                                           |   |   |
|        |   |                                 | の能、   | 放射性物質<br>閉じ込め機<br>放射線の遊<br>放射線の遊<br>改び放出低<br>後能 | 器原隔格イス備空、気安浄               | 格ラ格の場合を表示を表示を表示を表示を表示を表示を表示を表示を表示を表示を表示を表示を表示を | 原子炉格排気筒                               | 納容器                | 器容子プ原常系環原隔格イグがある。                                                                                                                                                                                                                                                                        | 建屋、非<br>ス 処 理<br>常用再循              | ガス処理系排気                                   |   |   |
|        |   | 2) 安全上必須な<br>その他の構築物、<br>系統及び機器 | 施部停业  | 工学的安全<br>及び原子炉<br>系への作動<br>の発生機能                | 安全保護                       | <b></b>                                        |                                       |                    | 安全保証                                                                                                                                                                                                                                                                                     | 雙系                                 |                                           |   |   |
|        |   |                                 |       | 安全上特に<br>延な関連機能                                 | 系そ気炉系冷流用                   | 所卸/系 冷子水系空もの電及・原却補、制設Mの表が換子水機直御備S)             | ディーゼ<br>機燃イーゼ<br>取水記<br>系外トレン<br>かむ。) | 送系、<br>ル冷却<br>よ備 屋 | 系、制<br>系の用<br>東<br>系<br>の<br>来<br>、<br>地<br>系<br>の<br>れ<br>の<br>れ<br>の<br>れ<br>の<br>れ<br>の<br>れ<br>の<br>れ<br>の<br>れ<br>の<br>れ<br>の<br>れ<br>の<br>れ<br>の<br>れ<br>の<br>れ<br>の<br>れ<br>の<br>れ<br>の<br>れ<br>の<br>れ<br>の<br>れ<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の | 所卸/気幣系(い一)<br>電及・空補直ず1<br>原び非調機流れ関 | 機燃料輸送系、<br>ディーゼル冷却<br>系、取水設備(屋<br>外トレンチを含 |   |   |

表 7 第12条の各項の適用要否

| 項 | 適用<br>要否 <sup>※1</sup> | 取水路防潮ゲートの 適用要否の理由                                                                                                                                           | 潮位観測システム(防護用)の適用要否の理由                                                      |
|---|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 1 | 0                      | 津波発生時、取水路防潮ゲートの閉止により、重要度分類指針における当該系(例.海水ポンプ=MS-1)の安全機能遂行又は機能維持に必要となることから対象とする。                                                                              | 津波発生時、取水路防潮<br>ゲートの閉止判断にか<br>かわる直接関連系であ<br>ることから対象とする。                     |
| 2 | 0                      | 重要度分類指針上の「安全上必<br>須なその他の構築物、系統及び<br>機器」の「安全上特に重要な関連<br>機能(冷却用海水供給機能)」に<br>該当することから対象とする。                                                                    | 同上                                                                         |
| 3 | 0                      | 1項及び2項を踏まえ、安全施<br>設としての設計条件に該当する<br>ことから対象とする。                                                                                                              | 同上                                                                         |
| 4 | 0                      | 1項及び2項を踏まえ、安全施設としての健全性及び能力の確認が必要となることから対象とする。                                                                                                               | 同上                                                                         |
| 5 | 0                      | 1項及び2項を踏まえ、安全施<br>設としての設計条件に該当する<br>ことから対象とする。                                                                                                              | 同左                                                                         |
| 6 | ○*²                    | 重要安全施設に該当する取水路<br>防潮ゲートは、共用している取<br>水路に対して設置することによ<br>り、1号炉、2号炉、3号炉及び<br>4号炉の津波から防護する設備<br>への津波による影響を同時に防<br>止できる設計とすることから、<br>2以上の原子炉施設の安全性が<br>向上するため対象外。 | 津波発生時、取水路防潮<br>ゲートの閉止判断にか<br>かわる直接関連系であ<br>り、重要安全施設に該当<br>することから対象とす<br>る。 |
| 7 | ×                      | 本項は重要安全施設を除くため<br>対象外。                                                                                                                                      | 同左<br>※1:○:要、×:否                                                           |

**※**1:○:要、×:否

※2:取水路防潮ゲートは適用否

表8 第12条への適合性(1/5)

|   | 設置許可基準規則          | 取水路防潮ゲートの適合性*     | 潮位観測システム(防護用)の       |  |
|---|-------------------|-------------------|----------------------|--|
| 項 | 内容                | 「以小路的份グ・ドツ週日生     | 適合性                  |  |
|   | 安全施設は、その安全機能の重要度に | 取水路防潮ゲートは、入力津波による | 潮位観測システム (防護用) は、「発電 |  |
|   | 応じて、安全機能が確保されたもので | 遡上波が、設計基準対象施設の津波防 | 用軽水型原子炉施設の安全機能の重     |  |
|   | なければならない。         | 護対象設備に到達、流入することを防 | 要度分類に関する審査指針」に基づ     |  |
| 1 |                   | ぐ重要な施設であることを踏まえ、閉 | き、それが果たす安全機能の性質に応    |  |
| 1 |                   | 止機能についてはMS-1設計とす  | じて、十分高い信頼性を確保し、かつ    |  |
|   |                   | る。                | 維持し得る設計とする。          |  |
|   |                   |                   |                      |  |
|   |                   |                   |                      |  |

※:既許可のまとめ資料の記載から抜粋

表8 第12条への適合性(2/5)

#### 取水路防潮ゲートの適合 設置許可基準規則 潮位観測システム (防護用) の適合性 性\*\* 項 内 容 津波防護機能を達成する 潮位観測システム(防護用)のうち潮位計は、津波防護機 安全機能を有する系統のう ち、安全機能の重要度が特にしため、取水路防潮ゲートを 能を達成するため、その構造、動作原理、果たすべき安全 高い安全機能を有するもの 緊急閉止するための閉止 機能の性質等を考慮し、1号、2号、3号及び4号炉共用 は、当該系統を構成する機能 機構は多重化し、各々異な の4チャンネルとし、多重性を確保する設計とする。ま る動作原理により駆動す た、潮位観測システム(防護用)のうち衛星電話(津波防 又は器具の単一故障(単一の 原因によって一つの機械又 る系統とする。また、当該 護用)は、津波防護機能を達成するため、その構造、動作 は器具が所定の安全機能を 閉止機構の駆動に必要な 原理、果たすべき安全機能の性質等を考慮し、1号、2 号、3号及び4号炉共用とし、1号及び2号炉中央制御室 失うこと(従属要因による多) 電源系及び制御系もそれ 重故障を含む。)をいう。以「ぞれに独立した系統によ に3台、3号及び4号炉中央制御室に3台設置し、多重性 下同じ。) が発生した場合で り、多重化した設計とす を確保する設計とする。各系列相互間は、離隔距離を取る あって、外部電源が利用でき る。また、電源系には、無 か必要に応じ障壁を設ける等により、物理的に分離し、所 ない場合においても機能で 停電電源装置を用いるこ 定の安全機能を達成できる設計とする。また、潮位観測シ きるよう、当該系統を構成す とで外部電源喪失時にも ステム(防護用)に必要な電源系もそれぞれに独立した系 る機械又は器具の機能、構造 取水路防潮ゲート閉止が 統により、多重化した設計とする。また、電源系には、安 及び動作原理を考慮して、多 可能とすることにより、単 全系の電源より電源供給することで外部電源喪失時にも潮 重性又は多様性を確保し、及 一故障に対して津波防護 位観測及び当直課長間の連携を可能とすることから、単一 び独立性を確保するもので 機能を失わない設計とす 故障に対して津波防護機能を失わない設計とする。 なければならない。 る。 潮位観測システム(防護用)は、津波の敷地への遡上及び 水位の低下による海水ポンプへの影響を防止する重要安全 施設である取水路防潮ゲートの閉止判断にかかわる直接関 連系である。このため、潮位観測システム(防護用)は、 重要安全施設として取水路防潮ゲート (MS-1) と同等 の設計とする。

※: 既許可のまとめ資料の記載から抜粋

表8 第12条への適合性(3/5)

|   | 次6 第12末、ジル過日に(8/8) |                      |                       |  |  |  |  |  |
|---|--------------------|----------------------|-----------------------|--|--|--|--|--|
|   | 設置許可基準規則           | <br>  取水路防潮ゲートの適合性*  | 潮位観測システム(防護用)         |  |  |  |  |  |
| 項 | 内容                 | 1001001007 1 2 2 1 E | の適合性                  |  |  |  |  |  |
|   | 安全施設は、設計基準事故時及び設計  | 緊急閉止用電源への給電には、難      | 潮位観測システム (防護用) の設計条件を |  |  |  |  |  |
|   | 基準事故に至るまでの間に想定され   | 燃性ケーブルを使用するととも       | 設定するに当たっては、想定される環境    |  |  |  |  |  |
|   | る全ての環境条件において、その機能  | に、電源系等を独立させ、内部火      | 条件を考慮し十分余裕を持って機能維持    |  |  |  |  |  |
|   | を発揮することができるものでなけ   | 災等の影響を受けない設計とす       | が可能な設計とする。            |  |  |  |  |  |
|   | ればならない。            | る。                   | 潮位観測システム(防護用)への給電に    |  |  |  |  |  |
|   |                    | 緊急閉止用電源は、十分な厚さの      | は、難燃性ケーブルを使用するとともに、   |  |  |  |  |  |
|   |                    | コンクリート壁で防護し、竜巻、      | 電源系を独立させ、内部火災等の影響を    |  |  |  |  |  |
| 3 |                    | 外部火災等自然現象による影響を      | 受けない設計とする。            |  |  |  |  |  |
|   |                    | 受けない設計とする。           | 潮位観測システム (防護用) の電源は、十 |  |  |  |  |  |
|   |                    | 基準地震動 Ss に対して、取水路防   | 分な厚さのコンクリート壁で防護し、竜    |  |  |  |  |  |
|   |                    | 潮ゲートの閉止機能を喪失しない      | 巻、外部火災等自然現象による影響を受    |  |  |  |  |  |
|   |                    | 設計とする。               | けない設計とする。             |  |  |  |  |  |
|   |                    |                      | 基準地震動 Ss に対して、潮位観測システ |  |  |  |  |  |
|   |                    |                      | ム (防護用) の機能を喪失しない設計とす |  |  |  |  |  |
|   |                    |                      | る。                    |  |  |  |  |  |
|   | 安全施設は、その健全性及び能力を確  | 原子炉の運転中又は停止中に取水      | 潮位観測システム (防護用) は、その健全 |  |  |  |  |  |
|   | 認するため、その安全機能の重要度に  | 路防潮ゲートの作動試験又は検査      | 性及び能力を確認するため、必要性及び    |  |  |  |  |  |
| 4 | 応じ、発電用原子炉の運転中又は停止  | が可能な設計とする。           | プラントに与える影響を考慮して、原子    |  |  |  |  |  |
|   | 中に試験又は検査ができるものでな   |                      | 炉の運転中又は停止中に試験又は検査が    |  |  |  |  |  |
|   | ければならない。           |                      | 可能な設計とする。             |  |  |  |  |  |

※:既許可のまとめ資料の記載から抜粋

表8 第12条への適合性(4/5)

|   | 設置許可基準規則 | 助水段防御ゲートの適合性※                                                                              | 湖位観測システム (防護田) の商合性                                                                                                                                                                                                                                                                                                         |
|---|----------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 項 | 内容       |                                                                                            | 例は戦例シバノム(例受用)の過日は                                                                                                                                                                                                                                                                                                           |
| 項 |          | 取水路防潮ゲートの適合性**  取水路防潮ゲートと蒸気タービルを蒸気ができるができるではないのではなるができるができるができるができるができるができるができるができるができるができ | 潮位観測システム(防護用)の適合性<br>潮位観測システム(防護用)は、発電所内の蒸気タービン、ポンプ、発電機等の大型回転機器の損壊によって発生する飛来物により、その安全機能を損なうことのないよう、蒸気タービン、ポンプ、発電機等の機器設計、製作、品質管理及び運転管理に十分な考慮を払い、飛来物が発生する可能性を十分低く抑える設計とする。また、潮位観測システム(防護用)と蒸気タービン、ポンプ等とは距離による離隔がなされていることから飛来物による影響は及ぶことはない設計としている。蒸気タービン及び発電機は、破損防止対策を行なうことにより、破損事故の発生確率を低くするとともに、タービンミサイルの発生を仮に想定しても安全機能を有する |
|   |          | 電用原子炉施設の安全性を損な                                                                             | 構築物、系統及び機器への到達確率を低くすることに                                                                                                                                                                                                                                                                                                    |
|   |          | うことのない設計とする。                                                                               | よって、発電用原子炉施設の安全性を損なうことのなり                                                                                                                                                                                                                                                                                                   |
|   |          |                                                                                            | い設計とする。                                                                                                                                                                                                                                                                                                                     |

※: 既許可のまとめ資料の記載から抜粋

表8 第12条への適合性(5/5)

|   | 設置許可基準規則  | 取水路防潮ゲートの  | 潮位観測システム(防護用)の適合性                 |
|---|-----------|------------|-----------------------------------|
| 項 | 内 容       | 適合性**      | 例が観例シベノム(図護用)の週行性                 |
|   | 重要安全施設は、二 | 共用している取水路  | 重要安全施設に該当する潮位観測システム(防護用)は、海水ポンプ室、 |
|   | 以上の発電用原子炉 | に対して設置するこ  | 2号炉海水ポンプ室及び3,4号炉海水ポンプ室に分散して複数台を設  |
|   | 施設において共用  | とにより、1号炉、2 | 置することにより、1号、2号、3号及び4号炉共用として取水路全体  |
|   | し、又は相互に接続 | 号炉、3号炉及び4  | を観測する設計とすることから、2 以上の原子炉施設の安全性が向上す |
|   | するものであっては | 号炉のいずれの津波  | る。なお、潮位観測システム(防護用)のうち潮位計の4つのチャンネ  |
| 6 | ならない。ただし、 | から防護する設備   | ルは独立した系統とし、多重性を持たせることで、各々の潮位計の間で  |
|   | 二以上の発電用原子 | も、基準津波に対し  | 相互に接続しないものとし、基準津波に対して安全機能を損なうおそれ  |
|   | 炉施設の安全性が向 | て安全機能を損なう  | がないように設計する。                       |
|   | 上する場合は、この | おそれがないように  | また、潮位観測システム(防護用)のうち衛星電話(津波防護用)は独  |
|   | 限りでない。    | 設計する。      | 立した系統とし、1号及び2号炉中央制御室に3台、3号及び4号炉中  |
|   |           |            | 央制御室に3台設置し、多重性を持たせることで、基準津波に対して安  |
|   |           |            | 全機能を損なうおそれがないように設計する。             |

※:既許可のまとめ資料の記載から抜粋

表 9 取水路防潮ゲート及び潮位観測システム(防護用)の設計項目

|                   | 多重性又は<br>多様性 | 独立性 | 耐震性 | 非常用電源 | 試験 | 記録※ |
|-------------------|--------------|-----|-----|-------|----|-----|
| 取水路防潮ゲート          | 0            | 0   | 0   | 0     | 0  | -   |
| 潮位観測システム<br>(防護用) | 0            | 0   | 0   | 0     | 0  | 0   |

※:潮位の変化傾向の監視及び履歴の保存が可能であること

取水路防潮ゲート閉止の自動化について検討したが、潮位計の異常検知ロジックに加え、循環水ポンプ停止・弁閉止(プラント停止)の一連操作も自動化の検討対象となる。取水路が取水路防潮ゲートにて閉止されている状態で循環水ポンプの運転を継続した場合、同じ取水路を共有する海水ポンプの取水性に影響が出るため、取水路防潮ゲート閉止前の循環水ポンプの停止等が必須である。

これらを自動化する場合は、取水路防潮ゲート閉止にかかる津波防護機能が、海水ポンプ取水にかかる安全系の冷却機能に悪影響を及ぼさないよう、設計配慮が必要となる。このため、対応時間に余裕がある限りは、安全機能への影響に考慮を要するような、新たな計装設備の追加や、複雑化を要する自動化は適切ではない。

なお、手動操作では、約9分の時間余裕があり、十分余裕をもって対応可能であることから、自動化による時間短縮のメリットは享受せず、ポンプ停止や弁閉止など、海水取水機能に直接的に影響する循環水ポンプ等の操作は、運転員による手動操作を選択する。

- 7. 3. 3 潮位観測システム (防護用)、津波監視設備としての潮位計、潮位 観測システム (補助用)、運転指令設備、保安電話 (固定)及び保 安電話 (携帯) の第 26 条に対する位置づけ
- 7. 3. 3. 1 潮位観測システム(防護用)の位置づけ

取水路防潮ゲートの閉止判断基準(トリガー)を確認するために必要な設備である潮位観測システム(防護用)は、第5条及び第12条への条文適合に加え、第26条第1項第2号の外部状況を把握する設備としての適合性も満たす設計とする。潮位観測システム(防護用)の設計方針は、7.3.5に示す。

#### 7. 3. 3. 2 津波監視設備としての潮位計の位置づけ

潮位計は、第 26 条第 1 項第 2 号の外部状況を把握する設備として、既許可の申請書添付書類八の第 26 条に該当する「6.10.1.2.2 主要設備 (2)中央制御室 b. 気象観測設備等」に「津波、風(台風)、竜巻等による発電所構内の状況の把握に有効なパラメータ(潮位、風向、風速等)を入手するために、気象観測設備等を設置する。」と記載しており、潮位計は、この「等」に包含されおり、今回申請においてもこの機能は変わらない。なお、今回申請における同章において、潮位計は「等」に包含される整理ではなく、明確に設備名称である「潮位計」を記載する。

## 7. 3. 3. 潮位観測システム(補助用)の位置づけ

7.3.3.1 潮位観測システム(防護用)の機能を補助する設備として1号炉及び2号炉の潮位計における潮位を3号及び4号炉中央制御室に、3号及び4号炉の潮位計における潮位を1号及び2号炉中央制御室に表示させるために、送受信ユニット及び監視モニタで構成される潮位観測システム(補助用)を設置する。本システムの設備構成を図22に示す。

図23に示すとおり、潮位観測システム(防護用)のうち潮位計は、1号 炉海水ポンプ室に設置する潮位計を例にとると、潮位検出器からの信号を、 有線により1号及び2号炉中央制御室に設置する電源箱及び演算装置を介 して伝送し、監視モニタ画面にて表示される。

このとき、潮位観測システム(補助用)は、1号炉海水ポンプ室の潮位 検出器からの信号が演算装置で分岐されてから、送受信ユニットを用いた 無線を介して、3号及び4号炉中央制御室に設置する監視モニタにデータ を送信する設計とする。

なお、これと同様に、2号炉海水ポンプ室の潮位検出器からの信号についても送受信ユニットを用いた無線を介して3号及び4号炉中央制御室に設置する監視モニタにデータを送信し、3,4号炉海水ポンプ室の潮位検出器からの信号についても送受信ユニットを用いた無線を介して1号及び2号炉中央制御室に設置する監視モニタにデータを送信する設計とする。

本システムは、安全性向上のために、潮位観測システム(防護用)の機能を補助する設備として、他号炉の海水ポンプ室の潮位を監視することで取水路防潮ゲートの閉止判断基準の確認を補助する機能を有する設備である。

なお、本システムにより、1号及び2号炉当直課長並びに3号及び4号 炉当直課長が、他号炉の観測潮位を確認する機能は、発電所敷地内の外部 状況を把握する機能に該当するため、第26条を適用する。

第26条の各項の適用要否結果を表10に示す。この結果より、本システムは、外部状況把握が必要な設備として第1項第2号を適用対象とする。また、本システムの適合性について表11に示す。

図24に既許可と今回の対策の適用条文の整理結果を示す。

# 7. 3. 3. 4 運転指令設備、保安電話(固定)及び保安電話(携帯)の位置づけ

運転指令設備、保安電話(固定)及び保安電話(携帯)は、第35条第1項の通信連絡設備に必要な設備として、既許可の申請書添付書類人の第35条に該当する「10.13.1.3.1 主要設備 通信連絡設備(1号、2号、3号及び4号炉共用)」に「多様性を確保した通信設備(発電所内)である運転指令設備、電力保安通信用電話設備等を設置又は保管する。」と記載している。(電力保安通信用電話設備とは、保安電話(固定)及び保安電話(携帯)の総称である。)

運転指令設備、保安電話(固定)、保安電話(携帯)は、今回申請においても上記の機能は変わらないが、潮位観測システム(防護用)の機能を補助する設備として、中央制御室並びに3号及び4号炉中央制御室間の連携ができる設計とする。

これらの設備の設備構成を図22に示す。

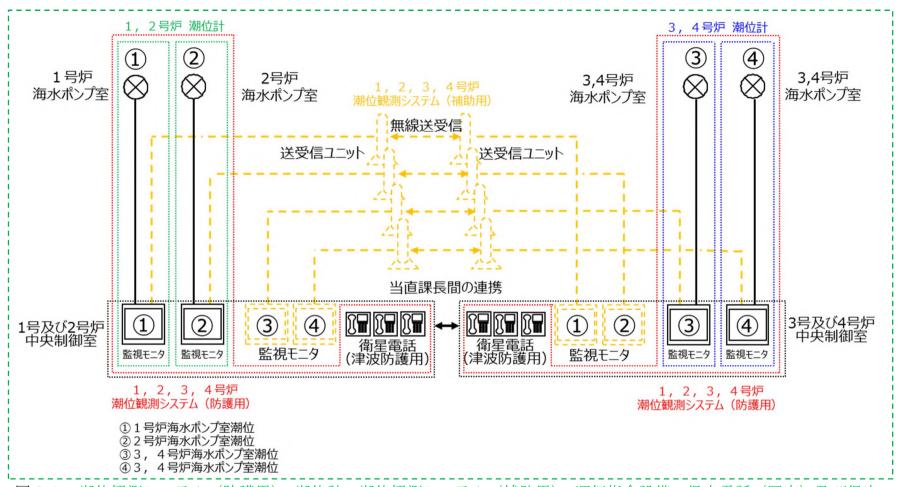



図22 潮位観測システム(防護用)、潮位計、潮位観測システム(補助用)、運転指令設備、保安電話(固定)及び保安 電話(携帯)の設備構成(概要)

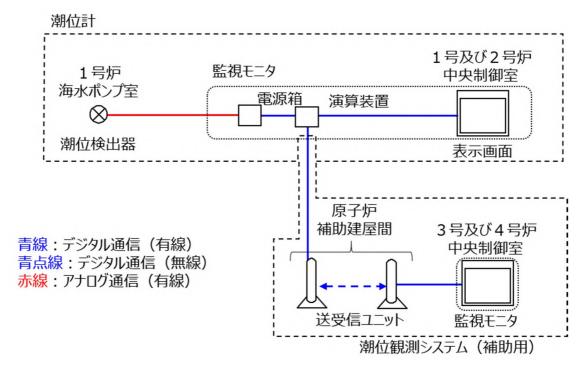



図23 潮位観測システム(補助用)のシステム構成(詳細)

表10 監視モニタ機能一覧

| 潮位観測システ |                          | 潮位観測システ |
|---------|--------------------------|---------|
| ム(防護用)の | 機能及び無線経路の概要              | ム(補助用)の |
| 監視モニタ機能 | DATION O MINIMEDIA O DES | 監視モニタ機能 |
| 演算処理    | 潮位検出器からの信号を演算し、観測潮       | ×:機能無し  |
|         | 位のデジタル値及びトレンドグラフのデ       |         |
|         | ータ信号を監視モニタへ送信する。また、      |         |
|         | 10 分以内に 0.5m 以上下降、又は上昇し  |         |
|         | たことを検知し、警報信号を監視モニタ       |         |
|         | へ送信する。                   |         |
| 画面表示    | 演算装置より映像信号を受信しデジタル       | ○:機能有り  |
|         | 値及びトレンドグラフを画面表示する。       |         |
|         | 演算装置から有線を分岐し、一方は送受       |         |
|         | 信ユニット*を用いた無線を介して、他       |         |
|         | 号炉の中央制御室に設置する監視モニタ       |         |
|         | にデータ送信され、同様に画面表示する。      |         |
| 警報発信    | 演算装置より警報信号を受信し警報音の       | 〇:機能有り  |
|         | 発報及び警報を画面表示する。無線経路       |         |
|         | は上記と同様。                  |         |

※:送受信ユニットを用いた信号伝送にかかる技術設計については、電波法及び無線設備規則に準じた設計としており、それぞれの送受信ユニット間におけるデータ伝送が互いに電波干渉しないよう、それぞれの送受信ユニットが使用する周波数帯を互いに異なる設計とする。具体的には、無線設備規則第四十九条の二十第四号ハに、無線チャンネルは、最小の単位無線チャンネルを 20MHz の整数倍として、複数のチャンネルで構成することを規定しており、20MHz 毎にチャンネルを設定可能である。今回設置する送受信ユニットは、電波干渉を防止するため、最小の単位無線チャンネルの 3 倍にあたる 60MHz 間隔おきに、それぞれの送受信ユニットが使用する周波数帯を設定する。

表10 第26条の各項の適用要否

|   |     |      | 10 和20不切口顶切迹                                                           | /11.2. E                                                                      |
|---|-----|------|------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 項 | 号   | 適用要否 | 津波監視設備としての<br>潮位計の<br>適用要否の理由                                          | 潮位観測システム(防護用)、<br>期位観測システム(補助用)、運転指令設備、<br>保安電話(固定)及び保<br>安電話(携帯)の適用要<br>否の理由 |
|   | _   | ×    | 発電用原子炉及び主要な<br>関連施設の運転状況並び<br>に主要パラメータに該当<br>しないことから対象外。               | 同左                                                                            |
| 1 | 11  | 0    | 発電用原子炉施設に影響<br>を及ぼす可能性のある自<br>然現象等を把握する設備<br>に該当することから対象<br>とする。       | 同左                                                                            |
|   | [1] | ×    | 急速な手動による発電用<br>原子炉の停止及び停止後<br>の発電用原子炉の冷却確<br>保のための操作に該当し<br>ないことから対象外。 | 同左                                                                            |
| 2 | l   | ×    | 発電用原子炉の高温停止<br>及び低温停止に必要な機<br>能に該当しないことから<br>対象外。                      | 同左                                                                            |
| 3 | -   | ×    | 1号及び2号炉中央制御<br>室並びに3号及び4号炉<br>中央制御室の居住性の確<br>保に必要な設備でないこ<br>とから対象外。    | 同左                                                                            |

**※**1:○:要、×:否

表11 第26条への適合性

|   | 女II カゼリネ **ン週日は |              |            |                            |  |  |  |  |
|---|-----------------|--------------|------------|----------------------------|--|--|--|--|
|   |                 | 設置許可基準規則     | 津波監視設備としての | 潮位観測システム(防護用)、             |  |  |  |  |
| 項 | 号               | 内容           |            | 潮位観測システム(補助用)、運転指令設備、      |  |  |  |  |
|   | 万               |              | 潮位計の適合性    | 保安電話(固定)及び保安電話(携帯)の適合性     |  |  |  |  |
|   |                 | 発電用原子炉施設には、次 |            |                            |  |  |  |  |
|   |                 | に掲げるところにより、原 |            |                            |  |  |  |  |
|   | _               | 子炉制御室(安全施設に属 | _          |                            |  |  |  |  |
|   |                 | するものに限る。以下この |            |                            |  |  |  |  |
|   |                 | 条において同じ。)を設け |            |                            |  |  |  |  |
|   |                 | なければならない。    |            |                            |  |  |  |  |
|   |                 | 発電用原子炉施設の外の  | 津波による発電所構内 | 津波による発電所構内の状況の把握に有効なパラメータ  |  |  |  |  |
| 1 |                 | 状況を把握する設備を有  | の状況の把握に有効な | は、潮位観測システム(防護用)による観測潮位と、衛  |  |  |  |  |
|   |                 | するものとすること。   | パラメータ(自号炉の | 星電話(津波防護用)を用いた1号及び2号炉当直課長  |  |  |  |  |
|   |                 |              | 潮位)を入手できる設 | 並びに3号及び4号炉当直課長の連携により、中央制御  |  |  |  |  |
|   | 1 1             |              | 計とする。      | 室にて取水路防潮ゲートの閉止判断基準を確認できる設  |  |  |  |  |
|   |                 |              |            | 計とする。また、取水路防潮ゲートの閉止判断基準の確  |  |  |  |  |
|   |                 |              |            | 認の補助のため、潮位観測システム(補助用)、運転指令 |  |  |  |  |
|   |                 |              |            | 設備、保安電話(固定)及び保安電話(携帯)により中  |  |  |  |  |
|   |                 |              |            | 央制御室にて確認できる設計とする。          |  |  |  |  |

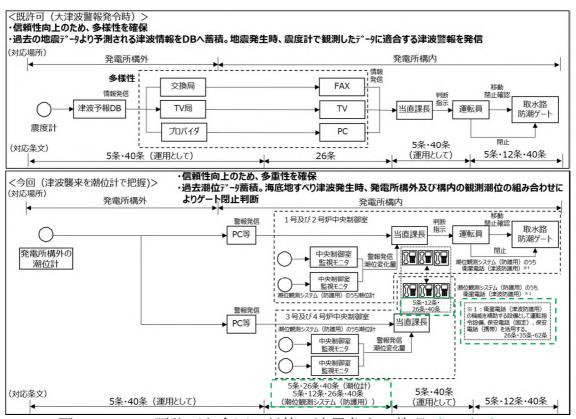



図24-1 既許可と今回の対策の適用条文の整理(1/2)

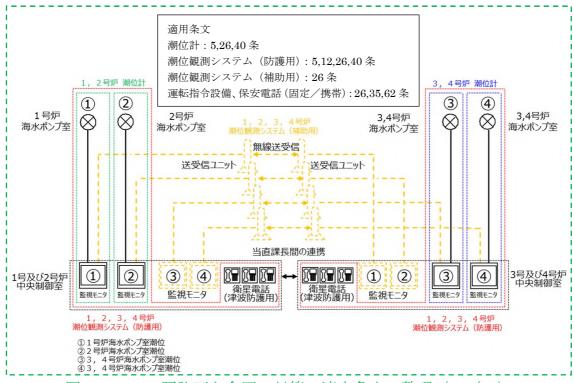



図24-2 既許可と今回の対策の適応条文の整理(2/2)

## 7. 3. 4 潮位観測システム (防護用) の第6条に対する位置づけ

既許可では、取水路防潮ゲートは設計竜巻により損傷する場合には、応急処置により安全上支障のない期間に必要な機能を確保することが可能な設計とすることにより、安全機能を損なうことのない設計としている。また、津波防護施設及び津波監視設備については、竜巻は気象現象、津波は地震又は海底地すべりにより発生し、発生原因が異なり、同時に発生することは考えられず、事象の組み合わせは考慮しないことから、竜巻防護施設として抽出していない。

この位置づけを踏まえ、取水路防潮ゲートと同等の設計とする潮位観測システム(防護用)については、設計竜巻により損傷する場合には、応急処置により安全上支障のない期間に必要な機能を確保することが可能な設計とすることにより、安全機能を損なうことのない設計とする。竜巻の襲来後、潮位観測システム(防護用)に損傷を発見した場合の措置について、潮位観測システム(防護用)に損傷を発見した場合、安全機能回復の応急処置を行う手順等を整備し、的確に実施する。また、応急処置が困難と判断された場合にはプラントを停止する手順等を整備し、的確に実施する。

## 7. 3. 5 潮位観測システム(防護用)の設計方針

潮位観測システム(防護用)のうち潮位計は、津波の襲来を把握するために必要となる潮位検出器及び監視モニタ(電源系含む)を、主要構成品とする。4台の潮位計のうち、1台の潮位計において観測潮位が0.5m以上下降、又は上昇した時点で、1号及び2号炉中央制御室並びに3号及び4号炉中央制御室の監視モニタに指示及び警報の発信を行う。

また、衛星電話(津波防護用)は、取水路防潮ゲートの閉止判断基準に達することを1号及び2号炉当直課長並びに3号及び4号炉当直課長が把握するために必要となる衛星電話(津波防護用)本体を、主要構成品とする。

潮位潮観測システム(防護用)は、以下の方針で設計する。

(1) 潮位観測システム(防護用)のうち潮位計は、単一故障した場合において、津波防護機能を喪失しないよう1号、2号、3号及び4号炉共用の4チャンネル構成とし、多重性を確保する設計とする。衛星電話(津波防護用)は、津波防護機能を喪失しないよう、1号、2号、3号及び4号炉中央制御室に3台設置し、多重性を確保する設計とする。また、潮位観測システム(防護用)に必要な電源系もそれぞれに独立した系統により多重化した設計とする。また、電源系は、安全系の電源より電源供給することで外部電源喪失時にも潮位観測及び当直課長間の連携を可能とすることから、単一故障に対して津波防護機能を喪失しない設計とする。潮位観測システム(防護用)の電源概要図をそれぞれ図25に示す。

潮位観測システム(防護用)のうち潮位計は、取水路防潮ゲートと同等の設計にすることから多重化(2台目)し、またこれに加えて信頼性向上を図る(試験可能性や単一故障を考慮する)設計(3台目)とし、単一故障を想定しても動作を保証する設備数(3チャンネル)を所要チャンネルとする。ただし、実運用を考慮し、運用性の更なる向上のため、予備の潮位計を1台追加し、4台構成とする。なお、いずれの潮位計でも施設影響が生じるケースを漏れなく確認でき、2チャンネルによる検知がどのような組み合わせでも、取水路防潮ゲート閉止判断に差異は生じないことから、閉止判断に用いる潮位計は固定せず、2台の観測潮位がいずれも10分以内に0.5m以上上昇した時点、又は、2台の観測潮位がいずれも10分以内に0.5m以上上昇した時点、又は、2台の観測潮位がいずれも10分以内に0.5m以上上昇した時点、又は、2台の観測潮位がいずれも10分以内に0.5m以上上昇した時点で取水路防潮ゲートを閉止する。

衛星電話(津波防護用)は、MS-1設備である取水路防潮ゲートと同等の設計にすることから、1号及び2号炉中央制御室並びに3号及び4号炉中央制御室のそれぞれにおいて、多重化(2台目)し、またこれに加えて信頼性向上を図る(試験可能性を考慮する)設計(3台目)とし、単一故障を想定しても動作を保証する設備数(2台)を所要チャンネルとする。

(2) 潮位計は、チャンネル相互を分離し、それぞれのチャンネル間において独立性を確保する設計とする。衛星電話(津波防護用)は、1号及び

- 2号炉中央制御室に3台、3号及び4号炉中央制御室に3台を、互いに 分離して設置することで独立性を確保する設計とする。
- (3) 潮位観測システム(防護用)への給電には、難燃性ケーブルを使用し、 電源系を独立させ、内部火災等の影響を受けない設計とする。また、潮 位観測システム(防護用)の電源は、十分な厚さのコンクリート壁で防 護し、竜巻、外部火災等自然現象による影響を受けない設計とする。
- (4) 基準地震動 Ss に対して、潮位観測システム(防護用)の機能を喪失しない設計とする。
- (5)原子炉の運転中又は停止中に潮位観測システム(防護用)の試験又は 検査が可能な設計とする。
- (6) 潮位観測システム(防護用)と蒸気タービン、ポンプ等とは距離による離隔がなされていることから飛来物による影響は及ぶことはない設計としている。蒸気タービン及び発電機は、破損防止対策を行なうことにより、破損事故の発生確率を低くするとともに、タービンミサイルの発生を仮に想定しても安全機能を有する構築物、系統及び機器への到達確率を低くすることによって、発電用原子炉施設の安全性を損なうことのない設計とする。
- (7) 潮位観測システム(防護用)のうち潮位計は、取水路防潮ゲートの閉止判断にかかわる必要な情報を1号及び2号炉中央制御室並びに3号及び4号炉中央制御室の監視モニタに指示及び警報発信し、衛星電話(津波防護用)を用いた1号及び2号炉当直課長と3号及び4号炉当直課長の連携により、発電所全体における津波の襲来状況を的確に把握することができ、安全性が向上するため、取水路防潮ゲートと同様に全共用とする。

なお、潮位検出器、監視モニタ等からなる潮位計の4つのチャンネルは独立した系統とし、多重性を持たせることで、各々の潮位計の間で相互に接続しないものとし、基準津波に対して安全機能を損なうおそれがないように設計する。

また、衛星電話(津波防護用)は、1号及び2号炉中央制御室に3台、3号及び4号炉中央制御室に3台を、互いに分離して設置することで独立性を確保し、基準津波に対して安全機能を損なうおそれがないように設計する。

#### 7. 3. 6 主要設備

- (1) 潮位観測システム(防護用)のうち潮位計
- a. 潮位検出器

潮位検出器は、単一故障した場合において、津波防護機能を喪失しないよう多重化しており、それぞれのチャンネルは、1号及び2号炉海水ポンプ室並びに3,4号炉海水ポンプ室に設置することにより物理的に分離している。

また、これらの潮位検出器に必要な電源は、異なる安全系の電源からそれぞれ独立に給電するとともに、潮位検出器から監視モニタまでの配線もチャンネル相互に分離し電気的にも独立性を保つようにする。

### b. 監視モニタ

監視モニタは、単一故障した場合において、津波防護機能を喪失しないよう多重化しており、それぞれのチャンネルは、1号及び2号炉中央制御室並びに3号及び4号炉中央制御室においてチャンネル毎に独立した監視モニタを設置していることから物理的に分離している。

また、監視モニタに必要な電源は、異なる安全系の電源からそれぞれ独立に給電するとともに、潮位検出器及び監視モニタ間の配線もチャンネル相互に分離し電気的にも独立性を保つようにする。

潮位観測システム(防護用)のうち衛星電話(津波防護用)は、単一故障した場合において、津波防護機能を喪失しないよう多重化しており、それぞれの衛星電話(津波防護用)は、1号及び2号炉中央制御室に3台、3号及び4号炉中央制御室に3台設置し、互いに独立して設置していることから物理的に分離している。

また、これらの衛星電話(津波防護用)に必要な電源は、異なる安全系の電源からそれぞれ独立に給電する。

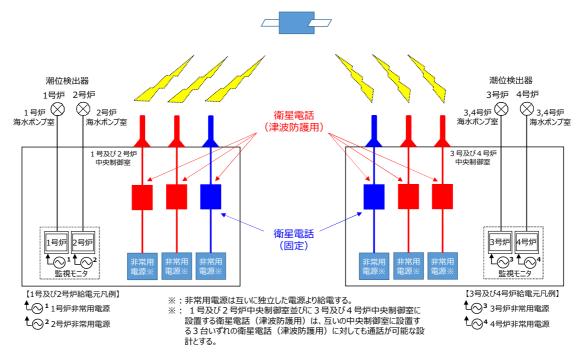



図25 潮位観測システム (防護用) の電源概要図

## 7. 3. 7 チャンネル数及び閉止ロジックの選定

#### (1) 基本的な論理構成

今回の潮位計測による取水路防潮ゲート閉止は、潮位観測システム(防護用)をMS-1である取水路防潮ゲートと同等の設計とすることから多重化が必要なため、2 チャンネル以上の論理構成とし、これに加えて試験可能性や単一故障を考慮し、検知信頼性向上を図る。その候補として、2 out of 3 と、1/2 チャンネルのそれぞれに予備を設ける場合(1 out of 2 twice) がある。

2 out of 3 は、2 台の潮位計の観測潮位がいずれも 10 分以内に 0.5m 以上下降し、その後、最低潮位から 10 分以内に 0.5m 以上上昇した時点、 又は、2 台の観測潮位がいずれも 10 分以内に 0.5m 以上上昇し、その後、 最高潮位から 10 分以内に 0.5m 以上下降したことを確認した時点で取水 路防潮ゲート閉止の判断に至る。

一方、1 out of 2 twice は、観測潮位が10分以内に0.5m以上下降し、その後、最低潮位から10分以内に0.5m以上上昇した時点、又は、観測潮位が10分以内に0.5m以上上昇し、その後、最高潮位から10分以内に0.5m以上下降したことを確認した2台の潮位計が1/2ロジックを構成する片系列の2台の潮位計であった場合、取水路防潮ゲート閉止の判断に至らず、2 out of 3より取水路防潮ゲート閉止の判断が遅くなるケースがある。

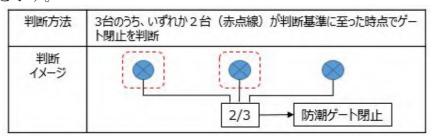



図 26-1 2 out of 3の判断方法とイメージ

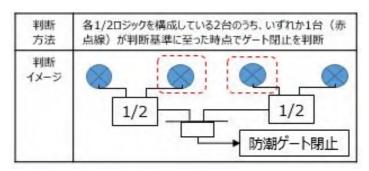



図 26-2 1 out of 2 twice の判断方法とイメージ

## (2) 実運用を踏まえた論理構成

実運用を考慮し、運用性の更なる向上のため、予備の潮位計を1台追加する。仮に、潮位計1台を使用状態から取り外し点検している間に残り3台のうちの1台が故障した場合、その1台は動作とみなし、もう1台が動作すれば取水路防潮ゲートを閉止する。この実運用を踏まえ、単一故障を想定しても動作を保証する設備数(3チャンネル)を所要チャンネルとして保安規定に記載する。この設定については、平成26年4月24日審査会合において、新規制基準の審査状況を踏まえた保安規定改正に係る基本方針として確認済みであり、今回の運用についても本件の所要チャンネルも同様の考え方で保安規定等に定める。図27に当該資料の抜粋を示す。なお、設置許可で4チャンネル構成、保安規定で所要3チャンネルとした審査実績があり、その例として、高浜1,2号炉の原子炉安全保護系の原子炉圧力、加圧器水位等があり、既許可では4チャンネル、既認可の保安規定では所要3チャンネルと記載している。

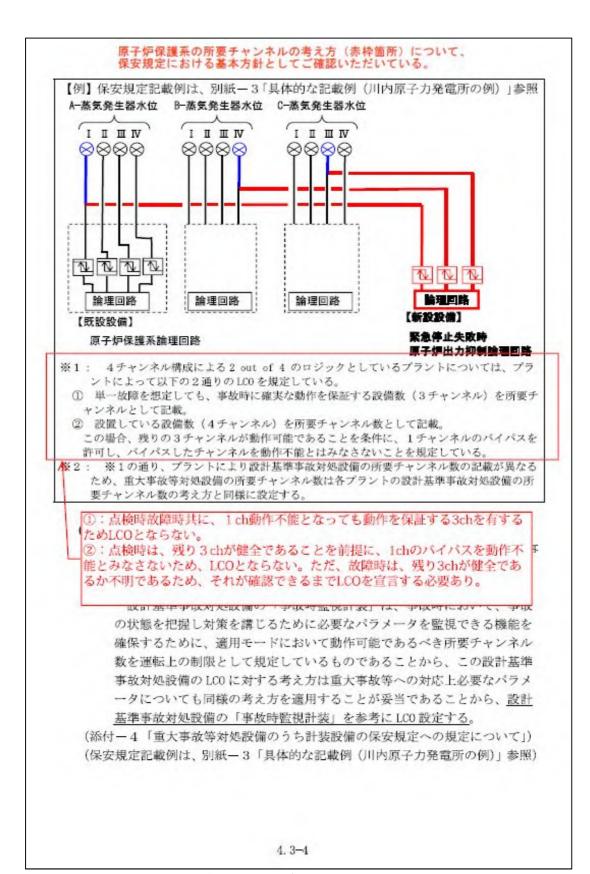



図27 新規制基準の審査状況を踏まえた保安規定改正に係る基本方針 (抜粋)

## 7. 3. 8 潮位観測システム(防護用)の設置

取水路防潮ゲートの閉止判断基準の潮位計測点は、施設影響が生じるケースを確実に確認できることを前提に、最も影響を受ける海水ポンプ毎の潮位計を用いる方針としている。既許可における津波監視設備として、潮位計を3台設置することとしているが、「7.3.2 設備の重要度分類を踏まえた整理」及び「7.3.7 チャンネル数及び閉止ロジックの選定」を踏まえ、2号機に1台追加設置し、潮位計4台による運用とする。

また、衛星電話(津波防護用)は、MS-1設備である取水路防潮ゲートと同等の設計とするため、1号及び2号炉中央制御室に3台、3号及び4号炉中央制御室に3台設置し、6台による運用とする。

潮位観測システム(防護用)の設置位置を図28に示す。



3、4号炉海水ポンプ室 1号炉海水ポンプ室 2号炉海水ポンプ室 潮位計:2台 潮位計:1台 潮位計:1台

図28 潮位観測システム(防護用)の設置位置図

#### 7. 3. 9 潮位観測システム(防護用)の測定点の妥当性

取水路防潮ゲートの閉止判断基準の潮位計測点は、施設影響が生じるケースを確実に確認できることを前提に、津波防護対象設備を設置しているエリアのうち、最も津波の影響を受ける可能性がある1号、2号及び3,4号炉海水ポンプ室に設置している潮位計を用いる方針としている。このため、トリガーの網羅性確認のための仮設定値である10分以内0.7mの潮位変動で、各潮位計により施設影響が生じるケースが漏れなく確認でき、2チャンネルによる検知がどのような組み合わせでも、取水路防潮ゲート閉止判断に差異を生じないことを確認する。

まず、0.7m のトリガーで施設影響が生じるケースがどの潮位計でも差異なく検知できることを確認する。図 29 のとおり、海底地すべりエリア B の破壊伝播速度  $1.0\sim0.4m/s$  及び海底地すべりエリア C の破壊伝播速度  $0.5\sim0.2m/s$  の時刻歴波形から、縦軸に 1 波目の水位変動量、横軸にその後の最高・最低水位を潮位計ごとにプロットした。その結果、敷地高さを上回る波は、どの潮位計でも 0.7m のトリガーで 1 波目を全て捉えていることを確認した(青枠点線部分)。

次に10分のトリガーにより、施設影響が生じるケースがいずれの潮位計でも差異なく検知できることを確認する。図30のとおり、縦軸に1波目の水位変動量、横軸に1波目の水位が0.7m下降するのに要する時間を、潮位計ごとにプロットした。その結果、敷地高さを上回る波は、どの潮位計でも10分のトリガーで1波目を全て捉えていることを確認した(青枠点線部分)。

以上から、 $1\sim4$  号炉海水ポンプ室潮位計のうち、いずれの潮位計の組合せであっても施設影響が生じるケースが漏れなく確認でき、取水路防潮ゲート閉止判断に差異がないことを確認した。なお、図31のとおり、時刻歴波形の一例として「隠岐トラフ海底地すべりエリア C (Es-T2、Kinematic モデル)」(破壊伝播速度0.5m/s)を赤枠点線で示すが、青枠内に収まることを確認した。

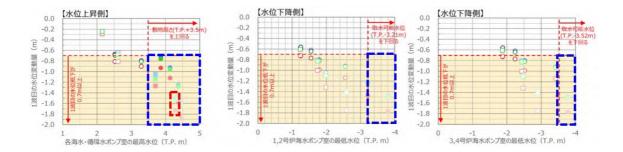
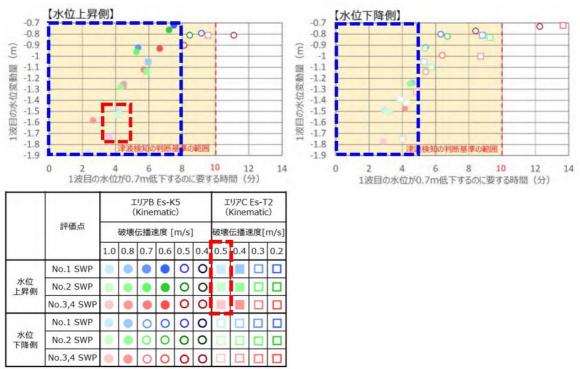




図29 1波目の水位変動量と最高水位・最低水位の関係図



○及び□の凡例(塗りつぶし:施設影響が生じる、白抜き:施設影響が生じない)

図30 1波目の水位変動量と0.7m低下に要する時間の関係図

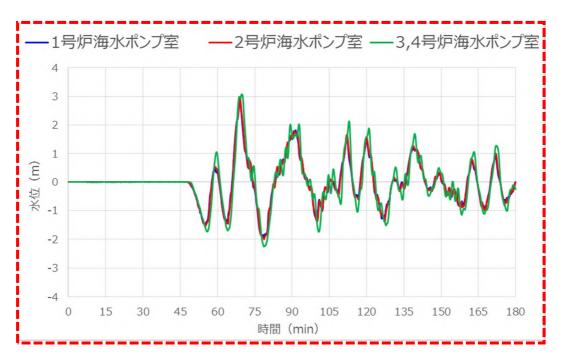



図31 隠岐トラフ海底地すべりエリアC (Es-T2、Kinematic モデル)」(破壊 伝播速度 0.5m/s)の時刻歴波形

7. 3. 10 潮位観測システム(防護用)の潮位計と津波監視設備の潮位計の 識別について

### (1) 背景

前章までは、潮位観測システム(防護用)の基準適合性とそのために必要な機能と設備構成について整理した。本章では、既許可の津波監視設備としての潮位計と、今回変更における津波防護施設としての潮位観測システム(防護用)の潮位計の位置づけを以下にて整理する。

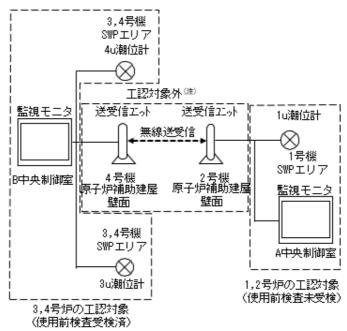
(2) 既許可の津波監視設備としての潮位計の機能及び設備構成

既許認可において、潮位計は「津波監視設備」として位置付けている。潮位計は、潮位を計測する「潮位検出器」及び中央制御室にて信号を処理し潮位を表示する「監視モニタ」等より構成される。

この潮位計は、1,2 号炉については、自号炉の防護対象施設である海水ポンプへの影響を確認するため、津波高さ計測を目的として1 号炉海水ポンプ室に1台設置し、1,2 号炉中央制御室の監視モニタで監視する設計としている。また、3,4 号炉についても同様の目的として、3,4 号炉の海水ポンプエリアに2台設置し、3,4 号炉中央制御室の監視モニタで監視する設計としている。

なお、技術基準適合上は必須ではないが、自主的に送受信ユニットを用い、 1,2 号炉及び3,4 号炉中央制御室にて他号炉の潮位を参照できるようにしている。(図32)

(3) 今回変更における津波防護施設としての潮位観測システム(防護用)の潮位計の機能及び設備構成


今回変更により、7.3.6章に記載のとおり、多重性及び運用性向上の観点から、2号機の海水ポンプエリアに同一構成の設備を追加設置するとともに、現地の潮位検出器ごとに独立した計測系統に再構成した。また、監視モニタの機能(プログラム)には、観測潮位が10分以内に0.5m以上下降、又は上昇したことを検知する演算機能及び警報機能を追加した。なお、機能追加に伴い新たに設置する演算器及び電源箱は、監視モニタを構成する部品の一部であり、潮位計の主たる設備構成としては、潮位を計測する「潮位検出器」及び中央制御室にて信号を処理し潮位を表示する「監視モニタ」が追加となる。(図33)

#### (5) まとめ

潮位観測システム(防護用)の潮位計は、全共用である取水路防潮ゲートの閉止判断を目的とした「津波防護施設」としての機能となる。よって、潮

位観測システム(防護用)の潮位計は、全共用として1号及び2号炉中央制御室並びに3号及び4号炉中央制御室で監視する設計とする。

既許可の潮位計は、(2)のとおり、津波高さ計測を目的とした「津波監視設備」としての機能に変更はない。ただし、(3)のとおり、2号炉海水ポンプ室に設置する潮位計の追加並びに3号炉及び4号炉潮位モニタを分離する設計とする。(3,4号炉の申請の場合も同様である。)



注:技術基準適合上は必須ではないが、申請範囲外に送受信ユニットを用い、1,2 号炉及び3,4号炉中央制御室にて他号炉の潮位を参照できるようにしている。

図32 既許可の潮位計の設備構成

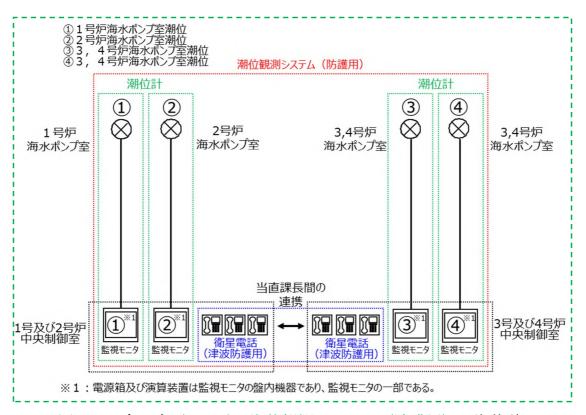



図33 今回変更における潮位観測システム (防護用) の潮位計 及び潮位計の設備構成

## 7. 4 大津波警報と潮位観測システム(防護用)による津波襲来判断の同等性 7. 4. 1 背景

高浜発電所における取水路防潮ゲート閉止にかかる対応について、既許可では、大津波警報の発表により1号及び2号炉中央制御室にて津波襲来判断を行い、取水路防潮ゲート閉止の操作を行う運用としている。今回の運用は、津波警報等の発表されない海底地すべりによる津波の襲来を潮位観測システム(防護用)による水位変動検知により判断することから、これらの津波襲来判断の同等性の検討を行った。

#### 7. 4. 2 津波襲来判断時の対応について

#### (1) 既許可の基準津波1における対応

既許可の基準津波 1 は地震随伴である。大津波警報は、地震発生により、地震の規模・位置が推定され、これと津波予報データベースのシミュレーション結果が照合された上で、各予報区の予測点において、沿岸での高さに換算した津波の予想高さが 3m 以上となるときに発表される。これにより、福井県もしくは京都府の予報区において、大津波警報が発表された場合、FAX等にて情報を入手し、施設影響が生じる基準津波1の発電所襲来を認識する。津波の襲来を認識すると、1号及び2号炉当直課長は取水路防潮ゲートの閉止判断を行う。対応の流れを図34に示す。

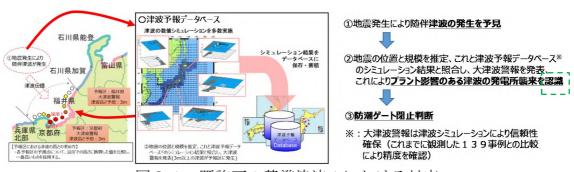



図34 既許可の基準津波1における対応

### (2) 津波警報等が発表されない可能性がある津波への対応

津波警報等が発表されない海底地すべりによる津波に対しては、発電 所構外の観測潮位により津波起因の水位変動を確認することで、可能な 限り早期に津波発生を予見する。その後、発電所構内の1号及び2号炉 並びに3号及び4号炉中央制御室に設置している潮位観測システム(防 護用)にて潮位変動を検知することで、施設影響が生じるケースの発電所 襲来を認識する。津波の襲来を認識すると、1号及び2号炉当直課長は取 水路防潮ゲートの閉止判断を行う。対応の流れを図35に示す。

なお、発電所構外の観測潮位を活用した「津波警報等が発表されない津 波に可能な限り早期に対応するための運用」の詳細は、10章にて述べる。

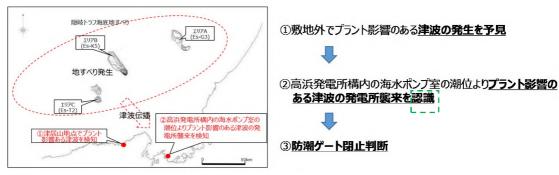



図35 津波警報等が発表されない可能性がある津波への対応

### 7. 4. 3 津波襲来判断の同等性について

津波警報等が発表されない海底地すべりによる津波に対しては、発電所構 外の観測潮位を可能な限り活用し、構内の潮位観測と組み合わせることで、可 能な限り早期に取水路防潮ゲート閉止準備や閉止判断する運用とする。この 運用においては、発電所構外の観測潮位の信頼性を確保することと相まって、 大津波警報に基づき津波に対応する既許可の運用と同様、可能な限り早期に 津波発生を予見し、対応する設計方針としている。

大津波警報に基づき津波に対応する既許可の運用と、今回の発電所構外の 観測潮位と構内の潮位観測を組み合わせる運用の流れの比較を図36に示す。 既許可と今回の運用は、いずれも信頼性向上のための多重性若しくは多様性 を確保し、過去の蓄積データをもとに津波襲来を可能な限り早期に判断し対 応する点で、両者の設計方針は概ね同等であると考えている。

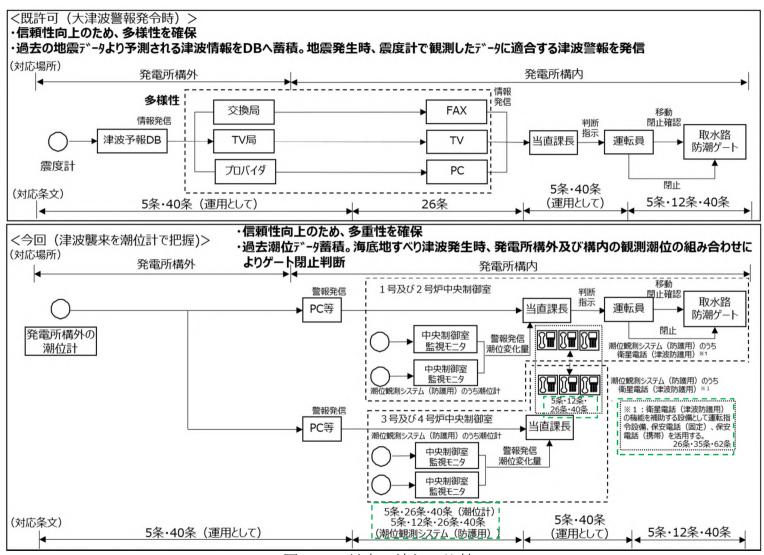



図36 対応の流れの比較

#### 8. 基準津波の選定

### 8.1 背景

2章の「取水路防潮ゲート開状態での敷地への影響と津波波形の特徴」に係る検討において、隠岐トラフ付近に分布する38の海底地すべり跡を位置及び向きによってエリアA~Cに分けた上で、エリア毎に最大規模となる海底地すべり地形として、エリアAのEs-G3、エリアBのEs-K5、エリアCのEs-T2を選定し、これらに対する津波水位計算を実施した。この結果、敷地高さ(T.P.+3.5m)を上回る水位及び、海水ポンプの取水可能水位(1,2号炉海水ポンプ:T.P.-3.21m、3,4号炉海水ポンプ:T.P.-3.52m)を下回る水位となる波源は、海底地すべりエリアB(Es-K5、Kinematicモデル)と海底地すべりエリアC(Es-T2、Kinematicモデル)であることを確認した。

これを踏まえ、6章の「津波襲来の判断基準(トリガー)の網羅性・妥当性確認」において、隠岐トラフ付近に分布する38の海底地すべり跡のうち、最大規模以外の波源について、施設影響が生じる波源があるか確認した結果、2章で検討した海底地すべりエリアB(Es-K5、Kinematicモデル)と海底地すべりエリアC(Es-T2、Kinematicモデル)のみが施設影響が生じる波源であることを確認した。さらに、施設影響が生じる波源を用いて、崩壊規模と破壊伝播速度のパラメータスタディを行い、取水路防潮ゲートの閉止判断基準(トリガー)を「潮位観測システム(防護用)のうち、2台の観測潮位がいずれも10分以内に0.5m以上下降し、その後、最低潮位から10分以内に0.5m以上上昇する。」とすることで、施設影響が生じるケースを網羅的に確認できることを確認した。

本章では、以上の検討結果を踏まえ、「各評価点において最高水位・最低水位となる波源及び施設影響が生じる波源」、「トリガーの設定に用いる波源」の 観点を踏まえた基準津波の選定について説明する。なお、本章で実施する津波 水位計算の計算手法及び計算条件については、2章で実施した津波水位計算 の計算手法及び計算条件と同じとする。

#### 8.2 基準津波の選定方針

既許可の基準津波評価では、「敷地周辺に影響を及ぼした過去の津波」、「地震に起因する津波」、「地震以外に起因する津波」及び「地震に起因する津波と地震以外に起因する津波の組み合わせ」について検討し、基準津波1及び基準津波2を選定している。一方で、今回の評価対象である津波警報等が発表されない可能性のある津波は、波源が「隠岐トラフ海底地すべり」であることから「地震以外に起因する津波」に該当する。このため、本検討では、既許可の基準津波評価における「地震以外に起因する津波」のうち、「海底地すべりに起因する津波」について「津波警報等が発表されない場合」の評価を新たに実施する。

既許可の基準津波評価では、津波警報等に基づいて取水路防潮ゲートを閉止することを前提とし、取水路側の各評価点(取水路防潮ゲート前面及び各ポンプ室)は、取水路防潮ゲートの「開」「閉」の違いによって施設影響の観点で重視すべき度合が異なることから、取水路防潮ゲートが閉止された後に津

波の第1波が到達する場合(取水路防潮ゲート「閉」で評価)と、取水路防潮ゲートが閉止される前に津波の第1波が到達する場合(取水路防潮ゲート「開」で評価)に区分して評価している。今回、さらに「津波警報等が発表されない場合(取水路防潮ゲート「開」で評価)」の評価を追加することを踏まえ、基準津波の選定方針は以下の①~③のとおりとする。

## ① 施設影響が生じる波源がない場合の選定方針

施設影響が生じる波源がない場合には、各評価点において最高水位・ 最低水位となる波源を基準津波として選定する。ただし、同一の評価点 における最高水位・最低水位が同程度のケースが複数ある場合は、基準 津波としては、他の評価点における最高水位・最低水位の影響が大きな ケースを代表として選定する。

## ② 施設影響が生じる波源がある場合の選定方針

耐津波設計における津波防護の観点では、施設影響が生じる全てのケースに対して安全機能を損なわないことが求められる。耐津波設計では 基準津波を用いて検討を行うことから、施設影響が生じる波源がある場合は、それらを全て基準津波として選定する。

## ③ 津波警報等が発表されない場合の留意点

津波警報等が発表されない場合には津波警報等に基づく取水路防潮ゲート閉止ができないため、耐津波設計においては、ゲート内への津波の浸入を前提としながら施設の安全性を損なわない設計とする必要がある。 したがって、耐津波設計において施設影響が生じる津波波形を網羅的に確認できるように基準津波を策定する必要がある。

具体的には、津波警報等が発表されない場合の対象波源である海底地すべりでは、施設影響の確認のための津波水位計算で設定する崩壊規模及び破壊伝播速度に対して部分的な崩壊や遅い崩壊となる可能性があり、その場合でも施設影響が生じる津波は発生し得る。このため、②に基づいて施設影響が生じる波源を基準津波として選定する場合には、基準津波の波源としては、施設影響が生じる全ての海底地すべりを選定した上で、それぞれの海底地すべりにおける崩壊規模及び破壊伝播速度の値は固定しないこととする。

#### 8.3 津波警報等が発表されない場合の評価

#### (1) 海底地すべりに起因する津波評価(2章検討結果の再掲)

地震以外に起因する津波のうち、「隠岐トラフ海底地すべり」による津波について、津波水位計算を実施した。評価対象とする海底地すべりは、隠岐トラフ付近に分布する 38 の海底地すべり跡を位置及び向きによってエリアA~Cに分けた上で、エリア毎に最大規模の海底地すべりとして、エリアAの Es-G3、エリアBの Es-K5、エリアCの Es-T2 を選定した。この際、海底地すべりの規模の比較では、海底地すべり地形における崩壊部の鉛直断

面積を指標とした。海底地すべりによる津波の評価では、初期水位形状の算出を複数の手法により行うこととし、Watts 他の予測式及び Kinematic モデルを用いた。

津波水位計算の結果を表 1 に示す。各評価点における水位は、海底地すべりエリア B (Es-K5、Kinematic モデル)による津波が最も大きい結果となり、各ポンプ室位置で、敷地高さ (T.P.+3.5m)を上回る水位及び、海水ポンプの取水可能水位 (1,2 号炉海水ポンプ: T.P.-3.21m、3,4 号炉海水ポンプ: T.P.-3.52m)を下回る水位となった。また、エリア C (Es-T2、Kinematic モデル)では、3,4 号炉海水ポンプ室で敷地高さ (T.P.+3.5m)を上回る水位となった。

表1 海底地すべりの津波評価結果

数字は、T.P.(m)

|         |                   | 取水路   |     |                      |     | 水位上昇              |                     |       |         | 水位下降              |                    |                     |  |
|---------|-------------------|-------|-----|----------------------|-----|-------------------|---------------------|-------|---------|-------------------|--------------------|---------------------|--|
|         |                   | 防潮ゲート | 取水路 | 3,4号炉<br>循環水<br>ポンプ室 | 海水  | 2号炉<br>海水<br>ポンプ室 | 3,4号炉<br>海水<br>ポンプ室 | 放水口前面 | 放水路 (奥) | 1号炉<br>海水<br>ポンプ室 | 2 号炉<br>海水<br>ポンプ室 | 3,4号炉<br>海水<br>ポンプ室 |  |
| エリアA    | Watts他の予測式        | 開     | 0.6 | 0.6                  | 0.6 | 0.6               | 0.6                 | 0.6   | 0.6     | -0.5              | -0.6               | -1.1                |  |
| (Es-G3) | Kinematicモデルによる方法 | 開     | 2.0 | 2.3                  | 2.1 | 2.2               | 2.6                 | 1.6   | 1.8     | -1.2              | -1.4               | -2.2                |  |
| エリアB    | Watts他の予測式        | 開     | 2.2 | 2.5                  | 2.3 | 2.4               | 2.5                 | 1.9   | 2.1     | -1.4              | -1.5               | -2.1                |  |
| (Es-K5) | Kinematicモデルによる方法 | 開     | 3.6 | 3.9                  | 3.7 | 3.8               | 3.8                 | 3.7   | 4.0     | -3.6              | -3.7               | -3.7                |  |
| エリアC    | Watts他の予測式        | 開     | 1.4 | 1.8                  | 1.4 | 1.6               | 1.8                 | 1.1   | 1.4     | -1.3              | -1.4               | -2.2                |  |
| (Es-T2) | Kinematicモデルによる方法 | 開     | 3.2 | 3.7                  | 3.3 | 3.5               | 3.6                 | 3.7   | 3.9     | -2.4              | -2.5               | -2.8                |  |

(2)海底地すべりのうち施設影響が生じる波源の確認(6章検討結果の再掲)

津波警報等が発表されない場合では、エリアB及びエリアCの最大規模の波源として抽出した海底地すべりによる津波の水位が、敷地高さを上回る、または、海水ポンプの取水可能水位を下回る結果となった。施設影響が生じる波源がある場合にはそれら全てを抽出し、基準津波として選定する必要があることから、影響検討(以下、「パラメータスタディ」という。)により施設影響が生じる波源を抽出する。

敷地影響が生じる波源を抽出するため、対象とする地すべりをパラメータスタディに用いることとし、各エリアで規模が 2 位以下の海底地すべりも対象とした上で、津波警報等が発表されない場合において施設影響が生じる波源の確認を行う。施設影響が生じる波源の確認においては、耐津波設計で考慮される潮位のばらつき(水位上昇側:+0.15m、水位下降側:-0.17m)と高潮の裕度(水位上昇側:+0.49m)を津波水位計算結果に加味した値を、敷地高さ及び取水可能水位と比較する。また、水位変動が最も大きくなるように、Kinematicモデルに用いるパラメータのうち、崩壊規模及び破壊伝播速度を保守的に最大値で計算する。

施設影響が生じる波源の確認は、以下の①~③の手順で実施する。

- ① 隠岐トラフ海底地すべりを位置・向きによりエリアA $\sim$ Cに分類し、各エリアで規模が1位 $\sim$ 3位のものを選定する。
- ② 隠岐トラフ海底地すべりのうち、エリアに関わらず、発電所方向に崩壊するものを選定する。

③ ①及び②で選定した海底地すべりによる津波の計算結果から、施設影響が生じる波源を確認する。

上記①及び②によって選定した海底地すべりを図1に示す。

①では、断面積による規模評価結果を参照し、エリアA~Cの最大規模の海底地すべりに加えて、エリアBで規模が 2 位及び 3 位の海底地すべりとして Es-K7 及び Es-K6 を、エリアCで規模が 2 位及び 3 位の海底地すべりとして Es-T8 及び Es-T13 を、それぞれ選定した。エリアAについては、最大規模の Es-G3 による津波でも施設影響が生じないことから、規模が 2 位及び 3 位の海底地すべりは選定しない。

②では、隠岐トラフの海底地すべりはほとんどが発電所から遠ざかる方向に崩壊する形状となっている中で、崩壊の傾向が異なる海底地すべりとして、崩壊方向が発電所方向に近いものを選定した。その結果、②ではエリアAの Es-G101、エリアCの Es-T13 及び Es-T14 を選定した。

①の各エリアで規模が 1 位~3 位の海底地すべり及び②の発電所方向に崩壊する海底地すべりによる津波水位計算結果を表 2 に示す。また、各波源の津波水位計算結果に潮位のばらつき及び高潮の裕度を加味した値と敷地高さ及び海水ポンプの取水可能水位を比較した結果を、図 2 に示す。この結果より、施設影響が生じる波源は、水位上昇側ではエリア B の Es-K5 (Kinematic モデル)とエリア C の Es-T2 (Kinematic モデル)、水位下降側ではエリア B の Es-K5 (Kinematic モデル)であることを確認した。

### ●地すべり地形の規模の算出結果(断面積上位20個)

| 規模の<br>順位 | 地すべり<br>地形 | エリア | 測線    | 地すべり<br>長さ(m) | 地すべり<br>厚さ(m) | 地すべり長さ<br>×厚さ(m²) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|------------|-----|-------|---------------|---------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | Es-K5      | В   | K-120 | 7,135         | 128           | 913,324           | ←エリアBの1位(評価済み:施設影響あり)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2         | Es-T2      | С   | GA-23 | 8,592         | 97            | 833,402           | ←エリアCの1位(評価済み:施設影響あり)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3         | Es-T8      | С   | GA-22 | 4,374         | 150           | 656,141           | ←エリアCの2位(追加評価:施設影響の有無を確認する)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4         | Es-K7      | В   | K-119 | 3,618         | 160           | 578,850           | ←エリアBの2位(追加評価:施設影響の有無を確認する)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5         | Es-T13     | С   | GA-20 | 4,966         | 116           | 576,038           | ←エリアCの3位(追加評価:施設影響の有無を確認する)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6         | Es-K6      | В   | K-120 | 5,420         | 103           | 558,225           | ←エリアBの3位(追加評価:施設影響の有無を確認する)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7         | Es-T14     | С   | GA-15 | 8,970         | 61            | 547,200           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8         | Es-K8      | В   | K-119 | 6,557         | 76            | 498,312           | ZUTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9         | Es-K4      | В   | K-120 | 4,418         | 81            | 357,855           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10        | Es-K3      | В   | K-121 | 7,596         | 45            | 341,839           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11        | Es-T6      | С   | GA-21 | 5,343         | 62            | 331,267           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12        | Es-T17     | С   | GA-11 | 1,979         | 158           | 312,678           | ±978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13        | Es-K2      | В   | K-120 | 4,462         | 67            | 298,932           | Es-G3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14        | Es-T15     | С   | GA-13 | 8,326         | 33            | 274,765           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15        | Es-K1      | В   | K-121 | 5,198         | 52            | 270,276           | Es-K5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16        | Es-G3      | А   | K-115 | 6,856         | 29            | 198,822           | Es-T13 Es-K7 Es-K6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 17        | Es-G103    | А   | K-118 | 6,172         | 30            | 185,161           | Es-T8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 18        | Es-T12     | С   | GA-T  | 6,284         | 29            | 182,237           | ES-113 ES-K6  ES-T8 ES-T2  ES-T2  ES-R6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 19        | Es-G104    | Α   | K-51  | 3,584         | 46            | 164,876           | 基准条案所                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20        | Es-G102    | А   | K-119 | 4,413         | 36            | 158,864           | The state of the s |

①各エリアで規模が1位~3位の海底地すべり

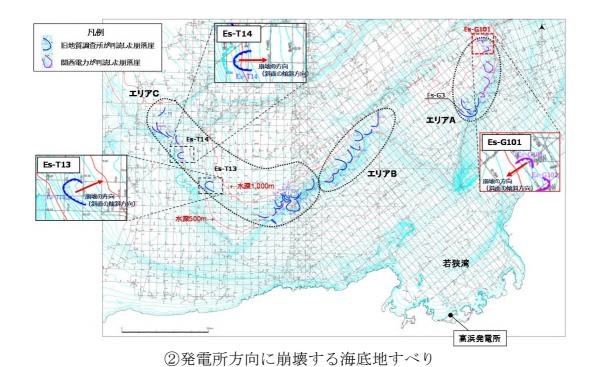
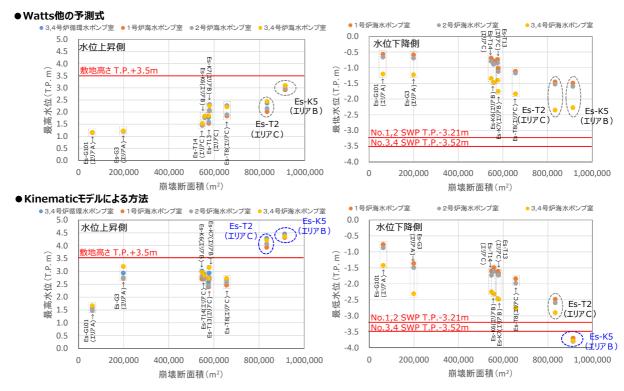




図1 施設影響が生じる可能性のある海底地すべりの選定

表2 海底地すべりの津波評価結果 (規模が2位以下の波源を含む)

|      |                   |                   |            |                    |                      |                    |                    |                     |       |        |                    | 数字(                | ţ、 T.P.(m)          |
|------|-------------------|-------------------|------------|--------------------|----------------------|--------------------|--------------------|---------------------|-------|--------|--------------------|--------------------|---------------------|
|      |                   |                   | - L.DO     |                    |                      |                    | 水位上昇               |                     |       |        |                    | 水位下降               |                     |
|      | 海底地すべ             | り(警報なし)           | 取水路 防潮 ゲート | 取水路<br>防潮ゲート<br>前面 | 3,4号炉<br>循環水<br>ポンプ室 | 1 号炉<br>海水<br>ボンプ室 | 2 号炉<br>海水<br>ボンプ室 | 3,4号炉<br>海水<br>ポンプ室 | 放水口前面 | 放水路(奥) | 1 号炉<br>海水<br>ポンプ室 | 2 号炉<br>海水<br>ボンプ室 | 3,4号炉<br>海水<br>ポンプ室 |
|      | Es-G3             | Watts他の予測式        | 開          | 0.6                | 0.6                  | 0.6                | 0.6                | 0.6                 | 0.6   | 0.6    | -0.5               | -0.6               | -1.1                |
| TUZA | (規模1位)            | Kinematicモデルによる方法 | 開          | 2.0                | 2.3                  | 2.1                | 2.2                | 2.6                 | 1.6   | 1.8    | -1.2               | -1.4               | -2.2                |
| エリアA | Es-G101           | Watts他の予測式        | 開          | 0.6                | 0.6                  | 0.6                | 0.6                | 0.6                 | 0.6   | 0.6    | -0.4               | -0.5               | -1.1                |
|      | (発電所方向)           | Kinematicモデルによる方法 | 開          | 0.9                | 1.0                  | 0.9                | 0.9                | 1.1                 | 0.8   | 0.9    | -0.6               | -0.7               | -1.3                |
|      | Es-K5             | Watts他の予測式        | 開          | 2.2                | 2.5                  | 2.3                | 2.4                | 2.5                 | 1.9   | 2.1    | -1.4               | -1.5               | -2.1                |
|      | (規模1位)            | Kinematicモデルによる方法 | 開          | 3.6                | 3.9                  | 3.7                | 3.8                | 3.8                 | 3.7   | 4.0    | -3.6               | -3.7               | -3.7                |
| エリアB | Es-K7             | Watts他の予測式        | 開          | 1.4                | 1.7                  | 1.5                | 1.5                | 1.7                 | 1.1   | 1.2    | -0.9               | -1.0               | -1.6                |
| TUYB | (規模2位)            | Kinematicモデルによる方法 | 開          | 2.1                | 2.3                  | 2.1                | 2.2                | 2.6                 | 2.2   | 2.4    | -1.5               | -1.6               | -2.4                |
|      | Es-K6             | Watts他の予測式        | 開          | 1.1                | 1.2                  | 1.2                | 1.2                | 1.2                 | 1.0   | 1.0    | -0.7               | -0.8               | -1.3                |
|      | (規模3位)            | Kinematicモデルによる方法 | 開          | 2.0                | 2.3                  | 2.1                | 2.1                | 2.3                 | 1.7   | 1.9    | -1.4               | -1.5               | -2.2                |
|      | Es-T2             | Watts他の予測式        | 開          | 1.4                | 1.8                  | 1.4                | 1.6                | 1.8                 | 1.1   | 1.4    | -1.3               | -1.4               | -2.2                |
|      | (規模1位)            | Kinematicモデルによる方法 | 開          | 3.2                | 3.7                  | 3.3                | 3.5                | 3.6                 | 3.7   | 3.9    | -2.4               | -2.5               | -2.8                |
|      | Es-T8             | Watts他の予測式        | 開          | 1.3                | 1.7                  | 1.2                | 1.3                | 1.6                 | 0.9   | 1.1    | -1.0               | -1.0               | -1.7                |
| IU7C | (規模2位)            | Kinematicモデルによる方法 | 開          | 1.8                | 2.1                  | 1.9                | 2.0                | 2.1                 | 2.4   | 2.5    | -1.7               | -1.9               | -2.6                |
| TUPC | Es-T13<br>(規模3位、発 | Watts他の予測式        | 開          | 0.9                | 1.2                  | 0.9                | 1.0                | 1.3                 | 0.9   | 0.9    | -0.6               | -0.7               | -1.3                |
|      | (規模3位、発<br>電所方向)  | Kinematicモデルによる方法 | 開          | 1.8                | 2.0                  | 1.8                | 1.8                | 2.1                 | 2.3   | 2.4    | -1.5               | -1.6               | -2.3                |
|      | Es-T14            | Watts他の予測式        | 開          | 0.8                | 0.9                  | 0.9                | 0.9                | 0.9                 | 0.8   | 0.8    | -0.6               | -0.7               | -1.2                |
|      | (発電所方向)           | Kinematicモデルによる方法 | 開          | 2.0                | 2.4                  | 2.1                | 2.2                | 2.4                 | 1.9   | 2.0    | -1.5               | -1.6               | -2.1                |



(上昇側:ばらつき+0.15m 及び高潮裕度+0.49m 考慮、下降側:ばらつき-0.17m 考慮)

図2 施設影響が生じる波源の確認

### 8. 4 基準津波の選定

8.2で示した基準津波の選定方針に基づき、(1)で既許可時の基準津波の選定結果を確認した上で、8.3の検討結果を踏まえて(2)で津波警報等が発表されない場合の基準津波の選定を行う。また、(2)における津波警報等が発表されない場合の基準津波の選定結果を踏まえ、(3)で、これを用いた耐津波設計での検討内容を記載する。

### (1) 既許可時の基準津波の選定結果

既許可時の津波水位計算結果を表3に示す。表3では、津波水位計算の結果(上表)と、それに基づく施設影響の確認結果(下表)をそれぞれ示している。施設影響については、耐津波設計で考慮される潮位のばらつき(水位上昇側:+0.15m、水位下降側:-0.17m)と高潮の裕度(水位上昇側:+0.49m)を津波水位計算結果に加味した値を、敷地高さ及び取水可能水位と比較することで確認した。

大津波警報に基づく取水路防潮ゲート閉止を前提とした既許可時の評価では、施設影響が生じる波源はない。津波到達に対して取水路防潮ゲート閉止が間に合わない波源に対しては取水路防潮ゲート開条件で評価を実施したが、その場合でも施設影響は生じない。

その上で、評価点のうち、取水路防潮ゲート前面、放水口前面、放水路(奥)で最高水位となる波源は「福井県モデル(若狭海丘列付近断層)と海底地すべりエリアBの組み合わせ」であり、これを基準津波1として選定した。また、各海水ポンプ室及び3,4号炉循環水ポンプ室で最高水位・最低水位となる波源は「 $FO-A\sim FO-B\sim$ 熊川断層と陸上地すべり(No.14)の組み合わせ」であり、これを基準津波2として選定した。

### 津波水位計算結果 (既許可時の評価) 表 3

### ●津波水位計算結果

数字はT.P.(m)、赤字は各評価点の最大値 水位上昇 水位下降 取水路防潮 波源モデル ゲート\* 取水路防潮 ゲート前面 3 , 4 号炉 循環水ポンプ3 1号炉 海水ポンプ室 2号炉 海水ポンプ室 3, 4号炉 海水ポンプ室 放水口 前面 放水路(奥) 1号炉 海水ポンプ室 2号炉 海水ポンプ室 3 , 4号炉 海水ポンプ室 大陸棚外縁~B~野坂断層 5.3 2.1 2.1 地震に 0.9 0.9 0.9 起因する津波 日本海東縁部の波源 -0.8 -0.7 -1.0 Watts他の予測式 0.6 0.6 0.6 0.6 0.6 0.6 0.6 -0.3 -0.3 -0.3 (Es-G3) Kinematicモデルによる方法 -0.8 2.0 1.6 1.8 -0.8 -0.8 地震以外に エリアB Watts他の予測式 2.0 0.8 0.8 1.9 2.1 -0.8 海底 起因する津波 地すべり (Es-K5) 4.1 -1.1 Kinematicモデルによる方法 1.2 1.3 3.7 4.0 -1.1 -1.0 2.4 Watts他の予測式 0.8 0.7 0.7 1.1 1.3 -0.5 -0.5 -0.8 エリアC 1.1 (Es-T2) 閉 (Close) 3.3 -1.2 Kinematicモデルによる方法 1.1 1.1 1.1 1.2 3.7 3.9 -0.9 -0.9 福井県モデル (若狭海丘列付近断層) 4.5 1.1 1.1 1.1 1.4 3.6 3.8 -0.8 -0.8 -1.0 秋田県モデル (日本海東縁部の断層) 4.4 2.9 3.0 -1.4 -1.6 行政機関の 波源モデルを 大すべり中央 3.6 0.7 0.7 0.7 1.2 2.1 2.1 用いた津波 若狭海丘列付近断層 大すべり隣接LRR 3.6 1.9 0.7 0.7 0.7 1.2 1.9 大すべり隣接LLR 3.7 0.7 0.7 0.7 1.2 1.9 2.0 21秒ずれ 4.9 1.3 1.3 1.2 1.7 5.0 5.8 福井県モデル(若狭海丘列付近断 津波の 組み合わせ (一体計算) 層)と隠岐トラフ海底地すべりエリアB (Es-K5) 63秒ずれ 5.1 5.3 6.1 78秒ずれ 5.5 基準津波1 6.2 地震に -1.9\*2 -2.0<sup>\*2</sup> -1.8\*2 FO-A~FO-B~熊川断層 2.0 2 1 1.9 1.9 2.5 27 2.8 起因する津波 0.6 0.6 0.5 0.5 0.6 -0.1 -0.1 -0.1 Watts他による方法 0.6 0.6 No.1,2,3 運動学的手法 0.7 0.8 0.7 0.7 0.8 2.1 2.1 -0.3 -0.3 -0.4 Watts他による方法 0.6 0.6 0.6 0.6 0.8 1.0 -0.1 -0.1 -0.1 地震以外に 陸上 No.10 起因する津波 地すべり 運動学的手法 -0.1 -0.1 0.6 0.6 0.6 0.6 0.6 1.5 1.4 -0.1 開 (Open) Watts他による方法 1.1 0.9 1.0 1.0 0.6 0.6 -0.3 -0.4 -0.4 No.14 1.0 0.6 0.7 -0.3 -0.4 -0.4 運動学的手法 1.1 1.2 1.0 1.0 -1.9\*2 -1.9\*2 -1.8\* 30秒ずれ 津波の 45秒ずれ 2.4 2.1 2.1 2.5 2.7 2.7 FO-A~FO-B~熊川断層と 組み合わせ **-2.0**\*2 陸上地すべり(No.14) -1.8<sup>\*\*2</sup> **-1.8**\*2 51秒ずれ (一体計算) -2.0<sup>\*2</sup> -1.8<sup>\*\*2</sup> -1.8<sup>※2</sup> 基準津波ク 54秒ずれ 2.7 2.7

※1: 閉: 取水路防潮ゲート天端TP+8.5mで全閉、 開: 両系列のゲートが開いた状態(TP±0~+8.5mはカーテンウォールあり) ※2:地盤変動量0.23m隆起

● 施設影響の有無 …津波水位計算結果に潮位のばらつき(上昇側+0.15m,下降側-0.17m)、高潮の裕度(上昇側+0.49m)を考慮。 数字はT.P.(m)、青字は施設影響が生じる値(該当なし)

|                   |                                                |                                                |                                                 |                        |         |                |                    | は1.P.(m)      | 、青字は施設影響が生しる値(該当なし) |                    |           | 1      |               |               |                    |      |  |
|-------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------|---------|----------------|--------------------|---------------|---------------------|--------------------|-----------|--------|---------------|---------------|--------------------|------|--|
| 取水路防潮             |                                                |                                                | \+\F                                            |                        |         |                |                    |               | 水位上昇                |                    |           |        |               | 水位下降          |                    | 1    |  |
| ゲート <sup>※1</sup> |                                                |                                                | 波源モデ                                            | 7)V                    |         | 取水路防潮<br>ゲート前面 | 3 , 4号炉<br>循環水ポンプ室 | 1号炉<br>海水ポンプ室 | 2号炉<br>海水ポンプ室       | 3 , 4 号炉<br>海水ポンプ室 | 放水口<br>前面 | 放水路(奥) | 1号炉<br>海水ポンプ室 | 2号炉<br>海水ポンプ室 | 3 , 4 号炉<br>海水ポンプ室 |      |  |
|                   | 地震に                                            | 大陸棚外                                           | ト縁〜B〜野切                                         | 対断層                    |         | 5.9            | 1.6                | 1.5           | 1.5                 | 1.9                | 2.7       | 2.8    | -             | -             | _                  |      |  |
|                   | 起因する津波                                         | 日本海東                                           | 見縁部の波源 しょうかん かんかん かんかん かんかん かんかん かんかん かんかん かんかん |                        |         | -              | -                  | _             | _                   | -                  | -         | -      | -0.9          | -0.9          | -1.1               |      |  |
|                   |                                                |                                                | エリアA                                            | Watts他の予               | 測式      | 1.2            | 1.3                | 1.3           | 1.3                 | 1.3                | 1.3       | 1.3    | -0.5          | -0.5          | -0.5               |      |  |
|                   |                                                |                                                | (Es-G3)                                         | Kinematic              | デルによる方法 | 2.7            | 1.6                | 1.6           | 1.6                 | 1.6                | 2.3       | 2.4    | -0.9          | -0.9          | -1.0               |      |  |
|                   | 地震以外に                                          | 海底                                             | エリアB                                            | Watts他の予               | 測式      | 2.7            | 1.5                | 1.5           | 1.5                 | 1.6                | 2.6       | 2.8    | -0.9          | -0.9          | -1.0               |      |  |
|                   | 起因する津波                                         | 地すべり                                           | (Es-K5)                                         | Kinematic              | デルによる方法 | 4.7            | 1.8                | 1.8           | 1.7                 | 2.0                | 4.4       | 4.6    | -1.2          | -1.2          | -1.3               |      |  |
|                   |                                                |                                                | エリアC                                            | Watts他の予               | 測式      | 3.0            | 1.4                | 1.3           | 1.3                 | 1.8                | 1.8       | 2.0    | -0.7          | -0.7          | -1.0               |      |  |
| 閉                 |                                                | (Es-T2) Kinematicモデルによる方法<br>福井県モデル(若狭海丘列付近断層) |                                                 |                        | 3.9     | 1.7            | 1.7                | 1.7           | 1.8                 | 4.3                | 4.6       | -1.1   | -1.1          | -1.4          |                    |      |  |
| (Close)           |                                                | 福井県モ                                           | デル(若狭海                                          | 丘列付近断層                 | i)      | 5.1            | 1.7                | 1.8           | 1.7                 | 2.0                | 4.2       | 4.4    | -1.0          | -1.0          | -1.2               |      |  |
|                   | 行政機関の                                          | 秋田県モ                                           | 田県モデル(日本海東縁部の断層)                                |                        |         | 5.1            | 2.3                | 2.3           | 2.3                 | 2.3                | 3.5       | 3.7    | -1.6          | -1.6          | -1.8               |      |  |
|                   | 波源モデルを                                         | し 大すべり中央                                       |                                                 |                        | 4.2     | 1.4            | 1.4                | 1.3           | 1.9                 | 2.7                | 2.7       | -      | -             | _             |                    |      |  |
|                   | 用いた津波                                          | 若狭海丘                                           | 近列付近断層                                          | 大すべり隣接LRR<br>大すべり隣接LLR |         | 4.2            | 1.4                | 1.3           | 1.3                 | 1.9                | 2.5       | 2.6    | -             | -             | _                  |      |  |
|                   |                                                |                                                |                                                 |                        |         | 4.4            | 1.4                | 1.3           | 1.3                 | 1.9                | 2.5       | 2.6    | -             | -             | _                  |      |  |
|                   |                                                | 福井県モデル(若狭海丘列付近断                                |                                                 |                        | 21秒ずれ   | 5.5            | 2.0                | 1.9           | 1.9                 | 2.3                | 5.7       | 6.4    | -             | -             | _                  |      |  |
|                   | 組み合わせ                                          | 層)と隠岐トラフ海底地                                    |                                                 | すべりエリアB                | 63秒ずれ   | 5.8            | 1.9                | 1.9           | 1.9                 | 2.4                | 5.9       | 6.8    | -             | -             | -                  | 1    |  |
|                   | (一体計算)                                         | (Es-K5)                                        |                                                 |                        | 78秒ずれ   | 6.1            | 1.9                | 1.8           | 1.8                 | 2.3                | 6.0       | 6.8    | -             | -             | -                  | 基準津  |  |
|                   | 地震に<br>起因する津波                                  | FO – A^                                        | -FO−B〜熊J                                        | 断層                     |         | 2.6            | 2.8                | 2.5           | 2.5                 | 3.1                | 3.3       | 3.4    | -2.0          | -2.0          | -2.2               |      |  |
|                   |                                                |                                                | No.1,2,3                                        | Watts他によ               | る方法     | 1.2            | 1.2                | 1.2           | 1.2                 | 1.2                | 1.2       | 1.3    | -0.3          | -0.3          | -0.3               |      |  |
|                   |                                                |                                                | 10.1,2,3                                        | 運動学的手法                 | 去       | 1.3            | 1.4                | 1.3           | 1.3                 | 1.5                | 2.7       | 2.8    | -0.5          | -0.5          | -0.5               |      |  |
|                   | 地震以外に                                          | 陸上                                             | No.10                                           | Watts他によ               | る方法     | 1.2            | 1.2                | 1.2           | 1.2                 | 1.2                | 1.5       | 1.7    | -0.3          | -0.3          | -0.3               |      |  |
| 開                 | 起因する津波                                         | 地すべり                                           | 110.10                                          | 運動学的手法                 | 去       | 1.2            | 1.2                | 1.2           | 1.2                 | 1.2                | 2.1       | 2.1    | -0.3          | -0.3          | -0.3               |      |  |
| (Open)            |                                                |                                                | No.14                                           | Watts他によ               | る方法     | 1.6            | 1.7                | 1.5           | 1.7                 | 1.7                | 1.2       | 1.3    | -0.5          | -0.6          | -0.6               |      |  |
|                   |                                                |                                                | 110.14                                          | 運動学的手法                 | 去       | 1.7            | 1.9                | 1.7           | 1.7                 | 1.7                | 1.2       | 1.3    | -0.5          | -0.5          | -0.6               |      |  |
| 津波の               |                                                |                                                |                                                 |                        | 30秒ずれ   | -              | _                  | _             | _                   | -                  | -         | _      | -2.1          | -1.9          | -2.1               |      |  |
|                   |                                                | F O - A                                        | ~ F O - B ~                                     | ~熊川断層と                 | 45秒ずれ   | 2.8            | 3.1                | 2.8           | 2.8                 | 3.1                | 3.3       | 3.4    | _             | _             | -                  |      |  |
|                   |                                                |                                                | べり(No.14)                                       |                        |         | _              | _                  | -             | _                   | -                  | _         | _      | -2.0          | -2.0          | -2.1               |      |  |
|                   | 54秒ずれ                                          |                                                |                                                 |                        |         | 2.8            | 3.1                | 2.8           | 2.8                 | 3.1                | 3.3       | 3.4    | -2.0          | -2.0          | -2.1               | 基準津源 |  |
| 施設影響力             | 影響が生じる高さ (上昇側: 敷地高さ・防潮ゲート高さ・防潮堤高さ、下降側: 取水可能水位) |                                                |                                                 |                        | 8.5     | 3.5            | 3.5                | 3.5           | 3.5                 | 8.0                | 8.0       | -3.2   | -3.2          | -3.5          |                    |      |  |

※1: 閉: 取水路防潮ゲート天端TP+8.5mで全閉、 開: 両系列のゲートが開いた状態 (TP±0~+8.5mはカーテンウォールあり) ※2: 地盤変動量0.23m降起

(2) 津波警報等が発表されない場合の基準津波の選定(今回評価)

今回新たに評価した、津波警報等が発表されない場合の津波水位計算結果を表4に示す。表4では、津波水位計算の結果(上表)と、それに基づく施設影響の確認結果(下表)をそれぞれ示している。津波警報等が発表されない場合の基準津波の選定においては、既許可時に評価対象としたエリアA~Cの最大規模の海底地すべりに加え、各エリアで規模が2位・3位の海底地すべりや発電所方向に崩壊する海底地すべりについても評価対象とした。また、施設影響については、耐津波設計で考慮される潮位のばらつき(水位上昇側:+0.15m、水位下降側:-0.17m)と高潮の裕度(水位上昇側:+0.49m)を津波水位計算結果に加味した値を、敷地高さ及び取水可能水位と比較することで確認した。

津波警報等が発表されないことから取水路防潮ゲート閉止ができない前提で評価した結果、施設影響が生じる波源は「海底地すべりエリアB(Es-K5、Kinematic モデル)」及び「海底地すべりエリアC(Es-T2、Kinematic モデル)」であった。このため、これらをそれぞれ基準津波 3 及び基準津波 4 として選定する。

施設影響が生じる波源の確認における津波水位計算では、水位変動が最も大きくなるように、Kinematic モデルに用いるパラメータのうち、崩壊規模及び破壊伝播速度を保守的に最大値で設定した。選定方針の③に基づき、基準津波の波源としては、施設影響が生じるケースを全て包含する波源とするために、基準津波3及び基準津波4は、「海底地すべりエリアB(Es-K5、Kinematic モデル)」及び「海底地すべりエリアC(Es-T2、Kinematic モデル)」において崩壊規模及び破壊伝播速度の値を固定しない波源として策定する。ただし、崩壊規模及び破壊伝播速度は、施設影響が生じる波源の確認において用いた値を上限とする。

なお、「海底地すべりエリアB(Es-K5、Kinematic モデル)」及び「海底地すべりエリアC(Es-T2、Kinematic モデル)」の波源による施設影響はいずれも津波の第 1 波目ではなく第 2 波目以降の水位変動によって生じていることから、第 1 波目で施設影響が生じる波源はない。

基準津波3及び基準津波4は、崩壊規模及び破壊伝播速度を固定値としないことから、施設への影響が最も大きくなる崩壊規模及び破壊伝播速度を適用した場合の基準津波定義位置の時刻歴波形を図3に示す。

- (3) 津波警報等が発表されない場合の基準津波の選定結果を踏まえた耐津波設計での検討事項
  - (2)で選定した基準津波3及び基準津波4では施設影響が生じることから、耐津波設計において対策を講じる。具体的には、若狭湾内の伝播特性により高浜発電所の取水路から海水ポンプ室に至る経路では襲来する津波の第1波より第2波以降の振幅が大きくなること及び、基準津波3及び基準津波4では第2波以降の水位変動で施設影響が生じる結果となっていることを踏まえ、発電所構内の潮位観測システム(防護用)で取水路防潮ゲートの閉止判断基準(トリガー)を確認した場合に、取水路防

潮ゲートを閉止し、施設影響が生じる後続波の浸入を防止することで施設影響を回避する。よって、安全設計上、施設影響が生じるケースをすべて確認できる取水路防潮ゲートの閉止判断基準(トリガー)の設定が必須である。そこで、耐津波設計では、基準津波3及び基準津波4を用いて施設影響が生じるケースをすべて確認できるように取水路防潮ゲートの閉止判断基準(トリガー)を設定する。海底地すべりを波源とする津波は、崩壊規模が小さくなると振幅が小さくなり、破壊伝播速度が小さくなると振幅が小さくなって周期が長くなる。基準津波3及び基準津波4は崩壊規模及び破壊伝播速度を固定値としないことから、これらのパラメータスタディによって施設影響が生じるケースを網羅的に確認できる取水路防潮ゲートの閉止判断基準(トリガー)を設定する。

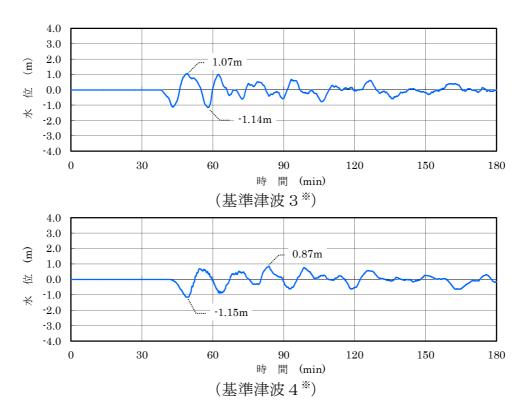
これらの基準津波3及び基準津波4を用いた耐津波設計における検討結果の詳細を本編2章から6章に示す。

# 表4 津波水位計算結果(津波警報等が発表されない場合)

### ●津波水位計算結果

数字はT.P.(m)、赤字は各評価点の最大値

|                   |        |  |           |                   |                |                    |               |               |                  |       | ,      | 111). 1.1-81 [.X |               | ド回点の最大1           | 1     |
|-------------------|--------|--|-----------|-------------------|----------------|--------------------|---------------|---------------|------------------|-------|--------|------------------|---------------|-------------------|-------|
| 取水路防潮             |        |  |           |                   |                |                    |               | 水位上昇          |                  |       |        |                  | 水位下降          |                   | 4     |
| ゲート <sup>※1</sup> |        |  | 波源モデル     |                   | 取水路防潮<br>ゲート前面 | 3 , 4号炉<br>循環水ポンプ室 | 1号炉<br>海水ポンプ室 | 2号炉<br>海水ポンプ室 | 3, 4号炉<br>海水ポンプ室 | 放水口前面 | 放水路(奥) | 1号炉<br>海水ポンプ室    | 2号炉<br>海水ポンプ室 | 3 , 4号炉<br>海水ポンプ室 |       |
|                   |        |  | エリアA      | Watts他の予測式        | 0.6            | 0.6                | 0.6           | 0.6           | 0.6              | 0.6   | 0.6    | -0.5             | -0.6          | -1.1              |       |
|                   |        |  | (Es-G3)   | Kinematicモデルによる方法 | 2.0            | 2.3                | 2.1           | 2.2           | 2.6              | 1.6   | 1.8    | -1.2             | -1.4          | -2.2              |       |
|                   |        |  | エリアA      | Watts他の予測式        | 0.6            | 0.6                | 0.6           | 0.6           | 0.6              | 0.6   | 0.6    | -0.4             | -0.5          | -1.1              | ]     |
|                   |        |  | (Es-G101) | Kinematicモデルによる方法 | 0.9            | 1.0                | 0.9           | 0.9           | 1.1              | 0.8   | 0.9    | -0.6             | -0.7          | -1.3              | ]     |
|                   | 開地震以外に |  | エリアB      | Watts他の予測式        | 2.2            | 2.5                | 2.3           | 2.4           | 2.5              | 1.9   | 2.1    | -1.4             | -1.5          | -2.1              |       |
|                   |        |  | (Es-K5)   | Kinematicモデルによる方法 | 3.6            | 3.9                | 3.7           | 3.8           | 3.8              | 3.7   | 4.0    | -3.6             | -3.7          | -3.7              | 基準津波3 |
|                   |        |  | エリアB      | Watts他の予測式        | 1.1            | 1.2                | 1.2           | 1.2           | 1.2              | 1.0   | 1.0    | -0.7             | -0.8          | -1.3              | 1     |
|                   |        |  | (Es-K6)   | Kinematicモデルによる方法 | 2.0            | 2.3                | 2.1           | 2.1           | 2.3              | 1.7   | 1.9    | -1.4             | -1.5          | -2.2              | ]     |
| 開                 |        |  | IU7B      | Watts他の予測式        | 1.4            | 1.7                | 1.5           | 1.5           | 1.7              | 1.1   | 1.2    | -0.9             | -1.0          | -1.6              |       |
| (Open)            | 起因する津波 |  | (Es-K7)   | Kinematicモデルによる方法 | 2.1            | 2.3                | 2.1           | 2.2           | 2.6              | 2.2   | 2.4    | -1.5             | -1.6          | -2.4              |       |
|                   |        |  | エリアC      | Watts他の予測式        | 1.4            | 1.8                | 1.4           | 1.6           | 1.8              | 1.1   | 1.4    | -1.3             | -1.4          | -2.2              |       |
|                   |        |  | (Es-T2)   | Kinematicモデルによる方法 | 3.2            | 3.7                | 3.3           | 3.5           | 3.6              | 3.7   | 3.9    | -2.4             | -2.5          | -2.8              | 基準津波4 |
|                   |        |  | エリアC      | Watts他の予測式        | 1.3            | 1.7                | 1.2           | 1.3           | 1.6              | 0.9   | 1.1    | -1.0             | -1.0          | -1.7              | Ī     |
|                   |        |  | (Es-T8)   | Kinematicモデルによる方法 | 1.8            | 2.1                | 1.9           | 2.0           | 2.1              | 2.4   | 2.5    | -1.7             | -1.9          | -2.6              | ]     |
|                   |        |  | エリアC      | Watts他の予測式        | 0.9            | 1.2                | 0.9           | 1.0           | 1.3              | 0.9   | 0.9    | -0.6             | -0.7          | -1.3              |       |
|                   |        |  | (Es-T13)  | Kinematicモデルによる方法 | 1.8            | 2.0                | 1.8           | 1.8           | 2.1              | 2.3   | 2.4    | -1.5             | -1.6          | -2.3              | ]     |
|                   |        |  | エリアC      | Watts他の予測式        | 0.8            | 0.9                | 0.9           | 0.9           | 0.9              | 0.8   | 0.8    | -0.6             | -0.7          | -1.2              |       |
|                   |        |  | (Es-T14)  | Kinematicモデルによる方法 | 2.0            | 2.4                | 2.1           | 2.2           | 2.4              | 1.9   | 2.0    | -1.5             | -1.6          | -2.1              |       |


<sup>※1:</sup>閉:取水路防潮ゲート天端TP+8.5mで全閉、 開:両系列のゲートが開いた状態(TP±0~+8.5mはカーテンウォールあり)

● 施設影響の有無 …津波水位計算結果に潮位のばらつき(上昇側+0.15m,下降側-0.17m)、高潮の裕度(上昇側+0.49m)を考慮。

数字はT.P.(m)、青字は施設影響が生じる値

| 取水路防潮             |                                               |      |                         |                   |                |                    |               | 水位上昇          |                   |           |        |               |               |                  |       |
|-------------------|-----------------------------------------------|------|-------------------------|-------------------|----------------|--------------------|---------------|---------------|-------------------|-----------|--------|---------------|---------------|------------------|-------|
| ゲート <sup>※1</sup> |                                               |      | 波源モデル                   | ,                 | 取水路防潮<br>ゲート前面 | 3 , 4号炉<br>循環水ポンプ室 | 1号炉<br>海水ポンプ室 | 2号炉<br>海水ポンプ室 | 3 , 4号炉<br>海水ポンプ室 | 放水口<br>前面 | 放水路(奥) | 1号炉<br>海水ポンプ室 | 2号炉<br>海水ポンプ室 | 3, 4号炉<br>海水ポンプ室 |       |
|                   |                                               |      | エリアA                    | Watts他の予測式        | 1.2            | 1.3                | 1.2           | 1.2           | 1.3               | 1.3       | 1.3    | -0.6          | -0.7          | -1.3             |       |
|                   |                                               |      | (Es-G3)                 | Kinematicモデルによる方法 | 2.6            | 3.0                | 2.8           | 2.8           | 3.2               | 2.3       | 2.4    | -1.4          | -1.5          | -2.4             |       |
|                   |                                               |      | エリアA                    | Watts他の予測式        | 1.2            | 1.2                | 1.2           | 1.2           | 1.2               | 1.2       | 1.2    | -0.6          | -0.7          | -1.2             |       |
|                   |                                               |      | (Es-G101)               | Kinematicモデルによる方法 | 1.5            | 1.6                | 1.5           | 1.5           | 1.7               | 1.5       | 1.6    | -0.8          | -0.9          | -1.5             |       |
|                   |                                               |      | エリアB                    | Watts他の予測式        | 2.8            | 3.1                | 3.0           | 3.0           | 3.1               | 2.6       | 2.8    | -1.5          | -1.6          | -2.3             |       |
|                   | ゴリアB<br>(Es-K5)                               |      |                         | Kinematicモデルによる方法 | 4.3            | 4.5                | 4.4           | 4.4           | 4.4               | 4.4       | 4.6    | -3.7          | -3.8          | -3.8             | 基準津波3 |
|                   | 開 地震以外に 海底                                    | エリアB | Watts他の予測式              | 1.7               | 1.9            | 1.8                | 1.8           | 1.9           | 1.6               | 1.7       | -0.8   | -0.9          | -1.5          |                  |       |
|                   |                                               |      | (Es-K6)                 | Kinematicモデルによる方法 | 2.6            | 2.9                | 2.8           | 2.8           | 2.9               | 2.3       | 2.5    | -1.5          | -1.7          | -2.4             |       |
| 開                 |                                               |      | エリアB<br>(Es-K7)<br>エリアC | Watts他の予測式        | 2.1            | 2.4                | 2.1           | 2.1           | 2.3               | 1.7       | 1.8    | -1.1          | -1.2          | -1.8             |       |
| (Open)            | 起因する津波                                        | 地すべり |                         | Kinematicモデルによる方法 | 2.7            | 3.0                | 2.8           | 2.8           | 3.2               | 2.8       | 3.0    | -1.7          | -1.8          | -2.5             |       |
|                   |                                               |      |                         | Watts他の予測式        | 2.0            | 2.4                | 2.1           | 2.2           | 2.5               | 1.8       | 2.0    | -1.5          | -1.6          | -2.4             |       |
|                   |                                               |      | (Es-T2)                 | Kinematicモデルによる方法 | 3.8            | 4.3                | 4.0           | 4.1           | 4.3               | 4.3       | 4.5    | -2.5          | -2.6          | -2.9             | 基準津波4 |
|                   |                                               |      | エリアC                    | Watts他の予測式        | 2.0            | 2.3                | 1.9           | 1.9           | 2.3               | 1.6       | 1.7    | -1.2          | -1.2          | -1.9             |       |
|                   |                                               |      | (Es-T8)                 | Kinematicモデルによる方法 | 2.5            | 2.7                | 2.5           | 2.6           | 2.8               | 3.0       | 3.1    | -1.9          | -2.0          | -2.8             |       |
|                   |                                               |      | エリアC                    | Watts他の予測式        | 1.5            | 1.8                | 1.6           | 1.6           | 1.9               | 1.5       | 1.5    | -0.8          | -0.9          | -1.4             |       |
|                   |                                               |      | (Es-T13)                | Kinematicモデルによる方法 | 2.4            | 2.6                | 2.4           | 2.5           | 2.8               | 2.9       | 3.0    | -1.7          | -1.8          | -2.5             |       |
|                   |                                               |      | エリアC                    | Watts他の予測式        | 1.4            | 1.5                | 1.5           | 1.5           | 1.6               | 1.4       | 1.5    | -0.7          | -0.8          | -1.4             |       |
|                   | (= =:()                                       |      |                         | Kinematicモデルによる方法 | 2.7            | 3.1                | 2.8           | 2.9           | 3.0               | 2.6       | 2.7    | -1.6          | -1.8          | -2.3             |       |
| 施設影響              | 施設影響が生じる高さ(上昇側:敷地高さ・防潮ゲート高さ・防潮堤高さ、下降側:取水可能水位) |      |                         | 8.5               | 3.5            | 3.5                | 3.5           | 3.5           | 8.0               | 8.0       | -3.2   | -3.2          | -3.5          |                  |       |

<sup>※1:</sup> 閉: 取水路防潮ゲート天端TP+8.5mで全閉、 開: 両系列のゲートが開いた状態 (TP±0~+8.5mはカーテンウォールあり)



※基準津波3及び基準津波4は、崩壊規模及び破壊伝播速度を固定値としないことから、施設への 影響が最も大きくなる崩壊規模及び破壊伝播速度を適用した場合の時刻歴波形を示す。

図3 基準津波の時刻歴波形の例

### 9. 取水路防潮ゲート閉止対策の採用による施設影響の確認

した。

5章の検討において、津波警報等が発表されない可能性のある津波に対して、潮位を定量的に測定できる潮位計の活用を検討した。また、6章の検討において、「施設影響が生じるケースの見逃し、津波以外の誤判断の観点で問題ないか」に係る妥当性・網羅性を確認した上で潮位計による津波襲来の判断基準(トリガー)を設定した。さらに、7章の検討において、「津波を確認してから、施設影響が生じる潮位に至る前に取水路防潮ゲート閉止の運転操作が完了するか」の確認を行い、最も時間余裕が短い津波に対し、約9分の余裕時間をもって施設影響が生じるケースを防護可能であることを確認した。以上より、取水路防潮ゲートの閉止対策採用の前提条件であるトリガーの妥当性・網羅性及び運用成立性のいずれも満足することを確認できたため、津波襲来判断に潮位観測システム(防護用)を活用することとし、8章の検討において、「各評価点において最高水位・最低水位となる波源及び施設影響が生じる波源」、「トリガーの設定に用いる波源」の2つの観点を踏まえ、基準津波を選定

本章では、津波襲来判断に潮位観測システム(防護用)を活用し、取水路防潮ゲートの閉止対策を採用した際の、基準津波に対する入力津波の設定を含む施設影響評価(外郭防護1、外郭防護2、内郭防護、水位変動に伴う取水性低下)について示す。

なお、具体的な評価内容は、第 2 編の別添 1 の「高浜 1 号炉、 2 号炉、 3 号 炉及び 4 号炉 津波に対する施設評価について」の  $1.4 \sim 1.6$  章、2.2 章  $\sim 2.5$  章 を参照のこと。

施設影響評価の結果、外郭防護 1、外郭防護 2、内郭防護、水位変動に伴う 取水性低下に対して、いずれも防護可能であることを確認した。この確認結果 を踏まえ、潮位観測システム(防護用)を基準適合に必須な設備と位置づける とともに、潮位観測システム(防護用)で取水路防潮ゲートの閉止判断基準 (トリガー)を確認した場合の取水路防潮ゲート閉止運用についても、基準適 合に必須な運用と位置づけることとする。

- 10. 津波警報等が発表されない津波に可能な限り早期に対応するための運用
- 10.1 発電所構外の観測潮位を用いた運用

### 10.1.1 背景

9章において、入力津波設定を含む施設影響評価を実施した結果、外郭防護1、外郭防護2、内郭防護、水位変動に伴う取水性低下に対して、いずれも防護可能であることを確認した。したがって、基準適合に必須な設備として、潮位観測システム(防護用)を位置づけ、基準適合に必須な運用として、潮位観測システム(防護用)で取水路防潮ゲートの閉止判断基準(トリガー)を確認した場合の取水路防潮ゲート閉止運用を位置づける。

本章においては、活用できるデータは可能な限り活用し、津波の兆候を事前に捉えることが発電所の安全性向上につながることから、2~9章までの検討における対応に加え、発電所構外の観測潮位を活用し、可能な限り早期に津波に対応する「運用」を検討する。

## 10.1.2 検討条件

発電所構外の観測潮位として活用する候補地点を抽出し、既往観測潮位の活用可能性を確認した上で、津波を早期に確認可能な地点を選定する。早期確認可能な地点に対して、「プラント影響のある津波<sup>※1</sup>」の判断基準及び「プラント影響の可能性のある津波<sup>※2</sup>」の情報発信基準を設定する。

「プラント影響のある津波」及び「プラント影響の可能性のある津波」は、10.1.3(2)津居山地点の観測潮位における「プラント影響のある津波」高さ及び、10.1.3(3)津居山地点における「プラント影響の可能性のある津波」高さにおいて後述する。

※1:第一編、第二編においては、「敷地への遡上及び水位の低下による海 水ポンプへの影響のおそれがある潮位」と記載。

※2:第一編、第二編においては、「津波と想定される潮位」と記載。

# 10.1.3 検討結果

以下の①、②の「運用」を定め、設置許可申請書の添付書類八に記載し、 運用の具体的な内容は、保安規定以下で定めることとする。詳細を(1)~(5) に示す。

① 発電所構外にて「プラント影響のある津波」を確認した場合 構内の潮位観測システム(防護用)での取水路防潮ゲートの閉止判断 基準(トリガー)を「2台の観測潮位がいずれも 10 分以内に 0.5m の 「変動(下げ(上げ)のみ)」」とし、取水路防潮ゲート閉止判断を早期 化する。図1に概念図を示す。




図1 発電所構外にて「プラント影響のある津波」を確認した場合の対応の概念図

② 発電所構外にて「プラント影響の可能性のある津波」を確認した場合 取水路防潮ゲートの落下機構の健全性確認など(取水路防潮ゲート の保守作業の中止、構内の一般車両の退避、輸送船の退避、輸送車両等 の退避、津波監視カメラによる監視)を実施し津波襲来に備える。図 2 に概念図を示す。



図 2 発電所構外にて「プラント影響の可能性のある津波」を確認した場合の 対応の概念図

### (1) 発電所構外の潮位観測の候補地点

発電所構外の潮位観測の活用について、「構内の潮位観測システム(防護用)よりも早期に確認できること」及び「過去観測データの蓄積により、海底地すべり津波と通常の潮汐を識別可能なこと」を条件に、候補地点を抽出した。高浜発電所周辺の既往観測潮位地点を図3に示す。また、各地点における津波シミュレーション結果の時刻歴波形から判断したエリアB(基準津波3)及びエリアC(基準津波4)の津波到達時間を表1に示す。表1より、高浜発電所に対する津波の早期確認の観点では、①舞鶴や②敦賀では早期に確認できないことから、津波を早期に確認できる地点は「③三国、④津居山、⑤経ヶ岬」である。③三国、④津居山、⑤経ヶ岬における観測潮位記録の蓄積有無及びデータ受領状況は以下の通りである。

③ 三国 : フロート式水位計が1台設置されている。国土地理院より当該地点検潮所での過去の潮位データを受領済み。

④ 津居山:フロート式水位計が1台設置されている。兵庫県より当該地 点検潮所での過去の潮位データを受領済み。検潮所のリアル タイムの観測潮位データが当社への提供が可能。

⑤ 経ヶ岬:潮位観測していない。(レーダー式沿岸波浪計であるため潮位

### 観測は不可。)

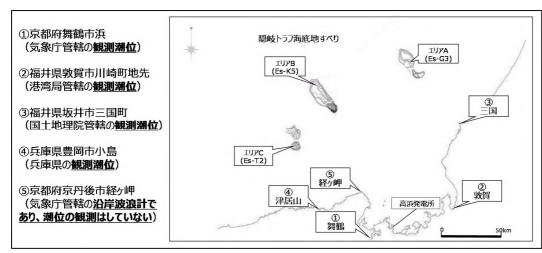



図3 高浜発電所周辺の既往観測潮位地点

表1 各地点における津波到達時間

|                | ① 舞鶴 | ② 敦賀 | ③ <b>三</b> 国 | ④ 津居山 | ⑤ 経ケ岬 | 高浜発電所※      |
|----------------|------|------|--------------|-------|-------|-------------|
| エリアB Kinematic | 55 分 | 52 分 | 37 分         | 31 分  | 22 分  | <u>43 分</u> |
| エリアC Kinematic | 58 分 | 61 分 | 46 分         | 24 分  | 23 分  | <u>47 分</u> |

※高浜発電所における時間は取水口前での津波到達時間。

表1より、高浜発電所に対する津波の早期確認の観点では、潮位を観測していること、エリアB(基準津波3)又はエリアC(基準津波4)の海底地すべり津波の早期確認に効果的であることから、④津居山、③三国、⑤経ヶ岬の順に発電所構外における津波確認における活用の可能性を検討した。検討結果を以下に示す。

- ④津居山については、既往潮位データの分析から、潮汐と津波の区別が可能であり、リアルタイムデータの入手も可能なことから、津波確認後に1号及び2号炉中央制御室並びに3号及び4号炉中央制御室へ情報発信し、更なる早期の取水路防潮ゲート閉止判断等に用いる。
- ○③三国については、高浜発電所と比べて津波を早期に確認できる時間が数分程度である。リアルタイムでの潮位データの取得等について、将来的な更なる安全性向上の取り組みとして検討していく。
- ○⑤経ヶ岬については、既往の観測記録の潮位データがない。丹後半島 (経ヶ岬等)に新たに潮位計を設置する場合、設置のための立地交渉 や妥当性のある潮位変動発信基準を設定するため相当期間のデータ 採取が必要であるため、将来的な更なる安全性向上の取り組みとして 検討していく。

以上より、津居山地点については、1,2号炉再稼働までに対応する。

その他は将来的な更なる安全性向上として対応していく。

(2) 津居山地点の観測潮位における「プラント影響のある津波」高さ

津居山地点における「プラント影響のある津波」高さの判断基準設定案及び評価結果を表2に示す。発電所構外における「プラント影響のある津波」は、水位 T.P.+3.0m と水位 T.P.+2.0m と水位 T.P.+1.0m の判断基準案から、大津波警報相当の津波高さの予測値を観測潮位で検知できること、加えて津居山及び三国地点の観測潮位範囲内であり、最も安全側の判断基準であることから T.P.+1.0m を採用する。

津居山及び三国地点において、過去の観測最高潮位がそれぞれ T.P.+1.68m、T.P.+0.98mであることから、「潮位が T.P.+1.0mに到達すること」を判断基準とした場合には誤判断をする可能性がある。津居山及び三国地点の過去の観測最高潮位はいずれも台風や低気圧による高潮が原因であり、また高潮による潮位変動の周期(時間)は非常に長いため、誤判断防止の観点から、地すべり津波の周期に合わせて10分以内という時間軸を設定することで信頼性確保が可能である。

以上を踏まえ、「10 分以内 1.0m 上昇(下降)」を津居山地点の観測潮位における「プラント影響のある津波」高さとする。

ただし、「プラント影響のある津波」が襲来する前の潮位が津居山地点で T.P.+1.1m 以上、三国地点で T.P.+0.2m 以上の場合は 10 分以内に 1m の水位上昇をすべて確認することができないため、その際は、レンジオーバーとなったときに判断基準に達したものとする。

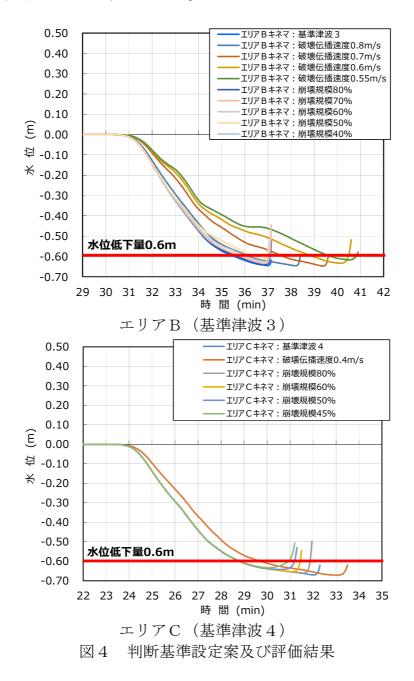

判断基準案 水位 TP+2.0m 水位 TP+3.0m 水位 TP+1.0m 気象庁が発表する大津波警報と ・ 気象庁発表の津波予想高さが実 気象庁における津波警報は予報 際よりも高めに設定されることから、 区ごとに発表されることから左記の 発電所構外で大津波警報相当 実観測値としては3mよりも低い 観測値と予測値の比較は予報区 の津波が検知された場合、プラン 水位を大津波警報相当と設定 ベースで考慮するとその比が1 ト「影響のある」津波と判断するこ 気象庁における過去の津波記録 8程度である。したがって、大津波 ととし、判断基準を「3.0mの上げ と予測の比較から、験潮所での観 警報の下限値3m/1.8 = 1.7m 設定経緯や 又は下げ」とする。 測値とデータベース予測値との比 より、保守的に1mと設定。 その根拠等 は平均1 2 程度であることから、 プラント「影響のある」津波高さの 大津波警報の下限値 3 m/1.2 判断基準を「1.0mの上げ又は下 = 2.5mより、保守的に2mと設 げとする。 プラント 「影響のある」津波高さの 判断基準を「2.0mの上げ又は下 げとする。 津居山地点及び三国地点の観・ 3.0mより安全側の判断基準。 2.0mより安全側の判断基準。 測範囲の上限を超えており、常時、 津居山地点は観測範囲内であり 津居山地点及び三国地点の観 採用可。一方、三国地点の観測範囲の上限を超えており、常時、 評価 測範囲内であり採用可 レンジオーバーでの判 過去最高潮位を踏まえると誤検

表 2 判断基準設定案及び評価結果

参考:発電所構外の観測地点候補の観測範囲

| 観測地点 | 観測範囲                     | 過去最高潮位 (括弧内は観測時期及び理由)          |
|------|--------------------------|--------------------------------|
| 津居山  | T.P.+2.1m ~ T.P2.3m      | T.P.+1.68m (2004年10月20日:台風23号) |
| 三国   | T.P.+1.2m $\sim$ T.P1.8m | T.P.+0.98m (2005年12月6日:低気圧)    |

(3) 津居山地点における「プラント影響の可能性のある津波」高さ 「プラント影響の可能性のある津波」として、発電所に施設影響が生じ る波源を用いて、津居山地点における津波シミュレーションを実施した。 津居山地点の津波シミュレーション結果における最初の下げ波の水位 低下量を確認した結果を図4に示す。いずれのケースも最初の下げ波の 水位低下量は0.6m以上である。



破壊伝播速度のパラメータスタディ及び崩壊規模のパラメータスタディを行い、発電所に施設影響が生じるケースを用いて、津居山地点の津波シミュレーションを行った結果、「津居山地点1波目の水位低下量と発電所の最高水位・最低水位の関係」、「1波目の水位低下量と0.6m低下に要する時間の関係」及び「判断基準(1波目の水位低下量が10分以内に0.6m

以上であること)による確認可否」を図5及び図6に示す。

津居山地点における 1 波目の水位低下量と発電所敷地内の最高水位・最低水位の関係から、発電所敷地内での津波高さが高い津波ほど、津居山地点における 1 波目の水位低下量が大きいこと、津居山地点における 1 波目の水位低下が 0.6m 未満のケースでは発電所に施設影響が生じないことを確認した。

また、津居山地点における1波目の水位低下量と0.6m低下に要する時間の関係から、津居山地点における1波目の水位低下が大きいほど、0.6m水位低下に要する時間は短いこと、発電所に施設影響が生じるケースのうち、津居山地点における0.6m水位低下に要する時間が10分超のケースはないことを確認した。

以上を踏まえ、「10分以内 0.6m 上昇(下降)」を津居山地点の観測潮位における「プラント影響の可能性のある津波」高さとする。

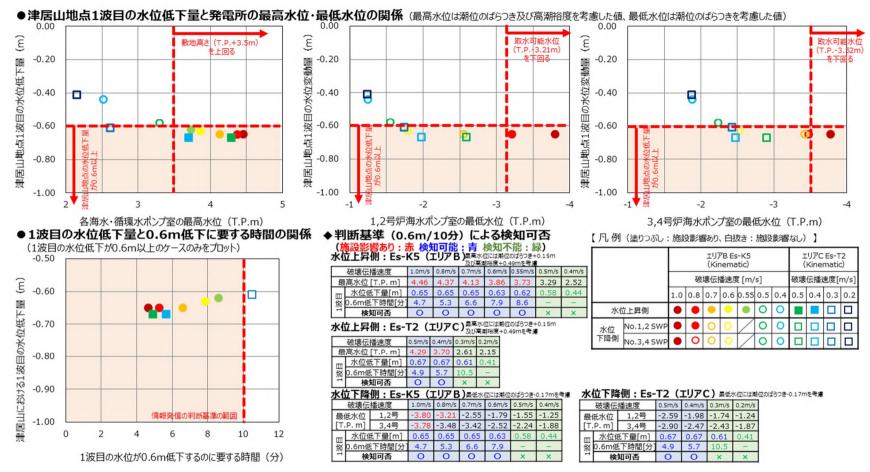
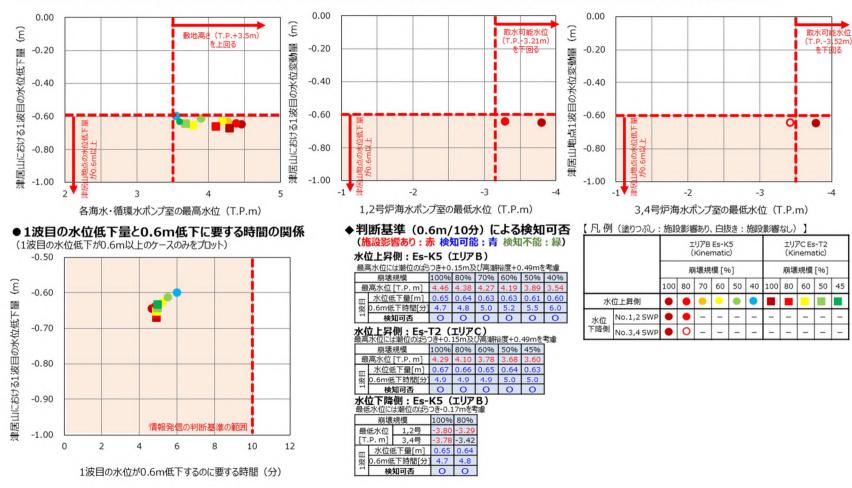
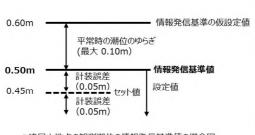



図 5 破壊伝播速度のパラメータスタディによる検知可否

# 崩壊規模のパラメータスタディ結果(全ケースの検知可否の確認)

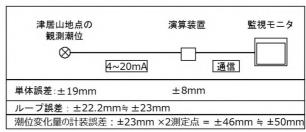
●津居山地点1波目の水位低下量と発電所の最高水位・最低水位の関係(最高水位は潮位のばらつき及び高潮裕度を考慮した値、最低水位は潮位のばらつきを考慮した値)





図6 崩壊規模のパラメータスタディによる検知可否

### (4) 津居山地点の情報発信基準の設定

「プラント影響の可能性のある津波」として、発電所に施設影響が生じる波源を用いて、津居山地点における津波シミュレーションを行った結果、最初の下げ波の水位低下量は、いずれのケースも最初の下げ波の水位低下量は 10 分以内に 0.6m 以上であった。これを踏まえ、津居山地点での平常時の短時間の潮位のゆらぎが 10 分間で最大約 0.1m であることを考慮して、津居山地点での観測潮位が「10 分以内に 0.5m の水位が下降した場合」を、津居山地点の潮位を計測する計装設備の情報発信基準とし、1 号及び 2 号炉中央制御室並びに 3 号及び 4 号炉中央制御室に情報発信を行う。なお、情報発信基準のセット値は、構内の潮位観測システム(防護用)による取水路防潮ゲートの閉止判断基準(トリガー)のセット値の考え方を踏まえ、計装誤差を考慮し「10 分以内に 0.45m」とする。


津居山地点の観測潮位を用いた情報発信基準を図7に、津居山地点の潮位観測実績を図8に、平常時における潮位のゆらぎの考え方を図9に示す。潮位のゆらぎの算出にあたっては、潮位の変動が大きくなると考えられる夏期(8月~10月)と冬期(1月~3月)の観測データをもとに算出する。具体的な潮位のゆらぎの算定方法を図10に示す。

なお、上記の情報発信基準に加え、津居山地点の観測潮位欠測時についても、1号及び2号炉中央制御室並びに3号及び4号炉中央制御室に情報発信を行う。その際の対応については、10.3章に示す。



●津居山地点の観測潮位の情報発信基準値の概念図

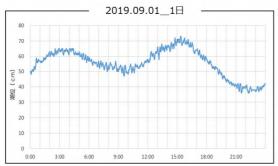
情報発信基準の仮設定値:津波シミュレーションにおける情報発信トリガーの仮設定値情報発信基準値:平常時の潮位のゆらぎを考慮した構外地点 (津居山) の基準値設定値:構外地点 (津居山) の情報発信のために必要な潮位変化量の許容範囲セット値:実機の計装設備にセットする作動値



●津居山地点の観測潮付の誤差の考え方

図7 津居山地点の観測潮位を用いた情報発信基準

### ・平常時の潮汐による潮位変動


兵庫県の津居山地点において、兵庫県が潮位を計測している が、観測潮位の瞬時値としてデータ提供を受けた2018年1月 から2019年10月までの値で、平常時の潮汐の変動は最大で 10分間において約0.10m程度である。

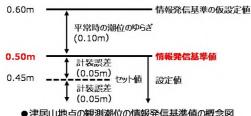
●通常時の潮汐の変動 2019年9月 瞬時値 (60秒間隔採取)

### ・台風などの異常時の潮位変動

台風などの異常時の潮汐変動について、代表として若狭湾 周辺の潮汐の変動が大きいと想定される2018年の台風21 号(中心気圧950hPa) の潮汐変動を確認した。 潮汐の変動は大きいところで10分間で0.27m程度である。

●2018年の台風21号の潮位データ 瞬時値 (60秒間隔採取)

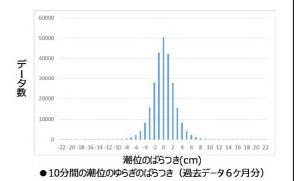





- ▶津居山地点における通常の潮位変動においては、10分間の変動量が0.10m程度である。
- ▶2018年1月~2019年10月における台風時の潮位データを考慮しても、潮汐の変動は大きいところで10分間で0.27m 程度であった。

図8 津居山地点の潮位観測実績

### 平常時における短時間の潮位のゆらぎの考え方を以下に示す。


- •構内における基準津波評価にて考慮する「朔望平均潮位」及び入力津波評価にて考慮する「潮位のばらつき」は、 それぞれ過去の潮位データから平均値、標準偏差として算出。
- これに倣い、過去6ヶ月分の夏期/冬期の潮位データ観測から、統計的なばらつきを考慮した波高は下表の結果か ら0.03mと見積もられる。
- ・これを踏まえつつ、10分間の潮位のゆらぎについては、より保守的に、過去観測のデータの3σの値よりも大きい <u>0.10mを適用。</u>



●津居山地点の観測潮位の情報発信基準値の概念図

|        | 夏期<br>2019.8.1<br>~10.31 | 冬期<br>2019.1.1<br>~3.31 | 全体    |
|--------|--------------------------|-------------------------|-------|
| 中央値    | 0.010                    | 0.020                   | 0.010 |
| 標準偏差   | 0.015                    | 0.019                   | 0.017 |
| 潮位のゆらぎ | 0.025                    | 0.039                   | 0.028 |

● 夏期と冬期における10分間の潮位のゆらぎ(m)



平常時における潮位のゆらぎの考え方について 図 9

### (参考) 平常時の潮位のゆらぎの具体的な算定方法について

平常時における短時間の潮位のゆらぎの具体的な算定方法を以下に示す。

- •10分前の瞬間潮位値と現在時刻の潮位値の差を取る。(例:2019/9/1 0:10:00と2019/9/1 0:20:00の 差を取り、10分差を-1cmと算定する。)
- •変動差のばらつきを見るため上記差の絶対値を算定する。
- ・夏期、冬期、全体の期間における10分間潮位のばらつきの絶対値を統計的に処理し、中央値と標準偏差を算出する。 潮位のゆらぎは中央値と標準偏差の和とする。
- ・これを踏まえつつ、10分間の潮位のゆらぎについては、より保守的に、過去観測のデータの  $3\,\sigma$ と中央値の和よりも大きい0.10mを適用する。




図10 平常時における潮位のゆらぎの具体的な算定方法について

### (5) 津居山地点における観測潮位活用のまとめ

(1)~(4)に示した発電所構外の観測潮位の活用検討に基づいた、 津居山地点での「プラント影響のある津波」高さ、津居山地点での「プラント影響の可能性ある津波」高さ及び発電所構外の観測潮位の活用による取水路防潮ゲート閉止時間の短縮効果を図11に示す。

図 11 に示す通り、発電所構外の観測潮位において、「プラント影響のある津波」高さを確認した場合は、構内の潮位観測システム(防護用)において、2 台の観測潮位がいずれも 10 分以内に 0.5m 以上の下げ(上げ)のみで判断をすることとしており、より早期の対応を行うものとする。短縮時間の効果としては約 4 分の短縮効果があると考えている。

また、発電所構外の観測潮位において、「プラント影響の可能性ある津波」高さを確認した場合は、取水路防潮ゲートの落下機構の健全性確認など(取水路防潮ゲートの保守作業の中止、構内の一般車両の退避、輸送船の退避、輸送車両等の退避、津波監視カメラによる監視)を実施し津波襲来に備える。

### ●警報が発表されない津波に可能な限り早期対応するための運用

### (1)設置許可申請書に記載する運用

### ①発電所構外にて「プラント影響のある津波」を検知した場合



### ②発電所構外にて「プラント<u>影響の可能性ある</u>津波」を検知した場合



### (2)自主的な運用

を期の津波対応の更なる自主的な取り組みとして、発電所構外にてプラント影響のある津波を検知し、津波監視カメラでの有意な津波の襲来を確認した場合、防潮ゲート閉止判断を早期化する運用とし、運用の具体的な内容は社内標準で定める。 知識効果:約5分

図11 津居山地点における観測潮位の活用

- (6) 津居山地点の観測潮位のみで取水路防潮ゲートの閉止を判断すること の課題
  - (2)で示した通り、津居山地点の観測潮位における「プラント影響のある津波」高さは、「10分以内 1.0m 上昇(下降)」としている。

この観測潮位のみで取水路防潮ゲートの閉止を判断する場合、その計測信頼性に起因する誤判断が課題となる。以下に誤判断発生の可能性とその際のプラントへの影響を確認した。

- a. 津居山地点の観測潮位における計測信頼性と誤判断の可能性 誤判断の原因を以下のとおり整理した。
  - (a) 故障による誤判断

津居山地点の潮位観測では、フロート式水位計を採用しており、フロートの浮き沈みによりワイヤが上下し、歯車で水位の変動を検知する(図12)。フロート式水位計で想定される故障モード、故障した場合に想定される1号及び2号炉中央制御室並びに3号及び4号炉中央制御室モニタでの指示変動および誤判断の有無を表3に、2018年1月から2019年10月までの津居山の既往潮位データ分析結果を表4に示す。

津居山地点の潮位観測における故障モードのうち、ワイヤ断線やフロート故障は、津波と同様に指示変動する。このため、このような故障による潮位の指示変動を「プラント影響のある津波」と誤判断してしまう可能性が否定できない。なお、津居山地点の潮位観測は無人で行われているため、直ちに故障か否かを判断することはできない。

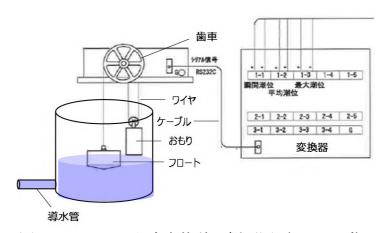



図12 フロート式水位計の概要図 (イメージ)

表3 フロート式水位計の故障モード等の整理表

| 故障モード           | 想定される指示変動     | 誤検知の有無                       | 判断内容  |
|-----------------|---------------|------------------------------|-------|
| ワイヤ断線(フロート側)    | 徐々に指示上昇       | 10分以内の指示上昇により警報が発信し誤検知のおそれあり | 津波と判断 |
| ワイヤ断裂 (おもり側)    | 指示固定          | 指示固定であるため誤検知なし               | 故障と判断 |
| フロート接続外れ        | 徐々に指示上昇       | 10分以内の指示上昇により警報が発信し誤検知のおそれあり | 津波と判断 |
| フロート破損          | 徐々に指示低下       | 10分以内の指示低下により警報が発信し誤検知のおそれあり | 津波と判断 |
| ケーブル地絡、電源断※     | スケールダウン       | ステップ変化により警報が発信し誤検知のおそれあり     | 故障と判断 |
| 変換器故障、データ収録エラー※ | スケールダウン又はオーバー | 同上                           | 故障と判断 |
| 歯車固着            | 指示固定          | 指示固定であるため誤検知なし               | 故障と判断 |
| 導水管つまり          | 指示固定          | 同上                           | 故障と判断 |

表 4 津居山の既往潮位データ分析結果

|    |            |       | P         | 1 H1 12 60 11. | 1 1 7 1 - | -, , ,,    | , DIMH 2 | 1 *        |         |
|----|------------|-------|-----------|----------------|-----------|------------|----------|------------|---------|
|    |            | 計     | 画 外       |                |           |            | 計        | 画内         |         |
| No | データ欠測開     | 始時刻   | 欠測時間      | 欠測理由           | No        | データ欠測開     | 始時刻      | 欠測時間       | 欠測理由    |
| 1  | 2018/11/22 | 11:31 | 10分       | データ収録エラー       | 1         | 2018/2/17  | 8:21     | 9時間40分     | 計画停電    |
| 2  | 2019/1/6   | 0:59  | 2日 11時間   | 現地潮位電源断        | 2         | 2018/3/22  | 9:41     | 1時間20分     | 定期点検    |
| 3  | 2019/4/4   | 23:02 | 15時間4分    | 現地潮位電源断        | 3         | 2018/3/28  | 11:00    | 1分         | 風向風速計交換 |
| 4  | 2019/5/8   | 9:38  | 13分       | 現地潮位電源断        | 4         | 2018/3/28  | 12:11    | 1時間        | 風向風速計交換 |
| 5  | 2019/5/9   | 0:02  | 10時間11分   | 現地潮位電源断        | 5         | 2018/8/2   | 13:01    | 3時間40分     | 現地詳細点検  |
| 6  | 2019/5/31  | 12:41 | 10分       | データ収録エラー       | 6         | 2018/8/3   | 9:01     | 50分        | 現地詳細点検  |
| 7  | 2019/7/12  | 10:01 | 10分       | データ収録エラー       | 7         | 2018/8/31  | 13:31    | 10時間29分    | 計画停電    |
| 8  | 2019/10/4  | 1:21  | 10分       | データ収録エラー       | 8         | 2018/11/2  | 17:51    | 1日 15時間30分 | 計画停電    |
| 9  | 2019/10/4  | 22:21 | 10分       | データ収録エラー       | 9         | 2018/11/9  | 17:51    | 2日 2時間30分  | 計画停電    |
| 10 | 2019/10/5  | 0:41  | 10分       | データ収録エラー       | 10        | 2018/11/14 | 9:51     | 50分        | 定期点検    |
| 11 | 2019/10/5  | 3:21  | 10分       | データ収録エラー       | 11        | 2018/11/16 | 19:11    | 2日 14時間    | 計画停電    |
| 12 | 2019/10/5  | 9:11  | 10分       | データ収録エラー       | 12        | 2019/9/5   | 12:21    | 3時間40分     | 現地詳細点検  |
| 13 | 2019/10/5  | 12:01 | 10分       | データ収録エラー       | 13        | 2019/9/6   | 9:01     | 1時間40分     | 現地詳細点検  |
| 14 | 2019/10/5  | 15:11 | 10分       | データ収録エラー       |           |            |          |            |         |
| 15 | 2019/10/5  | 19:21 | 10分       | データ収録エラー       |           |            |          |            |         |
| 16 | 2019/10/12 | 15:41 | 3日 1時間20分 | 停電             |           |            |          |            |         |

# (b) 津波以外の潮位変動(台風等も含む)による誤判断

過去に津居山地点では T.P.+1.68m の最高潮位を観測しているが、水位上昇は数 cm/10 分程度である。至近(2018.1~2019.10)の津居山地点における潮位データを分析(表 5) したところ、通常の潮汐変動で 1m/10 分となる事例はない。

表 5 津居山地点の潮位データ

単位:cm/10分

| 2018年 | 1月  | 2月  | 3月  | 4月  | 5月  | 6月  | 7月  | 8月  | 9月  | 10月 | 11月 | 12月     |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|
| 最大値   | 22  | 16  | 22  | 12  | 17  | 17  | 16  | 13  | 18  | 13  | 11  | 18      |
| 最小値   | -27 | -17 | -25 | -13 | -15 | -16 | -18 | -14 | -16 | -15 | -12 | -17     |
|       |     |     |     |     |     |     |     |     |     |     | 単位  | :cm/10分 |
| 2019年 | 1月  | 2月  | 3月  | 4月  | 5月  | 6月  | 7月  | 8月  | 9月  | 10月 |     |         |
|       |     |     |     |     |     |     |     |     |     |     |     |         |

最大値 17 16 16 14 11 24 12 15 13 22 最小値 -17 -15 -15 -12 -8 -20 -12 -14 -14 -22

表5より、津居山地点の通常の潮位変動による誤判断はない見通しだが、表4より、津居山地点の潮位観測における故障モードによっては、故障による潮位の指示変動を「プラント影響のある津波」と誤判断してしまう可能性が否定できない。

# b. 誤判断によるプラント影響

取水路防潮ゲート閉止によるプラント停止により、最大 340 万kW (1~4 号機稼働時)の電源が同時に喪失する。

その影響は以下のとおりであり、無視できないため、一定頻度での誤 判断に対しては、何らかの措置が必要である。

### ○ライフラインへの影響

- ▶ 高浜発電所4基運転時、一度に約340万 KW の電源が喪失した場合、発電量の低下により、系統周波数が低下する。
- ▶ 交流送電の仕組みから、電源喪失前の電気使用量により、電源喪失 に伴う系統周波数の低下が生じるか否かの裕度が決定される。使用 量が大きければ電源喪失時に対する余裕が大きくなり、使用量が小 さければ余裕が小さくなる。
- ➤ 系統周波数の低下に伴い、系統安定化装置\*\*が動作し、電気の使用量によっては、お客さまの電気の供給が停止される場合があり、一般公衆への波及影響が考えられる。

※周波数低下の抑制に見合った負荷を遮断する装置

### ○原子力プラントへの影響

➤ 系統周波数が低下すれば、他の稼働中の原子力発電所内の系統周波

数も同様に低下する。これは、高浜発電所内も同様であり、誘導電動機を使用しているポンプの回転数が低下する。具体的には、1次冷却材ポンプの回転数が低下し、一時的に炉心を通過する冷却材流量が低下につながり、炉心の冷却状態が悪化する。

a. 及び b. より、津居山地点における観測潮位の計測信頼性を踏まえ、 津居山地点の観測潮位に構内の潮位観測システム(防護用)を組み合わせ、 取水路防潮ゲートの閉止を判断することとする。

なお、津居山地点の観測潮位を用いることにより、(5)で述べた通り 取水路防潮ゲート閉止判断の早期化を図る。

### 10.2 更なる安全性向上に係る取り組み

# 10.2.1 背景

10.1章の検討結果のとおり、発電所構外における津波の早期確認対応としては、津居山地点の観測潮位を更なる早期の取水路防潮ゲート閉止判断等として活用する方針であり、高浜発電所1,2号炉の再稼働までに、津居山地点の既往観測潮位を活用する。

ただし、津居山一地点に限らず、活用できるデータは可能な限り活用し、 津波の兆候を事前に捉えることが更なる安全性向上に繋がることから、本 章においては、発電所構外の観測潮位の多様性向上に係る将来的な更なる 安全性向上の取り組みについて検討する。

### 10.2.2 検討条件

10.1.3章の検討結果より、津居山以外の候補地点にて、「構内の潮位観測システム(防護用)よりも早期に確認できること」及び「過去観測データの蓄積により、海底地すべり津波と通常の潮汐を識別可能なこと」の条件に該当する三国もしくは経ヶ岬への潮位計設置及び津居山地点への当社潮位計の追加設置について検討する。

# 10.2.3 検討結果

将来的な更なる安全性向上に係る取り組みとして、具体的には、津居山地 点以外の潮位計の追加活用や当社所有の潮位計の追加設置について、表 6 のとおり、各案の成立の前提が確立できたものは、実施していく。また、そ の他の津波監視の方法については、技術動向を注視したうえで、より津波監 視性を高める形で今後も取り組んでいく。設備構成のイメージを図 1 3 に 示す。

なお、兵庫県の協力のもと、既往観測地点である津居山への当社潮位計の 設置の見込みが立ってきたことから、津居山への当社潮位計の整備を進め ていく。

また、自然現象の教訓を活かせるように、事例収集等により知見を高める 取り組みを確実に継続していく。

表 6 将来的な更なる安全性向上の取り組みに係る課題および必要な期間

| 検討ケース                   | 成立の前提                      | 左記の確立後に必要な期間                               |  |
|-------------------------|----------------------------|--------------------------------------------|--|
| 既往観測地点の活用拡充 (三国)        | 既往観測地点からのデータ提供の了解          | 約6か月(通信回線等の設置)                             |  |
| 既往観測地点(津居山等)への当社潮位計の設置  | 既往観測地点における設置の了解及び<br>配置の成立 | 約1年(潮位計・通信回線等の設置)                          |  |
| 新規地点 (丹後半島等) への当社潮位計の設置 | 立地交渉の成立                    | 約3年(観測所の設置1年、潮位計・通信回<br>線等の設置1年、潮位データ採取1年) |  |

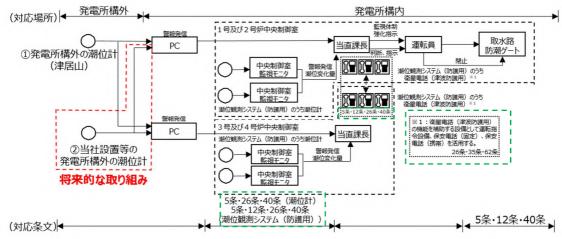



図13 将来的な更なる安全向上の取り組みに係る設備構成のイメージ

### 10.3 発電所構外の観測潮位欠測時の対応

# 10.3.1 背景

津波警報等が発表されない可能性のある津波に可能な限り早期に対応するため、発電所構外の観測潮位を活用し、取水路防潮ゲートの閉止判断の早期化と、取水路防潮ゲートの落下機構の確認などの津波襲来に備えることとしている。

本章では、発電所構外の観測潮位が欠測した場合に、これらの対応ができないことから、そのような状況における対応について検討した。また、検討に合わせて、発電所構外の観測潮位の必要性を踏まえた、発電所構外の観測潮位の基準適合上の位置づけについても整理する。

### 10.3.2 検討条件

発電所構外の観測潮位は、津波警報等が発表されない可能性のある津波に対して、可能な限り早期に対応するものであるため、一時的に津居山地点での観測潮位を用いずとも津波対応上の問題がないと評価できる場合は「欠測時の運用を除外(①)」する。また、津波対応上の問題があるが、津波襲来を判断した際と同等の対応が可能な場合は、「津波襲来を判断した際と同等の対応を実施(②)」する。津波襲来を判断した際と同等の対応ができないものは、「個別に代替手法を検討(③)」する。

以上の検討内容を図14の検討フローに示す。

なお、ここで、「津波襲来を判断した際」とは、構外の観測潮位にて「プラント影響のある津波(津居山検潮所にて、10分以内に潮位 1m上昇(もしくは下降)を観測)」と「プラント影響の可能性のある津波(津居山検潮所にて10分以内に潮位0.5mの上昇(もしくは下降)を観測)」した場合を指す。

# 構外の観測潮位を測時の対応フロー 中時的に構外の観測潮位を用いずとも 津波対応上の問題がないと評価できるか NO NO ③個別に代替手法を検討 ②津波襲来を判断した際と同等の対応を実施 ②津波襲来を判断した際と同等の対応を実施 ③ 1 4 発電所構外の観測潮位欠測時の対応

# 10.3.3 評価結果

発電所構外の観測潮位を活用した対応項目に関して、観測潮位欠測時の対応を図14の検討フローに基づいて整理した結果を表7に示す。

「プラント影響のある津波」を確認した際の取水路防潮ゲート閉止判断の早期化については、構内の潮位観測システム(防護用)により取水路防潮ゲートの閉止判断基準を確認後、取水路防潮ゲートを閉止する場合でも、最も時間余裕が厳しい津波に対して約9分の余裕時間をもって施設影響の生じるケースを防護可能であることから、仮に構外の観測潮位が欠測した場合は、取水路防潮ゲート閉止判断の早期化に係る対応を除外する。

「プラント影響の可能性がある津波」を確認した際の取水路防潮ゲート保守作業の中断については、保守的に欠測と同時に津居山地点に津波が襲来した場合を想定しても、津波を確認した際と同様の対応を欠測と同時に行うことで、発電所に津波が襲来するまでに保守作業を中断し、ゲートの復旧が可能であることから、欠測時は津波襲来を判断した際と同等の対応を実施する。

「プラント影響の可能性がある津波」を確認した際の構内の一般車両の 退避については、保守的に欠測と同時に津居山地点に津波が襲来した場合 を想定しても、津波襲来を判断した際と同様の対応を欠測と同時に行うこ とで、発電所へ津波が襲来するまでに退避が可能であることから、欠測時は 津波襲来を判断した際と同等の対応を実施する。なお、放水口側の一般車両 については、津波の流況及び地形並びに車両位置と津波防護施設との位置 関係を踏まえ、津波防護施設への影響を確認し、必要に応じ、当社敷地内の 津波が到達しない場所へ退避する運用を定めることにより、津波防護施設 に影響を及ぼさない方針とすることから、退避運用の必要性及び成立性に ついては、後段規制において、詳細を確認することとする。

「プラント影響の可能性がある津波」を確認した際の荷役中以外の場合の輸送船の退避については、海底地すべり津波の最大流速、最高・最低水位に対し輸送船の係留が維持できること、輸送船が岸壁に乗り上がらないこと、着底や座礁等により航行不能にならないことを確認しており、漂流物とならないことから、欠測時の運用を除外する。

「プラント影響の可能性がある津波」を確認した際の荷役中の場合の輸送車両等の退避については、燃料輸送作業は年間数日程度であり、夜間作業がないこと、欠測時の輸送車両等の退避による作業中断は、輸送工程への影響が大きいことから、作業時は津居山地点に人を配置し、仮に津居山地点からの潮位伝送に異常が生じた場合には、現地にて可搬型のスケール等にて潮位を確認し、潮位の観測が途切れないよう対応する。

「プラント影響の可能性がある津波」を確認した際の取水路防潮ゲート落下機構の確認については、取水路防潮ゲート閉止の前提条件であるため、 欠測時は直ちに津波襲来を判断した際と同等の対応を実施する。

「プラント影響の可能性がある津波」を確認した際の津波監視カメラによる監視については、津波対応の前提条件であるため、欠測時は直ちに津波

襲来を判断した際と同等の対応を実施する。

# 表 7 発電所構外の観測潮位欠測時の対応整理

| 次 1 元电// 悟/ PV                                           |                         |                                                                        |                                                                                                                                                         |                                                                                                                                                                                              |    |  |
|----------------------------------------------------------|-------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|                                                          | 発電                      | 電所構外で津波を確認し<br>た時の対応                                                   | 発電所構外の観測潮位欠測時の対応                                                                                                                                        | 発電所構外の観測潮位欠測時の対応に係る評価                                                                                                                                                                        | 分類 |  |
| プラント影響のある津<br>波 (津居山で 10 分以内<br>1.0m 上昇 (下降))を確<br>認した場合 | (防<br>位計<br>10 :        | 内の潮位観測システム<br>5護用)のうち2台の潮<br>+の観測潮位がいずれも<br>分以内0.5m以上の「変<br>で取水路防潮ゲート閉 | 左記対応を除外し、構内潮位観測システム(防護用)のうち2台の潮位計の観測潮位がいずれも10分以内0.5m以上の「上下変動」で取水路防潮ゲート閉止判断                                                                              | 構内潮位観測システム(防護用)のうち2台の潮位計の観測潮位がいずれも10分以内0.5m以上の「上下変動」での取水路防潮ゲート閉止にて、最も時間余裕が厳しい津波に対し、約9分の余裕時間をもって、施設影響が生じるケースを防護可能                                                                             | ①  |  |
| 取水路防潮ゲート保守作の中断 構内の一般車両の退避*1                              | 取水路防潮ゲート保守作業            |                                                                        | 同左                                                                                                                                                      | 保守的に欠測と同時に津居山地点に津波が襲来した場合を想定しても、欠測と同時に津波襲来を判断した際と同様の対応を行うことで、発電所に津波が襲来するまでに保守作業を中断し、ゲートの復旧が可能であり、上段の対応により施設影響が生じるケースを防護可能(津居山地点での津波確認時及び欠測時は、速やかに1号及び2号炉中央制御室又は3号及び4号炉中央制御室に情報が発信される体制を構築する) | 2  |  |
|                                                          | Nの一般車両の退避 <sup>※1</sup> | 同左                                                                     | 保守的に欠測と同時に津居山地点に津波が襲来した場合を想定しても、欠測と同時に津波襲来を判断した際と同様の対応を行うことで、発電所へ津波が襲来するまでに退避が可能<br>(津居山地点での津波確認時及び欠測時は、速やかに1号及び2号炉中央制御室又は3号及び4号炉中央制御室に情報が発信される体制を構築する) | 2                                                                                                                                                                                            |    |  |
|                                                          | 燃料等輸送                   | 輸送船の退避(荷役中<br>以外の場合) <sup>※2</sup>                                     | 左記対応を除外とし、退避せず                                                                                                                                          | 海底地すべり津波の最大流速、最高・最低水位に対し輸送船の係留が維持できること、輸送船が岸壁に乗り上がらないこと、着底や座礁等により航行不能にならないことを確認しており、漂流物とならない。                                                                                                | 1) |  |
|                                                          |                         | 輸送車両等の退避(荷<br>役中の場合) <sup>※2</sup>                                     | 作業は年間数日程度であり、夜間作業がないこと、欠測時の輸送車両等の退避による作業中断は、輸送工程への影響が大きいことから、作業時は津居山地点に人を配置し、仮に津居山地点からの潮位伝送に異常が生じた場合には、現地にて可搬型のスケール等にて潮位を確認し、潮位の観測が途切れないよう対応            | 左記対応により、発電所構外潮位を継続監視可能                                                                                                                                                                       | 3  |  |
|                                                          |                         |                                                                        | 同左                                                                                                                                                      | 取水路防潮ゲート閉止の前提条件であるため、欠測時は直ちに津波襲来を判断した際と同等の対応を実施。                                                                                                                                             | 2  |  |
|                                                          | 津波監視カメラによる監視            |                                                                        | 同左                                                                                                                                                      | 津波対応の前提条件であるため、欠測時は直ちに津波襲来を判断した際と同等の対応を実施。                                                                                                                                                   | 2  |  |

※1:後段規制において、必要性及び成立性を確認する。

※2:輸送船については荷役中の場合は津波襲来を判断しても退避しないこととしている。輸送車両等については輸送船が荷役中以外の場合は岸壁に輸送車両等はない。

- 10.3.4 発電所構外の観測潮位の基準適合上の位置づけの整理 発電所構外の観測潮位を活用した対応項目について、それぞれの基準適 合上の位置づけを以下の通り整理した。
  - (1)「プラント影響のある津波 (津居山で 10 分以内 1.0m 上昇 (下降))」を 確認した場合

発電所構外でプラント影響のある津波を確認した場合は、発電所構内の潮位観測システム(防護用)のうち2台の潮位計がいずれも10分以内に0.5m以上の水位変動を検知した場合に、取水路防潮ゲートを閉止する。なお、発電所構外の観測潮位が欠測した場合は、取水路防潮ゲートの閉止判断基準(トリガー)を確認したのちに取水路防潮ゲートを閉止することで、施設影響が生じるケースを防護可能であることを確認していることから、発電所構外の観測潮位による運用は、基準適合上、必須とはならない。

- (2)「プラント影響の可能性がある津波(津居山で10分以内0.5m上昇(下降))」を確認した場合
  - a) 取水路防潮ゲートの保守作業

取水路防潮ゲートの保守作業中に発電所構外の観測潮位が欠測した場合、直ちに作業中断し、作業前の状態に復旧することとしており、この対応により、津波防護可能である。

一方、保守作業の実施の前提は、「発電所構外の観測潮位の欠測等がなく、潮位の確認ができる状態」としており、発電所構外の観測潮位がなければ、保守作業が開始できないことから、発電所構外の観測潮位による運用は、基準適合上、必須である。

b) 構内の一般車両の退避

構内の一般車両の退避は、発電所構外の観測潮位が欠測した場合に、保守的に欠測と同時に発電所構外に津波が襲来した場合を想定しても、欠測を契機に津波襲来を判断した際と同等の対応を実施すれば、発電所へ津波が襲来するまでに退避が可能であり、本対応により、津波防護施設への影響を回避することが可能である。

一方、退避の前提は、発電所構外の観測潮位であり、これがなければ、 退避が開始できないことから、発電所構外の観測潮位による運用は、基 準適合上、必須である。

なお、本運用については、後段規制で必要性及び成立性を改めて確認 する。

# c) 燃料等輸送船の退避

燃料等輸送船は、津波警報等が発表されない可能性のある津波に対して緊急退避しなくとも、漂流物とならないことを確認していることから、発電所構外の観測潮位による運用は、基準適合上、必須とはならない。

# d) 輸送車両等の退避

燃料輸送車両及びLLW輸送車両は、津波警報等が発表されない可能性のある津波に対して漂流物とならないこと、津波襲来直後の波力による滑動と、その後の定常的な流速に対する滑動によっても、津波防護施設へ衝突することはないと評価しており、発電所構外の観測潮位による運用は、基準適合上、必須とはならない。

### e) 取水路防潮ゲートの落下機構の確認

「(1) プラント影響のある津波(津居山で10分以内1.0m上昇(下降))を確認した場合」に記載の通り、構内の潮位観測システム(防護用)の運用で取水路防潮ゲートの閉止を実施することで、施設影響が生じるケースを防護可能であることを確認していることから、発電所構外の観測潮位による運用は、基準適合上、必須とはならない。

# f) 津波監視カメラによる監視

「(1) プラント影響のある津波 (津居山で10分以内1.0m上昇(下降))を確認した場合」に記載の通り、構内の潮位観測システム(防護用)の運用で取水路防潮ゲートの閉止を実施することで、施設影響が生じるケースを防護可能であることを確認していることから、発電所構外の観測潮位による運用は、基準適合上、必須とはならない