又は黒字 設置変更許可申請書(2020.1.29付)からの変更箇所

又は赤字 設置変更許可再補正申請書(2020.9.3付)からの変更箇所

第6.1.1表(1) 日本海における主な既往の津波を発生させた地震一覧

		震	央		津波規模	
発生年月日	波源域	北緯 (°N)	東経 (°E)	M	階級 m	地震・津波の概要
850.-.- 嘉祥3年	山形沖	39.0	139.7	7	2	出羽:地裂け,山崩れ,国府の城柵は傾頽 し,圧死多数。最上川の岸崩れ,海水は国 府から6里のところまで迫った。
1662.6.16 寛文2年	近江	35.2	135.95	7 ¹ / ₄ ~7.6	-	滋賀唐崎で田畑85町湖中に没し潰家 1570。大溝で潰家1020余,死37。彦根で 潰家1千,死30余。榎村で死300,所川村 で死260余。京都で町屋倒壊1千,死200余 など。諸所の城破損。大きな内陸地震で、 比良断層または花折断層の活動とする説が ある。
1741.8.29 寛保1年	渡島沖	41.6	139.4	_	3	渡島西岸・津軽・佐渡:渡島大島この月の 上旬より活動,13日に噴火した。19日早朝 に津波,北海道で死1467,流出家屋729, 船1521破壊,津軽で田畑の損も多く,流出 潰家約100,死37余。佐渡・能登・若狭に も津波。
1762.10.31 宝暦12年	新潟沖	38.1	138.7	7	1	佐渡:石垣・家屋が破損,銀山道が崩れ, 死者があった。鵜島村で津波により26戸流 出。新潟で地割れを生じ,砂と水を噴出。 酒田・羽前南村山郡・日光で有感。
1792.6.13 寛政4年	積丹沖	43.75	140.0	7.1	2	後志:津波があった。忍路で港頭の岸壁が 崩れ,海岸に引き上げていた夷船漂流,出 漁中の夷人5人溺死。美国でも溺死若干。
1793.2.8 寛政4年	鰺ヶ沢	40.85	139.95	6.9~7.1	1	西津軽:鰺ヶ沢・深浦で激しく,全体で潰 家154,死12など。大戸瀬を中心に約 12kmの沿岸が最高3.5m隆起した。小津波 があり,余震が続いた。
1804.7.10 文化1年	象潟	39.05	139.95	7	1	羽前・羽後:『象潟地震』:5月より付近 で鳴動があった。被害は全体で潰家5千以 上,死300以上。象潟湖が隆起して乾陸あ るいは沼となった。余震が多かった。象 潟・酒田などに津波の記事がある。
1833.12.7 天保4年	山形沖	38.9	139.25	$7^{1}/_{2}$	2	羽前・羽後・越後・佐渡:庄内地方で特に 被害が大きく,潰家475,死42。津波が本 庄から新潟に至る海岸と佐渡を襲い,能登 で大破流出家約345,死約100。
1872.3.14 明治5年	浜田	35.15	132.1	7.1	0	石見・出雲:『浜田地震』:1週間ほど前 から鳴動,当日には前震もあった。全体で 全潰約5千,死約550,特に石見東部で被害 が多かった。海岸沿いに数尺の隆起・沈降 が見られ,小津波があった。

第6.1.1表(2) 日本海における主な既往の津波を発生させた地震一覧

		震	央	地震規模	津波規模	
発生年月日	波源域	北緯 (°N)	東経 (°E)	М	階級 m	地震・准波の概要
1927.3.7 昭和2年	丹後	35.6	134.9	7.3	-1	京都府北西部:『北丹後地震』:被害は丹 後半島の頚部が最も激しく,淡路・福井・ 岡山・米子・徳島・三重・香川・大阪に及 ぶ。全体で死2925,家屋全壊12584。郷村 断層(長さ18km,水平ずれ最大2.7m)とそ れに直交する山田断層(長さ7km)を生じ た。測量により,地震に伴った地殻の変形 が明らかになった。
1939.5.1 昭和14年	男鹿	39.9	139.8	6.8	-1	男鹿半島:『男鹿地震』:2分後にもM6.7 の地震があった。半島頸部で被害があり, 死27,住家全壊479など。軽微な津波が あった。半島西部が最大44cm隆起した。
1940.8.2 昭和15年	積丹沖	44.4	139.8	7.5	2	神威岬沖:震害はほとんどなく,津波によ る被害が大きかった。波高は,羽幌・天塩 2m,利尻3m,金沢・宮津1m,天塩河口 で溺死10。
1947.11.4 昭和22年	留萌沖	43.8	141.0	6.7	1	北海道西方沖:北海道の西側に津波があ り,波高は利尻島沓形で2m,羽幌付近で 0.7m。小被害があった。
1964.5.7 昭和39年	男鹿沖	40.4	138.7	6.9	-1	男鹿半島沖 : 青森・秋田・山形3県に民家 全壊3などの被害があった。
1964.6.16 昭和39年	新潟沖	38.4	139.2	7.5	2	新潟県沖:『新潟地震』:新潟・秋田・山 形の各県を中心に被害があり,死26,家屋 全壊1960,半壊6640,浸水15297,その他 船舶・道路の被害も多かった。新潟市内の 各所で噴砂水がみられ,地盤の流動化によ る被害が著しかった。津波が日本海沿岸一 帯を襲い,波高は新潟県沿岸で4m以上に 達した。粟島が約1m隆起した。
1964.12.11 昭和39年	秋田県沖	40.4	139.0	6.3	-1	八郎潟干拓堤防約1kmが20cm沈下, 亀裂2 箇所。検潮記録による津波の最大振幅は深 浦10cm。
1971.9.6 昭和46年	樺太沖	46.7	141.4	6.9	0	震度は稚内3,北見江幸 [※] 2,網走・根室1 であったが,樺太全体で有感。震央付近で は気象庁震度で5~6相当で地震の被害が あったと思われる(詳細不明)。日本におい て津波は稚内で最も大きく,検潮記録によ る津波の最大全振幅は64cm。 ※当社注:北見枝幸の誤記と思われる
1983.5.26 昭和58年	秋田・青森沖	40.4	139.1	7.7	2~3	秋田県沖:『日本海中部地震』:被害は秋 田県で最も多く,青森・北海道がこれに次 ぐ。日本全体で死104(うち津波によるもの 100),傷163(同104),建物全壊934,半壊 2115,流失52,一部破損3258,船沈没 255,流失451,破損1187。津波は早い所 では津波警報発令以前に沿岸に到達した。 石川・京都・島根など遠方の府県にも津波 による被害が発生した。

第6.1.1表(3) 日本海における主な既往の津波を発生させた地震一覧

		震	央	地震規模	津波規模	
発生年月日	波源域	北緯 (°N)	東経 (°E)	М	階級 m	地震・津波の概要
1993.2.7 平成5年	能登半島沖	37.7	137.3	6.6	0	輪島で深度5,石川県珠洲市を中心に地震 被害あり,重傷1人,軽傷28人。また,新 潟県でも軽傷1人。津波の最大全振幅は以 下の通り。 福井港26cm,金沢港32cm,輪島港 51cm,輪島25cm,宇出津港18cm,伏木 港5cm,富山新港5cm,萩浦橋9cm,富山 7cm,直江津23cm,柏崎港48cm,寺泊港 17cm,岩船港40cm,両津港12cm,小木 13cm。
1993.7.12 平成5年	北海道 南西沖	42.8	139.2	7.8	3	北海道南西沖:『平成5年北海道南西沖地 震』:地震に加えて津波による被害が大き く,死202,不明28,傷323。特に地震後 間もなく津波に襲われた奥尻島の被害は甚 大で,島南端の青苗地区は火災もあって壊 滅状態,夜10時すぎの闇のなかで多くの人 命,家屋等が失われた。津波の高さは青苗 の市街地で10mを越えたところがある。
2007.3.25 平成19年	能登半島沖	37.2	136.7	6.9	-1	能登半島沖:『平成19年能登半島地震』: 海陸境界域の横ずれ成分を含む逆断層型地 殻内地震。死1,傷356,住家全壊686,半 壊1740(2009年1月現在)。最大計測震度6強 (石川県内3市町),珠洲と金沢で0.2mの津 波。
2007.7.16 平成19年	新潟県 上中越沖	37.6	138.6	6.8	-1	新潟県上中越沖:『平成19年新潟県中越沖 地震』:新潟県沿岸海域の逆断層型地殻内 地震。2004年中越地震に近いが余震活動は 不活発。震源域内の原子力発電所が被災し た初めての例。死15,傷2346,住家全壊 1331,半壊5710(2008年10月15日現在)。 最大計測震度6強(新潟県内3市村,長野県1 町),地盤変状・液状化なども目立った。 日本海沿岸で最大35cm(柏崎)の津波。
2007.8.2 平成19年	サハリン 西方沖	47.1	141.8	6.4	_	サハリン西方沖(サハリン南部付近)でM6.4 の地震が発生し、北海道で最大震度2を観 測した。この地震により現地で少なくとも 2名以上の死者などの被害があった(平成19 年9月1日現在、米国地質調査所による)。 サハリン南部のホルムスク、ネベリスクで 0.1~0.2m程度の津波が観測された(米国海 洋大気庁による)。今回観測した潮位変動 の高さは高いところで稚内と留萌の0.2m であった。

1)波源域は羽鳥(1984)⁽¹⁾および国立天文台(2014)⁽²⁾ならびに宇佐美他(2013)⁽³⁾による

2)震央の位置, 地震規模および地震・津波の概要は, 国立天文台(2014)⁽²⁾による

3)津波規模階級m(今村・飯田)は,国立天文台(2014)⁽²⁾および渡辺(1998)⁽⁵⁾による

4)1662年に近江で発生した地震の波源域, 震央, 地震規模および地震・津波の概要は, 宇佐美他(2013)⁽³⁾および羽鳥(2010)⁽⁴⁾による

5)1971年に樺太南西沖で発生した地震の波源域, 震央, 地震規模および地震・津波の概要は, 渡辺(1998)⁽⁵⁾による

6)2007年にサハリン西方沖で発生した地震の波源域,震央,地震規模の概要は,気象庁(2007)⁽⁶⁾による

第6.2.1表 津波シミュレーションの概略計算手法および計算条件

1911 H	没定項目		設定値
	基	礎方程式	非線形長波理論式及び連続式(<u>後藤・小川(1982)(</u> 9)
津波計算	変数	配置および	Staggered Lean-frog注
	差分	アスキーム	
	Ť	算領域	対馬海峡から間宮海峡に至る東西方向約1,500km, 南北方向約2,000km
	空間	月格子間隔	$1,350m \rightarrow 450m \rightarrow 150m \rightarrow 50m \rightarrow 25m \rightarrow 12.5m$
	時間	月格子間隔	0.3秒 安定条件 (CFL条件) を十分満足するように設定
	+	1 田 夕 /中	断層モデルを用いて、 Mansinha and Smylie(1971) ¹⁰ の方法により計
	19	月朔 采 忤	算される海底面の鉛直変位分布を初期条件とする
計算条件等		沖側	特性曲線法をもとに誘導される自由透過の条件
	境界	境界	(<u>後藤・小川(1982)⁽⁹⁾)</u>
	条件	陸域	<i>古</i> 人亡 <u>时</u> 发供
		境界	
	泊	底摩擦	マニングの粗度係数 n=0.030 (土木学会(<u>2016</u>) ⁽⁸⁾)
	水平滑	副黏性係数	0m²/s
	11 P	算時間	3.0時間(日本海東縁部のケースは6.0時間)
	ation F	算潮位	T.P.0.0 <u>0</u> m
津洋	皮水位評	価	cmを切り上げ、10cm単位で評価

第6.2.2表 津波シミュレーションの詳細計算手法および計算条件

記	定項目			設定値
	基礎	方程式	非線形長波	支理論式及び連続式(<u>後藤・小川(1982)⁽⁹⁾)</u>
津波計算	変数配 差分2	置および < キーム	Staggered	l Leap-frog法
	計算	章領域	対馬海峡な 南北方向約	から間宮海峡に至る東西方向約1,500km, 約2,000km
	空間格	各子間隔	1,350m→4	$50m \rightarrow 150m \rightarrow 50m \rightarrow 25m \rightarrow 12.5m \rightarrow 6.25m \rightarrow 3.125m$
			地震	0.05秒(取水路防潮ゲート開時は0.025秒)
	時間格	子間隔*	海底 地すべり	0.05秒(取水路防潮ゲート開時は0.025秒)
			陸上 地すべり	0.025秒
			地震	断層モデルを用いて、 <u>Mansinha and Smylie(1971)</u> ⁽¹⁰⁾ の方法に より計算される海底面の鉛直変位分布を初期条件とする
	初其	用条件	海底 地すべり	 (Watts他の予測式) Grilli and Watts(2005)⁽³⁷⁾及びWatts et al.(2005)⁽³⁸⁾の予測式により計算される初期水位分布を初期条件とする。 (Kinematicモデルによる方法) Kinematicモデルによる方法を用いて算出される時間刻みあたりの地形変化量が、海面水位と海底地形にそのまま反映されるものとする。
計算条件等			陸上	(Watts他による方法) <u>Fritz et al.(2009)(41)</u> による波源振幅予測 式を用いた <u>Grilli and Watts(2005)(37)及びWatts et al.(2005)(38)</u> による予測式により計算される初期水位分布を初期条件とす <u>る。</u>
			地すべり	(運動学的手法)土砂崩壊シミュレーションによる時間刻みあ たりの地形変化量が、海面水位と海底地形にそのまま反映され るものとする。
	境界	沖側 境界	特性曲線注 (<u>後藤・/</u>	去をもとに誘導される自由透過の条件 <u>ト川(1982)⁽⁹⁾)</u>
	条件	陸域 境界	完全反射多	条件(発電所敷地については遡上境界)
	海庐	£摩擦	マニングの	つ粗度係数 n=0.030 (土木学会(<u>2016</u>) ⁽⁸⁾)
	水平渦重	动粘性係数	0m²/s	
	計算	節時間	3.0時間(日本海東縁部のケースは6.0時間)
	計算	草潮位	水位上昇低	則T.P.+0.49m、水位下降側T.P.0.00m
	評佰		水位上昇(f 気象庁・舞鶴	則T.P.+0.49m、水位下降側T.P0.01m _{僉潮所のデータによる(2007年1月〜2011年12月の5箇年)}
津沢	皮 水位評価		cmを切り.	上げ、10cm単位で評価

※安定条件(CFL条件)を十分満足するように設定

	断層名	断層長さ L	断層幅 W	すべり量 D	地震 モーメント Mo	モーメント マグ [*] ニチュート [*] Mw※1	敷地から断層 までの距離 <u> </u> <i> </i>	推定津波水位 Ht or <i>Hr</i> ※3
		(km)	(km)	(m)	(N • m)		(km)	(m)
1	安島岬沖~和布-干飯崎沖~ 甲楽城断層	76	15.0	_	2.52E+20	7.54	73.4	<u>2.11</u>
2	ウツロギ峠北方-池河内断層	24	15.0	_	2.51E+19	6.87	57.7	0.57
3	甲楽城沖~浦底~池河内~ 柳ヶ瀬山断層	36	15.0	_	5.66E+19	7.11	56.1	<u>1.03</u>
4	浦底-内池見断層	21^{*2}	14.0	1.75	1.80E+19	6.77	54.9	0.48
5	甲楽城沖断層	13	8.7	1.08	4.26E+18	6.36	57.7	0.18
6	白木-丹生断層	15	10.0	1.25	6.55E+18	6.48	50.9	0.27
7	C断層	18	12.0	1.50	1.13E+19	6.64	48.9	0.40
8	大陸棚外縁~B~野坂断層	49	15.0	—	1.05E+20	7.29	39.9	<u>2.18</u>
9	三方断層	27	15.0	_	3.18E+19	6.94	37.1	<u>1.05</u>
10	F O - A ~ F O - B ~ 熊川 断層	64^{*2}	15.0	—	1.79E+20	7.44	15.3	<u>4.17</u>
11	F _G 1東部断層	30	15.0	_	3.93E+19	7.00	100.1	0.45
12	F _G 1西部断層	29	15.0	—	3.67E+19	6.98	80.0	0.53
13	F _{GA} 3東部断層	29	15.0	_	3.67E+19	6.98	59.5	0.72
14	F _{GA} 3西部断層	21	14.0	1.75	1.80E+19	6.77	45.5	0.58
15	F _{GA} 4東部断層	7	4.7	0.58	6.65E+17	5.82	56.6	0.05
16	F _{GA} 4西部断層	17	11.3	1.41	9.53E+18	6.59	43.3	0.40
17	F _{GA} 4北部断層	17	11.3	1.41	9.53E+18	6.59	50.1	0.35
18	経ヶ岬北方断層	19	12.7	1.58	1.33E+19	6.69	46.2	0.47
19	郷村断層	34	15.0	_	5.05E+19	7.07	59.9	0.88
20	香住北方断層	38	15.0	—	6.30E+19	7.14	77.4	0.80

第6.2.3表 簡易予測式による推定津波水位

※1:小数点第3位を切り上げ ※2:津波評価上の長さ ※3:下線は簡易予測式により1.0mを超えるもの

第6.2.4表 各波源におけるパラメータスタディ結果

								取水口	口前面	放水口周辺
	断層名	断層 長さ	走向 【傾斜方向】	モーメント マク゛ニチュート゛ Mw	すべり 量	傾斜角	広域 応力場	最大水位 上昇量	最大水位 下降量	最大水位 上昇量
		(km)	(°)		(m)	(°)	(°)	(m)	(m)	(m)
	安島岬沖~和布- 干飯崎沖~甲楽城 断層	76	 3.91 (2) 324.36 (3) 358.11 (4) 36.66 (5) 27.32 (6) 5.12 (7) 305.16 (8) 317.82 【東】 	7.53	5.02	$\begin{array}{c} \mathbb{()} & : \ 45 \\ \mathbb{(2)} & : \ 90 \\ \mathbb{(3)} \sim \mathbb{(7)} & : \ 45 \\ \mathbb{(8)} & : \ 90 \end{array}$	90	1.9	-1.1	1.5
海域活断	甲楽城沖~浦底~ 池河内~柳ヶ瀨山 断層	36 ^{**}	①347.98 ②316.76 ③329.74 ④328.03 ⑤322.95 ⑥320.79 ⑦325.76 ⑧317.34 ⑨299.48 ⑩305.13 ⑪147.15 ⑫312.01 ⑬323.77 ⑭143.66 ⑮163.00 【東】	7.10	2.99	90	90	1.3	-0.8	0.7
層	大陸棚外縁~ B~野坂断層	49	①41.12 ②345.44 ③330.27 ④309.19 ⑤315.54 ⑥305.27 【東】	7.29	3.76	$1 \sim 3 : 60$ $4 \sim 6 : 90$	90	<u>4.3</u>	-1.0	1.8
	三方断層	27	①357.29 ②351.32 ③330.81 ④1.97 【東】	6.94	1.94	60	90	0.5	-0.4	0.6
	F O - A ~ F O - B ~ 熊川断層	64 ^{**}	①139.02 ②129.01 ③110.50 【西】	7.43	5.32	90	90	1.0	<u>-3.0</u>	<u>2.0</u>
	E 1 南②	131	183	7.85	9.44	60	-	1.2	-1.2	1.2
日本海	E 2南①	131	30	7.85	9.44	60	-	0.7	-1.2	1.2
東縁部	E 3南①	131	20	7.85	9.44	60	-	1.0	-1.7	1.5
	E 3B 南④	131	200	7.85	9.44	60	-	1.7	-1.2	1.2

※ 津波評価上の長さ

下線は、各評価点における最大水位上昇量または最大水位下降量を示す

第6.2.5表(1) 地震による津波の評価結果(波源の詳細パラメータ)

断層名	合計 断層長さ L	平均 断層幅 W	Mw ^{*1}	断層 セグメント No.	上端 深さ	地震発生 層厚さ	傾斜 角	断層 セグメント 幅	広域 応力場	すべり 角	剛性率 µ	すべり量 D ^{※2}
				1						157°		
				2			60.00°	17.3km		70°		
大陸棚外縁~	19km	16.9km	7 29	3	0.0km	15.0km			900	46°	3.5×10^{10}	3 76m
B~野坂断層	45KIII	10.2Km	1.20	4	0.0KIII	15.0km			50	0°	N/m ²	5.7011
				5			90.00°	15.0km		11°		
				6						0°		
				1						30°	10	
FO-A~FO- B~熊川断層	64km	15.0km	7.43	2	0.0km	15.0km	90.00°	15.0km	90°	0°	3.5×10^{10} N/m ²	5.32m
B~熊川断層				3						0°	N/m²	

※1:武村(1998)より、logM₀=2.0logL+16.64、Kanamori(1977)より、Mw=(logM₀-9.1)/1.5の関係を用いて算出 ※2:M₀=µDLWより算出

	第6.2.5表(2)	・ 地震によ	る津波の評価結果	(津波水位)
--	------------	--------	----------	--------

				水位上昇側					水位下降側	
波源モデル	取水路 防潮ゲート 前面	3, 4号炉 循環水 ポンプ室	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3, 4号炉 海水 ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3, 4号炉 海水 ポンプ室
	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)
大陸棚外縁~B~野坂断層	<u>5.3</u>	0.9	0.9	0.9	1.3	2.1	2.1	_	_	_
FO-A~FO-B~熊川断層	2.0	<u>2.1</u>	<u>1.9</u>	<u>1.9</u>	<u>2.5</u>	<u>2.7</u>	<u>2.8</u>	<u>-1.9**</u>	<u>-1.8</u> **	<u>-2.0*</u>
日本海東縁部の波源	_	_	_	_	_	_	_	-0.8	-0.7	-1.0
-	•		-				-	-	※地盤隆起	量 : 0.23m

下線は、各評価点における最高または最低水位を示す

第6.2.6表 若狭海丘列付近断層(福井県モデル)による津波水位評価結果

				水位上昇側					水位下降側	
波源モデル	取水路 防潮ゲート 前面	 3,4号炉 循環水 ポンプ室 	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3, 4 号炉 海水 ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3, 4 号炉 海水 ポンプ室
	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)
若狭海丘列付近断層 (福井県モデル)	4.5	1.1	1.1	1.1	1.4	3.6	3.8	-0.8	-0.8	-1.0

第6.2.7表 日本海東縁部の波源(秋田県モデル)による津波水位評価結果

				水位上昇側					水位下降側	
波源モデル	取水路 防潮ゲート 前面	 3,4号炉 循環水 ポンプ室 	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3, 4号炉 海水 ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3, 4 号炉 海水 ポンプ室
	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)
日本海東縁部の断層 (秋田県モデル)	4.4	1.7	1.7	1.7	1.7	2.9	3.0	-1.4	-1.4	-1.6

すべり量	(m)	67 0	0.43	2.82	4.30	2.72	4.40	2.76	4.36		5.32		1.91	3.81	1.63	4.09	1.99	3.73
	Mw	6 <i>0</i> L	60.1				1.39				7.43				р 10	17.1		
合計断層	長さ (km)	00	90			L O	õ				64				Ç	00		
断層長さ	(km)	18.0	72.0	21.1	8.4	36.3	16.1	29.9	12.8	36.2	9.5	17.7	17.2	8.6	11.4	6.9	31.3	14.6
跡層幅	(km)	17.3	17.3	14.5	6.2	14.5	6.2	14.5	6.2	15.0	15.0	15.0	14.0	7.0	14.0	7.0	14.0	7.0
上端深さ	(km)	0.1	0.1	1.0	2.8	1.0	2.8	1.0	2.8	0.0	0.0	0.0	1.0	3.3	1.0	3.3	1.0	3.3
すべり角	(。)	06	06	264	264	145	145	215	215	30	0	0	35	35	35	35	35	35
傾斜角	(。)	60	60	60	60	60	60	60	60	90	06	06	90	90	06	90	90	06
走向	(。)	16	51	81	81	47	47	54	54	139	129	110	111	111	130	130	139	139
	~ .> .×	るうち	- (水 g × v)	背景領域	大すべり城	背景領域	大すべり城	背景領域	大すべり城		ー様すべり		背景領域	大すべり城	背景領域	大すべり城	背景領域	大すべり城
ř L	<i>~</i> д	$\operatorname{Sg1}$	Sg2	$\operatorname{Sg1}$	Sg2	Sg3	$\operatorname{Sg4}$	Sg5	Sg6	$\operatorname{Sg1}$	Sg2	Sg3	$\operatorname{Sg1}$	Sg2	Sg3	$\operatorname{Sg4}$	Sg5	Sg6
		町十二号,	通开乐			検討会	(F - 49)				関西電力				検討会	(F - 53)		
~ 〕 -	波源モアル				若狭海丘列	付近断層								F O-A~F O-B ~熊川断層				

第6.2.8表 検討会の波源モデルの設定条件

			水位_	上昇側	水位下降側
	波源モデル		取水口前面	放水口前面	取水口前面
			(T.P.m)	(T.P.m)	(T.P.m)
	福井県モデル	一様すべり	3.4	<u>4.0</u>	-3.5
		大すべり中央	<u>3.5</u>	2.1	-2.3
苯 妆海 丘利什 近 斯 居		大すべり左側	3.3	1.8	-2.1
石伏傅山列竹虹剧層	検討会モデル	大すべり右側	3.3	2.0	-2.2
		大すべり隣接LRR	<u>3.5</u>	1.9	-2.2
		大 す べ り 隣 接 LLR	3.6	1.9	-2.1

第6.2.9表(1) 検討会の波源モデルによる津波水位評価結果(概略計算)

下線は、津波水位評価結果(水位上昇側)が最大又は一様すべりモデルと同等以上となったものを示す

			水位_	上昇側	水位下降側
	波源モデル		取水口前面	放水口前面	取水口前面
			(T.P.m)	(T.P.m)	(T.P.m)
	関西電力モデル	一様すべり	<u>1.7</u>	<u>2.7</u>	<u>-2.7</u>
		大すべり中央	1.2	2.1	-1.1
$FO-A \sim FO-B \sim$		大すべり左側	1.1	1.8	-0.8
熊川断層	検討会モデル	大すべり右側	1.4	1.7	-1.1
		大 す べ り 隣 接 L R R	1.4	1.7	-1.1
		大 す べ り 隣 接 LLR	1.4	1.7	-1.1

下線は、津波水位評価結果(水位上昇側)が最大又は一様すべりモデルと同等以上となったものを示す

第6.2.9表(2)	検討会の波源モデルによる津波水位評価結果	(詳細計算)

					水位上昇側					水位下降側	
波源モラ	デル	取水路 防潮ゲート 前面	3, 4 号炉 循環水 ポンプ室	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3,4号炉 海水 ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3, 4号炉 海水 ポンプ室
		(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)
	大すべり中央	3.6	<u>0.7</u>	<u>0.7</u>	<u>0.7</u>	<u>1.2</u>	<u>2.1</u>	<u>2.1</u>	_	_	_
若狭海丘列付近断層 (検討会モデル)	大すべり隣接LRR	3.6	0.7	<u>0.7</u>	<u>0.7</u>	<u>1.2</u>	1.9	1.9	_	_	_
	大すべり隣接LLR	<u>3.7</u>	<u>0.7</u>	0.7	<u>0.7</u>	<u>1.2</u>	1.9	2.0	_	_	_

下線は、各評価点における最高又は最低水位を示す

(断面積による規模評価結果)
べり規模の検討結果
海底地す
第6.2.10表

۲ ۲	祖幸ロジャ幸	の長さ 画位 差子べり表現	おすべり おすべり長さ 福行 幸小べいきま	おナスの おナスの おナスの東お 高谷 きナズ りきお	海袋 昇キバット およくり長さ 「「「」」 「「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」	11.2 ● 一番 およくり およくり おかくりまさ きょくいきま
	5	(m ²) ////////////////////////////////////	厚さ(m) ×厚さ(m ²) ^{MKILL} ¹²⁵	長さ(m) 厚さ(m) ×厚さ(m ²) ⁷⁶⁴¹² ²⁶⁷	$\mathbb{E}^{\text{indiverse}}$ \mathbb{E}^{2} (m) \mathbb{P}^{2} (m) $\times \mathbb{P}^{2}$ (m^{2}) \mathbb{P}^{2}	// Frager 長さ (m) 厚さ (m) ×厚さ (m ²)
Es-T1 C		913,324	128 913,324 21	7,135 128 <u>913,324</u> 21	K-120 7,135 128 <u>913,324</u> 21	B K-120 7,135 128 <u>913,324</u> 21
Es-T4 C		833,402	97 833,402 22	8,592 97 833,402 22	GA-23 8,592 97 <u>833,402</u> 22	C GA-23 8,592 97 <u>833,402</u> 22
Es-T5 C		656,141 23	150 $656, 141$ 23	4,374 150 $656,141$ 23	GA-22 4,374 150 656,141 23	C GA-22 4,374 150 656,141 23
Es-T10 C		578,850 24	160 578,850 24	3,618 160 578,850 24	K-119 3,618 160 578,850 24	B K-119 3,618 160 578,850 24
Es-T11 C		576,038	116 576,038 25	4,966 116 576,038 25	GA-20 4,966 116 576,038 25	C GA-20 4,966 116 576,038 25
Es-T18 C		558,225	103 558,225 26	5,420 103 558,225 26	K-120 5,420 103 558,225 26	B K-120 5,420 103 558,225 26
Es-K9 B		547,200	61 547,200 27	8,970 61 547,200 27	GA-15 8,970 61 547,200 27	C GA-15 8,970 61 547,200 27
Es-T9 C		498,312 28	76 498,312 28	6,557 76 498,312 28	K-119 6,557 76 498,312 28	B K-119 6,557 76 498,312 28
Es-G105 A		357,855 29	81 357,855 29	4,418 81 357,855 29	K-120 4,418 81 357,855 29	B K-120 4,418 81 357,855 29
Es-T3 C	_	341,839 30	45 341,839 30	7,596 45 341,839 30	K-121 7,596 45 341,839 30	B K-121 7,596 45 341,839 30
Es-G1 A		331,267 31	62 331,267 31	5,343 62 331,267 31	GA-21 5,343 62 331,267 31	C GA-21 5,343 62 331,267 31
Es-K10 B		312,678 32	158 312,678 32	1,979 158 312,678 32	GA-11 1,979 158 312,678 32	C GA-11 1,979 158 312,678 32
Es-G101 A		298,932	67 298,932 33	4,462 67 298,932 33	K-120 4,462 67 298,932 33	B K-120 4,462 67 298,932 33
Es-G2 A		274,765	33 274,765 34	8,326 33 274,765 34	GA-13 8,326 33 274,765 34	C GA-13 8,326 33 274,765 34
Es-G4 A		270,276	52 270,276 35	5,198 52 270,276 35	K-121 5,198 52 270,276 35	B K-121 5,198 52 270,276 35
Es-T16 C		198,822 36	29 198,822 36	6,856 29 <u>198,822</u> 36	K-115 6,856 29 198.822 36	A K-115 6,856 29 198.822 36
Es-T7 C		185,161 37	30 185,161 37	6,172 30 185,161 37	K-118 6,172 30 185,161 37	A K-118 6,172 30 185,161 37
Es-T19 C		182,237 38	29 182,237 38	6,284 29 182,237 38	GA-T 6,284 29 182,237 38	C GA-T 6,284 29 182,237 38
		164,876	46 164,876	3,584 46 164,876	K-51 3,584 46 164,876	A K-51 3,584 46 164,876
		158,864	36 $158,864$	4,413 36 158,864	K-119 4,413 36 158,864	A K-119 4.413 36 158.864

				()	H V 4 1 V 4		1.11	,				
						水位上昇					水位下降	
i	波源モデル	取水路 防潮 ゲート ^{※1}	取水路 防潮ゲート 前面 (TPm)	3,4号炉 循環水 ポンプ室 (TPm)	1 号炉 海水 ポンプ室 (T P m)	2 号炉 海水 ポンプ室 (T P m)	3,4号炉 海水 ポンプ室 (TPm)	放水口 前面 (TPm)	放水路 (奥) (TPm)	1 号炉 海水 ポンプ室 (T P m)	2 号炉 海水 ポンプ室 (T P m)	3,4号炉 海水 ポンプ室 (TPm)
エリアA	Watts他の 予測式	閉	0.6	0.6	0.6	0.6	0.6	0.6	0.6	-0.3	-0.3	-0.3
(Es-G3)	Kinematic モデルによる方法	閉	2.0	1.0	1.0	1.0	1.0	1.6	1.8	-0.8	-0.8	-0.8
エリアB	Watts他の 予測式	閉	2.0	0.8	0.8	0.8	1.0	1.9	2.1	-0.7	-0.7	-0.8
(Es-K5)	Kinematic モデルによる方法	閉	<u>4.1</u>	<u>1.2</u>	<u>1.1</u>	<u>1.1</u>	<u>1.3</u>	<u>3.7</u>	<u>4.0</u>	<u>-1.1</u>	<u>-1.0</u>	-1.1
エリアC	Watts他の 予測式	閉	2.4	0.8	0.7	0.7	1.1	1.1	1.3	-0.5	-0.5	-0.8
(Es-T2)	Kinematic モデルによる方法	閉	3.3	1.1	1.1	<u>1.1</u>	1.2	<u>3.7</u>	3.9	-0.9	-0.9	<u>-1.2</u>

第6.2.11表 海底地すべりによる津波水位評価結果

(取水路防潮ゲート「閉」)

※1 閉:取水路防潮ゲート天端T.P.+8.5mで全閉

(取水路防潮ゲート「開」)

						水位上昇					水位下降	
;	波源モデル	取水路 防潮 ゲート ^{※1}	取水路 防潮ゲート 前面	 3,4号炉 循環水 ポンプ室 	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3,4号炉 海水 ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3, 4号炉 海水 ポンプ室
	-		(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)
エリアA	Watts他の 予測式	開	0.6	0.6	0.6	0.6	0.6	0.6	0.6	-0.5	-0.6	-1.1
(Es-G3)	Kinematic モデルによる方法	開	2.0	2.3	2.1	2.2	2.6	1.6	1.8	-1.2	-1.4	-2.2
エリアB	Watts他の 予測式	開	2.2	2.5	2.3	2.4	2.5	1.9	2.1	-1.4	-1.5	-2.1
(Es-K5)	Kinematic モデルによる方法	開	<u>3.6</u>	<u>3.9</u>	<u>3.7</u>	<u>3.8</u>	<u>3.8</u>	<u>3.7</u>	<u>4.0</u>	<u>-3.6</u>	<u>-3.7</u>	<u>-3.7</u>
エリアC	Watts他の 予測式	開	1.4	1.8	1.4	1.6	1.8	1.1	1.4	-1.3	-1.4	-2.2
(Es-T2)	Kinematic モデルによる方法	開	3.2	3.7	3.3	3.5	3.6	<u>3.7</u>	3.9	-2.4	-2.5	-2.8

※1 開:取水路防潮ゲート4門開

下線は、各評価点における最高または最低水位を示す。

第6.2.12表 海底地すべりによる津波水位評価結果

I

(Es-G3, Es-G101, Es-K5, Es-K6, Es-K7, Es-T2, Es-T8, Es-T13, Es-T14)

		号 水 プレー 御 室	1	2	1	3	1	7	6	4	3	2	2	8	7	6	3	3	2	1
-(I, T.I		3 3,4 3 3 4 4 3 3 3 4 5 4 5 7 5 7 5 7 5 7 5 7 5 7 7 7 7 7 7	-1.	-2.	-1.	-1.	-2.	-3.	-1.	-2.	-1.	-2.	-2.	-2.	-1.	-2.	-1.	-2.	-1.	-2.
<u>教</u> 行	水位下降	2 号与 ポンプ室	-0.6	-1.4	-0.5	-0.7	-1.5	-3.7	-1.0	-1.6	-0.8	-1.5	-1.4	-2.5	-1.0	-1.9	-0.7	-1.6	-0.7	-1.6
		1 号 右 ポンプ 室	-0.5	-1.2	-0.4	-0.6	-1.4	-3.6	-0.9	-1.5	-0.7	-1.4	-1.3	-2.4	-1.0	-1.7	-0.6	-1.5	-0.6	-1.5
		放水路 (奥)	0.6	1.8	0.6	0.9	2.1	4.0	1.2	2.4	1.0	1.9	1.4	3.9	1.1	2.5	0.9	2.4	0.8	2.0
		放水口 前面	0.6	1.6	0.6	0.8	1.9	3.7	1.1	2.2	1.0	1.7	1.1	3.7	0.9	2.4	0.9	2.3	0.8	1.9
		3,4号炉 第水 ポンプ室	0.6	2.6	0.6	1.1	2.5	3.8	1.7	2.6	1.2	2.3	1.8	3.6	1.6	2.1	1.3	2.1	0.9	2.4
	水位上昇	2 号炉 海水 ポンプ室	0.6	2.2	0.6	0.9	2.4	3.8	1.5	2.2	1.2	2.1	1.6	3.5	1.3	2.0	1.0	1.8	0.9	2.2
		1 号炉 海水 ポンプ室	0.6	2.1	0.6	0.9	2.3	3.7	1.5	2.1	1.2	2.1	1.4	3.3	1.2	1.9	0.9	1.8	0.9	2.1
		3,4 <i>号</i> 炉 循環水 ポンプ室	0.6	2.3	0.6	1.0	2.5	3.9	1.7	2.3	1.2	2.3	1.8	3.7	1.7	2.1	1.2	2.0	0.9	2.4
		取水路 防潮ゲート 前面	0.6	2.0	0.6	0.9	2.2	3.6	1.4	2.1	1.1	2.0	1.4	3.2	1.3	1.8	0.9	1.8	0.8	2.0
		取水路 防潮 イート	围	開	開	围	围	围	围	围	麗	围	開	開	围	围	围	麗	麗	麗
		源モデル	Watts他の予測式	Kinematicモデルによる方法	Watts他の予測式	Kinematicモデルによる方法	Watts他の予測式	Kinematicモデルによる方法	Watts他の予測式	Kinematicモデルによる方法	Watts他の予測式	Kinematicモデルによる方法	Watts他の予測式	Kinematicモデルによる方法	Watts他の予測式	Kinematicモデルによる方法	Watts他の予測式	Kinematicモデルによる方法	Watts他の予測式	Kinematicモデルによる方法
		斑	E_{s} -G3	(規模1位)	Es-G101	(発電所方向)	$E_{s}-K_{5}$	(規模1位)	Es-K7	(規模2位)	Es-K6	(規模3位)	E_{S} - $T2$	(規模1位)	E_{s} -T8	(規模2位)	Es-T13 (坦措の位 双靈	/////////////////////////////////////	Es-T14	(発電所方向)
				4 7 7 7	N (C +				ם ק ד							C P F				

、た選定結果
る水位予測式を用い
よい
<u>Huber and Hager(1997)</u>
56.2.13 表

備考		救水口側に位置する		取水口側に	位置する
発電所での 全振幅 (m)	2.22	2.63	2.68	1.22	1.42
発電所までの 距離r (m)	009	1,500	1,600	7,400	7,600
発電所前面 水深 d2(m)	10	10	10	10	10
突入位置 水深d1 (m)	15	15	15	15	15
進行角Y (°)	0	30	0	30	25
すべり面の 傾斜角a (°)	6	30	28	25	30
土量Vs =L×b×t (m ³)	3,000,000	256,000	256,000	1,299,200	750,000
平均 厚さt (m)	30	20	20	29	25
平均 幅b (m)	250	80	80	160	100
平均 長さL (m)	400	160	160	280	300
陸上地すべり	No.1	No.9	No.10	No.11	No.14

下線は、以下の理由により津波シミュレーションを実施する陸上地すべりとする ・放水口側は、No.1については、近傍のNo.2.3との地すべりも含めるため、選定する ・No.9,10については、発電所との位置関係等よりNo.10を選定する ・取水口側は全振幅が大きいNo.14を選定する

第6.2.14表 陸上の斜面崩壊(地すべり)による津波水位評価結果

					水位上昇側					水位下降側	
波浪	原モデル	取水路 防潮ゲート 前面	 3,4号炉 循環水 ポンプ室 	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3, 4 号炉 海水 ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3, 4 号炉 海水 ポンプ室
		(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)
No.1,2,3	Watts他に よる方法	0.6	0.6	0.6	0.5	0.5	0.6	0.6	-0.1	-0.1	-0.1
一体	運動学的 手法	0.7	0.8	0.7	0.7	0.8	<u>2.1</u>	<u>2.1</u>	<u>-0.3</u>	-0.3	<u>-0.4</u>
N 10	Watts他に よる方法	0.6	0.6	0.6	0.6	0.6	0.8	1.0	-0.1	-0.1	-0.1
No.10	運動学的 手法	0.6	0.6	0.6	0.6	0.6	1.5	1.4	-0.1	-0.1	-0.1
No 14	Watts他に よる方法	1.0	1.1	0.9	<u>1.0</u>	<u>1.0</u>	0.6	0.6	<u>-0.3</u>	<u>-0.4</u>	<u>-0.4</u>
10.14	運動学的 手法	<u>1.1</u>	<u>1.2</u>	<u>1.0</u>	<u>1.0</u>	<u>1.0</u>	0.6	0.7	<u>-0.3</u>	<u>-0.4</u>	<u>-0.4</u>

下線は、各評価点における最高または最低水位を示す

第6.2.<u>15</u>表 若狭海丘列付近断層(福井県モデル)と隠岐トラフ海底地すべりの組み合わせによる津波水位評価結果

					水位上昇側					水位下降側	
波源モデル	発生時間の 不確かさ	取水路 防潮ゲート 前面 (TPm)	3,4号炉 循環水 ポンプ室 (TPm)	1 号炉 海水 ポンプ室 (TPm)	2 号炉 海水 ポンプ室 (T P m)	3, 4号炉 海水 ポンプ室 (TPm)	放水口 前面 (TPm)	放水路 (奥)	1 号炉 海水 ポンプ室 (TPm)	2 号炉 海水 ポンプ室 (TPm)	3,4号炉 海水 ポンプ室 (TPm)
若狭海丘列付近断層と 隠岐トラフ海底地すべり (エリアA)	87秒間	4.4	1.2	1.1	1.1	1.5	3.6	3.8	-1.2	-1.1	-1.4
若狭海丘列付近断層と 隠岐トラフ海底地すべり (エリアB)	81秒間	<u>5.7</u> (21秒)	<u>1.5</u> (0秒)	<u>1.3</u> (18,21秒)	<u>1.3</u> (18~24秒)	<u>1.8</u> (39秒)	<u>6.0</u> (63秒)	<u>6.1</u> (78秒)	<u>-1.3</u> (57,60秒)	-1.2	<u>-1.7</u> (81秒)
若狭海丘列付近断層と 隠岐トラフ海底地すべり (エリアC)	102秒間	4.7	1.1	1.1	1.1	1.5	4.8	5.1	<u>-1.3</u> (90,93秒)	<u>-1.3</u> (78,81秒)	<u>-1.7</u> (60秒)

下線は、各評価点における最高または最低水位を示す

()は発生時間のずれ

第6.2.<u>16</u>表 FO-A~FO-B~熊川断層と陸上地すべりの組み合わせに よる津波水位評価結果

					水位上昇側					水位下降側	
波源モデル	発生時間の 不確かさ	取水路 防潮ゲート 前面	 3,4号炉 循環水 ポンプ室 	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3, 4号炉 海水 ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3, 4号炉 海水 ポンプ室
		(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)	(T.P.m)
FO-A~FO-B~ 熊川断層と陸上地すべり (No.1,2,3)	57秒間	1.9	2.2	2.0	2.0	2.3	<u>3.0</u> (0秒)	<u>3.1</u> (0秒)	_	-	_
FO-A~FO-B~ 熊川断層と陸上地すべり (No.14)	54秒間	<u>2.2</u> (54秒)	<u>2.6</u> (54秒)	$\frac{2.2}{(54秒)}$	<u>2.3</u> (54秒)	$\frac{2.7}{(45秒)}$	2.7	2.7	<u>-2.0</u> (51秒)	<u>-1.9</u> (30秒)	<u>-2.0</u> (54秒)

下線は、各評価点における最高または最低水位を示す

()は発生時間のずれ

各波源による津波水位評価結果 第6.2.17表

3,4 号 ポンプ 第 -2.0^{%3} -1.0-0.8 -0.4-1.6-0.3 -1.1 -0.8 -1.2-1.0-0.8 -0.1 -0.4-0.1-0.1-0.4 I I I 2 記 が ポ ン プ 宝 玉 -1.8^{*3} -0.8 -0.7 -0.3 -0.7 -1.0-0.5-0.9 -0.1 -0.3 -0.1-0.1-0.4-0.4-0.8 -1.4I I I 水位下降 -1.9^{*3} -0.8 -0.8 -1.1-0.3 -1.4 -0.3 -0.7 -0.5-0.9 -0.3 -0.1-0.1-0.3 -0.8 -0.1I I I (参考) 取水口^{*2} 前面 -1.9-0.9 -1.0-3.0 -1.7 -2.2 -2.5-0.1 -1.0-0.1-0.2-0.1 -0.1-0.4-0.3 -3.5 I I I I (風 1.84.01.33.9 1.01.42.02.80.62.10.62.10.60.7 3.83.02.11.92.1I 放水路 拔水口 弎面 1.61.90.61.93.7 3.70.62.10.81.50.60.63.61.92.12.71.1 2.9I 2.13,4号炉 海水 ポンプ噺 1.02.51.31.01.31.20.60.61.01.01.41.20.61.1 0.50.81.71.21.2I , ю 2 記 が ポ ン プ 生 型 1.91.01.1 1.01.00.90.60.80.71.1 0.50.7 0.60.61.1 1.70.70.7 0.7 I 水位上昇 1 記 売 ポ ン プ 油 船 1.01.00.91.90.61.1 1.10.60.60.60.91.1 1.70.7 0.80.7 0.7 0.7 0.7I 3,4号炉 循環水 ポンプ室 1.01.1 1.1 1.21.1 0.92.10.60.81.20.80.60.80.60.61.70.7 0.7 0.7 I с, С 取水路 防潮ゲート 前面 2.03.30.60.61.04.53.65.32.00.62.04.12.40.60.71.1 4.43.63.7I (参考) 取水口^{*2} 前面 3.8 3.42.81.03.54.02.42.10.61.71.91.60.50.70.50.60.92.52.4I 取水路 防潮 ゲート^{※1} 野 王 R R K R R R R 麗 围 黯 麗 麗 匪 ₽ R 緊 影 R Kinematicモデルによる方法 Kinematicモデルによる方法 Kinematicモデルによる方法 Watts他による方法 Watts他による方法 Watts他による方法 大すべり隣接LRR 大すべり隣接LLR **Watts**他の予測式 Watts他の予測式 Watts他の予測式 日本海東縁部の断層(秋田県モデル) 若狭海丘列付近断層(福井県モデル) 運動学的手法 運動学的手法 運動学的手法 大すべり中央 FO-A~FO-B~熊川断層 大陸棚外縁~B~野坂断層 波源モデル 若狭海丘列付近断層 (検討会モデル) 日本海東緑部の波源 エリアB тJ7A IJ7C No.1,2,3 No.10 No.14 陸上 地すべり 海底 地すべり 行政機関の 波源モデルを 用いた津波 地震に 起因する津波 地震以外に 起因する津波

開:両系列のゲートが開いた状態(T.F.±0~+8.5mはカーテンウォールあり) 閉:取水路防潮ゲート天端T.P.+8.5mで全閉、

取水口前面は評価点として用いていないが、津波高さの目安として参考に記載している 地盤変動量0.33m隆起

(T.P.m)

第6.2.18表 単体組み合わせによる津波水位評価結果

	3,4号炉	海水ポンプ運	-1.4	-1.7	-1.7	<u>-2.0</u> ※3 (54秒)	I	
と降	2 号炉	ポンプ運	-1.1	-1.2	-1.3	<u>-1.9</u> ※3 (30秒)		
水位1	1 号炉	海水ポンプ運	-1.2	-1.3	-1.3	<u>-2.0</u> ※3 (51秒)	I	
	(参考) *2	<u></u> 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	-3.7	-4.7	-4.3	-2.6	-	
	444-1-77	胶水路 (奧)	3.8	<u>6.1</u> (78秒)	5.1	2.7	1.6	
		败水口 前面	3.6	<u>6.0</u> (63秒)	4.8	2.7	3.0	
	3.4号炉	海水ポンプ運	1.5	1.8	1.5	<u>2.7</u> (45秒)	2.3	1 1
上昇	2 号炉	海水ポンプ運	1.1	1.3	1.1	<u>2.3</u> (54秒)	2.0	* - - - -
水位	1号炉	海水ポンプ運	1.1	1.3	1.1	<u>2.2</u> (54秒)	2.0	ンルリチナ
	3. 4号炉	循環 ポンプ 単	1.2	1.5	1.1	<u>2.6</u> (54秒)	2.2	
	取水路	防潮ゲート 前面	4.4	$\frac{5.7}{(214)}$	4.7	2.2	1.9	日日の部分
	(参考) *2	型水口 町 町 町	3.4	4.6	3.5	2.2	2.1	「水間」、
	取水路 防潮	ゲート*1		Ek.			Æ	2 HI ~ ド
		発生時間の 不確かさ	87秒間	81秒間	102秒間	54秒間	57秒間	》 王 王
		1 枚	ΥΥ Υ	エリアB	тJFC	No.14	No.1,2,3	しんし聞
「削り」	彼源七アル	東る市因時 が快辺義地		隠岐トラフ 海底地すべり (Kinematic)		陸上地すべり	(運動学的手法)	
		地震に 起因する津波		若狭海丘列 付近断層 (福井県モデル)		$FO-A \sim FO-B \sim$	熊川断層	※1 II. 市大安任進点

閉:取水路防潮ゲート天端T.F.+8.5mで全閉、 開:両系列のゲートが開いた状態(T.P.±0~+8.5mはカーテンウォールあり) 取水口前面は評価点として用いていないが、津波高さの目安として参考に記載している 地盤変動量0.23m隆起

× × × × × ×

下線は、各評価点における最高または最低水位を示す

()は発生時間のずれ

(T.P.m)

		波源モデル		若狭海丘列付近断層(福井県モデル)と 隠岐トラフ海底地すべり(エリアB)			FO-A~FO-B~熊川断層と	陸上地すべり(No.14)		
		発生時間のずれ	21秒	63秒	78秒	30秒	45秒	51秒	54秒	
	取水路 防潮 ゲート*1			Ē			E	E		
		<i>7</i> Х	Θ	0	6	Ð	ø	9	0	
		(参考) ^{*2} 取水口 前面	3.9	4.4	4.5	I	2.1	I	2.1	
		取水路 防潮ゲート 前面	4.9	5.1	5.5	I	2.1	I	2.2	
		3.4号 4 4 3 3 3	1.3	1.3	1.3	I	2.4	I	2.5	
	水位.	1 も も た よ ン プ 宝	1.3	1.3	1.2	I	2.1	I	2.2	
	上昇	2 忠右 第大 ポンプ編	1.2	1.2	1.1	I	2.1	I	2.2	
		3,4号炉 海水 ポンプ歯	1.7	1.8	1.7	I	2.5	I	2.5	
		放水口 前面	5.0	5.3	5.3	I	2.7	-	2.7	
		放水路 (奥)	5.8	6.1	6.2	I	2.7	-	2.7	
		(参考) ^{*2} 取水口 前面			I	-2.5	I	-2.5	-2.5	
	水位-	1 市 北 た 子 加 重 人 人 幽	I	I	I		I	.1.8 -1.8		
(T.F.m)	本語	2 3 寺 行 ポンプ 蜜	I		I	-1.8	I	1.8 -1.8		
		3,4号炉 海水 ポンプ蜜	I	I	I	**3 -1.9	I	*3 -2.0	*3 *3	

※1 閉:取水路防潮ゲート天端T.P.+8.5mで全閉、 開:両系列のゲートが開いた状態(T.P.±0~+8.5mはカーテンウォールあり) ※2 取水口前面は評価点として用いていないが、津波高さの目安として参考に記載している ※3 地盤変動量0.23m隆起

 $(T D_m)$

第6.2.19表 一体計算による津波水位評価結果

第6.2.20表 敷地への遡上及び水位の低下による海水ポンプへの影響のおそれがある波源の確認結果

津波水位計算結果に潮位のバラツキ(上昇側+0.15m,下降側-0.17m)、高潮の裕度(上昇側+0.49m)を考慮。

数字はT.P.(m)

	該当な	
	ある値(
	おそれが	
	の影響の	
	ポンプへ	
	トる海水:	
	低下に。	
1	は木位の	
	遡っまた	
	敗地へのう	
	青字は隽	

atx 2.1 デルによる方法 4.7 割式 3.0 デルによる方法 3.9
5.1
4.2
4.2
5.5
5.8
6.1
2.6
1.2
1.3
1.2
1.2
1.6
1.7
T
2.8
Т
2.8
8.5

※2:地盤変動量0.23m隆起 開:両系列のゲートが開いた状態(TP±0~+8.5mはカーテンウォールあり) ※1:閉:取水路防潮ゲート天端TP+8.5mで全閉、

第6.2.21表 津波警報等が発表されない場合の津波水位計算結果

(津波水位計算の結果)

										奴子	(TT.P.(m)	赤子は谷評	価点の最高ま	たは敢低水位	1							
市水 欧防湖		波源モデル						水位上昇	-				水位下降									
ゲート※1			波源モディ	~	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3, 4号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3, 4号炉 海水ポンプ室								
			エリアA	Watts他の予測式	0.6	0.6	0.6	0.6	0.6	0.6	0.6	-0.5	-0.6	-1.1]							
			$(Es \cdot G3)$	Kinematicモデルによる方法	2.0	2.3	2.1	2.2	2.6	1.6	1.8	-1.2	-1.4	-2.2	1							
			エリアA	Watts他の予測式	0.6	0.6	0.6	0.6	0.6	0.6	0.6	-0.4	-0.5	-1.1	1							
			(Es-G101)	Kinematicモデルによる方法	0.9	1.0	0.9	0.9	1.1	0.8	0.9	-0.6	-0.7	-1.3	1							
			エリアB	Watts他の予測式	2.2	2.5	2.3	2.4	2.5	1.9	2.1	-1.4	-1.5	-2.1	1							
			(Es-K5)	Kinematicモデルによる方法	3.6	8.9	8.7	3.8	3.8	8.7	4.0	-3.6	-8.7	-8.7	基準津波 3							
			エリアB	Watts他の予測式	1.1	1.2	1.2	1.2	1.2	1.0	1.0	-0.7	-0.8	-1.3	ſ							
		(Es•K6)	Kinematicモデルによる方法	2.0	2.3	2.1	2.1	2.3	1.7	1.9	-1.4	-1.5	-2.2	1								
開	地震以外に	トに 海底 津波 地すべり -	エリアB	Watts他の予測式	1.4	1.7	1.5	1.5	1.7	1.1	1.2	-0.9	-1.0	-1.6	1							
(Open)	起因する津波 ±		地すべり	地すべり	地すべり	地すべり	地すべり	地すべり	地すべり	(Es-K7)	Kinematicモデルによる方法	2.1	2.3	2.1	2.2	2.6	2.2	2.4	-1.5	-1.6	-2.4	1
										[Γ	エリアC	Watts他の予測式	1.4	1.8	1.4	1.6	1.8	1.1	1.4	-1.3
			(Es-T2)	Kinematicモデルによる方法	3.2	3.7	3.3	3.5	3.6	8.7	3.9	-2.4	-2.5	-2.8	基準津波 4							
			エリアC	Watts他の予測式	1.3	1.7	1.2	1.3	1.6	0.9	1.1	-1.0	-1.0	-1.7	ſ							
			(Es-T8)	Kinematicモデルによる方法	1.8	2.1	1.9	2.0	2.1	2.4	2.5	-1.7	-1.9	-2.6	1							
			エリアC	Watts他の予測式	0.9	1.2	0.9	1.0	1.3	0.9	0.9	-0.6	-0.7	-1.3	1							
			(Es-T13)	Kinematicモデルによる方法	1.8	2.0	1.8	1.8	2.1	2.3	2.4	-1.5	-1.6	-2.3]							
			エリアC	Watts他の予測式	0.8	0.9	0.9	0.9	0.9	0.8	0.8	-0.6	-0.7	-1.2]							
			(Es-T14)	Kinematicモデルによる方法	2.0	2.4	2.1	2.2	2.4	1.9	2.0	-1.5	-1.6	-2.1	1							

(敷地への遡上及び水位の低下による海水ポンプへの影響

のおそれがある波源の確認結果)

津波水位計算結果に潮位のバラツキ(上昇側+0.15m,下降側-0.17m)、高潮の裕度(上昇側+0.49m)を考慮。

													数字	=(‡T.P.(m)	
								青字は敷地~	への遡 また!	t 水位の低	下による海	水ポンプへの	の影響のおそれ	れがある値	_
而非财富之期								水位上昇		-			水位下降		
成小 <u><u></u> 成小<u></u> の 一 ト ^{※1}</u>			波源モデハ	×	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ボンプ室	2号炉 海水ボンプ室	3, 4号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1号炉 海水ボンプ室	2 号炉 海水ボンプ室	3,4号炉 海水ポンプ室	
			エリアA	Watts他の予測式	1.2	1.3	1.2	1.2	1.3	1.3	1.3	-0.6	-0.7	-1.3	
			(Es-G3)	Kinematicモデルによる方法	2.6	3.0	2.8	2.8	3.2	2.3	2.4	-1.4	-1.5	-2.4	
			エリアA	Watts他の予測式	1.2	1.2	1.2	1.2	1.2	1.2	1.2	-0.6	-0.7	-1.2]
			(Es-G101)	Kinematicモデルによる方法	1.5	1.6	1.5	1.5	1.7	1.5	1.6	-0.8	-0.9	-1.5	
			エリアB	Watts他の予測式	2.8	3.1	3.0	3.0	3.1	2.6	2.8	-1.5	-1.6	-2.3	
			(Es-K5)	Kinematicモデルによる方法	4.3	4.5	4.4	4.4	4.4	4.4	4.6	-8.7	-3.8	-3.8	基準津波 3
	エリアB		エリアB	Watts他の予測式	1.7	1.9	1.8	1.8	1.9	1.6	1.7	-0.8	-0.9	-1.5	Ī
			(Es-K6)	Kinematicモデルによる方法	2.6	2.9	2.8	2.8	2.9	2.3	2.5	-1.5	-1.7	-2.4	
開	地震以外に 海	毎底	エリアB	Watts他の予測式	2.1	2.4	2.1	2.1	2.3	1.7	1.8	-1.1	-1.2	-1.8	
(Open)	起因する津波 地す	る津波地すべり	(Es-K7)	Kinematicモデルによる方法	2.7	3.0	2.8	2.8	3.2	2.8	3.0	-1.7	-1.8	-2.5	
			エリアC	Watts他の予測式	2.0	2.4	2.1	2.2	2.5	1.8	2.0	-1.5	-1.6	-2.4	
			(Es-T2)	Kinematicモデルによる方法	3.8	4.3	4.0	4.1	4.3	4.3	4.5	-2.5	-2.6	-2.9	基準津波4
		_{エリアC} Watts他の予測式		Watts他の予測式	2.0	2.3	1.9	1.9	2.3	1.6	1.7	-1.2	-1.2	-1.9	1
			(Es-T8)	Kinematicモデルによる方法	2.5	2.7	2.5	2.6	2.8	3.0	3.1	-1.9	-2.0	-2.8	1
			エリアC	Watts他の予測式	1.5	1.8	1.6	1.6	1.9	1.5	1.5	-0.8	-0.9	-1.4	
			(Es-T13)	Kinematicモデルによる方法	2.4	2.6	2.4	2.5	2.8	2.9	3.0	-1.7	-1.8	-2.5	
			エリアC	Watts他の予測式	1.4	1.5	1.5	1.5	1.6	1.4	1.5	-0.7	-0.8	-1.4	1
	(Es-T14)		(Es-T14)	Kinematicモデルによる方法	2.7	3.1	2.8	2.9	3.0	2.6	2.7	-1.6	-1.8	-2.3	1
施設影響	施設影響が生じる高さ(上昇側:敷地高さ・防潮ゲート高さ・防潮堤高さ、下降側:取水可能水位)					3.5	3.5	3.5	3.5	8.0	8.0	-3.2	-3.2	-3.5	

※1:閉:取水路防潮ゲート天端TP+8.5mで全閉、 開:両系列のゲートが開いた状態(TP±0~+8.5mはカーテンウォールあり)

第6.3.1表(1) 砂移動に関する数値計算条件

設定項目	設定値
砂移動モデル	・藤井他(1998) ⁽⁴⁹⁾ による手法 ・高橋他(1999) ⁽⁵¹⁾ による手法
解析領域	高浜発電所周辺海域(東西約11.4km、南北約10.2kmの範囲)
空間格子間隔	6.25m→3.125m
時間格子間隔	最小0.10秒
沖側境界条件	 ・津波シミュレーションで得られる水位及び線流量を砂移動の 数値シミュレーションの沖側境界条件とする ・解析領域内外への砂の流入出を考慮する
陸側境界条件	完全反射条件
浮遊砂体積濃度 上限値	藤井他(1998) ⁽⁴⁹⁾ の手法 1%、5% 高橋他(1999) ⁽⁵¹⁾ の手法 1%
砂の粒径	0.117mm (海底土質調査より設定)
砂粒の密度	2.686g/cm ³ (海底土質調査より設定)
海水の密度	1.03g/cm ³
空隙率	0.4(高橋他(1992) ⁽⁵⁹⁾)
マニングの粗度係数	0.03 (土木学会(<u>2016</u>) ⁽⁸⁾)
限界摩擦速度	岩垣式で算定
計算潮位	T.P.±0.0m
計算時間	地震発生後3.0時間
初期砂層厚	 ・コンクリートブロック、捨石等による海底面被覆部を除いて沖合まで 初期砂層厚は無限厚さ ・被覆部は、竣工図を基本とし、深浅測量の結果から、中央部は初期堆 積砂層厚ゼロ、端部は深浅測量の結果を基に砂層厚を設定し、被覆面 天端以深には洗掘が生じないとする

項目	藤井他(1998) ⁽⁴⁹⁾ の手法	高橋他(1999) ⁽⁵¹⁾ の手法
掃流層の 流砂連続式	$\frac{\partial Z}{\partial t} + \alpha \left(\frac{\partial Q}{\partial x}\right) + \frac{E - S}{\sigma(1 - \lambda)} = 0$	$\frac{\partial Z}{\partial t} + \frac{1}{1 - \lambda} \left(\frac{\partial Q}{\partial x} + \frac{E - S}{\sigma} \right) = 0$
浮遊層の 流砂連続式	$\frac{\partial C}{\partial t} + \frac{\partial (UC)}{\partial x} - \frac{E - S}{D} = 0$	$\frac{\partial (C_s D)}{\partial t} + \frac{\partial (MC_s)}{\partial x} - \frac{E - S}{\sigma} = 0$
流砂量式	小林他 $(1996)^{(50)}$ の実験式 $Q = 80 au_*^{1.5} \sqrt{sgd^3}$	高橋他(1999) ⁽⁵¹⁾ の実験式 $Q = 21 \tau_*^{1.5} \sqrt{sgd^3}$
浮遊砂層への 巻き上げ量 算定式	$E = \frac{(1-\alpha)Qw^2\sigma(1-\lambda)}{Uk_z \left[1 - \exp\left\{\frac{-wD}{k_z}\right\}\right]}$	高橋他(1999) ⁽⁵¹⁾ の実験式 $E = 0.012 {\tau_*}^2 \sqrt{sgd} \cdot \sigma$
沈降量の 算定式	$S = wC_b$	$S = wC_{\rm s} \cdot \sigma$
摩擦速度の 計算式	log-wake則($u_*/U = \kappa / \{\ln(h/Z_0) - 1\}$ にwake関数を付加した式)を鉛直 方向に積分した式より算出	マニング則より算出 $u_* = \sqrt{gn^2 U U / D^{1/3}}$

Q:単位幅、単位時間当たりの掃流砂量(m³/s/m)

 $s : = \sigma/\rho - 1$

D: 全水深(m)

第6.3.1表(2) 砂移動に関する数値計算条件

Z:水深変化量(m) t:時間(s) x:平面座標

τ*:シールズ数

σ:砂粒の密度(g/cm³) ρ:海水の密度(g/cm³) m/s2) d:砂の粒径(mm) U:流速(m/s)

g:重力加速度(m/s2) d:砂の粒径(mm) U:流速(m/s2) n: Manningの粗度係数(=0.03m^{-1/3}・s 土木学会(2016)⁽³⁾より)

w:土粒子の沈降速度(Rubey式より算出)(m/s)

α:局所的な外力のみに移動を支配される成分が全流砂量に占める比率(=0.1,藤井他(1998)(49)より)

kZ:鉛直拡散係数(0.2κ・u*・h,藤井他(1998)⁽⁴⁹⁾より)(m²/s)

к:カルマン定数(=0.4,藤井他(1998)(49)より)

h:水深 (m) Z0:粗度高さ(=ks/30)(m) ks:相当粗度(=d)(m)

C, Cb:浮遊砂濃度、底面浮遊砂濃度(浮遊砂層の連続式より算出)(kg/m3)

Cs:浮遊砂体積濃度(浮遊砂層の連続式より算出)(kg/m³) λ:空隙率(=0.4,高橋他(1992)⁽⁵⁹より)

第 6.1.1 図 津波堆積物調査位置図

厚 (津波伝播計算領域及び空間格子間) モドレ 概略津波計算 X 6.2.2箫

詳細津波計算モデル(津波伝播計算領域及び空間格子間隔) 第6.2.3 図(1)

第 6.3.3 図(2) 詳細津波計算モデル (敷地内)

第 6.2.4 図 津波水位評価点位置図

※痕跡高は東北大学工学部津波防災実験所(1984)(12)による

第6.2.5 図 1983年日本海中部地震津波による発電所周辺の痕跡高

※痕跡高は後藤他(1994)⁽¹³⁾、東北大学工学部災害制御研究センター(1994)⁽¹⁴⁾、 首藤他(1997)⁽¹⁵⁾、阿部他(1994)⁽¹⁶⁾による

第6.2.6 図 1993年北海道南西沖地震津波による発電所周辺の痕跡高

対象津波	地点数 <i>n</i>	幾何平均 <i>K</i>	幾何標準偏差 <i>K</i>
1983年日本海中部地震津波	259	1.01	1.37
1993年北海道南西沖地震津波	153	1.01	1.37

【1983年日本海中部地震津波】

【1993年北海道南西沖地震津波】

第6.2.7図 津波シミュレーション結果と津波痕跡高との比較

- ※1 断層幅の上限 W_t は、地震発生層の厚さ H_e を15kmとし、傾斜角8を90°(45~90°のうち M_W が最大となる値)とした際には、 $W_t=H_e$ /sin8=15kmとなる。断層幅の上限に対応 する断層長さ L_t は、 $L_t=1.5W_t=22.5$ kmとなる。
- ※2 断層幅の上限に対応するすべり量Dtは、モーメントマグニチュードを M_{Wt} =(logL_t+3.77)/0.75=6.83、地震モーメントを M_{0t} =10^(1.5Mwt+9.1)=2.21×10¹⁹Nm、 剛性率を μ =3.50×10¹⁰N/m²とした際には、 D_t = $M_{0t}/(\mu L_t W_t)$ =1.87mとなる。
- ※3 $\log r_0=0.5M_W-2.25$ より求まる r_0 に対して、 $\Delta \leq r_0$ となる場合は $\log H_r=0.5M_W-3.30+C$ 、C=0.2(日本海側)より求まる H_r を推定津波水位とする。

第6.2.8 図 簡易予測式による推定津波水位の算定フロー

第6.2.9 図 敷地周辺の海域における検討対象断層

第6.2.10 図 日本海東縁部における検討対象断層

7
1L
лт MII:H
题
③
С
Ē
き
± ₽
]∱
E A
世
英
±1⊓ ₩
11
た
 _111
反則
判
見る
1 1 1 1 1 1
権

6.43	90	60	0.1	7.63	17.32	90
すべり量 (m)	すべり角 (°)	傾斜角 (°)	上端深さ (km)	地震規模 Mw	断層幅 (km)	断層長さ (km)

福井県(2012) (20):福井県における津波シミュレーション結果について, 平成 24年9月3日, 福井県 危機対策・防災課.

若狭海丘列付近断層(福井県モデル)の波源モデル図 第 6.2.12 図

								R=122.6km							
	38°17′36.8″N 138°5′14.9″E	14 °	20 °	。06	0 km	350 km	135 km	47,250 km ²	4.73E+14 cm ²	8.7	3.50E+11 dyne/cm ²	3.50E+10 N/m ² 811 cm	8.1 m 1.34E+29 dyne-cm	1.34E+22 Nm	8.69
設定方法	地中の上端における南端		東傾斜	逆断層		海域A、海域B、海域Cの連動	M/L=0.38を摘要し、2kmメッシュでモデル化	Smodel=Lmodel × Wnodel		log5=M-4.07 S:km ²	3.50×10 ¹¹ dyne-cmと仮定	$\log D_{model} = 10^{-10.2} \times (\mu S)^{0.5}$	Mo= 11 - D • S	-	<pre>Mw=(logMo-16.1)/1.5 Mo:dyne-cm</pre>
巨視的震源パラメータ	断層モデル原点	走向 θ	傾斜角 δ	すべり角γ	断層モデル上端深さ	断層モデル長さLmodel	断層モデル幅W ^{aodel}	断層モデル面積S _{model}		マグニチュードM	剛性率μ	平均すべり量D _{model}	地震モーメントMo		モーメントマグニチュードMw

海域A+B+Cが連動した場合の津波断層モデル

秋田県(2012):「地震被害想定調査」に係る津波関連データについて

(2013年1月31日更新)津波浸水シミュレーション参考資料(秋田県HPより抜粋) (20)

(秋田県モデル)の波源モデル図 日本海東緑部の波源 第 6.2.13 図

第 6.2.17 図(1) 海底地形変化量分布図 (エリアA: Es-G3)

第 6.2.17 図(2) 海底地形変化量分布図 (エリアB: Es-K5)

第 6.2.17 図(3) 海底地形変化量分布図 (エリアC: Es-T2)

【初期水位波形】	$_{ m eff}$ and the left of the left of the off of the off of the left of the			. (The second secon	エリアA (Es-G3) - 20-18-16-14-12-00-08-06-04-04000 02-04-08-08-10-18-18-18-18-18-18-18-18-18-18-18-18-18-	titter in ※コンターレンジ:		0)	Comments .	me and the second	$\pm J 7 B (Es-K5)$	-20-16-16-14-12-10-08-06-04-0200 02 04 06 08 10 12 14 16 18 20 HMMKE 00 XX	1110.7+~1110.7-: ベノノー ダノコ ※		•••	Constant of the second of the	エリアC (Es-T2)
	備考	貧図説明書‰ı	5崩壊深さ**2	 壊深さ**2	郡頂点の距離と、崩壊高さと崩壊前に *深から算出*2			郡頂点の距離**2				<u>v -1</u>)					幹夫、池原研「海洋地質図 38 経ヶ岬沖 ,明書 1:200,000」 平成5年 地質調査所 ³³² .布図からの図読による値		

		備艿	±地質調査所・海洋地質図説明書∞	2※マ至堤鐐崩	☞≈⇒************************************	₿撬筘幅 ^{%2}	崩壊部頂点の水深ー崩壊深さ**2	崩壊部頂点から堆積部頂点の距離と、崩壊高さと崩壊前に おける堆積部頂点の水深から算出**2				崩壊部頂点から堆積部頂点の距離**2	S/2	$=S_0 / (R\cos \theta)$	=b²/8T	$=S_0/t_0^2$	$=\sqrt{(R/g)}\sqrt{(\gamma+Cm)/(\gamma-1)}$	$=t_0\sqrt{gd}$	$2S_0/R$	$=S_0/t_0$	$=\lambda_0/2$		※1 片山肇、佐藤幹夫、池原研「海洋地質図 38 経	表層堆積図説明書 1:200,000」 平成5年 地質 ※2 地形変化量分布図からの図読による値		
		エリアC Es-T2	1.4	7,000	150	6,000	400	1.4	9.8	0	1	5,900	2,950	0.072	40,833	0.118	158	9,899	0.144	18.66	4,950	0.898	4m1	エリアC Es-T2	9.65	3.64
	エリア	\pm J 7 B Es-K5	1.4	9,600	130	6,200	200	1.7	9.8	0	1	15,200	7,600	0.086	88,615	0.140	233	19,292	0.172	32.63	9,646	0.625	5源振幅の推定値	\pm J $\mathcal{T}B$ Es-K5	9.79	2.38
[\pm J \mathcal{T} A Es-G3	1.4	21,200	09	3,800	290	1.1	9.6	0	1	17,700	8,850	00.00	936,333	0.015	157	57,573	0.019	11.69	28,786	0.687	災	\pm J $\mathcal{T}A$ Es-G3	1.12	0.07
計算条件		項目	(-) ^{بر}	b (m)	T (m)	(m) w	d (m)	θ (deg.)	g (m/s ²)	Cd	Cm	S	\mathbf{S}_0	Cn	R(m)	$a_0(m^2/s)$	$t_0(sec)$	$\chi_0(m)$	$\Delta \Phi(rad)$	$u_{\rm max}(m/s)$	$\Delta X(m)$	к,		項目	$\eta_{0,2D}$ (m)	η _{0,3D} (m)

Watts 他による初期水位波形及び計算条件 第 6.2.18 図

【計算条件】

項目	設定値
設定位置格子サイズ	450m
鉛直方向破壊伝播速度(基本ケース)	$0.3 m/s^{*1}$
破壊継続時間(基本ケース)	3分 ^{※2}
(参考) 地すべり終了時間	2,082秒 ^{※3}

- ※1 破壊伝播速度の鉛直成分として設定した。
 ※2 地形変化の速度が鉛直方向破壊伝播速度を超えない範囲で最大となるよう破壊継続時間を設定した。
 ※3 地すべり終了時間=地すべり伝播到達時間1,902秒(地すべりの標高差570.7m÷鉛直方向破壊伝播速度0.3m/s)+破壊継続時間3分(180秒)=2,082秒

Kinematicモデルによる計算条件 (エリアA: Es-G3) 第6.2.19図(1)

【計算条件】

- ※1 破壊伝播速度の鉛直成分として設定した。
 ※2 地形変化の速度が鉛直方向破壊伝播速度を超えない範囲で最大となるよう破壊継続時間を設定した。
 ※3 地すべり終了時間=地すべり伝播到達時間831秒(地すべりの標高差831.1m÷鉛直方向破壊伝播速度1m/s)+破壊継続時間2分(120秒)=951秒

第6.2.19図(2) Kinematicモデルによる計算条件(エリアB: Es-K5)

【計算条件】

		【海底地形変化量分布図】
項目	設定値	(Kinematicモデルへの入力データ)
設定位置格子サイズ	450m	-150-140-130-120-110-100-80 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110
鉛直方向破壊伝播速度(基本ケース)	$0.5 \mathrm{m/s}^{\$1}$	
破壊継続時間(基本ケース)	5分 ^{※2}	
(参考)地すべり終了時間	1,748秒 ^{※3}	
★ K 大範囲		堆積部 ↓ 堆積部頂点 崩壊部 ↓ 単積部頂点 ↓ 崩壊部頁点 ↓ 上 単積部の□ンター: 10m間隔 崩壊部の□ンター: 10m間隔 」 10km
堆積部のコンター:10m間隔 代表 500 500 500 500 500 500 500 500 500 50	June V	

- ※1 破壊伝播速度の鉛直成分として設定した。
 ※2 地形変化の速度が鉛直方向破壊伝播速度を超えない範囲で最大となるよう破壊継続時間を設定した。
 ※3 地すべり終了時間=地すべり伝播到達時間1,448秒(地すべりの標高差723.9m÷鉛直方向破壊伝播速度0.5m/s)+破壊継続時間5分(300秒)=1,748秒

第6.2.19図(3) Kinematicモデルによる計算条件 (エリアC: <u>Es-T2</u>)

(Es-G101, Es-K6, Es-K7, Es-T8, Es-T13, Es-T14)Watts他による初期水位波形及び計算条件 第6.2.21図

		S)	ζ	A CONTRACT OF A		$\pm \eta \mathcal{F}C$ (Es-T8)							Ś	i of the second	※コンターレンジ:-1.4m~+1.4m		エリアC (Es-T13)						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		エリアC (Es-T14)
						{	※ロソターレンジを0.00mm~+0.01m		エリアA (Es-G101)					4	i Course	※コンターレンジ:-2.0m~+2.0m	-10 -15 -15 -12 -10 -13 -15 -14 -12 -00 -22 -04 -05 -01 -12 -14 -15 -13 -20 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14	$\pm J \overline{7B}$ (Es-K6)						※コンターレンジ: -2.0m~+2.0m	49 14 14 14 12 10 48 46 44 42 00 82 84 81 10 12 14 15 15 20 804 86 10 10 12 14 15 15 20 804 86 10	\pm J $\mathcal{F}\mathbf{B}$ (Es-K7)
一年来	届も	地質調査所・海洋地質図説明書※1	崩壊部長さ**2	崩壊部の頂点における崩壊深さ**2	崩壞部幅※2	崩壊部頂点の水深一崩壊深さ※2	崩壊部頂点から堆積部頂点の距離と、崩壊高さと崩 薬前における堆積部頂点の水深から算出 ^{%2}				崩遽部頂点から堆積部頂点の距離**2	S/2	$= S_0 / (R \cos \theta)$	=b ² / 8T	$=S_0 t_0^2$	$= \sqrt{(R/g)} \sqrt{(\gamma + Cm)} / (\gamma - 1)$	$=t_0\sqrt{gd}$	$2S_0/R$	$=S_o/t_0$	$=\lambda_0/2$		※1:片山肇、佐藤幹夫、池原研「海洋地質図 38	整个岬冲波眉堆很因影明着「1:200,000」 平成5年,地質調査所	※2:地すべり地形からの図読による値		
	Es-T14	1.4	6,700	85	3,950	520	1.0	9.8	0	1	10,400	5,200	0.079	66,015	0.129	201	14,352	0.158	25.87	7,176	0.684			Es-T14	4.72	1.02
${\scriptstyle {\mathcal I}} \mathrel{{\mathbb J}} {\scriptstyle {\mathcal T}} \mathrel{{\mathbb C}}$	Es-T13	1.4	6,100	139	5,200	730	0.6	9.8	0	1	7,100	3,550	0.106	33,462	0.173	143	12,106	0.212	24.80	6,053	0.680		нуус	Es-T13	4.73	1.42
	Es-T8	1.4	4,900	150	3,700	750	1.0	9.8	0	1	5,800	2,900	0.145	20,008	0.237	111	9,489	0.290	26.20	4,744	0.663	の推定値		Es-T8	5.96	1.67
ΥВ	Es-K7	1.4	6,500	160	3,870	650	1.2	9.8	0	1	6,270	3,135	0.095	33,008	0.155	142	11,346	0.190	22.05	5,673	0.715	波源振幅0	B	Es-K7	6.88	1.75
нц	Es-K6	1.4	8,300	125	5,000	680	1.2	9.8	0	1	7,000	3,500	0.051	68,890	0.083	205	16,765	0.102	17.04	8,383	0.777		ж IJ 7	Es-K6	3.41	0.78
туrA	Es-G101	1.4	3,900	37	4,000	920	1.6	9.8	0	1	5,900	2,950	0.057	51,385	0.094	177	16,842	0.115	16.64	8,421	0.680		エリアΑ	Es-G101	0.41	0.08
L T	Ξ	(-)X	h (m)	T (m)	w (m)	d (m)	$\theta(\deg.)$	$g (m/s^2)$	Cd	Cm	S	\mathbf{S}_0	Cn	R(m)	$a_0(m^{2/s})$	$t_0(sec)$	$\lambda_0(m)$	$\Delta \Phi(rad)$	$u_{max}(m/s)$	$\Delta X(m)$	ĸ		項目		η _{0,2D} (m)	η _{0,3D} (m)

I

I

高浜発電所

※1 破壊伝播速度の鉛直成分として設定した。

堆積部のコンター: 10m間隔 🛷 崩壊部のコンター: 10m間隔 4 4 4 4 4 4 4 5 5

- ※2 地形変化の速度が鉛直方向破壊伝播速度。
 ※3 地すべり終了時間=地すべり伝播到達時間1,487秒(地すべりの標高差743.7m÷鉛直方向破壊伝播速度0.5m/s)+破壊継続時間5分(300秒)=1,787秒

第6.2.22図(3) Kinematicモデルによる計算条件(エリアB:Es-K7)

第6.2.22図(4) Kinematicモデルによる計算条件(エリアC: Es-T8)

- ※1 破壊伝播速度の鉛直成分として設定した。
 ※2 地形変化の速度が鉛直方向破壊伝播速度を超えない範囲で最大となるよう破壊継続時間を設定した。
 ※3 地すべり終了時間=地すべり伝播到達時間1,296秒(地すべりの標高差388.9m÷鉛直方向破壊伝播速度0.3m/s)+破壊継続時間7分(420秒)=1,716秒

第6.2.22図(5) Kinematicモデルによる計算条件(エリアC: Es-

<u>T13)</u>

- ※1 破壊伝播速度の鉛直成分として設定した。
 ※2 地形変化の速度が鉛直方向破壊伝播速度を超えない範囲で最大となるよう破壊継続時間を設定した。
 ※3 地すべり終了時間=地すべり伝播到達時間1,241秒(地すべりの標高差620.4m÷鉛直方向破壊伝播速度0.5m/s)+破壊継続時間2分(120秒)=1,361秒

第6.2.22図(6) Kinematicモデルによる計算条件(エリアC: Es-

最高水位・最低水位には、潮位のバラツキ(水位上昇側:+0.15m、水位下降側:-0.17m)及び高潮の裕度(水位上昇側:+0.49m)を考慮している。

第6.2.23図 海底地すべりのうち敷地への遡上及び水位の低下による海 水ポンプへの影響のおそれがある波源の確認

【計算条件】

					設定値			
\$ \$	ラメータ	単位	No.1, 2,	3一体(No.1周込	辺) ※1	M. 10	N1. 1.4	備考
			エリア1	\pm J 72	\pm J $\mathcal{T}3$	01.0N	1N0.14	
	突入物体積Vs	m ³	4,505,700	2,996,400	1,110,800	143,000	727,201	TITAN2Dでの算定値
十秒崩極シット	厚さs	ш	11.57	19.84	7.77	5.2	4.51	突入位置での層厚の最大値
トラを使く、トーフーションから	4置b	m	550	340	1500	170	400	崩壊域周辺地形図より設定
の入力値	突入速度vs	m/s	0.55	1.24	0.43	18.96	36.96	突入地点での最大速度
	水深h	m	20	10	10	20.0	30	崩壊域〜サイト間の水深より設定
	2次元振幅 n 0,2D	ш	0.035	0.236	0.025	2.59	4.83	
初期水位 計算出力	第1波波長入0	m	59.46	71.08	25.51	221	415.7	
	3次元振幅 n 0,3D	m	0.03	0.20	0.03	1.12	2.37	初期水位分布最大值

※1:No.1周辺の地すべりについては、評価上No.1, 5, 3を一体として扱う。No.1, 5, 3は土砂が3箇所から海に突入しているため、それぞれの箇所について初期水位を作成した

第6.2.26図(3) 運動学的手法による計算条件(陸上地すべり(No.14))

・等価摩擦係数(H/L):0.3

第 6.2.27 図 基準津波定義位置

第6.2.28図 基準津波の時刻歴波形

第 6.2.<u>30</u>図 基準津波定義位置における平均ハザード曲線

時刻歴波形の算出位置

第6.3.1図(1) 基準津波1の時刻歴波形(水位上昇側)

1号炉海水ポンプ室

2号炉海水ポンプ室

第6.3.1図(2) 基準津波1の時刻歴波形(水位上昇側)

放水口前面

放水路(奥)

第6.3.1図(3) 基準津波1の時刻歴波形(水位上昇側)

時刻歴波形の算出位置

取水路防潮ゲート前面

第6.3.2図(1) 基準津波2の時刻歴波形(水位上昇側)

第6.3.2図(2) 基準津波2の時刻歴波形(水位上昇側)

放水口前面

放水路(奥)

第6.3.2図(3) 基準津波2の時刻歴波形(水位上昇側)

第6.3.2図(4) 基準津波2の時刻歴波形(水位下降側)

取水路防潮ゲート前面

3,4号炉循環水ポンプ室

第6.3.3 図(1) 基準津波3の時刻歴波形(水位上昇側)

3,4号炉海水ポンプ室

第6.3.3 図(2) 基準津波3の時刻歴波形(水位上昇側)

放水路(奥)

基準津波3及び基準津波4は、崩壊規模及び破壊伝播速度を固定値としないことから、施設への影響が最も大きくなる崩壊規模及び破壊伝播速度を適用した場合の時刻 歴波形を示す。

第6.3.3 図(3) 基準津波3の時刻歴波形(水位上昇側)

3, 4号炉海水ポンプ室

第6.3.3 図(4) 基準津波3の時刻歴波形(水位下降側)

時刻歴波形の算出位置

取水路防潮ゲート前面

3,4号炉循環水ポンプ室

第6.3.4図(1) 基準津波4の時刻歴波形(水位上昇側)

3, 4号炉海水ポンプ室

第6.3.4 図(2) 基準津波4の時刻歴波形(水位上昇側)

放水路(奥)

第6.3.4図(3) 基準津波4の時刻歴波形(水位上昇側)

3,4号炉海水ポンプ室

第6.3.4 図(4) 基準津波4の時刻歴波形(水位下降側)

最高水位分布図

第6.3.5 図 基準津波1による水位分布図

第6.3.6 図 基準津波2による水位分布図

最低水位分布図

第6.3.7図 基準津波3による水位分布図

最低水位分布図

第6.3.8図 基準津波4による水位分布図

第6.3.9 図(1) 砂移動による地形変化量(基準津波1)

第6.3.9 図(2) 砂移動による地形変化量(基準津波1)

第6.3.9 図(3) 砂移動による地形変化量(基準津波1)

基準津波2:FO-A~FO-B~熊川断層と陸上地すべり(No.14(運動学的手法;54秒ずれ))	5%	計算時間中の最大堆積厚分布	文水日 0.01m 近水日 0.01m ボンブ室0.00m 基本での (1) (1) (1) (1) (1) (1) (1) (1)
	浮遊砂体積濃度上限値		1号及02号标
	藤井他(1998)(49)の手法	算終了時点の地形変化量分布	
波源	砂移動モデル	1	and the second s

第6.3.12図(2) 砂移動による地形変化量(基準津波4

I

I

I

