資料2

高浜発電所1~4号炉 津波警報が発表されない可能性のある津波への対応に係る 基準津波評価について

2020年7月3日 関西電力株式会社

基準津波1~4の整理 (防潮ゲート閉止運用を考慮した計算結果)

		水位上昇										
波源モデル	■ 取水路 ■ 防潮 ■ ゲート	取水路 防潮 ゲート 前面	3,4 号炉 循環水 ポンプ室	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3,4 号炉 海水 ポンプ室	放水口 前面	放水路 (奥)	1号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3,4 号炉 海水 ポンプ室	
福井県モデル(若狭海丘列付近断層)と 海底地すべりエリア B (Es-K5)の組み合わせ (78秒ずれ)	閉	5.5	1.3	1.2	1.1	1.7	5.3	6.2	_	_	_	基準津波1
F O – A ~ F O – B ~ 熊川断層と 陸上地すべり(No.14)の組み合わせ (54秒ずれ)	開	2.2	2.5	2.2	2.2	2.5	2.7	2.7	-1.8 [%]	-1.8 [%]	-2.0 [%]	基準津波2
海底地すべりエリア B (Es-K5) (Kinematicモデルによる方法)	開 (開→閉)	3.6 (4.0)	3.9 (2.1)	3.7 (1.6)	3.8 (1.5)	3.8 (2.3)	3.7 (3.7)	4.0 (4.0)	-3.6 (-1.9)	-3.7 (<mark>-2.0</mark>)	-3.7 (<mark>-2.8</mark>)	基準津波3
海底地すべりエリアC(Es-T2) (Kinematicモデルによる方法)	開 (開→閉)	3.2 (3.3)	3.7 (1.4)	3.3 (1.1)	3.5 (1.1)	3.6 (1.5)	3.7 (3.7)	3.9 (3.9)	-2.4 (-1.8)	-2.5 (-1.9)	-2.8 (<mark>-2.8</mark>)	基準津波4

数字はT.P.(m)、赤字は各評価点の最大値、カッコ内は潮位変動に基づくゲート閉止対策を考慮した値

※地盤変動量0.23m隆起

基準津波3,4について防潮ゲート閉止運用を考慮した津波水位計算を実施した結果(トリガーを0.5m/10分とした計算)を踏まえると、各評価点で最も影響が大きい波源は以下のとおりであった。

- 水位上昇側の取水路防潮ゲート前面、放水口前面、放水路(奥) ⇒ 基準津波1
- 水位上昇側の各ポンプ室、水位下降側の1,2号炉海水ポンプ室 ⇒ 基準津波2
- 水位下降側の3,4号炉海水ポンプ室 ⇒ 基準津波3及び基準津波4

第863回審査会合

資料1-1 P5 修正

モデルの差異による基準津波選定への影響の確認

【評価条件、モデルの妥当性(1/4)】

●既許可時と今回申請時の基準津波評価の条件比較

	-	既許可時の基	基準津波評価	今回申請時の基準津波評価 (警報なし津波のケース)
津	取水路防潮ゲートの 開閉条件	閉 (第1波到達までに防潮ゲート が閉止されるケース)	開 (第1波到達までに防潮ゲート が閉止されないケース)	開→閉 (第1波到達後に防潮ゲートを閉止)
波評価計算	取水路防潮ゲートのモデル化	ゲート開口幅を	実寸より広く設定	ゲート開口幅を実寸に設定
	取水口のモデル化	取水ロケーソン重量	コンクリートを未考慮	取水ロケーソン重量コンクリートの 形状を反映
			»,,,	

既許可モデル

修正モデル

- 警報なし津波については、津波による影響を適切に評価するため、運転状態及び現状の設備形状を踏まえ、既許可の 計算モデル(以降、既許可モデルという)から一部条件を修正した計算モデル(以降、修正モデルという)を用いて申請 を行っていた。
- しかし、申請書の中で異なる計算モデルを使った津波評価を実施することにより、各基準津波の数値差異が妥当であるか 判別がつきにくい状態であったため、本資料の基準津波評価では計算モデルを既許可モデルに統一している。
- ▶ ただし、モデルの差異による基準津波選定への影響を確認する。確認方法としては、基準津波1, 2の波源及び既許可モデルで基準津波1, 2に近い水位の波源について、修正モデルでの計算を実施し、修正モデルを用いた場合でも最高水位・最低水位となる波源が変わらないことを確認する。
- ▶ また、海底地すべりエリアA~C(警報なし)について、修正モデルでの計算を実施し、修正モデルを用いた場合でも基準津波3,4を超える波源がないことを確認する。

第847回審査会合

資料1-1 P24 再掲

●既許可モデルによる計算結果

数字はT.P.(m)、赤字は各評価点の最大値、青字は各評価点の2~4位

【取水路防薄	明ゲート「閉」の)ケース		取水路				水位上昇					水位下降	
	波	源モデル	,	防潮ゲート ^{※2}	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3 , 4 号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室
地震に	大陸棚外縁~E	3~野坂	断層	閉	25.3	0.9	0.9	0.9	1.3	2.1	2.1	-	-	_
起因する津波	日本海東縁部0	D波源		閉	-	-	-	-	-	-	-	-0.8	-0.7	-1.0
			Watts他の予測式	閉	0.6	0.6	0.6	0.6	0.6	0.6	0.6	-0.3	-0.3	-0.3
		ТЛЪЧ	Kinematicモデルによる方法	閉	2.0	1.0	1.0	1.0	1.0	1.6	1.8	-0.8	-0.8	-0.8
地震以外に	海底地すべり	חבווד	Watts他の予測式	閉	2.0	0.8	0.8	0.8	1.0	1.9	2.1	-0.7	-0.7	-0.8
起因する津波	海底地9八り	ТЛЪР	Kinematicモデルによる方法	閉	4.1	1.2	1.1	④1.1	1.3	23.7	24.0	④-1.1	④-1.0	-1.1
			Watts他の予測式	閉	2.4	0.8	0.7	0.7	1.1	1.1	1.3	-0.5	-0.5	-0.8
		TUNC	Kinematicモデルによる方法	閉	3.3	1.1	1.1	④1.1	1.2	(2)3.7	33.9	-0.9	-0.9	④-1.2
	福井県モデル(若狭海	丘列付近断層)	閉	34.5	1.1	1.1	④1.1	1.4	(4)3.6	(4)3.8	-0.8	-0.8	-1.0
行政機関の	秋田県モデル(日本海	東縁部の断層)	閉	(4)4.4	31.7	31.7	31.7	31.7	2.9	3.0	3-1.4	3-1.4	3-1.6
波源モデルを			大すべり中央	閉	3.6	0.7	0.7	0.7	1.2	2.1	2.1	-	-	_
用いた津波	若狭海丘列付近 	工断僧	大すべり隣接LRR	閉	3.6	0.7	0.7	0.7	1.2	1.9	1.9	-	-	-
			大すべり隣接LLR	閉	3.7	0.7	0.7	0.7	1.2	1.9	2.0	-	-	-
ネ 海底地すべ	基 福井県モデル(若 り(エリアB,Kiner	集津波 : 狭海丘 natic)の	L 列付近断層)と D組み合わせ(78秒ずれ)	閉	1)5.5	@1.3	@1.2	@1.1	31.7	1)5.3	①6.2	-	-	_
	底地すべり(エリアB, Kinematic)の組み合わせ(78秒ずれ)													
【取水路防潮	朝ゲート「開」の)ケーフ	U	雨水敗	-			水位上昇					水位下降	
【取水路防海	朝ゲート「開」の 波)ケーフ 源モデル	, ,	取水路 防潮ゲート ^{※2}	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1号炉 海水ポンプ室	水位上昇 2号炉 海水ポンプ室	3,4号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1号炉 海水ポンプ室	水位下降 2号炉 海水ポンプ室	3,4号炉 海水ポンプ室
【取水路防済 地震に 起因する津波	朝 ゲート「開」の 波 FO-A~FO-)ケーフ 源モデル B~熊川	、 / 川断層	取水路 防潮ゲート ^{※2} 開	取水路防潮 ゲート前面 2.0	3,4号炉 循環水ボンプ室 ②2.1	1号炉 海水ボンプ室 ②1.9	水位上昇 2号炉 海水ボンプ室 ②1.9	3,4号炉 海水ボンプ室 ①2.5	放水口 前面 2.7	放水路 (奥) 2.8	1号炉 海水ボンブ室 ①-1.9 ^{※3}	水位下降 2号炉 海水ボンブ室 ①-1.8 ^{※3}	3,4号炉 海水ボンプ室 1-2.0 ^{※3}
【取水路防済 地震に 起因する津波	期ゲート「開」の 波 FO-A~FO-)ケーフ 源モデル B~熊川 No.1	、 「断層 Watts他による方法	取水路 防潮ゲート ^{※2} 開 開	取水路防潮 ゲート前面 2.0 0.6	3,4号炉 循環水ポンプ室 22.1 0.6	1号炉 海水ポンプ室 ②1.9 0.6	水位上昇 2号炉 海水ボンプ室 ②1.9 0.5	3,4号炉 海水ポンプ室 12.5 0.5	放水口 前面 2.7 0.6	放水路 (奥) 2.8 0.6	1号炉 海水ポンブ室 ①-1.9 ^{※3} -0.1	水位下降 2号炉 海水ポンブ室 ①-1.8 ^{※3} -0.1	3,4号炉 海水ポンプ室 ①-2.0 ^{※3} -0.1
【取水路防済 地震に 起因する津波	谢ゲート「開」の 波 FO-A~FO-)ケーフ 源モデル B~熊川 No.1 2,3	K】 // II断層 / Watts他による方法 運動学的手法	取水路 防潮ゲート ^{※2} 開 開 開	取水路防潮 ゲート前面 2.0 0.6 0.7	3,4号炉 循環水ボンブ室 22.1 0.6 0.8	1号炉 海水ボンプ室 201.9 0.6 0.7	水位上昇 2号炉 海水ポンプ室 21.9 0.5 0.7	3,4号炉 海水术ンプ室 (1)2.5 0.5 0.8	放水口 前面 2.7 0.6 2.1	放水路 (奥) 2.8 0.6 2.1	1号炉 海水ボンブ室 ①-1.9 ^{※3} -0.1 -0.3	水位下降 2号炉 海水ボンフ室 ①-1.8 ^{※3} -0.1 -0.3	3,4号炉 海水术ンブ室 1)-2.0 ^{※3} -0.1 -0.4
【取水路防済 地震に 起因する津波 地震以外に	谢ゲート「開」の 波 FO-A~FO-)ケーフ 源モデル B~熊川 No.1 2,3	N M Watts他による方法 運動学的手法 Watts他による方法	取水路 防潮ゲート ^{※2} 開 開 開 開	取水路防潮 ゲート前面 2.0 0.6 0.7 0.6	3,4号炉 循環水ボンプ室 22.1 0.6 0.8 0.6	1号炉 海水ボンフ室 21.9 0.6 0.7 0.6	水位上昇 2号炉 海水ボンブ室 21.9 0.5 0.7 0.6	3,4号炉 海水ボンプ室 12.5 0.5 0.8 0.6	放水口 前面 2.7 0.6 2.1 0.8	放水路 (奥) 2.8 0.6 2.1 1.0	1号炉 海水ボンフ室 ①-1.9 ^{※3} -0.1 -0.3 -0.1	水位下降 2号炉 海水ボンフ室 ()-1.8 ^{※3} -0.1 -0.3 -0.1	3,4号炉 海水ボンブ室 1-2.0 ^{※3} -0.1 -0.4 -0.1
【取水路防済 地震に 起因する津波 地震以外に 起因する津波	期ゲート「開」の 波 FO-A~FO- 陸上地すべり)ケーフ 源モデル B~熊川 2,3 No.10	 Watts他による方法 運動学的手法 Watts他による方法 運動学的手法 Watts他による方法 運動学的手法 	取水路 防潮ゲート ^{※2} 開 開 開 開 開	取水路防潮 ゲート前面 2.0 0.6 0.7 0.6 0.6	3,4号炉 循環水ボンプ室 22.1 0.6 0.8 0.6 0.6 0.6	1号炉 海水ボンブ室 ②1.9 0.6 0.7 0.6 0.6	水位上昇 2号炉 海水ボンフ室 21.9 0.5 0.7 0.6 0.6	3,4号炉 海水ボンプ室 (1)2.5 0.5 0.8 0.6 0.6	放水口 前面 2.7 0.6 2.1 0.8 1.5	放水路 (奥) 2.8 0.6 2.1 1.0 1.4	1号炉 海水ポンプ室 1-1.9 ^{※3} -0.1 -0.3 -0.1 -0.1	水位下降 2号炉 海水ボンブ室 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3,4号炉 海水ボンプ室 ①-2.0 ^{※3} -0.1 -0.4 -0.1 -0.1
【取水路防済 地震に 起因する津波 地震以外に 起因する津波	期ゲート「開」の 波 FO-A~FO- 陸上地すべり)ケーフ 源モデル B~熊川 No.1 No.10	N Watts他による方法 運動学的手法 Watts他による方法 運動学的手法 Watts他による方法 運動学的手法 Watts他による方法	取水路 防潮ゲート ^{※2} 開 開 開 開 開 開	取水路防潮 ゲート前面 2.0 0.6 0.7 0.6 0.6 0.6 1.0	3,4号炉 循環水ボンプ室 22.1 0.6 0.8 0.8 0.6 0.6 1.1	1号炉 海水ボンプ室 21.9 0.6 0.7 0.6 0.6 0.6 0.9	水位上昇 2号炉 海水ボン万室 21.9 0.5 0.7 0.6 0.6 1.0	3,4号炉 海水ボンブ室 (1)2.5 0.5 0.8 0.6 0.6 1.0	放水口 前面 2.7 0.6 2.1 0.8 1.5 0.6	放水路 (奥) 2.8 0.6 2.1 1.0 1.4 0.6	1号炉 海水ボンプ室 (1-1.9 ^{※3} -0.1 -0.3 -0.1 -0.1 -0.1 -0.3	水位下降 2号炉 海水ボンブ室 (1-1.8 ^{※3}) -0.1 -0.1 -0.1 -0.1 -0.4	3,4号炉 海水ボンブ室 1-2.0 ^{※3} -0.1 -0.4 -0.1 -0.1 -0.1 -0.4
【取水路防済 地震に 起因する津波 地震以外に 起因する津波	第ゲート「開」の 波 FO-A~FO- 陸上地すべり)ケーフ 源モデル B~熊川 2,3 No.10 No.14	X) II断層 Watts他による方法 運動学的手法 Watts他による方法 運動学的手法 Watts他による方法 運動学的手法 運動学的手法 運動学的手法	取水路 防潮ゲート ^{※2} 開 開 開 開 開 開 開	取水路防潮 ゲート前面 2.0 0.6 0.7 0.6 0.6 0.6 1.0 1.1	3,4号炉 循環水ボンプ室 ②2.1 0.6 0.8 0.6 0.6 1.1 1.2	1号炉 海水ボンプ室 ②1.9 0.6 0.7 0.6 0.6 0.9 1.0	水位上昇 2号炉 海水ボンブ室 21.9 0.5 0.7 0.6 0.6 1.0 1.0	3,4号炉 海水ボンブ室 12.5 0.5 0.8 0.6 0.6 1.0 1.0	放水口 前面 2.7 0.6 2.1 0.8 1.5 0.6 0.6	放水路 (奥) 2.8 0.6 2.1 1.0 1.4 0.6 0.7	1号炉 海水ボンフ室 (1-1.9 ^{※3} -0.1 -0.3 -0.1 -0.1 -0.1 -0.3 -0.3	水位下降 2号炉 海水ボンプ室 1-1.8 ^{※3} -0.1 -0.3 -0.1 -0.1 -0.4 -0.4	3,4号炉 海水ボンブ室 1-2.0 ^{※3} -0.1 -0.4 -0.1 -0.1 -0.1 -0.4 -0.4 -0.4
【取水路防済 地震に 起因する津波 地震以外に 起因する津波 隆上	謝ゲート「開」の 波 FO-A~FO- 陸上地すべり 基 2 F O - A~F 地すべり(No.14))ケーフ 源モデ川 B~熊川 2,3 No.1(No.1(No.1(とまま) 0 - B の組み	 Watts他による方法 運動学的手法 Watts他による方法 運動学的手法 Watts他による方法 運動学的手法 Watts他による方法 運動学的手法 2 ※熊川断層と つせ(54秒ずれ) 	取水路 防潮ゲート ^{※2} 開 開 開 開 開 開 開 開	取水路防潮 グート前面 2.0 0.6 0.7 0.6 1.0 1.0 1.1 2.2	3,4号炉 循環水ボンブ室 (2)2.1 0.6 0.8 0.6 0.6 1.1 1.2 (1)2.5	1号炉 海水ボンブ室 ②1.9 0.6 0.7 0.6 0.6 0.9 1.0 1.0	水位上昇 2号炉 海水ボンブ室 21.9 0.5 0.7 0.6 0.6 1.0 1.0 1.0 1.0	3,4号炉 海水ボンブ室 12.5 0.5 0.8 0.6 0.6 1.0 1.0 1.0 1.0	放水口 前面 2.7 0.6 2.1 0.8 1.5 0.6 0.6 2.7 2.7	放水路 (奥) (奥) 2.8 0.6 2.1 1.0 1.4 0.6 0.7 2.7	1号炉 海水ボンフ室 ①-1.9 ^{※3} -0.1 -0.3 -0.1 -0.1 -0.3 -0.3 -0.3 2-1.8 ^{※3}	水位下降 2号炉 海水ボン万室 ()-1.8 ^{※3} -0.1 -0.3 -0.1 -0.1 -0.4 -0.4 -0.4 ()-1.8 ^{※3}	3,4号炉 海水ボンブ室 1-2.0 ^{※3} -0.1 -0.4 -0.1 -0.1 -0.1 -0.4 -0.4 (1-2.0 ^{※3}
【取水路防済 地震に 起因する津波 地震以外に 起因する津波 隆上 ※1:警報が発	第ゲート「開」の 波 FO-A~FO- 陸上地すべり 基 FO-A~F 地すべり(No.14) 表されない前提の計)ケーフ 源モデ川 B~熊川 No.1 2,3 No.1 No.1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Watts他による方法 運動学的手法 Watts他による方法 Watts他による方法 運動学的手法 Watts他による方法 Watts他による野都田 Watts他ののののののののののののののののののののののののののののののののののの	取水路 防潮ゲート ^{※2} 開 開 開 開 開 開 親 パ	取水路防潮 ゲート前面 2.0 0.6 0.7 0.6 1.1 2.2 8.5mで全閉、	3,4号炉 循環水ボンブ室 (2)2.1 0.6 0.8 0.6 0.6 1.1 1.2 (1)2.5 開:両系列の	1号炉 海水ボンブ室 ②1.9 0.6 0.7 0.6 0.6 0.9 1.0 1.0 1.2.2 0ゲートが開いた	水位上昇 ^{2号炉} 海水ボンフ室 ②1.9 0.5 0.7 0.6 0.6 1.0 1.0 1.0 1.0 1.0 1.0	3,4号炉 海水ボンプ室 (1)2.5 0.5 0.8 0.6 0.6 1.0 1.0 1.0 (1)2.5 (1)2.5	放水口 前面 2.7 0.6 2.1 0.8 1.5 0.6 0.6 2.7 テンウォールあり	放水路 (奥) (奥) 2.8 0.6 2.1 1.0 1.4 0.6 0.7 2.7 2.7) ※3:地盤	1号炉 海水ボンフ室 ①-1.9 ^{※3} -0.1 -0.3 -0.1 -0.3 -0.3 -0.3 ②-1.8 ^{※3} 滚変動量0.23m	水位下降 2号炉 海水ボンフ室 ()-1.8 ³³ -0.1 -0.3 -0.1 -0.1 -0.4 -0.4 -0.4 ()-1.8 ³³	3,4号炉 海水ボンブ室 1-2.0 ^{※3} -0.1 -0.4 -0.1 -0.1 -0.1 -0.4 -0.4 (1-2.0 ^{※3})

第847回審査会合 資料1-1 P26 再掲

数字はT.P.(m)、赤字は各評価点の最大値

6

【評価条件、モデルの妥当性(3/4)】

●既許可モデルによる計算結果

【取水路防滇	ル ゲート「閉」のケース】	取水路				水位上昇					水位下降	_
	波源モデル	防潮 ゲート ^{※1}	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室
地震に 起因する津波	大陸棚外縁~B~野坂断層	閉	5.3	0.9	0.9	0.9	1.3	2.1	2.1	-	-	-
地震以外に	海底地すずれ エリアB Kinematicモデルによる方法	閉	4.1	1.2	1.1	1.1	1.3	3.7	4.0	-1.1	-1.0	-1.1
起因する津波	海底地すべり エリアC Kinematicモデルによる方法	閉	3.3	1.1	1.1	1.1	1.2	3.7	3.9	-0.9	-0.9	-1.2
行政機関の	福井県モデル(若狭海丘列付近断層)	閉	4.5	1.1	1.1	1.1	1.4	3.6	3.8	-0.8	-0.8	-1.0
波源モデルを 用いた津波	秋田県モデル(日本海東縁部の断層)	閉	4.4	1.7	1.7	1.7	1.7	2.9	3.0	-1.4	-1.4	-1.6
基準津 海底地す^	2波1 福井県モデル(若狭海丘列付近断層)と び(エリア B, Kinematic)の組み合わせ(78秒ずれ)	閉	5.5	1.3	1.2	1.1	1.7	5.3	6.2	-	-	-
【取水路防漳	朋ゲート「開」のケース】	取水路				水位上昇					水位下降	
	波源モデル	防潮 ゲート ^{※1}	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室
地震に 起因する津波	FO-A~FO-B~熊川断層	開	2.0	2.1	1.9	1.9	2.5	2.7	2.8	-1.9 ^{*2}	-1.8 ^{**} 2	-2.0 ^{*2}
	≢津波2 FO-A~FO-B~熊川断層と □地すべり(No.14)の組み合わせ(54秒ずれ)	開	2.2	2.5	2.2	2.2	2.5	2.7	2.7	-1.8 ^{%2}	-1.8 ^{**2}	-2.0 [*] 2

●修正モデルによる計算結果

数字はT.P.(m)、赤字は各評価点の最大値

【取水路防滇	ゲート「閉 の	ケース		取水路				水位上昇				水位下降		
	波	変源モデル		防潮 ゲート ^{※1}	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3 , 4 号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室
地震に 起因する津波	大陸棚外縁~B~野坂断層			閉	4.5	0.8	0.7	0.7	1.0	2.1	2.1	-	Ι	-
地震以外に	新再生する	エリアB	Kinematicモデルによる方法	閉	3.9	0.9	0.9	0.8	1.0	3.7	4.0	-1.0	-1.0	-1.1
起因する津波	海底地9八り	エリアC	Kinematicモデルによる方法	閉	3.2	0.8	0.8	0.8	0.9	3.7	3.9	-0.9	-0.9	-1.0
行政機関の	福井県モデル(ジ	若狭海丘	列付近断層)	閉	4.4	0.9	0.9	0.9	1.1	3.6	3.8	-0.8	-0.8	-1.0
波源モデルを 用いた津波	秋田県モデル(日本海東	縁部の断層)	閉	4.4	1.5	1.5	1.5	1.5	2.9	3.0	-1.4	-1.4	-1.6
基準津 海底地すべ	波1 福井県モラ ボリアB,Kine ボリアB,Kine ボリアB ボリア ボリア ボリア ボック ボッ ボック ボック ボック ボック ボック ボック ジェア ジェア	デル(若狐 matic)の	夹海丘列付近断層)と 組み合わせ(78秒ずれ)	閉	5.4	0.9	0.9	0.9	1.3	5.3	6.2	-	_	-
【取水路防道	リゲート「開」の	ケース		取水路				水位上昇				水位下降		
	波	家源モデル		防潮 ゲート ^{※1}	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3 , 4 号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室
地震に 起因する津波	FO-A~FO-I	3~熊川	断層	開	1.8	2.0	1.8	1.8	2.1	2.7	2.8	-1.7 ^{**} 2	-1.6 ^{*2}	-1.9 ^{* 2}
基準津波2 FO-A~FO-B~熊川断層と 陸上地すべり(No.14)の組み合わせ(54秒ずれ)			開	2.1	2.3	2.0	2.0	2.2	2.7	2.7	-1.6 ^{**2}	-1.6 ^{**2}	-1.9 ^{**2}	
⊻ 1 . 問 . 田 Ⅰ				いた小半能 (エロ		++ -> -> -	± か) ツコ・	₩船亦動旱0	22.00 12 13					

※1:閉:取水路防潮ゲート天端TP+8.5mで全閉、 開:両系列のゲートが開いた状態(TP±0~+8.5mはカーテンウォールあり) ※2:地盤変動量0.23m隆起

▶ 既許可モデル及び修正モデルによる計算結果の比較では、各評価点において最高水位・最低水位となる波源は同じであった。したがって、モデルの差異は基準 津波の選定には影響しない。

▶ ただし、モデルによって水位評価結果に差異が生じることから、修正モデルの影響については入力津波の検討において考慮する。

【評価条件、モデルの妥当性(4/4)】

●既許可モデルによる計算結果

				取水路	水位上昇								水位下降		
		波源モデル		防潮 ゲート ^{※2}	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水ボンプ室	2 号炉 海水ポンプ室	3 , 4 号炉 海水ポンプ室	
	국민고소	Watts他の予測式		開	0.6	0.6	0.6	0.6	0.6	0.6	0.6	-0.5	-0.6	-1.1	
	ТЛЪА	Kinematicモデルによる方法		開	2.0	2.3	2.1	2.2	2.6	1.6	1.8	-1.2	-1.4	-2.2	
が可きます。	국비코머	Watts他の予測式		開	2.2	2.5	2.3	2.4	2.5	1.9	2.1	-1.4	-1.5	-2.1	
海底地 9 ヘリ	ТЛЪВ	Kinematicモデルによる方法	基準津波3	開	3.6	3.9	3.7	3.8	3.8	3.7	4.0	-3.6	-3.7	-3.7	
		Watts他の予測式		開	1.4	1.8	1.4	1.6	1.8	1.1	1.4	-1.3	-1.4	-2.2	
	TUNC	Kinematicモデルによる方法	基準津波4	開	3.2	3.7	3.3	3.5	3.6	3.7	3.9	-2.4	-2.5	-2.8	

●修正モデルによる計算結果

数字はT.P.(m)、赤字は各評価点の最大値

			取水路				水位上昇					水位下降		
	波源モデル			防潮 ゲート ^{※2}	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3 , 4号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3 , 4 号炉 海水ポンプ室
		Watts他の予測式		開	0.6	0.6	0.6	0.6	0.6	0.6	0.6	-1.0	-1.1	-1.7
	LUYA	Kinematicモデルによる方法		開	1.9	2.2	1.9	2.0	2.3	1.6	1.8	-1.6	-1.7	-2.4
海庁生まる		Watts他の予測式		開	2.0	2.3	2.1	2.2	2.3	1.9	2.2	-1.7	-1.8	-2.5
海底地9八り	Тула	Kinematicモデルによる方法	基準津波3	開	3.4	3.7	3.2	3.3	3.8	3.7	4.0	-3.3	-3.4	-3.5
		Watts他の予測式		開	1.3	1.6	1.3	1.4	1.7	1.1	1.4	-1.5	-1.6	-2.2
	LUNC	Kinematicモデルによる方法	基準津波4	開	2.9	3.3	2.8	3.0	3.4	3.7	3.9	-2.2	-2.3	-3.1

※1:閉:取水路防潮ゲート天端TP+8.5mで全閉、開:両系列のゲートが開いた状態(TP±0~+8.5mはカーテンウォールあり)

- ▶ 既許可モデル及び修正モデルによる計算結果の比較では、各評価点において基準津波3,4を超える波源はなかった。したがって、モデルの差異は基準津波3,4の選定には影響しない。
- ▶ ただし、モデルによって水位評価結果に差異が生じることから、修正モデルの影響については入力津波の検討において考慮する。

7

数字はT.P.(m)、赤字は各評価点の最大値

第847回審査会合

資料1-1 P27 再揭

海底地すべり地形の評価

第847回審査会合 資料1-2 P2 再掲

<u>若狭湾周辺海域の文献調査結果(海底地質図)</u>

- ▶ 旧地質調査所(現(独)産業技術総合研究所・地質調査総合センター)が作成した海底地質図※では、隠岐トラフ付近に広範囲に海底地すべり跡と考えられる地形(崩落崖)が示されている。
- > その他の海域には、海底地すべりを示唆するような崩落崖等は図示されていない。

第314回審査会合 資料1-4-2 P64 再掲

海底地すべり地形の評価

第847回審查会合 資料1-2 P3 再掲 10

表層堆積図によると、隠岐トラフ周辺には海底地すべりを示唆する層相(層相5,6及び7)が図示されている。
 その他の海域には、海底地すべりを示唆する層相は図示されていない。

層相区分の考え方

第314回審査会合 資料1-4-2 P66 再掲

11

【層相の凡例】

層相1 (凹凸強反射海底面) Facies 1 (single distinct (rough bottom))

層相2 (平滑強反射海底面) Facies 2 <single distinct (smooth bottom)>

層相3 (厚層成層) Facies 3 <stratified (thick-bedded)>

層相4 (密成層) Facies 4 <stratified (thin-bedded)>

層相5 (ブロック状) Facies 5 <stratified (blocky)>

層相8 (透明)

層相6 (大双曲線状) Facies 6 <large hyperbolic>

最表層の堆積層の等層厚線と欠如する地域(層相3)(単位,m) Isopach and area lacking the uppermost sediment layer in Facies 3

測線の浅海側の限界 Shallower limit of survey lines

大陸棚外縁 Shelf edge

崩落崖

Escarpment

【層相の区分詳細および特徴】 (池原他(1990)*から抜粋)

Table 1. Classification and characteristics of eight acoustic facies. * See text for description.

FACIES	ACOUSTIC CHARACTERS (combination of sea floor and internal reflector pattern*)	SEDIMENTS	INTERPRETATION	DISTRIBUTION
1 DISTINCT -single & rough	Strong bottom return, no or very poor internal return, rough bottom. (A&III)	Gravelly, rocky	Gravelly or rocky bottom	Oki Ridge N of Dogo
2 DISTINCT -single & smooth	Strong bottom return, no or very poor internal return, smooth bottom. (B&III)	Sandy	Sandy bottom	Oki Ridge Wakasa Sea Knoll Chain
3 STRATIFIED -thick-bedded	Internal reflectors continuous and underformed, stratified, smooth bottom. (B&I)	Muddy (clayey silt- silty clay) massive	Muddy bottom -hemipelagic	Marginal terrace
4 STRATIFIED -thin-bedded	Internal reflectors continuous and undeformed, finely stratified, smooth bottom. (B&I)	Muddy tephra and/or sand layers interbedded	Muddy bottom -hemipelagic, (turbidIte)	Central part of SW Trough most of NE Trough
5 STRATIFIED -blocky	Internal reflectors essentially continuous and undeformed, stratified, basal shear surface reflectors, smooth bottom, stepped topography. (B&I)	Muddy massive	Muddy bottom -slide, (hemipelagic)	Edge of marginal terrace
6 HYPERBOLIC -large	Sea floor reflectors largely hyperbolic or irregular and prolonged, internal reflectors poorly observed. (D&III)	Muddy massive	Muddy bottom -slump	Lower part of slope
7 HYPERBOLIC -small	Sea floor and/or internal reflectors hyperbolic or irregular and prolonged, mounded or lens-shaped, blunt distal termination. (C&I,II)	Muddy occurrence of mud clasts	Muddy bottom -debris flow	SW Trough
8 TRANSPARENT	No or very poor internal reflectors, lens or mounded-shaped or layered. (B&II)	Muddy occurence of mud clasts massive	Muddy bottom -debris flow, hemipelagic	SW Trough

※:池原研・佐藤幹夫・山本博文(1990):高分解能音波探査記録からみた隠岐トラフの堆積作用. 地質学雑誌, 96巻, pp.37-49.

層相4,6及び8は、本図幅内には分布しない Facies 4,6 and 8 are not distributed in this map area

第847回審査会合 資料1-2 P5 再掲

12

若狭湾周辺海域における海底地形

若狭湾周辺海域では、隠岐トラフ周辺に多数の海底地すべり地形が認められるものの、それ以外の海域には海底地すべりが疑われる地形は認められなかった。

第847回審查会合 資料1-2 P6 再揭 13

> 第314回審査会合 資料1-4-2 P82 再掲

第847回審査会合 資料1-2 P7 再掲

※測線は代表例

●海底地すべり地形変化の算出(エリアA Es-G101)

第314回審査会合 資料1-4-2 P83 再掲

●海底地すべり地形変化の算出(エリアB Es-K5)

第847回審査会合 資料1-2 P9 再掲

16

●海底地すべり地形変化の算出(エリアB Es-K6) 地すべり地形を通る複数の海上音波探査記録から、崩壊部・堆積部の幅、長さ、 標高等を判読し、海底地形変化量分布図を作成した。 高浜発電所 崩壊堆積 約1.5km³ 堆積部頂点 (水深885m, 厚さ60m) 0 1º 崩壊部長さ (8.3km) 暖部帳 (5.0km) 崩壊部頂点から堆積部 頂点までの長さ .20 (7.0km) GAG-17 崩壊部頂点 1 2 3 4 km (水深805m, 深さ125m)

第847回審查会合 資料1-2 P10 再揭 77

ALTER ALS DEPENDENT RATE (C) ALS DEPENDENT RATE (C) ALTER REPORT (C) ALTER

GA-

19 GA-

20

GA-

21

GA-

崩壊体積

約3,7km3

10kn

GA-23

GA-W

21:15

V.E.≒24 ∟

GA-23

0.00sec (0m)

0.10se

0.2054

(200

0.30sec

0.40sec (300m)

(400m)

0.60sec

(500m)

0.70sec

0.80sec

0.90sec (700m

1.00sec

215

2:00

1:45

1:30

第847回審查会合 資料1-2 P12 再揭 19

GA-U

●海底地すべり地形変化の算出(エリアC Es-T8) 地すべり地形を通る複数の海上音波探査記録から、崩壊部・堆積部の幅、長さ、 GA-19 GA-20 GA-21 GA-22 標高等を判読し、海底地形変化量分布図を作成した。 FILE A. SEPTEMAN AND ADDRESS OF MILLION AND ADDRESS OF MILLION ADDR 崩壊部 堆積部 22:15 高浜発電所 21:15 21:30 21:45 22:00 GA-崩壞堆積 GA-U 93. KS 約1.2km³ 122 22.30 GA-19 500 C GA-T GA-U 堆積部頂点 (水深955m, 厚き45m) GA-20 崩壊部 22.30 **GA-21** 崩壊部頂点から地積部 崩壊部幅 (3.7km) **GA-22** (5.8km) 崩壊部頂点 崩壊部長さ (水深900m, (4.9km) 深さ150m) 0 1 2 3 4 km

※測線は代表例

0.8sec (600m)

1.0sec

(800m)

1.2sec (900m)

(1000m) 1.4sec

- 1.6sec (1200m)

• 0.6sec

0.8sec (600m)

• 1.0sec • (800m)

1.2sec

- 1.4sec

TAT T

01:30

00:45

01:00

01:15

(900m)

(1000m)

22:30

GA-22

第847回審査会合 資料1-2 P13 再揭 20

※測線は代表例

標高等を判読し、海底地形変化量分布図を作成した。 高浜発電所 崩壊堆積 GA-O GA-P A 約2.2km³ GA-N 23.30 GA-M GA-L 崩壊部頂点から堆積部 頂点までの長さ (7.1km) 崩壊部長さ 700 (6.1km) GA-19 崩壞部幅 (5.2km) **GA-20** 堆積部頂点 (水深895m, 厚さ45m) 22.30 22.30 崩壊部頂点 (水深869m; 深さ 2 3 139m) 4 5 km

●海底地すべり地形変化の算出(エリアC Es-T13)

地すべり地形を通る複数の海上音波探査記録から、崩壊部・堆積部の幅、長さ、

第847回審查会合 資料1-2 P14 再揭

●海底地すべり地形変化の算出(エリアC Es-T14)

海底地すべりによる津波の計算条件 (Watts他の予測式)

第314回審査会合 資料1-4-2 P87 再掲

23

<u>Watts他の予測式(初期水位波形の予測1/2)</u>

Watts他(2005)*が提案する初期水位波形の予測式は、次式で表される。

$$\eta(x,y) = -\frac{\eta_{0,3D}}{\eta_{\min}}\operatorname{sech}^{2}\left(\kappa \frac{y-y_{0}}{w+\lambda_{0}}\right) \left(\exp\left\{-\left(\frac{x-x_{0}}{\lambda_{0}}\right)^{2}\right\} - \kappa' \exp\left\{-\left(\frac{x-\Delta x-x_{0}}{\lambda_{0}}\right)^{2}\right\}\right)$$

$$\eta_{0,3D} = \eta_{0,2D} \left(\frac{w}{w + \lambda_0} \right)$$

ここで、 $\eta_{0,3D}$:現象が3次元的な場合の最大水位低下, w:地すべり塊の幅, η_{min} :振幅を除く第1式右辺の最小値, κ, κ' :形状パラメータ(ただし、 $\kappa = 3$ としてよい)

上式に必要なパラメータ(w, $\eta_{0,2D}$, λ_0 :特性津波波長、 $\Delta x (= \lambda_0/2)$ は、崩壊後の地形から図読、 もしくは津波振幅等の予測式から別途算出する。

%: Watts, P., S.T. Grilli, D.R. Tappin, and G.J. Fryer (2005): Tsunami Generation by Submarine Mass Failure. II: Predictive Equations and Case Studies, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, pp.298-310.

第314回審査会合 資料1-4-2 P88 再掲 24

●Watts他の予測式の計算条件

百日	エリ	ГА		エリアB		тлъс				进来
項日	Es-G3	Es-G101	Es-K5	Es-K6	Es-K7	Es-T2	Es-T8	Es-T13	Es-T14	1冊 右
γ(-)	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	地質調查所·海洋地質図説明書 ^{※1}
b (m)	21,200	3,900	9,600	8,300	6,500	7,000	4,900	6,100	6,700	崩壊部長さ※2
T (m)	60	37	130	125	160	150	150	139	85	崩壊部の頂点における崩壊深さ※2
w (m)	3,800	4,000	6,200	5,000	3,870	6,000	3,700	5,200	3,950	崩壞部幅 ^{※2}
d (m)	590	920	700	680	650	400	750	730	520	崩壊部頂点の水深ー崩壊深さ ^{※2}
θ(deg.)	1.1	1.6	1.7	1.2	1.2	1.4	1.0	0.6	1.0	崩壊部頂点から堆積部頂点の距離と、崩壊高さと崩壊 前における堆積部頂点の水深から算出 ^{※2}
g (m/s²)	9.8	9.8	9.8	9.8	9.8	9.8	9.8	9.8	9.8	
Cd	0	0	0	0	0	0	0	0	0	
Cm	1	1	1	1	1	1	1	1	1	
S	17,700	5,900	15,200	7,000	6,270	5,900	5,800	7,100	10,400	崩壊部頂点から堆積部頂点の距離 ^{※2}
S ₀	8,850	2,950	7,600	3,500	3,135	2,950	2,900	3,550	5,200	S/2
Cn	0.009	0.057	0.086	0.051	0.095	0.072	0.145	0.106	0.079	$=S_0 / (R\cos\theta)$
R(m)	936,333	51,385	88,615	68,890	33,008	40,833	20,008	33,462	66,015	=b²/ 8T
a ₀ (m²/s)	0.015	0.094	0.140	0.083	0.155	0.118	0.237	0.173	0.129	$=S_0/t_0^2$
t ₀ (sec)	757	177	233	205	142	158	111	143	201	=√(R/g)√(γ+Cm)/(γ-1)
λ ₀ (m)	57,573	16,842	19,292	16,765	11,346	9,899	9,489	12,106	14,352	$=t_0\sqrt{gd}$
ΔΦ(rad)	0.019	0.115	0.172	0.102	0.190	0.144	0.290	0.212	0.158	2S ₀ / R
u _{max} (m/s)	11.69	16.64	32.63	17.04	22.05	18.66	26.20	24.80	25.87	$=S_0/t_0$
ΔX(m)	28,786	8,421	9,646	8,383	5,673	4,950	4,744	6,053	7,176	=λ ₀ / 2
к'	0.687	0.680	0.625	0.777	0.715	0.898	0.663	0.680	0.684	

		波源振幅の推定値									
項目	エリ	ГA		エリアB		エリアC					
	Es-G3	Es-G101	Es-K5	Es-K6	Es-K7	Es-T2	Es-T8	Es-T13	Es-T14		
η _{0,2D} (m)	1.12	0.41	9.79	3.41	6.88	9.65	5.96	4.73	4.72		
η _{0,3D} (m)	0.07	0.08	2.38	0.78	1.75	3.64	1.67	1.42	1.02		

 ※1:片山肇、佐藤幹夫、池原研「海洋地質図 38 経ヶ岬沖表層堆積図説明書 1:200,000」
 平成5年 地質調査所
 ※2:地すべり地形からの図読による値

海底地すべりによる津波の計算条件(Watts他の予測式)

26

海底地すべりによる津波の計算条件 (Kinematicモデルによる方法)

Kinematicモデルによる方法(初期水位波形の予測)

運動学的地すべりモデルの概念図(佐竹他(2002)※)

▶地すべり発生箇所における海面変化

・海底地形変化はすべり伝播速度U(破壊伝播速度)と各地点での継続時間T(破壊継続時間)で規定される。

- ・地すべりの前面は速度Uで移動する。Uには鉛直成分Uzを与条件とした。
- ・各地点の比高変化は継続時間Tで完了する。
- ・ここで求めた時間刻みあたりの地形変化量が海面水位と海底地形にそのまま反映されるものとして、
 その時点での水位と海底地形に上積みする。

▶津波伝播計算

・非線形長波理論に基づく、通常津波解析に用いられる平面二次元モデルを適用。

※:佐竹健治・加藤幸弘(2002):「1741年寛保津波は渡島大島の山体崩壊によって生じた」,月刊海洋/号外, No.28, pp.150-160.

第314回審査会合 資料1-4-2 P90 再掲

●エリアA (Es-G3) 【計算条件】

項目	設定値
設定位置格子サイズ	450m
鉛直方向破壊伝播速度(基本ケース)	0.3m/s ^{%1}
破壊継続時間(基本ケース)	3 分 ^{※2}
(参考)地すべり終了時間	2,082秒 ^{※3}

※1 破壊伝播速度の鉛直成分として設定した。

※2 地形変化の速度が鉛直方向破壊伝播速度を超えない範囲で最大となるよう破壊継続時間を設定した。

※3 地すべり終了時間=地すべり伝播到達時間1,902秒(地すべりの標高差570.7m÷鉛直方向破壊伝播速度0.3m/s)+破壊継続時間3分(180秒)=2,082秒

●エリアA (Es-G101) 【計算条件】

項目	設定値
設定位置格子サイズ	450m
鉛直方向破壊伝播速度(基本ケース)	0.5m/s ^{%1}
破壊継続時間(基本ケース)	1分 ^{※2}
(参考)地すべり終了時間	867秒 ^{※3}

※1 破壊伝播速度の鉛直成分として設定した。

※2 地形変化の速度が鉛直方向破壊伝播速度を超えない範囲で最大となるよう破壊継続時間を設定した。

※3 地すべり終了時間=地すべり伝播到達時間807秒(地すべりの標高差403.5m÷鉛直方向破壊伝播速度0.5m/s)+破壊継続時間1分(60秒)=867秒

基準津波3・4 に関する検討

海底地すべりによる津波の計算条件(Kinematicモデルによる方法)

第314回審査会合 資料1-4-2 P95 再掲

崩壊部頂点

崩壊部幅

※1 破壊伝播速度の鉛直成分として設定した。

※2 地形変化の速度が鉛直方向破壊伝播速度を超えない範囲で最大となるよう破壊継続時間を設定した。

※3 地すべり終了時間=地すべり伝播到達時間831秒(地すべりの標高差831.1m÷鉛直方向破壊伝播速度1m/s)+破壊継続時間2分(120秒)=951秒

●エリアB (Es-K6) 【計算条件】

項目	設定値
設定位置格子サイズ	450m
鉛直方向破壊伝播速度(基本ケース)	0.4m/s ^{%1}
破壊継続時間(基本ケース)	5分 ^{※2}
(参考)地すべり終了時間	2,364秒 ^{※3}

※1 破壊伝播速度の鉛直成分として設定した。

※2 地形変化の速度が鉛直方向破壊伝播速度を超えない範囲で最大となるよう破壊継続時間を設定した。

※3 地すべり終了時間=地すべり伝播到達時間2,064秒(地すべりの標高差825.5m÷鉛直方向破壊伝播速度0.4m/s)+破壊継続時間5分(300秒)=2,364秒

●エリアB (Es-K7) 【計算条件】

項目	設定値	
設定位置格子サイズ	450m	
鉛直方向破壊伝播速度(基本ケース)	0.5m/s ^{%1}	
破壊継続時間(基本ケース)	5分 ^{※2}	
(参考)地すべり終了時間	1,787秒 ^{※3}	

※1 破壊伝播速度の鉛直成分として設定した。

※2 地形変化の速度が鉛直方向破壊伝播速度を超えない範囲で最大となるよう破壊継続時間を設定した。

※3 地すべり終了時間=地すべり伝播到達時間1,487秒(地すべりの標高差743.7m÷鉛直方向破壊伝播速度0.5m/s)+破壊継続時間5分(300秒)=1,787秒

基準津波 3・4 に関する検討

※1 破壊伝播速度の鉛直成分として設定した。

※2 地形変化の速度が鉛直方向破壊伝播速度を超えない範囲で最大となるよう破壊継続時間を設定した。

※3 地すべり終了時間=地すべり伝播到達時間1,448秒(地すべりの標高差723.9m÷鉛直方向破壊伝播速度0.5m/s)+破壊継続時間5分(300秒)=1,748秒

●エリアC (Es-T8) 【計算条件】

項目	設定値
設定位置格子サイズ	450m
鉛直方向破壊伝播速度(基本ケース)	0.5m/s ^{%1}
破壊継続時間(基本ケース)	5分 ^{※2}
(参考)地すべり終了時間	1,397秒 ^{※3}

※1 破壊伝播速度の鉛直成分として設定した。

※2 地形変化の速度が鉛直方向破壊伝播速度を超えない範囲で最大となるよう破壊継続時間を設定した。

※3 地すべり終了時間=地すべり伝播到達時間1,097秒(地すべりの標高差548.7m÷鉛直方向破壊伝播速度0.5m/s)+破壊継続時間5分(300秒)=1,397秒

基準津波 3・4 に関する検討

●エリアC (Es-T13) 【計算条件】

【海底地形変化量分布図】 項目 設定値 (Kinematicモデルへの入力コンター) 設定位置格子サイズ 450m -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 最終地形変化量(m) 0.3m/s^{%1} 鉛直方向破壊伝播速度(基本ケース) 7分※2 破壊継続時間(基本ケース) 1,716秒※3 (参考)地すべり終了時間 堆積部 頂点 崩壊部 - 頂点 堆積部 崩壊部幅 堆積部のコンター:10m間隔 崩壊部のコンター:10m間隔 崩壊部 5km 最終地形変化量(

※1 破壊伝播速度の鉛直成分として設定した。

※2 地形変化の速度が鉛直方向破壊伝播速度を超えない範囲で最大となるよう破壊継続時間を設定した。

※3 地すべり終了時間=地すべり伝播到達時間1,296秒(地すべりの標高差388.9m÷鉛直方向破壊伝播速度0.3m/s)+破壊継続時間7分(420秒)=1,716秒

基準津波 3・4 に関する検討

●エリアC (Es-T14) 【計質冬件】

	乳宁店	
項日	設正個	(Kinematicモテルへの人力コンター)
設定位置格子サイズ	450m	-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30
鉛直方向破壊伝播速度(基本ケース)	0.5m/s ^{%1}	
破壊継続時間(基本ケース)	2 分 ^{※2}	
(参考)地すべり終了時間	1,361秒 ^{※3}	
堆積部のコンター: 10m間「隔 崩壊部のコンター: 10m間「隔 の の		^{堆積部} 頂点 頂点

※1 破壊伝播速度の鉛直成分として設定した。

※2 地形変化の速度が鉛直方向破壊伝播速度を超えない範囲で最大となるよう破壊継続時間を設定した。

※3 地すべり終了時間=地すべり伝播到達時間1,241秒(地すべりの標高差620.4m÷鉛直方向破壊伝播速度0.5m/s)+破壊継続時間2分(120秒)=1,361秒