

浜岡原子力発電所 敷地の地質・地質構造(コメント回答) ^{補足説明資料}

2020年7月3日

補足説明資料 目 次

1. 広域的な引張応力場で形成される逆断層についての知見	2
2. H断層系の分布の各種調査間の対応	7
3. 反射法地震探査とボーリング調査による地質情報との対応	18
4. H断層系の活動性をH-9断層で代表させる点について	27
5. Moore et al.(2015)について	72
6. 前回の審査会合からの主な追加, 修正	85
7. 既往コメント一覧	90
8. 参考文献一覧	96

<過去の審査会合資料との関係について> 過去の審査会合における既報告事項を含む 頁には、既提出資料との関係についての注 釈を頁右上に記載する。		 ①資料を提出した ②資料番号 ③該当頁 ④「一部修正」 	審査会合開催回
()土木八19川)	第443回 資料2-1 ① ② p.14 追記 ③ ④	「追記」	 : 既提出資料から評価を見直したもの。 : 既提出資料から評価の見直しはないものの, 記載の充実,適正化を図ったもの。 : 既提出資料から変更のないもの。 (スライドタイトルの変更等軽微な変更は含む。)

広域的な引張応力場で形成される 逆断層についての知見

Brumbaugh(1984)の概要

【文献概要】

- アリゾナの正断層(ヴェルデ断層(the Verde fault)とオーククリーク断層(the Oak Creek fault))の上盤ブロックに見られる、局所的な圧縮構 造(褶曲,逆断層,衝上断層)の形成メカニズムについて考察している。
- この構造は、広域的な引張応力による正断層活動時に、その上盤ブロック内で発生する局所的な圧縮応力によってできたと考えられているとしている。
- このような圧縮応力は、不均一な断層面または滑らかに湾曲した断層面によって発生する場合があるとし、断層面形状による上盤ブロック内の副ブロック (sub-blocks)間の運動(回転,傾斜,オーバーラップ) (Figure 8 A)や,副ブロック間の運動速度の違い(Figure 8 B)から局所的な圧縮応 カの発牛要因を説明している。

Figure 8. Suggested schemes for development of compressive structures on hanging-wall block of normal faults. A: illustration of role of uneven fault surface in producing rotation or tilting, buttressing, and space problems (lined area = overlap) between sub-blocks of hangingwall block. B: Suggested scheme leading to development of compressive stress in hanging-wall block due to velocity discontinuity between sub-blocks.

(赤色で示す文字及び図形は当社加筆)

Such

【文献概要】

- 引張場とした砂箱に発生する断層の形態について検討している。
- 一様に引張を受ける基盤(傾斜面)上の断層は、ドミノ状の配列となること、すべり方向と反対方向への回転を生じることを確認している。(Figure 4)
- ランプ-フラット構造をもつ基盤の実験では、局所的な逆断層が形成されることを指摘している。(Figure 6)
- 断層の形態は基盤の形状だけでなく関連して発生する断層のひずみ履歴と運動学にも依存するとしている。

【当社補足】

• ランプ-フラット構造をもつ基盤(正断層)上の逆断層(Figure 6)は、Brumbaugh(1984)によって説明されるように、不均一な断層面または滑らかに湾曲した断層面 によって発生する局所的な圧縮応力によるものと考えられる。当該断層は、圧縮応力を生む正断層に比べ変位量は小さく、引張場となる試験体全体で生じる正断層に比べ数 は少ない。

Figure 4. Experiment no. 109-uniform extension with 10° tilt to left. A: Serial section no. 2, 2 cm from margin of model; B: Fault sequence diagram. Listric fault with a ramp/flat geometry

Figure 6. Experiment no 94-ramp/flat listric extension fault geometry. A Serial section no. 2, 2 cm from margin of model showing crestal collapse grabens and reverse faulting above ramp crest; B Fault sequence diagram.

Uniform Extension

- Uniform extension experiments were undertaken to compare extension on a horizontal plane and extension above a sloping surface.
- Figure 4A shows extension above a 10° slope, producing dominostyle extensional fault arrays with all of the faults facing downslope.
- The faults began as, and remained, predominantly planar surfaces, and both the faults and the layering showed a consistent clockwise rotation opposite to the transport direction down the sloping basement.

- A listric detachment fault with a ramp/flat geometry (Fig. 6A) produced a pair of crestal collapse grabens separated by a poorly developed hanging-wall syncline associated with an array of geometrically necessary reverse faults.
- Listric extensional faults with a ramp/flat geometry also produce hanging-wall crustal collapse grabens and local reverse faults.

SUMMARY AND CONCLUSIONS

• Our experiments indicate that the geometries of both faults and fault blocks change with time as extension progresses. Hence, the shape of a particular extensional fault plane at any one position in the crust will depend not only on the initial fault geometry but also on strain history and kinematics of associated fault arrays.

(赤色で示す文字及び図形は当社加筆)

第654回資料1-2 p.101追記

山部雷力

(赤色で示す文字及び図形は当社加筆)

・ Copyright © Chubu Electric Power Co., Inc. All rights reserved. (青枠部及び赤色で示す文字及び図形は当社が編集・加筆)

Nollet et al. (2012)の概要

(青色で示す文字及び図形は当社加筆)

2 H断層系の分布の各種調査間の対応

<コメントNo.81>

• ボーリング・露頭調査により陸域及び海域において確認されたH断層系について,反射法地震探査等との対応関係を示すこと。

<回答要旨>

- 反射法地震探査の反射断面について, ボーリング・露頭調査によるH断層系の分布との対応を検討した。
- 三次元モデルのH断層系付近の反射記録をみると、南傾斜の明瞭な不連続面(反射面の消失、断裂及び顕著な屈曲の連なり)が認められ、 H断層系に挟まれた領域には、比較的整然と連続する複数の反射面が認められる。
- 三次元モデル外のH-7~H-9についても, 平面分布位置と整合的な南傾斜の不連続面が推定される。
- 海域については、ボーリング調査によるH断層系のうち最も沖合の断層の延長部は、海上音波探査記録において南傾斜の明瞭な不連続面を 解釈できる区域と位置的に概ね対応している。
- なお,前回資料で示した反射記録の一部に誤り(深度断面と反射断面の取り違え)があることが判明した。そこで,コメント回答に先立ち,反 射記録の誤りの内容及びこれまでの反射記録による評価に影響がないことを説明する。

(1) 過去資料の誤記について

•	前回第817回審査会合において提示した反射記録のうち,深度断面として提示した1P測線及び2P測線について,
	深度断面と取り違えて時間断面を提示していたことが判明した。

- 今回の取り違えは、一次出力図(計算機出力)に対し、軸スケールの文字を拡大する編集を実施した際に、時間断面を深度断面と勘違いして取り違えたものであり、その図を第316回審査会合(2016.1.8)から前回第817回審査会合まで資料に提示していた。取り違えた資料の一覧を下表に示す。
- 深度断面と、誤って深度表示した時間断面との違いは小さいことから、今回の反射記録の取り違えは反射記録による評価に影響はない。取り違えによる影響確認を次ページ以降に示す。なお、他の測線については取り違えがないことを確認している。
- 今後, 資料作成にあたっては, 資料化されている図面類と, 一次出力図(計算機出力)であることが確実な図 面類との対比により, 図面類の取り違えなどが生じていないことを確認する。
- なお,各反射断面について,スタック,マイグレーション時間断面,マイグレーション深度断面,速度構造断面の一次出力図(計算機出力)をデータ集1に提示する。

	1P測線	2P測線			
第817回審査会合	資料2-1 : pp.49,175 資料2-3 : pp.6,8,30	資料2-1 : pp.49,176 資料2-3 : pp.7,9,31			
第704回審査会合	資料1-1 : pp.42,155	資料1-1 : pp.43,156			
第654回審查会合	資料1-1:pp.38,138	資料1-1:pp.39,139			
第608回審査会合	資料1-1-1 : p.130	資料1-1-1:p.131			
第443回審查会合	資料2-1:p.140	資料2-1 : pp.141,143,196			
第316回審査会合	資料2:p.64	資料2:pp.65,66			

<これまでの審査会合における反射記録の取り違え箇所>

(参考) 取り違えた反射記録の対比

• H断層系の分布する浅部の反射面においては南傾斜の明瞭な不連続面が規則的に認められるものの,深部(標高-300~-400m程度,図中赤枠で表示)には比較 的連続性の良い強反射面が認められるとした反射記録による評価に影響はない。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

中部雷ナ

(参考)反射記録取り違えによる影響(H断層系分布に関する解釈の差異)

- 第817回審査会合資料2-3において,反射記録とボーリング・露頭調査によるH断層系の分布との対応の確認結果を踏まえ,反射記録からも H断層系の分布の推定が可能とする検討を実施している。
- 例として, 1P測線における反射記録によるH断層の解釈の差異について示す。
- 個々の反射面とH断層との対応についての解釈は必ずしも一致しないものの、H断層系の三次元分布モデルと反射法地震探査記録との対応の 検討の結果、「三次元モデルにおけるH断層付近の反射記録には、南傾斜の明瞭な不連続面(反射面の消失、断裂及び顕著な屈曲の連 なり)が認められる一方、H断層系に挟まれた領域には、比較的整然と連続する複数の反射面が認められる」とした評価は変わらない。

(2) コメント回答

反射断面とボーリング・露頭調査によるH断層系の分布との対応(1P測線)

- 反射法地震探査の反射断面について, ボーリング・露頭調査によるH断層系の分布との対応を検討した。
- 対比範囲は, ボーリング・露頭調査による三次元モデルを作成した標高-200m以浅を対象とした。
- 1P測線では、三次元モデル範囲外に、H-7~H-9断層の平面分布が把握されている。
- 1P測線では、三次元モデルのH断層系は南傾斜60度程度の平行な断層群として現れる。そのH断層付近の反射記録をみると、南傾斜の明瞭な不連続面(反射面の消失、断裂及び顕著な屈曲の連なり)が認められる。このような不連続面はH断層付近以外でも見られるが、それらは小断層による地層のずれや変形による可能性が考えられる。また、H断層系に挟まれた領域には、比較的整然と連続する複数の反射面が認められる。
- 三次元モデルの範囲より北側についても、同様な南傾斜の不連続面が複数認められ、それらの一部の地表への延長は、 H-7~H-9断層の平面分布位置と整合的である。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第817回資料2-3 p.6一部修正

中部電力

反射断面とボーリング・露頭調査によるH断層系の分布との対応(2P測線)

- 2P測線は,三次元モデル範囲内の探査である。
- 2P測線では、北方ほど向斜軸に近づく影響から、H断層の傾斜が緩やかになる。そのH断層付近の反射記録をみると、1P測線同様、南傾斜の明瞭な不連続面が認められ、H断層系に挟まれた領域には、比較的整然と連続する複数の反射面が認められる。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第817回資料2-3 p.7一部修正

中部電力

反射断面とボーリング・露頭調査によるH断層系の分布との対応(R01測線)

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

海上音波探査,ボーリング,サイドスキャンソナーの対比

第817回資料2-3 p.17一部修正

中部電力

3 反射法地震探査と ボーリング調査による地質情報との対応

<コメントNo.82>

• 反射法地震探査の深部に認められる強反射面等について,ボーリング調査による地質情報との関連を示すこと。

<回答要旨>

- 敷地は新第三系の砂岩泥岩互層(相良層)が一様に分布し,敷地内で実施した大深度ボーリングにおいても、リズミックな砂岩泥岩互層が 深度1500m以上分布することを確認している。
- 砂岩泥岩互層は、向斜軸に近いR01測線沿いのボーリング孔では、標高-300m付近までは砂岩比率が10~30%程度の砂岩泥岩互層で、 それ以深、標高-700m付近にかけて砂岩比率が50%を超え、それ以深では再び砂岩比率が10~30%程度となる。
- 砂岩比率は向斜の影響を反映した深度分布を示す。
- 反射断面に認められる強反射面は,砂岩比率の高い相良層に対応し,砂岩比率のばらつきが大きくなる箇所との関連があるように見える。
- ボーリング孔で実施したP波速度検層と反射法地震探査の結果を比較すると、反射断面に認められる強反射面付近を境にP波速度のばらつきが大きくなる傾向が認められる。
- 密度検層と反射法地震探査結果との関係では、密度検層結果に孔壁の乱れやケーシングのつなぎ目による影響と考えられる検層結果の乱れが認められるものの、いずれの孔においても深度方向へ漸増しているように見える。

- 砂岩と泥岩はそれぞれ異なる物性(速度構造, 密度構造)であることを踏まえると, 反射断面に認められる強反射面は砂岩泥岩互層の砂岩 比率が影響しているものと考えられる。
- なお、P波速度や密度等の検層データは一定間隔の平均データであるが、砂岩比率の増加に伴って速度のばらつきが大きくなる傾向が認められることからも、反射断面に認められる強反射面は、砂岩比率の増加が影響していることを示唆していると考えられる。

反射法地震探査とボーリング調査結果(砂岩泥岩比率)の関係

反射法地震探査とボーリング調査結果(速度検層)の関係

■ K-5l凝灰岩層, K-6凝灰岩層, K-7凝灰岩層

反射法地震探査とボーリング調査結果(密度検層)の関係

(参考)各ボーリング孔の調査結果~砂岩泥岩比率

上記は、砂岩比率(深度毎のコアにおいて砂岩部のコアの合計長をコア全長 で除した、砂岩泥岩互層に占める砂岩の割合)を10m毎にグラフ化したもの

(参考)各ボーリング孔の調査結果~物理検層結果

No.0 孔径

(cm)

10 20 30

中部電力

<No.0孔>

1,500

0

100

200

300

400

500

600

700

ΤР

(-m)

(参考)各ボーリング孔の調査結果~物理検層結果

中部電力

<No.8孔>

2,000

No.8 弾性波速度

(m/s)

2.500

3,000

1.5

0

100

200

300

400

500

600

700

T.P. (-m)

No.8 密度

(g/cm3)

2.0

- 相良層の砂岩・泥岩の固さについて、4号炉原子炉建屋設置位置から採取した岩石による超音波伝播速度試験から求めた砂岩、泥岩それぞれのP波速度、S波速度を以下に示す(4号炉増設時の設置変更許可申請書より引用)。
- 砂岩の方が泥岩よりP波速度, S波速度ともに低い傾向にあり, 相良層の砂岩構成比率がPS検層における弾性波速度の低下に影響する 可能性が考えられる。
- なお,上記岩石試験結果の変動係数は2~8%程度であり,データのばらつきは比較的小さい。

試料採取場所	出出	P波速度(km/s)		S波速度(km/s)			試料数	1# ±	
	石相	平均値	標準 偏差	変動 係数	平均値	標準 偏差	変動 係数	(個)	1/11 5
4号炉原子炉建屋	砂岩	1.87	0.07	3.7%	0.84	0.05	6.0%	100	泥岩の方が砂岩よりも
設置位置の試掘坑	泥岩	2.16	0.05	2.3%	0.93	0.04	4.3%	100	心日次12個述反は同 い。
4号炉原子炉建屋	砂岩	1.93	0.11	5.7%	0.88	0.07	8.0%	120	泥岩の方が砂岩よりも
設置位置のボーリングコア	泥岩	2.15	0.06	2.8%	0.96	0.04	4.2%	150	些日次(広備)迷皮は高 い。

岩石試験結果(超音波伝播速度測定)

第704回資料1-2 p.6再揭

中部電力

4 H断層系の活動性を H-9断層で代表させる点について

コメントNo.78に対する回答の概要

中部電力

<コメントNo.78>

• 敷地内の断層の活動性をEW系正断層のうち規模の大きなH断層系の活動性評価で代表できるのか,及びH断層系の活動性をH-9断層の活動性評価で代表できるのか,という2点について,下記コメント(コメントNo.79~84)を踏まえ十分な根拠を示し説明性を向上させること。

<回答要旨>

- 前段の敷地の断層の活動性をH断層系で代表させる点については本編にて回答しているため,ここでは、後段のH断層系の活動性をH-9断層 で代表させる点について回答する。
- 前回審査会合までの当社説明において、H断層系は分布形態・性状の類似性、形成時代の同時性及び分布範囲の局所性が認められ、同時代に同一の局所的な応力場により形成されたものと考えられることから、同一の地質学的場で形成された同じ系列に属する一連の断層群として評価しており、同評価をH断層系の活動性をH-9断層の活動性評価(上載地層法)で代表させることの根拠としている。(第817回会合資料2-1p.237参照。)
- 今回, 下記①~③の検討を実施し, 論拠とする各評価の信頼性向上を図るとともに, まとめ頁の記載の適正化を行い, 上記内容の説明性 向上を図った。
 - 反射法地震探査に認められる深部の強反射面について、本資料第3章の検討結果を踏まえた検討を実施した。その結果、強反射面は敷 地全域にわたり連続的に分布しており、砂岩比率の高い(50%程度以上)相良層に対応している。この砂岩比率の高い相良層上端付近 において、地層の後方回転もほぼ収束すること、地層は大きな変位を受けることなく連続していること、幅を有する断層が認められなくなること から、H断層系は砂岩比率の高い相良層までは連続しないものと推定される。(本章(1)における検討→手法の異なる調査結果同士の整 合性の確認により、分布範囲の局所性に関する「H断層系が深部に連続しない」とする評価の信頼性を向上)
 - ② 岩盤において断層が活動した際の性状と、H断層系の性状を対比した結果、H断層系は岩盤において断層が活動した際の性状を有しておらず、H断層系は、相良層が固結した時代以降、活動していないものと考えられる。(本章(2)における検討→客観的事実との対比により、形成時代の同時性に関する「H断層系は相良層が未固結~半固結の時代に形成され、相良層が固結して以降新たな活動は生じていない」とする評価の信頼性を向上)
 - ③ 正断層群の一般的特徴とH断層系の特徴を対比した結果,H断層系は、すべての断層が同時に活動するとされているdomino faultsの形態的特徴をすべて有し、①を含めたH断層系のそれ以外の形態的な特徴や②を含めた性状による評価もdomino faultsの特徴と矛盾しないことから、H断層系は同時に活動するdomino faultsと同様な断層群として、すべての断層が一体として活動する断層と評価する。(本章(3)における検討→客観的事実との対比により、H断層系の活動性をH-9断層の活動性評価で代表させることの信頼性を向上)

本章における検討方針

- H断層系については、分布、性状及び深部構造の調査結果に加え、成因に関する検討結果も踏まえた、同一の地質学的場で形成された一連の断層群、 との評価により、上載地層による活動性評価をH-9断層で代表させている。
- この評価の説明性向上のため、H断層系について、(1)反射法地震探査とボーリング調査による地質情報との対応関係(本資料第3章)を踏まえた深部構造の検討、(2)岩盤において断層が活動した場合の性状との対比及び(3)正断層群の一般的特徴との対比を実施した。

(1) 反射法地震探査と地質情報との 対応関係を踏まえた深部構造の検討

【検討内容】

• 本編資料4.3「敷地深部の地質構造とH断層系」のうち反射法地震探査による検討について、本資料3章「反射法地震探査とボーリング調査による地質情報との対応」による検討結果を反映し、H断層系が深部に連続しないとの評価の説明性を向上させる。

地下構造調査(反射法地震探査)による検討

反射法地震探査により敷地深部の地質構造を検討した。反射法地震探査の諸元は以下に示す通りである。 ٠

反射法地震探査測線位置図(測線上の数字はCMP番号を表わす。)

震源	中型バイブレータ車 8t×1台 (一部に起振車(油圧インパクタ) 6t×1台)	
発振点間隔	10m	
スウィープ周波数	10~110Hz	
スウィープ回数	7~10回 5~10回(R01測線)	
スウィープ時間	18秒 16秒(R01測線)	
収録システム	GDAPS-3 150チャンネル RT2 System(R01測線)	
収録時間	3秒(500Hz) 3秒(1000Hz)(R01測線)	
受振器	速度型10Hz, 6個/グループ 速度型10Hz, 3個/グループ(R01測線)	
受振点間隔	10m	

<反射法地震探查諸元>

地下構造調查結果(反射法地震探查 1P測線)

 $\label{eq:copyright} \texttt{Copyright} \ \texttt{C} \ \texttt{Chubu} \ \texttt{Electric} \ \texttt{Power} \ \texttt{Co.}, \ \texttt{Inc.} \ \texttt{All} \ \texttt{rights} \ \texttt{reserved}.$

地下構造調查結果(反射法地震探查 2P測線)

第817回資料2-1 p.176一部修正

中部雷力

地下構造調查結果(反射法地震探查 R01測線)

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

H断層系の分布は, T.P.-13.5mのものを記載。

反射断面における反射パターンと地質との対応

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

(参考)敷地における相良層の砂岩比率と層相

敷地極近傍に認められる砂岩比率の高い相良層

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

敷地深部の地質構造については、大深度ボーリング調査等により、下記の特徴を有することを確認している (本編4.3参照 第817回審査会合における検討結果)。
① 孔壁調査の結果 標高-200m程度以浅において地層の後方回転が認められるが、後方回転は標高-400m付近にか けて徐々に収束していく。
② 敷地深部の凝灰岩層の分布 標高-300~-400m付近のK-5~K-7層準付近の地層は大きな変位を受けることなく連続して分布 している。
③ 大深度ボーリングに認められる断層の検討結果 標高-300~-400m付近K-5~K-7層準付近以深において、ボーリングコアに認められる断層は幅 も小さくH断層系と同性状の断層は認められない。

これらの検討結果について, 前述の反射法地震探査による検討結果を踏まえ, 再整理する。

① 孔壁調査の結果(地層の走向・傾斜, 向斜軸付近南北断面)

- ・ 向斜軸と平行方向の南北断面上のボーリングの孔 壁画像から読み取った地層の走向と傾斜角を標高 ごとに示す。
- ・いずれの孔も、深度方向に走向が遷移的に変化 するものの、傾斜角の変化はほとんど見られない。
- 敷地北側のW15孔では、地層の走向の変化が顕著に表れており、標高-250m付近まではN75°E程度であるが、標高-250~-350m付近で変化し、標高-350m程度以深では概ねN-Sとなる。
- ・敷地南側の地層の走向は、データ密度の充実しているW25孔をみると、地表付近のN40°E程度から緩やかに変化し、標高-300m付近でより緩やかな変化となり、標高-450m付近でN10°W程度となる。標高-450m以深についてはNo.2孔のデータとなるが、さらに変化が緩やかとなり標高-1,000m付近でN30°W程度となる。
- なお, No.2孔の標高-450m以浅はW25孔と同様な傾向を示す。
- ・敷地及び敷地北側において局所的に地層が北に 傾斜する傾向は,深部にはみられない。

反射法地震探査R01測線と孔壁調査(地層の走向変化)との対応

- R01測線の反射断面と、ボーリング調査による地層の走向の深度方向への変化との対応を検討した。
- 反射断面によると, 地層の後方回転は, 概して弱い反射面に南傾斜の不連続面が規則的に認められる浅部の地層に認められており, 概して強く比較的連続性の良い反射面が認められる深部の地層(砂岩比率の高い相良層)の上端付近では地層の後方回転は概ね収束している。

第817回資料2-1 p.193一部修正

②
 敷地深部の凝灰岩層の分布

(地質鉛直断面図 I-Line)

- ・ I-Lineの大深度ボーリングにおいて, 確認したK-5,K-6及びK-7凝灰岩層の分布を鉛直断面図で示す。
- No.0,W15,No.8及びW25孔のボーリングコアから確認したK-5,K-6及びK-7凝灰岩層の出現標高によれば、当該鍵層付近の地層は、敷地の北東部から南西部 にかけて、層間が大きく短縮することなく、深度方向に概ね一定の間隔でやや傾斜を増しながら南西傾斜となっているものと推定される。
- また, W15孔及びW25孔の孔壁調査による当該凝灰岩層付近の地層の断面方向の傾斜を見ると, 北東部(W15孔)では概ね水平を示すが南西部(W25 孔)では南西傾斜となり, 鍵層の出現深度より推定される当該凝灰岩層付近の地層の分布の傾向と大きな差異はない。
- これらのことから, 地層の後方回転が概ね収束する標高-300~-400m付近において, K-5~K-7凝灰岩層付近の地層は大局的な構造と同傾向を示し, 大きな 変位を受けることなく敷地の北東-南西方向に連続していると推定される。
- ・以上より、H断層系は大きな落差を有する断層としてはK-5~K-7層準付近より深部には連続していないものと推定される。

む上下5m区間の層理傾斜の極大 値(断面上の偽傾斜)を表わす。 第817回資料2-1 p.190追記

中部雷力

反射法地震探査R01測線と深部の凝灰岩層の分布との対比

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

③大深度ボーリングに認められる断層の検討結果

第817回資料2-1 p.205再揭

中部雷力

反射法地震探査R01測線と大深度ボーリングに認められる断層との対比

- R01測線の反射断面と、大深度ボーリングに認められる断層の検討結果との対比を行った。
- 反射断面において、概して弱い反射面に南傾斜の不連続面が規則的に認められる浅部の地層には、H断層系と同性状の断層が認められ、断層の幅も大きい。
 一方、概して強く比較的連続性の良い反射面が認められる深部の地層(砂岩比率の高い相良層)ではH断層系と同性状の断層は認められず、幅の大きな断層も認められない。

第817回資料2-1 p.206一部修正

中部電力

敷地の地質・地質構造の深部方向の特徴

 ・以上の検討結果から、敷地の地質・地質構造について、浅部(地表から標高-300m付近)と深部(標高-300~-400m程度から標高-600m付近)の特徴を整理した。 ・敷地の地質・地質構造は、標高-300~-400m付近に分布するK-5~K-7凝灰岩層付近を境とし、浅部と深部に差異が見られることから、浅部に認められるH断層系は深部には連続しないものと考えられる。 					
	浅部(地表から標高-300m付近)	深部(標高-300~-400m程度から標高-600m付近)			
ボーリング調査					
鍵層の分布状況	K-1~K-4凝灰岩層は北傾斜し, 100m程度毎に20m程度の 落差が想定される。	K-5~K-7凝灰岩層は南傾斜し,大きな変位量は想定されない。			
断層の特徴	H断層系の性状※を有し,幅も大きい。	H断層系の性状※を有せず, 幅も小さい。			
地層の走向	南に開いた大局的な傾向とは逆の北に開いた構造を示し,後 方回転している。	大局的な傾向と同傾向を示しており、後方回転していない。			
砂岩比率	10~30%程度。	50%程度以上。			
反射法地震探查					
反射パターンの特徴	反射面は概して弱く, 南傾斜の明瞭な不連続面が規則的 (ほぼ等間隔で平行)に認められる。 この特徴は, 上記ボーリング調査による検討と整合的。	概して強く比較的連続性も良いものが多い。 局所的な不連続面を解釈することはできるものの,規則的で明 瞭な不連続面群は認められない。 この特徴は,上記ボーリング調査による検討と整合的。			

※ H断層系は, ボーリングコアにおいて以下の性状を有するものと想定される(詳細は, 本編資料 p.200参照)。

- 通常2条の高角で明瞭な断層面を有するが,稀に不明瞭な場合がある。
- 断層面に挟まれた部分には流動的な変形構造(不明瞭な層理や層理の急傾斜)が認められる。流動的な変形構造は断層 面沿いにも認められるが、稀に乏しい場合がある。
- 近傍に同傾斜の小断層が発達している。
- 断層幅(断層面に挟まれた部分の幅)は、コア長50cm程度以上あるが、稀に幅が小さく、コア長10cm程度の場合がある。

・敷地深部の地質構造については、大深度ボーリング調査等により、下記の特徴を有することを確認している(本編4.3参照 第817回審 査会合における検討結果)。

①孔壁調査の結果

標高-200m程度以浅において地層の後方回転が認められるが,後方回転は標高-400m付近にかけて徐々に収束していく。 ②敷地深部の凝灰岩層の分布

標高-300~-400m付近のK-5~K-7層準付近の地層は大きな変位を受けることなく連続して分布している。

③大深度ボーリングに認められる断層の検討結果

標高-300~-400m付近K-5~K-7層準付近以深において, ボーリングコアに認められる断層は幅も小さくH断層系と同性状の断層 は認められない。

反射法地震探査と上記検討結果の対比の結果、反射断面において、概して弱い反射面に南傾斜の不連続面が規則的に認められる浅部(地表から標高-300m付近)では、ボーリング調査により、地層の後方回転やH断層系の存在が認められているのに対し、反射断面において概して強く比較的連続性の良い反射面が認められる深部(標高-300~-400m程度から標高-600m付近)では、ボーリング調査により、地層の連続性が認められ、地層の後方回転やH断層系と同性状の断層は認められない。これらのことから、H断層系は概して強く比較的連続性の良い反射面が認められる深部まで連続するものではないと考えられる。

• この,反射断面において,概して強く比較的連続性の良い反射面が認められる深部の地層は, K-5~K-7層準付近以深に分布する砂 岩比率の高い相良層にあたる。

(2) 岩盤において断層が活動した場合の性状との対比

【検討内容】

• 本編資料4.2「H断層系の性状」の検討について、H断層系の性状と、岩盤において断層が活動した場合に有するとされる性状との対比により、「H断層系 は相良層堆積後の未固結~半固結の時代に形成され、相良層が固結して以降新たな活動は生じていない」、としている評価の説明性を向上させる。

【検討結果】

- 2a 断層面周辺には流動的な変形構造が認められる。
- 露頭観察によると、H断層系の各断層とも、細粒物質を伴う2条程度の平行な断層面が認められ、その断層面に挟まれた区間や周囲には、砂岩や凝灰岩の膨縮やレンズ状の構造、明瞭な引きずりなど、流動的な変形構造が認められる。

2b 断層面はうねっており, 平面的ではない。

- 露頭観察によると、H断層系の断層面は、各断層ともうねっており平面的ではない。また、大局的には連続的に見えるが、詳細に観察すると連続性の乏しい箇所も見られる。
- 2c 断層面及びその近傍において,破砕を伴う活動様式は認められない。
 - 露頭観察によると、H断層系の各断層とも断層面には明瞭なせん断面は認められず、断層面及びその周辺に角礫状の破砕部は認められない。
 - ブロック試料及び薄片観察によると、H断層系の断層面内の細粒物質には、明瞭なせん断面や、活断層に特徴的なくり返しの活動を示す層状の構造は認められない。また、断層面及びその近傍において顕著な細粒化や有孔虫化石の破砕・変形は認められない。

(検討結果の段落番号は、章末のまとめスライドと対応している。)

岩盤において断層が活動した場合の性状との対比結果

相良層が固結した時代に関する考察

- 一般に, 堆積層は続成作用により徐々に脱水・固化することが知られており, 概ね第三紀~第四紀初期の堆積層は堆積軟岩と呼ばれている。
- 相良層群及び上位の掛川層群は、いずれも前弧海盆の堆積物が固結した堆積軟岩である。
- 掛川層群の堆積年代は、杉山ほか(2010)によると「前期鮮新世の5-4Maから前期更新世の1Ma頃に及ぶ」とされており、同層群最上位層の曽我累層、土方泥層は堆 積後百~2百万年程度経過した現在すでに固結し、軟岩化している。
- したがって、敷地の相良層(上部は前期鮮新世頃(4~5Ma)に堆積^{※1})は、遅くとも2~3 Ma頃までには現在の曽我累層、土方泥層程度まで固結していたと考えられる。
 ⇒上記より、敷地の相良層は遅くとも約2百万年前には固結していたと考えられ、後期更新世~現在においてはさらに固結が進んでいる。

細粒物質の成因について(露頭・ブロック試料・薄片観察、粒度・円磨度分析、鉱物組成分析に基づく評価)

- H断層系の露頭観察、ブロック試料及び薄片観察の結果からは、断層面は平面的ではない上、流動的な変形構造が認められ、角礫状の破砕や 明瞭なせん断面が認められないことから、H断層系は相良層堆積後の未固結~半固結の時代に形成された後、相良層固結以降の活動は生じてい ないものと考えられる。
- 断層面に見られる細粒物質の粒度,円磨度の分析結果からは,顕著な細粒化や円磨は認められないことから,H断層系の細粒物質は相良層堆 積後の未固結~半固結の時代に断層面近傍の相良層の砂岩及び泥岩を取り込み,相良層を構成する粒子が混ざり合って形成されたと考えられる。
- 鉱物組成分析の結果からは、細粒物質と母岩の鉱物組成は非常によく類似していることから、断層面近傍の相良層を取り込み、それ以降、熱水等の影響を受けていないと考えられる。

(上記内容の詳細については、第817回審査会合 資料2-3 補足説明資料2参照。)

- これらの事から、H断層系に見られる細粒物質は、相良層の未固結~半固結時にH断層系が形成された際、断層面近傍の相良層の砂岩及び泥 岩を取り込み、相良層を構成する粒子が混ざり合って形成されたと考えられる。
- また、相良層固結以降は活動しておらず、鉱物が変質するような環境下にもなかったものと考えられる。

細粒物質の硬度が周辺母岩に比べて低いことについて

- 断層面周辺の砂岩や凝灰岩には流動的な変形構造が認められるものの,砂岩泥岩互層の堆積構造は維持されていることから,H断層形成時, (物理的・化学的)続成作用はある程度進行していたものと想定される。
- H断層系が形成された際,母岩の砂岩・泥岩とも,引き延ばされたりちぎれたりするような変形は受けたものの,堆積岩の組織そのものは破壊されてお らず,続成作用がある程度進行した状況が保持されていたものと考えられる。
- 一方,細粒物質は,砂岩と泥岩が粒子サイズで混じった構成をしていることから,堆積岩の組織が粒子レベルで再構成され,ある程度進行した続成 作用が保持されなかった可能性が考えられる。
- これらの事から、細粒物質の硬度が周辺母岩に比べて低い理由としては、H断層形成時にそれまでの続成作用が保持されなかったこと、H断層形成 後の細粒物質の圧密排水が十分進んでいない時代に、継続的な相良層の隆起に伴い続成作用が十分に作用しなかったこと、堆積岩の組織そのも のが維持された母岩の続成作用に伴う間隙水の影響等の可能性が考えられ、露頭・ブロック試料・薄片観察、粒度・円磨度分析、鉱物組成分析 に基づき評価したH断層系の細粒物質の成因を踏まえれば、相良層固結以降のH断層系の活動ではないと考えられる。

時系列	相良層の堆積	▼H断層系の形成	脱水固化▼	▼現在
母岩(相良層)				
H断層系の細粒物質				
		(母岩と細粒物質の続成作用進行のイメージ図)	国結 し 固結	

(3) 正断層の一般的特徴との対比

【検討内容】

- 本編資料4.1~4.4におけるH断層系の検討について、H断層系の主な特徴と、正断層に関する一般的特徴との対比※により、「同一の地質学的場で形成された同じ系列に属する一連の断層群と考えられることから、上載地層による活動性評価は、敷地北部のBF4地点におけるH-9断層を対象」、としているH断層系の活動性評価の説明性を向上させる。
- ※ 当初,主に国内の正断層の形態に関する知見を踏まえ、地層の後方回転を伴うというH断層系の特徴から、H断層系はリストリックな形態の正断層と考えていた。今回, 国外から収集した知見も踏まえた正断層の形態に関するより詳細な分類に基づき、新たな調査結果も加えたH断層系の特徴から、H断層系はdomino faultsと同様な断層 群と整理した。

H断層系の平面分布

• H断層系の分布は、ボーリング調査,露頭調査,海上音波探査等の結果に より,以下の通り評価される(詳細は本編4.1参照)。

✓ 分布形態(走向,傾斜,センス,落差,断層の分布間隔,線形)に類 似性が認められる。

✓ 敷地北側から前面海域にかけての限られた範囲に分布するものと推定される。

地質水平断面図(陸域はT.P.-13.5m,海域は海底面)

凡例

-12-

____ H断層系

凝灰岩 (鍵層) K-1 ----

H断層系の分布形態の類似性(落差, 走向/傾斜, 断層間隔)

中部雷ナ

(参考)H断層系の分布形態の類似性(グラフ描画に用いた数値)

ボーリングデータの豊富な3~5号各炉心付近の断面並びに敷地北側断面および海域断面において、H断層系の落差、走向/傾斜および断層間隔を推定した。
 ボーリング孔の投影などの影響により厳密な値ではないが、各断層の落差は20m程度、走向/傾斜はN50W/65S程度、断層間隔は150m程度と概ね一致している。
 各断面における鍵層、断層の位置は第817回審査会合資料2-2および机上配布資料1参照

		H-1	L%1	H	-2	H-3	3 ^{%1}	H-4	1 ^{※1}	Н	-5	Н	-6	H	-7	H	-8	H-	.9
	落差(m)			2	6	2	9	2	6	3	0								
3号炉 付近断面	走向/傾斜			N46V	//67S	N46V	//695	N61W	//685	N54V	V/59S								
	断層間隔(m)		14	40	11	15	13	35	17	70	15	50							
	落差(m)	1	5	24 33		3	28 16		6	13									
4号炉 付近断面	走向/傾斜	N62W	//62S	N61W	//68S	N67W	N67W/53S		N66W/58S N		V/67S	N44V	V/59S						
	断層間隔(m)		1'	15	13	35	15	55	12	25	16	60							
	落差(m)	2	5	2	9	3	2	1	8	2	7						-		
5号炉 付近断面	走向/傾斜	N59W	//70S	N57W	//59S	N44W	//60S	N49W	//61S	N33V	V/64S								
	断層間隔(m)		1()5	11	15	1:	10	13	35									
	落差(m)									3	4	1	7	2	7	2	4	22	2
敷地北側 断面	走向/傾斜									N57V	V/59S	N65V	V/62S	N57V	V/68S	N61V	V/68S	N38W	/72S
	断層間隔(m)										15	50	1!	50	19	95	10	00	
		1		1															
		H-r	m4	H-m	13 ^{%1}	H-I	m2	H-m	1^{*1}	H-m	ו0 ^{‰1}	Н	-1						
	落差(m)	1	9	1	9	1	7	2	2	3	1	1	3						
海域断面	走向/傾斜	N54W	//69S	N30V	//84S	N45V	//68S	N45W	I/75S	N26V	V/77S	N54V	V/63S						
	断層間隔(m)		16	50	15	55	8	0	1:	10	16	55							

落差は断層を挟んだボーリングにおいて確認された最も浅部の鍵層(凝灰岩層)の鉛直変位量(1m刻み),走向/傾斜及び断層間隔はT.P.=-13.5m付近(海域断面は海底面付近)における値(それぞれ1°刻み, 5m刻み) 表中の網掛け部は近傍ボーリングデータなし

※1:分岐あるいは近接する2本の断層がある場合,落差は2本を合わせた値,走向/傾斜および断層間隔は,ボーリングにて確認された断層のうち連続性の良いもの(海域断面については落差の大きいな断層)を対象とした

敷地深部の地質構造(浅部および深部の対比)

・ 敷地深部の地質構造は,大深度ボーリング調査および反射法地震探査の結果により,以下の通り評価される。

• 敷地の地質は、いずれも、標高-300~-400m付近に分布するK-5~K-7凝灰岩層付近を境に浅部と深部の特徴に差異が見られることから、浅部に認められるH断層系は深部の砂岩比率の高い相良層までは連続しないものと考えられる。(詳細は本章(1)および本編4.3参照)

	浅部(地表から標高-300m付近)	深部(標高-300~-400m程度から標高-600m付近)				
ボーリング調査						
鍵層の分布状況	K-1~K-4凝灰岩層は北傾斜し, 100m程度毎に20m程度の 落差が想定される。	K-5~K-7凝灰岩層は南傾斜し,大きな変位量は想定されない。				
断層の特徴	H断層系の性状 [※] を有し,幅も大きい。	H断層系の性状※を有せず,幅も小さい。				
地層の走向	南に開いた大局的な傾向とは逆の北に開いた構造を示し,後 方回転している。	大局的な傾向と同傾向を示しており、後方回転していない。				
砂岩比率	10~30%程度。	50%程度以上。				
反射法地震探查						
反射パターンの特徴	反射面は概して弱く, 南傾斜の明瞭な不連続面が規則的 (ほぼ等間隔で平行)に認められる。 この特徴は, 上記ボーリング調査による検討と整合的。	概して強く比較的連続性も良いものが多い。 局所的な不連続面を解釈することはできるものの,規則的で明 瞭な不連続面群は認められない。 この特徴は,上記ボーリング調査による検討と整合的。				

|※ H断層系は, ボーリングコアにおいて以下の性状を有するものと想定される(詳細は, 本編資料 p.200参照)。

- 通常2条の高角で明瞭な断層面を有するが,稀に不明瞭な場合がある。
- 断層面に挟まれた部分には流動的な変形構造(不明瞭な層理や層理の急傾斜)が認められる。流動的な変形構造は断層 面沿いにも認められるが、稀に乏しい場合がある。
- 近傍に同傾斜の小断層が発達している。
- 断層幅(断層面に挟まれた部分の幅)は、コア長50cm程度以上あるが、稀に幅が小さく、コア長10cm程度の場合がある。

・前記検討から, H断層系の形態的特徴は以下の通り。

✓ボーリング孔の投影などの影響により厳密な値ではないが、各断層の落差は20m程度、走向/傾斜はN50W/65S程度、断層間隔は100~150m程度と概ね一致している。

✓ 敷地の地質は、いずれも、標高-300~-400m付近に分布するK-5~K-7凝灰岩層付近を境に浅部と深部の特徴に差異が見られることから、浅部に認められるH断層系は深部の砂岩比率の高い相良層までは連続しないものと考えられる。

H断層系の形態的な特徴					
《断層の分布形状》					
ほぼ等間隔(100~150m程度)で平行な正断層群					
全ての断層は, ほぼ同傾斜(N50W/65S程度)					
全ての断層は, ほぼ同落差(20m程度)					
平面分布は緩い弧状					
《断層の分布範囲》					
敷地北側から前面海域にかけての限られた範囲に分布					
深部の砂岩比率の高い相良層まで連続しない					
《浅部および深部における地質の特徴》					
H断層系の認められる浅部の地層は後方回転しているが,深部では後方回転は収束しておりH断層系も推定されない					

正断層に関する一般的特徴の整理

- 一般的に,正断層には,その形態的な特徴から, Planar non-rotational faults, domino faults(Planar rotational faults)及びListric faultsの3タイプがあるとされている(Burg (2017), The University of Sydneyほか)。
- H断層系は, 平行な正断層群であり浅部の地層の後方回転がみられることからdomino faultsまたはListric faultsに近い形態を示すが, 深部の低角化や上盤側の地層の背斜が見られず, Listric faultsというよりむしろ, domino faultsとの類似性が認められる。そこで, domino faults について詳細な知見を収集し, H断層系の性状と比較する。

タイプ	Planar non-rotational faults	domino faults (Planar rotational faults)	Listric faults
一般的 特徴	 ・断層面は平面 ・共役の断層に挟まれたブロックが回転を伴わず沈降し、horstまたはgravenを形成する正断層群 	 ・断層面は平面 ・断層に挟まれたブロック(断層間ブロック)の後 方回転を伴う平行な正断層群 	 ・断層面は深度が深くなるにつれて傾斜が緩やかになる ・上盤側の地層には背斜が形成される ・断層群となる場合もある
	Horst Graben The University of Sydney (HP&D)	Half-graben Half-graben The University of Sydney (HP&D)	Roll-over anticline Listric fault The University of Sydney (HP&D)
	 H断層系 浅部において、断層間ブロックの後方回転を伴うや行な正断層群が等間隔に認められる。 断層の深部での低角化は認められず、上盤側の背斜構造も認められない。 		synthetic,listric normal faults tilted block Burg (2017), 図は左右反転

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

domino faultsの事例

- H断層系のように平行で等間隔に分布する正断層群は、圧縮場の日本周辺では稀であるものの、引張場の地域では多く報告されており、それらを domino faults(またはdomino model, bookshelf model等)としている知見もある(Fossen and Hesthammer (1998), Kaewkor et al. (2015)等)。
- このような平行で等間隔に分布する正断層群は、傾斜した地盤において形成されることが、実験や解析的研究により再現されている (McClay and Ellis (1987),山田ほか (2019) 等)。

domino faultsの主な特徴

H断層系とdomino faultsとの形態的特徴の対比

H断層系の形態的な特徴	domino faultsの形態的な特徴	両者の特徴の対比結果	
《断層の分布形状》			
ほぼ等間隔で平行な正断層群	等間隔で平行な正断層群	一致する	
全ての断層は, ほぼ同傾斜	すべての断層は同じ傾斜	一致する	
全ての断層は, ほぼ同落差	すべての断層は同じ変位量	一致する	
平面分布は緩い弧状	(断層の平面線形については言及されていない)	矛盾は認められない	
《断層の分布範囲》			
敷地北側から前面海域にかけての限られた範囲に分布	(分布範囲については言及されていない)	矛盾は認められない	
深部の砂岩比率の高い相良層まで連続しない	断層の深部への連続性について言及されていないが, モデル図では断層及び断層間ブロックの後方回転は, ある深度以深は図示されていない	一致する	
《断層に挟まれたブロック》			
H断層系の認められる浅部の地層は後方回転しているが、深部では後方回転は収束しておりH断層系も推定されない	断層間ブロックは後方回転している	一致する	

H断層系は,等間隔で並走するほぼ同傾斜・同落差で地層の後方回転を伴う正断層群であり,これらの特徴は,domino faultsの 形態的な特徴にすべてあてはまる。また,それ以外の形態的な特徴は,domino faultsとの矛盾も認められない。そのため,H断層系は domino faultsと同様な断層群であると考えられるが,H断層系の他の特徴(性状,形成要因)を踏まえた確認を実施する。

H断層系の特徴(性状・形成要因)

• H断層系の性状及び形成要因については、以下のような検討結果が得られている。(詳細は本編4.2,4.4参照)

【性状による評価】

- 性状 (露頭観察結果, 含有鉱物等) に類似性が認められる。 ←検討結果2a,2b,2c,2d,2e
- ・ 相良層堆積後の未固結~半固結の時代に形成された。←検討結果2a,2b,2c,2e
- ・ 相良層固結以降の活動は生じていない。 ←検討結果2a,2b,2c,2d,2e

• 浅部の堆積物のすべりに伴いすべり移動体内に形成された正断層群であると考えられる。←検討結果4a,4b,4c,4d,3d

H断層系の性状及び形成要因による確認

H断層系	domino faultsの特徴との対応				
《性状による評価》					
類似性が認められる	断層性状については言及されていないが,全ての断層が同時に活動する,とされていることから,いずれの断層も同様な性状を持つものと推定される				
相良層堆積後の未固結~半固結の時代に形成された	形成時代については言及されていない				
相良層固結以降の活動はない	相良層固結以降すべての断層に活動が認められないということは, すべての断層が 同時に活動するという特徴と矛盾しない				
《形成要因に関する評価》					
浅部の堆積物のすべりに伴いすべり移動体内に形成され た正断層群であると考えられる	地すべりの中には, domino faultsの形態的特徴(等間隔で平行, 同傾斜, 同変位量, 断層間ブロックの後方回転)とよく似た特徴を有するものがある(次頁 参照)ことを踏まえると, domino faultsであるとの評価と矛盾しない				

H断層系の性状による評価は,domino faultsの特徴と矛盾しない。 形成要因に関する評価は,domino faultsであるとの評価と矛盾しない。

(参考) domino faultsと地すべりの関係

 ・地すべりの中には、domino faultsの形態的特徴(等間隔で平行、同傾斜、同変位量、断層間ブロックの後方回転)とよく似た特徴を有するものがある (渡邉・中濱(2013)、Almagor and Garfunkel (1979)等)。

【評価】

正断層群のうち,断層面が平面で断層に挟まれたブロック(断層間ブロック)の回転を伴う平行な正断層群はdomino faultsとされている。

このdomino faultsは引張場の地域では多く報告されており、実験や解析的研究により、傾斜した地盤において形成されることが再現されている。 これらの結果を踏まえ、domino faultsは次のような特徴を持つ断層群として整理されている。

- > 断層間ブロックの後方回転を伴う等間隔で平行な正断層群。
- ▶ すべての断層は同じ傾斜を持つ。
- ▶ すべての断層は同じ変位量を持つ。
- > すべての断層間ブロックは同時に同じ速度で回転する、すなわち、すべての断層は同時に活動する。

H断層系は,等間隔で並走するほぼ同傾斜・同落差で地層の後方回転を伴う正断層群であり,domino faultsの形態的な特徴にすべてあては まり,それ以外の形態的な特徴は,domino faultsの特徴と矛盾しない。さらに,H断層系の性状による評価も,domino faultsの特徴と矛盾し ない。

したがって、H断層系は同時に活動するdomino faultsと同様な断層群として、すべての断層が一体として活動する断層群であると評価する。

本章の検討のまとめ(本編4.1~4.4のまとめ)(1/2)

H断層系の活動の同時性については、4.1~4.3の各調査結果及び4.4の形成要因に関する検討を踏まえ、以下の通り評価する。

【H断層系の特徴】

H断層系は、いずれも、東西走向の南に開いた緩い弧状を呈し等間隔で並走する南傾斜で南落ちのほぼ同じ落差を持つ正断層群で、露頭における断層面周辺の構造、ブロック試料及び薄片における断層面及びその近傍の構造等の詳細な性状は類似しており、断層の細粒物質の鉱物組成等にも類似性が認められる(分布形態、性状の類似性)。そして、その性状は流動的な変形構造を呈すること等から、H断層系は相良層堆積後の未固結~半固結の時代に形成され(形成時代の同時性)、断層面は平面的ではなく破砕を示す構造は認められず固結した岩盤において活動した断層に見られるような特徴とは異なること等から、相良層が固結して以降新たな活動は生じていないものと考えられる。

H断層系は、汀線より陸側約1.5kmの敷地北側から沖合約600mにかけて分布が確認されており、少なくとも沖合2km程度より遠方には分布していない。深部方向への連続性についてみると、相良層の上端付近にあたる標高-300~-400m付近に分布する凝灰岩層は大きく層間を短縮することなく連続しているものと推定されること、反射法地震探査においてもほぼ同層準に比較的連続性のよい強反射面が認められること、同層準付近以深にはH断層系と同一の性状を有する断層は認められないことから、同層準付近より深部の砂岩比率の高い相良層までは連続しないものと推定される。一方、H断層系が確認されている範囲と概ね対応した汀線より陸側2km程度から沖合1km程度にかけて標高-200m程度以浅の地層には後方回転が認められる。この後方回転は少なくとも標高-400m程度以深においては認められなくなり、H断層系による地層の変位がほとんど認められなくなる深度や浅部では多く見られた幅の大きな断層がほとんど見られなくなる深度と比較的良く対応している。これらのことから、H断層系は敷地から前面海域の浅部にかけて分布し深部まで連続しないものと推定される、分布範囲の局所性)。

このように, H断層系は, 分布形態・性状の類似性, 形成時代の同時性及び分布範囲の局所性が認められることから, 同一の地質学的場で形成された同じ系列に属する一連の断層群, すなわちすべての断層が一体として活動し, 各断層の最新活動が同時期(相良層が未固結〜半固結の時代のある一時期)である断層群と考えられる。

【H断層系に属する断層の活動時期】

また,掛川層群が現在固結していることを踏まえると敷地の相良層は遅くとも約2百万年前には固結していたものと考えられること,H断層系は分布形態,性状の 類似性が認められ,その性状から相良層が固結して以降新たな活動は生じていないものと考えられることから,H断層系に属する各断層の最新活動時期は,相良 層が未固結〜半固結の時代(約2百万年以上前)の相良層の固結度がほぼ同等のある一時期に限られるものと考えられる。

【H断層系の活動の特徴(正断層の一般的特徴とH断層系の特徴との対比)】

一方,正断層群のうち,domino faultsは,断層間ブロックの後方回転を伴う等間隔で同じ傾斜・変位量を持つ平行な正断層群という形態的特徴を持ち,すべ ての断層は同時に活動する,とされている。H断層系の分布,深部構造による形態的特徴は,このdomino faultsの形態的特徴にすべてあてはまり、H断層系の それ以外の形態的な特徴や性状による評価はdomino faultsの特徴と矛盾しないことから、H断層系は同時に活動するdomino faultsと同様な断層群として,す べての断層が一体として活動する断層群であると評価される。この評価は活動の同時性(すべての断層が一体として活動し、各断層の最新活動が同時期である)と いう観点でH断層系の特徴に基づく評価と合致している。

【H断層系の活動の同時性に関する評価】 これらのことから,H断層系は,すべての断層が一体として活動し,各断層の最新活動が同時期(約2百万年以上前のある一時期)である断層群と考えられる。 (次頁に続く)

(前頁より続き)

【H断層系の形成要因を踏まえた上記評価の確認】

H断層系のような並走する同傾向の正断層群は,他の断層活動や火山活動,地すべりといった地質学的場において形成されるとの知見がある。しかしながら,H断 層系は深部に連続することなく敷地及び敷地近傍の浅部に限って分布するものと考えられ,敷地近傍には,累積性を有し走向がH断層系と同傾向を示す活断層は 認められず,火山活動も見られない。これらのことから,H断層系は,他の断層活動や火山活動に伴い形成された構造ではないものと考えられる。 一方,地すべりに関する知見として,地層境界をすべり面とした地すべりが生ずる,地すべり移動体内に正断層群が生じ地層が後方回転する(domino faultsと よく似た形態的特徴が生じる),地すべり面は暗色の薄層として認識され塑性流動した変形組織が確認できる場合がある等があるが,前述の地層の後方回転が収 束する深度付近の相良層の一部の地層境界に,暗色の薄層に挟まれた南落ち正断層センスの運動方向を示す流動的な変形構造が広がりを持って認められることは それら地すべりに関する知見と整合する。これらのことから,H断層系は浅部の堆積物のすべりに伴いすべり移動体内に形成された正断層群であると考えられ,分布・ 性状・深部地質構造の調査・分析結果による,H断層系は,すべての断層が一体として活動し,各断層の最新活動が同時期(約2百万年以上前のある一時 期)である断層群とする評価を支持する。

【上載地層による活動性評価方針】 上記の通り、H断層系は、すべての断層が一体として活動し、各断層の最新活動が同時期である断層群であり、その最新活動時期は約2百万年 以上前であると考えられることから、どの断層においても後期更新世以降における活動性は同一の評価となる。したがって、上載地層による活動性評価 については、敷地北部のBF4地点におけるH-9断層を対象に行う。

H断層系の活動性評価のまとめ

(検討結果欄の段落番号は、本編各節末のまとめスライドと対応している。)

第817回資料2-1 p.304一部修正

(参考)本章を踏まえ追加・修正した本編資料の主なスライド

項目	該当頁			
 「(1) 反射法地震探査と地質情報との対応関係を踏まえた深部構造の検討」関連	pp.172~177,186,193,206			
「(2) 岩盤において断層が活動した場合の性状との対比」関連	pp.143,149~151			
「(3) 正断層の一般的特徴との対比」関連	pp.211~214,226			
上記検討に関連して修正した各節末のまとめスライド	pp.81,178,189,207~210,215,216,242,243,246~248			

5 Moore et al.(2015)について

コメントNo.84に対する回答の概要

<コメントNo.84>

• 地すべり移動体内の構造に関する知見として引用しているMoore et al.(2015) については, 文献の内容を精査し, 適切に引用すること。

<回答方針>

• Moore et al.(2015) について, 文献の内容を精査し, 同文献に示される正断層群とH断層系との関係を整理の上, H断層系の成因の考察において適切に引用する。

(1) Moore et al.(2015)の概要

Moore et al. (2015)の概要(1/4)

 Moore et al. (2015) は、南海トラフ熊野海盆の地震探査及び掘削調査の結果から、KBEFZ(熊野海盆縁断層帯)より内側に発達する前弧海盆の 構造性堆積システムについて考察し、巨大分岐断層に沿う隆起の影響で陸側に傾斜する堆積構造等について考察している(Fig.1参照)。
 熊野海盆では、プレートの沈み込みにより堆積物が活発に付加しており、巨大分岐断層に沿う隆起(≒外縁隆起帯:当社注)の内側の前弧海盆堆積物 が陸側に傾斜する状況を図示している(Fig.2、Fig.7A参照)。

Fig. 1. Regional location map. Red dots = IODP drill sites used in this paper, blue dots = other NanTroSEIZE drill sites. Black outline = region with 3-D seismic data; yellow arrows = estimated far-field vectors for motion of Philippine Sea Plate (PSP) with respect to Japan (Seno et al., 1993; Heki, 2007). Stars = epicenter locations of 1944 and 1946 tsunamigenic earthquakes. Black line = KR0108-5 seismic reflection line shown in Fig. 2. KBEFZ = Kumano Basin Edge Fault Zone (Martin et al., 2010). Inset in upper right is regional location map – KB = Kumano Basin; MB = Muroto Basin; TB = Tosa Basin.

Fig. 2. Regional 2-D seismic line KR0108-5, showing IODP Sites used in this paper (red) in relation to all other NanTroSEIZE drill sites (black). PSP – Philippine Sea Plate. Location shown in Fig. 1. Modified from Park et al. (2002), Nakanishi et al. (2008), and Moore et al. (2014).

Fig. 7. Arbitrary seismic line through drill sites C0002 and C0009. Location shown in Fig. 4. Colors of tectono-stratigraphic units are the same as in Fig. 5 and U. A. Interpreted seismic data. B. Correlation of seismic-stratigraphic sequence boundaries across the area. C. Chronostratigraphic diagram. (Fig.7のAのみ表示)

Moore et al. (2015)の概要(2/4)

- 熊野前弧海盆では、3次元地震探査及び大深度ボーリング調査(サイトC0002,C0009)が実施されている(Fig.4参照)。
- 調査域では、南東部にプレート沈み込みに伴い発達する外縁隆起帯と、南西部には小規模な隆起構造が示されている。
- 前弧海盆の地質及び堆積年代について、地震探査記録及びボーリング調査結果から、4つのユニット(下位から、付加プリズム(Accretionary Prism)、斜面堆積物(Slope sediments)、下部前弧海盆堆積物(Lower forearc basin)、上部前弧海盆堆積物(Upper forearc basin)に区分され、それぞれ、概ね中新世、鮮新世、第四紀の堆積物と解釈している(Fig.5参照)。

Fig. 4. Details of high-resolution bathymetry of our study area with color table optimized to show the Southwest Uplift. Dashed line shows location of 3D seismic survey; solid lines show locations of seismic inlines and crosslines shown in later figures.

Fig. 5. Lithostratigraphic summary column of Site CO002 overfain on a 3D seismic in-line. Seismic sequence boundaries are from Gulick et al. (2010). Labeled seismic horizons are the tops of sequence boundaries as defined by Gulick et al. (2010); e.g., RL – top of "Rumano Lower", K11 – top of "Rumano 11", VE – vertical exaggeration.

※断面の方位は当社加筆

Moore et al. (2015)の概要(3/4)

Fig. 11. Seismic cross-line (XL) 0850 showing NU-tilt of sequences K4 through K7 and thinning of sequences K2 and K3 over the upbilted region. Sequences K5 through K7 are all tilted the same amount, indicating that tilting occurred during deposition of sequence K4. Note mass-transport deposits MTDs within sequences K3 and K4, further described by Manne and Strasser (2015). Location shown in Fig. 4.

Fig. 9. Detail of the frontal part of the forearc basin section showing older sequences progressively onlapping the KL unconformity. Location shown in Fig. 4.

Moore et al. (2015)の概要(4/4)

- ・ 本地域の構造発達について, Moore et al. (2015) は, 以下のように説明している(Fig.13参照)。
- プレート沈み込み、インシーケンススラストが発達し、斜面堆積物が堆積(E:~2.2Ma)、アウトオブシーケンススラスト(OOST)が形成、下部前弧海盆 堆積物が堆積(D:~1.6Ma)、OOSTの成長、下部前弧海盆堆積物が陸側に傾斜を開始、継続(C:~1.2Ma, B:~0.75Ma)、巨大分岐 断層の成長、隆起帯の成長及び海盆堆積物の陸側への傾斜が継続(当社注:海盆中に正断層が形成)(A:~現在)。

Fig. 13. Model of evolution of Kumano Basin. Left side: schematic model of entire frontal region; Right side: details of FAB evolution, A. Sedimentation of UFB; tilting of UFB and older units (present day), B. Continued tilting of basin sediments (K4 unit); reactivation of buried thrust in accretionary prism (-0.75 Ma), C. Deposition of LSB, sequence K8; tilting of UFB sediments (-1.2 Ma), D. Approximately 0.4 Ma after formation of OOST; sedimentation of LFB sequence K10 (-1.6 Ma), E. During deposition of slope sediments (-2.2 Ma), a = slope sediments; b = LFB sediments plus correlative slope sediments; c = UFB sediments plus correlative slope sediments. Color scheme is the same as Fig. 5 and 6. Modified from Moore et al. (2007).

Moore et al. (2015)の概要(まとめ)

○Moore et al.(2015)の概要を以下に整理する。

- 南海トラフの熊野海盆で実施された, 3次元地震探査及び大深度ボーリング調査(サイトC0002,C0009)の結果から, KBEFZ(熊野海 盆縁断層帯)より内側に発達する前弧海盆の構造性堆積システムについて考察している。
- プレートの沈み込みにより堆積物が活発に付加しており、巨大分岐断層沿いの隆起(外縁隆起帯)に伴い、前弧海盆堆積物が陸側に傾斜している。
- 前弧海盆の地層は、下位から、付加プリズム(Accretionary Prism)、斜面堆積物(Slope sediments)、下部前弧海盆堆積物 (Lower forearc basin)、上部前弧海盆堆積物(Upper forearc basin)に区分され、堆積年代はそれぞれ、概ね中新世、鮮新世、 第四紀としている。
- 前弧海盆堆積物を切断する,堆積物の傾斜方向と同様に陸側に高角度で傾斜する平行な正断層群(当社注:正断層群Aと呼ぶ)が認められ,これらの多くは海底面をずらしていると解釈している(当社注:現在も活動していると解釈される)。その他,調査域の南西の小規模な隆起に伴う正断層群(当社注:正断層群Bと呼ぶ)が認められ,現在は活動を停止したと解釈している。
- 前弧海盆の堆積システムの進化について、①プレート沈み込み、インシーケンススラストが発達し、斜面堆積物が堆積(E:~2.2Ma)、② アウトオブシーケンススラスト(OOST)が形成、下部前弧海盆堆積物が堆積(D:~1.6Ma)、③OOSTの成長、下部前弧海盆堆積物が 陸側に傾斜を開始、継続(C, B:~0.75Ma)、④巨大分岐断層の成長、隆起帯の成長及び海盆堆積物の陸側への傾斜が継続(当 社注:海盆中に正断層が形成)(A:~現在)と解釈している。

(2) Moore et al.(2015)に示される熊野海盆の正断層群とH断層系との関係

【Moore et al. (2015) における, 正断層群の記載の概要】

- 巨大分岐断層に沿う隆起帯の成長により,前弧海盆堆積物が継続的に陸側に傾斜,前弧海盆中に同じく陸側に傾斜する正断層群が形成されている。隆起帯は現在も成長を続け,それに伴い正断層群も現在も活動していると考えられる(正断層群A)。
- 調査域の南西には小規模な隆起があり, 同隆起にともなう正断層群 (正断層群B)が形成されている。同正断層群は現在は活動を停止している。

【Moore et al. (2015) における, 正断層群の形成に係る要点】

(1) 正断層群の形成要因,地質構造に関わる要点

- 正断層群 (A,B)について, 隆起等の規模や方向には違いがあるものの, いずれにおいても, 隆起による地層の傾動によって, 同方向に傾斜する一連の平行な正断層群が形成されている。
- 前弧海盆堆積物中に正断層群 (A,B)が形成されているが, これらはいずれも, 下部の付加体から成長するような構造ではない (地下深部に 連続するものではない) 。

(2) 正断層群の形成時期・地層の性状に関わる要点

- 正断層群の発達する前弧海盆堆積物(LFB, UFB)は、第四紀の堆積物であり、まだ固結していないと考えられる。
- 隆起・傾動がアクティブであれば, 正断層群もアクティブである(正断層群A)一方, 隆起・傾動がノンアクティブであれば, 正断層群もノンアクティブである(正断層群B)。

Moore et al. (2015) に示される熊野海盆の正断層群とH断層系との関係 🥜

中部電力

【Moore et al. (2015) に示される熊野海盆中の正断層群とH断層系との対比】

• 南海トラフの熊野灘沖における,前弧海盆堆積物中に認められる正断層群について述べた, Moore et al. (2015) について, 文献の内容を精査の上, H断層系の成因の考察において, (1)正断層群の形成要因・地質構造, (2)正断層群の形成時期・地層の性状の観点において, その類似点及び相違点を整理した。

(1) 正断層群の形成要因・地質構造

- Moore et al. (2015) に示される正断層群は, 巨大分岐断層に沿う外縁隆起帯の成長や隆起帯付近の局所的な隆起に伴う堆積物の 傾動によって生じた引張応力によって形成されている。
- 一方, H断層系は, 前弧海盆の陸側において, 陸側の隆起や海盆の沈降等による地層の海側傾斜によって形成されたと考えられ, Moore et al. (2015) に示される正断層群と, テクトニクス的な背景は異なる。
- ただし, これらはいずれも, "隆起に伴う表層付近の地層の傾動によって生じた引張応力によって形成された, 地下深部に連続せず, 後方回転を伴う一連の平行な正断層群"という観点では同一であると考えられる。

(2) 正断層群の形成時期・地層の性状

- Moore et al. (2015) に示される熊野海盆の正断層群Aは, 1.2~0.8Ma以降に生じた外縁隆起帯の成長及び堆積物の陸側への傾動 に伴って形成され,現在も活動中と考えられる。また,地層の堆積年代が第四紀でまだ固結していないと推定される。
- 一方, H断層系の形成時期は, 相良層群が前弧海盆から隆起した鮮新世頃と推定され, 現在は陸化している(現在の前弧海盆は沖合の遠州トラフ)。また, 母岩である相良層はすでに固結している。
- これらのことから、H断層系は、すでに活動を停止した正断層群Bと同様、現在は活動的ではないと解釈される。

【まとめ】

Moore et al. (2015) に示される正断層群は,巨大分岐断層に沿う隆起帯の成長等による堆積物の傾動が要因とされ,H断層系とはテクト ニクス的な背景は異なり,また海底地すべりとは解釈されていないものの,"**隆起に伴う表層付近の地層の傾動によって生じた引張応力によって形** 成された,地下深部に連続せず,後方回転を伴う一連の平行な正断層群"という観点では同一であり,地すべり移動体中に生じる後方回転を 伴う一連の平行な正断層群と類似するため,H断層系の形成要因の考察に資する知見と解釈し,本文中に引用している。

(参考)Moore et al. (2015) に示される熊野海盆の正断層群とH断層系との対比(1/2)

(1)-1正断層群の形成要因となる隆起・傾動のテクトニクス的な背景等の対比						
	熊野海盆の正断層群 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		備考			
テクトニクス的な背景	プレート沈み込みによる付加,逆断層の成長に よる外縁隆起帯の成長	ト沈み込みによる付加,逆断層の成長に よる外縁隆起帯の成長 陸域の隆起による前弧海盆の陸化				
前弧海盆中の 断層の分布位置	前弧海盆中の 前弧海盆中の 断層の分布位置 外縁隆起帯の陸側斜面		異なる			
断層の走向・傾斜と プレート沈み込み方向	NE-SW, NW傾斜 (沈み込みに伴う外縁隆起帯に平行)	NW-SE, SW傾斜 (沈み込みに伴う褶曲構造に直交)	異なる			

(1) – 2正断層群の形成要因・地質構造等

		熊野海盆の正断層群		H断層系	計比約日	
		正断層群A	正断層群B	(解釈を青字で表示)		
形成場所		前弧海盆		前弧海盆(断層形成時)	A,Bに類似	
形成要因		プレート沈み込みに伴う 隆起運動に伴う引張場		プレート沈み込みに伴う隆起運動(海 盆の沈降含む)に伴う引張場	A,Bに類似	
	新屋の形能	平行な正	断層群	平行な正断層群	A,Bに類似	
地質構造	町省の形態	一部に後方回転を伴う※ (※当社にて解釈)		後方回転を伴う	A,Bに類似	
	深部への連続性	地下深部に連続しない (前弧海盆中に発達)	地下深部に連続しない (K6層序に達しない)	地下深部に連続しない	A,Bに類似	
	断層の傾斜方向	隆起による地層の傾斜方向		隆起による地層の傾斜方向	A,Bに類似	
	断層の規模 (長さ)	A:10数km (図より読み取り)	B: -	2~3km程度 (比木向斜の範囲内と解釈)	H断層系の方が 規模が小さい	
断層の諸元	断層の間隔	200~400m程度 (図より読み取り)	200~400m程度 (図より読み取り)	100~150m程度	A,Bに概ね類似 (H断層系の方が若 干狭い)	
	断層の深さ	A:~1km程度	B:~数百m程度	数百m程度	Bに概ね類似	
	断層のずれ量	2 0 m	1程度	20~30m程度	A,Bに類似	

(2) 正断層群の形成時期・地層の堆積性状等

	熊野海盆の正断層群		山將屋交					
	正断層群A	正断層群B		刘北枯未				
形成時期 (活動性)	1.2Ma~ (現在も活動中と推定)	1.2Ma~ ~0.436Ma 在も活動中と推定) (すでに活動を停止)		異なる				
現在の場所	前弧海盆堆積物中		島弧地殻 (陸化)	異なる				
地層の堆積年代	第四紀 (熊野前弧海盆堆積物)		中新世後期~鮮新世前期 (相良層)	異なる				
地層の固結度	未~半固結と推定※2		現在は固結している	異なる				
	※1 翅曲楼浩(女神碧剑)比太南剑笙)の登速火炸厂,相自推铸分が陈起,陈化厂,推铸焊が掛川推铸。							

※1 褶曲構造(女神背斜,比木向斜等)の発達とともに,相良堆積盆が隆起・陸化し,堆積場が掛川堆積 盆に移動する際に,陸側の隆起や海盆の沈降等による地層の海側傾斜によって形成されたと解釈。なお,その 後掛川堆積盆も隆起・陸化し,堆積盆は現在の石花海海盆及び遠州トラフに移動。

※2 当社による解釈。

6 前回の審査会合からの主な追加,修正

第817回(2019.12.20)審査会合からの主な追加,修正

項目	主な追加内容	主な修正内容
1. 既往知見等の整理		
2. 敷地の地形		
3. 敷地の地質・地質構造 (1) 敷地の地質		
(2) 敷地の断層	•敷地の相良層へ作用する力と断層との関係についての検討を 実施。	・断層の分類にNS系正断層を追加し,他の断層グループ同様,その特徴を整理。
(3) 活動性評価の対象とする断 層の選定	 ・広域的な引張応力場で形成される逆断層についての知見を 整理し, EW系逆断層に関する評価の考え方を明記。 	•NS系正断層も含め, 断層グループ間の切り切られ関係を再 整理。
4. H断層系の活動性評価 4.1 H断層系の分布 (1)陸域(ボーリング・露頭)に おける検討		
(2) 海域における分布の検討		
(3) H断層系の分布		
4.2 H断層系の性状 (1) 露頭等の観察結果	・岩盤において断層が活動した際の性状との対比を実施。・相良層が固結した時代に関する考察を実施。	
(2) 試料分析·測定結果		

第817回(2019.12.20)審査会合からの主な追加,修正

項目	主な追加内容	主な修正内容
4.3 敷地深部の地質構造とH断 層系		
(1) 敷地深部の地質構造の把握		
(2) 相良層の北に開いた構造に 関する検討		
(3) H断層系の深部への連続性 に関する検討	 ・反射断面に認められる深部の強反射面について、大深度ボーリングコアとの対比により考察し、地質との対応関係を検討。 ・H断層系の活動の同時性に関し、H断層系の主な特徴と正断層に関する一般的特徴との対比を実施。 	
4.4 H断層系の形成要因 (1) 正断層群形成に関する知見 と敷地周辺の地質構造		
(2) 地すべりに関する知見	• Moore et al.(2015)を地すべりの事例として引用している点につ いての見解を記載。	 Moore et al.(2015) について精査し, H断層系との類似 点・相違点を整理。
(3) 敷地深部のbedding-slip fault		
4.5 上載地層による活動性評価 (1) H-9断層と上載地層の関係 (BF4地点における調査)		
(2) BF1地点の古谷泥層(BF1 地点他における調査)		
(3) BF4地点の泥層の堆積年代 (BF1地点及び比木2の古谷泥 層との対比)		
H断層系の活動性評価のまとめ	•今回の検討を踏まえ, H断層系の活動性評価をH-9で代表させる点について再整理。	

断層の分類フローに関する変更点

中部雷ナ

H断層系活動性評価のまとめフローに関する変更点

 今回
<section-header><text></text></section-header>

No.	コメント概要	分類	コメント時期	コメント回答時期
1	敷地周辺の応力場について,現在は半年間のデータとなっているが,もう少し長い期間のデータで確認すること。	既往知見	2016年1月18日 第316回審査会合	2017年2月17日 第443回審査会合
2	小断層系をステレオネットで示し, H断層系との関係を示すこと。	敷地の地質・ 地質構造	2016年1月18日 第316回審査会合	2017年2月17日 第443回審査会合
3	H断層系の落差と傾斜の表について, 地質断面図等と整合を図ること。	H断層系の分布	2016年1月18日 第316回審査会合	2017年2月17日 第443回審査会合
4	敷地の西側や敷地前面について, H断層系の分布や性状等のデータを示すこと。	H断層系の分布・性 状	2016年1月18日 第316回審査会合	2018年8月3日 第608回審査会合
5	細粒物質のX線回折分析について,母岩(相良層)部分についてより断層に近接する箇所で実施すること。	H断層系の性状	2016年1月18日 第316回審査会合	2017年2月17日 第443回審査会合
6	細粒物質の性状について、より詳細な検討を充実すること。	H断層系の性状	2016年1月18日 第316回審査会合	2017年2月17日 第443回審査会合
7	H断層系をリストリックな正断層と評価していることについて,大深度ボーリング等のデータにより検討を深めること。	深部地質構造と H断層系	2016年1月18日 第316回審査会合	2017年2月17日 第443回審査会合
8	H-9断層について,上載層が限られた範囲の分布であることを踏まえ,他に年代評価できる指標がないか,また模 式地と比較して鉱物組成や帯磁率が同様かといった観点で,データの補強を行うこと。	H断層系の上載地 層による評価	2016年1月18日 第316回審査会合	2017年2月17日 第443回審査会合
9	4号炉法面に複数認められるキンク褶曲状の局所的な褶曲構造について、その分布、成因を検討すること。	敷地の地質・ 地質構造	2017年2月17日 第443回審査会合	2018年8月3日 第608回審査会合
10	東西圧縮による褶曲に伴って形成されたとする南北系の逆断層について, 向斜軸西側にも同様の構造があることを 示すこと。	敷地の地質・ 地質構造	2017年2月17日 第443回審査会合	2018年8月3日 第608回審査会合
11	H断層系の分布範囲について,御前崎台地における,H断層系に類似する断層の存在,褶曲軸の傾斜方向の 対比等も含め,その地質学的な解釈を説明すること。	H断層系の分布	2017年2月17日 第443回審査会合	2018年8月3日 第608回審査会合
12	石英粒子の表面構造解析の基準について, 元文献の記載と事業者の評価が分かるように記載すること。	H断層系の性状	2017年2月17日 第443回審査会合	2018年8月3日 第608回審査会合
13	反射法地震探査結果の分解能について、反射断面の範囲をより詳細に分割し、分解能を定量的に示すこと。	深部地質構造と H断層系	2017年2月17日 第443回審査会合	2018年8月3日 第608回審査会合
14	走向傾斜が変化するという敷地の地下深部の構造について、各調査手法によるデータの整合性を確認すること。	深部地質構造と H断層系	2017年2月17日 第443回審査会合	2018年8月3日 第608回審査会合
15	代表的なボーリング柱状図について,露頭で確認できる小断層系(ゆ着型,開離型)の情報も含めて記載を充 実させること。また,BHTV調査の資料について,凡例も含めて柱状図と記載を対応させること。	敷地の地質・ 地質構造	2017年3月 現地調査	2018年8月3日 第608回審査会合
16	H断層系,小断層系について,正断層・逆断層があり,一部条線も認められるため,小断層解析の実施も含め 発達史の観点から検討を深めること。	敷地の地質・ 地質構造	2017年3月 現地調査	2018年11月26日 第654回審査会合
17	向斜構造の中で正断層としてH断層系が滑ったとの解釈について,H断層系以外で,浅部で低角な円弧すべり状の地すべり断層がないか,過去のデータ等も含めて確認すること。	敷地の地質・ 地質構造	2017年3月 現地調査	2018年8月3日 第608回審査会合

No.	コメント概要	分類	コメント時期	コメント回答時期
18	H断層系の分布について, BHTV等の結果を反映するとともに, 鍵層となる凝灰岩の対比についても定量的なデータを示すことで, 信頼性を説明すること。	H断層系の分布	2017年3月 現地調査	2018年8月3日 第608回審査会合
19	敷地内の露頭データについて、追加された新たなデータも含めて再整理すること。	H断層系の性状	2017年3月 現地調査	2018年8月3日 第608回審査会合
20	H断層系の特徴について, 破砕帯の構造, 固さ, 帯磁率等も含め整理すること。	H断層系の性状	2017年3月 現地調査	2018年8月3日 第608回審査会合
21	H-4断層露頭で確認されたスメア構造について, その詳細な構造を示すこと。	H断層系の性状	2017年3月 現地調査	2018年8月3日 第608回審査会合
22	H-5断層の法面に認められる複数の断層面について,法面観察や薄片観察等のデータから,その幅や活動性について検討すること。	H断層系の性状	2017年3月 現地調査	2018年11月26日 第654回審査会合
23	H断層系の形成時期に関し,断層周囲の母岩の引きずりから相良層が未固結〜半固結時の時代に形成されたとの解釈について,他地点の事例も調査して説明性をより向上させること。	H断層系の性状	2017年3月 現地調査	2018年8月3日 第608回審査会合
24	深部(400m程度以深)にみられる断層等の地質構造も踏まえたうえで,H断層系が収斂することについて根拠 を示すこと。	深部地質構造と H断層系	2017年3月 現地調査	2018年8月3日 第608回審査会合
25	大深度ボーリングW15孔のBHTV調査結果から, 地層の走向傾斜が深部で南西傾斜に変化するとの評価について, データを追加して全体的な傾向を示すこと。	深部地質構造と H断層系	2017年3月 現地調査	2018年8月3日 第608回審査会合
26	W15孔などの代表的なボーリング孔について, 全長に亘って帯磁率を計測して示すこと。	深部地質構造と H断層系	2017年3月 現地調査	2018年8月3日 第608回審査会合
27	BF4地点の上載地層を古谷泥層とする評価について,固さ,帯磁率,年代分析など,科学的・客観的なデータ を充実させて説明性を向上させること。	日断層系の上載地 層による活動性評価	2017年3月 現地調査	2018年4月6日 第563回審査会合
28	BF4'トレンチについて,H-9断層と上載地層との関係をより明確に観察できる調査位置を検討すること。	日断層系の上載地 層による活動性評価	2017年3月 現地調査	2018年4月6日 第563回審査会合
29	GTG南法面トレンチにおいて上載地層として評価している笠名礫層相当層について, 固さや帯磁率を示すこと。	H断層系の上載地 層による活動性評価	2017年3月 現地調査	2018年4月6日 第563回審査会合
30	上載地層として評価している砂層(笠名礫層相当層)について,新規制基準では最終間氷期の地層は活動性 評価には使えないので,評価の仕方を工夫すること。	H断層系の上載地 層による活動性評価	2017年3月 現地調査	2018年4月6日 第563回審査会合
31	トレンチ調査について、できれば断層部分をより深く掘削し、上載地層との関係をより明確にすること。	日断層系の上載地 層による活動性評価	2017年3月 現地調査	2018年4月6日 第563回審査会合
32	H断層系が2つの断層面を有しつつ分岐する現象について, 観察あるいは理論的考察をもって説明すること。	H断層系の性状	2018年4月6日 第563回審査会合	2018年11月26日 第654回審査会合
33	地形調査の検討範囲を広げると共に堆積物基底面高度を示すこと。	H断層系の上載地 層による活動性評価	2018年4月6日 第563回審査会合	2018年11月26日 第654回審査会合
34	泥層に含まれる礫種について層序との関係も踏まえ定量的に示すこと。	H断層系の上載地 層による活動性評価	2018年4月6日 第563回審査会合	2018年11月26日 第654回審査会合

No.	コメント概要	分類	コメント時期	コメント回答時期
35	BF1地点の古谷泥層を覆う砂礫層について,既往文献との関係を考察すること。	H断層系の上載地 層による活動性評価	2018年4月6日 第563回審査会合	2018年11月26日 第654回審査会合
36	花粉分析について, 試料の棄却の根拠を明確にするとともに, 古気候については既往文献との対比に基づいた検 討をすること。	日断層系の上載地 層による活動性評価	2018年4月6日 第563回審査会合	2018年11月26日 第654回審査会合
37	化石分析について、化石が産出されないことも含め検討結果を示すこと。	H断層系の上載地 層による活動性評価	2018年4月6日 第563回審査会合	2018年11月26日 第654回審査会合
38	H-9断層の断層面の傾斜方向が,局所的に変化している状況を示すこと。	H断層系の上載地 層による活動性評価	2018年4月6日 第563回審査会合	2018年11月26日 第654回審査会合
39	地質・地質構造の記述に対応した地質図・地質構造図について、海域を含めて示すこと。	敷地の地質・ 地質構造	2018年8月3日 第608回審査会合	2018年11月26日 第654回審査会合
40	敷地の断層の分類と評価方法について,地形・地質調査を踏まえて整理すること。	敷地の地質・ 地質構造	2018年8月3日 第608回審査会合	2018年11月26日 第654回審査会合
41	断層の新旧関係の判断フローについて、選定の過程に落差を用いることの妥当性を含め再検討すること。	敷地の地質・ 地質構造	2018年8月3日 第608回審査会合	2018年11月26日 第654回審査会合
42	褶曲に伴う浅部の層面すべりの有無、分布・性状を示すこと。	敷地の地質・ 地質構造	2018年8月3日 第608回審査会合	2018年11月26日 第654回審査会合
43	H断層系分布図(水平断面,重要構造物との位置関係図)について,陸域と海域を併せて示すこと。その際, 分布図上の断層端部の位置づけを明確にすること。	H断層系の分布	2018年8月3日 第608回審査会合	2018年11月26日 第654回審査会合
44	H断層系の平面分布が湾曲する根拠を示すこと。	H断層系の分布	2018年8月3日 第608回審査会合	2018年11月26日 第654回審査会合
45	H断層系分布図(鉛直断面)について, BHTVの結果の反映の有無やボーリングデータの投影の有無, 従来からの変更の有無と理由, 断層に同一の名称を用いている際の補記を示すとともに, 陸域と海域を併せた断面図も 示すこと。	H断層系の分布	2018年8月3日 第608回審査会合	2018年11月26日 第654回審査会合
46	H断層系分布図(鉛直断面)に示す鍵層・断層について, 深度一覧表に示すこと。	H断層系の分布	2018年8月3日 第608回審査会合	2018年11月26日 第654回審査会合
47	海域の断面図に、地質情報や取水設備との関係を示すこと。	H断層系の分布	2018年8月3日 第608回審査会合	2018年11月26日 第654回審査会合
48	海域のH断層系について,陸域と異なり地層の後方回転が見られない理由も含め,陸域のH断層系と差異がない とする根拠を示すこと。	H断層系の 分布・性状	2018年8月3日 第608回審査会合	2018年11月26日 第654回審査会合
49	帯磁率の測定結果について、相良層の母岩で高く、断層の中で低く見える点について、解釈を示すこと。	H断層系の性状	2018年8月3日 第608回審査会合	2018年11月26日 第654回審査会合
50	敷地深部の鍵層が浅部と異なり連続するとしている根拠を整理すること。	深部地質構造と H断層系	2018年8月3日 第608回審査会合	2018年11月26日 第654回審査会合
51	深部でP波速度が低くなっている部分の要因を検討すること。	深部地質構造と H断層系	2018年8月3日 第608回審査会合	2018年11月26日 第654回審査会合

No.	コメント概要	分類	コメント時期	コメント回答時期
52	深部の黒色の薄層について,詳細な性状を示すとともに,分布深度が浅部にも及ぶ場合は,どのように差別化し ているのか示すこと。	深部地質構造と H断層系	2018年8月3日 第608回審査会合	2018年11月26日 第654回審査会合
53	H断層系を同一の断層群とする際の論理構成や結論を明確にすること。その際,H-9断層露頭の調査結果等, 重要な情報は本編資料で整理すること。	H断層系の活動性 評価	2018年8月3日 第608回審査会合	2018年11月26日 第654回審査会合
54	ゆ着型断層についても他の性状により細分化した分類とするなど,断層の分類は,データに基づく客観的な分類に 見直すこと。	敷地の地質・ 地質構造	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合
55	ゆ着型断層,開離型断層について,用語の定義を明確にするとともに,両者の区分に係るエビデンスを示すこと。	敷地の地質・ 地質構造	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合
56	敷地の断層のうち, Flexural-slip Faultとしている層理面沿いの黒色の境界層について, H断層系との直接的な 関係か, 少なくとも黒色の境界層がある層理面とH断層系との関係を確認すること。	敷地の地質・ 地質構造	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合
57	断層の切り切られ関係が明確に確認できる、より詳細なスケッチ及び写真を示すこと。	敷地の地質・ 地質構造	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合
58	H断層系の活動性評価フローについて,「分布」「性状」の何をもって「一連の断層群である」とするのかを明確にする とともに,その根拠としている「分布」「性状」「推定される形成要因」の関係がわかるようフロー中の文章の記載を適 正化すること。	H断層系の活動性 評価	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合
59	H断層系分布図(水平断面及び鉛直断面)について,海域と陸域の断層が一連の構造であるとの評価であれば それがわかるよう統合して示すこと。また,東西端は端部の確認の有無を区別して図に示すこと。	H断層系の分布	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合
60	H断層系の分布について, 弧状に分布するとした根拠を具体的に示すこと。	H断層系の分布	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合
61	敷地近傍の地層の走向傾斜について, 向斜と後方回転の二つの構造の影響を受けた結果であることを踏まえ, 両 者の関係の解釈を整理して説明すること。	深部地質構造と H断層系	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合
62	大深度ボーリングの孔壁調査結果のシュミットネットについて,深度別の色分けの考え方を明記すること。	深部地質構造と 日断層系	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合
63	大深度ボーリングの孔壁調査について, 傾斜角も示すこと。	深部地質構造と 日断層系	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合
64	敷地深部について三次元の地質構造が理解できるような形で示すこと。	深部地質構造と 日断層系	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合
65	敷地深部の断層の分布の検討に用いているボーリングコアについて, 柱状図も示すこと。	H断層系の活動性 評価	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合
66	BF4地点におけるH-9断層の分布について,BHTVのデータから推定される地表位置と分布図の位置にずれが認 められるので,各地点で確認された調査結果を対比し,どのように分布を考えたのか詳細を示すこと。	日断層系の上載地 層による活動性評価	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合
67	比木2地点においても、BF4-BF1地点間の対比項目と同等の分析を実施したうえで、対比を検討すること。	日断層系の上載地 層による活動性評価	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合

1				
No.	コメント概要	分類	コメント時期	コメント回答時期
68	PS検層結果と相良層の層相の対比に用いている相良層の岩石試験結果(超音波伝播速度測定)について, データのばらつきを示すこと。	深部地質構造と H断層系	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合
69	資料中に不整合や不備が散見されるので、確認した上で再整理すること。	_	2018年11月26日 第654回審査会合	2019年4月12日 第704回審査会合
70	敷地の断層の平面分布図に記載した断層やH断層系の鉛直断面図におけるH断層や凝灰岩層の分布等,過去の資料から変更した点をデータに基づき詳細に説明すること。	_	2019年4月12日 第704回審査会合	2019年12月20日 第817回審査会合
71	ゆ着型・開離型という断層の分類を今後も使い続けるのであれば、平面分布図で開離型・ゆ着型と表記したエビデンスを示すとともに、断層活動の時間的な前後関係についてもエビデンスを示したうえで海外や新しい知見も踏まえ て矛盾なく整理すること。	敷地の地質・ 地質構造	2019年4月12日 第704回審査会合	2019年12月20日 第817回審査会合
72	H断層系の分布の検討において,反射法地震探査や海上音波探査といった類似の手法に対する同様な視点による検討や,手法の異なる調査結果同士の整合性の確認により,説明性の向上をはかること。	H断層系の分布	2019年4月12日 第704回審査会合	2019年12月20日 第817回審査会合
73	未固結~半固結で形成されたH断層系の断層面に認められる細粒物質の成因について考察すること。	H断層系の性状	2019年4月12日 第704回審査会合	2019年12月20日 第817回審査会合
74	大深度ボーリングに見られる地層の走向の深部方向への変化をH断層系と関連付けて説明するのであれば、H断 層系が分布する深度を踏まえたうえで、走向変化が深さ方向に続いていく現象について考察すること。	深部地質構造と H断層系	2019年4月12日 第704回審査会合	2019年12月20日 第817回審査会合
75	I断面の4つの大深度ボーリングにおいて深部に確認される主な開離型断層について, H断層と認定しなかった根拠を示すこと。	深部地質構造と H断層系	2019年4月12日 第704回審査会合	2019年12月20日 第817回審査会合
76	BF4地点のH-9断層の分布・連続性について,1孔の深度18m付近に見られる断層の評価等も含め詳細に説明すること。	日断層系の上載地 層による活動性評価	2019年4月12日 第704回審査会合	2019年12月20日 第817回審査会合
77	各節のまとめは、関連する検討結果を重要度に応じ網羅的に記載すること。	_	2019年4月12日 第704回審査会合	2019年12月20日 第817回審査会合

[和文]

- 阿部真郎,高橋明久,荻田茂,小松順一,森屋洋,吉松弘行(2006)「新第三紀層分布域における地震の震度と地すべりの地形・地質的特徴」『日本地すべり学会誌』
 43巻,第3号,pp.155-162。
- ・ 荒井晃作・岡村行信・池原研・芦寿一郎・徐垣・木下正高(2006)「浜松沖前弧斜面上部に発達する活断層とテクトニクス」 『地質学雑誌』第112巻, 第12号, pp.749-759。
- ・ 池谷仙之・堀江善裕(1982)「静岡県牧ノ原台地に発達する古谷層(上部更新統)の堆積環境」『第四紀研究』第21巻, 第2号, pp.75-93。
- ・ 井尻正二・藤田至則・陶山国男(1955)「"面なし断層" (Planeless Fault) 」『地球科学』第24号, pp.12-19。
- 今泉俊文・宮内崇裕・堤浩之・中田高(2018)『活断層詳細デジタルマップ 新編』東京大学出版会。
- ・ 岩松暉・横田修一郎(1989)「断層調査法 野外における断層のみかた -」『地学ハンドブックシリーズ 3』地学団体研究会, p.140。
- 大塚弥之助(1948)「活断層・休断層・癒着断層(又は死断層)」『科学』18巻, 10号, pp.457-458。
- ・ 長田敏明(1980)「静岡県牧ノ原台地の形成過程」『第四紀研究』第19巻, 第1号, pp.1-14。
- ・ 長田敏明(1998)「牧ノ原台地の地形と地質-東海地方中部における海水面と地表面の変動-」『地団研専報』第46号。
- 垣見俊弘(1965)「みんなの地質調査④断層とわれ目を測る」『地質ニュース』No.133, pp.44-54。
- ・ 垣見俊弘・平山次郎・影山邦夫(1966)「小断層から求めた三浦半島北部の造構的応力場」『地質学雑誌』第72巻, 第10号, pp.469-489。
- 活断層研究会(1991)『新編 日本の活断層 分布図と資料』東京大学出版会。
- ・ 金折裕司・宮腰勝義・角田隆彦・佐竹義典(1978)「断層粘土中の石英粒子の表面構造」『電力中央研究所報告 研究報告377011』。
- 狩野謙一·村田明広(1998),『構造地質学』朝倉書店, pp.156-169, 176-178。
- 狩野謙一・田中秀実・吉田智治・松井信治(1993)「赤石構造帯の形成過程 中新世における西南日本弧東部の地殻改変と関連して 」『地質学論集』第42号, pp.203-223。
- ・ 川村喜一郎, 金松敏也, 山田泰広(2017)「海底地すべりと災害-これまでの研究成果と現状の問題点-」『地質学雑誌』第123巻, 第12号, pp.999-1014。
- ・ 衣笠善博・垣見俊弘・平山次郎(1969)「房総半島東海岸の小断層」『地質調査所月報』Vol.20, No.1, pp.13-38。
- 木村敏雄(1984)『地質構造の科学』朝倉書店, pp.67-68,133-139,157-159。
- 木村敏雄・速水格・吉田鎮男(1993)『日本の地質』東京大学出版会。
- ・ 黒田啓介(1970),「古谷泥層の植物遺体」『静岡大学地学研究報告』第2巻, 第1号, pp.91-95。
- 国土技術政策総合研究所•土木研究所 (2006),「平成16年(2004年)新潟県中越地震土木施設災害調査報告」『国土技術政策総合研究所研究報告』第27号/『土 木研究所報告』第203号。
- ・ 国土地理院(1997),「4.中部・近畿地方の地殻ひずみ」『日本の地殻水平歪図』(http://www.gsi.go.jp/cais/HIZUMI-hizumi4.html)。
- ・ 齊藤隆・金森邦夫・熊谷誠(1991)「堆積盆地の分類と石油の所在」『石油技術協会誌』第56巻, 第1号, pp.16-27。
- ・ 産業技術総合研究所地質調査総合センター(2015)『20万分の1日本シームレス地質図』(https://gbank.gsj.jp/seamless/2d3d/)。
- ・ 下総台地研究グループ(2010)「茨城県南東部の更新統で確認された液状化-側方流動の痕跡と小断層群の形成」『地球科学』第64巻, 第4号, pp.149-158。
- ・ 小断層解析グループ(1973)「構造地質学ノート4 房総半島大多喜付近の小断層系」『地球科学』27巻, 5号, pp.180-187。
- ・ 杉山雄一・寒川旭・下川浩一・水野清秀(1988)『地域地質研究報告 5万分の1地質図幅 御前崎地域の地質』地質調査所。
- ・ 杉山雄一(1989)「島弧における帯状構造の屈曲とプレートの斜め沈み込み第2部 西南日本外帯の屈曲構造とプレート間相対運動の変遷 」『地質調査所月報』第40巻, 第10号, pp.543-564。

参考文献(2)

[和文]

- ・ 杉山雄一(1992)「西南日本前弧域の新生代テクトニクス―静岡地域のデータを中心にして―」『地質調査所月報』第43巻, 第1/2号, pp.91-112。
- ・ 杉山雄一・水野清秀・狩野謙一・村松武・松田時彦・石塚治・及川輝樹・高田亮・荒井晃作・岡村行信・実松健造・高橋正明・尾山洋一・駒澤正夫(2010)『20万分の1地 質図幅 静岡及び御前崎(第2版)』産業技術総合研究所地質調査総合センター。
- ・ 鈴木源啓(1972)「相良・掛川地方新第三系に発達する小断層群」『静岡地学』第22号, pp.31,32。
- 鈴木康弘(2010)「東海~四国沖の陸棚外縁活撓曲の再発見」『科学』Vol.80, No.8, pp.779-781。
- 高清水康博・酒井哲弥・増田富士雄(1996)「静岡県牧ノ原台地の上部更新統の堆積層と堆積シークェンス」『地質学雑誌』第102巻, 第10号, pp.879-893。
- ・ 高橋雅紀(2004)「日本列島のE-W短縮テクトニクスの原因とその開始時期」『日本地震学会2004年度秋季大会予稿集』B048。
- 田中元・山田琢
 ・横田修一郎・鈴木茂之(2007)「岡山県,成羽層群の小褶曲構造に規制された地すべりとその内部構造」『応用地質』第48巻,第5号, pp.232-240。
- 谷和夫・上田圭一・阿部信太郎・仲田洋文・林泰幸(1997)「野島地震断層で観察された未固結な表層地盤の変形構造」『土木学会論文集』No. 568/III-39, pp.21-39。
- 地学団体研究会(1996)『新版 地学事典』平凡社。
- ・ 土隆一(1960)「大井川下流地方第四系の地史学的考察」『地質学雑誌』第66巻, 第781号, pp.639-653。
- 照井一明・佐藤利美・茂庭隆彦(1993)「岩手県花巻市北西部で見いだされた活断層北湯口断層(新称)の新露頭について」『地質学雑誌』第99巻, 第2号, pp.145-148。
- ・ 中野俊・西来邦章・宝田晋治・星住英夫・石塚吉浩・伊藤順一・川辺禎久・及川輝樹・古川竜太・下司信夫・石塚治・山元孝広・岸本清行(2013)『200万分の1地質編集
 図 11.日本の火山(第3版)』産業技術総合研究所地質調査総合センター。
- ・ 日本地すべり学会(2013)『すべり面 地質的特徴と構造・物性 』pp.7-12,31。
- 日本地質学会(2006)『日本地方地質誌4 中部地方』朝倉書店, pp.422,423。
- ・ 野崎保(2008)「2007年新潟県中越沖地震による初生的岩盤地すべりと層面すべり」『日本地すべり学会誌』第45巻, 第1号, pp.72-77。
- 野崎保・永田秀尚・竹下秀敏(2015)「2008年岩手・宮城内陸地震による祭畤大橋右岸の初生岩盤地すべりと前駆現象」『応用地質』第56巻, 第4号, pp.149-156。
- 平田大二(2010)「日本列島20億年 謎解きの旅」『自然科学のとびら』第16巻, 2号, pp.12,13。
- ・ 山路敦(2001)「新しい小断層解析」『地質学雑誌』第107巻, 第7号, pp.461-479。
- ・ 山田英司・野田利弘・中井健太郎・浅岡顕(2019)「弾塑性力学に基づく正断層群の形成に関する数値シミュレーション」『日本地震学会2019年度秋季大会予稿集』S10-04。
- ・ 横田修一郎・永田秀尚・横山俊治・田近淳・野崎保(2015)『ノンテクトニック断層 識別方法と事例 』近未来社。
- ・ 横山俊治(1995)「和泉山地の和泉層群の斜面変動:岩盤クリープ構造解析による崩壊「場所」の予測に向けて」『地質学雑誌』第101巻, 第2号, pp.134-147。
- ・ 吉岡敏和(1989)「褶曲に伴う層面すべり断層」『活断層研究』7号, pp.5-12。
- 吉永佑一・原口強・遠田晋次・横田修一郎(2009)「火山体周辺に見られる隆起帯および火山性活断層の形成過程 鹿児島県新島を例にして 」『活断層研究』31号, pp.11-18。
- ・ 渡邉敦宏・中濱早苗(2013)「地すべり面が露頭した全国的にも類をみない大規模地すべり災害に挑む!」『国土交通省国土技術研究会論文集2013年度』pp.47-52。

[英文]

- Almagor, G. and Z. Garfunkel(1979), "Submarine slumping in continental margin of Israel and northern Sinai", The American Association of Petroleum Geologists Bulletin, Vol.63, No.3, pp.324-340.
- Brumbaugh, D. S.(1984), "Compressive strains generated by normal faulting", Geology, Vol.12, pp.491–494.
- Brun, J.-P. and P. Choukroune(1983), "Normal faulting, block tilting, and décollement in a stretched crust", Tectonics, Vol.2, No.4, pp.345-356.
- Burg J.-P.(2017), "EXTENSION SYSTEMS"(http://www.files.ethz.ch/structuralgeology/JPB/files/English/3extsyst.pdf)
- Burhannudinnur, M. and C. K. Morley(1997), "Anatomy of growth fault zones in poorly lithified sandstones and shales: implications for reservoir studies and seismic interpretation: part 1,outcrop study", Petroleum Geoscience, Vol.3, pp.211–224.
- Fossen, H.(2010), "Structural Geology", Cambridge University Press, UK, pp.333-351.
- Fossen, H.(2010), "Structural Geology", Cambridge University Press, UK, 457p.
- FOSSEN, H. and J. HESTHAMMER(1998), "Structural geology of the Gullfaks Field, northern North Sea", In: COWARD, M. P., T. S. DALTABAN, H. JOHNSON(eds) Structural Geology in Reservoir Characterization. Geological Society, London, Special Publications, Vol.127, pp.231-261.
- Fossen, H. and R. H. Gabrielsen(1996), "Experimental modeling of extensional fault systems by use of plaster", Journal of Structural Geology, Vol.18, No.5, pp.673-687.
- Hirono, T.(1998), "Paleostress reconstruction using the stress inversion method in the eastern Tokai district, central Japan", The Journal of the Geological Society of Japan(地質学雑誌), Vol.104, No.2, pp.137-142.
- Kaewkor, C., I. M. Watkinson, P. Burgess(2015)," Structural Style and Evolution of the Songkhla Basin, western Gulf of Thailand", GEOINDO, Conference Proceeding, November 23-24,
- Krumbein, W. C.(1941), "Measurement and geological significance of shape and roundness of sedimentary particles", Journal Sedimentary Petrology, Vol.11, No.2, pp.64-72.
- McClay, K. R. and P. G. Ellis(1987), "Geometries of extensional fault systems developed in model experiments", Geology, Vol.15, pp.341-344.
- Moore, G. F., B. B. Boston, M. Strasser, M. B. Underwood, and R. A. Ratliff(2015), "Evolution of tectono-sedimentary systems in the Kumano Basin, Nankai Trough forearc", Marine and Petroleum Geology, Vol.67, pp.604-616.
- Nollet, S., G. J. Kleine Vennekate, S. Giese, P. Vrolijk, J. L. Urai, and M. Ziegler(2012), "Localization patterns in sandbox-scale numerical experiments above a normal fault in basement", Journal of Structural Geology, Vol.39, pp.199-209.
- The University of Sydney, "The dynamics of continents and basins" (https://www.geosci.usyd.edu.au/users/prey/Teaching/Geos-3003/geos3003.html)
- University of Leeds(2009), "teaching resources in structural geology in the School of Earth Sciences of the University of Leeds" (https://www.see.leeds.ac.uk/structure/learnstructure/index.htm).
- UNIVERSITY OF LEEDS(2013),"Introduction to Structural Geology"(https://www.see.leeds.ac.uk/fileadmin/Documents/Admissions/Masters/step-up/Introduction_to_structural_geology_1.pdf).
- van der Zee, W. and J. L. Urai(2005), "Processes of normal fault evolution in a siliciclastic sequence: a case study from Miri, Sarawak, Malaysia", Journal of Structural Geology, Vol.27, Issue 12, pp.2281-2300.