

高浜発電所1~4号炉 津波警報が発表されない可能性のある津波への対応に係る 基準津波評価について

(参考資料)

2020年6月2日 関西電力株式会社

基準津波1~4の整理 (防潮ゲート閉止運用を考慮した計算結果)

【防潮ゲート閉止運用を考慮した場合の基準津波1~4の計算結果】

		水位上昇								水位下降			
波源モデル	取水路 防潮 ゲート	取水路 防潮 ゲート 前面	3,4 号炉 循環水 ポンプ室	1 号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3,4 号炉 海水 ポンプ室	放水口 前面	放水路 (奥)	1号炉 海水 ポンプ室	2 号炉 海水 ポンプ室	3,4 号炉 海水 ポンプ室		
福井県モデル(若狭海丘列付近断層)と 海底地すべりエリア B (Es-K5)の組み合わせ (78秒ずれ)	閉	5.5	1.3	1.2	1.1	1.7	5.3	6.2	_	_	_	基準津波1	
F O – A ~ F O – B ~ 熊川断層と 陸上地すべり(No.14)の組み合わせ (54秒ずれ)	開	2.2	2.5	2.2	2.2	2.5	2.7	2.7	-1.8 [%]	-1.8 [%]	-2.0 [%]	基準津波2	
海底地すべりエリアB (Es-K5) (Kinematic モデルによる方法)	開 (開→閉)	3.6 (4.0)	3.9 (2.1)	3.7 (1.6)	3.8 (1.5)	3.8 (2.3)	3.7 (3.7)	4.0 (4.0)	-3.6 (-1.9)	-3.7 (<mark>-2.0</mark>)	-3.7 (<mark>-2.8</mark>)	基準津波3	
海底地すべりエリアC (Es-T2) (Kinematicモデルによる方法)	開 (開→閉)	3.2 (3.3)	3.7 (1.4)	3.3 (1.1)	3.5 (1.1)	3.6 (1.5)	3.7 (3.7)	3.9 (3.9)	-2.4 (-1.8)	-2.5 (-1.9)	-2.8 (<mark>-2.8</mark>)	基準津波4	

数字はT.P.(m)、赤字は各評価点の最大値、カッコ内は潮位変動に基づくゲート閉止対策を考慮した値

※地盤変動量0.23m隆起

基準津波3,4について防潮ゲート閉止運用を考慮した津波水位計算を実施した結果(トリガーを0.5m/10分とした計算)を踏まえると、各評価点で最も影響が大きい波源は以下のとおりであった。

- | 水位上昇側の取水路防潮ゲート前面、放水口前面、放水路(奥) ⇒ 基準津波1
- Ⅰ 水位上昇側の各ポンプ室、水位下降側の1,2号炉海水ポンプ室 ⇒ 基準津波2
- 水位下降側の3,4号炉海水ポンプ室 ⇒ 基準津波3及び基準津波4

モデルの差異による基準津波選定への影響の確認

【評価条件、モデルの妥当性(1/4)】

●既許可時と今回申請時の基準津波評価の条件比較

		既許可時の基	今回申請時の基準津波評価 (警報なし津波のケース)			
津	取水路防潮ゲートの 開閉条件	閉 (第1波到達までに防潮ゲート が閉止されるケース)	開→閉 (第1波到達後に防潮ゲートを閉止)			
;波評価計算	取水路防潮ゲートのモデル化	ゲート開口幅を調	ゲート開口幅を実寸に設定			
21	取水口のモデル化	取水口ケーソン重量	取水ロケーソン重量コンクリートの 形状を反映			
	•					

既許可モデル

修正モデル

- Ø 警報なし津波については、津波による影響を適切に評価するため、運転状態及び現状の設備形状を踏まえ、既許可の計算モデル(以降、既許可モデルという)から一部条件を修正した計算モデル(以降、修正モデルという)を用いて申請を行っていた。
- Ø しかし、申請書の中で異なる計算モデルを使った津波評価を実施することにより、各基準津波の数値差異が妥当であるか 判別がつきにくい状態であったため、本資料の基準津波評価では計算モデルを既許可モデルに統一している。
- Ø ただし、モデルの差異による基準津波選定への影響を確認する。確認方法としては、基準津波1,2の波源及び既許可モデルで基準津波1,2に近い水位の波源について、修正モデルでの計算を実施し、修正モデルを用いた場合でも最高水位・最低水位となる波源が変わらないことを確認する。
- Ø また、海底地すべりエリアA~C (警報なし) について、修正モデルでの計算を実施し、修正モデルを用いた場合でも基準津波3,4を超える波源がないことを確認する。

【評価条件、モデルの妥当性(2/4)】

●既許可モデルによる計算結果

数字はT.P.(m)、赤字は各評価点の最大値、青字は各評価点の2~4位

【取水路防潮ゲート「閉」のケース】			取水路	水位上昇 水位上昇 水位下降										
	沥	と 源モデノ	L	防潮ゲート ^{※2}	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室
地震に	大陸棚外縁~	B~野坂	逐断層	閉	25.3	0.9	0.9	0.9	1.3	2.1	2.1	_	-	-
起因する津波	日本海東縁部	の波源		閉	-	-	_	_	-	-	_	-0.8	-0.7	-1.0
		-	Watts他の予測式	閉	0.6	0.6	0.6	0.6	0.6	0.6	0.6	-0.3	-0.3	-0.3
			Kinematicモデルによる方法	閉	2.0	1.0	1.0	1.0	1.0	1.6	1.8	-0.8	-0.8	-0.8
地震以外に			Watts他の予測式	閉	2.0	0.8	0.8	0.8	1.0	1.9	2.1	-0.7	-0.7	-0.8
起因する津波	海底地9へり	ΤΊΥΒ	Kinematicモデルによる方法	閉	4.1	1.2	1.1	④1.1	1.3	23.7	24.0	④-1.1	④-1.0	-1.1
			Watts他の予測式	閉	2.4	0.8	0.7	0.7	1.1	1.1	1.3	-0.5	-0.5	-0.8
		TUNC	Kinematicモデルによる方法	閉	3.3	1.1	1.1	@1.1	1.2	23.7	33.9	-0.9	-0.9	④-1.2
	福井県モデル	(若狭海	丘列付近断層)	閉	34.5	1.1	1.1	④1.1	1.4	(4)3.6	(4)3.8	-0.8	-0.8	-1.0
行政機関の	秋田県モデル	(日本海	東縁部の断層)	閉	44.4	31.7	31.7	31.7	31.7	2.9	3.0	3-1.4	3-1.4	3-1.6
波源モデルを			大すべり中央	閉	3.6	0.7	0.7	0.7	1.2	2.1	2.1	_	-	-
用いた津波	右狭海丘列付: 	近断僧	大すべり隣接LRR	閉	3.6	0.7	0.7	0.7	1.2	1.9	1.9	-	-	-
大すべり隣接LLR		閉	3.7	0.7	0.7	0.7	1.2	1.9	2.0	-	_	_		
基準津波1 福井県モデル(若狭海丘列付近断層)と 海底地すべり(エリアB, Kinematic)の組み合わせ(78秒ずれ)			閉	1)5.5	@1.3	@1.2	@1.1	31.7	15.3	<u>1</u> 6.2	_	_	_	
【取水路防薄	ポゲート「開」の	のケーフ	۲J	雨水敗				水位上昇					水位下降	
	波 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	友源モデル		防潮ゲート*2	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室
地震に 起因する津波	FO-A~FO-	- B ∼熊/	断層	開	2.0	②2.1	©1.9	②1.9	(1)2.5	2.7	2.8	①-1.9 ^{*3}	①-1.8 ^{**3}	①-2.0 ^{*3}
		No.1	, Watts他による方法	開	0.6	0.6	0.6	0.5	0.5	0.6	0.6	-0.1	-0.1	-0.1
		2,3	運動学的手法	開	0.7	0.8	0.7	0.7	0.8	2.1	2.1	-0.3	-0.3	-0.4
地震以外に	陸 ト 抽 すべ り	No 1	Watts他による方法	開	0.6	0.6	0.6	0.6	0.6	0.8	1.0	-0.1	-0.1	-0.1
起因する津波	PET-189/00	NO. 1	運動学的手法	開	0.6	0.6	0.6	0.6	0.6	1.5	1.4	-0.1	-0.1	-0.1
		No 1	Watts他による方法	開	1.0	1.1	0.9	1.0	1.0	0.6	0.6	-0.3	-0.4	-0.4
	INO.14 運動学的手法		開	1.1	1.2	1.0	1.0	1.0	0.6	0.7	-0.3	-0.4	-0.4	
陸上	2 ~熊川断層と 合わせ(54秒ずれ)	開	2.2	12.5	1)2.2	12.2	1)2.5	2.7	2.7	2-1.8 ^{**3}	①-1.8^{₩3}	①-2.0^{%3}		
※1:警報が発	※1: 警報が発表されない前提の計算条件による評価 ※2: 閉: 取水路防潮ゲート天端TP+8.5mで全閉、 開: 両系列のゲートが開いた状態(TP±0~+8.5mはカーテンウォールあり) ※3: 地盤変動量0.23m隆起													
Ø 既許可 Ø その結果	Ø 既許可モデルによる津波水位計算結果から、基準津波に比較的近い値になっているものとして各評価点における水位が全体の2~4位の波源を確認した。													

(Kinematicモデル)」、「福井県モデル(若狭海丘列付近断層)」、「秋田県モデル(日本海東縁部の断層)」を抽出した。

【評価条件、モデルの妥当性(3/4)】

●既許可モデルによる計算結果

数字は T.P.(m) 、赤字	Pは各評価点の最大値
------------------------	------------

【取水路防漳	取水路				水位上昇				水位下降				
	波源モデル	防潮 ゲート ^{※1}	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3 , 4 号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室	
地震に 起因する津波	大陸棚外縁~B~野坂断層	閉	5.3	0.9	0.9	0.9	1.3	2.1	2.1	-	_	-	
地震以外に	「海底地士でわ」エリアB Kinematicモデルによる方法	閉	4.1	1.2	1.1	1.1	1.3	3.7	4.0	-1.1	-1.0	-1.1	
起因する津波	海底地9 ^{ハリ} エリアC Kinematicモデルによる方法	閉	3.3	1.1	1.1	1.1	1.2	3.7	3.9	-0.9	-0.9	-1.2	
行政機関の	福井県モデル(若狭海丘列付近断層)	閉	4.5	1.1	1.1	1.1	1.4	3.6	3.8	-0.8	-0.8	-1.0	
波源モデルを 用いた津波	秋田県モデル(日本海東縁部の断層)	閉	4.4	1.7	1.7	1.7	1.7	2.9	3.0	-1.4	-1.4	-1.6	
基準溝 海底地す/	 渡近1 福井県モデル(若狭海丘列付近断層)と べり(エリア B, Kinematic)の組み合わせ(78 秒ずれ)	閉	5.5	1.3	1.2	1.1	1.7	5.3	6.2	-	-	-	
【取水路防薄	朝ゲート「開」のケース】	取水路		水位上昇							水位下降		
	波源モデル	防潮 ゲート ^{※1}	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3 , 4 号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室	
地震に 起因する津波	FO-A~FO-B~熊川断層	開	2.0	2.1	1.9	1.9	2.5	2.7	2.8	-1.9 ^{*2}	-1.8 ^{*2}	-2.0 ^{*2}	
基準津波2 FO-A~FO-B~熊川断層と 陸上地すべり(No.14)の組み合わせ(54秒ずわ)		開	2.2	2.5	2.2	2.2	2.5	2.7	2.7	-1.8 ^{%2}	-1.8 ^{%2}	-2.0 ^{**2}	

●修正モデルによる計算結果

数字はT.P.(m)、赤字は各評価点の最大値

【取水路防薄	取水路		水位上昇							水位下降				
	,	防潮 ゲート ^{※1}	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3 , 4 号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室		
地震に 起因する津波	大陸棚外縁~B~野坂断層			閉	4.5	0.8	0.7	0.7	1.0	2.1	2.1	-	-	-
地震以外に	海底地オベク	エリアB	Kinematicモデルによる方法	閉	3.9	0.9	0.9	0.8	1.0	3.7	4.0	-1.0	-1.0	-1.1
起因する津波	一海底地9八り	エリアC	Kinematic モデルによる方法	閉	3.2	0.8	0.8	0.8	0.9	3.7	3.9	-0.9	-0.9	-1.0
行政機関の	福井県モデル(若狭海丘	列付近断層)	閉	4.4	0.9	0.9	0.9	1.1	3.6	3.8	-0.8	-0.8	-1.0
波源モデルを 用いた津波	を秋田県モデル(日本海東縁部の断層)		「縁部の断層)	閉	4.4	1.5	1.5	1.5	1.5	2.9	3.0	-1.4	-1.4	-1.6
基準津波1 福井県モデル(若狭海丘列付近断層)と 海底地すべり(エリアB, Kinematic)の組み合わせ(78秒ずれ)			閉	5.4	0.9	0.9	0.9	1.3	5.3	6.2	-	-	-	
				雨水牧							マムて肉			

【取水路防潮ケートI開」のケーム】 波源モデル						小位下阵					
		取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3 , 4 号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1 号炉 海水ポンプ室	2号炉 海水ポンプ室	3,4号炉 海水ポンプ室
地震に 起因する津波 FO -A~FO-B~熊川断層	開	1.8	2.0	1.8	1.8	2.1	2.7	2.8	-1.7 ^{**} 2	-1.6^{**2}	-1.9 ^{**} 2
基準津波2 FO-A~FO-B~熊川断層と 陸上地すべり(No.14)の組み合わせ(54秒ずれ)		2.1	2.3	2.0	2.0	2.2	2.7	2.7	-1.6 ^{%2}	-1.6 ^{**2}	-1.9 ^{**2}

※1:閉:取水路防潮ゲート天端TP+8.5mで全閉、開:両系列のゲートが開いた状態(TP±0~+8.5mはカーテンウォールあり) ※2:地盤変動量0.23m隆起

Ø 既許可モデル及び修正モデルによる計算結果の比較では、各評価点において最高水位・最低水位となる波源は同じであった。したがって、モデルの差異は基準 津波の選定には影響しない。

Ø ただし、モデルによって水位評価結果に差異が生じることから、修正モデルの影響については入力津波の検討において考慮する。

【評価条件、モデルの妥当性(4/4)】

●既許可モデルによる計算結果

数字はT.P.(m)、赤字は各評価点の最大値

	波源モデル			取水路				水位下降						
				防潮 ゲート ^{※2}	取水路防潮 ゲート前面	3,4号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3,4号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1号炉 海水ポンプ室	2 号炉 海水ポンプ室	3 , 4 号炉 海水ポンプ室
		Watts他の予測式		開	0.6	0.6	0.6	0.6	0.6	0.6	0.6	-0.5	-0.6	-1.1
		Kinematicモデルによる方法		開	2.0	2.3	2.1	2.2	2.6	1.6	1.8	-1.2	-1.4	-2.2
海底地すべり	T U ZD	Watts他の予測式		開	2.2	2.5	2.3	2.4	2.5	1.9	2.1	-1.4	-1.5	-2.1
海底地9八5	толр	Kinematicモデルによる方法	基準津波3	開	3.6	3.9	3.7	3.8	3.8	3.7	4.0	-3.6	-3.7	-3.7
		Watts他の予測式		開	1.4	1.8	1.4	1.6	1.8	1.1	1.4	-1.3	-1.4	-2.2
	LUPC	Kinematicモデルによる方法	基準津波4	開	3.2	3.7	3.3	3.5	3.6	3.7	3.9	-2.4	-2.5	-2.8

●修正モデルによる計算結果

数字はT.P.(m)、赤字は各評価点の最大値

波源モデル			取水路	水位上昇							水位下降			
			防潮 ゲート ^{※2}	取水路防潮 ゲート前面	3 , 4 号炉 循環水ポンプ室	1 号炉 海水ポンプ室	2 号炉 海水ポンプ室	3 , 4号炉 海水ポンプ室	放水口 前面	放水路 (奥)	1号炉 海水ポンプ室	2 号炉 海水ポンプ室	3 , 4 号炉 海水ポンプ室	
		Watts他の予測式		開	0.6	0.6	0.6	0.6	0.6	0.6	0.6	-1.0	-1.1	-1.7
		Kinematicモデルによる方法		開	1.9	2.2	1.9	2.0	2.3	1.6	1.8	-1.6	-1.7	-2.4
海底地すべり	TU 3 D	Watts他の予測式		開	2.0	2.3	2.1	2.2	2.3	1.9	2.2	-1.7	-1.8	-2.5
海底地 9 八 9	толр	Kinematic モデルによる方法	基準津波3	開	3.4	3.7	3.2	3.3	3.8	3.7	4.0	-3.3	-3.4	-3.5
		Watts他の予測式		開	1.3	1.6	1.3	1.4	1.7	1.1	1.4	-1.5	-1.6	-2.2
	LUPC	Kinematicモデルによる方法	基準津波4	開	2.9	3.3	2.8	3.0	3.4	3.7	3.9	-2.2	-2.3	-3.1

※1:閉:取水路防潮ゲート天端TP+8.5mで全閉、開:両系列のゲートが開いた状態(TP±0~+8.5mはカーテンウォールあり)

Ø 既許可モデル及び修正モデルによる計算結果の比較では、各評価点において基準津波3,4を超える波源はなかった。したがって、モデルの差異は基準津波3,4の選定には影響しない。

Ø ただし、モデルによって水位評価結果に差異が生じることから、修正モデルの影響については入力津波の検討において考慮する。

海底地すべり地形の評価

第314回審査会合資料 資料1-4-2、P64再掲

若狭湾周辺海域の文献調査結果(海底地質図)

Ø 旧地質調査所(現(独)産業技術総合研究所・地質調査総合センタ−)が作成した海底地質図[※]では、隠岐トラフ付近に広範囲に海底地すべり跡と考えられる地形(崩落崖)が示されている。
 Ø その他の海域には、海底地すべりを示唆するような崩落崖等は図示されていない。

第847回審查会合 資料1-2 P3 再揭 10

Ø 表層堆積図によると、隠岐トラフ周辺には海底地すべりを示唆する層相(層相5,6及び7)が図示されている。
 Ø その他の海域には、海底地すべりを示唆する層相は図示されていない。

層相区分の考え方

1

2

3

4

5

6

7

8

第314回審査会合資料

資料1-4-2、P66再揭

層相1 (凹凸強反射海底面) Facies 1 <single distinct (rough bottom)>

【層相の凡例】

層相2 (平滑強反射海底面) Facies 2 (single distinct (smooth bottom))

層相3 (厚層成層) Facies 3 <stratified (thick-bedded)>

⊢	 -		-
_	 		
⊢	 		_
_	 		_
⊢	 		-
	 		_
	 	_	_

層相4 (密成層) Facies 4 <stratified (thin-bedded)>

層相5 (ブロック状) Facies 5 <stratified (blocky)>

層相6 (大双曲線状) Facies 6 <large hyperbolic>

大陸棚外縁

最表層の堆積層の等層厚線と欠如する地域(層相3)(単位,m) Isopach and area lacking the uppermost sediment layer

Shallower limit of survey lines

層相4,6及び8は、本図幅内には分布しない Facies 4, 6 and 8 are not distributed in this map area

【層相の区分詳細および特徴】 (池原他(1990)※から抜粋)

Table 1. Classification and characteristics of eight acoustic facies. * See text for description.

FACIES	ACOUSTIC CHARACTERS (combination of sea floor and internal reflector pattern*)	SEDIMENTS	INTERPRETATION	DISTRIBUTION
DISTINCT -single & rough	Strong bottom return, no or very poor internal return, rough bottom. (A&III)	Gravelly, rocky	Gravelly or rocky bottom	Oki Ridge N of Dogo
DISTINCT -single & smooth	Strong bottom return, no or very poor internal return, smooth bottom. (B&III)	Sandy	Sandy bottom	Oki Ridge Wakasa Sea Knoll Chain
STRATIFIED -thick-bedded	Internal reflectors continuous and underformed, stratified, smooth bottom. (B&I)	Muddy (clayey silt- silty clay) massive	Muddy bottom -hemipelagic	Marginal terrace
STRATIFIED -thin-bedded	Internal reflectors continuous and undeformed, finely stratified, smooth bottom. (B&I)	Muddy tephra and/or sand layers interbedded	Muddy bottom -hemipelagic, (turbidite)	Central part of SW Trough most of NE Trough
STRATIFIED -blocky	Internal reflectors essentially continuous and undeformed, stratified, basal shear surface reflectors, smooth bottom, stepped topography. (B&I)	Muddy massive	Muddy bottom -slide, (hemipelagic)	Edge of marginal terrace
HYPERBOLIC -large	Sea floor reflectors largely hyperbolic or irregular and prolonged, internal reflectors poorly observed. (D&III)	Muddy massive	Muddy bottom -slump	Lower part of slope
HYPERBOLIC -small	Sea floor and/or internal reflectors hyperbolic or irregular and prolonged, mounded or lens-shaped, blunt distal termInation. (C&I,II)	Muddy occurrence of mud clasts	Muddy bottom -debris flow	SW Trough
TRANSPARENT	No or very poor internal reflectors, lens or mounded-shaped or layered. (B&II)	Muddy occurence of mud clasts massive	Muddy bottom -debris flow, hemipelagic	SW Trough

※:池原研・佐藤幹夫・山本博文(1990):高分解能音波探査記録からみた隠岐トラフの堆積作用, 地質学雑誌, 96巻, pp.37-49.

第847回審查会合 資料1-2 P5 再揭 12

若狭湾周辺海域における海底地形

若狭湾周辺海域では、隠岐トラフ周辺に多数の海底地すべり地形が認められるものの、それ以外の海域には海底地すべりが疑われる地形は認められなかった。

●海底地すべり地形変化の算出(エリアA Es-G101) 地すべり地形を通る複数の海上音波探査記録から、崩壊部・堆積部の幅、長さ、 標高等を判読し、海底地形変化量分布図を作成した。 高浜発電所 23. K-56 -120 K-54 07 100: 崩壊部長さ 崩壊部幅 60:1 (3.9km) (4.0km) K-52 07:00 崩壞部頂点 15 03 (水深957m, 深さ37m) 崩壊部頂点から堆積部 10. 頂点までの長さ (5.9km) 崩壞堆積 約0.2km³ 堆積部頂点6.4 (水深1108m, 厚さ 05:15 12m) 03 5 km 07:15 4 -8W 0 1.45

※測線は代表例

第847回審査会合 資料1-2 P9 再揭 16

第847回審查会合 資料1-2 P10 再揭 17

第847回審査会合 資料1-2 P11 再掲 18

第847回審査会合 19 資料1-2 P12 再掲

※測線は代表例

※測線は代表例

第847回審査会合 21 資料1-2 P14 再掲

