建物・構築物及び機器・配管系の構造(耐震性) に関する説明書 1. 耐震設計基本方針

目 次

1.	概要	2
2.	耐震設計の基本方針	2
3.	設計用地震力	3
4.	機能維持の基本方針	3
5	耐震計算の基本方針	5

1. 概要

本資料は、「再処理施設の技術基準に関する規則」(以下「再処理技術基準規則」という。)の第六条の一項及び二項に照らして、廃止措置段階にある東海再処理施設 高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)の耐震設計について、地震による損傷の防止のために求められる性能を維持できることを説明するための方針を示すものである。

※ 原子力規制委員会より示された「国立研究開発法人日本原子力研究開発機構 核燃料サイクル工学研究所(再処理施設)の廃止措置計画の認可の審査に関する考え方」 (平成29年4月)においては「再処理施設の性能に係る技術基準に関する規則」に 照らして審査するものとされているが、改正法第3条の施行の日(令和2年4月1日)から廃止措置計画の認可は再処理技術基準規則に従うこととされているため、 本資料では従来までの性能維持基準規則を再処理技術基準規則で読み替える。

2. 耐震設計の基本方針

2.1 基本方針

高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)において高放射性 廃液の崩壊熱除去機能および閉じ込め機能にかかわる設備は,廃止措置計画用設計地 震動 Ss による地震力に対して,その耐震安全性を確認した上で,建家及び事故対処 設備の健全性を維持できるよう廃止措置段階に応じた措置を行う。

(1) 高放射性廃液の崩壊熱除去機能および閉じ込め機能にかかわる設備については、 廃止措置計画用設計地震動による地震力に対してその安全機能が損なわれるお それがないように設計する。

建物・構築物については、構造物全体として変形能力に対して十分な余裕を 有するように設計する。

建物・構築物のうち構築物(洞道)は、構造部材の曲げについては限界層間 変形角または曲げ耐力、構造部材のせん断についてはせん断耐力に対して妥当 な安全余裕を持たせる設計とする。

機器・配管系については、塑性ひずみが生じる場合であっても、その量が小さなレベルにとどまって破断延性限界に十分な余裕を有し、その施設の機能を保持できるように設計する。

(2) 高放射性廃液の崩壊熱除去機能および閉じ込め機能にかかわる設備に対して、 その他の設備の地震による損傷等により波及的影響が生じないように設計する。

3. 設計用地震力

3.1 地震力の算定法

高放射性廃液の崩壊熱除去機能および閉じ込め機能にかかわる設備の耐震設計に 用いる表 4.2 に示す動的地震力の算定は以下のとおりとする。

- (1) 廃止措置計画用設計地震動による地震力は、廃止措置計画用設計地震動を用いて、水平2方向及び鉛直方向について適切に組み合わせたものとして算定する。
- (2) 廃止措置計画用設計地震動による地震力の算定に当たっては、地震応答解析手法の適用性及び適用限界等を考慮の上、適切な解析法を選定するとともに、十分な調査に基づく適切な解析条件を設定する。
- (3) 地震力の算定過程において建物・構築物の設置位置等で評価される入力地震動 については、解放基盤表面からの地震波の伝播特性を適切に考慮するとともに、 必要に応じて地盤の非線形応答に関する動的変形特性を考慮する。

表 4.2 高放射性廃液の崩壊熱除去機能および閉じ込め機能にかかわる 設備の設計に用いる地震力

項目	動的地震力		
模 日	水平	鉛直	
建物・構築物	Kh (Ss) (1)	K _v (Ss) (2)	
機器・配管系	Kh (Ss) (1)	K _v (Ss) (2)	

- (1) Kh (Ss) は、水平方向の廃止措置計画用設計地震動 Ss に基づく水平地震力。
- (2) K_v(Ss) は、鉛直方向の廃止措置計画用設計地震動 Ss に基づく鉛直地震力。

4. 機能維持の基本方針

高放射性廃液の崩壊熱除去機能および閉じ込め機能にかかわる設備の安全機能維持は,設計用地震動に対して,施設の構造強度の確保を基本とする。

4.1 構造強度

設計用地震動に伴う地震力による荷重と地震力以外の荷重の組合せを適切に考慮 した上で、構造強度を確保する設計とする。また、変位及び変形に対し、設計上考慮 する。

(1) 荷重の種類

- a. 建物, 構築物
 - (a) 建物、構築物のおかれている状態にかかわらず常時作用している荷重
 - (b) 地震力

- b. 機器·配管系
 - (a) 運転時の状態で施設に作用する荷重
 - (b) 地震力

(2) 荷重の組合せ

地震力と他の荷重との組合せは以下による。

a. 建物・構築物 常時作用している荷重と地震力を組み合わせる。

b. 機器・配管系 運転時の状態で施設に作用する荷重と地震力を組み合わせる。

- c. 荷重の組合せ上の留意事項
 - (a) 動的地震力については、水平 2 方向と鉛直方向の地震力とを適切に組み合わせて影響検討を行うものとする。
 - (b) ある荷重の組合せ状態での評価が、その他の荷重の組合せ状態での評価より明らかに厳しいことが判明している場合には、その他の荷重の組合せ状態での評価は行わない。
 - (c) 高放射性廃液の崩壊熱除去機能および閉じ込め機能にかかわる設備を支持する建物・構築物の当該部分の支持機能を確認する場合においては,設計用地震力と,常時作用している荷重,運転時に施設に作用する荷重及びその他必要な荷重とを組み合わせる。

(3) 許容限界

各施設の地震力と他の荷重とを組み合わせた状態に対する許容限界は次のと おりとし、JEAG4601 等の安全上適切と認められる規格及び基準又は試験等で妥当 性が確認されている値を用いる。

- a. 建物·構築物
 - (a) 廃止措置計画用設計地震動による地震力との組合せに対する許容限界

建物・構築物が構造物全体としての変形能力(終局耐力時の変形)に対して十分な余裕を有し、終局耐力に対して、妥当な安全余裕をもたせることとする。また、終局耐力は、建物・構築物に対する荷重又は応力を漸次増大していくとき、その変形又はひずみが著しく増加するに至る限界の最大耐力とし、既往の実験式に基づき適切に定めるものとする。

建物・構築物のうち構築物(洞道)は、構造部材のせん断についてはせん 断耐力に対して妥当な安全余裕をもたせるものとする。

当該施設を支持する建物・構築物の支持機能が損なわれないことを確認する際の地震動は、支持される施設に適用される地震動とする。

b. 機器·配管系

(a) 廃止措置計画用設計地震動による地震力との組合せに対する許容限界 塑性ひずみが生じる場合であっても、その量が小さなレベルに留まって破 断延性限界に十分な余裕を有し、その施設に要求される機能に影響を及ぼさ ないような応力、荷重等とすること。

c. 基礎地盤の支持性能

(a) 廃止措置計画用設計地震動による地震力との組合せに対する許容限界接地圧が,安全上適切と認められる規格及び基準による地盤の極限支持力度に対して妥当な余裕を有していること。

5. 耐震計算の基本方針

前述の耐震設計方針に基づいて設計した施設について、耐震計算を行うに当たり、既設工認で実績があり、かつ、最新の知見に照らしても妥当な手法及び条件を用いることを基本とする。一方、最新の知見を適用する場合は、その妥当性と適用可能性を確認した上で適用する。

耐震計算における動的地震力の水平方向及び鉛直方向の組合せについては、水平1方向及び鉛直方向地震力の組合せで実施した上で、その計算結果に基づき水平2方向及び鉛直方向地震力の組合せが耐震性に及ぼす影響を評価する。

5. 1 建物·構築物

建物・構築物の評価は、「4. 機能維持の基本方針」で示す荷重条件に対して構造物全体としての変形能力(終局耐力時の変形)が「4. 機能維持の基本方針」で示す許容限界内にあることを確認すること(解析による設計)により行う。

評価手法は構造材の非線形特性を扱うことのできる時刻歴応答解析法を用いることとし、JEAG4601 に基づき実施することを基本とする。また、評価に当たっては材料物性の不確かさを適切に考慮する。

5. 2 機器・配管系

機器・配管系の評価は、「4. 設計用地震力」で示す設計用地震力による適切な応力解析に基づいた地震応力と、組み合わすべき他の荷重による応力との組合せ応力が「5. 機能維持の基本方針」で示す許容限界内にあることを確認すること(解析による設計)により行う。許容限界は廃止措置計画用設計地震動により荷重を受ける構造の一部が降伏し、塑性変形する場合においても、過大な変形、き裂、破損等が生じてその設備の機能に影響を及ぼすことがなく、かつ変形後に想定される繰り返し応力範囲に対して塑性変形が進展しないもの(シェイクダウン範囲)として設定する。

評価手法は,以下に示す解析法により JEAG4601 に基づき実施することを基本とし,

その他の手法を適用する場合は適用性を確認の上適用することとする。なお、時刻歴 応答解析法及び応答スペクトルモーダル解析法を用いる場合は材料物性の不確かさ を適切に考慮する。また、剛性の高い機器・配管の静的解析に用いる震度は設置床面 の最大応答加速度(ZPA)を1.2倍した値を用いる。ここで剛性が高いとは、機器・ 配管の一次固有振動数が20Hz以上のものをいう。

- ・応答スペクトルモーダル解析法
- 時刻歷応答解析法
- ・定式化された評価式を用いた解析法(静的解析)

2.	高放射性廃液貯蔵場	(HAW 施設)	建家の地震応答計算書	

目 次

1.	概要	. 2
2.	一般事項	. 9
	2.1 位置	. 9
	2.2 構造概要	10
	2.3 評価方針	16
	2.4 準拠規格・基準	17
	2.5 使用材料	17
3.	入力地震動	18
	3.1 水平方向の入力地震動	18
	3.2 鉛直方向の入力地震動	28
4.	解析モデル	33
	4.1 水平方向の解析モデル	33
	4.2 鉛直方向の解析モデル	43
5.	解析結果	46
	5.1 固有値解析結果	46
	5.2 地震応答解析結果	56
6.	基礎浮き上がりの検討	63
7	評価結果 · · · · · · · · · · · · · · · · · · ·	65

1. 概要

本資料は、廃止措置計画用設計地震動(Ss)に対して、高放射性廃液貯蔵場(HAW)(以下「HAW 施設」という)が耐震余裕を有することを説明するものである。

廃止措置計画用設計地震動は、令和2年2月10日付け原規規発第2002103号をもって認可された「国立研究開発法人日本原子力研究開発機構 核燃料サイクル工学研究所再処理施設に係る廃止措置計画変更認可申請書」において策定した敷地の解放基盤表面における水平成分及び鉛直成分の地震動とする。策定した廃止措置計画用設計地震動の応答スペクトルを図1-1から図1-3に、時刻歴波形を図1-4から図1-6に示す。解放基盤表面は、S波速度が0.7 km/s以上であるT.P. **-303 m(G.L. -309 m)とする。

※T.P.:東京湾平均海面

廃止措置計画用設計地震動 Ss-D廃止措置計画用設計地震動 Ss-D廃止措置計画用設計地震動 Ss-2

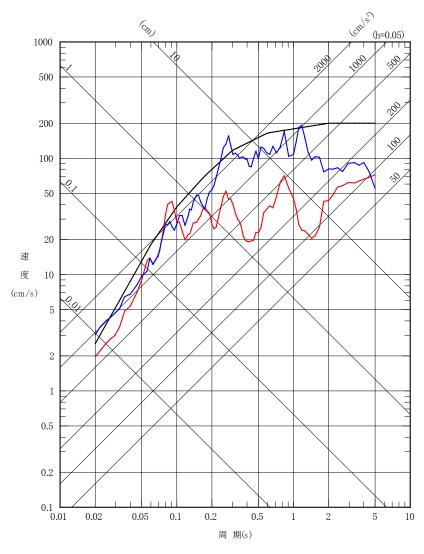


図 1-1 廃止措置計画用設計地震動(Ss)の応答スペクトル(NS 成分)

廃止措置計画用設計地震動 Ss-D 廃止措置計画用設計地震動 Ss-1 廃止措置計画用設計地震動 Ss-2

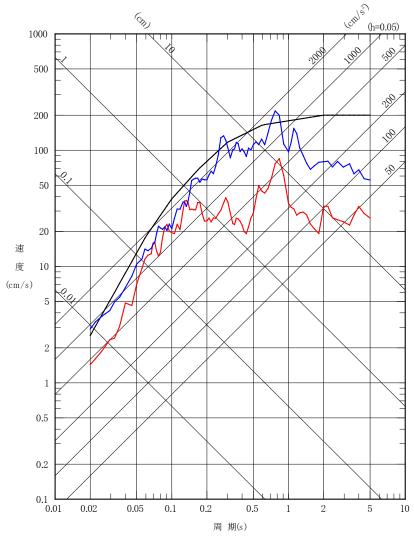


図 1-2 廃止措置計画用設計地震動(Ss)の応答スペクトル(EW 成分)

廃止措置計画用設計地震動 Ss-D 廃止措置計画用設計地震動 Ss-D 廃止措置計画用設計地震動 Ss-1 廃止措置計画用設計地震動 Ss-2

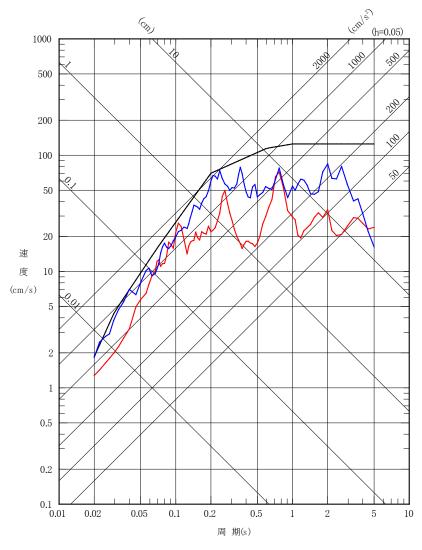
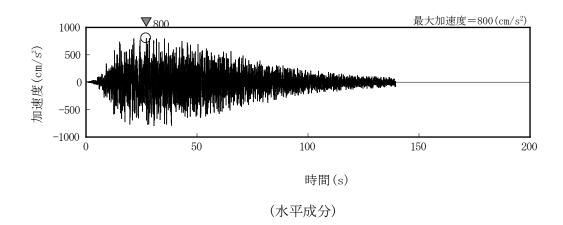



図 1-3 廃止措置計画用設計地震動(Ss)の応答スペクトル(UD 成分)

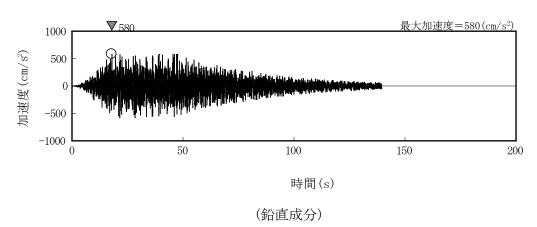
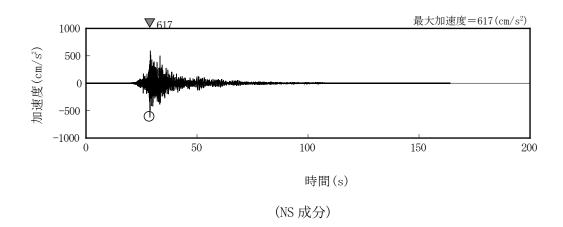
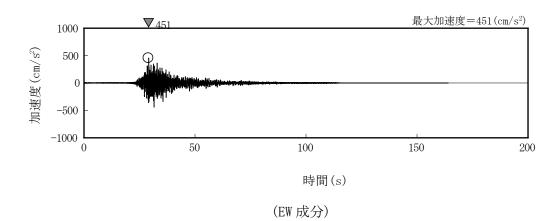




図 1-4 廃止措置計画用設計地震動(Ss-D)の時刻歴波形

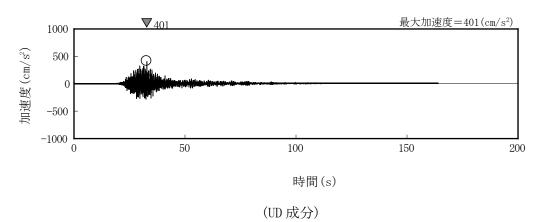
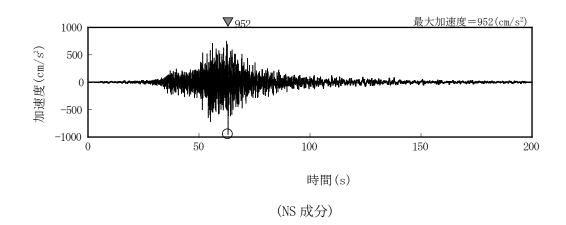
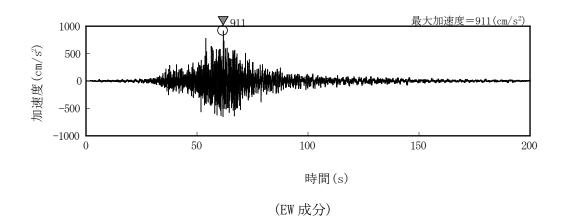




図 1-5 廃止措置計画用設計地震動(Ss-1)の時刻歴波形

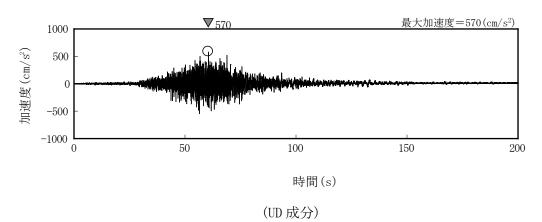


図 1-6 廃止措置計画用設計地震動(Ss-2)の時刻歴波形

2. 一般事項

2.1 位置

HAW 施設の位置を図 2-1 に示す。プラントノースと磁北方向の角度差は,35.7°である。

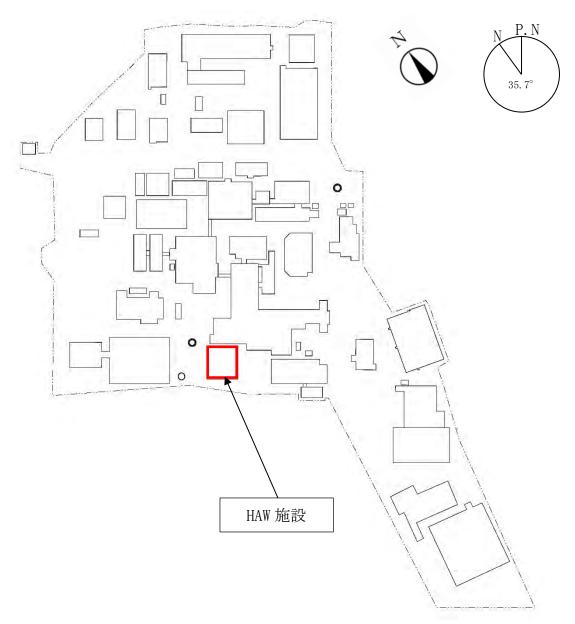


図 2-1 HAW 施設の位置

2.2 構造概要	
HAW 施設は,平面形状が	のほぼ正方形を成しており、地上高
地下海	の鉄筋コンクリート造の建家である。
基礎は、べた基礎とし、支持.	也盤である新第三系鮮新統の久米層に設置されている。
HAW 施設周辺において,地盤	による拘束効果を高めるため,支持地盤の深さまで地盤改
良を宝施する	

建家の代表的な平面図及び断面図を図 2-2 から図 2-5 に,支持地盤(久米層)の等高線図及び断面図を図 2-6 及び図 2-7 に,HAW 施設周辺の地盤改良範囲を図 2-8 に示す。

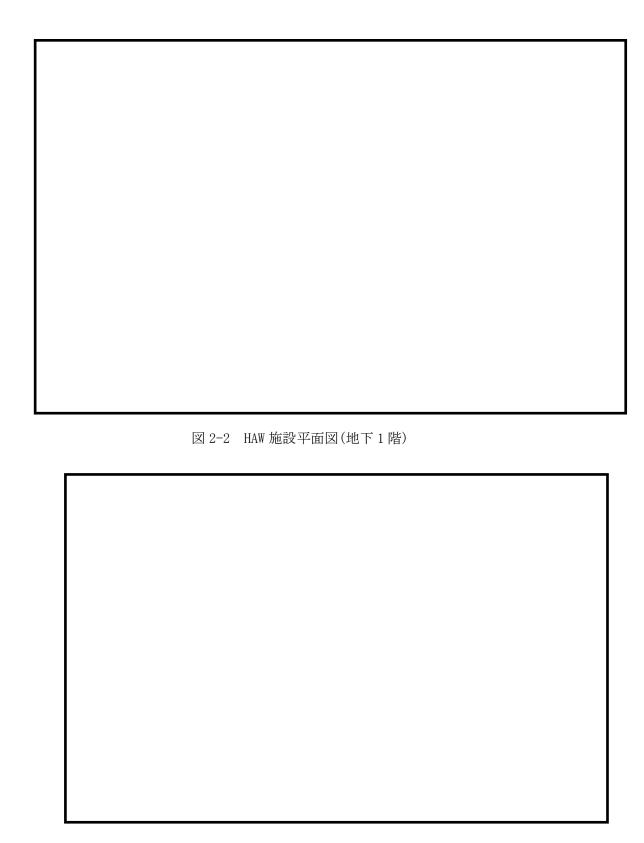


図 2-3 HAW 施設平面図 (4 階)

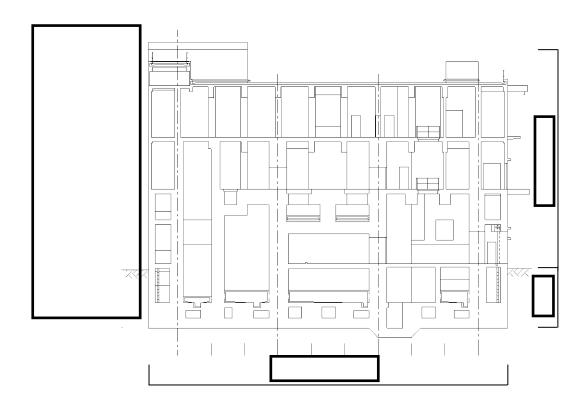


図 2-4 HAW 施設断面図(NS 断面)

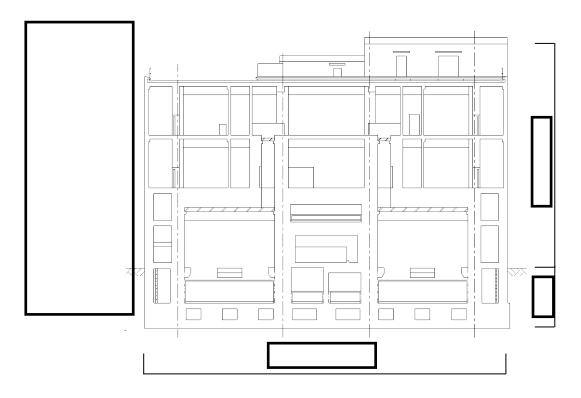


図 2-5 HAW 施設断面図(EW 断面)

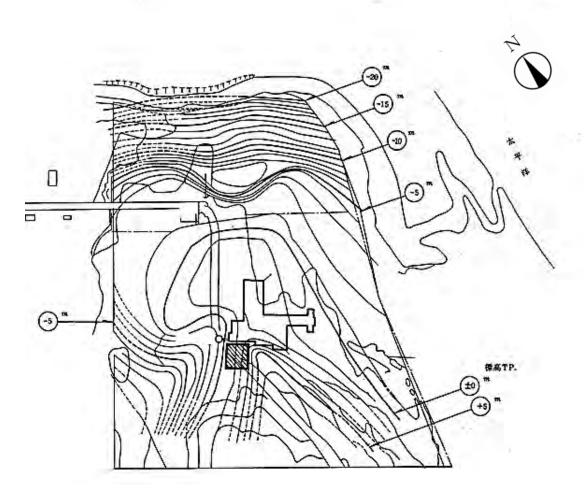


図 2-6 支持地盤(久米層)の等高線図

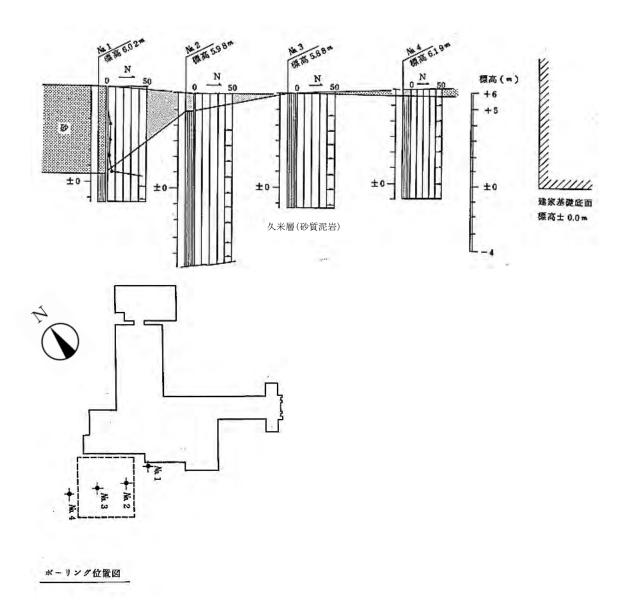


図 2-7 支持層(久米層)の断面図

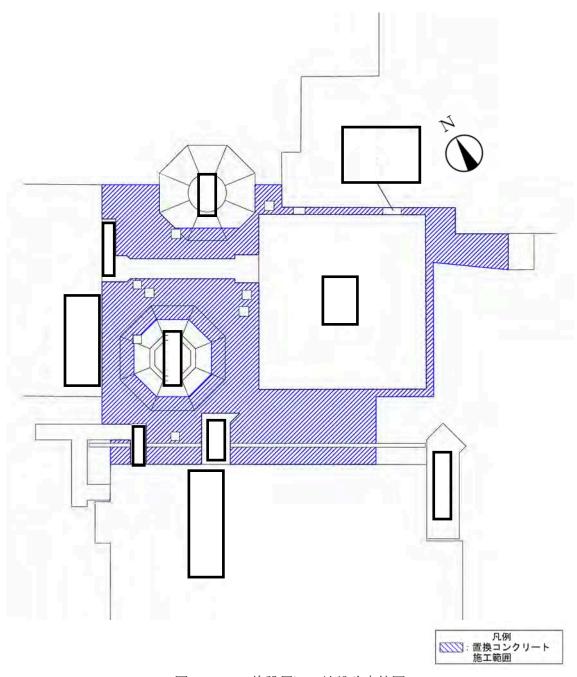


図 2-8 HAW 施設周辺の地盤改良範囲

2.3 評価方針

HAW 施設の評価は、廃止措置計画用設計地震動(Ss)による地震応答解析の結果に基づき 実施する。

地震応答解析は、建物・構築物の形状、構造特性等を考慮した質点系の解析モデルを水平(NS, EW)方向及び鉛直(UD)方向ごとに設定し実施する。

評価は、耐震壁に生じるせん断ひずみ及び接地圧を算出し、評価基準値を超えないことを確認する。

なお、接地率を算出し、基礎浮き上がりの評価法の適用範囲内であることを確認する。 地震応答解析による応答値は、建物・構築物及び機器・配管系の耐震評価における入力 地震動又は入力地震力として用いる。

HAW 施設の評価フローを図 2-9 に示す。

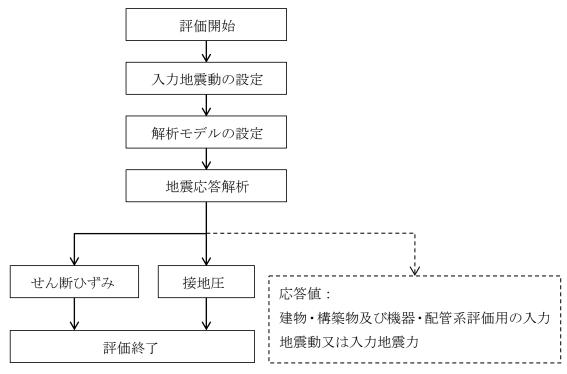


図 2-9 HAW 施設の評価フロー

2.4 準拠規格·基準

HAW 施設の地震応答解析において、準拠する規格・基準等を以下に示す。

- · 建築基準法 · 同施行令
- · 原子力発電所耐震設計技術指針 JEAG4601(日本電気協会)
- · 原子力発電所耐震設計技術規程 JEAC4601(日本電気協会)
- ・ 鉄筋コンクリート構造計算規準・同解説(日本建築学会)
- 建築基礎構造設計指針(日本建築学会)

2.5 使用材料

地震応答解析に用いるコンクリートの材料定数を表 2-1 に示す。

表 2-1 コンクリートの材料定数

 社在	設計基準強度	ヤング係数	ポアソン比	
対象	Fc (N/mm ²)	E (N/mm²)	ν	
建家	20.6	2.15×10^4	0. 2	

3. 入力地震動

3.1 水平方向の入力地震動

水平方向の入力地震動は、廃止措置計画用設計地震動(Ss)を解放基盤表面に入力して 一次元波動論により算定した建家の基礎底面及び側面地盤ばね位置での応答波とする。 廃止措置計画用設計地震動のうち、NS 及び EW 方向で個別の地震動が定義されている Ss-1 及び Ss-2 については、解放基盤表面への入力前に建家座標系に方位変換する。

算定に用いる地盤モデルは、当該敷地の地層等を考慮して設定された水平成層地盤と し、等価線形化法により地盤の非線形性を考慮する。

水平方向の入力地震動算定の概要を図 3-1 に、地盤の物性値を表 3-1 に、動せん断弾性係数及び減衰定数のひずみ依存性を図 3-2 に示す。入力地震動の算定に使用する解析コードは「DYNEQ*」である。

廃止措置計画用設計地震動(Ss)による地盤の地震応答解析結果を図 3-3 から図 3-7 に, 建家の基礎底面位置における水平方向の入力地震動の加速度時刻歴波形及び加速度応答 スペクトルを図 3-8 から図 3-10 に示す。

※吉田望(2008): DYNEQ A computer program for DYNamic response analysis of level ground by EQuivalent linear method, 東北学院大学工学部

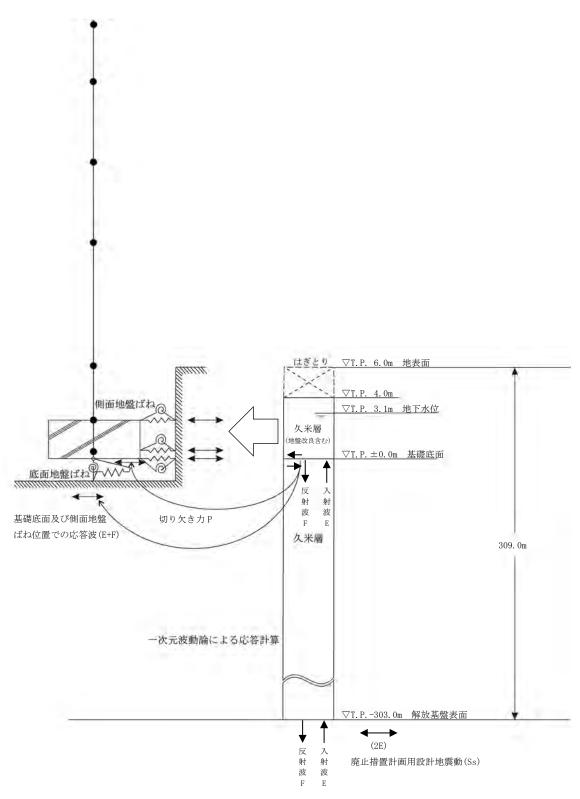
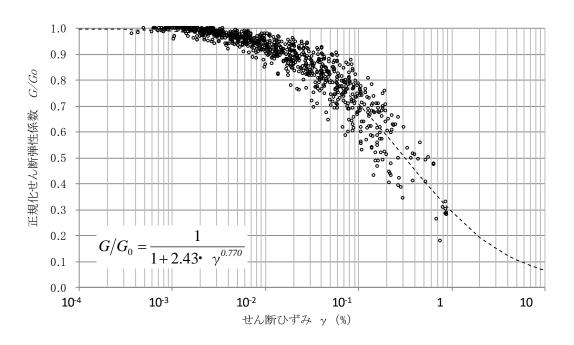



図 3-1 入力地震動算定の概要(水平方向)

表 3-1 地盤の物性値

標高 T.P.(m)	地層名	地層分類	湿潤密度 ρ _t (g/cm³)	動ポア ソン比 ν _d	動せん断 弾性係数 G ₀ (MN/m ²)
4. 0					
3. 1	1 0 0 0 0 0 0 0	Km1 [*]	1.77	0.455	426
0.0		Km1 [*]	1.77	0.455	426
-10.0		Km1	1.77	0.455	426
-62. 0		Km2	1. 77	0.451	466
-92.0		Km3	1.77	0.447	515
-118.0		Km4	1.77	0.444	549
-169.0		Km5	1.77	0.440	596
-215.0		Km6	1. 77	0.436	655
-261.0		Km7	1.77	0.431	711
-303.0		Km8	1.77	0.426	764
	解放基盤	L Z	1.77	0.417	867

[※]建家周辺の地盤 $(T. P. +4.0 \sim \pm 0.0 \text{ m})$ について,Km1 以上の動せん断弾性係数 G_0 を持つコンクリート(設計基準強度 18 N/mm^2)で地盤を改良するため,当該層を Km1 でモデル化している。

(a) 動せん断弾性係数

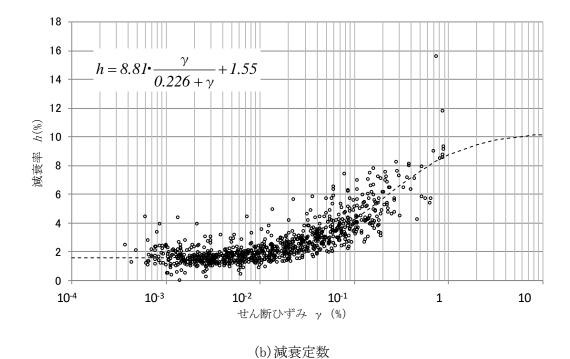


図 3-2 動 い が 断弾性係数及び減衰定数のひずみ依存性(久米層)

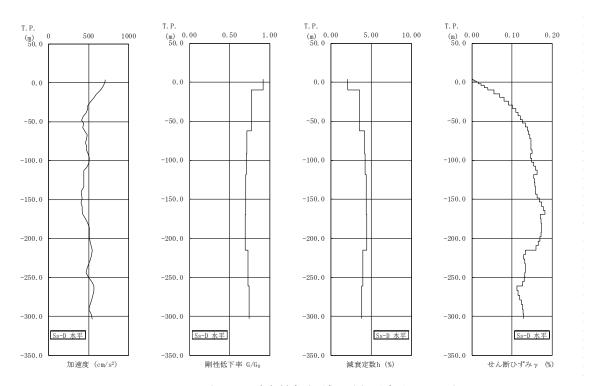


図 3-3 地盤の地震応答解析結果(水平方向, Ss-D)

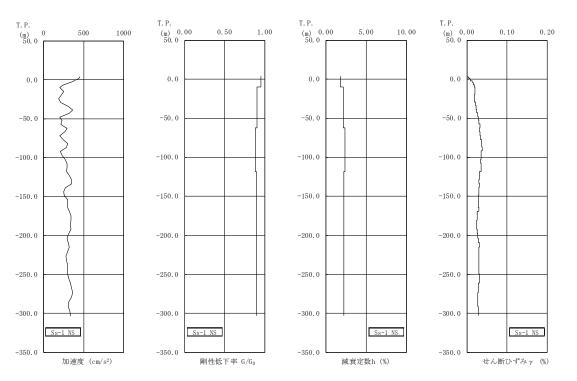


図 3-4 地盤の地震応答解析結果(NS 方向, Ss-1)

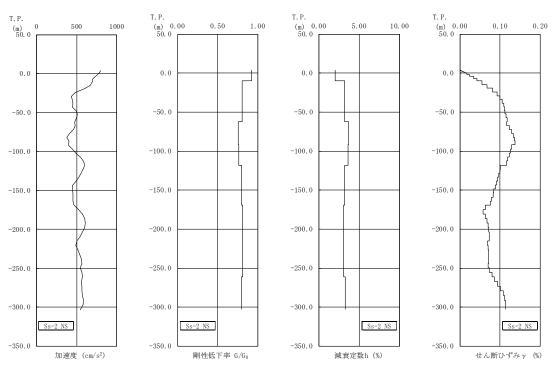


図 3-5 地盤の地震応答解析結果(NS 方向, Ss-2)

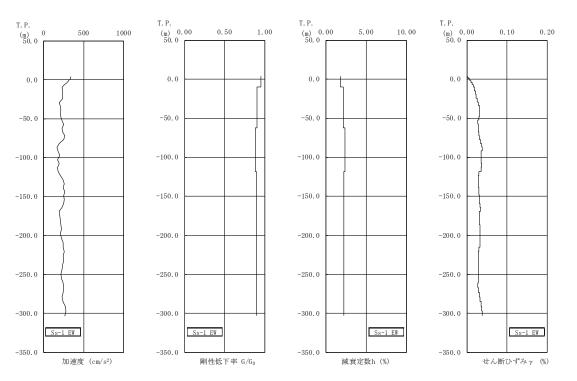


図 3-6 地盤の地震応答解析結果(EW 方向, Ss-1)

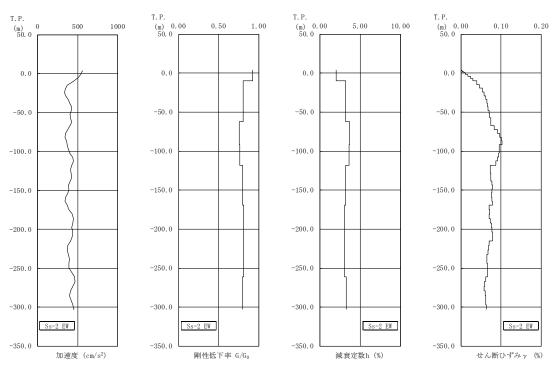
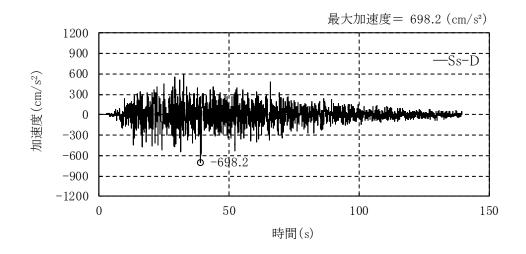
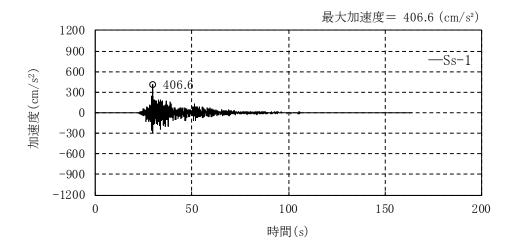




図 3-7 地盤の地震応答解析結果(EW 方向, Ss-2)

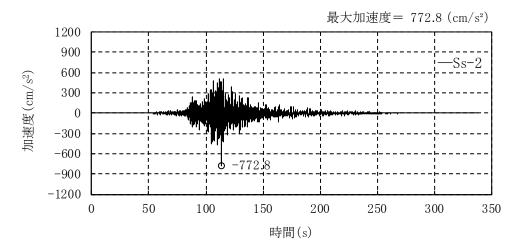
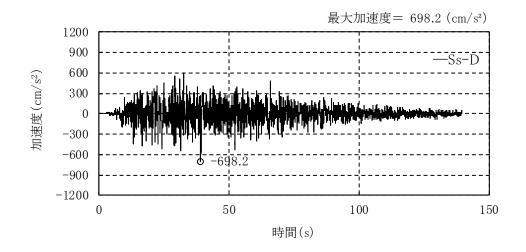
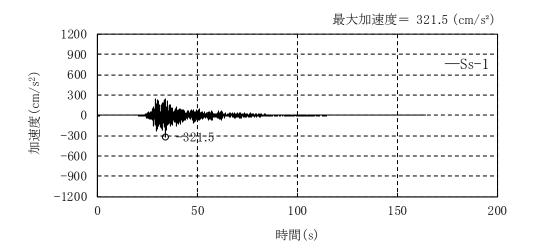




図 3-8 入力地震動の加速度時刻歴波形(NS 方向, Ss, 基礎底面位置)

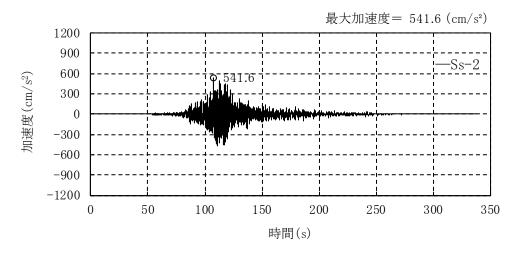
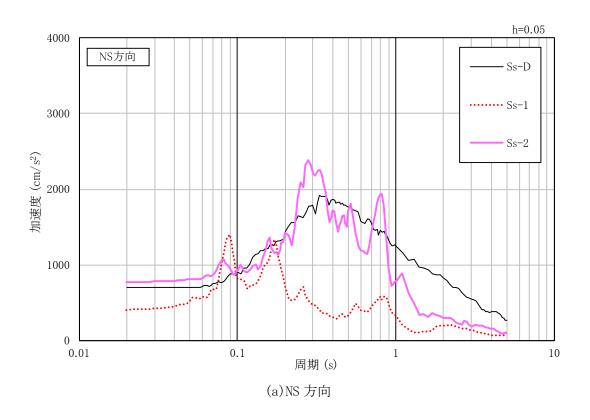



図 3-9 入力地震動の加速度時刻歴波形(EW 方向, Ss, 基礎底面位置)

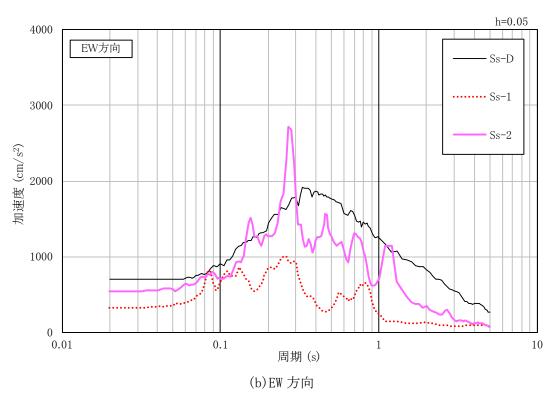


図 3-10 入力地震動の加速度応答スペクトル(水平方向, Ss, 基礎底面位置)

3.2 鉛直方向の入力地震動

鉛直方向の入力地震動は,廃止措置計画用設計地震動(Ss)を解放基盤表面に入力して 一次元波動論により算定した建家の基礎底面位置での応答波とする。

算定に用いる地盤モデルは、水平方向の入力地震動の算定において設定された物性値に基づき、基礎底面位置より上部を剥ぎ取った地盤モデルとする。

鉛直方向の入力地震動算定の概要を図 3-11 に示す。入力地震動の算定に使用する解析コードは「DYNEQ^{**}」である。

廃止措置計画用設計地震動(Ss)による地盤の地震応答解析結果を図 3-12 に、建家の基礎底面位置における鉛直方向の入力地震動の加速度時刻歴波形及び加速度応答スペクトルを図 3-13 及び図 3-14 に示す。

※吉田望(2008): DYNEQ A computer program for DYNamic response analysis of level ground by EQuivalent linear method, 東北学院大学工学部

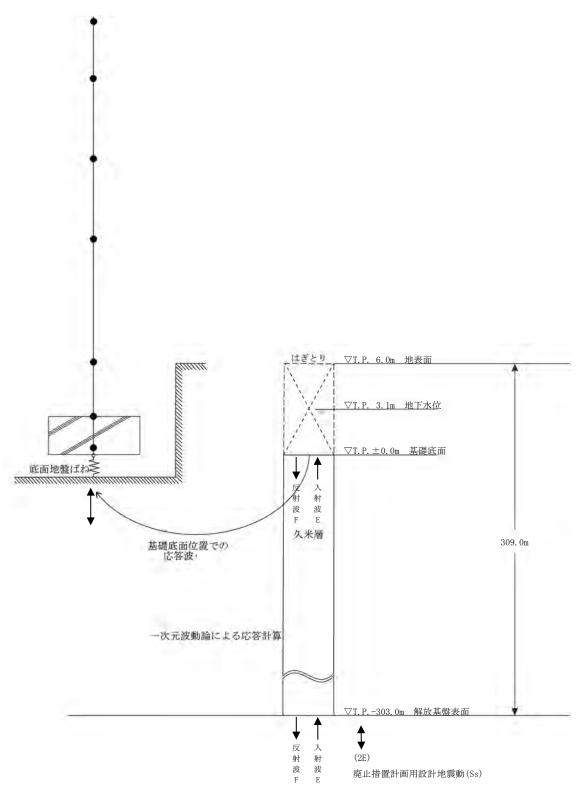


図 3-11 入力地震動算定の概要(鉛直方向)

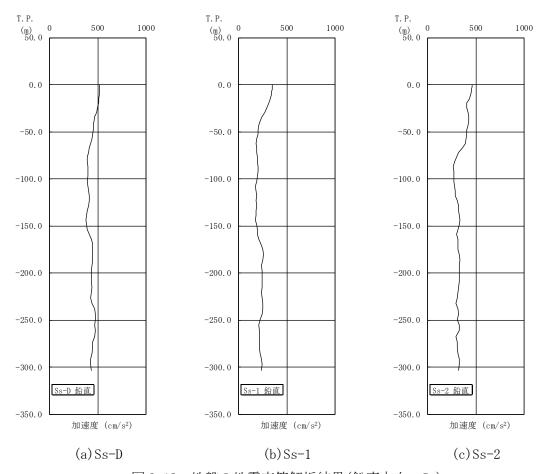
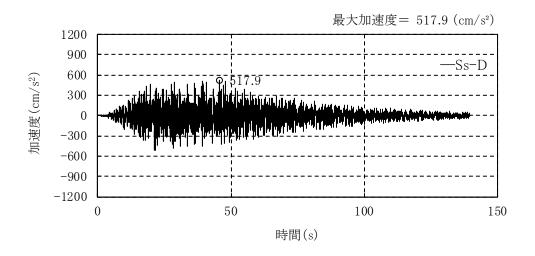
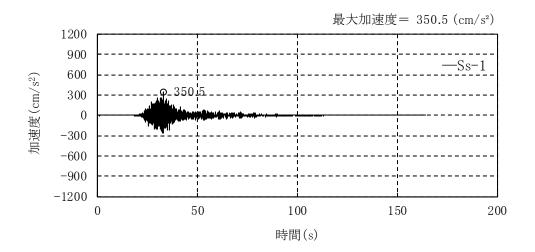




図 3-12 地盤の地震応答解析結果(鉛直方向, Ss)

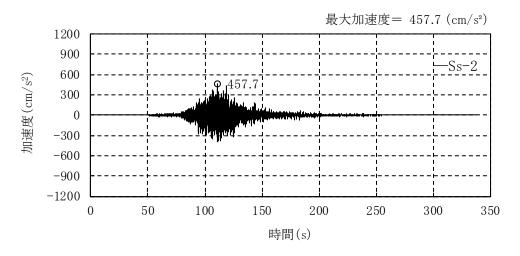


図 3-13 入力地震動の加速度時刻歴波形(鉛直方向, Ss, 基礎底面位置)

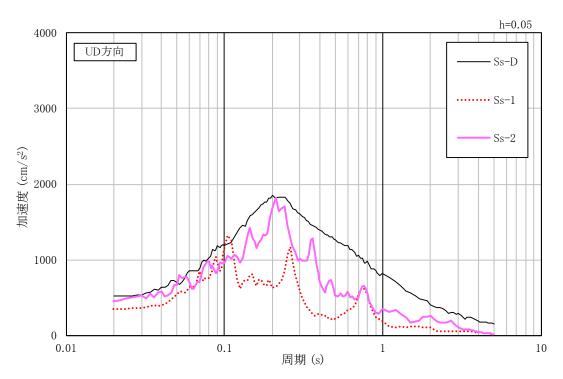


図 3-14 入力地震動の加速度応答スペクトル(鉛直方向, Ss, 基礎底面位置)

4. 解析モデル

4.1 水平方向の解析モデル

水平方向の解析モデルは、建家と地盤の相互作用を考慮した曲げせん断型の多質点系モデルとする。

水平方向の解析モデルを図4-1に、解析モデルの諸元を表4-1及び表4-2に示す。

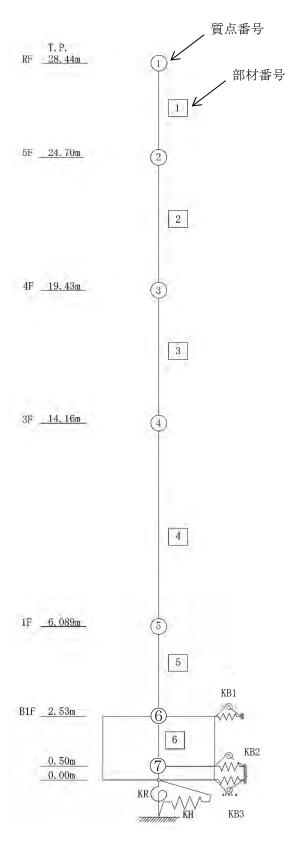
耐震壁のせん断の復元力特性は、図4-2に示すトリリニア型のスケルトンカーブとし、履歴特性は最大点指向型とする。曲げの復元力特性は、図4-3に示すトリリニア型のスケルトンカーブとし、履歴特性はディグレイディングトリリニア型とする。せん断及び曲げのスケルトンカーブを表4-3から表4-6に示す。

基礎下の底面地盤ばねは、JEAG4601-1991 追補版に基づき、振動アドミッタンス理論により算定する。底面地盤ばねの評価に使用する解析コードは「ADMITK(株式会社構造計画研究所)」である。また、埋め込み部分の側面地盤ばねは、Novakの方法により算定する。側面地盤ばねの評価に使用する解析コードは「K-NOVAK(株式会社構造計画研究所)」である。

地盤ばね定数及び減衰係数を表 4-7 及び表 4-8 に、地盤ばね定数及び減衰係数と理論解との関係を図 4-4 に示す。

建家の減衰はモード減衰として与え、各次のモード減衰定数は建家各部のひずみエネルギーに比例した値として算定する。建家の減衰定数は3%(鉄筋コンクリート部分)とする。

建家の地震応答解析に使用する解析コードは「RESP-F3T(株式会社構造計画研究所)」である。



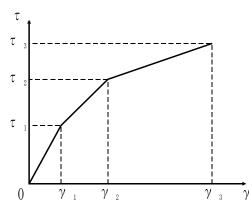

図 4-1 解析モデル(水平方向)

表 4-1 解析モデルの諸元(NS 方向)

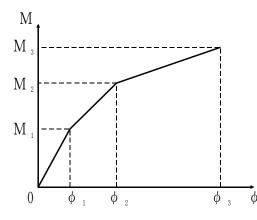
質点 番号	高さ T.P.(m)	重量 (kN)	回転慣性 重量 (×10 ² kN·m ²)	部材番号	せん断 断面積 (m²)	断面二次 モーメント (m ⁴)
1	28. 44	4154.6	4712	_		
_			1112	1	4. 5	27
2	24. 70	36046. 5	40490			
				2	65. 2	6290
3	19. 43	51038. 2	57700			
				3	87. 1	8730
4	14. 16	121100.8	137800			
				4	212. 5	22330
5	6. 089	79292. 5	90780			
				5	212. 5	20650
6	2. 53	72321. 2	81070			
				6	790. 6	92910
7	0. 50	31655. 0	35390	<u> </u>		-
-				_		

表 4-2 解析モデルの諸元(EW 方向)

F						
質点 番号	高さ T.P.(m)	重量 (kN)	回転慣性 重量 (×10 ² kN·m ²)	部材番号	せん断 断面積 (m²)	断面二次 モーメント (m ⁴)
	20.44	4154.0	1000	_		
1	28. 44	4154.6	4328			
				1	5. 5	79
2	24. 70	36046.5	36830			
				2	39. 9	3850
3	19. 43	51038. 2	52510			
J	10. 10	01000.2	02010	3	93. 2	6650
				3	93. 4	0000
4	14. 16	121100.8	125500			
				4	208.8	19550
5	6. 089	79292.5	82800			
				5	229.8	18020
6	2. 53	72321. 2	72670	Ŭ	220.0	10020
U	۷. ۵۵	14341.4	73670			00050
				6	830. 9	92670
7	0.50	31655.0	32220	_		

τ1:第一折点のせん断応力度

τ 2: 第二折点のせん断応力度


τ 3:終局点のせん断応力度

γ」: 第一折点のせん断ひずみ

γ2: 第二折点のせん断ひずみ

γ3:終局点のせん断ひずみ

図 4-2 せん断のスケルトンカーブ $(\tau - \gamma)$ 関係)

M ,: 第一折点の曲げモーメント

M₂: 第二折点の 曲げモーメント

M₃:終局点の曲げモーメント

φ 1: 第一折点の曲率

φ 2: 第二折点の曲率

φ 3:終局点の曲率

図 4-3 曲げのスケルトンカーブ $(M-\phi$ 関係)

表 4-3 せん断のスケルトンカーブ(τ-γ関係, NS 方向)

部材	τ 1	γ 1	τ 2	γ 2	τ 3	γ 3
番号	(N/mm^2)	$(\times 10^{-3})$	(N/mm^2)	$(\times 10^{-3})$	(N/mm^2)	$(\times 10^{-3})$
1	1. 57	0. 175	2. 12	0. 525	4. 15	4. 00
2	1. 57	0. 175	2. 12	0. 526	4. 63	4. 00
3	1.65	0. 184	2. 23	0. 551	4.83	4. 00
4	1.66	0. 185	2. 24	0. 554	4. 25	4. 00
5	1.72	0. 192	2. 33	0. 576	4. 27	4. 00

表 4-4 曲げのスケルトンカーブ(M-φ関係, NS 方向)

部材	M_1	φ 1	M_2	φ ₂	M_3	Ф 3
番号	$(\times 10^5 \text{ kN} \cdot \text{m})$	$(\times 10^{-5} \ 1/\text{m})$	$(\times 10^6 \text{ kN} \cdot \text{m})$	$(\times 10^{-5} \text{ 1/m})$	$(\times 10^6 \text{ kN} \cdot \text{m})$	$(\times 10^{-3} \ 1/\text{m})$
1	0. 165	2.83	0.0401	26. 3	0.0610	5. 27
2	8. 54	0.630	1. 64	6. 21	2. 48	1. 24
3	12. 9	0. 683	2. 93	6. 62	4. 45	1. 18
4	33. 2	0. 689	6. 95	6. 41	10. 4	1. 22
5	32.8	0. 736	7. 48	6. 55	10.6	1. 02

表 4-5 せん断のスケルトンカーブ(τ-γ関係, EW 方向)

部材	τ 1	γ 1	τ 2	γ 2	τ 3	γ 3
番号	(N/mm^2)	$(\times 10^{-3})$	(N/mm^2)	$(\times 10^{-3})$	(N/mm^2)	$(\times 10^{-3})$
1	1. 57	0. 175	2. 12	0. 525	4. 55	4. 00
2	1. 57	0. 175	2. 12	0. 526	4. 70	4. 00
3	1.65	0. 184	2. 23	0. 551	5. 01	4. 00
4	1.66	0. 185	2. 24	0. 554	4. 27	4. 00
5	1.72	0. 192	2. 33	0. 576	4. 24	4. 00

表 4-6 曲げのスケルトンカーブ(M-φ関係, EW 方向)

部材	M_1	φ 1	M_2	φ ₂	M_3	Ф 3
番号	$(\times 10^5 \text{ kN} \cdot \text{m})$	$(\times 10^{-5} \ 1/\text{m})$	$(\times 10^6 \text{ kN} \cdot \text{m})$	$(\times 10^{-5} \text{ 1/m})$	$(\times 10^6 \text{ kN} \cdot \text{m})$	$(\times 10^{-3} \ 1/\text{m})$
1	0. 321	1.89	0.0742	17. 0	0. 107	3. 41
2	5. 53	0. 667	1. 31	6. 76	1. 91	1. 35
3	10. 4	0. 724	2. 84	7. 43	5. 01	0. 931
4	30. 7	0. 730	6. 42	6.85	9. 47	1. 29
5	30. 3	0. 780	7. 01	7.06	9. 99	1. 05

表 4-7 地盤ばね定数及び減衰係数(NS 方向, Ss)

		地盤ばね	Į.	ばね定数 K	減衰係数 C
地震動				(水平: kN/m)	(水平:kN·s/m)
	位置	成分	記号	(回転:kN·m/rad)	(回転:kN·m·s/rad)
			KB1	4.177×10^6	4.922×10^{5}
		水平	KB2	2.126×10^6	2.506×10^{5}
	側面		KB3	4.202×10^5	4.952×10^4
Ss-D	測囬		KB1	1.235×10^9	4.354×10^7
SS−D		回転	KB2	6.286×10^8	2.216×10^7
			KB3	1.242×10^8	4.380×10^{6}
	底面	水平	KH	3.942×10^7	1.016×10^6
		回転	KR	1.620×10^{10}	1.134×10^{8}
			KB1	4.327×10^6	5.013×10^5
		水平	KB2	2.203×10^6	2.552×10^{5}
	側面		KB3	4.353×10^5	5.043×10^4
Ss-1	側側		KB1	1.279×10^9	4.468×10^7
3S-1		回転	KB2	6.512×10^8	2.275×10^7
			KB3	1.287×10^{8}	4.495×10^6
	皮盂	水平	KH	4.427×10^7	1.076×10^6
	底面	回転	KR	1.820×10^{10}	1.184×10^{8}
			KB1	4.199×10^6	4.936×10^{5}
		水平	KB2	2.137×10^6	2.513×10^{5}
	加云		KB3	4.224×10^5	4.966×10^4
	側面		KB1	1.241×10^9	4.380×10^7
Ss-2		回転	KB2	6. 318×10 ⁸	2.230×10^{7}
			KB3	1.249×10^{8}	4.406×10^6
	虎巫	水平	KH	4.066×10^7	1.032×10^6
	底面	回転	KR	1.671×10^{10}	1.148×10^8

表 4-8 地盤ばね定数及び減衰係数(EW 方向, Ss)

		地盤ばね	ļ	ばね定数 K	減衰係数 C
地震動				(水平: kN/m)	(水平:kN·s/m)
	位置	成分	記号	(回転:kN·m/rad)	(回転:kN·m·s/rad)
			KB1	4.177×10^6	4.923×10^{5}
		水平	KB2	2.126×10^6	2.506×10^{5}
	側面		КВ3	4.202×10^5	4.952×10^4
Ss-D	側側		KB1	1.235×10^9	4.341×10^7
3S-D		回転	KB2	6.286×10^8	2.210×10^7
			КВ3	1.242×10^8	4.368×10^6
	底面	水平	KH	3.960×10^7	1.025×10^6
		回転	KR	1.514×10^{10}	1.001×10^{8}
			KB1	4.327×10^6	5.013×10^5
		水平	KB2	2.203×10^6	2.552×10^{5}
	側面		KB3	4.353×10^5	5.044×10^4
Ss-1	側側		KB1	1.279×10^9	4.456×10^7
5S-1		回転	KB2	6. 512×10 ⁸	2.268×10^7
			КВ3	1.287×10^8	4.483×10^{6}
	底面	水平	KH	4.445×10^7	1.085×10^6
		回転	KR	1.700×10^{10}	1.045×10^{8}
			KB1	4.199×10^6	4.937×10^{5}
		水平	KB2	2.137×10^6	2.513×10^{5}
	/ml zz		KB3	4.224×10^5	4.967×10^4
	側面		KB1	1.241×10^9	4.364×10^7
Ss-2		回転	KB2	6. 318×10 ⁸	2.222×10^7
			KB3	1.249×10^{8}	4.391×10^{6}
	卢玉	水平	KH	4.084×10^7	1.041×10^6
	底面	回転	KR	1.561×10^{10}	1.011×10^{8}

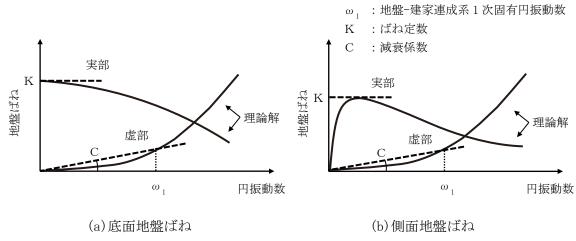


図 4-4 地盤ばね定数及び減衰係数と理論解との関係

4.2 鉛直方向の解析モデル

鉛直方向の解析モデルは、建家と地盤の相互作用を考慮した多質点系モデルとする。 建家部分は質点を鉛直方向のばねで連結しモデル化する。

なお、建家の埋め込み部分は考慮しないモデルとする。

鉛直方向の解析モデルを図 4-5 に、解析モデルの諸元を表 4-9 に示す。

基礎下の底面地盤ばねは、JEAG4601-1991 追補版に基づき、振動アドミッタンス理論により算定する。底面地盤ばねの評価に使用する解析コードは「ADMITK(株式会社構造計画研究所)」である。

地盤ばね定数及び減衰係数を表 4-10 に示す。

建家の減衰はモード減衰として与え、各次のモード減衰定数は建家各部のひずみエネルギーに比例した値として算出する。建家の減衰定数は3%(鉄筋コンクリート部分)とする。

建家の地震応答解析に使用する解析コードは「RESP-F3T(株式会社構造計画研究所)」である。

図 4-5 解析モデル(鉛直方向)

表 4-9 解析モデルの諸元(鉛直方向)

質点 番号	高さ T.P. (m)	重量 (kN)	部材番号	軸断面積 (m²)
1	28. 44	4154.6	_	
			1	11. 9
2	24. 70	36046.5		
			2	114. 2
3	19. 43	51038. 2		
			3	172.8
4	14. 16	121100.8		
			4	387.8
5	6. 089	79292.5		
			5	415. 4
6	2. 53	72321.2		
7	0.50	21.055 0	6	1130. 9
7	0.50	31655.0	_	

表 4-10 地盤ばね定数及び減衰係数(鉛直方向, Ss)

地震動		地盤ばね		ばね定数 K	減衰係数 C
地長期	位置	成分	記号	(kN/m)	(kN⋅s/m)
Ss-D	底面	鉛直	KV	5.819×10^7	2.234×10^6
Ss-1	底面	鉛直	KV	6.769×10^7	2.403×10^6
Ss-2	底面	鉛直	KV	6.089×10^7	2.283×10^6

5. 解析結果

5.1 固有値解析結果

解析モデルの固有値解析結果を表 5-1 から表 5-3 に示す。刺激関数を Ss-D の結果を代表として,図 5-1 から図 5-6 に示す。

表 5-1 固有値解析結果(Ss-D)

方向	次数	固有周期	振動数	刺激係数	備考
	2 -32 -	(s)	(Hz)	, , , , , , , , , , , , , , , , , , , ,	,,,,
	1	0. 242	4. 14	1. 477	全体1次
	2	0. 119	8. 38	-0.625	
	3	0. 106	9. 40	0. 202	
NS	4	0. 049	20. 37	-0.038	
	5	0.042	24. 08	0. 114	
	6	0. 037	26. 80	-0.054	
	7	0.030	33. 77	0.012	
	1	0. 244	4. 10	1. 485	全体1次
	2	0. 114	8. 76	-0. 573	
	3	0.065	15. 48	0. 087	
EW	4	0.052	19. 19	0.009	
	5	0.043	23. 36	0.039	
	6	0.034	29. 27	0.039	
	7	0.031	32. 27	-0.048	
	1	0. 169	5. 93	1. 053	全体1次
	2	0. 028	36. 32	-0.081	
	3	0. 017	58. 05	0.048	
UD	4	0.014	69. 69	-0.022	
	5	0.011	91. 54	0.002	
	6	0.008	126. 58	-0.005	
	7	0.003	371.96	0.002	

表 5-2 固有値解析結果(Ss-1)

方向	次数	固有周期	振動数	刺激係数	備考
>3 1. 3	5732	(s)	(Hz)	717000 10130	Un C
	1	0. 231	4. 32	1. 493	全体1次
	2	0. 117	8. 53	-0. 551	
	3	0. 104	9. 64	0. 282	
NS	4	0. 049	20. 49	-0.040	
	5	0. 041	24. 15	0. 133	
	6	0. 037	26. 86	-0.065	
	7	0.030	33. 89	0.013	
	1	0. 234	4. 28	1. 499	全体1次
	2	0. 110	9. 12	-0.602	
	3	0.064	15. 51	0.097	
EW	4	0. 052	19. 31	0.013	
	5	0.043	23. 42	0.044	
	6	0. 034	29. 34	0. 039	
	7	0. 031	32. 34	-0.051	
	1	0. 157	6. 37	1. 061	全体1次
	2	0. 027	36. 40	-0.094	
	3	0. 017	58. 09	0.056	
UD	4	0. 014	69. 70	-0. 025	
	5	0. 011	91. 54	0.003	
	6	0.008	126. 62	-0.006	
	7	0.003	372. 03	0.003	

表 5-3 固有値解析結果(Ss-2)

方向	次数	固有周期	振動数	刺激係数	備考
	2 .22	(s)	(Hz)	1,404,51,534	VIII 3
	1	0. 239	4. 19	1. 481	全体1次
	2	0. 119	8. 43	-0.610	
	3	0. 106	9. 45	0. 224	
NS	4	0. 049	20. 40	-0.038	
	5	0. 041	24. 10	0. 119	
	6	0. 037	26. 82	-0.057	
	7	0. 030	33. 80	0.013	
	1	0. 241	4. 14	1. 488	全体1次
	2	0. 113	8.85	-0. 581	
	3	0.065	15. 48	0.089	
EW	4	0. 052	19. 22	0.010	
	5	0.043	23. 38	0.040	
	6	0. 034	29. 28	0. 039	
	7	0. 031	32. 28	-0.049	
	1	0. 165	6.06	1. 055	全体1次
	2	0. 028	36. 34	-0.084	
	3	0. 017	58. 06	0.050	
UD	4	0. 014	69. 69	-0. 023	
	5	0. 011	91. 54	0.002	
	6	0.008	126. 59	-0.005	
	7	0.003	371. 98	0. 002	

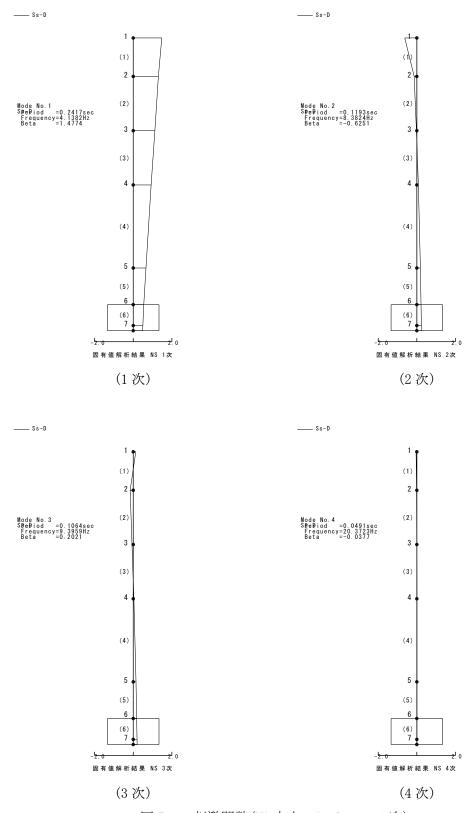
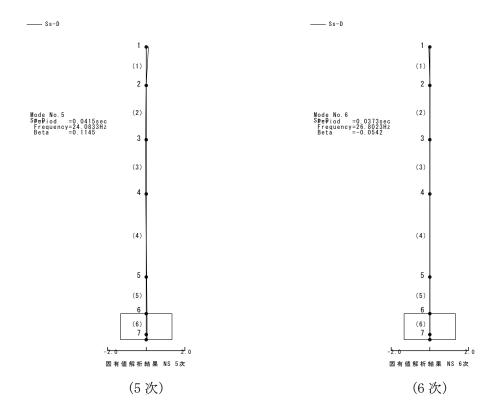



図 5-1 刺激関数(NS 方向, Ss-D, 1~4次)

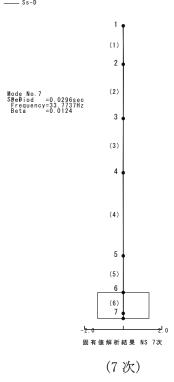


図 5-2 刺激関数(NS 方向, Ss-D, 5~7次)

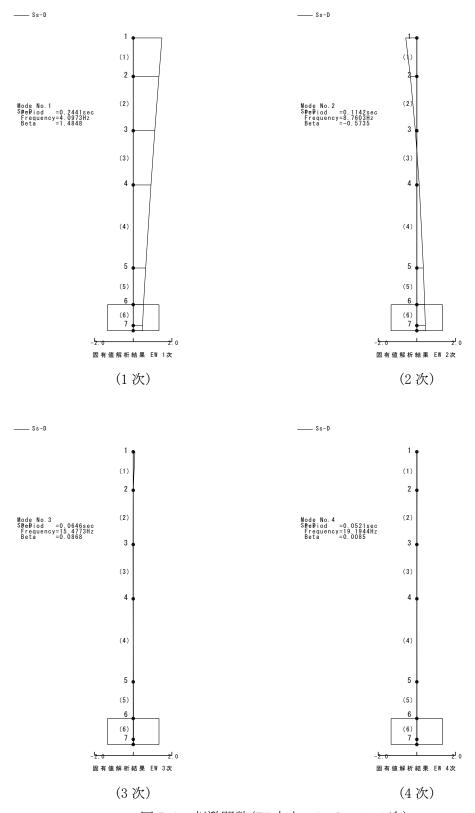
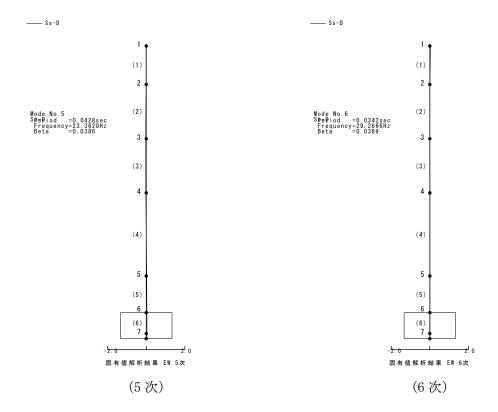



図 5-3 刺激関数(EW 方向, Ss-D, 1~4次)

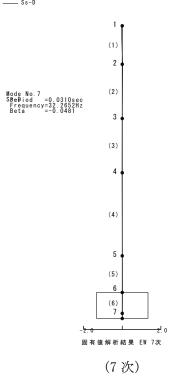


図 5-4 刺激関数(EW 方向, Ss-D, 5~7次)

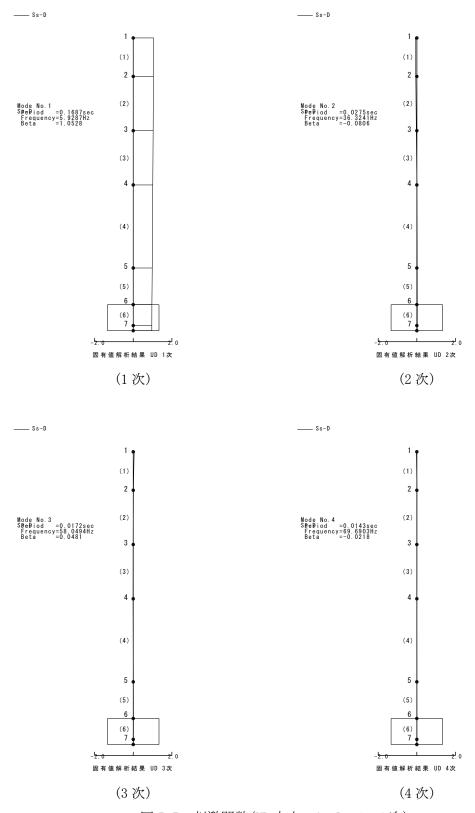
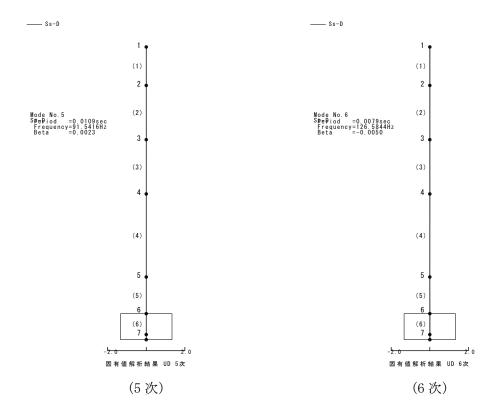



図 5-5 刺激関数(UD 方向, Ss-D, 1~4次)

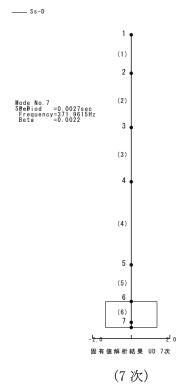
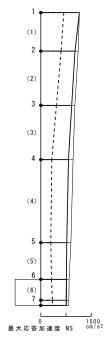
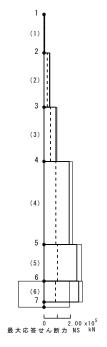



図 5-6 刺激関数(UD 方向, Ss-D, 5~7次)


5.2 地震応答解析結果

廃止措置計画用設計地震動 (Ss) による水平方向の最大応答加速度,最大応答せん断力及び最大応答曲げモーメントを図 5-7 から図 5-12 に,鉛直方向の最大応答加速度及び最大応答軸力を図 5-13 から図 5-14 に示す。また,耐震壁のせん断のスケルトンカーブ上の最大応答値を図 5-15 及び図 5-16 に示す。せん断ひずみは最大で 0.15×10^{-3} であり,評価基準値 (2.0×10^{-3}) を超えないことを確認した。


			単位:cm/s ²
質点	Ss-D	Ss-1	Ss-2
1	1, 146	684	1, 147
2	1,017	604	1, 112
3	919	464	1,014
4	822	328	959
5	772	296	895
6	760	319	843
7	756	345	833

図 5-7 最大応答加速度 (Ss, NS 方向)

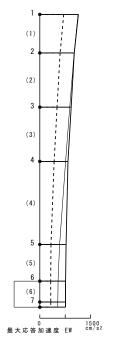

			単位:×10 ⁴ kN
部材	Ss-D	Ss-1	Ss-2
1	0.49	0.29	0.49
2	4. 18	2.47	4. 50
3	8.96	4.89	9.74
4	18.96	8.92	21. 35
5	24. 76	10.09	28. 45
6	26 16	8 67	29 07

図 5-8 最大応答せん断力 (Ss, NS 方向)

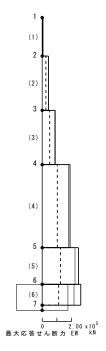

			単位:×10 ⁴ kN・m
部材	Ss-D	Ss-1	Ss-2
1	4.8	3.6	4.4
1	4.6	3.7	4.2
2	11.1	12.6	10.4
4	28.3	22.4	32. 1
3	41.3	35. 1	43.6
3	79.8	60.8	92.4
4	104.3	88.5	115. 3
4	248.5	160.4	277.9
5	260.3	175.7	286.8
Э	344.5	211.6	383. 2
6	319.0	203.4	349.6
U	366.8	219.6	407.0

図 5-9 最大応答曲げモーメント (Ss, NS 方向)

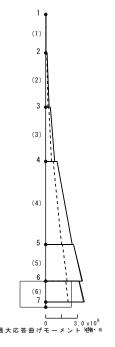

			単位:cm/s ²
質点	Ss-D	Ss-1	Ss-2
1	1, 138	705	1, 128
2	1,017	599	1,013
3	925	509	883
4	832	423	761
5	775	330	585
6	761	321	539
7	756	324	531

図 5-10 最大応答加速度 (Ss, EW 方向)

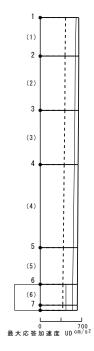

			単位:×10 ⁴ kN
部材	Ss-D	Ss-1	Ss-2
1	0.48	0.30	0.48
2	4.21	2.50	4. 21
3	8.81	5.09	8. 58
4	18.91	10.26	17.74
5	24.63	12.49	22. 32
6	26. 24	11.18	21.62

図 5-11 最大応答せん断力(Ss, EW 方向)

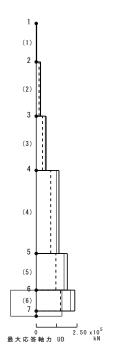

			単位:×10 ⁴ kN・m
部材	Ss-D	Ss-1	Ss-2
1	2. 1	2.9	1.9
1	3.3	3.3	3.4
2	13.3	10.1	12. 1
	32.0	21.1	32.4
3	44.6	29.4	42.8
3	84. 9	55. 1	86. 1
4	108.6	71.3	107.8
4	251.4	150.2	251.0
5	264.0	159. 1	263.0
б	349.2	202.8	342.2
6	318.3	190.6	313.8
О	366. 2	213.3	357.6

図 5-12 最大応答曲げモーメント (Ss, EW 方向)

			単位:cm/s ²
質点	Ss-D	Ss-1	Ss-2
1	650	427	605
2	650	418	591
3	646	415	585
4	638	403	574
5	631	390	556
6	626	382	547
7	625	380	545

図 5-13 最大応答加速度 (Ss, UD 方向)

			単位:×10 ² kN
部材	Ss-D	Ss-1	Ss-2
1	27.61	18. 19	25. 74
1	27.61	18. 19	25.74
2	267.24	172.63	243.66
4	267. 24	172.63	243.66
3	604.08	389.48	548.74
J	604.08	389.48	548.74
4	1, 393. 33	888.36	1, 256. 31
4	1, 393. 33	888. 36	1, 256. 31
5	1, 902. 34	1, 202. 80	1, 702. 50
J	1,902.34	1, 202. 80	1, 702. 50
6	2, 361. 95	1, 482. 17	2, 101. 32
O	2, 361. 95	1, 482. 17	2, 101. 32

図 5-14 最大応答軸力 (Ss, UD 方向)

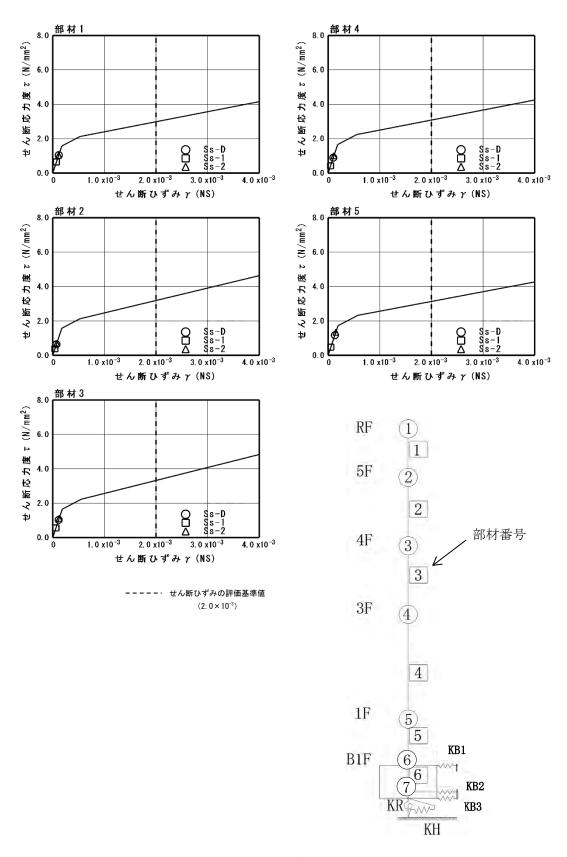


図 5-15 せん断のスケルトンカーブ上の最大応答値(NS 方向, Ss)

図 5-16 せん断のスケルトンカーブ上の最大応答値(EW 方向, Ss)

6. 基礎浮き上がりの検討

廃止措置計画用設計地震動(Ss)による地震応答解析の結果に基づく最小接地率の一覧表を表 6-1 に示す。地震時の最大接地圧は、地反力分布を三角形分布と仮定し、鉛直方向の地震力を組合せ係数法(組合せ係数 0.4)により考慮して算定する。最大接地圧の一覧表を表 6-2 に示す。

接地率は、浮き上がり非線形ばねを用いた地震応答解析を適用できる基準値(65 %以上)を満足していることを確認した。

接地圧は,基礎地盤における平板載荷試験の結果から設定した極限支持力度 2350 kN/m² を超えないことを確認した。

表 6-1 最小接地率(Ss)

(a)NS 方向

地震動	浮き上がり限界 転倒モーメント (×10 ⁶ kN・m)	最大転倒モーメント (×10 ⁶ kN・m)	最小接地率(%)
Ss-D		3.60	78.0
Ss-1	2.77	2. 11	100.0
Ss-2		4.00	67. 3

(b)EW 方向

地震動	浮き上がり限界 転倒モーメント (×10 ⁶ kN・m)	最大転倒モーメント (×10 ⁶ kN・m)	最小接地率(%)
Ss-D		3. 57	74. 1
Ss-1	2.64	2.08	100.0
Ss-2		3. 48	76. 6

表 6-2 最大接地圧(Ss)

地震動	方向	最大接地圧 (kN/m²)
Ss-D	NS	987
SS−D	EW	1092
Ss-1	NS	581
	EW	590
Ss-2	NS	1208
	EW	959

7. 評価結果

HAW 施設の耐震性評価として廃止措置計画用設計地震動(Ss)による地震応答解析を行い、接地率が浮き上がり非線形ばねを用いた地震応答解析を適用できる基準を満足していること、耐震壁に生じるせん断ひずみ及び接地圧が評価基準値を超えないことを確認した。以上により、HAW 施設は廃止措置計画用設計地震動(Ss)に対して耐震余裕を有していることを確認した。