高放射性廃液貯蔵場(HAW)の基準津波に対する事故対処設備の健全性に係る評価

1. 目的

高放射性廃液貯蔵場(HAW)の建家及び事故対処に係る機器に対し、基準 津波による影響の評価を実施し、津波発生時の施設の健全性を確認する。

- 2. 評価方法
- 2.1. 津波荷重の算定

下記に本評価に用いる水深係数(α)、津波高さ(h)を示す。下記をもと に津波荷重を算定する。

水深係数 $\alpha = 2$

水深係数 α は津波の進行を阻害するもの(建家や防波堤)がある場合 $\alpha = 2$ 、無い場合は $\alpha = 3$ となる。HAW の立地条件を考慮し $\alpha = 2$ で検討を実施した。

津波高さ h=6m

過剰気味な津波荷重の精度を高めるために、現状の評価で使用 している建家無しの津波シミュレーションモデルから、高台など の進行波に影響を及ぼす地形データを削除したモデルで再度津波 シミュレーションを行い、波力評価用津波高さを h=6m とした。

地上部分に作用する波圧は、水深係数(α)×地表面からの津波高さ(h)とした評価津波高さの静水圧分布とする。

実際には、津波高さより上方に波力は加わらないが、保守的な設定となるよう「東日本大震災における津波による建築物被害を踏まえた津波避難 ビル等の構造上の要件に係る暫定指針」に倣う。

地上部分について、算定位置での波圧は下式による。

- $W = \rho \circ \times hw$
 - W :波圧(kN/m²)
 - ρο :海水の比重

10.1 kN/m³

hw :評価津波高さから算定位置までの距離(m)

地下部分について、算定位置での波圧は下式による。

 $W = \rho \circ \times (h+hg)$

- W :波圧(kN/m²)
- ρο :海水の比重 10.1 kN/m³
 - h :津波高さ(m)
 - hg : 地表面から算定位置までの深さ(m)

地下部分の算定位置での土圧は下式による。

 $Wg = \alpha \times \rho g' \times hg$

Wg : 土圧(kN/m²)

- α : 土圧係数 津波単独、津波+漂流物衝突の重畳 α=0.5、
 津波+余震の重畳 α=1.0とする。
- ρg': 埋戻土の水中単位体積重量
 18.0 10.1 = 7.9 kN/m³
 hg: 地表面からの深さ(m)
- 2.2. 余震

余震による地震応答は、基準地震動 Ss (Ss-2波)入力の地震応答の 60%^{*1}とする。

基準地震動 Ss 入力の地震応答は、埋め込みの高さ T.P.+6.0m の地震応 答解析結果を用いる。

*1 弾性設計用地震動 S_d が基準地震動 Ss の 1/2 となることから、 余力を見込み基準地震動 Ss の 60%を余震の地震力とした。

 NS 方向
 EW 方向

 最大転倒モーメント (kN・m) (K θ +C θ ')
 5.81×10⁶

 5.94×10⁵
 1.94×10⁵

表 2-1 基準地震動 Ss (Ss-2波)入力の地震応答

津波との重畳評価は余震との組合わせのため、上記の60%の値を用い 算定する。 2.3. 漂流物衝突

漂流物の設定は、「15t漁船」とし、津波流速は4m/sとする。 衝突による集中荷重Pは「道路橋示方書」より下式による。 衝突位置と方向は、評価種別ごとに、評価対象に厳しくなる位置と方向 を設定する。

適用計算式:道路橋示方書P = 0.1×W×V = 58.8 kN W:漂流物重量 15ton×9.8m/sec² = 147 kN

V:津波流速 4.0m/sec

- 2.4. 波力評価用津波に対する影響評価
 - 1) 津波波力に対する構造骨組みの保有水平耐力評価
 - 2) 耐圧部材(外壁、柱、梁)の健全性評価
 - 3) 津波波力及び浮力に対する転倒評価

荷重の組合せは以下の3ケースを想定する。

ケース1:津波単独でかかる波圧、波力、浮力による応力

ケース2:津波応力と余震の重畳による応力

ケース3:津波応力と漂流物衝突の重畳による応力

- 3. 波力評価用津波に対する評価
- 3.1. 構造骨組みの保有水平耐力評価
 - (1) 検討方法

津波波力とその他外力との重畳による層せん断力Qを算定し、「建屋構 造計算書、昭和55年7月」で計算済みの保有水平耐力Quと比較する。 津波波力による層せん断力Rは下記の考え方で算定する。

$$R = \int_{H}^{\alpha \times n} w(x) \times B(x) \times dx$$

- R :対象階の層せん断力 (kN)
- $\alpha \times h: 静水圧換算津波高さ (m)$
- H :層せん断力を算定する対象階の下端の高さ (m)(地震応答解析モデルの質点高さに合わせる)
- x : 地表面からの高さ (m)
- w(x) : 地表面からの高さ x の位置での津波波圧 (kN/m²)

図 3-1 津波波力による層せん断力算定の考え方

地上部分に作用する津波波圧は、保守的な設定となるよう、受圧面からの波圧のみを想定し、反対面からの波圧は考えない。

地下部分に作用する水圧と土圧は、受圧面と反対面の両側から同じ力が作用してキャンセルされると考える。

余震による層せん断力 E は、基準地震動 Ss (Ss-2波)入力の地震応 答を 0.6 倍した表 3-1 の値とする。

		EW方向		NS方向	
標高	階	Ss-2	0.6×Ss-2	Ss-2	0.6×Ss-2
T.P.(m)		Q(kN)	Q(kN)	Q(kN)	Q(kN)
28.44	PH	7000	4200	7000	4200
24.7		7000	4200	7000	4200
24.7	4	55000	33000	56000	33600
19.43		55000	33000	56000	33600
19.43	3	111000	66600	118000	70800
14.16		111000	66600	118000	70800
14.16	1,2	238000	142800	246000	147600
6.089		238000	142800	246000	147600
6.089	B1F	311000	186600	319000	191400
2.53		311000	186600	319000	191400

表 3-1 余震による層せん断力

漂流物は建物の頂部に衝突し、漂流物の集中荷重 P が全ての階にて層 せん断力として作用するものとする。

P = 58.8 kN

- 3.2. 構造骨組みの保有水平耐力検討結果
 - (1) 津波波力のみ

津波波力のみに対する保有水平耐力の評価を表 3-2に示す。 外力は保有水平耐力の6%以下であり、余裕がある。 保有水平耐力は、「高放射性廃液貯蔵施設 建屋構造計算書」を参照し

た。

表 3-2 保有水平耐力評価(津波波力のみ)

方向	高さし	階	保有水平耐	л	津波波力	地震力0.6SsD	漂流物	外力Q=R+E+P	Q/Qu
	E.L.(m)		Qu(t)	Qu(kN)	R(kN)	E(kN)	P(kN)	(kN)	
	18.7	PH	891.5	8743	0	0	0	0	0.00
EW	13.43	4	10598.8	103939	0	0	0	0	0.00
	8.16	3	21949.1	215247	2729	0	0	2729	0.01
	0.089	1	42407.11	415872	26258	0	0	26258	0.06
	-3.47	B1	42407.11	415872	26652	0	0	26652	0.06

建物幅B 海水の比重po 静水圧換算津波高さhT=α×h 36.65 m 10.1 kN/m³ 12.00 m

方向	高さし	階	保有水平耐	Ъ	津波波力	地震力0.6SsD	漂流物	外力Q=R+E+P	Q/Qu
	E.L.(m)		Qu(t)	Qu(kN)	R(kN)	E(kN)	P(kN)	(kN)	
	18.7	PH	759.7	7450	0	0	0	0	0.00
NS	13.43	4	14553.19	142718	0	0	0	0	0.00
	8.16	3	20740.91	203399	2603	0	0	2603	0.01
	0.089	1	44240.94	433855	25040	0	0	25040	0.06
	-3.47	B1	44240.94	433855	25416	0	0	25416	0.06

建物幅B 海水の比重 *p* o 静水圧換算津波高さhT= *a* × h 34.95 m 10.1 kN/m³ 12.00 m

津波波力(地上)あるいは水圧(地下)の算定式

L > hT $hT \geqq L > 0 \\ 0 \geqq L$

R=0 R=0.5 × (hT–L)² × ρ o × B R=0.5 × (hT)² × ρ o × B (2) 津波波力と余震との重畳

津波波力と余震の重畳に対する保有水平耐力の評価を表 3-3に示す。 外力は保有水平耐力の51%以下であり、余裕がある。

保有水平耐力は、「高放射性廃液貯蔵施設 建屋構造計算書」を参照した。

表 3-3 保有水平耐力評価(津波波力と余震との重畳)

方向	高さし	階	保有水平耐力		津波波力	地震力0.6Ss2	漂流物	外力Q=R+E+P	Q/Qu
	E.L.(m)		Qu(t)	Qu(t) Qu(kN)		E(kN)	P(kN)	(kN)	
	18.7	PH	891.5	8743	0	4200	0	4200	0.48
EW	13.43	4	10598.8	103939	0	33000	0	33000	0.32
	8.16	3	21949.1	215247	2729	66600	0	69329	0.32
	0.089	1	42407.11	415872	26258	142800	0	169058	0.41
	-3.47	B1	42407.11	415872	26652	186600	0	213252	0.51

建物幅B 海水の比重 ρ o 静水圧換算津波高さhT= α×h

36.65 m 10.1 kN/m³ 12.00 m

保有水平耐力	津波波力	地震力0.6Ss2	漂流物	外力Q=R+E+P	Q/Qu
Qu(t) Qu(kN)	R(kN)	E(kN)	P(kN)	(kN)	
759.7 745	0 0	4200	0	4200	0.56
14553.19 14271	3 0	33600	0	33600	0.24
20740.91 20339	2603	70800	0	73403	0.36
44240.94 43385	5 25040	147600	0	172640	0.40
44240.94 43385	5 25416	191400	0	216816	0.50
	保有水平耐力 Qu(t) Qu(kN) 759.7 7450 14553.19 142710 20740.91 203390 44240.94 433855 44240.94 433855	保有水平耐力 津波波力 Qu(t) Qu(kN) R(kN) 759.7 7450 0 14553.19 142718 0 20740.91 203399 2603 44240.94 433855 25040 44240.94 433855 25416	保有水平耐力 津波波力 地震力0.6Ss2 Qu(t) Qu(kN) R(kN) E(kN) 759.7 7450 0 4200 14553.19 142718 0 33600 20740.91 203399 2603 70800 44240.94 433855 25040 147600 44240.94 433855 25416 191400	保有水平耐力 津波波力 地震力0.6Ss2 漂流物 Qu(t) Qu(kN) R(kN) E(kN) P(kN) 759.7 7450 0 4200 0 14553.19 142718 0 33600 0 20740.91 203399 2603 70800 0 44240.94 433855 25040 147600 0	保有水平耐力 津波波力 地震力0.6Ss2 漂流物 外力Q=R+E+P Qu(t) Qu(kN) R(kN) E(kN) P(kN) (kN) 759.7 7450 0 4200 0 4200 14553.19 142718 0 33600 0 33600 20740.91 203399 2603 70800 0 73403 44240.94 433855 25040 147600 0 172640 44240.94 433855 25416 191400 0 216816

建物幅B 海水の比重 *o* o 静水圧換算津波高さhT= *a* × h

34.95 m 10.1 kN/m³ 12.00 m

津波波力(地上)あるいは水圧(地下)の算定式 L > hT R=0

L > hT $hT \ge L > 0$ $0 \ge L$

 $R=0.5 \times (hT-L)^{2} \times \rho \circ \times B$ $R=0.5 \times (hT)^{2} \times \rho \circ \times B$

(3) 津波波力と漂流物衝突との重畳

津波波力と漂流物衝突との重畳に対する保有水平耐力の評価を表 3-4 に示す。

外力は保有水平耐力の6%以下であり、余裕がある。

保有水平耐力は、「高放射性廃液貯蔵施設 建屋構造計算書」を参照した。

表 3-4 保有水平耐力評価(津波波力と漂流物衝突との重畳)

方向	高さし	階	保有水平耐力 Qu(t) Qu(kN)		津波波力	地震力0.6SsD	漂流物	外力Q=R+E+P	Q/Qu
	E.L.(m)				R(kN)	E(kN)	P(kN)	(kN)	
	18.7	PH	891.5	8743	0	0	58.8	59	0.01
EW	13.43	4	10598.8	103939	0	0	58.8	59	0.00
	8.16	3	21949.1	215247	2729	0	58.8	2788	0.01
	0.089	1	42407.11	42407.11 415872		0	58.8	26317	0.06
	-3.47	B1	42407.11	415872	26652	0	58.8	26711	0.06

建物幅B 海水の比重ρ。 静水圧換算津波高さhT=α×h 36.65 m 10.1 kN/m³ 12.00 m

方向	高さし	階	保有水平耐	カ	津波波力	地震力0.6SsD	漂流物	外力Q=R+E+P	Q/Qu
	E.L.(m)		Qu(t)	Qu(kN)	R(kN)	E(kN)	P(kN)	(kN)	
	18.7	PH	759.7	7450	0	0	58.8	59	0.01
NS	13.43	4	14553.19	142718	0	0	58.8	59	0.00
	8.16	3	20740.91	203399	2603	0	58.8	2661	0.01
	0.089	1	44240.94	433855	25040	0	58.8	25099	0.06
	-3.47	B1	44240.94	433855	25416	0	58.8	25474	0.06

建物幅B 海水の比重 *p* o 静水圧換算津波高さhT= *a* × h

34.95 m 10.1 kN/m³ 12.00 m

津波波力(地上)あるいは水圧(地下)の算定式

L>hl	
hT ≧ L ː	> 0
$0 \ge L$	

R=0 R=0.5 × (hT-L)² × ρ o × B R=0.5 × (hT)² × ρ o × B

9

- 3.3. 耐圧部材(外壁、柱、梁)の健全性評価
 - (1) 検討位置

HAW 施設の耐圧部材の検討対象は、津波高さ6.0m は3階床面高さ8.13m を考慮して1~2階部分のみとして下記の2点の観点から選定する。

- ・津波波圧に対して最も脆弱と推定される地上2階までの部位
- 一般部

HAW 施設の外周部は、地下階から地上2階までは、同厚・同配筋の壁が外周 部を取り囲んでおいる。波圧を受ける外壁を荷重の違いから大きく下記の 3つに分類する。

- ・1階、2階の外壁一般部、壁厚600mm
- ・1階、2階の外壁開口部横、壁厚600mm
- ・地下1階の外壁一般部、壁厚600mm

波圧は下階の方が大きく、開口部横の方が大きいので、壁断面が同じであ れば、津波波圧に対して最も脆弱と推定される部位の候補は下記2か所と なる。開口部は立面図を参照し、開口部の横幅が大きな箇所を選定する。

- ・1階の外壁開口部横、壁厚600mm
- ・地下1階の外壁一般部、壁厚600mm

ー般部については、同じ壁断面であれば波圧が大きくなる下階の方を選定 する。

- ・1階の外壁一般部、壁厚600mm
- ・地下1階の外壁一般部、壁厚600mm

(2) 検討方法

津波波力とその他外力との重畳に対して、対象とする耐圧部材に生じ る応力を算定し、終局耐力で検定を行う。

既存断面から終局曲げ耐力(Mu)を算定し、作用曲げモーメント(M) との比較を行う。

Mu > M であればOK

既存断面から終局せん断耐力(Qu)を算定し、作用曲げせん断力(Q) との比較を行う。

Qu > Q であればOK

部材耐力の算定式は「2015年版建築物の構造関係技術基準解説書」の 鉄筋コンクリート造のはりの終局強度式(付1.3-5式、付1.3-7式)を引 用し、下式のとおりとする。

① 曲げモーメント

 $Mu = 0.9 \cdot at \cdot \sigma y \cdot d$

Mu	:	終局曲げ耐力	kN∙m/m
at	;	既存断面の単位幅当たりの鉄筋断面積	mm²/m
σγ	:	引張鉄筋の降伏点(材料強度割増1.1を見込む)	N/mm ²
d	:	部材の有効成(D-dt)	mm
D	:	壁厚	mm
dt	:	引張緑から引張鉄筋重心までの距離	mm

2 せん断力

 $Qu = \{0.068pt^{0.23}(Fc+18)/(M/(Qd)+0.12)+0.85\sqrt{(pw\sigma wy)}\}b \cdot j$

Qu	:	終局せん断耐力		kN/m
pt	:	引張鉄筋比		%
Fc	:	コンクリート圧縮強度		N/mm ²
ď	:	部材の有効成(D-dt)	-	mm
D	:	壁厚		mm
b	:	中国		mm
j	:	応力中心間距離(7d/8)		mm

(3) 津波波力による応力算出方針

津波波力により生じる応力は下記の考え方で算出する。

図 3-3のとおり、上下の床面を固定端とする一方向版として、壁下端 の作用曲げモーメント、作用せん断力を算出する。

開口部横の有効負担幅の設定を図 3-4 に示す。開口部に作用する水圧 は、荷重伝達の広がりを加味し、開口端から壁厚さの2倍の長さを有効負 担幅とする。開口幅の半分+有効負担幅の水圧を有効負担幅で負担させ る。

津波による波圧wに荷重増分係数(k)掛けとする。

3階: 開口寸法 2000mm 壁厚さ300mm k = 1 + 2000/2/(2×300) = 2.667 1階: 開口寸法 2980mm 壁厚さ600mm k = 1 + 2980/2/(2×600) = 2.242

図 3-3 開口部横の有効負担幅

津波による曲げモーメント及びせん断力の算定は、弾性梁の理論式 を用いる。具体的には「建築構造ポケットブック」と「建築構造力 学;培風館」の反力公式を利用した。梁の任意位置での断面力は、反 力と荷重の釣り合い式を解いて算定する。

「建築構造ポケットブック」には、下記の荷重分布について、両端 固定された均質等断面の弾性梁端部に作用する反力、曲げ反力の算定 式がある。

「建築構造力学;培風館」には、梁中途に作用する荷重分布について、両端固定された均質等断面の弾性梁端部に作用する曲げ反力の算定式がある。B端の曲げモーメントの向きは上記文献と逆なので注意する。

①津波による曲げモーメント(M:台形分布荷重)

M = Ms + Me

②地下階及び地上1・2階の三角分布荷重部分の曲げモーメント (Ms)
 Ms = W・1 / 10
 ここで、W=w・1 / 2

③地下階及び地上1・2階の等分布荷重部分の曲げモーメント(Me)
 Me = w・1² / 12

④津波によるせん断力(Q:台形分布荷重)Q = Qs + Qe

⑤地下階及び地上1・2階三角分布荷重部分のせん断力(Qs)Qs = W・(7/10)ここで、W=w・1 / 2

⑥地下階及び地上1・2階等分布荷重部分のせん断力 (Qe)Qe = W・(1/2)ここで、W=w・1

慣性力により局部的に発生する応力の算出では、0.6倍×(Ss-

2入力による各階の加速度応答)を対象となる耐圧部材(外壁、柱、梁)に一様に加える。

上下階にまたがる柱・壁等の部材については、上階の値を使う。一方 向版の条件、部材端部の境界条件、開口幅による荷重増分係数等は、津 波波力に対する応力算出と同じとする。

(4) 漂流物衝突による応力算出方針

漂流物の集中荷重Pの作用位置は、検討内容に応じて保守的となるよう に設定する。

図 3-6に漂流物集中荷重 P の作用位置設定の考え方を示す。

部材中央の曲げ検討時には、対象部材の中央に作用させる。また、この場合には、部材の両端はピン支持と仮定する。

端部の曲げ検討時には、対象部材の中央に作用させる。 せん断検討時には、対象部材の端部に作用させる。

漂流物は地表面高さより下に潜りこむことはないとして、地下外壁の 検討時には、漂流物衝突は考えない。 3.4. 耐圧部材の検討結果

(1) 津波波波力のみ

津波波力(水深係数 α=2) に対する耐圧部材の健全性評価を表 3-5に 示す。

No	階	位置	部位	評価項目	応答F	2	耐力S		R/S
1	B1	-	地下外壁	曲げ	116.4	116.4 kNm		kNm	0.398
				せん断	186.2	kN	713.1	kN	0.261
2	1	-	開口無壁	曲げ	165.0	kNm	309.7	kNm	0.533
				せん断	230.7	kN	694.3	kN	0.332
3	1	南面、26-27通	開口有壁	曲げ	369.9	kNm	433.6	kNm	0.853
				せん断	517.2	kN	694.3	kN	0.745

表 3-5 津波波力のみ検討結果

(2) 津波波力と余震との重畳

津波波力(水深係数 α=2)と余震の重畳に対する耐圧部材の健全性評価を表 3-6に示す。

地下外壁と1階の開口無しの外壁の応答値は耐力以下であり、健全で ある。

表 3-6 津波波力と余震との重畳検討結果

No	階	ſ.	位置		評価項目	応力R		耐力S		R/S
1	B1		-	地下外壁	曲げ	137.0	kNm	292.7	kNm	0.468
					せん断	220.1	kN	715.8	kN	0.307
2	1		-	開口無壁	曲げ	180.1	kNm	309.7	kNm	0.582
					せん断	250.9	kN	692.1	kN	0.363
3	1	南面、	26-27通	開口有壁	曲げ	385.0	kNm	433.6	kNm	0.888
					せん断	537.4	kN	693.3	kN	0.775

(3) 津波波波力と漂流物衝突との重畳

津波波力(水深係数 α=2)と漂流物衝突の重畳に対する耐圧部材の健 全性評価を表 3-7に示す。

No	階	位置	部位	評価項目	応力R		耐力S		R/S
1	B1	-	地下外壁	曲げ	—	kNm	_	kNm	_
				せん断		kN		kN	_
2	1	-	開口無壁	曲げ	198.0	kNm	309.7	kNm	0.639
				せん断	289.5	kN	853.1	kN	0.339
3	1	南面、26-27通	開口有壁	曲げ	402.9	kNm	433.6	kNm	0.929
				せん断	576.0	kN	765.9	kN	0.752

表 3-7 津波波波力と漂流物衝突との重畳検討結果

3.5.転倒の評価

検討方法

重量と浮力を比較し、浮力(kN)に対し重量(kN)が大きい場合は転倒しないものとする。

3.6. 転倒の検討結果

浮力 155247 (kN) < 重量 396039 (kN)浮力 (kN) に対し重量 (kN) が大きいことから転倒しない。

4. 評価結果

主な評価結果を表 4-1~表 4-3に示す。

(1) 保有水平耐力

保有水平耐力は、津波波力のみ、余震との重畳、漂流物衝突との重畳、 すべての外力組合せに対して余裕があることを確認した。

(2) 耐圧部材

耐圧部材については、津波波力のみ、余震との重畳、漂流物衝突との重畳、すべての外力組合せに対して健全であることを確認した。

(3) 転倒

転倒については、津波波力のみ、余震との重畳、漂流物衝突との重畳、 すべての外力組合せに対して転倒しないことを確認した。

項目	位置		部材		津波高さ6.0mに対する評価結果					
				評価値	応力R		耐力S	R/S	評価	
保有水平耐力	B1階 全体		-	層せん断力	26652	kN	415872 kN	0.06	0	
耐圧部材	B1階 全体		地下外壁	曲げモーメント	116.4	kNm	292.7 kNm	0.40	0	
の健全性	1階 全体		開口無しの外壁	曲げモーメント	165.0	kNm	309.7 kNm	0.53	0	
	1階 南面、	26,27通り	開口有りの外壁	曲げモーメント	369.9	kNm	433.6 kNm	0.85	0	

表 4-1 津波波力のみに対する評価のまとめ(水深係数α=2)

表 4-2 津波波力と余震との重畳に対する評価のまとめ(水深係数α=2)

項目	位置		部材	津波高さ6.0mに対する評価結果						
				評価値	応力R		耐力S	R/S	評価	
保有水平耐力	PH階 全体		-	層せん断力	4200	kN	7450 kN	0.56	0	
耐圧部材	B1階 全体		地下外壁	曲げモーメント	137.0	kNm	292.7 kNm	0.47	0	
の健全性	1階 全体		開口無しの外壁	曲げモーメント	180.1	kNm	309.7 kNm	0.58	0	
	1階 南面、	26,27通り	開口有りの外壁	曲げモーメント	385.0	kNm	433.6 kNm	0.89	0	

表 4-3 津波波力と漂流物衝突との重畳に対する評価のまとめ(水深係数α=2)

項目	位置		部材	津波高さ6.0mに対する評価結果						
				評価値	応力R		耐力S	R/S	評価	
保有水平耐力	B1階	全体	-	層せん断力	26652	kN	415872 kN	0.06	0	
耐圧部材	B1階	全体	地下外壁	-	-		-	-	-	
の健全性	1階	全体	開口無しの外壁	曲げモーメント	198.0	kNm	309.7 kNm	0.64	0	
	1階	南面、26,27通	リ開口有りの外壁	曲げモーメント	402.9	kNm	433.6 kNm	0.93	0	

- 5. 機器(高放射性廃液貯槽)の評価
- 5.1. 評価方法

東海再処理施設への津波の襲来により、高放射性廃液貯蔵場(HAW)の高放 射性廃液貯蔵セルに設置されている高放射性廃液貯槽が水没することを想 定し高放射性廃液貯槽の浮力に対する影響について評価する。

高放射性廃液貯槽は円周90度ごとの4箇所に据付用のラグを有しており、 4本の据付ボルトでラグとコンクリートの架台を固定している。セルへ海水 が流入することによる高放射性廃液貯槽の浮力に対する据付ボルトの影響 を評価する。

5.2. 評価条件

浮力は周囲の液体密度と機器の体積に依存し、同じ重量でも形状(空間 体積)によって異なる(図 5-1参照)ため、貯槽にかかる浮力は高放射性 廃液の貯蔵量に依存する。また、その力は鉛直方向に作用するため、一定 貯蔵量ごとの浮力を算出し、高放射性廃液貯槽を支えている据付ボルトの1 本あたりの許容引張応力と比較した。高放射性廃液貯槽における据付ボル トの状態を図 5-2、据付ボルトの仕様を表 5-1に示す。

なお、各液量保持状態での液高さは運転要領書に記載されている校正式 から逆算し、空間体積は貯槽外形を円柱として評価した。用いた校正式は 平成23年5月13日時点で最も貯蔵量の多かった貯槽(高放射性廃液貯蔵場: 272V31)のものを採用した。また、各貯槽の空重量は耐震評価で用いてい る53トンとし、高放射性廃液の液密度は1.25 kg/L、海水の比重は一般的値 (1.020~1.023 kg/L)から、1.023 kg/L とした。

5.3. 評価結果

各貯蔵量での浮力により発生する据付ボルトへの応力を表 5-1及び表 5-2に示す。最も浮力の影響が大きい空の貯槽の状態では7.8トン重の応力 が据付ボルトにかかり、図 5-3に示すとおり、貯蔵量の増加に伴い浮力に よる引張力は減少する。

日本機械学会の材料規格によるステンレス鋼棒の設計引張強さによると、 高放射性廃液貯槽(SUS316)は95.9 トン重であり、津波によりセル内に海 水が浸入したとしても、浮力により貯槽が浮き上がることはない。

	高放射性廃液貯蔵場
サイズ	M48
材質	SUS316
設計引張強さ	520 MPa (95.9 tf)
高放射性廃液貯槽の空重量	53トン
液密度	1.25 kg/L

表 5-1 評価対象とする据付ボルトの仕様

表 5-2 据付ボルトに係る応力(高放射性廃液貯蔵場)

貯蔵量	液密度	液重量	液高さ	空間体積	発生浮力	ボルトに係る応力
(m^3)	(t/m^3)	(t)	(m)	(m^{3})	(tf)	(tf/本)
0	1.25	53	0	174.2	178.2	7.83
10	1.25	65.5	0.56	153.9	157.4	5.75
20	1.25	78	0.87	142.7	145.9	4.25
30	1.25	90.5	1.11	133.9	137.0	2.91
40	1.25	103	1.45	121.6	124.4	1.34
50	1.25	115.5	1.74	111.1	113.6	-0.12
60	1.25	128	2.03	100.5	102.9	-1.57
70	1.25	140.5	2.32	90.0	92.1	-3.03
80	1.25	153	2.61	79.5	81.3	-4.48
90	1.25	165.5	2.89	69.3	70.9	-5.91

図 5-1 形状の違いによる浮力 (1 kg の鉄球)

図 5-2 高放射性廃液貯蔵場の高放射性廃液貯槽の設置概要図

6. まとめ

以上の評価結果から、基準津波により、高放射性廃液貯蔵場の建家内に 水が浸入した場合でも建家の保有水平耐力及び転倒は裕度があり、建家の 倒壊に至ることはない。また、高放射性廃液貯蔵セルへ海水が流入しても 浮力に対して据付ボルトの設計引張強さは十分な裕度があり、高放射性廃 液貯槽に影響を与えることはないと言える。これらにより、建家内が仮に 浸水した場合においても、高放射性廃液貯槽は基準津波に対し健全性を維 持していることから、崩壊熱除去機能である冷却系配管においても基準津 波による浸水で健全性が損なわれることはなく、事故対処に影響を及ぼす ことはない。

以上

