美浜 1 号機 崩壊熱 108kW における SFP 水抜け時の燃料被覆管表面温度について

最も崩壊熱の大きい燃料集合体を用いて、2018.7.1 時点における燃料被覆管表面温度を 算出する。

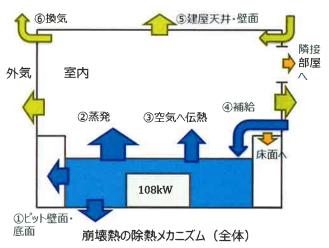

2015.12.1 時点における使用済燃料の崩壊熱 132kW と 2018.7.1 時点における使用済燃料の崩壊熱 108kW の比率、あるいは 2015.12.1 時点と 2018.7.1 時点における燃料集合体最大発熱量の比率から、温度差 (建屋内外温度差、燃料出入口温度差、被覆管表面温度上昇)を算出した結果を下表に示す。

表 燃料被覆管表面温度算出結果

公					
		申請書(追補)	今回申請時	備考	
			2015.12.1 時点	2018.7.1 時点	加用 有
崩	総発熱量	kW	132	108	
壊熱	燃料集合体 最大発熱量	kW	0.75	0. 62	0.75kW を総発熱量の比率 で計算
外気	温度	${\mathcal C}$	70	70	(=設定値)
建屋	内空気温度	$^{\circ}$	107	101	建屋内外の温度差を燃料 集合体最大発熱量の比率 で計算
燃料空気	集合体入口 温度	$^{\circ}$	107	101	(=建屋内空気温度)
燃料空気	集合体出口温度	$^{\circ}$	207	183	燃料集合体出入口温度差 を燃料集合体最大発熱量 の比率で計算
空気	集合体出口 温度と被覆 面温度の差	$^{\circ}$	11	10	燃料集合体出口空気温度 と被覆管表面温度の差を 燃料集合体最大発熱量の 比率で算出
被覆	管表面温度	$^{\circ}$	218	193	燃料集合体出口空気温度 +燃料集合体出口空気温 度と被覆管表面温度の差

使用済燃料ピットの水温計算

水温計算で用いる数式、および 8/31 時点における水温計算の入力値・計算結果については、 以下のとおり。

B) 使用済燃料ピット水→使用済燃料ピット壁面(外部)+室内(8月31日時点)

	数式	伝熱量[kW]
①-1	• $Q_{pwall} = H_{pw}(T_w - T_{room})A_{pw}$	6. 2
①-2	$\cdot Q_{pbott} = H_{pb}(T_w - T_c)A_{pb}$	3. 2
2	• $Q_{evap} = E_{evap} \cdot As \cdot 0.2778 \cdot r$	70. 4
3	$\cdot Q_{conv} = h_m (T_w - T_{room}) \cdot A_s$	14. 0
4)	$\cdot Q_{Sply} = m_e \cdot Cp \cdot (T_w - T_S)$	1.8
計		95. 6

C) 室内⇒建屋天井・壁面(外部)+換気空調(外部)(8月31日時点)

	数 式	伝熱量[kW]
(5)	$\cdot Q_{\text{wall}} = H_{\text{w}}(T_{\text{room}} - T_{\text{air}})A_{\text{w}}$	35. 2
6	• $Q_{\text{vent}} = m_{\text{air}} \cdot C_{p, \text{air}} \cdot (T_{\text{room}} - T_{v})$	27. 6
計		62. 8

水温計算の入力値(8月31日時点)

$\bigcirc -1Q_{pwall} = H_{pw}(T_w - T_{room})A_{pw}$

説明	入力値
H _{pw} :使用済燃料ピット側壁熱通過率 [W/(m²・℃)]	
A_{pw} :使用済燃料ピット側壁面積 $[\mathbf{m}^2]$	
T _w :使用済燃料ピット水温[℃]	44. 7
T _{room} :室内の温度[℃]	31.3

$\bigcirc -2Q_{pbott} = H_{pb}(T_w - T_c)A_{pb}$

説明	入力値
H _{pb} :ピット底面熱通過率[W/(m²・℃)]	1.0
Aph: 使用済燃料ピット底面積[m²]	
T _w :使用済燃料ピット水温[℃]	44. 7
T_c :土壤温度[\mathbb{C}]	16. 0

$\bigcirc Q = E \cdot As \cdot 0.2778 \cdot r$

 $E = (0.061V + 0.125)(P_w - \epsilon \cdot P_r)$

説明	入力値
A _s :使用済燃料ピット水面積[m²]	
r :水の表面温度における潜熱(45℃)[kJ/kg]	2394. 5
V:水面上の風速[m/s]	0.34
ε:湿度[-]	0. 788
P _w :水面近傍の飽和蒸気圧(45℃)[kPa]	95. 820
P _r :室内の飽和蒸気圧(30℃)[kPa]	42. 415

説明	入力値
h _m :水面の熱伝達率[W/(m²・K)]	9
T _w :使用済燃料ピット水温[℃]	44. 7
T _{room} :室内の温度[℃]	31.3
A _s :使用済燃料ピット水面積[m ²]	

$\underline{\text{4Q}_{\text{sply}} = m_e \cdot \text{Cp} \cdot (T_w - T_S)}$

説 明	入力値
Cp:補給水の比熱(30℃) [kJ/(kg・K)]	4. 180
T _w :使用済燃料ピット水温[℃]	44. 7
T _s :補給水の水温[℃]	30. 3

• $m_e = Q_{evap}/r$

説明	入力値
r:水の表面温度における潜熱(45℃)[kJ/kg]	2394. 5

説明	入力値
H_w :建屋熱通過率 $[\mathrm{W}/(m^2^\circ\mathrm{C})]$	
A _w :建屋面積[m²]	
T _{room} :室内の温度[℃]	31. 3
<i>T_a</i> :外気の温度[℃]	25. 7

説明	入力値
C _{p,air} :送気の比熱(30℃) [kJ/(kg・K)]	1. 007
T _{room} :室内の温度[℃]	31. 3
T _v :送気の温度[℃]	29. 1

• $m_{air} = \rho_{air} \cdot V/60$

説明	入力値
ρ _{air} :送気の密度(30℃) [kg/m³]	1. 15
V:換気流量[m³/min]	