島根原子力発電所第2号機 審査資料								
資料番号	NS2-補-027-10-46 改 04							
提出年月日	2023年6月14日							

原子炉格納容器配管貫通部及び電気配線貫通部の

耐震性についての計算書に係る補足説明資料

2023年6月

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

目 次

1.	はじめに	1
2.	選定方針	1
3.	代表貫通部の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
4.	除外する貫通部及び部位の除外理由	19
5.	耐震計算書及び強度計算書に記載する代表貫通部について	19
6.	添付資料	20

添付資料-1	配管貫通部の設計手法について	21
添付資料2	配管貫通部の耐震評価における代表貫通部以外の健全性について	23
添付資料-3	二重型貫通部の端板及び代表貫通部の補強板取付部の耐震評価結果	84
添付資料-4	サプレッションチェンバのオーバル振動に関する影響検討・・・・・	90

1. はじめに

本資料は、VI-2-9-2-11「配管貫通部の耐震性についての計算書」、VI-2-9-2-12「電気配 線貫通部の耐震性についての計算書」、VI-3-3-7-1-17「配管貫通部の強度計算書」及びVI-3-3-7-1-20「電気配線貫通部の強度計算書」の補足として、各計算書において評価結果を記 載している代表貫通部の選定方法についてまとめたものである。

- 2. 選定方針
- 2.1 配管貫通部

配管貫通部の形式を図 2-1 に示す。

配管貫通部において,形式1は管口径が大きく反力が大きい配管類の貫通部に用いている。この形式の貫通部は,原子炉格納容器外側で原子炉建物にアンカされ,ベローズによって原子炉建物とドライウェルの相対変位を吸収する構造となっている。このため貫通部への反力は極めて小さい。なお,形式1の貫通部はドライウェルのみに使用されている。

形式2及び3は、中程度の管口径の配管に対して用いている。この形式の貫通部は、配 管の反力が直接作用する。

計算書に記載する代表貫通部の選定に当たっては、まず有意な荷重が加わらないと考え られる貫通部を除外するため、形式1の配管貫通部は評価を省略し、形式2及び3の配管 貫通部に対して評価を実施する。なお、具体的な代表貫通部の選定方法については、3.1 に示す。

形式2及び3の配管貫通部のうち,構造強度評価における評価部位は,端板,スリーブ 及び原子炉格納容器とスリーブとの結合部がある。端板に関しては,従来,原子炉格納容 器とスリーブとの結合部の評価に包絡されるものと整理しており評価を省略している。そ のため,計算書に記載する代表貫通部の選定に当たっては,端板以外の評価部位に対する 代表貫通部を選定する。

2.2 電気配線貫通部

電気配線貫通部の形式を図 2-2 に示す。

電気配線貫通部の構造強度評価における評価部位は,原子炉格納容器とスリーブとの結 合部としている。計算書に記載する代表貫通部の選定に当たっては,固有周期が0.05秒 を超え柔構造となる貫通部において,地震慣性力(貫通部質量×震度×重力加速度)が最 も大きくなるものを代表貫通部として選定する。

原子炉格納容器内側

補強板

A-A矢視図

図 2-2 電気配線貫通部の形式

3. 代表貫通部の選定

3.1 配管貫通部

全ての配管貫通部(154個)(表 3-1 参照)から,構造や設置位置等の観点から有意な 荷重が加わらないと考えられる貫通部を除外する(除外理由は「4. 除外する貫通部及び 部位の除外理由」参照)。残った貫通部に対して,系統の設計条件(温度・圧力条件)の 影響が小さいと考えられる貫通部を除外する。なお,系統の温度・圧力の大きい原子炉冷 却材圧力バウンダリの貫通部はすべてベローズ付貫通部であり,系統の設計条件(温度・ 圧力)は貫通部の設計条件に直接反映されない。

残った貫通部(選定対象貫通部:28 個)(表 3-2 参照)をドライウェル貫通部とサプ レッションチェンバ貫通部に分類し、それぞれ外径が最大の貫通部のうち、設置位置が最 高の貫通部を選定する(X-81 及び X-241)。最大外径の貫通部を選定する理由は、大口径 配管は小口径配管と比較して荷重が大きくなるためである。また、最高設置位置の貫通部 を選定する理由は、貫通部の設置位置が高いほど地震力に対して大きな加速度が生じるた めである。

配管貫通部の一覧表を表 3-1,具体的な選定フローを図 3-1 に示す。また,選定対象 貫通部の一覧表を表 3-2,代表配管貫通部の諸元を表 3-3 に示す。

	貫通如			設置高	貫通配	スリー	险从	選定
No.	但 一 一 一 一 一 一 一 一	貫通部形式	設置場所	さ[EL]	管外径	ブ外径	雨ケト	対象
	宙々			(mm)	(mm)	(mm)	上山	貫通部
1	X-10A	ベローズ付	ドライウェル				\bigcirc	
2	X-10D	ベローズ付	ドライウェル				1	
3	X-10B	ベローズ付	ドライウェル				1	
4	X-10C	ベローズ付	ドライウェル				1	
5	X-12A	ベローズ付	ドライウェル				1	
6	X-12B	ベローズ付	ドライウェル				1	
7	Х-33	ベローズ付	ドライウェル				1	
8	X-31A	ベローズ付	ドライウェル				1	
9	X-31B	ベローズ付	ドライウェル				1	
10	Х-34	ベローズ付	ドライウェル				1	
11	X-31C	ベローズ付	ドライウェル				1	
12	X-32A	ベローズ付	ドライウェル				1	
13	X-32B	ベローズ付	ドライウェル				1	
14	Х-35	ベローズ付	ドライウェル				1	
15	X-50	ベローズ付	ドライウェル				1	
16	Х-38	ベローズ付	ドライウェル				1	
17	Х-39	ベローズ付	ドライウェル				1	
18	X-11	ベローズ付	ドライウェル				1	
19	X-91	直結型	ドライウェル				2	
20	X-80	直結型	ドライウェル					1
21	X-81	直結型	ドライウェル					2
	N 001	十个王	サプレッション					0
22	X-201	但結望	チェンバ					3
0.0	V 000	本作型	サプレッション					4
23	X-202	但結望	チェンバ					4
0.4	V 000	本作型	サプレッション					-
24	X-203	但結望	チェンバ					5
95	V 000	古公刑	サプレッション					C
25	X-208	但稻空	チェンバ					6
9.0	V 010	古公开	サプレッション					7
20	λ-210	但稻望	チェンバ					(
97	V-940	古红刑	サプレッション					0
21	Λ-240	旦和空	チェンバ					0

表 3-1 配管貫通部一覧表 (1/6)

	표 ,조유			設置高	貫通配	スリー	17人 石	選定
No.	貝迪部	貫通部形式	設置場所	さ[EL]	管外径	ブ外径	际外	対象
	番方			(mm)	(mm)	(mm)	埋田	貫通部
90	V 941	古灶刑	サプレッション					0
20	Λ-241	但相望	チェンバ					9
29	X-90A	直結型	ドライウェル				2	
30	X-90B	直結型	ドライウェル				2	
31	X-92	直結型	ドライウェル				2	
20	V-250	古红刑	サプレッション				0	
32	A-230	但相望	チェンバ				4	
22	V-251	古红刑	サプレッション				0	
55	A 201	但相坐	チェンバ					
24	V-252	古红刑	サプレッション				0	
34	Λ-200	但相望	チェンバ				2	
25	V-254	古红刑	サプレッション				0	
- 55	Λ-234	但相望	チェンバ				2	
26	V OFF	古灶刑	サプレッション				0	
30	X-720	但稻望	チェンバ				4	
27	V DEG	古灶刑	サプレッション				0	
37	X-290	但稻望	チェンバ				2	
38	X-30A	直結型	ドライウェル					10
39	X-30B	直結型	ドライウェル					11
40	X-61	直結型	ドライウェル					12
41	X-62	直結型	ドライウェル					13
42	X-106	直結型	ドライウェル				2	
43	X-110	直結型	ドライウェル				2	
44	X-111	直結型	ドライウェル				2	
4 -	N. 004	十个王	サプレッション					1.4
45	X-204	但結型	チェンバ					14
10	W 005	一大なと声明	サプレッション					
46	X-205	 但 結 型	チェンバ					15
			サプレッション					1.0
47	X-209	直結型	チェンバ					16
			サプレッション					
48	X-213	直結型	チェンバ					17
			サプレッション					
49	X-233	直結型	チェンバ					18

表 3-1 配管貫通部一覧表 (2/6)

No.	貫通部 番号	貫通部形式	設置場所	設置高 さ[EL]	貫通配 管外径	スリー ブ外径	除外 理由	選定 対象
50	X-505A	直結型	サプレッション チェンバ	(mm)	(mm)	(mm)	2	具通部
51	X-505B	直結型	サプレッション チェンバ				2	
52	X-505C	直結型	サプレッション チェンバ				2	
53	X-505D	直結型	サプレッション チェンバ				2	
54	X-98	直結型	ドライウェル					19
55	Х-99	直結型	ドライウェル					20
56	X-107	直結型	ドライウェル				2	
57	X-214	直結型	サプレッション チェンバ					21
58	X-242A	直結型	サプレッション チェンバ					22
59	X-242B	直結型	サプレッション チェンバ					23
60	X-82A	直結型	ドライウェル					24
61	X-82B	直結型	ドライウェル					25
62	X-200A	直結型	サプレッション チェンバ					26
63	X-200B	直結型	サプレッション チェンバ					27
64	X-212A	直結型	サプレッション チェンバ					28
65	X-215	直結型	サプレッション チェンバ				3	
66	Х-69	直結型	ドライウェル				3	
67	X-60	二重管型	ドライウェル				4	
68	X-67	二重管型	ドライウェル				4	
69	X-68A	二重管型	ドライウェル				4	
70	X-68B	二重管型	ドライウェル				4	
71	X-68C	二重管型	ドライウェル				4	

表 3-1 配管貫通部一覧表 (3/6)

	世兴圣中四			設置高	貫通配	スリー	际人	選定
No.	貝迪部	貫通部形式	設置場所	さ[EL]	管外径	ブ外径	ほう ト 田山	対象
	留万			(mm)	(mm)	(mm)	理田	貫通部
72	X-22	二重管型	ドライウェル				4	
73	Х-83	二重管型	ドライウェル				4	
74	X-84	二重管型	ドライウェル				4	
75	X-13A	二重管型	ドライウェル				4	
76	X-13B	二重管型	ドライウェル				4	
77	X-14	計装用	ドライウェル				3	
78	X-130	計装用	ドライウェル				3	
79	X-131	計装用	ドライウェル				3	
80	X-132	計装用	ドライウェル				3	
81	X-133	計装用	ドライウェル				3	
82	X-134	計装用	ドライウェル				3	
83	X-137	計装用	ドライウェル				3	
84	X-138A	計装用	ドライウェル				3	
85	X-141A	計装用	ドライウェル				3	
86	X-146B	計装用	ドライウェル				3	
87	X-170	計装用	ドライウェル				3	
88	X-135	計装用	ドライウェル				3	
89	X-136	計装用	ドライウェル				3	
90	X-138B	計装用	ドライウェル				3	
91	X-140	計装用	ドライウェル				3	
92	X-141B	計装用	ドライウェル				3	
93	X-145A	計装用	ドライウェル				3	
94	X-145B	計装用	ドライウェル				3	
95	X-145C	計装用	ドライウェル				3	
96	X-145D	計装用	ドライウェル				3	
97	X-145E	計装用	ドライウェル				3	
98	X-145F	計装用	ドライウェル				3	
99	X-146D	計装用	ドライウェル				3	
100	X-164A	計装用	ドライウェル				3	
101	X-183	計装用	ドライウェル				3	
102	X-164B	計装用	ドライウェル				3	
103	X-180	計装用	ドライウェル				23	
104	X-181	計装用	ドライウェル				23	

表 3-1 配管貫通部一覧表 (4/6)

	田 、宝 平1			設置高	貫通配	スリー	12수 서	選定
No.	貝迪部	貫通部形式	設置場所	さ[EL]	管外径	ブ外径	际外	対象
	番方			(mm)	(mm)	(mm)	理田	貫通部
105	X-182	計装用	ドライウェル		-		3	
106	X-162A	計装用	ドライウェル				23	
107	X-162B	計装用	ドライウェル				23	
108	X-36	計装用	ドライウェル				3	
109	X-142A	計装用	ドライウェル				3	
110	X-142B	計装用	ドライウェル				3	
111	X-142C	計装用	ドライウェル				3	
112	X-142D	計装用	ドライウェル				3	
113	X-143A	計装用	ドライウェル				3	
114	X-143B	計装用	ドライウェル				3	
115	X-143C	計装用	ドライウェル				3	
116	X-143D	計装用	ドライウェル				3	
117	X-144A	計装用	ドライウェル				3	
118	X-144D	計装用	ドライウェル				3	
119	X-146A	計装用	ドライウェル				3	
120	X-160	計装用	ドライウェル				3	
121	X-144B	計装用	ドライウェル				3	
122	X-144C	計装用	ドライウェル				3	
123	X-146C	計装用	ドライウェル				3	
124	X-147	計装用	ドライウェル				3	
125	X-165	計装用	ドライウェル				3	
196	V_919D	封准田	サプレッション				0	
120	A-212D	司表用	チェンバ				3	
127	X-20A	計装用	ドライウェル				3	
128	X-20B	計装用	ドライウェル				3	
129	X-20C	計装用	ドライウェル				3	
130	X-20D	計装用	ドライウェル				3	
131	X-23A	計装用	ドライウェル				23	
132	X-23B	計装用	ドライウェル				23	
133	X-23C	計装用	ドライウェル				23	
134	X-23D	計装用	ドライウェル				23	
135	X-23E	計装用	ドライウェル				23	
136	X-21A	計装用	ドライウェル				3	
137	X-21B	計装用	ドライウェル				3	

表 3-1 配管貫通部一覧表 (5/6)

No.	貫通部 番号	貫通部形式	設置場所	設置高 さ[EL] (mm)	貫通配 管外径 (mm)	スリー ブ外径 (mm)	除外 理由	選定 対象 貫通部
138	X-21C	計装用	ドライウェル				3	
139	X-21D	計装用	ドライウェル				3	
140	X-320A	計装用	サプレッション チェンバ				3	
141	X-320B	計装用	サプレッション チェンバ				3	
142	X-322C	計装用	サプレッション チェンバ				3	
17	X-322D	計装用	サプレッション チェンバ				3	
144	X-321A	計装用	サプレッション チェンバ				3	
145	X-321B	計装用	サプレッション チェンバ				3	
146	X-322A	計装用	サプレッション チェンバ				3	
147	X-322B	計装用	サプレッション チェンバ				3	
148	X-322E	計装用	サプレッション チェンバ				3	
149	X-322F	計装用	サプレッション チェンバ				3	
150	X-332A	計装用	サプレッション チェンバ				3	
151	X-332B	計装用	サプレッション チェンバ				3	
152	X-340	計装用	サプレッション チェンバ				3	
153	X-350	計装用	サプレッション チェンバ				23	
154	X-351	計装用	サプレッション チェンバ				23	

表 3-1 配管貫通部一覧表 (6/6)

注記*1:機器搬入口及びエアロック除く

*2:除外理由は4.項参照

*3:同径に直結型がある場合

図 3-1 代表配管貫通部選定フロー

No	貫通部	貫通部	外径	厚さ	設置高さ[EL]	備老
NO.	番号	型式	(mm)	(mm)	(mm)	1月 ~つ
1	X-80	直結型				
						最大外径貫通部
2	X-81	直結型				の中で
						最高設置位置
3	X-30A	直結型				
4	X-30B	直結型				
5	X-61	直結型				
6	X-62	直結型				
7	Х-98	直結型				
8	Х-99	直結型				
9	X-82A	直結型				
10	X-82B	直結型				

表 3-2(1/2) 選定対象配管貫通部(ドライウェル)

N	貫通部	貫通部	外径	厚さ	設置位置	設置高さ[EL]	准步
NO.	番号	型式	(mm)	(mm)	角度*1	(mm)	佣石
1	X-201	直結型					
2	X-202	直結型	r				
3	X-203	直結型					
4	X-208	直結型					
5	X-210	直結型					
6	X-240	直結型					
7	X-241	直結型					最大外径貫通部 の中で 最高設置位置
8	X-204	直結型					
9	X-205	直結型					
10	X-209	直結型					
11	X-213	直結型					
12	X-233	直結型					
13	X-214	直結型					
14	X-242A	直結型					
15	X-242B	直結型					
16	X-200A	直結型					
17	X-200B	直結型					
18	X-212A	直結型					

表 3-2(2/2) 選定対象配管貫通部(サプレッションチェンバ)

注記*1:サプレッションチェンバ小円断面の上部を0°とした設置位置角度

*2:設置位置角度からの水平方向へのオフセット距離(単位:mm)

貫通部	田次	スリーブ主要	要寸法(mm)	++水	設置高さ	路 中 王 子	
番号	用述	外径	厚さ	1/1 1/1	[EL] (mm)	进止理田	
X-81	ドライウール					最大外径	
	トノイリエル 協定 (世)を)			STS42		貫通部の中で	
	换XL(护XL)					最高設置位置	

表 3-3(1/2) 代表配管貫通部諸元(ドライウェル)

表 3-3(2/2) 代表配管貫通部諸元(サプレッションチェンバ)

貫通部 番号	用途	スリーブ主要	要寸法(mm)		設置位置	
		外径	厚さ	材料	角度 [*]	選定理由
X-241	サプレッショ					最大外径
	ンチェンバ換			STS42		貫通部の中で
	気(排気)					最高設置位置

注記*:サプレッションチェンバ小円断面の上部を0°とした設置位置角度

3.2 電気配線貫通部

全ての電気配線貫通部(26個)の中で,地震慣性力(貫通部質量×震度×重力加速度) が最も大きい貫通部を選定する(X-100A~D)。

電気配線貫通部の一覧表を表 3-4,具体的な選定フローを図 3-2 に示す。また,代表 貫通部の諸元を表 3-5 に示す。

なお、電気配線貫通部は接続されている電気配線から有意な荷重が加わらないため、貫 通部単体の解析モデルを用いて固有値解析及び応力算出を実施している。

No.	貫通部 番号	設置場所	スリーブ 口径	固有振動数*1 (Hz)	貫通部質量 (kg)	設置高さ[EL] (mm)	震度*2	地震慣性力* ³ (×10 ³ N)	代表貫通部
1	X-100A	ドライウェル					2.84		0
2	X-100B	ドライウェル					2.84		\bigcirc
3	X-100C	ドライウェル					2.84		0
4	X-100D	ドライウェル					2.84		0
5	X-101A	ドライウェル					2.18		
6	X-101B	ドライウェル					2.18		
7	X-101C	ドライウェル					2.18		
8	X-101D	ドライウェル					2.19		
9	X-102A	ドライウェル					2.20		
10	X-102B	ドライウェル					2.20		
11	X-102C	ドライウェル					2.20		
12	X-102D	ドライウェル					2.19		
13	X-102E	ドライウェル					3.73		
14	X-103A	ドライウェル					2.20		
15	X-103B	ドライウェル					2. 20		

表 3-4 電気配線貫通部一覧表 (1/2)

注記*1:全ての貫通部で水平方向は剛構造のため、鉛直方向の固有振動数を記載している。

*2:固有振動数における設計用床応答スペクトルI(基準地震動Ss)の鉛直方向の震度を示す。

*3:貫通部質量×震度×重力加速度にて算出した地震慣性力を示す。

No.	貫通部 番号	設置場所	スリーブ 口径	固有振動数*1 (Hz)	貫通部質量 (kg)	設置高さ[EL] (mm)	震度*2	地震慣性力* ³ (×10 ³ N)	代表貫通部
16	X-103C	ドライウェル					2.17		
17	X-104A	ドライウェル					2.18		
18	X-104B	ドライウェル					2.18		
19	X-104C	ドライウェル					2.20		
20	X-104D	ドライウェル					2.20		
21	X-105A	ドライウェル					3.73		
22	X-105B	ドライウェル					3.73		
23	X-105C	ドライウェル					3.73		
24	X-105D	ドライウェル					1.91		
25	X-300A	サプレッション チェンバ					4.74		
26	X-300B	サプレッション チェンバ					4.74		

表 3-4 電気配線貫通部一覧表 (2/2)

注記*1:全ての貫通部で水平方向は剛構造のため、鉛直方向の固有振動数を記載している。

*2:固有振動数における設計用床応答スペクトルI(基準地震動Ss)の鉛直方向の震度を示す。

*3:貫通部質量×震度×重力加速度にて算出した地震慣性力を示す。

*4:サプレッションチェンバ小円断面の上部を0°とした設置位置角度

17

図 3-2 代表電気配線貫通部選定フロー

貫通部	田冷	スリーブ主要	要寸法(mm)	十十六日	設置高さ	選定理由	
番号	用述	外径	厚さ	竹朴	[EL] (mm)		
X-100	再循環ポンプ			STS 49		地震慣性力が	
A∼D	動力			51542		最大	

表 3-5 代表電気配線貫通部諸元

4. 除外する貫通部及び部位の除外理由

代表選定対象から除外する貫通部の除外理由を下記に示す。

① ベローズ付配管貫通部

ベローズにより、系統の設計条件(温度・圧力)による変位及び地震による建物間相 対変位が吸収されるため、配管から作用する荷重は固定式に比べ小さくなる。なお、ベ ローズ付配管貫通部のベローズについては、別手法にて健全性の確認を行っている(評 価結果については、VI-3-3-7-1-19「配管貫通部ベローズ及びベント管ベローズの強度計 算書」参照)。

② 予備貫通部及びフランジ又はキャップ止め貫通部

予備貫通部,フランジ又はキャップ止め貫通部については,接続配管がないこと及び 重量物が取り付く構造でないことから,貫通部に有意な配管反力が生じないため,評価 対象外とする。

③ 貫通配管 50A 以下貫通部, 計装配管貫通部

小口径配管からの荷重は大口径配管の荷重と比較して相対的に小さくなる。また,計 装配管は大口径の配管貫通部であっても小口径の配管の集合であり,相対変位により発 生する配管貫通部への荷重は有意でないと考えられる。

④ 二重管型貫通部(同径に直結型がある場合)

二重管型貫通部については,スリーブ外径が等しい直結型貫通部に比べ配管内の流体 による温度・圧力の影響が小さくなるため,同径に直結型貫通部がある場合は評価対象 外とする。

5. 耐震計算書及び強度計算書に記載する代表貫通部について

配管貫通部については,表 3-2の結果から X-81及び X-241 を評価配管貫通部に選定する。電気配線貫通部については,表 3-7の結果から X-100A~D を評価電気配線貫通部に選定する。

以上の選定結果に基づき,貫通部番号 X-81 及び X-241 のスリーブ及び原子炉格納容器と スリーブとの結合部の評価結果をVI-2-9-2-11「配管貫通部の耐震性についての計算書」及 びVI-3-3-7-1-17「配管貫通部の強度計算書」,貫通部番号 X-100A~Dの原子炉格納容器とス リーブとの結合部の評価結果をVI-2-9-2-12「電気配線貫通部の耐震性についての計算書」 及びVI-3-3-7-1-20「電気配線貫通部の強度計算書」に記載している。

なお,配管貫通部の設計手法は添付資料-1,抽出した貫通部(28個)のうち,代表配管貫通部以外の配管貫通部の健全性については添付資料-2に示す。また,二重型貫通部の端板 及び代表配管貫通部の補強板取付部の耐震評価結果を添付資料-3に示す。

6. 添付資料

- 添付資料-1 配管貫通部の設計手法について
- 添付資料-2 配管貫通部の耐震評価における代表貫通部以外の健全性について
- 添付資料-3 二重型貫通部の端板及び代表貫通部の補強板取付部の耐震評価結果
- 添付資料-4 サプレッションチェンバのオーバル振動に関する影響検討

添付資料-1

配管貫通部の設計手法について

1. 概要

本資料は,配管貫通部の設計手法についてまとめるとともに,代表貫通部の選定における 接続配管の反力の扱いを示すものである。

2. 配管貫通部の評価手法

原子炉格納容器の配管貫通部の設計においては、JEAG4601-1987 6.6.2項(3) に記載のある貫通部の強度評価の考え方に基づき、許容荷重設定法(図1参照)を用いて軸 カPとモーメントM_c、軸力PとモーメントM_Lについてそれぞれ配管貫通部の設計荷重を 許容荷重領域として定め、この領域内に配管の地震荷重が収まるように配管のルート及びサ ポート設計を行う手法を従来から採用している。

これは、原子炉格納容器の設計時点で、多数ある接続配管のルート及びサポートの詳細設 計が完了しておらず、個々の配管の地震応答解析結果を揃えることが出来ないこと、また、 それらすべてを配管貫通部の入力地震荷重として考慮するのが現実的に困難なためである。

建設時工認における配管貫通部の耐震評価では、口径や設置位置等の観点から配管系の反 力により評価上厳しくなると想定される貫通部を代表に選定し、優先的に当該貫通部に接続 される配管の詳細設計(サポート設計含む)及び耐震解析を行った上で、得られた配管の地 震荷重に基づく貫通部の評価結果を代表的に記載するものとしている。

その他の配管貫通部については,前述した許容荷重設定法に基づき,配管側の地震荷重が 許容荷重領域内に収まるよう設計を行うことで,貫通部側の健全性を確保している。なお, 設計段階で配管側の地震荷重が許容荷重領域に収まりきらないことが確認される場合は,配 管ルートまたはサポートの再設計を行うか,貫通部側の詳細評価を追加で行うことで健全性 を確保している。

3. 補正工認の評価手法

代表貫通部の選定を行い,建設時と同様に代表貫通部について工認の耐震計算書を作成した。

また,その他の貫通部については,前述の許容荷重設定法(必要に応じて貫通部側の追加 の詳細評価を実施)により健全性を確認している。ここで,貫通部の耐震評価に用いる配管 からの地震荷重には,当該貫通部の接続配管について,その接続配管の耐震計算書と同じモ デルを用いて,貫通部と配管との取り合い部の反力及びモーメントを算出して用いている。

4. 補正工認の代表貫通部の選定における接続配管の反力の扱い

以上の背景から、本補正工認の配管貫通部の代表選定においては、代表選定段階で接続配 管の反力が全て揃わないため、反力の値を検討項目としていない。そのため、接続配管の反 力が大きくなる傾向にある口径及び設置高さを検討項目としている。

P:半径方向力, M_c:円周方向曲げモーメント, M_L:軸方向曲げモーメント
(b)許容荷重領域の例

図1 許容荷重設定法

添付資料-2

配管貫通部の耐震評価における代表貫通部以外の健全性について

1. 概要

本資料は,配管貫通部の耐震評価において,代表貫通部以外の選定対象貫通部の健全性 について説明するものである。

2. 許容荷重領域による評価

代表貫通部以外の貫通部の健全性の確認として,各貫通部の許容荷重領域を算出し,各 貫通部の配管反力が許容荷重領域内となっていることを確認する。配管貫通部の構造概要 を図1に示す。

配管貫通部の許容荷重領域は、系統配管から貫通部に加わる配管反力の許容領域であ り、貫通部軸方向軸力P,貫通部軸直角鉛直方向モーメントM_L及び貫通部軸直角水平方 向モーメントM_Cについて、以下の式(1)の考え方に基づき算出される。

配管反力による応力 ≦ 許容値-原子炉格納容器に作用する荷重による応力・・・(1)

許容荷重領域で確認する対象貫通部及び評価結果を表 1, 図 2~図 27 に示す。

3. 詳細評価

代表貫通部及び2項の許容荷重領域による評価において領域外となった貫通部において は、別途詳細評価(応力評価及び簡易弾塑性解析)を実施し、健全性を確認する。なお、 評価部位は図1に示すスリーブ、原子炉格納容器とスリーブとの結合部、補強板取付部と する。

詳細評価による確認結果を表2に示す。なお、各貫通部について、応力分類ごとに最も 評価が厳しくなる評価部位のみを記載する。また、簡易弾塑性解析による疲労評価の確認 結果を表3に示す。

4. 結論

2項の許容荷重領域による評価及び3項の詳細評価により,代表貫通部同様に代表貫通部 以外の貫通部について耐震性を有することを確認した。

原子炉格納容器外側

注:評価部位を下線部で示す。

雪 活 如 死 旦	許容荷重領	許容荷重領域評価					
貝迪即留方	一次応力	一次+二次応力					
X-80	0	×					
X-30A	\bigcirc	×					
X-30B	0	0					
X-61	0	×					
X-62	\bigcirc	×					
X-98	0	0					
X-99	0	0					
X-82A	0	×					
X-82B	0	0					

表1(1/2) 対象貫通部(ドライウェル)

表1(2/2) 対象貫通部(サプレッションチェンバ)

世况如平日	許容荷	重領域評価
貝迪部留亏	番号 一次応力)1)2)2)3)3)3)3)3)3)3)4)5)9)3)4)5)9)3)1)3)1)1)2)3)3)1)3)1)1)2)3)1)1)2)3)1)1)2)3)1)1)2)3)1)1)2)1)2)3)1)1)2)3)1)1)2)1)1)2)1)1)1)1)1)1)1)1)1)1	一次+二次応力
X-201	\bigcirc	×
X-202	\bigcirc	×
X-203	\bigcirc	×
X-208	\bigcirc	×
X-210	\bigcirc	×
X-240	\bigcirc	×
X-204	\bigcirc	×
X-205	\bigcirc	×
X-209	\bigcirc	×
X-213	\bigcirc	×
X-233	\bigcirc	\bigcirc
X-214	\bigcirc	\bigcirc
X-242A	\bigcirc	×
X-242B	0	0
X-200A	×	×
X-200B	×	×
X-212A	\bigcirc	0

				評価	結果	<u> </u>	
貫通部番号	応力分類	評価部位	許容応力状態	発生値	許容値	竹皮 (許宏庙 / 珠井庙)	判定
				MPa	MPa	(計谷順/ 光生順)	
X-80		医乙烷物体皮胆胆汁		430	501	1.16	\bigcirc
X-30A				356	501	1.40	\bigcirc
X-61	一次+二次応力	尿丁炉俗約谷菇酮と	IV A S	472	501	1.06	0
X-62		スリーノをの結合部		726	501	0.69	×
X-82A				354	501	1. 41	0

表 2 詳細評価による確認結果(1/3)

				評価	結果	公 庄	
貫通部番号	応力分類	評価部位	許容応力状態	発生値	許容値	俗皮 (新宏樹 / 致丹樹)	判定
				MPa	MPa	(計谷順/ 光生順)	
V 201			III A S *	690	501	0.72	×
X-201			V A S	690	501	0.72	×
V 202	応力分類 一次+二次応力		III A S *	732	501	0.68	×
X-202			V A S	732	501	0.68	×
V 202			III ∧ S *	696	501	0.71	×
X-203		補強板取付部	V A S	696	501	0.71	×
N 000			III ∧ S *	630	501	0.79	×
λ=208			V A S	630	501	0.79	×
V-210	一次+二次応力		III A S [∗]	668	501	0.75	×
X-202 X-203 X-208 X-210 X-240			V A S	668	501	0.75	×
V 940			III A S *	606	501	0.82	×
λ-240			V A S	606	501	0.82	×
			III A S	654	501	0.76	×
X-204			IV A S	760	501	0.65	×
			V A S	760	501	0.65	×
V 205			III A S *	664	501	0.75	×
A-205			V A S	664	501	0.75	×

表 2 詳細評価による確認結果(2/3)

注記*: SsとSd*を包絡した耐震条件で評価を実施しているため、許容応力状態IVASの評価を省略する。

27

				評価	結果	松库	
貫通部番号	応力分類	評価部位	許容応力状態	発生値	許容値	竹皮 (新宏樹 / 致史樹)	判定
			評価部位評容応力状態評価結果 発生値 第容値 MPa裕度 (許容値/発生値) MPa MPaMPa Max 501 1.01 Max Max 501 1.01 Max Max 501 1.01 Max 654 501 0.76 Max 654 501 0.76 Max 654 501 0.76 Max 528 501 0.94 Max 528 501 0.94 Max 528 501 0.94 Max 528 501 0.94 Max Max 251 490 1.95 Max Max 642 501 0.78				
V 200			III ∧ S *	494	501	1.01	\bigcirc
X-209			V A S	494	501	1.01	\bigcirc
X-213	一次+二次応力		III ∧ S *	654	501	0.76	×
		1115年112月21日前	V A S	654	501	0.76	×
X-242A			III ∧ S *	528	501	0.94	×
			V A S	528	501	0.94	×
	一次膜応力+	油油 垢而什如	VAS	251	400	1 05	\cap
X-2004	一次曲げ応力	1117年12月21日1	V A S	201	490	1. 95	U
X-200A	→妝⊥→妝穴力	原子炉格納容器胴と	III ∧ S *	642	501	0.78	×
	·次十二次応力	スリーブとの結合部	V A S	642	501	0.78	×
	一次膜応力+	捕命权取付如	VAS	250	400	1.06	\bigcirc
¥-2008	一次曲げ応力	(1日17年7月7月7日)	VAS	200	490	1. 90	
X-200B	→妝⊥→妝穴力	原子炉格納容器胴と	III ∧ S *	646	501	0.77	×
	が <u>↓</u> び/0/1	スリーブとの結合部	V A S	646	501	0.77	×

表 2 詳細評価による確認結果(3/3)

注記*: SsとSd*を包絡した耐震条件で評価を実施しているため、許容応力状態IVASの評価を省略する。

貫通部 番号	許容応力 状態	S _n (MPa)	K e	S _p (MPa)	Sℓ (MPa)	Sℓ' (MPa)	N a (回)	N 。 (回)	疲労累積 係数 N c∕N a	備考
X-62	IV A S	726							0.994	
V 901	III A S *	690							0.640	
λ-201	V A S	690							0.351	
V 909	III A S *	732							0.838	
λ-202	V A S	732							0.459	
V 000	III A S *	696							0.664	
Λ-203	V A S	696							0.364	
V_200	III A S *	630							0.371	
Λ-200	V A S	630							0.206	
V_910	III A S *	668							0.535	
Λ-210	V A S	668							0.297	
V-240	III A S *	606							0.286	
Λ 240	V A S	606							0.159	
	III ∧ S	654							0.467	
X-204	IV A S	760							0.504	
	V A S	760							0.552	

表 3 疲労評価結果(1/2)

注:設計・建設規格 PVB-3140 により運転状態Ⅰ, Ⅱにおいて疲労解析を要しないことを確認しているため,疲労累積係数は地震動のみによる疲労累 積係数とする。

注記*:SsとSd*を包絡した耐震条件で評価を実施しているため、許容応力状態IVASの評価を省略する。

29

貫通部 番号	許容応力 状態	S _n (MPa)	K e	S p (MPa)	S _@ (MPa)	S _ℓ ' (MPa)	N a (回)	N c (回)	疲労累積 係数 N c∕N a	備考
V-205	III A S *	664							0.515	
A 200	V A S	664							0.286	
V 010	Ⅲ A S *1	654							0.510	
Λ-213	V A S	654							0.260	
V 9494	III A S *1	528							0.145	
$\Lambda^{-}242A$	V A S	528							0.081	
V 9004	III A S ^{*1}	642							0.904	
X-200A	V A S	642							0.495	
V 900D	III A S ^{*1}	646							0.935	
A-200B	V A S	646							0.512	

表 3 疲労評価結果(2/2)

30

K。: 弾塑性解析に用いる繰返しピーク応力強さの補正係数

S_P : 地震荷重のみにおける一次+二次+ピーク応力の応力差範囲

S₂ : 繰返しピーク応力強さ

- S₂':補正繰返しピーク応力強さ*2
- N_a :許容繰り返し回数
- N。 : 等価繰り返し回数
- Eo : 縦弾性係数
- E:運転温度の縦弾性係数

注:設計・建設規格 PVB-3140 により運転状態Ⅰ, Ⅱにおいて疲労解析を要しないことを確認しているため,疲労累積係数は地震動のみによる疲労累 積係数とする。

- 注記*1:SsとSd*を包絡した耐震条件で評価を実施しているため、許容応力状態WASの評価を省略する。
 - *2: S_{ℓ} に (E_o/E) を乗じた値である
 - $E_{\rm O} = 2.07 \times 10^5 \, \text{MPa}$
 - E = 1.98×10⁵ MPa (サプレッションチェンバ側 (X-213 以外) ⅢAS及びIVAS:104℃)
 - E = 1.93×10⁵ MPa (ドライウェル側 ⅢAS及びWAS:171℃)
 - E = 1.92×10⁵ MPa (サプレッションチェンバ側 (X-213) ⅢAS:184℃)
 - $E = 1.91 \times 10^5$ MPa (ドライウェル側及びサプレッションチェンバ側 VAS: 200°C)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図2 許容荷重領域による確認結果(貫通部 No. X-80)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図2 許容荷重領域による確認結果(貫通部 No. X-80)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図3 許容荷重領域による確認結果(貫通部 No. X-30A)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図3 許容荷重領域による確認結果(貫通部 No. X-30A)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図4 許容荷重領域による確認結果(貫通部 No. X-30B)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図4 許容荷重領域による確認結果(貫通部 No. X-30B)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図5 許容荷重領域による確認結果(貫通部 No. X-61)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図5 許容荷重領域による確認結果(貫通部 No. X-61)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図6 許容荷重領域による確認結果(貫通部 No. X-62)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図6 許容荷重領域による確認結果(貫通部 No. X-62)(その2:縦軸P-横軸M_L)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図7 許容荷重領域による確認結果(貫通部 No. X-98)(その1:縦軸P-横軸Mc)

下図:一次+二次応力に対する許容荷重領域

ML [MN⋅mm]

0 L

図7 許容荷重領域による確認結果(貫通部 No. X-98)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図8 許容荷重領域による確認結果(貫通部 No. X-99)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図8 許容荷重領域による確認結果(貫通部 No. X-99)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図9 許容荷重領域による確認結果(貫通部 No. X-82A)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図9 許容荷重領域による確認結果(貫通部 No. X-82A)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図10 許容荷重領域による確認結果(貫通部No.X-82B)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図10 許容荷重領域による確認結果(貫通部No.X-82B)(その2:縦軸P-横軸ML)

図11 許容荷重領域による確認結果(貫通部 No. X-201)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図11 許容荷重領域による確認結果(貫通部 No. X201)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図12 許容荷重領域による確認結果(貫通部No.X-202)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図12 許容荷重領域による確認結果(貫通部No.X-202)(その2:縦軸P-横軸ML)

下図:一次+二次応力に対する許容荷重領域

図13 許容荷重領域による確認結果(貫通部No.X-203)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図13 許容荷重領域による確認結果(貫通部No.X-203)(その2:縦軸P-横軸ML)

下図:一次+二次応力に対する許容荷重領域

図14 許容荷重領域による確認結果(貫通部No.X-208)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図14 許容荷重領域による確認結果(貫通部No.X-208)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図15 許容荷重領域による確認結果(貫通部No.X-210)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図15 許容荷重領域による確認結果(貫通部No.X-210)(その2:縦軸P-横軸ML)

図16 許容荷重領域による確認結果(貫通部No.X-240)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図16 許容荷重領域による確認結果(貫通部No.X-240)(その2:縦軸P-横軸ML)

下図:一次+二次応力に対する許容荷重領域

図17 許容荷重領域による確認結果(貫通部 No. X-204)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図17 許容荷重領域による確認結果(貫通部 No. X-204)(その2:縦軸P-横軸ML)

下図:一次+二次応力に対する許容荷重領域

図18 許容荷重領域による確認結果(貫通部No.X-205)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図18 許容荷重領域による確認結果(貫通部No.X-205)(その2:縦軸P-横軸ML)

図19 許容荷重領域による確認結果(貫通部No.X-209)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図19 許容荷重領域による確認結果(貫通部No.X-209)(その2:縦軸P-横軸ML)

図 20 許容荷重領域による確認結果(貫通部 No. X-213)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 20 許容荷重領域による確認結果(貫通部 No. X-213)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 21 許容荷重領域による確認結果(貫通部 No. X-233)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 21 許容荷重領域による確認結果(貫通部 No. X-233)(その2:縦軸P-横軸ML)

下図:一次+二次応力に対する許容荷重領域

図 22 許容荷重領域による確認結果(貫通部 No. X-214)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 22 許容荷重領域による確認結果(貫通部 No. X-214)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 23 許容荷重領域による確認結果(貫通部 No. X-242A)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 23 許容荷重領域による確認結果(貫通部 No. X-242A)(その2:縦軸P-横軸M_L)

下図:一次+二次応力に対する許容荷重領域

図 24 許容荷重領域による確認結果(貫通部 No. X-242B)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 24 許容荷重領域による確認結果(貫通部 No. X-242B)(その2:縦軸P-横軸ML)

図 25 許容荷重領域による確認結果(貫通部 No. X-200A)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 25 許容荷重領域による確認結果(貫通部 No. X-200A)(その2:縦軸P-横軸ML)

図 26 許容荷重領域による確認結果(貫通部 No. X-200B)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 26 許容荷重領域による確認結果(貫通部 No. X-200B)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 27 許容荷重領域による確認結果(貫通部 No. X-212A)(その1:縦軸P-横軸Mc)

下図:一次+二次応力に対する許容荷重領域

図 27 許容荷重領域による確認結果(貫通部 No. X-212A)(その2:縦軸P-横軸ML)

1. 概要

本添付資料は,配管貫通部の耐震評価において,応力評価点としていない二重管型配管 貫通部の端板が耐震評価における応力評価点に包絡されることと,代表貫通部の補強板取 付部に対する健全性について確認したものである。

2. 端板評価

原子炉格納容器配管貫通部の耐震計算書による応力評価点は,配管反力による応力と原子 炉格納容器本体(胴)から受ける応力の合算値により比較的厳しい評価となる原子炉格納容 器とスリーブとの結合部を既工認から応力評価点としているが,図1に示す二重管型配管貫 通部の端板については原子炉格納容器とスリーブとの結合部と比較した評価結果から包絡 されると整理し評価を省略している。ここでは,端板に対する応力評価を実施し,原子炉格 納容器とスリーブとの結合部の評価に包絡されることを説明する。なお,端板評価に当たっ ては代表貫通部を選定し評価を実施する。代表貫通部の選定として,端板を有する二重管型 配管貫通部のうち,有意な荷重が加わらないと考えられる貫通配管が50A以下の配管貫通部 を除外し,スリーブ外径が最大かつ,貫通部設置位置の最も高い貫通部を選定する。これら の結果から X-60 を端板評価の代表貫通部とする。また,端板の評価は,端板が円板形状で あることから,参照図書(1)に記載の円板へ生じる応力算出式を用いて応力評価を実施した。 代表貫通部による端板の評価結果を表1に示す。

表1に示す端板の評価結果から、代表貫通部について裕度があることを確認した。また、 応力評価点である原子炉格納容器とスリーブとの結合部より裕度が高く包絡されることか ら、既工認同様、原子炉格納容器配管貫通部の耐震計算書において端板評価は省略する。な お、原子炉格納容器配管貫通部において、原子炉格納容器とスリーブとの結合部が最も裕度 が厳しく、原子炉格納容器とスリーブとの結合部の評価により他の部位についても包絡でき ると考えるが、既工認同様、原子炉格納容器とスリーブとの結合部及びスリーブを応力評価 点とする。

3. 補強板取付部評価

配管貫通部の応力評価点は、建設時においてモデルプラントと同様にスリーブ及び原子 炉格納容器とスリーブとの結合部を応力評価点としており、図2に示す補強板取付部を応 力評価点としていない。ただし、設計評価において、建設時より補強板取付部を評価し、 健全性を確認している。今回工認の代表貫通部である X-81 及び X-241 についても補強板取 付部に対する健全性を確認しており、確認結果を表2及び表3に示す。

図2 直結型配管貫通部の形状

	設置高さ スリーブ					評価結果		公庄		
貫通部番号	[EL]	外径	応力評価点	応力分類	許容応力状態	発生値	許容値	俗皮 (新宏斌 / 珠史斌)	判定	備考
	(mm)	(mm)			-	MPa	MPa	(計谷恒/光生恒)		
			原子炉格納容器							
V CO			とスリーブとの		W C	244	501	2.05	\bigcirc	
X-60			結合部	一伙十二伙心力	IV A S					
			端板			148	348	2.35	0	

表1 X-60 の端板評価結果

貫通部番号	設置高さ [FI](mm)	マリーブ	応力評価点			評価結果				
	[LL](hill) 又は	外径		応力分類	許容応力 状態	発生値	許容値	裕度 (許容値/発生値)	判定	備考
	設置位置 角度*	(mm)				MPa	MPa			
X-81			<u> </u>		W. C	368	501	1.36	0	代表貫通部
X-241			<i>佣强</i> 恢取付部	一伙十二伙心刀	IVAS	850	501	0.58	×	代表貫通部

表 2 X-81 及び X-241 の補強板取付部の評価結果

注記*:サプレッションチェンバ小円断面の上部を0°とした設置位置角度

表3 X-241の補強板取付部の疲労評価結果

貫通部番号	S _n	V	S _p	Sℓ	S _ℓ '	N a	N _c	疲労累積係数	供卖
	(MPa)	K e	(MPa)	(MPa)	(MPa)	(回)	(回)	N c / N a	佩ろ
X-241	850							0.811	

K。: 弾塑性解析に用いる繰返しピーク応力強さの補正係数

S_P:地震荷重のみにおける一次+二次+ピーク応力の応力差範囲

- S₂ :繰返しピーク応力強さ
- S₂':補正繰返しピーク応力強さ*
- N_a :許容繰り返し回数
- N。 : 等価繰り返し回数
- Eo :縦弾性係数
- 8 E :運転温度の縦弾性係数

注:設計・建設規格 PVB-3140 により運転状態Ⅰ, Ⅱにおいて疲労解析を要しないことを確認しているため,疲労累積係数は地震動のみによる疲労累

<mark>積係数とする。</mark>

注記*:S₀に(E₀/E)を乗じた値である

 $E_{O} = 2.07 \times 10^{5} \text{ MPa}$

 $E = 1.98 \times 10^5 \text{ MPa} (\text{IV}_{\text{A}} \text{ S} : 104^{\circ}\text{C})$

4. 結論

上記評価により,応力評価点としていない二重管型配管貫通部の端板が耐震評価におけ る応力評価点に包絡されることと,代表貫通部の補強板取付部に対する健全性について確 認した。

5. 参照図書

 Warren C. Young and Richard G. Budynas, "Roark' s Formulas for Stress and Strain", Seventh Edition (2002)

添付資料-4

<u>サプレッションチェンバのオーバル振動に関する影響検討</u>

1. 概要

島根2号機のサプレッションチェンバでは、3次元シェルモデルによる解析により、壁面 が花びら状に変形するオーバル振動が現れることを確認している。しかし、オーバル振動は 今回工認で用いる3次元はりモデルにおいて振動モードとして考慮できないため、オーバル 振動がサプレッションチェンバ及びサプレッションチェンバサポートの耐震評価に与える 影響については、補足-027-10-45「サプレッションチェンバ及びサプレッションチェンバサ ポートの耐震評価手法について」において検討している。

本添付資料では、サプレッションチェンバ接続配管及び配管貫通部について、サプレッションチェンバのオーバル振動を考慮した耐震条件においても耐震性を有することを確認する。

2. 解析モデル

本検討では、今回工認で用いるサプレッションチェンバの3次元はりモデルに代わり、3 次元シェルモデルを用いてサプレッションチェンバ接続配管及び配管貫通部の耐震評価を 行う。3次元シェルモデルのモデル諸元及び解析モデル図を表 2-1 及び図 2-1 に示す。な お、本3次元シェルモデルは補足-027-10-45「サプレッションチェンバ及びサプレッション チェンバサポートの耐震評価手法について」において用いる3次元シェルモデルと同様のモ デルである。

項	〔目	内容
	要素数	
モデル化	鋼製部	シェル要素:サプレッションチェンバ胴,補強リング,サプレッションチェンバサポート (ベース及びベースプレート以外) はり要素 :サプレッションチェンバサポート (ベース及びベース プレート)*
	内部水	・耐震解析用重大事故等時水位(EL 7049mm) ・NASTRAN の仮想質量法を適用

表 2-1 3次元シェルモデルのモデル諸元

注記*:サプレッションチェンバサポートのうち、シアキー構造より上部の部材については半 径方向に可動する構造であるが、半径方向に可動しないシアキー構造より下部の部材 (ベース及びベースプレート)は板厚方向の剛性をモデル化する目的ではり要素とす る。

図 2-1 3次元シェルモデル図

3. 配管評価

配管は、工事計画記載範囲である主配管のうちサプレッションチェンバの耐震条件を適用 しているモデルを評価対象とするが、胴エビ継部はオーバル振動の影響を受けにくいため、 胴エビ継部のみに支持点を持つ配管については、3次元はりモデルと3次元シェルモデルの 応答を比較し、3次元はりモデルの応答が大きくなる場合は影響検討の対象外とする。評価 対象の選定フローを図 3-1 に示す。

胴エビ継部における3次元はりモデルと3次元シェルモデルの加速度の比較結果を表3 -1に、変位の比較結果を表3-2に示す。胴エビ継部の加速度は、全ての質点において3 次元シェルモデルより3次元はりモデルが大きくなることを確認した。また、胴エビ継部の 変位は、底部、内側、外側においては全て3次元シェルモデルより3次元はりモデルが大き くなることを確認したが、頂部の一部で3次元はりモデルが3次元シェルモデル以下となる 結果となった。以上のことから、頂部以外の胴エビ継部のみに支持点を持つ配管については 影響検討の対象外とする。 評価対象の選定結果を表 3-3 に、サプレッションチェンバに接続される配管を分類した 以下4つのパターンの配置概要を図 3-2 に示す。なお、配管系に適用する条件の詳細は<mark>補</mark> 足-027-10-86「サプレッションチェンバに設置される機器及び配管に適用する設計用地震力 に関する補足説明資料」にて示す。また、補足-027-10-86「サプレッションチェンバに設置 される機器及び配管に適用する設計用地震力に関する補足説明資料」に記載のサプレッショ ンチェンバ接続配管のうちパターンA, B, Dに該当する配管を表 3-3 の選定対象とした。

- ・パターンA:原子炉建物内~サプレッションチェンバ貫通部
- ・パターンB:サプレッションチェンバ貫通部~サプレッションチェンバ内
- ・パターンC:原子炉格納容器内~ベント管貫通部
- ・パターンD:ベント管貫通部~サプレッションチェンバ内

サプレッションチェンバの耐震条件を適用する管について、オーバル振動を考慮した耐 震評価の条件設定について表 3-4 に、評価結果を表 3-5 に示す。表 3-5 に示すとおり、 オーバル振動を考慮した耐震条件においても耐震性を有することを確認した。なお、表 3 -5 においては、図 3-2 における配管パターン毎に算出応力と許容応力を踏まえ、評価上 厳しい箇所の結果について記載する。

加速度	3次元はりモデル			3次元シェルモデル				比率*		
抽出占	(mm/s²)				(mm/s^2)				(-)	r
1000	Х	Y	Z	位置	Х	Y	Z	Х	Y	Z
				頂部				0.53	0.41	0.52
				底部				0.28	0.45	0.24
Ū				内側				0.48	0.47	0.26
				外側				0.32	0.44	0.24
				頂部				0.45	0.39	0.56
\bigcirc				底部				0.33	0.42	0.26
4				内側				0.44	0.45	0.27
				外側				0.34	0.42	0.26
				頂部				0.39	0.40	0.63
3				底部				0.37	0.40	0.29
0				内側				0.41	0.44	0.30
				外側				0.37	0.39	0.29
				頂部				0.37	0.45	0.70
				底部				0.39	0.35	0.32
(4)				内側				0.41	0.45	0.33
				外側				0.38	0.36	0.32
				頂部				0.37	0.55	0.76
Ē				底部				0.41	0.29	0.35
0				内側				0.42	0.50	0.36
				外側				0.40	0.34	0.35

表 3-1 胴エビ継部における 3 次元はりモデルと 3 次元シェルモデルの加速度の比較結果

加速度抽出点

注記*:3次元シェルモデル/3次元はりモデルにて算出した結果を示す。

93

亦侍	3 }	次元はりモラ	デル		3次元:	シェルモデノ	rν		比率*	
<u>爱</u> 他 抽出占		(mm)				(mm)			(–)	
油田出	Х	Y	Z	位置	Х	Y	Z	Х	Y	Z
				頂部				0.86	0.62	0.88
				底部				0.44	0.69	0.25
Û				内側				0.79	0.52	0.33
				外側				0.48	0.58	0.47
				頂部				0.71	0.60	0.94
0				底部				0.52	0.66	0.27
2				内側				0.64	0.50	0.36
				外側				0.48	0.55	0.50
				頂部				0.60	0.61	1.03
0				底部				0.58	0.61	0.30
0				内側				0.52	0.53	0.39
				外側				0.50	0.52	0.56
				頂部				0.56	0.71	1.15
				底部				0.61	0.55	0.32
(4)				内側				0.48	0.64	0.42
				外側				0.52	0.51	0.62
				頂部				0.57	0.91	1.25
(F)				底部				0.64	0.47	0.35
0				内側				0.48	0.84	0.46
				外側				0.53	0.51	0.68

表 3-2 胴エビ継部における 3 次元はりモデルと 3 次元シェルモデルの変位の比較結果

94

注記*:3次元シェルモデル/3次元はりモデルにて算出した結果を示す。

表 3-3 評価対象の選定結果

No.	配管モデル	接続する サプレッシ ョンチェン バ貫通部	系統	図 3-2 におけ る配管 パター ン	図 3-1 の①に該 当する配 管	図 3-1 の②に該 当する配 管 ^{*1}	評価 対象
1	MS-PS-6	X-280C*2	主蒸気系	D	0	_	0
2	MS-PS-7	X-280D*2	主蒸気系	D	0	0	_
3	MS-PS-8	X-280E*2	主蒸気系	D	0		0
4	MS-PS-9	X-280F*2	主蒸気系	D	0	0	_
5	MS-PS-10	X-280A*2	主蒸気系	D	0		0
6	MS-PS-11	X-280B*2	主蒸気系	D	0	0	
7	MS-PS-12	X-280M*2	主蒸気系	D	0		0
8	MS-PS-13	X-280L*2	主蒸気系	D	0	0	_
9	MS-PS-14	X-280K*2	主蒸気系	D	0		0
10	MS-PS-15	X-280J*2	主蒸気系	D	0	0	—
11	MS-PS-16	X-280H*2	主蒸気系	D	0		0
12	MS-PS-17	X-280G*2	主蒸気系	D	0	0	—
13	RHR-R-1	X-201	残留熱除去系	А			0
14	RHR-R-2	X-202	残留熱除去系	А			0
15	RHR-R-3	X-203	残留熱除去系	А			0
16	RHR-R-6	X-200A	残留熱除去系	А			0
17	RHR-R-7	X-204	残留熱除去系	А			0
18	RHR-R-12	X-200B	残留熱除去系	А		—	0
19	RHR-R-14	X-205	残留熱除去系	А		—	0
20	RHR-PS-9	X-204	残留熱除去系	В			0
21	RHR-PS-10	X-205	残留熱除去系	В		—	0
22	HPCS-R-1	X-210	高圧炉心スプレイ系	А		—	0
23	LPCS-R-1	X-208	低圧炉心スプレイ系	А		—	0
24	RCIC-R-1	X-214	原子炉隔離時冷却系	А			0
25	RCIC-R-4	X-213	原子炉隔離時冷却系	А			0
26	RCIC-PS-2	X-213	原子炉隔離時冷却系	В			\bigcirc
27	SGT-R-1	X-241	非常用ガス処理系	А			\bigcirc
28	FCS-R-3	X-242A	可燃性ガス濃度制御系	А			\bigcirc
29	FCS-R-4	X-242B	可燃性ガス濃度制御系	А			\bigcirc
30	ANI-R-6SP	X-320A	窒素ガス代替注入系	А			\bigcirc
31	NGC-R-1	X-240	窒素ガス制御系	А			0

【凡例】該当項目:〇 非該当項目:—

注記*1:頂部以外の胴エビ継部のみに支持点を持つ配管

*2:ベント管の貫通部

表 3-4 オーバル振動を考慮した配管系の耐震評価における

図 :	3-2 における	冬伊	サプレッションチェンバの耐震条件の入力方法				
西西	「管パターン	禾件	オーバル振動を考慮した 耐震評価	(参考) 今回工認の評価			
パター	原子炉建物内 ~サプレッシ	加速度	* ¹ (サプレッションチェンバ の耐震条件の入力無し)	*1 (サプレッションチェンバ の耐震条件の入力無し)			
ンA	ョンチェンバ 貫通部	変位	3次元シェルモデル	3次元はりモデル			
パター	サプレッショ ンチェンバ貫	加速度	3次元シェルモデル	3次元はりモデル			
ンB	通部~サプレ ッションチェ ンバ内	変位	* ² (サプレッションチェンバ の耐震条件の入力無し)	* ² (サプレッションチェンバ の耐震条件の入力無し)			
パター	ベント管貫通 部〜サプレッ	加速度	3次元シェルモデル	3次元はりモデル			
ンD	ションチェン バ内	変位		3次元はりモデル			

サプレッションチェンバの耐震条件の入力方法

注記*1:主な支持点である原子炉建物の耐震条件を適用。

*2:全ての支持点がサプレッションチェンバに位置しているため、相対変位の入力は無い。

				オーバル振 た耐震評	動を考慮し 価結果*1	(参考)今回工認の 評価結果		
図 3-2 における 配管パターン		配管モデル	応力の 種類	算出 応力	許容 応力	算出 応力	許容 応力	
				(MPa)	(MPa)	(MPa)	(MPa)	
パターン A 貫通部 原子炉建物内 ーン ーン ーン ーン ーン ーン し ッシ	原子炉建物内 ~サプレッシ	RHR-R-2	一次	141	335	141^{*2}	335	
	ョンチェンバ 貫通部	ANI-R-6SP	一次+ 二次	405	414	175^{*2}	414	
パターン	サプレッショ ンチェンバ貫 通知 サプレ	RCIC-PS-2	一次	174	363	146^{*2}	363	
В	通部~サプレ ッションチェ ンバ内	RCIC-PS-2	一次+ 二次	300	418	253^{*2}	418	
パターン D	ベント管貫通 部〜サプレッ	MS-PS-8	一次	95	363	95 ^{*3}	363	
	ションチェン バ内	MS-PS-12	一次+ 二次	327	394	294*2	394	

表 3-5 オーバル振動を考慮した耐震条件における配管の評価結果

注記*1:サプレッションチェンバの耐震条件は表 2-1 に示す解析モデルにより算出したもの を適用した。なお, MS-PS-8 及び MS-PS-12 は胴エビ継部のみに支持点を持つ配管で あり,表 3-1 のとおり, 胴エビ継部のみに支持点を持つ配管の加速度は全ての質点 において3次元シェルモデルより3次元はりモデルが大きくなるため,オーバル振 動を考慮した耐震条件を上回る条件として今回工認と同様の加速度を適用した。ま た, RHR-R-2 は原子炉建物の加速度を適用しているため,一次応力の算出応力が今 回工認と同じ値となる。

- *2:設計用床応答スペクトル I (基準地震動 S s) 又は設計用震度 I (基準地震動 S s) に より算出した応力
- *3:設計用震度 I (基準地震動 S s)を上回る震度により算出した応力

4. 配管貫通部評価

3. において評価対象となった配管が接続されるサプレッションチェンバの配管貫通部に ついて,オーバル振動を考慮した耐震条件においても耐震性を有することを確認する。なお, X-320A は計装配管貫通部であり,有意な荷重が加わらないと考えられるため評価対象から 除外する(本文 3.参照)。このため,評価対象とする配管貫通部は15箇所である。

評価に当たっては、3.の配管評価において算出した配管反力及び3次元シェルモデルから 算出したサプレッションチェンバ胴の応力を用いて、添付資料-2 と同様に許容荷重領域に よる評価を実施し、領域外となった貫通部に対して詳細評価(応力評価及び簡易弾塑性解析) を実施する。

3次元はりモデルと3次元シェルモデルの相対変位の比較結果を表 4-1 及び図 4-1, 2 に示す。

比較結果より, 胴上部の貫通部のうち, X-241, X-205, X-200A, X-200B は3次元シェルモ デルの管軸方向の相対変位が3次元はりモデルよりも大きいことを確認した。これらの貫通 部は, PCV方位における水平方向へのオフセット距離が mm 以下であり, 貫通部位 置が胴一般部の中央付近, すなわち補強リングから離れた位置である。このため, オーバル 振動を含む胴一般部の変形の影響が大きく, 3次元シェルモデルの管軸方向相対変位が大き くなったと考えられる。

これに対して, 胴上部の貫通部のうち, X-240, X-204, X-213, X-242A, X-242B は 3 次元 シェルモデルの管軸方向の相対変位が 3 次元はりモデルよりも小さい。これらの貫通部は, PCV方位における水平方向へのオフセット距離が mm 以上であり, 補強リングに近 い位置である。このため, 胴一般部の変形が抑制され, 3 次元シェルモデルの管軸方向相対 変位が小さくなったと考えられる。

また, 胴下部では, すべての貫通部において3次元シェルモデルの管軸方向の相対変位が 3次元はりモデルよりも大きいことを確認した。胴下部は, サプレッションチェンバの内部 水と接する領域であり, オーバル振動の影響が大きいため, 3次元シェルモデルの管軸方向 相対変位が大きくなったと考えられる。

許容荷重領域による評価結果を表 4-2,図 4-3~図 4-17 に示す。また,詳細評価による評価結果を表 4-3,4 に示す。表 4-2~4 より,いずれの貫通部においても許容値を下回ることを確認した。

98

貫通部	3次元シ はりモラ	ェルモデル デルの相対変	/3次元 変位比*1	貫通	部位置	備考
番号	管軸 方向	胴軸 方向	胴周 方向	PCV方位	サプレッション チェンバ角度	
X-201	1.43	0.34	0.34			
X-202	1.50	0.33	0.36			
X-203	1.59	0.37	0.38			
X-208	1.56	0.31	0.37			
X-210	1.50	0.31	0.36			
X-240	0.77	0.48	0.48			
X-241	1.60	0.55	0.41			代表貫通部
X-204	0.37	0.50	0.48			
X-205	1.15	0.52	0.44			
X-213	0.66	0.52	0.43			
X-214	1.72	0.37	0.31			
X-242A	0.81	0.54	0.46			
X-242B	0.80	0.50	0.47			
X-200A	1.50	0.64	0.48			
X-200B	1.46	0.65	0.47			

表 4-1 配管貫通部における3次元はりモデルと3次元シェルモデルの相対変位

注記*1:3次元シェルモデル(3方向SRSS)/3次元はりモデル(3方向絶対値和)に て算出

*2:設置位置角度からの水平方向へのオフセット距離(単位:mm)

図 4-2(1) 貫通部位置

図 4-2(2) 貫通部位置

世 、五如王 日	許容荷	重領域評価
貝迪即留方	一次応力	一次+二次応力
X-201	\bigcirc	×
X-202	\bigcirc	×
X-203	\bigcirc	×
X-208	\bigcirc	×
X-210	\bigcirc	×
X-240	\bigcirc	×
X-241	\bigcirc	×
X-204	\bigcirc	×
X-205	\bigcirc	×
X-213	\bigcirc	×
X-214	\bigcirc	×
X-242A	\bigcirc	×
X-242B	\bigcirc	×
X-200A	×	×
X-200B	×	×

表 4-2 許容荷重領域による評価結果

				評価	結果	松庄	
貫通部番号	応力分類	評価部位	許容応力状態	発生値	許容値	俗皮 (許宏値 / 孫生値)	判定
				MPa	MPa	(計谷順/ 光土順)	
V 201			IV A S	792	501	0.63	×
X-201			V A S	792	501	0.63	×
V-202			IV A S	871	501	0.57	×
X-202			V A S	871	501	0.57	×
¥-203			IV A S	766	501	0.65	×
A 203		補強版取付部	V A S	766	501	0.65	×
¥-208			IV A S	721	501	0.69	×
A 200			V A S	721	501	0.69	×
V-210	一次上一次六十		IV A S	731	501	0.68	×
X-210			V A S	731	501	0.68	×
V-240			IV A S	670	501	0.74	×
Λ-240			V A S	670	501	0.74	×
¥-941			IV A S	926	501	0.54	×
A 241			V A S	926	501	0.54	×
¥-204			IV A S	862	501	0.58	×
Λ 204			V A S	862	501	0.58	×
V-205			IV A S	798	501	0.62	×
Δ=200			V A S	798	501	0.62	×

表 4-3 詳細評価による確認結果(1/2)

				評価	結果	松庄	
貫通部番号	評価部位	応力分類	許容応力状態	発生値	許容値	竹皮 (新宏樹 / 致开樹)	判定
				MPa	MPa	(計谷順/ 光生順)	
X-213			IV A S	870	501	0.57	×
	一次+二次応力	補強版取付部	V A S	870	501	0.57	×
X-214			IV A S	476	501	1.05	\bigcirc
			V A S	476	501	1.05	0
X-242A			IV A S	708	501	0.70	×
			V A S	708	501	0.70	×
X-242B			IV A S	492	501	1.01	0
			V A S	492	501	1.01	0
X-200A	一次膜応力+ 一次曲げ応力	補強版取付部	V A S	310	490	1.58	0
	一次+二次応力	原子炉格納容器胴と	IV A S	654	501	0.76	×
		スリーブとの結合部	V A S	654	501	0.76	×
X-200B	一次膜応力+ 一次曲げ応力	補強版取付部	V A S	312	490	1.57	0
	一次+二次応力	原子炉格納容器胴と	IV A S	690	501	0.72	×
		スリーブとの結合部	V A S	690	501	0.72	×

表 4-3 詳細評価による確認結果(2/2)

貫通部 番号	許容応力 状態	S _n (MPa)	K e	S _p (MPa)	S _@ (MPa)	S _ℓ ' (MPa)	N a (回)	N 。 (回)	疲労累積 係数 N c∕N a	備考
X-201	IV A S	792							0.600	
	V A S	792							0.658	
X-202	IV A S	871							0.899	
	V A S	871							0.987	
X-203	IV A S	766							0.521	
	V A S	766							0.573	
X-208	IV A S	721							0.391	
	V A S	721							0. 429	
X-210	IV A S	731							0.418	
	V A S	731							0.458	
X-240	IV A S	670							0.270	
	V A S	670							0.300	
X-241	IV A S	926							0.847	
	V A S	926							0.827	
X-204	IV A S	862							0.867	
	V A S	862							0.950	

表 4-4 疲労評価結果(1/2)

注記*:本疲労評価は、個別に設定した等価繰返し回数 ____ 回を適用し評価を実施した。

105

貫通部 番号	許容応力 状態	S _n (MPa)	K e	S _p (MPa)	S _ℓ (MPa)	S _ℓ ' (MPa)	N a (回)	N c (回)	疲労累積 係数 N c∕N a	備考
X-205	IV A S	798							0.623	
	V A S	798							0.682	
X-213	IV A S	870							0.974	
	V A S	870							0.987	
X-242A	IV A S	708							0.379	
	V A S	708							0.416	
X-200A	IV A S	654							0.499	
	V A S	654							0.546	
X-200B	IV A S	690							0.661	
	V A S	690							0.725	

表 4-4 疲労評価結果(2/2)

K。: 弾塑性解析に用いる繰返しピーク応力強さの補正係数

S_P:地震荷重のみにおける一次+二次+ピーク応力の応力差範囲

S₀ :繰返しピーク応力強さ

S₀':補正繰返しピーク応力強さ*

- N_a :許容繰り返し回数
- N。 : 等価繰り返し回数
- Eo :縦弾性係数
- E :運転温度の縦弾性係数
- 注:設計・建設規格 PVB-3140により運転状態Ⅰ,Ⅱにおいて疲労解析を要しないことを確認しているため,疲労累積係数は地震動のみによる疲労累 積係数とする。
- 注記*:S₀に(E_o/E)を乗じた値である。

 $E_{O} = 2.07 \times 10^5 MPa$

 $E = 1.98 \times 10^5$ MPa (X-213 以外 IVAS: 104°C)

 $E = 1.91 \times 10^5$ MPa (X-241 以外 VAS: 200°C)

 $E = 1.92 \times 10^5$ MPa (X-213 IV A S : 184°C)

 $E = 2.00 \times 10^5 \text{ MPa} (X-241 \text{ V}_{\text{A}} \text{ S} : 70^{\circ}\text{C})$

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-3 許容荷重領域による確認結果(貫通部 No. X-201)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-3 許容荷重領域による確認結果(貫通部 No. X201)(その2:縦軸P-横軸ML)

○ 配管反力(一次応力)

600

500

400

[<u>∑</u> ⊒ 300

200

100

0

● ○ 許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-4 許容荷重領域による確認結果(貫通部 No. X-202)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-4 許容荷重領域による確認結果(貫通部 No. X-202)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-5 許容荷重領域による確認結果(貫通部 No. X-203)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-5 許容荷重領域による確認結果(貫通部 No. X-203)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-6 許容荷重領域による確認結果(貫通部 No. X-208)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-6 許容荷重領域による確認結果(貫通部 No. X-208)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-7 許容荷重領域による確認結果(貫通部 No. X-210)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-7 許容荷重領域による確認結果(貫通部 No. X-210)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-8 許容荷重領域による確認結果(貫通部 No. X-240)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-8 許容荷重領域による確認結果(貫通部 No. X-240)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-9 許容荷重領域による確認結果(貫通部 No. X-241)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-9 許容荷重領域による確認結果(貫通部 No. X-241)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-10 許容荷重領域による確認結果(貫通部 No. X-204)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-10 許容荷重領域による確認結果(貫通部 No. X-204)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-11 許容荷重領域による確認結果(貫通部 No. X-205)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-11 許容荷重領域による確認結果(貫通部 No. X-205)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-12 許容荷重領域による確認結果(貫通部 No. X-213)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-12 許容荷重領域による確認結果(貫通部 No. X-213)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-13 許容荷重領域による確認結果(貫通部 No. X-214)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-13 許容荷重領域による確認結果(貫通部 No. X-214)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-14 許容荷重領域による確認結果(貫通部 No. X-242A)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-14 許容荷重領域による確認結果(貫通部 No. X-242A)(その2:縦軸P-横軸ML)

図 4-15 許容荷重領域による確認結果(貫通部 No. X-242B)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-15 許容荷重領域による確認結果(貫通部 No. X-242B)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-16 許容荷重領域による確認結果(貫通部 No. X-200A)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-16 許容荷重領域による確認結果(貫通部 No. X-200A)(その2:縦軸P-横軸ML)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-17 許容荷重領域による確認結果(貫通部 No. X-200B)(その1:縦軸P-横軸Mc)

上図:一次応力に対する許容荷重領域

下図:一次+二次応力に対する許容荷重領域

図 4-17 許容荷重領域による確認結果(貫通部 No. X-200B)(その2:縦軸P-横軸ML)

5. 結論

3. 及び 4. の3次元シェルモデルを用いた耐震評価により、サプレッションチェンバ接続 配管及び配管貫通部について、オーバル振動を含めたサプレッションチェンバの応答を考慮 した耐震条件においても耐震性を有することを確認した。