島根原子力発電所第2号機 審査資料									
資料番号	NS2-補-025-12 改 04								
提出年月日	2023年6月14日								

排気筒の基礎の耐震性についての計算書に関する

補足説明資料

2023年6月

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

1. 工事計画添付書類に係る補足説明資料

VI-2-2-15「排気筒の基礎の耐震性についての計算書」の記載内容を補足するための資料 を以下に示す。

- 別紙1 応力解析における既工認と今回工認の解析モデル及び手法の比較
- 別紙2 応力解析におけるモデル化及び境界条件の考え方
- 別紙3 地震荷重の入力方法
- 別紙4 応力解析における断面の評価部位の選定
- 別紙5 最大接地圧について
- 別紙6 ディーゼル燃料移送ポンプピット及びディーゼル燃料移送配管設置エリアの耐震性 について
- 別紙7 ディーゼル燃料貯蔵タンク室の地震時反力に対する検討
- 別紙8 排気筒の基礎に設置される構造物の評価について

別紙1 応力解析における既工認と今回工認の

解析モデル及び手法の比較

1.	概	要	別紙 1-1
2.	応	力解析モデル及び手法の比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 1-2
2	. 1	既工認時及び今回工認時の応力解析モデル及び手法の比較 ・・・・・・・	別紙 1-2

1. 概要

本資料は,排気筒の基礎の既工認時及び今回工認時の応力解析モデル及び手法の比較を 示すものである。

2. 応力解析モデル及び手法の比較

2.1 既工認時及び今回工認時の応力解析モデル及び手法の比較

排気筒の基礎の応力解析モデル及び手法の比較を表 2-1 に示す。

比較に用いる既工認時の応力解析モデル及び手法は,昭和59年9月17日付け59資庁 第8283 号にて認可された工事計画のIV-1-5「排気筒の基礎に関する説明書」(以下「建 設時工認(認可)」という。)及び平成25年5月30日届出(電耐建第6号平成25年6月 14日一部補正)のIV-2-1「排気筒の基礎に関する説明書」(以下「耐震裕度向上に伴う 補強(届出)」という。)のものである。

項	内容	建設時工認	耐震裕度向上に伴う補強	今回工認	備考
目		(認可)	(届出)		
解析手法		基礎版を格子状のはりと仮定した	3次元FEMモデルを用いた応力解	同左	
		応力解析(弾性解析)	析(弾性解析)		_
解析コード		(工認図書に記載なし)	NASTRAN	同左	_
	モデル化	・基礎版	同左	同左	
	範囲	・鉄塔基礎及び筒身基礎			
			検討時の規準に基づき設定	同左	
モ			・コンクリートのヤング係数:		
			$E = 2.15 \times 10^4 \text{ N/mm}^2$		
	材料物性	(工認図書に記載なし)	・コンクリートのポアソン比:		—
			$\nu = 0.2$		
			・鉄筋のヤング係数:		
デ			$E = 2.05 \times 10^5 \text{ N/mm}^2$		
N			(基礎版モデル部分)	同左	
	要素種別	(工認図書に記載なし)	・シェル要素		_
	2 (11) - 21		(鉄塔及び筒身基礎モデル部分)		
			 ・はり要素 		
			同左		
	境界条件	(工認図書に記載なし)	・底面の弾性地盤はねは浮上りを		—
	11.45 774		考慮		
	非線形	考慮せす	同左	同左	—
	特性				
		S_1 地震時:DL+P+S_1	Ss地震時:DL+P+Ss	同左	
		泰風時 : D L + P + P k	泰風時 :DL+P+P _k		
古	与重组一计	DI・田定莅重	DI・田定莅重		
16	「重加日日	DL. 固足何里 D 積載荷重	DL. 回足何里 D. · 積載荷重		
		1 . 俱戰何里 S. · S. 地震荷重	1 . 很戰何里 S。·S。地震荷重		
		 P. · 風荷重 	 P. · 風荷重 		
	固定荷重	其礎白重 排気筒上り受けろ荷重	同左	同左	
	及び	のうち自重(水平力、曲げモーメ	1. A compa	1. 1.	_
	積載荷重	ント、軸力)を入力			
荷		排気筒より受ける荷重のうち地震	排気筒より受ける荷重のうち地震	同左	
重		荷重(水平力、曲げモーメント、	荷重(水平力、曲げモーメント、		
の ==	地震荷重	軸力)を入力	軸力)及び排気筒の基礎の慣性力		_
設			を入力		
疋		排気筒より受ける荷重のうち風荷	同左	同左	
	風荷重	重(水平力,曲げモーメント,軸			—
		力)を入力			
評		発生応力が許容応力度を超えない	同左	同左	
価	亡士細た	ことを確認			
方	ルロノノ用牛や丁				_
法					

表 2-1(1) 応力解析モデル及び手法の比較(排気筒の基礎)

表 2-1(2) 応力解析モデル及び手法の比較(排気筒の基礎)

別紙2 応力解析におけるモデル化及び境界条件の考え方

1.	概要	別紙 2-1
2.	応力解析におけるモデル化及び境界条件 ・・・・・・・・・・・・・・・・・・・・・・	別紙 2-2

1. 概要

本資料は, 排気筒の基礎の応力解析におけるモデル化及び境界条件についての概要を示すものである。

応力解析におけるモデル化及び境界条件
 排気筒の基礎の応力解析におけるモデル化及び境界条件を表 2-1 に示す。

直接基礎の底面の地盤ばねの設定における基本的な考え方は,以下のとおり。なお,地 震時の評価を行うことから,各荷重に共通で動的な地盤物性に基づく地盤ばねを用いる。

・水平ばね

振動アドミッタンス理論に基づく水平ばねより算出する。

・鉛直ばね

基礎浮上りを考慮し、回転ばね反力として生じる転倒モーメントを適切に評価する ため、振動アドミッタンス理論に基づく回転ばねより算出する。

有限要素法を用いた解析モデルにおける要素分割の考え方*については,以下のとおり。 ・はり要素

はり要素の場合は、曲げの変位関数が 3 次で精度が高いため、基本的に要素分割の 細分化は不要であるが、部材の接合点間で変位情報出力や荷重入力がある場合には複 数要素に細分し、曲線部材がある場合は、その曲線が直線近似できる程度の分割にす ることが一般的である。また、分布荷重がある場合や分布質量が関係する自重荷重な どの計算では、要素分割することにより質量分布がより正確になり、解析結果の精度 が向上する。さらに、要素分割の細分化により、変形図やモード図で構造物の変形状 態を容易に把握することが可能となる。

・シェル要素

要素分割は、基本的には発生する応力状態によって決まり、構造形状と荷重条件よ り要素分割数を考慮する。要素形状の縦横比(アスペクト比)は、重要部分で1:2以 下、その他の領域や応力変化が少ない領域では、1:3 程度までで、分割に際しては 4 角形要素を利用して格子状とするのが一般的である。曲面板構造の場合は、平板要素 や軸対称シェル要素の大きさは、集中荷重や不連続部を含む曲面部近傍では2.5 $\sqrt{R/t}$ を 10~20 分割すると適切な応力分布が求められ、構造物の半径(R)と板厚(t)が考慮 されている。また、面内曲げ・軸力及び面外のせん断や曲げを受ける部材のシェル要 素の辺の長さは、シェルの広がり方向の応力分布の状態から決まり、応力変化が大き い領域は要素を小さくする必要がある。

注記*:構造解析のための有限要素法実践ハンドブック(非線形 CAE 協会, 2006 年)

表 2-1(1) モデル化及び境界条件

表 2-1(2) モデル化及び境界条件

表 2-1(3) モデル化及び境界条件

別紙3 地震荷重の入力方法

目 次

1.	概要	 別紙 3-1
2.	地震荷重の入力方法	 別紙 3-2

1. 概要

本資料は、排気筒の基礎に作用する地震荷重の入力方法について示すものである。

2. 地震荷重の入力方法

排気筒の基礎の応力解析に当たって、FEMモデルに入力する地震荷重として、排気筒 より受ける荷重及び慣性力を考慮する。

排気筒より受ける荷重については、地震応答解析により求まる鉄塔基礎及び筒身基礎に 作用する反力(水平力、曲げモーメント及び軸力)を排気筒から受ける荷重として、FE Mモデルの鉄塔基礎及び筒身基礎上端に、節点荷重として入力する。

慣性力については、地震応答解析により求まる基礎版上端位置の質点における最大応答 加速度を重力加速度で除した鉛直震度を、排気筒の基礎の各節点の支配重量に乗じた節点 荷重としてFEMモデルに入力する。

FEMモデルに入力する地震荷重の概念図を図 2-1 に示す。また, FEMモデルに入力 する地震荷重を図 2-2 に示す。

■鉄塔基礎及び筒身基礎に作用させる水平力Qusの算出

Q_{USi} = Q_i Q_{USi} : FEMに入力する水平力 Q_i : 地震応答解析より設定した反力(水平力)

(a) 水平力

N₅

N

¥-₩-

N

■筒身基礎に作用させる曲げモーメントM_{US}の算出

(b) 曲げモーメント

■鉄塔基礎及び筒身基礎に作用させる軸力Nusの算出

(c) 軸力

図 2-1(2) FEMモデルに入力する地震荷重の概念図(慣性力)

(a) 排気筒から受ける荷重(0°方向,水平力)

(b) 排気筒から受ける荷重(0°方向,曲げモーメント)

図 2-2(1) FEMモデルに入力する地震荷重

(c) 排気筒から受ける荷重(0°方向,軸力)

(d) 排気筒から受ける荷重(45°方向,水平力)

図 2-2(2) FEMモデルに入力する地震荷重

(f) 排気筒から受ける荷重(45°方向,軸力)

図 2-2(3) FEMモデルに入力する地震荷重

(g) 慣性力

図 2-2(4) FEMモデルに入力する地震荷重

別紙4 応力解析における断面の評価部位の選定

目 次

1.	概要	別紙 4-1
2.	断面の評価部位の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 4-2

1. 概要

本資料は, 排気筒の基礎の応力解析における断面の評価部位の選定について示すもので ある。

2. 断面の評価部位の選定

排気筒の基礎の荷重の組合せケースを表 2-1 に示す。

外力の状態	組合せ ケース	鉛直荷重	排気筒より受ける荷重
S s 地震時	1	1. 27 • D L	$II (0^\circ) *$
	2	0.73 • D L	$U_{s}(0)$
	3	1.27 • D L	тт (<i>а</i> д ^о) *
	4	0.73 • D L	$U_{\rm s}$ (40)

表 2-1 荷重の組合せケース

注記*:地震応答解析結果に基づく軸力,水平力及び曲げモーメントの最大値を 組み合わせた0°方向及び45°方向の荷重とする。

2.1 鉄塔基礎及び筒身基礎

鉄塔基礎及び筒身基礎の概略配筋図を図 2-1 に示す。

鉄塔基礎及び筒身基礎の評価結果を表 2-2 に、断面力ごとの検定値が最大となる要素 及び断面の評価結果を図 2-2 に、断面の評価部位の選定に関する荷重組合せケースの断 面応力図を図 2-3 に示す。

図 2-1 鉄塔基礎及び筒身基礎の概略配筋図

			軸力及び曲げモーメントの検討										せん断力の検討			
部位		方向	荷 重 組合せ ケース	検討 N* (kN)	応力 M (kN・m)	$N \neq (b \cdot D)$ (N/mm ²)	$\frac{M \swarrow (b \cdot D^2)}{(N/mm^2)}$	p_t (%)	$a_t \pmod{(mm^2)}$	設 計 配 筋 (断面積mm ²)	必要配筋量 /設計配筋量	荷 重 せ ケース	Q (kN)	Q _A (kN)	Q/Q _A	
	C	Х	2	-2284	3895	-0.365	0.249	0.132	8250	20-D29 (12840)	0.65	1	779	5304	0.15	
	01	Y	2	-2284	3735	-0.365	0. 239	0.129	8063	20-D29 (12840)	0.63	1	747	5304	0.15	
	C 2	х	4	2019	3895	0.323	0.249	0.034	2125	20-D29 (12840)	0.17	1	1191	5304	0.23	
华 拔其]]		Y	4	2019	5795	0. 323	0.371	0.075	4688	20-D29 (12840)	0.37	1	1159	5304	0.22	
<u></u> 跃 哈 基 碇	C ₃	Х	2	4748	5955	0. 760	0. 381	0.019	1188	20-D29 (12840)	0.10	1	1191	5304	0.23	
		Y	2	4748	5795	0.760	0.371	0.016	1000	20-D29 (12840)	0.08	1	1159	5304	0.22	
	C	Х	2	-2284	3895	-0.365	0.249	0.132	8250	20-D29 (12840)	0.65	3	1191	5304	0.23	
		Υ	2	-2284	3735	-0.365	0. 239	0. 129	8063	20-D29 (12840)	0.63	1	747	5304	0.15	
左亡	·非碰	х	1	5788	3821	0. 161	0.018	0.000	0	30-D29 (19260)	0.00	1	366	31640	0.02	
四羽		Y	3	5788	2703	0. 161	0.013	0.000	0	30-D29 (19260)	0.00	3	259	31640	0.01	

表 2-2 鉄塔基礎及び筒身基礎の評価結果

注記*:圧縮を正とする。

注: ____ は、検定値が最大となる要素を示す。

注: は、検定値が最大となる要素を示す。

図 2-2 断面力ごとの検定値が最大となる要素及び断面の評価結果 (鉄塔基礎及び筒身基礎)

図 2-3 断面の評価部位の選定に関する荷重組合せケースの断面応力図 (鉄塔基礎及び筒身基礎)

2.2 基礎版

基礎版の概略配筋図を図 2-4 に示す。

基礎版の評価結果を表 2-3 に、断面力ごとの検定値が最大となる要素及び断面の評価 結果を図 2-5 に、断面の評価部位の選定に関する荷重組合せケースの断面力コンター図 を図 2-6 に示す。

 X, Y共: D29@200
 X, Y共: D29@200

 X, Y共: D25@200
 X, Y共: D25@200

下ば筋

主筋配筋

上ば筋

図 2-4(1) 基礎版の概略配筋図(主筋)(単位:m)

						軸力及び曲げモーメントの検討							せん断力の検討			
部位	要素 番号	方向	荷 重 組合せ ケース	検討 N* (kN/m)	応力 M (kN・m/m)	$N \neq (b \cdot D)$ (N/mm ²)	$\begin{array}{c} M \swarrow (\ b \ \cdot \ D^2) \\ (N / mm^2) \end{array}$	р _t (%)	a_{t} (mm^{2}/m)	設 計 配 筋 (断面積mm ² /m)	必要配筋量 /設計配筋量	荷 重 組 合 せ ケ ース	Q (kN/m)	Q _A (kN/m)	Q/Q _A	
	11	Х	1	26	193	0.017	0.086	0.024	360	D29@200 (3210)	0.12	2	104	2372	0.05	
		Y	1	152	563	0. 101	0. 250	0.066	990	D29@200 (3210)	0. 31	2	445	2690	0.17	
	12	Х	2	88	788	0.059	0. 350	0. 104	1560	D29@200 (3210)	0.49	3	154	1275	0.13	
基礎版		Υ	2	86	775	0.057	0. 344	0. 102	1530	D29@200 (3210)	0.48	1	155	1275	0.13	
	61	Х	2	2	124	0.001	0.055	0.017	255	D25@200 (2535)	0.11	2	30	1462	0.03	
		Y	2	44	779	0. 029	0.346	0. 107	1605	D25@200 (2535)	0.64	2	128	1415	0.10	
	92	Х	4	-394	521	-0.263	0. 232	0. 111	1665	D29@200 (3210)	0.52	2	432	2690	0.17	
		Υ	1	27	194	0.018	0. 086	0. 024	360	D29@200 (3210)	0.12	2	102	2357	0.05	

表 2-3 基礎版の評価結果

注記*:圧縮を正とする。

注: ____ は、検定値が最大となる要素を示す。

注: は、検定値が最大となる要素を示す。

図 2-5 断面力ごとの検定値が最大となる要素及び断面の評価結果 (基礎版)

(a) 曲げモーメント (Y方向, ケース2)

 $(kN \cdot m/m)$

(b) 軸力(Y方向,ケース2)

注: 圧縮を負とする。

図 2-6 断面の評価部位の選定に関する荷重組合せケースの断面力コンター図 (基礎版)
別紙5 最大接地圧について

1.	概要 ・	 判紙 5−1
2.	接地圧	 別紙 5−2

1. 概要

本資料は,排気筒の基礎の基準地震動Ssによる地震力(以下「Ss地震時」という。) に対する接地圧を示すものである。 2. 接地圧

S s 地震時の最大接地圧が,岩盤の極限支持力度(9.8N/mm²)を超えないことを確認する。

荷重の組合せケースを表 2-1 に、荷重の組合せケースごとのS s 地震時の接地圧を表 2 -2 に示す。材料物性の不確かさを考慮したS s 地震時の最大接地圧は 1.12N/mm²であるこ とから、岩盤の極限支持力度を超えないことを確認した。

外力の状態	組合せ ケース	鉛直荷重	排気筒より受ける荷重	
S s 地震時	1	1.27 • D L	$\Gamma \Gamma (0_{\circ}) *$	
	2	0.73 • D L	$U_{s}(0)$	
	3	1.27 • D L	II (45°) *	
	4	0.73 • D L	$U_{\rm s}$ (40)	

表 2-1 荷重の組合せケース

注記*:材料物性の不確かさを考慮した地震応答解析結果に基づく軸力,水平力 及び曲げモーメントの最大値を組み合わせた 0°方向及び 45°方向の荷 重とする。

組合せ ケース	最大接地圧 (N/mm ²)
1	1. 12
2	1.06
3	1.12
4	1.06

表 2-2 S ѕ 地震時の接地圧

別紙6 ディーゼル燃料移送ポンプピット及びディーゼル 燃料移送配管設置エリアの耐震性について

目 次

1.	概要	別紙 6-1
2.	基本方針	別紙 6-2
2	.1 位置	別紙 6-2
2	.2 構造概要	別紙 6-3
2	.3 評価方針	別紙 6-6
3.	応力解析による評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 6-7
3	.1 評価対象部位及び評価方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 6-7
3	.2 荷重及び荷重の組合せ	別紙 6-9
	3.2.1 荷重	別紙 6-9
	3.2.2 荷重の組合せ	別紙 6-11
3	.3 許容限界	別紙 6-12
3	.4 解析モデル及び諸元	別紙 6-15
	3.4.1 モデル化の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 6-15
	3.4.2 解析諸元	別紙 6-16
3	.5 評価方法	別紙 6-17
	3.5.1 応力解析方法	別紙 6-17
	3.5.2 断面の評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 6-19
4.	評価結果	別紙 6-21

1. 概要

ディーゼル燃料移送ポンプピット(以下「ポンプピット」という。)及びディーゼル燃料 移送配管設置エリア(以下「配管設置エリア」という。)は一体構造であり、その底版は屋 外配管ダクト(排気筒)及びケーブル洞道の頂版を兼ねているため、ポンプピット及び配 管設置エリアの底版については、VI-2-1-9「機能維持の基本方針」に基づき、VI-2-2-39 「屋外配管ダクト(排気筒)の耐震性についての計算書」において 2 次元FEMモデルに よる評価を行っている。

本資料は、ポンプピット及び配管設置エリアの地震時の構造強度及び機能維持の確認に ついて説明するものであり、応力解析により行う。

ポンプピット及び配管設置エリアは,排気筒の基礎及び屋外配管ダクト(排気筒)と一 体構造であり、「Sクラスの施設」を支持している。このため、設計基準対象施設において は「Sクラスの施設の間接支持構造物」に、重大事故等対処施設においては「常設重大事 故防止設備(設計基準拡張)(当該設備が属する耐震重要度分類がSクラスのもの)の間接 支持構造物」に分類される。

以下,ポンプピット及び配管設置エリアの「Sクラスの施設の間接支持構造物」及び 「常設重大事故防止設備(設計基準拡張)(当該設備が属する耐震重要度分類がSクラスの もの)の間接支持構造物」としての分類に応じた耐震評価を示す。

- 2. 基本方針
- 2.1 位置

ポンプピット及び配管設置エリアの設置位置を図 2-1 に示す。

図 2-1 ポンプピット及び配管設置エリアの設置位置

2.2 構造概要

ポンプピット及び配管設置エリアは,排気筒の基礎上に設置された鉄筋コンクリート 造の側壁及び底版で構成された構造物である。

ポンプピット及び配管設置エリアの平面寸法は,23.5m*(NS)×3.65m*(EW)で ある。ポンプピットの底版下端からの側壁の高さは 1.66m,配管設置エリアの底版下端 からの側壁の高さは 1.085m である。

ポンプピットの側壁は厚さ0.5m,底版は厚さ0.5m,配管設置エリアの側壁は厚さ0.3m, 底版は厚さ0.5mであり,屋外配管ダクト(排気筒)及び排気筒の基礎と一体構造となっ ている。

ポンプピット及び配管設置エリアの概略平面図を図 2-2 に、概略断面図を図 2-3 に 示す。

注記*:寸法は壁外面寸法とする。

図 2-2 ポンプピット及び配管設置エリアの概略平面図 (EL 7.550m, EL 8.125m*)

注記*:「EL」は東京湾平均海面(T.P.)を基準としたレベルを示す。

(a) A-A断面 (NS方向)

(b) B-B断面, B'-B'断面(EW方向)

図 2-3 ポンプピット及び配管設置エリアの概略断面図

2.3 評価方針

ポンプピット及び配管設置エリアは,排気筒の基礎及び屋外配管ダクト(排気筒)と 一体構造であり,内部に「Sクラスの施設」が収納されている。このため,設計基準対 象施設においては「Sクラスの施設の間接支持構造物」に,重大事故等対処施設におい ては「常設重大事故防止設備(設計基準拡張)(当該設備が属する耐震重要度分類がSク ラスのもの)の間接支持構造物」に分類される。

ポンプピット及び配管設置エリアの設計基準対象施設としての評価においては、基準 地震動Ssによる地震力に対する評価(以下「Ss地震時に対する評価」という。)を行 うこととし、VI-2-2-13「排気筒の地震応答計算書」の結果を踏まえたもの*とする。ポ ンプピット及び配管設置エリアの評価は、VI-2-1-9「機能維持の基本方針」に基づき、 応力解析による評価においては、ポンプピット及び配管設置エリアの地震時の構造強度 及び機能維持の確認を行う。

また,重大事故等対処施設としての評価においては,Ss地震時に対する評価を行う。 ここで,ポンプピット及び配管設置エリアでは,運転時,設計基準事故時及び重大事故 等時の状態において,圧力,温度等の条件について有意な差異がないことから,重大事 故等対処施設としての評価は,設計基準対象施設としての評価と同一となる。

ポンプピット及び配管設置エリアの評価フローを図 2-4 に示す。

注記*:ポンプピット及び配管設置エリアは排気筒の基礎と一体構造であることから, VI-2-2-13「排気筒の地震応答計算書」に基づく材料物性の不確かさを考慮する。

注記*: VI-2-2-13「排気筒の地震応答計算書」の結果を踏まえた評価を行う。

図 2-4 ポンプピット及び配管設置エリアの評価フロー

- 3. 応力解析による評価方法
- 3.1 評価対象部位及び評価方針

ポンプピット及び配管設置エリアのうち地表面からのピットが深いポンプピットを評 価対象とする。応力解析による評価対象部位は、ポンプピットを構成する側壁及び底版 とし、Ss地震時に対して以下の方針に基づき評価を行う。

Ss地震時に対する評価は、ポンプピットの東西断面における側壁及び底版をはり要素でモデル化したフレームモデルを用いた弾性応力解析によることとし、基準地震動SsによるEW方向及び鉛直方向の地震力と地震力以外の荷重の組合せの結果、発生する応力が「原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会、2005 制定)」(以下「RC-N規準」という。)に基づき設定した許容限界を超えないことを確認する。

フレームモデルを用いた弾性応力解析にあたっては、VI-2-2-13「排気筒の地震応答計 算書」により得られた結果を用いて、荷重の組合せを行う。応力解析による評価フロー を図 3-1 に示す。

注記*:材料物性の不確かさを考慮する。

図 3-1 応力解析による評価フロー

3.2 荷重及び荷重の組合せ

荷重及び荷重の組合せは、VI-2-1-9「機能維持の基本方針」にて設定している荷重及 び荷重の組合せを用いる。

- 3.2.1 荷重
 - (1) 固定荷重及び積載荷重
 固定荷重及び積載荷重は、ポンプピットの側壁及び底版の自重並びにポンプピット上部に設置されているディーゼル燃料移送ポンプエリア防護対策設備の重量を考慮する。
 - (2) 地震荷重
 - a. 地震荷重

地震時における慣性力は、VI-2-2-13「排気筒の地震応答計算書」から得られる 排気筒の基礎版上端レベル(EL 3.5m)及び鉄塔基礎上端レベル(EL 8.5m)にお けるSs地震時の最大応答加速度の包絡値から算定した震度を用いて算定する。 震度は材料物性の不確かさを考慮した地震応答解析結果を用いて算定する。応力 解析で考慮するSs地震時の最大応答加速度及び震度を表 3-1に示す。

なお、側壁については、ポンプピット東側の面外方向に対する断面評価を行う ことから、水平方向についてEW方向の震度を用いる。

方向	位置	最大応答加速度 (cm/s ²)	震度	設計震度
水平方向	鉄塔基礎上端 (EL 8.5m)	1189	1.22	1 00
(EW方向)	基礎版上端 (EL 3.5m)	1118	1.15	1.22
扒 古士白	鉄塔基礎上端 (EL 8.5m)	756	0. 78	0.79
<u> </u>	基礎版上端 (EL 3.5m)	664	0.68	0.78

表 3-1 最大応答加速度及び震度

b. 地震時土圧荷重

地震時土圧荷重は、地震時土圧によりポンプピットの地中部の側壁に作用する 荷重として、「原子力発電所耐震設計技術指針 JEAG4601-1991 追補版 ((社)日本電気協会)」に基づき算出し、常時土圧に地震時増分土圧を加えて算 定した地震時土圧を設定する。

なお,地震時増分土圧の算定に用いる地盤の最大加速度は,VI-2-2-13「排気筒の地震応答計算書」における地表面(EL 8.5m)の最大加速度を用いる。

地震時土圧荷重を表 3-2 に、地震時土圧による荷重分布を図 3-2 に示す。

EL	地震時土圧荷重(kN/m ²)
(m)	(東側)
8.5~7.55	136.1+0.5 $\cdot \gamma \cdot h$

表 3-2 地震時土圧荷重

γ:土の単位体積重量(kN/m³)

h:地表面からの深さ(m)

図 3-2 地震時土圧による荷重分布

3.2.2 荷重の組合せ

荷重の組合せを表 3-3 に示す。

外力の状態	荷重の組合せ
S s 地震時	G + P + S s

表 3-3 荷重の組合せ

G : 固定荷重

P : 積載荷重

Ss:地震荷重(地震時土圧荷重を含む)

3.3 許容限界

応力解析による評価におけるポンプピットの許容限界は、VI-2-1-9「機能維持の基本 方針」に記載の構造強度上の制限及び機能維持の方針に基づき、表 3-4 及び表 3-5 の とおり設定する。

また、コンクリート及び鉄筋の許容応力度を表 3-6 及び表 3-7 に示す。

表 3-4 応力解析による評価における許容限界

要求 機能	機能設計上の 性能目標	地震力	部位	機能維持の ための考え方	許容限界 (評価基準値)
	構造強度を有 すること	基準地震動 S s	側壁及び 底版	部材に生じる応力 が構造強度を確保 するための許容限 界を超えないこと を確認	終局耐力に対して 妥当な安全裕度を 有する許容限界*
支持機能	機器・配管系 等の設備を支 持する機能を 損なわないこ と	基準地震動 S s	側壁及び 底版	部材に生じる応力 が支持機能を維持 するための許容限 界を超えないこと を確認	終局耐力に対して 妥当な安全裕度を 有する許容限界*

(設計基準対象施設としての評価)

注記*:許容限界は、「RC-N規準」に基づき、終局耐力に対して妥当な裕度を有する 短期許容応力度を用いる。

|--|

要求 機能	機能設計上の 性能目標	地震力	部位	機能維持の ための考え方	許容限界 (評価基準値)
	構造強度を有 すること	基準地震動 S s	側壁及び 底版	部材に生じる応力 が構造強度を確保 するための許容限 界を超えないこと を確認	終局耐力に対して 妥当な安全裕度を 有する許容限界*
支持 機能	機器・配管系 等の設備を支 持する機能を 損なわないこ と	基準地震動 S s	側壁及び 底版	部材に生じる応力 が支持機能を維持 するための許容限 界を超えないこと を確認	終局耐力に対して 妥当な安全裕度を 有する許容限界*

(重大事故等対処施設としての評価)

注記*:許容限界は、「RC-N規準」に基づき、終局耐力に対して妥当な裕度を有する 短期許容応力度を用いる。

表 3-6 コンクリートの短期許容応力度

(単位:N/mm²)

設計基準強度 F c	圧縮	せん断
F c = 20.6	13.6	1.02

表 3-7 鉄筋の短期許容応力度

(単位:N/mm²)

種別	引張及び圧縮	せん断
SD35 (SD345相当)	345	345

- 3.4 解析モデル及び諸元
 - 3.4.1 モデル化の基本方針
 - (1) 基本方針

応力解析は、フレームモデルを用いた弾性応力解析とする。解析には、解析コード「MSC NASTRAN」を用いる。

応力解析にあたって、ポンプピット東側の側壁及び底版をはり要素にてモデル化 する。解析モデルを図 3-3 に示す。

(2) 境界条件

フレームモデルの底版底面に鉛直方向の地盤ばねを設ける。鉛直方向の地盤ばね については、底版底面の基礎コンクリートの材料物性に基づき設定する。また、底 版とディーゼル燃料タンク室の壁との取り合い部については固定とする。

なお,底版底面の地盤ばねについては,引張力が発生したときに浮上りを考慮す る。

(ポンプピット断面図)

図 3-3 解析モデル

3.4.2 解析諸元

使用材料の物性値を表 3-8 及び表 3-9 に示す。

設計基準強度	ヤング係数	ポアソン比
F c (N/mm ²)	E (N/mm ²)	v
20.6	2. 15×10^4	0.2

表 3-8 コンクリートの物性値

表 3-9 鉄筋の物性値

鉄筋の種類	ヤング係数 E (N/mm ²)
SD35 (SD345 相当)	2. 05×10^5

3.5 評価方法

3.5.1 応力解析方法

ポンプピットの側壁及び底版について, S s 地震時に対してフレームモデルを用 いた弾性応力解析を実施する。

(1) 荷重ケース

Ss地震時の応力は、次の荷重を組み合わせて求める。

G	:固定荷重
Р	: 積載荷重
$S \ s_{\ EW}$: E→W方向 S s 地震荷重(地震時土圧を含む)
$S \ s_{\ UD}$: 鉛直方向(下向き) S s 地震荷重
$S \ s_{\rm DU}$: 鉛直方向(上向き) S s 地震荷重

(2) 荷重の組合せケース

荷重の組合せケースを表 3-10 に示す。

水平地震力については,地震荷重(慣性力)と地震時土圧荷重が同じ向きに作用 するE→W方向のSs地震荷重を考慮する。

水平地震力と鉛直地震力の組合せは、「原子力発電所耐震設計技術規程 JEAC 4601-2008((社)日本電気協会)」を参考に、組合せ係数法(組合せ係数は 1.0 と 0.4)を用いるものとする。

外力の状態	ケース No.	荷重の組合せ		
S s 地震時	1	$G + P + 1.0 S s_{EW} + 0.4 S s_{UD}$		
	2	$G + P + 1.0 S s_{EW} + 0.4 S s_{DU}$		
	3	$G + P + 0.4S s_{EW} + 1.0S s_{UD}$		
	4	$G + P + 0.4S \text{ s}_{EW} + 1.0S \text{ s}_{DU}$		

表 3-10 荷重の組合せケース

- (3) 荷重の入力方法
 - a. 地震荷重

側壁及び底版に作用するSs地震荷重については、フレームモデルに集中荷重 又は分布荷重として入力する。

b. 地震荷重以外の荷重

地震荷重以外の荷重については,フレームモデルに集中荷重又は分布荷重とし て入力する。 3.5.2 断面の評価方法

ポンプピットの底版及び側壁について,軸力及び曲げモーメント並びに面外せん 断力が,各許容値を超えないことを確認する。

(1) 曲げモーメントに対する断面の評価方法

断面の評価は、「RC-N規準」に基づき、評価対象部位に生じる曲げモーメント が、次式をもとに計算した許容曲げモーメントを超えないことを確認する。

 $M_A = a_t \cdot f_t \cdot j$

ここで,

- M_A :許容曲げモーメント (N·mm)
- a_t : 引張鉄筋断面積 (mm²)
- f t : 鉄筋の許容引張応力度で,表 3-7 に示す値 (N/mm²)
- j : 断面の応力中心間距離で,断面の有効せいの 7/8 倍の値(mm)

(2) 面外せん断力に対する断面の評価方法

断面の評価は、「RC-N規準」に基づき、評価対象部位に生じる面外せん断力が、 次式をもとに計算した許容面外せん断力を超えないことを確認する。

$$Q_A = b \cdot j \cdot \{ \alpha \cdot f_s + 0.5 \cdot w f_t \cdot (p_w - 0.002) \}$$

ここで,

- Q_A : 許容面外せん断力 (N)
- b : 断面の幅 (mm)
- j : 断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値 (mm)
- *α* :許容せん断力の割り増し係数

(2を超える場合は2,1未満の場合は1とする。)

$$\alpha = \frac{4}{M/(Q \cdot d) + 1}$$
M :曲げモーメント (N·mm)
Q : せん断力 (N)
d : 断面の有効せい (mm)

f s: コンクリートの短期許容せん断応力度で、表 3-6 に示す値 (N/mm²)w f t: せん断補強筋の短期許容引張応力度で、表 3-7 に示す値 (N/mm²)

pw: : せん断補強筋比で, 次式による。(0.002以上とする。*)

$$p_{w} = \frac{a_{w}}{b \cdot x}$$

a_w: せん断補強筋の断面積 (mm²)

x : せん断補強筋の間隔 (mm)

注記*:せん断補強筋がない領域については,第2項を0とする。 (なお,ポンプピットの側壁及び底版には,面外せん断補強筋は入っていない。)

4. 評価結果

ポンプピットの側壁及び底版の評価結果を表 4-1 及び表 4-2 に示す。 ポンプピットの側壁及び底版に生じる曲げモーメント及び面外せん断力が,許容値を超

ホンノビットの側壁及び底版に生しる曲りモーメント及び面外セん断力か,計谷値を えないことを確認した。

方向			EW方向	
厚さt (mm)			500	
有効せいd (mm)			450	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			D16@200 (995 mm ² /m)	
(鉄筋断面積)		横筋	D16@200 (995 mm²/m)	
曲た	発生曲げモーメント M (kN・m/m)		110. 4	
モーメ	許容曲げモーメント M _A (kN・m/m)		135. 1	
ント	検定値		0.82	
	発生せん断力 Q (kN/m)		150. 9	
面外せん断力	せん断スパン比による 割増し係数 α		1.0	
	許容面外せん断力 Q _A (kN/m)		401.6	
	検定値		0. 38	
判定			ъ	

表 4-1 ポンプピットの側壁の評価結果

方向			EW方向		
厚さt(mm)			500		
有効せいd (mm)			450		
上ば筋配筋			D16@200 (995 mm²/m)		
(鉄筋断面積)		下ば筋	D16@200 (995 mm²/m)		
曲 げ	発生曲げモーメント M (kN・m/m)		110. 4		
モーメ	許容曲げモーメント M _A (kN・m/m)		135. 1		
ント	検定値		0.82		
	発生せん断力 Q(kN/m)		57.3		
面外せ	せん断スパン比による 割増し係数 α		1.0		
ん 断 力	許容面外せん断力 Q _A (kN/m)		401.6		
	検定値		検定値		0. 15
判定			म		

# 表 4-2 ポンプピットの底版の評価結果

別紙7 ディーゼル燃料貯蔵タンク室の

地震時反力に対する検討

# 目 次

1.	概要
2.	検討方針・・・・・・ 別紙 7-4
3.	応力解析による評価方法・・・・・ 別紙 7-5
3.	. 1 評価対象部位・・・・・・ 別紙 7-5
3.	.2 荷重及び荷重の組合せ・・・・・ 別紙 7-5
3.	. 3 許容限界・・・・・・・・
3.	. 4 解析モデル及び諸元・・・・・ 別紙 7-8
3.	. 5 評価方法 · · · · · · · · · · · · · · · · · · ·
	3.5.1 鉄塔基礎及び筒身基礎の評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	3.5.2 基礎版の評価方法・・・・・ 別紙 7-10
4.	評価結果······ 別紙 7-11
4.	.1 鉄塔基礎及び筒身基礎の評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	. 2 基礎版の評価結果・・・・・ 別紙 7-14
5.	まとめ・・・・・・ 別紙 7-20

#### 1. 概要

VI-2-2-15「排気筒の基礎の耐震性についての計算書」(以下「排気筒の基礎の耐震計算 書」という。)において,排気筒の基礎の解析モデルでは,保守的に基礎版より立ち上がる ディーゼル燃料貯蔵タンク室の剛性による拘束を考慮していない。また,排気筒の基礎の 応力解析においては,基礎上部の構造物の固定荷重を考慮した場合には基礎の浮き上がり を抑えることになるため,ディーゼル燃料貯蔵タンク室の固定荷重は保守的に考慮してい ない。

一方で、VI-2-11-2-15「ディーゼル燃料貯蔵タンク室の耐震性についての計算書」では 基準地震動Ssに対するディーセル燃料貯蔵タンク室の検討を行っており、排気筒の基礎 に作用するディーゼル燃料貯蔵タンク室からの地震時反力が算定される。

本資料は,基準地震動Ssによるディーゼル燃料貯蔵タンク室からの地震時反力より設 定した評価用反力(以下「地震時タンク室反力」という。)に対し,排気筒の基礎の検討を 行うものである。

ディーゼル燃料貯蔵タンク室を含む排気筒の基礎の概略平面図及び概略断面図を図 1-1 及び図 1-2 に示す。

(単位:mm)

図1-1 ディーゼル燃料貯蔵タンク室を含む排気筒の基礎の概略平面図(EL 3.5m)

(単位:mm)

図1-2 ディーゼル燃料貯蔵タンク室を含む排気筒の基礎の概略断面図(A-A断面)

# 2. 検討方針

基準地震動Ssによる地震時タンク室反力に対する排気筒の基礎の検討を行う。 検討は,排気筒の基礎の耐震計算書に示す3次元FEMモデルを用い,基準地震動Ss による地震時タンク室反力を考慮した場合(以下「地震時タンク室反力考慮ケース」という。)の応力解析を行い,断面の評価において許容値を超えないことを確認する。

- 3. 応力解析による評価方法
- 3.1 評価対象部位

評価対象部位は,排気筒の基礎の耐震計算書の「3.1 評価対象部位及び評価方針」に 示す内容と同一である。

3.2 荷重及び荷重の組合せ

基準地震動Ssによる地震時タンク室反力の値を表 3-1 に示す。なお、表 3-1 に示 す値は、VI-2-11-15「ディーゼル燃料貯蔵タンク室の耐震性についての計算書」に基づ き材料物性の不確かさを考慮して設定する。

地震時タンク室反力の入力方法は,ディーゼル燃料貯蔵タンク室の側壁及び隔壁に対応する範囲の各節点に,節点の支配長さに応じて分配し,節点荷重として入力する。

		ALC 17-1-			ul Art	
	常時			地震時		
位置	曲げ モーメント (kN・m/m)	せん断力 (kN/m)	軸力 (kN/m)	曲げ モーメント (kN・m/m)	せん断力 (kN/m)	軸力 (kN/m)
側壁①	-43	-60	118	876	1126	$2061^{*1}$ -232 ^{*2}
側壁②	94	117	412	324	194	$415^{*1}$ -345 ^{*2}
側壁③	-16	-22	370	100	151	$371^{*1}$ -402 ^{*2}
隔壁	3	1	201	282	156	$567^{*1}$ -341 ^{*2}
側壁④	26	46	189	130	235	$356^{*1}$ -212 ^{*2}

表 3-1 基準地震動 Ssによる地震時タンク室反力

注1:モデルの対称性を考慮して、排気筒より受ける荷重の0°方向の荷重に整合するよう に位置と方向を設定する。

注2:荷重の向きは矢印の方向を正とする。



注記*1:軸力(下向き)を考慮する際に用いる。 *2:軸力(上向き)を考慮する際に用いる。 荷重の組合せは、VI-2-1-9「機能維持の基本方針」に基づき設定する。

荷重の組合せを表 3-2 に示す。地震時タンク室反力を除く荷重の詳細は,排気筒の基礎の耐震計算書の「3.2.1 荷重」に示す固定荷重(DL)及び基準地震動Ssによる地震荷重(Ss)と同一である。

外力の状態	荷重の組合せ
S s 地震時	DL + Ss

表 3-2 荷重の組合せ(地震時タンク室反力考慮ケース)

DL :固定荷重

 S s : 基準地震動 S s による地震荷重(地震時に排気筒より受ける荷 重及び地震時タンク室反力を含む)
### 3.3 許容限界

鉄塔基礎, 筒身基礎及び基礎版のうち面外せん断力に対する評価における許容限界の 詳細は, 排気筒の基礎の耐震計算書の「3.3 許容限界」に示す内容と同一である。また, 基礎版のうち軸力及び曲げモーメントに対する評価における許容限界は,「発電用原子力 設備規格 コンクリート製原子炉格納容器規格((社)日本機械学会, 2003)」(以下「C CV規格」という。)に基づく荷重状態IVの許容値とする。

コンクリート及び鉄筋の許容ひずみを表 3-3 に示す。

コンクリート	鉄筋
(圧縮ひずみ)	(圧縮ひずみ及び引張ひずみ)
0.003	0.005

表 3-3 コンクリート及び鉄筋の許容ひずみ

### 3.4 解析モデル及び諸元

解析モデル概略図を図 3-1 に示す。

解析モデル及び諸元の詳細は,排気筒の基礎の耐震計算書の「3.4 解析モデル及び諸 元」に示す内容と同一である。



図 3-1 解析モデル概要図

### 3.5 評価方法

S s 地震時の応力は,「3.2 荷重及び荷重の組合せ」に示す固定荷重(DL)及び基準地震動S s による地震荷重(地震時に排気筒より受ける荷重及び地震時タンク室反力を含む)による応力を組み合わせて求める。

なお、本検討においてはディーゼル燃料貯蔵タンク室の評価に合わせてNS方向に対 して検討を行う。

3.5.1 鉄塔基礎及び筒身基礎の評価方法

鉄塔基礎及び筒身基礎の評価方法の詳細は,排気筒の基礎の耐震計算書の「3.5.2 断面の評価方法」に示す方法と同一である。

- 3.5.2 基礎版の評価方法
  - (1) 軸力及び曲げモーメントに対する断面の評価方法
     軸力及び曲げモーメントによる鉄筋及びコンクリートのひずみが、「CCV規格」
     に基づき、表 3-3に示す許容ひずみを超えないことを確認する。
  - (2) 面外せん断力に対する断面の評価方法

面外せん断力に対する断面の評価の詳細は,排気筒の基礎の耐震計算書の「3.5.2 断面の評価方法」に示す方法と同一である。

### 4. 評価結果

4.1 鉄塔基礎及び筒身基礎の評価結果
鉄塔基礎及び筒身基礎の概略配筋図を図4-1に示す。
地震時タンク室反力考慮ケース及び今回工認ケースにおける評価結果を表4-1に示す。
地震時タンク室反力考慮ケースの評価結果は、今回工認ケースとおおむね同等である
ことを確認した。また、鉄塔基礎及び筒身基礎について、軸力及び曲げモーメントに対する必要鉄筋量及び面外せん断力が各許容値を超えないことを確認した。



(a)鉄塔基礎配筋図

(b)筒身基礎配筋図

図 4-1 鉄塔基礎及び筒身基礎の概略配筋図

## 表 4-1(1) 鉄塔基礎及び筒身基礎の評価結果

(a) 地震時タンク室反力考慮ケース

部位		方向	軸力及び曲げモーメントの検討									せん断力の検討			
			荷重の向き	<u>検</u> 討 N* (kN)	応力 M (kN・m)	$N \neq (b \cdot D)$ (N/mm ² )	$\frac{M / (b \cdot D^2)}{(N/mm^2)}$	p_t (%)	$a_t \pmod{mm^2}$	設 計 配 筋 (断面積mm ² )	必要配筋量 /設計配筋量	荷重の向き	Q (kN)	Q _A (kN)	Q/Q _A
-	С,	х	水平 : S→N 鉛直 : 上向き	-2284	3895	-0.365	0.249	0.132	8250	20-D29 (12840)	0.65	水平 : N→S 鉛直 : 下向き	1191	5304	0.23
	01	Y	水平 : S→N 鉛直 : 上向き	-2284	3735	-0.365	0.239	0.129	8063	20-D29 (12840)	0.63	水平 : N→S 鉛直 : 下向き	1159	5304	0.22
	C.	х	水平 : N→S 鉛直 : 上向き	-2284	3895	-0.365	0.249	0.132	8250	20-D29 (12840)	0.65	水平:S→N 鉛直:下向き	1191	5304	0.23
	$C_2$	Y	水平 : N→S 鉛直 : 上向き	-2284	3735	-0.365	0.239	0.129	8063	20-D29 (12840)	0.63	水平 : S→N 鉛直 : 下向き	1159	5304	0.22
<u></u>	C ₃	Х	水平 : N→S 鉛直 : 上向き	-2284	3895	-0.365	0.249	0.132	8250	20-D29 (12840)	0.65	水平 : S→N 鉛直 : 下向き	1191	5304	0.23
		Y	水平 : N→S 鉛直 : 上向き	-2284	3735	-0.365	0.239	0.129	8063	20-D29 (12840)	0.63	水平 : S→N 鉛直 : 下向き	1159	5304	0.22
	C	х	水平 : S→N 鉛直 : 上向き	-2284	3895	-0.365	0.249	0.132	8250	20-D29 (12840)	0.65	水平 : N→S 鉛直 : 下向き	1191	5304	0.23
	04	Y	水平 : S→N 鉛直 : 上向き	-2284	3735	-0.365	0.239	0.129	8063	20-D29 (12840)	0.63	水平 : N→S 鉛直 : 下向き	1159	5304	0.22
<u> </u>	甘. Z林	X	水平 : S→N 鉛直 : 上向き	1490	3821	0.041	0.018	0.000	0	30-D29 (19260)	0.00	水平 : S→N 鉛直 : 下向き	366	31640	0.02
筒身基礎		Y	水平 : S→N 鉛直 : 上向き	1490	48	0.041	0.000	0.000	0	30-D29 (19260)	0.00	水平 : S→N 鉛直 : 下向き	2	31640	0.01

注記*:圧縮を正とする。

別紙 7-12

# 表 4-1(2) 鉄塔基礎及び筒身基礎の評価結果

<mark>(b) 今回工認ケース</mark>

	軸力及び曲げモーメントの検討							せん	断力の検討						
部位		方向	荷 重 組合せ ケース	検討 N* (kN)	応力 M (kN・m)	$N \neq (b \cdot D)$ (N/mm ² )	$\frac{M / (b \cdot D^2)}{(N/mm^2)}$	p_t (%)	$a_t \pmod{(mm^2)}$	設 計 配 筋 (断面積mm ² )	必要配筋量 /設計配筋量	荷 重 組合せ ケース	Q (kN)	Q _A (kN)	Q/Q _A
	C	Х	2	-2284	3895	-0.365	0.249	0.132	8250	20-D29 (12840)	0.65	1	779	5304	0.15
		Y	2	-2284	3735	-0.365	0. 239	0.129	8063	20-D29 (12840)	0.63	1	747	5304	0.15
	C.	Х	4	2019	3895	0. 323	0.249	0.034	2125	20-D29 (12840)	0.17	1	1191	5304	0.23
<b>独</b> 拔 <b>其</b> 淋	C ₂	Y	4	2019	5795	0. 323	0.371	0.075	4688	20-D29 (12840)	0.37	1	1159	5304	0.22
<u> </u>	С3	Х	2	4748	5955	0. 760	0. 381	0.019	1188	20-D29 (12840)	0.10	1	1191	5304	0.23
		Y	2	4748	5795	0. 760	0.371	0.016	1000	20-D29 (12840)	0.08	1	1159	5304	0.22
	C.	х	2	-2284	3895	-0.365	0.249	0.132	8250	20-D29 (12840)	0.65	3	1191	5304	0.23
		Y	2	-2284	3735	-0.365	0.239	0.129	8063	20-D29 (12840)	0.63	1	747	5304	0.15
管身	其磁	X	1	5788	3821	0. 161	0.018	0.000	0	30-D29 (19260)	0.00	1	366	31640	0.02
С М М М М М		Y	3	5788	2703	0.161	0.013	0.000	0	30-D29 (19260)	0.00	3	259	31640	0.01

注記*:圧縮を正とする。

別紙 7-13

### 4.2 基礎版の評価結果

基礎版の概略配筋図を図 4-2 に示す。

断面の評価結果を記載する要素を以下のとおり選定する。

軸力及び曲げモーメント並びに面外せん断力に対する評価において,許容値に対する 発生値の割合が最大となる要素をそれぞれ選定する。

地震時タンク室反力考慮ケース及び今回工認ケースにおける選定した要素の位置を図 4-3に,評価結果を表 4-2 に示す。

基礎版について、軸力及び曲げモーメントによる鉄筋及びコンクリートのひずみ並び に面外せん断力が各許容値を超えないことを確認した。



(単位:m)







(単位:m)

図 4-3(1) 選定した要素の位置(地震時タンク室反力考慮ケース)



(単位:m)

図 4-3(2) 選定した要素の位置(今回工認ケース)

部位	評1	方向	要素 番号	荷重の向き	発生値	許容値	
	軸力 + 基礎版 曲げモーメント	コンクリート 圧縮ひずみ X (×10 ⁻³ )		89	水平 : N→S 鉛直 : 上向き	0. 436	3. 00
基礎版		曲げモーメント		Х	80	水平 : S→N 鉛直 : 下向き	2.93
	面外せん断力	面外せん断力 (kN/m)	Х	78	水平 : N→S 鉛直 : 上向き	641	2185

### 表 4-2(1) 基礎版の評価結果 (a) 地震時タンク室反力考慮ケース

表 4-2(2) 基礎版の評価結果 <mark>(b) 今回工認ケース</mark>

			軸力及び曲げモーメントの検討									せん	断力の検討		
部位	要素番号	方向	荷 重 組合せ ケース	検討 N* (kN/m)	応力 M (kN·m/m)	$N \neq (b \cdot D)$ (N/mm ² )	$\frac{M / (b \cdot D^2)}{(N/mm^2)}$	р _t (%)	$a_{t}$ $(mm^{2}/m)$	設 計 配 筋 (断面積mm ² /m)	必要配筋量 /設計配筋量	荷 重 組合せ ケース	Q (kN/m)	${f Q}_{A}\ (kN/m)$	Q/Q _A
	11	Х	1	26	193	0.017	0. 086	0.024	360	D29@200 (3210)	0.12	2	104	2372	0.05
		Υ	1	152	563	0.101	0.250	0. 066	990	D29@200 (3210)	0. 31	2	445	2690	0.17
	12	Х	2	88	788	0.059	0.350	0. 104	1560	D29@200 (3210)	0. 49	3	154	1275	0. 13
其磷版		Υ	2	86	775	0.057	0. 344	0. 102	1530	D29@200 (3210)	0. 48	1	155	1275	0. 13
25 WE / IX	61	X	2	2	124	0.001	0.055	0.017	255	D25@200 (2535)	0.11	2	30	1462	0. 03
		Y	2	44	779	0.029	0.346	0. 107	1605	D25@200 (2535)	0.64	2	128	1415	0.10
	92	X	4	-394	521	-0.263	0. 232	0. 111	1665	D29@200 (3210)	0.52	2	432	2690	0.17
		Y	1	27	194	0.018	0. 086	0.024	360	D29@200 (3210)	0. 12	2	102	2357	0.05

注記*:圧縮を正とする。

5. まとめ

基準地震動Ssによる地震時タンク室反力に対し、3次元FEMモデルを用いた応力解 析により排気筒の基礎の検討を行った。

検討の結果,基準地震動Ssによる地震時タンク室反力を考慮した場合においても,鉄 塔基礎及び筒身基礎については,軸力及び曲げモーメントに対する必要鉄筋量及び面外せ ん断力が各許容値を超えないことを確認した。基礎版については,軸力及び曲げモーメン トによる鉄筋及びコンクリートのひずみ並びに面外せん断力が各許容値を超えないことを 確認した。

以上のことから,基準地震動Ssによる地震時タンク室反力に対し,排気筒の基礎が有 する耐震性への影響はないことを確認した。 別紙8 排気筒の基礎に設置される構造物の評価について

1.	概要	別紙 8-1
2.	排気筒の基礎に設置される構造物の要求機能等の整理について・・・・・	別紙 8-1

3. 排気筒の基礎等に設置される構造物の要求機能を踏まえた評価について・・・・・ 別紙 8-6

1. 概要

島根2号機に設置しているディーゼル燃料貯蔵タンク室及び排気筒の基礎は島根2号機 建設時に構築した既設構造物であり,既工認において,排気筒の基礎をAクラス設備の間 接支持構造物としていた。

本資料は排気筒の基礎及びその周辺に配置されている各建物・構築物の位置関係・構造 を整理し、排気筒の基礎に設置されるディーゼル燃料貯蔵タンク等の主要設備を網羅的に 抽出した上で、今回工認におけるディーゼル燃料貯蔵タンク室等の耐震評価における各部 位の要求機能、評価内容を整理するものである。

2. 排気筒の基礎に設置される構造物の要求機能等の整理について

排気筒の基礎上及び周辺における各建物・構築物の位置関係及び境界部の構造について 図 2-1 に示す。

また,排気筒の基礎上及び周辺構造物に設置されている主要設備等の配置及び支持方法 について図 2-2 及び図 2-3 に示す。

さらに,排気筒の基礎上における主要設備の状況を踏まえ,排気筒の基礎上の間接支持 構造物及び波及的影響評価対象構造物を整理した結果を図 2-4 に示す。

別紙 8-2

図 2-2 排気筒の基礎上及び周辺における上位クラス (S クラス) 施設の整理

別紙 8-3

図 2-3 排気筒の基礎上及び周辺における上位クラス施設(S クラス)以外の整理

別紙 8-4

図 2-4 排気筒の基礎上の間接支持構造物及び波及的影響評価対象構造物の整理

3. 排気筒の基礎等に設置される構造物の要求機能を踏まえた評価について

排気筒の基礎及びその周辺に配置されている各建物・構築物の位置関係・構造を整理し, 排気筒の基礎に設置されるディーゼル燃料貯蔵タンク等の主要設備を網羅的に抽出した上 で,今回工認におけるディーゼル燃料貯蔵タンク室等の耐震評価における各部位の要求機 能,評価内容を表 3-1 のとおり整理した。

また,排気筒の基礎上における間接支持構造物及び波及的影響評価対象構造物の耐震計 算に関する添付書類及び補足説明資料の構成を図 3-1 に示す。

	間接	支持構造物*1		波及的暑	影響評価
主要設備 (耐震重要度分類) (設備分類)	<ul> <li>NI-2-1-4「耐震重要度 分類及び重大事故等</li> <li>対処施設の施設区分の 基本方針」</li> </ul>	耐震計算書	図書 (評価手法*5)		図書 (評価手法* ⁵ )
<ol> <li>Aーディーゼル燃料貯蔵 タンク[北側,南側] (Sクラス)</li> <li>(常設/防止(DB 拡張),常設/緩和)</li> <li>②高圧炉心スプレイ系 ディーゼル燃料貯蔵タンク (Sクラス)</li> <li>(常設/防止(DB 拡張),常設/緩和)</li> </ol>	排気筒の基礎	排気筒の基礎	VI-2-2-15 (建築)	<ul> <li>A-ディーゼル 燃料貯蔵</li> <li>タンク室</li> <li>[北側,南側]</li> <li>高圧炉心</li> <li>スプレイ系</li> <li>ディーゼル燃料</li> <li>貯蔵タンク室</li> </ul>	VI-2-11-2-15 ^{*2} (土木)
<ul> <li>③ Aーディーゼル 燃料移送ポンフ[*] (S クラス) (常設/防止(DB 拡張))</li> <li>④ 高圧炉心スプレイ系 ディーゼル燃料移送ポンプ (S クラス) (常設/防止(DB 拡張))</li> </ul>	排気筒の基礎	ディーゼル燃料 移送ポンプピット	VI-2-2-39*3 (土木)	ディーゼル 燃料移送 ポンプエリア 防護対策設備	VI-2-11-2-6-1 (建築)
		ディーゼル燃料 移送ポンプピット		ディーゼル 燃料移送 ポンプエリア 防護対策設備	VI-2-11-2-6-1 (建築)
⑤ Aーディーゼル 燃料移送ポンプ電線管	排気筒の基礎	ディーセル燃料 移送配管設置 エリア	VI-2-2-39 ^{*3} (土木)	_	—
(S クラス) (常設/防止(DB 拡張))		屋外配管ダクト (排気筒)* ⁴		高圧炉心 スプレイ系 ディーゼル燃料 貯蔵タンク室	VI-2-11-2-15 ^{*2} (土木)
	屋外配管ダクト (タービン建物〜 排気筒)	<ul><li>屋外配管ダクト</li><li>(タービン建物~</li><li>排気筒)</li></ul>	VI-2-2-21 (土木)	_	—
		ディーゼル燃料 移送ポンプピット		ディーゼル 燃料移送 ポンプエリア 防護対策設備	VI-2-11-2-6-1 (建築)
⑥ 高圧炉心スプレイ系 ディーゼル燃料移送	排気筒の基礎	ディーゼル燃料 移送配管設置 エリア	VI-2-2-39*3 (土木)	—	_
ポンプ電線管 (S クラス) (常設/防止(DB 拡張))		屋外配管ダクト (排気筒)* ⁴		高圧炉心 スプレイ系 ディーゼル燃料 貯蔵タンク室	VI-2-11-2-15 ^{*2} (土木)
	屋外配管ダクト (タービン建物〜 排気筒)	屋外配管ダクト (タービン建物~ 排気筒)	VI-2-2-21 (土木)	_	_

表 3-1 耐震評価における各部位の要求機能及び評価内容の整理結果(1)

- 注記*1:排気筒の基礎上の構造物は排気筒の基礎と一体構造であることから、VI-2-1-4「耐震重要度分類及び重大 事故等対処施設の施設区分の基本方針」においては間接支持構造物を「排気筒の基礎」とし、耐震計算書にお いては主要設備の設置状況を踏まえて間接支持構造物を詳細に細分化している。
  - *2:ディーゼル燃料貯蔵タンク室(A系[北側,南側],高圧炉心スプレイ系),屋外配管ダクト(排気筒)及びケー ブル洞道をモデル化し添付書類に評価結果を整理する。
  - *3:ディーゼル燃料移送ポンプピット及びディーゼル燃料移送配管設置エリア(以下「ポンプピット等」という。) は一体構造であり、その底版は屋外配管ダクト(排気筒)及びケーブル洞道の頂版を兼ねているため、ポンプピ ット等の底版の評価結果については、VI-2-2-39「屋外配管ダクト(排気筒)の耐震性についての計算書」にお ける2次元 FEM モデルによる評価の中で示す。また、ポンプピット等は排気筒基礎とも一体構造であることを踏 まえ、VI-2-2-15「排気筒の基礎の耐震性についての計算書」の補足説明資料において、ポンプピット部の底版 及び側壁を切り出したモデルによる評価結果も示す。
  - *4:ケーブル洞道を含めてモデル化及び耐震評価を行う。
  - *5:評価手法について、建物・構築物と同様の評価手法を「建築」、土木構造物と同様の評価手法を「土木」と記載。

	間接	支持構造物*1	波及的影	響評価	
主要設備 (耐震重要度分類) (設備分類)	VI-2-1-4「耐震重要度 分類及び重大事故等 対処施設の施設区分の 基本方針」	耐震計算書	図書 (評価手法* ⁶ )		図書 (評価手法*6)
		ディーゼル燃料 移送ポンプピット		<ul><li>ディーゼル燃料</li><li>移送ポンプエリア</li><li>防護対策設備</li></ul>	VI-2-11-2-6-1 (建築)
	排気筒の基礎	ディーゼル燃料 移送配管設置 エリア	VI-2-2-39*3 (土木)	_	—
<ul><li>⑦ A-ディーゼル燃料</li><li>移送配管</li></ul>		屋外配管ダクト (排気筒)*4		高圧炉心スプレイ 系ディーゼル燃料 貯蔵タンク室	VI-2-11-2-15 ^{*2} (土木)
(S クラス) (常設/防止(DB 拡張))	_	—	—	<ul><li>A-ディーゼル</li><li>燃料貯蔵タンク室</li><li>[北側,南側]</li></ul>	VI-2-11-2-15 ^{*2} (土木)
	屋外配管ダクト (タービン建物〜 排気筒)	屋外配管ダクト (タービン建物~ 排気筒)	VI-2-2-21 (土木)	_	—
	屋外配管ダクト (タービン建物〜 放水槽) <mark>*5</mark>	屋外配管ダクト (タービン建物〜 放水槽) ^{*5}	VI-2-2-27 (土木)	_	—
		ディーゼル燃料 移送ポンプピット		ディーゼル燃料 移送ポンプエリア 防護対策設備	VI-2-11-2-6-1 (建築)
⑧ 高圧炉心スプレイ系 ディーゼル燃料移送配管	排気筒の基礎	<ul><li>ディーゼル燃料</li><li>移送配管設置</li><li>エリア</li></ul>	VI-2-2-39*3 (土木)	_	_
(S クラス) (常設/防止(DB 拡張))		屋外配管ダクト (排気筒) ^{*4}		高圧炉心スプレイ 系ディーゼル燃料 貯蔵タンク室	VI-2-11-2-15*2 (土木)
	屋外配管ダクト (タービン建物〜 排気筒)	屋外配管ダクト (タービン建物~ 排気筒)	VI-2-2-21 (土木)	_	—
<ol> <li>9 非常用ガス処理系配管</li> <li>(5 クラス)</li> </ol>	排気筒の基礎	屋外配管ダクト (排気筒)*4	VI-2-2-39*3 (土木)	高圧炉心スプレイ 系ディーゼル燃料 貯蔵タンク室	VI-2-11-2-15 ^{*2} (土木)
(S クフス) (常設/緩和)	屋外配管ダクト (タービン建物〜 排気筒)	屋外配管ダクト (タービン建物〜 排気筒)	VI-2-2-21 (土木)	—	—

表 3-1 耐震評価における各部位の要求機能及び評価内容の整理結果(2)

注記*1:排気筒の基礎上の構造物は排気筒の基礎と一体構造であることから, VI-2-1-4「耐震重要度分類及び重大事故等 対処施設の施設区分の基本方針」においては間接支持構造物を「排気筒の基礎」とし,耐震計算書においては主 要設備の設置状況を踏まえて間接支持構造物を詳細に細分化している。

*2:ディーゼル燃料貯蔵タンク室(A系[北側,南側],高圧炉心スプレイ系),屋外配管ダクト(排気筒)及びケー ブル洞道をモデル化し添付書類に評価結果を整理する。

- *3:ディーゼル燃料移送ポンプピット及びディーゼル燃料移送配管設置エリア(以下「ポンプピット等」という。) は一体構造であり、その底版は屋外配管ダクト(排気筒)及びケーブル洞道の頂版を兼ねているため、ポンプピ ット等の底版の評価結果については、VI-2-2-39「屋外配管ダクト(排気筒)の耐震性についての計算書」にお ける2次元 FEM モデルによる評価の中で示す。また、ポンプピット等は排気筒基礎とも一体構造であることを踏 まえ、VI-2-2-15「排気筒の基礎の耐震性についての計算書」の補足説明資料において、ポンプピット部の底版 及び側壁を切り出したモデルによる評価結果も示す。
- *4:ケーブル洞道を含めてモデル化及び耐震評価を行う。
- *5:屋外配管ダクト(タービン建物~放水槽)と屋外配管ダクト(タービン建物~排気筒)は一部の区間で立体交差 している箇所(立体交差部)があり,屋外配管ダクト(タービン建物~放水槽)の頂版と屋外配管ダクト(ター ビン建物~排気筒)の底版が立体交差部で部材を共有している。A-ディーゼル燃料移送配管は屋外配管ダクト (タービン建物~排気筒)内の底版上に設置され,立体交差部上も通過することから,屋外配管ダクト(タービ ン建物~放水槽)についても間接支持構造物として整理している。
- *6:評価手法について,建物・構築物と同様の評価手法を「建築」,土木構造物と同様の評価手法を「土木」と記載。

	間接支持構造物						
主要設備 (耐震重要度分類) (設備分類)	VI-2-1-4「耐震重要度 分類及び重大事故等 対処施設の施設区分の 基本方針」	耐震計算書	図書 (評価手法*4)		図書 (評価手法*4)		
<ul> <li>⑩ 原子炉補機海水系配管 (S クラス)</li> </ul>	屋外配管ダクト (タービン建物~	屋外配管ダクト (タービン建物~	VI-2-2-27*1 (土木)	A-ディーゼル 燃料貯蔵タンク室 [北側]	VI-2-11-2-15 ^{*2} (土木)		
(常設/防止(DB 拡張))	放水槽)	放水槽)		放水槽	補足-026-6*3		
<ol> <li>タービン補機海水系配管 (S クラス)</li> </ol>	屋外配管ダクト (タービン建物~	屋外配管ダクト (タービン建物~	VI-2-2-27 ^{*1} (土木)	A-ディーゼル 燃料貯蔵タンク室 [北側]	VI-2-11-215 ^{*2} (土木)		
(—)	放水槽)	放水槽)		放水槽	補足-026-6*3		
⑫ 液体廃棄物処理系配管 (S クラス)	屋外配管ダクト (タービン建物~	屋外配管ダクト (タービン建物~	VI-2-2-27*1 (十本)	A-ディーゼル 燃料貯蔵タンク室 [北側]	VI-2-11-2-15 ^{*2} (土木)		
(—)	放水槽)	放水槽)		放水槽	補足-026-6*3		
				排気筒モニタ室	VI-2-11-2-1-6 (建築)		
(3) 津波監視カメラ雷線管	排気筒	排気筒	VI-2-2-14 (建築)	<ul><li>ディーゼル燃料</li><li>移送ポンプエリア</li><li>防護対策設備</li></ul>	VI-2-11-2-6-1 (建築)		
(S クラス) (一)				主排気ダクト	VI-2-11-2-7-13 (機器)		
	屋外配管ダクト (タービン建物~	屋外配管ダクト (タービン建物〜	VI-2-2-27 ^{*1} (十本)	A-ディーゼル 燃料貯蔵タンク室 [北側]	VI-2-11-2-15*2 (土木)		
	放水槽)	放水槽)		放水槽	補足-026-6*3		
<ul> <li>④ 貫通部止水処置</li> <li>(S クラス)</li> </ul>	屋外配管ダクト (タービン建物~	屋外配管ダクト (タービン建物~	VI-2-2-27*1 (土木)	A-ディーゼル 燃料貯蔵タンク室 [北側]	VI-2-11-2-15 ^{*2} (土木)		
(—)	放水槽)	放水槽)	(11)	放水槽	補足-026-6*3		

表 3-1 耐震評価における各部位の要求機能及び評価内容の整理結果(3)

注記*1:屋外配管ダクト(タービン建物~放水槽)の評価については、A-ディーゼル燃料貯蔵タンク室[北側]の1基の みを隣接構造物としてモデル化を行う。

*2:ディーゼル燃料貯蔵タンク室(A系[北側,南側],高圧炉心スプレイ系),屋外配管ダクト(排気筒)及びケー ブル洞道をモデル化し添付書類に評価結果を整理する。

*3:上位クラス施設に対して保守的な条件となるよう、放水槽全体を埋戻土とする。

*4:評価手法について、建物・構築物と同様の評価手法を「建築」、土木構造物と同様の評価手法を「土木」と記載。



注1:(a)~(e)は対象構造物の評価結果の掲載箇所を示す。

注2:a. 屋外配管ダクト(排気筒)とe. ディーゼル燃料貯蔵タンクを一体でモデル化して評価する。

図 3-1 排気筒の基礎上における間接支持構造物及び波及的影響評価対象構造物の耐震計算に関する添付書類及び補足説明資料の構成