島根原子力発電所第2号機 審査資料					
資料番号	NS2-添2-011-10改03				
提出年月日	2023 年 5 月 31 日				

VI-2-10-2-6 1号機取水槽流路縮小工の耐震性についての計算書

2023年5月

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

		3
		3
		3
		3
		3.
-		3.
6 RC		
)-2-		
2-1(3.
-IV		
褈		
S2		0

2.		位置
3.		流路縮小工の耐震評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
ę	8.	1 構造計画
ę	8.	2 評価方針
3	8.	3 適用規格・基準等 ······ 8
3	3.	4 記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3	3.	5 評価対象部位 ····································
3	8.	6 固有値解析 ······ 14
		<mark>3.6.1</mark> 解析モデルの設定 ······14
		<mark>3.6.2</mark> 固有振動数の <mark>算出</mark> 方法 · · · · · · · · · · · · · · · · · · ·
		<mark>3.6.3</mark> 固有振動数の <mark>算出</mark> 条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		<mark>3.6.4</mark> 固有振動数の <mark>算出</mark> 結果 · · · · · · · · · · · · · · · · · · ·
G	8.	7 荷重及び荷重の組合せ ····································
		<mark>3.7.1 荷重</mark> ····································
		3.7.2 荷重の組合せ
3	3.	8 許容限界
		3.8.1 使用材料 ······18
		3.8.2 許容限界
3	8.	9 評価方法
		3.9.1 縮小板
		3.9.2 固定ボルト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・22
		3.9.3 取水管(フランジ部) ・・・・・ 23
		3.9.4 取水管(管胴部)
3	3.	10 評価条件 ······ 29
3	3.	11 評価結果
4.		1 号機取水槽北側壁の耐震評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4	ŀ.	1 構造及び補強の概要 ······ 32
4	ŀ.	2 評価方針
4	! •	<mark>3 適用規格・基準等</mark> · · · · · · · · · · · · · · · · · · ·
4		4 評価対象断面 ····································
4		5 使用材料及び材料の物性値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4		6 許容限界
		4.6.1 構造部材の健全性に対する許容限界4
		4.6.2 基礎地盤の支持性能に対する許容限界 ······ 49 目-1

	4.	7	評価	ī方法						•••	•••			•••	 •••	•••	•••		•••	 •••		•••	 •	50
		4. ′	7.1	構造	部材の	り健全	全性評	陌価		•••	•••			•••	 •••	•••	•••		•••	 •••		•••	 •	50
		4. ′	7.2	基礎:	地盤0	り支持	萨性能	評価	通・	•••	•••		•••	•••	 •••	•••	••		••	 •••	••	•••	 •	55
5.		耐	震評伯	価結果	Ļ				• • •	•••	•••			•••	 •••	•••	••	•••	•••	 •••	• •	•••	 •	56
	5.	1	構造	部材	の健全	を性に	対す	「る言	評価	結り	₹.			••	 •••	•••	••	•••	•••	 •••	• •	•••	 •	56
	5.	2	基礎	地盤	の支持	寺性龍	目に文	けする	る評	価約	吉果	•••		••	 •••	•••			•••	 •••		••	 •	57

1. 概要

本資料は、VI-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の 設計方針に基づき、津波防護施設のうち1号機取水槽流路縮小工(以下「流路縮小工」と いう。)及びその間接支持構造物である1号機取水槽北側壁が設計用地震力に対して、主 要な構造部材が十分な構造強度を有することを確認するものである。

流路縮小工及び1号機取水槽北側壁に要求される機能の維持を確認するにあたっては, 地震応答解析に基づく構造部材の健全性評価により行う。 2. 位置

流路縮小工は,1号機取水槽と1号機取水管の境界部に設置し,1号機取水槽北側壁に 間接支持される構造とする。

流路縮小工及び1号機取水槽北側壁の設置位置図を図 2-1 に,流路縮小工及び1号機 取水槽北側壁の詳細位置図を図 2-2 に示す。

図 2-1 流路縮小工及び1号機取水槽北側壁の設置位置図

図 2-2 流路縮小工及び1号機取水槽北側壁の詳細位置図

- 3. 流路縮小工の耐震評価
- 3.1 構造計画

流路縮小工は、1号機取水管の終端部のフランジ(以下「取水管(フランジ部)」という。)に、鋼製の縮小板を取付板及び固定ボルトにより固定する構造とする。よって、 流路縮小工は、1号機取水管の管胴部(以下「取水管(管胴部)」という。)、取水管 (フランジ部)、縮小板、取付板及び固定ボルトから構成される。なお、1号機の原子 炉補機海水ポンプに必要な海水を取水するため、縮小板に直径 mの貫通部を設け る。

流路縮小工の構造計画を表 3-1 に示す。

表 3-1 流路縮小工の構造計画

3.2 評価方針

1号機取水槽は,設計当時からの基準地震動Ssの増大により,1号機取水槽の耐震 性を確保するため,流路縮小工と同等の開口を設けたうえで漸拡ダクト部にコンクリー トを充填する。これにより,流路縮小工の大部分は充填コンクリートに拘束されるため, 剛構造であると考えられるが,保守的に充填コンクリートによる拘束は期待しない方針 とする。

流路縮小工の耐震評価は、VI-2-1-9「機能維持の基本方針」の「3.1 構造強度上の 制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「3.1 構造計画」 に示す流路縮小工の構造を踏まえ、「3.5 評価対象部位」にて設定する評価部位にお いて、「3.6 固有値解析」で算出した固有振動数に基づく設計用地震力により算出し た応力度が許容限界内に収まることを、「3.9 評価方法」及び「3.10 評価条件」に示 す方法にて確認する。耐震評価の結果を「3.11 評価結果」にて確認する。

流路縮小工の評価項目を表 3-2 に,耐震評価フローを図 3-1 に,1 号機取水槽の耐 震補強に伴うコンクリート充填範囲図を図 3-2 示す。

なお,1号機流路縮小工を構成する部材のうち取付板については,材質及び厚さが縮 小板と同等であることから,取付板の評価は縮小板の評価に包含されるものとする。

評価方針	評価項目	部位	評価方法	許容限界											
		縮小板	発生する応力(曲げ応力, せん断応力)が許容限界以 下であることを確認	短期許容応力度											
構造強度	構造部材	固定ボルト	発生する応力(引張応力) が許容限界以下であるこ とを確認	短期許容応力度											
を有すること	, ^{, ,} の健全性	の 健 全性 	取水管 (フランジ部)	発生する応力(曲げ応力, せん断応力)が許容限界以 下であることを確認	短期許容応力度										
															取水管 (管胴部)

表 3-2 流路縮小工の評価項目

図 3-1 耐震評価フロー

3.3 適用規格·基準等

適用する規格・基準類を以下に示す。

- ・原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- ・原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル((社)土木学 会,2005年)
- ・港湾の施設の技術上の基準・同解説(国土交通省港湾局,2007年版)
- ・鋼構造設計規準-許容応力度設計法-((社)日本建築学会,2005年改定)
- ·鋼構造許容応力度設計規準((社)日本建築学会,2019年制定)
- ・日本産業規格(JIS)
- ・構造力学公式集((社)土木学会,1986年)

3.4 記号の説明

流路縮小工の耐震評価に用いる記号を表 3-3~表 3-7 にそれぞれ示す。

記号	単位	定義
f	Hz	固有振動数
L	mm	はりの長さ
Е	N/mm^2	ヤング係数
Ι	mm^4	断面 2 次モーメント
m	kg/mm	質量分布

表 3-3 流路縮小工の固有振動数の計算に用いる記号

表 3-4 流路縮小工の縮小板の耐震計算に用いる記号

記号	単位	定義
p ₀	kN/mm^2	縮小板に作用する単位面積あたりの等分布荷重
A ₁₁	mm^2	縮小板の作用面積
Р	kN	縮小板に作用する地震時荷重
a ₁	mm	縮小板の外半径
b ₁	mm	縮小板の内半径
M_{r1}	$kN \cdot mm/mm$	縮小板に生じる半径方向の曲げモーメント
$M_{\theta 1}$	$kN \cdot mm/mm$	縮小板に生じる周方向の曲げモーメント
ν	_	ポアソン比
r ₁	mm	縮小板の中心から半径方向の距離
κ ₁	_	係数
β_1	_	係数
ρ_1		係数
σ1	<mark>k</mark> N∕mm²	縮小板に生じる最大曲げ応力度
Z ₁	mm ³	縮小板の断面係数
t ₁	mm	縮小板の板厚
τ ₁	<mark>k</mark> N∕mm²	縮小板に生じる最大せん断応力度
A ₁₂	mm^2	縮小板の有効せん断面積
S ₁	kN	縮小板に作用するせん断力

	100	
記号	単位	定義
Т	kN/本	内側固定ボルトに作用する引張力
T ₁	kN/本	縮小板に作用する荷重により内側固定ボルトに作用する引張力
т	1-N / +	縮小板に生じる曲げモーメントにより内側固定ボルトに作用す
12	KIN/ 4×	る引張力
М	kN•mm/mm	縮小板に生じる曲げモーメント合力
σ_{b}	<mark>k</mark> N∕mm²	内側固定ボルトに生じる最大応力度
Р	kN	内側固定ボルトに作用する地震時荷重
n	本	内側固定ボルトの本数
D ₁	mm	フランジ外径
l ₁	mm	支点間距離
M_{r1}	kN•mm/mm	縮小板に生じる半径方向の曲げモーメント
$M_{\theta 1}$	kN•mm/mm	縮小板に生じる周方向の曲げモーメント
А	mm^2	内側固定ボルト1本の有効断面積

表 3-5 流路縮小工の固定ボルトの耐震計算に用いる記号

訂早	畄位	· · · · · · · · · · · · · · · · · · ·
P'	<mark>k</mark> N∕mm	取水管(フランジ部)に作用する単位長さあたりの等分布荷重
L _f	mm	取水管(フランジ部)の外周長
Р	kN	取水管(フランジ部)に作用する地震時荷重
b _f	mm	取水管(フランジ部)の外半径
M _{rf}	kN•mm/mm	取水管(フランジ部)に生じる半径方向の曲げモーメント
$M_{ heta f}$	kN•mm/mm	取水管(フランジ部)に生じる周方向の曲げモーメント
a _f	mm	取水管(フランジ部)の内半径
ν	_	ポアソン比
r _f	mm	取水管(フランジ部)の中心から半径方向の距離
κ _f	_	係数
$\beta_{\rm f}$	—	係数
$\rho_{\rm f}$	—	係数
$\sigma_{\rm f}$	<mark>k</mark> N/mm²	取水管(フランジ部)に生じる最大曲げ応力度
Z _f	mm ³	取水管(フランジ部)の断面係数
t _f	mm	取水管(フランジ部)の板厚
$\tau_{\rm f}$	<mark>k</mark> N/mm²	取水管(フランジ部)に生じる最大せん断応力度
A ₃	mm^2	取水管(フランジ部)付け根の断面積
l _f	mm	取水管(フランジ部)付け根の周長
S _f	kN	取水管(フランジ部)に作用するせん断力
D _i	mm	取水管(フランジ部)の管内径
t _p	mm	取水管(管胴部)の管厚

表 3-6 流路縮小工の取水管(フランジ部)の耐震計算に用いる記号

記号	単位	定義
σ _d	<mark>k</mark> N∕mm²	取水管(管胴部)に生じる最大曲げ応力度
		取水管(管胴部)に作用する鉛直方向の地震時荷重により生
σ_{dv}	<mark>k</mark> N/mm²	じる <mark>最大</mark> 曲げ応力度
σ _{dh}	<mark>k</mark> N∕mm²	取水管(管胴部)に作用する水平方向の地震時荷重により生
- uli		じる <mark>最大</mark> 曲げ応力度
M _{dv}	kN•mm/mm	取水管(管胴部)に作用する鉛直方向の地震時荷重により生
		しる曲りて ノント 取水管(管胴部)に作用する水平方向の地震時荷重により生
M _{dh}	kN•mm/mm	じる曲げモーメント
Z _d	mm^3	取水管(管胴部)の断面係数
σ	kN/mm ²	縮小板に作用する地震時荷重により取水管(管胴部)に生じ
0 _t		る最大引張応力度
A _d	mm^2	取水管(管胴部)の作用面積
$\sigma_{\rm f}$	<mark>k</mark> N∕mm²	取水管(フランジ部)に生じる曲げモーメントにより取水管
		(管胴部)に生じる最大曲げ応力度
W_1	kN	取水管(管胴部)の自重(管内部の水を含む)
P ₁	kN	取水管(管胴部)に作用する地震時荷重
L _d	mm	取水管(管胴部)の張り出し長さ
P ₂	kN	取水管(フランジ部)に作用する地震時荷重
L _f	mm	取水管(フランジ部)の外周長
a ₁	mm	1号機取水管の外径
b ₁	mm	1号機取水管の内径
P ₃	kN	縮小板に作用する地震時荷重
τ_d	<mark>k</mark> N∕mm²	取水管(管胴部)に生じる最大せん断応力度
	lrN/mm ²	取水管(管胴部)に作用する鉛直方向の地震時荷重により生
۲dv		<mark>じる最大せん断応力度</mark>
τ _{dh}	<mark>kN/mm²</mark>	取水管(管胴部)に作用する水平方向の地震時荷重により生
		じる最大せん断応力度
S _{dv}	kN	取水官(官胴部)に作用する鉛直方向の地震時何重により生 にるせん断力
	1	取水管(管胴部)に作用する水平方向の地震時荷重により生
S _{dh}	kN	じるせん断力
A ₅	mm^2	取水管(管胴部)の有効せん断面積
W ₁	kN	取水管(管胴部)の自重(管内部の水を含む)
D _d	mm	取水管(管胴部)の管内径
t _p	mm	取水管(管胴部)の管厚

表 3-7 流路縮小工の取水管(管胴部)の耐震計算に用いる記号

3.5 評価対象部位

流路縮小工の評価対象部位は,「3.1 構造計画」に設定している構造を踏まえて,地 震に伴う荷重の作用方向及び伝達過程を考慮し,縮小板,固定ボルト,取水管(フラン ジ部)及び取水管(管胴部)とする。

固定ボルトは内側固定ボルト及び外側固定ボルトにより構成されるが、内側固定ボル トのみにより引張力を負担するものとして、保守的に耐震評価を実施する。

評価対象部位を図 3-3 に示す。

3.6 固有值解析

3.6.1 解析モデルの設定

流路縮小工は,取水管(フランジ部)に,鋼製の縮小板を固定ボルトにより固定 する構造であることから,片持ちはりに単純化したモデルとする。図 3-4 に固有 値解析モデルを示す。

<mark>3.6.2</mark> 固有振動数の<mark>算出</mark>方法

固有振動数について,「構造力学公式集((社)土木学会,1986年)」に基づき 以下の式より算出する。

$$f = \frac{1.8751^2}{L^2} \sqrt{\frac{E \cdot I}{m}} \cdot 10^3$$

ここで、f : 固有振動数 (Hz)
L : はりの長さ (mm)
E : ヤング係数 (N/mm²)
I : 断面 2 次モーメント (mm⁴)
m : 質量分布 (kg/mm)

<mark>3.6.3</mark> 固有振動数の<mark>算出</mark>条件

固有振動数の算出条件を表 3-8 に示す。

表 3-8 固有振動数の算出条件

はりの長さ	ヤング係数	断面2次モーメント	質量分布
L (mm)	$E (N/mm^2)$	I (mm^4)	m (kg/mm)
	2. 0×10^{5}	7099	3. 4569×10^{-4}

<mark>3.6.4</mark> 固有振動数の<mark>算出</mark>結果

固有振動数の<mark>算出</mark>結果を表 3-9 に示す。固有振動数は 20Hz 以上であることか ら,流路縮小工は剛構造である。

表 3-9 固有振動数の算出結果

固有振動数(Hz)	150.35

- 3.7 荷重及び荷重の組合せ
 - 3.7.1 荷重

耐震評価には、以下の荷重を用いる。

(1) 固定荷重(G)

固定荷重として、流路縮小工を構成する部材の自重を考慮する。

また,流路縮小工の上下流の水位差を考慮した静水圧を考慮することとし,以 下の式により算定する。

 $F_h = \gamma_w \times \Delta h \times A$

ここで,

- F_h :静水圧 (kN)
- γw : 海水の単位体積重量 (=10.1kN/m³)
- Δh : 1 号機取水口と1 号機取水槽の水位差 (m)
- A : 縮小板の面積 (m²)
- (2) 地震荷重(Ss)

地震荷重として、VI-2-1-9「機能維持の基本方針」に示すとおり、基準地震動 Ssに伴う慣性力及び動水圧を考慮する。

なお,地震荷重の算定に用いる設計震度は,1号機取水槽付近の地盤物性のば らつきを考慮したものとして,Ⅵ-2-10-2-5「1号機取水槽の地震応答計算書」の 地震応答解析結果から余裕を考慮した震度を用いる。

a. 慣性力

慣性力は,流路縮小工の重量に基準地震動Ssによる設計水平震度又は設計鉛 直震度を乗じた次式により算出する。

なお、鉛直慣性力は取水管(管胴部)のみ考慮する。

 P_{ih}=W×K_h

 P_{iv}=W×K_v

 ここで、

 P_{ih} : 水平慣性力(kN)

 P_{iv} : 鉛直慣性力(kN)

 W : 重量(kN)

 K_h : 基準地震動Ssによる設計水平震度

 K_v : 基準地震動Ssによる設計鉛直震度

b. 動水圧

動水圧は,以下の Westergaard の式により算定する。

$$P_{dw} = \pm \frac{7}{8} \times C \times K_h \times \gamma_w \times \sqrt{Z_{dw} \times z_{dw}}$$

ここで、
 P_{dw} : 動水圧(kN/m²)
C : 補助係数 (=1.0)
 K_h : 基準地震動Ssによる設計水平震度
 γ_w : 海水の単位体積重量 (=10.1kN/m³)
 Z_{dw} : 水深(m)
 z_{dw} : 水面から動水圧を求める点までの深さ

「3.6 固有値解析」に示したとおり,流路縮小工の固有振動数は20Hz以上であることを確認している。流路縮小工の耐震評価に用いる設計震度は,流路縮小工を剛構造として考慮したVI-2-10-2-5「1号機取水槽の地震応答計算書」の地震応答解析結果より,地盤物性のばらつきを含めた結果を踏まえた余裕を考慮した震度を用いる。

(m)

耐震評価に用いる設計震度を表 3-10 に示す。

表 3-10 耐震評価に用いる設計震度

<u> </u>	基準地震動 S s による設計震度		
<u> </u>	水平方向 k _h	鉛直方向 k _v	
1号機取水槽北側壁	1.50	1.50	

3.7.2 荷重の組合せ

流路縮小工の評価に用いる荷重の組合せを以下に示す。荷重の組合せを表 3-11 に、地震時の荷重作用図を図 3-5 に示す。

- $G+S\ s$
- ここで,
- G :固定荷重
- S s : 地震荷重(基準地震動 S s)

表 3-11 荷重の組合せ

種別	荷重	記号	算定方法
	飯休白香		設計図書に基づいて、対象構造物の体積に材料の
田ウ古毛	池平日里	C	密度を乗じて設定する。
<u> 迫</u> 足 何 里	あず口	G	管路解析より1号機取水口と1号機取水槽との水
	靜小庄		位差による静水圧を考慮する。
地震荷重	水平慣性力		基準地震動Ssによる躯体の慣性力を考慮する。
	鉛直慣性力	S s	縮小板,固定ボルト,及び取水管(フランジ部)は, 主たる荷重が水平方向荷重のため考慮しない。 取水管(管胴部)は基準地震動Ssによる躯体の慣 性力を考慮する。
	動水圧		管路解析より1号機取水槽の水位が最大となる水 位での動水圧を考慮する。

図 3-5 地震時の荷重作用図

3.8 許容限界

流路縮小工の許容限界は、「3.5 評価対象部位」にて設定した部位に対し、VI-2-1-9「機能維持の基本方針」にて設定している許容限界を踏まえて設定する。

3.8.1 使用材料

流路縮小工を構成する各部材の使用材料を表 3-12 に示す。

表 3-12 使用材料

評価対象部位	材質	仕様	
縮小板	SS400	t = 40 (mm) *	
固定ボルト	SCM435	内側:M30, 外側:M24	
取水管 (フランジ部)	SS400	t = 46 (mm) *	
取水管(管胴部)	SS400	t = 24 (mm) *	

注記*:エロージョン摩耗に対する設計・施工上の配慮として,縮小板の余 裕厚を4mmとして考慮し,板厚を44-4=40(mm)と設定する。また, 取水管(フランジ部)及び取水管(管胴部)についても,余裕厚を 4mmとして考慮し,取水管(フランジ部)の板厚を50-4=46(mm), 取水管(管胴部)の板厚を28-4=24(mm)と設定する。

3.8.2 許容限界

許容限界は、VI-2-1-9「機能維持の基本方針」に基づき設定する。

流路縮小工を構成する各部材の許容限界のうち,縮小板,取水管(フランジ部) 及び取水管(管胴部)は「鋼構造設計規準-許容応力度設計法-((社)日本建築 学会,2005年改定)」に基づき,固定ボルトは,「鋼構造許容応力度設計規準((社) 日本建築学会,2019年制定)」及び「JIS B 1051 炭素鋼及び合金鋼製 締結用部品の機械的性質-強度区分を規定したボルト,小ねじ及び植込みボルト-並目ねじ及び細目ねじ」に基づき設定した短期許容応力度とする。流路縮小工を構 成する各部材の許容限界を表 3-13 に示す。

表 3-13	流路縮小工を構成する各部材の許容限界
--------	--------------------

	++ FF	短期許容応力度(N/mm ²)			
評価対象部位		曲げ	せん断	引張	
縮小板	SS400	235	135	_	
固定ボルト	SCM435	—	—	560	
取水管(フランジ部)	SS400	215	124	_	
取水管 (管胴部)	SS400	235	135	_	

3.9 評価方法

流路縮小工を構成する各部材に発生する応力度が,許容限界以下であることを確認す る。

3.9.1 縮小板

縮小板の管軸方向(水平方向)に対する耐震評価を実施する。外径を固定とする 有孔円板に等分布荷重が作用することで縮小板に生じる応力度が許容限界以下で あることを確認する。

(1) 縮小板に作用する単位面積あたりの等分布荷重

縮小板に作用する単位面積あたりの等分布荷重は,以下の式より算出する。 $p_0 = \frac{P}{A_{11}}$ $A_{11} = (a_1^2 - b_1^2) \times \pi$ ここで, p_0 :縮小板に作用する単位面積あたりの等分布荷重 (kN/mm²) A_{11} :縮小板の作用面積 (mm²) P :縮小板に作用する地震時荷重 (kN) a_1 :縮小板の外半径 (mm) b_1 :縮小板の内半径 (mm) (2) 縮小板に生じる曲げモーメント

縮小板に生じる曲げモーメントについて,「構造力学公式集((社)土木学会, 1986年)」に基づき以下の式より算出する。

$$\begin{split} M_{r1} &= \frac{p_0 a_1^2}{16} \bigg[(1+\nu)(1-\kappa_1) + 4\beta_1^2 - (3+\nu)\rho_1^2 - \frac{(1-\nu)\kappa_1}{\rho_1^2} + 4\beta_1^2(1+\nu)\ln\rho_1 \bigg] \\ M_{\theta 1} &= \frac{p_0 a_1^2}{16} \bigg[(1+\nu)(1-\kappa_1) + 4\nu\beta_1^2 - (1+3\nu)\rho_1^2 - \frac{(1-\nu)\kappa_1}{\rho_1^2} + 4\beta_1^2(1+\nu)\ln\rho_1 \bigg] \\ \kappa_1 &= \beta_1^2 \frac{(1-\nu)\beta_1^2 + (1+\nu)(1+4\beta_1^2\ln\beta_1)}{1-\nu + (1+\nu)\beta_1^2} \\ \beta_1 &= \frac{b_1}{a_1} \\ \rho_1 &= \frac{b_1}{a_1} \\ \rho_1 &= \frac{r_1}{a_1} \\ \text{c.c.}, \\ M_{r1} &: \hat{\mathrm{m}} h_{\mathrm{K}} \mathrm{kc} \pm \mathbb{C} \, \delta \, \# \, \mathbb{E} \, \delta \, \# \, \delta \, \delta \, h \, \delta \, h \, \mathrm{c} \, \mathrm{mn/mn}) \\ M_{\theta 1} &: \hat{\mathrm{m}} h_{\mathrm{K}} \mathrm{kc} \pm \mathbb{C} \, \delta \, \# \, \delta \, \mathrm{c} \, \mathrm{b} \, \mathrm{d} \, \mathrm{ft} \, \mathrm{et} \, - \, \lambda \, \nu \, \mathrm{b} \, (\,\mathrm{kN} \, \cdot \, \mathrm{mn/mn}) \\ p_0 &: \hat{\mathrm{m}} h_{\mathrm{K}} \mathrm{kc} \, \mathrm{t} \, \mathbb{E} \, \delta \, \mathrm{ld} \, \mathrm{b} \, \mathrm{b} \, \mathrm{t} \, \mathrm{st} \, \mathrm{b} \, \mathrm{b} \, \mathrm{ct} \, \mathrm{b} \, \mathrm{b} \, \mathrm{st} \, \mathrm{b} \, \mathrm{b} \, \mathrm{st} \, \mathrm{b} \, \mathrm{b} \, \mathrm{st} \, \mathrm{ct} \, \mathrm{b} \, \mathrm{b} \, \mathrm{mn/mn} \\ \nu &: \, \vec{\mathrm{m}} h_{\mathrm{K}} \mathrm{cd} \, \mathrm{b} \, \mathrm{st} \, \mathrm{b} \, \mathrm{b} \, \mathrm{st} \, \mathrm{b} \, \mathrm{b} \, \mathrm{b} \, \mathrm{st} \, \mathrm{b} \, \mathrm{b} \, \mathrm{st} \, \mathrm{b} \, \mathrm{ct} \, \mathrm{b} \, \mathrm{b} \, \mathrm{b} \, \mathrm{b} \, \mathrm{b} \, \mathrm{ct} \, \mathrm{b} \, \mathrm{b}$$

(3) 縮小板に生じる最大曲げ応力度

縮小板に生じる最大曲げ応力度について,「構造力学公式集((社)土木学会,1986 年)」に基づき,以下の式より算出する。

$$\sigma_{1} = \frac{\sqrt{M_{r1}^{2} + M_{\theta 1}^{2}}}{Z_{1}}$$

 $Z_1 = \frac{t_1^2}{6}$ ここで、 σ_1 :縮小板に生じる最大曲げ応力度 (kN/mm²) Z_1 :縮小板の断面係数 (mm³) M_{r1} :縮小板に生じる半径方向の曲げモーメント (kN・mm/mm) $M_{\theta 1}$:縮小板に生じる周方向の曲げモーメント (kN・mm/mm) t_1 :縮小板の板厚 (mm)

(4) 縮小板に生じる最大せん断応力度 縮小板に生じる最大せん断応力度は,以下の式より算出する。

$$\tau_1 = \frac{S_1}{A_{12}}$$

 $A_{12} = 2 \cdot \pi \cdot a_1 \cdot t_1$

ここで,

 $\tau_1 : 縮小板に生じる最大せん断応力度(kN/mm2)$

 $A_{12} : 縮小板の有効せん断面積(mm2)$

 $S_1 : 縮小板に作用するせん断力(=P)(kN)$

 $P : 縮小板に作用する地震時荷重(kN)$

 $a_1 : 縮小板の外半径(mm)$

 $t_1 : 縮小板の板厚(mm)$

3.9.2 固定ボルト

固定ボルトの管軸方向(水平方向)に対する耐震評価を実施する。固定ボルトに は,縮小板に作用する水平力により固定ボルトに作用する引張力に加え,縮小板外 縁に生じる曲げモーメントに伴い固定ボルトに作用する引張力を有効断面積で除 することで求めた応力度が許容限界以下であることを確認する。

- (1) 固定ボルトに生じる最大応力度 固定ボルトに生じる最大応力度は、以下の式より算出する。 $T = T_1 + T_2$ $T_1 = \frac{P}{n}$ $T_2 = M \cdot \pi \cdot D_1 \cdot \frac{1}{n \cdot l_1}$ $M = \sqrt{M_{r1}^2 + M_{\theta 1}^2}$ $\sigma_b = \frac{T}{A}$ ここで、 T : 内側固定ボルトに作用する引張力 (kN/本)
 - T₁:縮小板に作用する荷重により内側固定ボルトに作用する引張力(kN/本)
 - T₂:縮小板に生じる曲げモーメントにより内側固定ボルトに作用する
 引張力(kN/本)
 - M :縮小板に生じる曲げモーメント合力 (kN・mm/mm)
 - σ_b :内側固定ボルトに生じる最大応力度 (kN/mm²)
 - P:内側固定ボルトに作用する地震時荷重(kN)
 - n : 内側固定ボルトの本数(本)
 - D₁ : フランジ外径 (mm)
 - **l**₁ : 支点間距離 (mm)
 - M_{r1}:縮小板に生じる半径方向の曲げモーメント(kN・mm/mm)
 - $M_{\theta 1}$:縮小板に生じる周方向の曲げモーメント(kN・mm/mm)
 - A : 内側固定ボルト1本の有効断面積 (mm²)

3.9.3 取水管 (フランジ部)

取水管(フランジ部)の管軸方向(水平方向)に対する耐震評価を実施する。 取 水管(フランジ部)は内側固定ボルトを介して荷重が作用するものとして、内径を 固定とする有孔円板に等分布荷重が作用することで取水管(フランジ部)に生じる 応力度が許容限界以下であることを確認する。

(1) 取水管(フランジ部)に作用する単位長さあたりの等分布荷重

フランジ部)の外周長 (mm)

フランジ部)に作用する地震時荷重 (kN)

取水管(フランジ部)に作用する単位長さあたりの等分布荷重は,以下の式より 算出する。

フランジ部)に作用する単位長さあたりの等分布荷重(kN/mm)

$$P' = \frac{P}{L_f}$$

 $L_f = 2 \cdot \pi \cdot b_f$
ここで、
 P' :取水管 (フランジ部) に作用する単位
 L_f :取水管 (フランジ部) の外周長 (mm)
 P :取水管 (フランジ部) に作用する地震
 b_f :取水管 (フランジ部) の外半径 (mm)

$$\begin{split} M_{rf} &= \frac{P'a_{f}\beta_{f}}{2} \bigg[-1 + (1+\nu)\kappa_{f} + (1-\nu)\frac{\kappa_{f}}{p_{f}^{2}} - (1+\nu)\ln\rho_{f} \bigg] \\ M_{\theta f} &= \frac{P'a_{f}\beta_{f}}{2} \bigg[-\nu + (1+\nu)\kappa_{f} - (1-\nu)\frac{\kappa_{f}}{p_{f}^{2}} - (1+\nu)\ln\rho_{f} \bigg] \\ \kappa_{f} &= \beta_{f}^{2} \frac{1 + (1+\nu)\ln\beta_{f}}{1-\nu + (1+\nu)\beta_{f}^{2}} \\ \beta_{f} &= \frac{b_{f}}{a_{f}} \\ \rho_{f} &= \frac{b_{f}}{a_{f}} \\ cccv, \\ M_{rf} &: \mathrm{Rx} \hat{\mathrm{T}} (7 \exists \nu \vec{x}) \approx (7 \exists \nu \vec{x}) \approx (2 \exists \nu \vec$$

(3) 取水管(フランジ部)に生じる最大曲げ応力度

取水管(フランジ部)に生じる最大曲げ応力度について,「構造力学公式集((社) 土木学会,1986年)」に基づき以下の式より算出する。

$$\sigma_{f} = \frac{\sqrt{M_{rf}^{2} + M_{\theta f}^{2}}}{Z_{f}}$$

$$Z_f = \frac{t_f^2}{6}$$

ここで,

o_f : 取水管(フランジ部)に生じる最大曲げ応力度(kN/mm²)

 Z_f : 取水管(フランジ部)の断面係数(mm³)

 M_{rf} : 取水管(フランジ部)に生じる半径方向の曲げモーメント(kN・mm/mm)

 M_{θf} : 取水管(フランジ部)に生じる周方向の曲げモーメント(kN・mm/mm)

 t_f : 取水管(フランジ部)の板厚(mm)

(4) 取水管(フランジ部)に生じる最大せん断応力度取水管(フランジ部)に生じる最大せん断応力度は、以下の式より算出する。

$$r_f = \frac{S_f}{A_3}$$

 $A_3 = t_f \cdot l_f$
 $l_{f} = \pi \cdot (D_i + 2t_p)$
ここで、
 τ_f : 取水管 (フランジ部) に生じる最大せん断応力度 (kN/mm²)
 A_3 : 取水管 (フランジ部) 付け根の断面積 (mm²)
 l_f : 取水管 (フランジ部) 付け根の周長 (mm)
 S_f : 取水管 (フランジ部) に作用するせん断力 (= P) (kN)
P : 取水管 (フランジ部) に作用する地震時荷重 (kN)
 t_f : 取水管 (フランジ部) の板厚 (mm)
 D_i : 取水管 (フランジ部) の管内径 (mm)
 t_p : 取水管 (管胴部) の管厚 (mm)

3.9.4 取水管(管胴部)

取水管(管胴部)には,取水管(管胴部)に生じる曲げモーメントに加え,取水 管(フランジ部)に生じる曲げモーメントを考慮する。取水管(管胴部)の検討で は,1号機取水槽北側壁を固定端とした片持ちはりとして,管軸方向(水平方向) 及び管軸直交方向(鉛直方向)に対する耐震評価を実施する。

(1) 取水管(管胴部)に生じる曲げ応力度取水管(管胴部)に生じる曲げ応力度は、以下の式より算出する。

Z_d : 取水管(管胴部)の断面係数(mm³)

- σt :縮小板に作用する地震時荷重により取水管(管胴部)に生じる 最大引張応力度(kN/mm²)
- : 取水管(管胴部)の作用面積(mm²) Ad
- : 取水管(フランジ部)に生じる曲げモーメントにより $\sigma_{\rm f}$ 取水管(管胴部)に生じる最大曲げ応力度(kN/mm²)
- W₁:取水管(管胴部)の自重(管内部の水を含む)(kN)
- : 取水管(管胴部)に作用する地震時荷重(kN) P_1
- L_d : 取水管(管胴部)の張り出し長さ(mm)
- : 取水管(フランジ部)に作用する地震時荷重(kN) P_2
- : 取水管(フランジ部)の外周長(mm) Lf
- a₁ : 1 号機取水管の外径 (mm)
- **b**₁ : 1 号機取水管の内径 (mm)
- :縮小板に作用する地震時荷重(kN) P_3
- (2) 取水管(管胴部)に生じる最大せん断応力度 取水管(管胴部)に生じる最大せん断応力度は,以下の式より算出する。

$$\begin{split} \tau_{d} &= \sqrt{\tau_{dv}^{2} + \tau_{dh}^{2}} \\ \tau_{dv} &= \frac{S_{dv} + W_{1}}{A_{5}} \\ \tau_{dh} &= \frac{S_{dh}}{A_{5}} \\ S_{dv} &= S_{dh} = P \\ A_{5} &= \frac{\left\{ \left(\frac{D_{d}}{2} + t_{p} \right)^{2} \cdot \pi - \left(\frac{D_{d}}{2} \right)^{2} \cdot \pi \right\}}{2} \\ \text{c.c.} \\ \tau_{d} &: \text{取水管 (管胴部) に生じる最大せん断応力度 (kN/mm^{2})} \\ \tau_{dv} &: \text{取水管 (管胴部) に作用する鉛直方向の地震時荷重により \\ \underline{4 \text{ L} \circ 3 \text{ B} \text{ X} \text{ C}} (\text{管胴部) に作用する鉛直方向の地震時荷重により \\ \underline{4 \text{ L} \circ 3 \text{ B} \text{ X} \text{ C}} (\text{管胴部) に作用する鉛直方向の地震時荷重により \\ \underline{4 \text{ L} \circ 3 \text{ B} \text{ X} \text{ C}} (\text{管胴部) に作用する鉛直方向の地震時荷重により \\ \underline{4 \text{ L} \circ 3 \text{ B} \text{ X} \text{ C}} (\text{管胴部) に作用する鉛直方向の地震時荷重により \\ \underline{4 \text{ L} \circ 3 \text{ C}} \text{ L} \text{ C} \text{ C} \text{ M} \text{ C} \text{ K} \\ S_{dh} &: \text{ 取水管 (管胴部) に作用する水平方向の地震時荷重により \\ \underline{4 \text{ L} \circ 3 \text{ C}} \text{ C} \text{ C} \text{ M} \text{ C} \\ S_{dh} &: \text{ 取水管 (管胴部) に作用する水平方向の地震時荷重により \\ \underline{4 \text{ L} \circ 3 \text{ C}} \text{ C} \text{ C} \text{ M} \text{ C} \text{$$

A₅: 取水管(管胴部)の有効せん断面積(mm²)

Ŋ

Ŋ

- W1 : 取水管(管胴部)の自重(管内部の水を含む)(kN)
- D_d :取水管(管胴部)の管内径(mm)
- t_p : 取水管(管胴部)の管厚(mm)

3.10 評価条件

「3. 流路縮小工の耐震評価」に用いる入力値を表 3-14~表 3-17 に示す。

記号	単位	定義	入力値
Р	kN	縮小板に作用する地震時荷重	1420
a ₁	mm	縮小板の外半径	1925
b ₁	mm	縮小板の内半径	
r ₁	mm	縮小板の中心から半径方向の距離	1925
ν	—	ポアソン比	0.3
t ₁	mm	縮小板の板厚	40

表 3-14 流路縮小工の縮小板の耐震評価に用いる入力値

表 3-15 流路縮小工の固定ボルトの耐震評価に用いる入力値

記号	単位	定義	入力値
D ₁	mm	フランジ外径	3850
l ₁	mm	支点間距離	111
Р	kN	内側固定ボルトに作用する地震時荷重	1420
n	本	内側固定ボルトの本数	40
А	mm^2	内側固定ボルト1本の有効断面積	561

表 3-16 流路縮小工の取水管(フランジ部)の耐震評価に用いる入力値

記号	単位	定義	入力値
Р	kN	取水管(フランジ部)に作用する地震時荷重	1452
b _f	mm	取水管(フランジ部)の外半径	1814
ν	—	ポアソン比	0.3
a _f	mm	取水管(フランジ部)の内半径	1675
r _f	mm	取水管(フランジ部)の中心から半径方向の距離	1675
t _f	mm	取水管(フランジ部)の板厚	46
S _f	kN	取水管(フランジ部)に作用するせん断力	1452
D _i	mm	取水管(フランジ部)の管内径	3350
t _p	mm	取水管(管胴部)の管厚	24

記号	単位	定義	入力値
W ₁	kN	取水管(管胴部)の自重(管内部の水を含む)	9
P ₁	kN	取水管(管胴部)に作用する地震時荷重	352
L _d	mm	取水管(管胴部)の張り出し長さ	450
P ₂	kN	取水管(フランジ部)に作用する地震時荷重	69
P ₃	kN	縮小板に作用する地震時荷重	1420
a ₁	mm	1号機取水管の外径	3398
b ₁	mm	1号機取水管の内径	3350
D _d	mm	取水管(管胴部)の管内径	3350
t _p	mm	取水管(管胴部)の管厚	24

表 3-17 流路縮小工の取水管(管胴部)の耐震評価に用いる入力値

3.11 評価結果

流路縮小工の耐震評価結果を表 3-18 に示す。各部材の断面照査を行った結果,す べての部材において発生応力度が許容限界以下であることを確認した。

評価対象部位		発生応力度		短期許容応力度		照查值
	曲げ	157	N/mm^2	235	N/mm^2	0.67
利白 小 小文	せん断	3	N/mm^2	135	N/mm^2	0.03
固定ボルト	引張	266	N/mm^2	560	N/mm^2	0.48
取水管	曲げ	56	N/mm^2	215	N/mm^2	0.26
(フランジ部)	せん断	3	N/mm^2	124	N/mm^2	0.03
取水管	曲げ	211	N/mm^2	235	N/mm^2	0.90
(管胴部)	せん断	5	N/mm^2	135	N/mm^2	0.04

表 3-18 流路縮小工の耐震評価結果

- 4. 1号機取水槽北側壁の耐震評価
- 4.1 構造及び補強の概要
 - 4.1.1 1号機取水槽構造概要

1号機取水槽の平面図を図 4-1 に、断面図を図 4-2 及び図 4-3 に示す。

1号機取水槽は、地下2階構造となっており、上部は除じん機エリア、海水ポン プエリア、ストレーナエリアの3エリアに分かれている。漸拡ダクトエリアを含む 下部は水路となっており、除じん機エリアの下部は6連のボックスカルバート構造、 海水ポンプエリアの下部は3連のボックスカルバート構造となっている。

1号機取水槽の北側壁は,流路縮小工の間接支持構造物である。北側壁及び流路 縮小工の位置図を図4-4に示す。

(単位:mm)

図 4-3 1 号機取水槽 断面図(B-B断面)

4.1.2 1号機取水槽補強概要

1号機取水槽の北側壁は,設計当時からの基準地震動Ssの増大により,取水槽の耐震性を確保するため,PHb工法によるせん断補強を実施する。

1号機取水槽北側壁と接続する部材の補強を目的に漸拡ダクト部にコンクリートを充填する。漸拡ダクト部充填コンクリートには流路縮小工の内径と同じ開口 を設け,取水機能を確保するなお,漸拡ダクト部充填コンクリートに設置した流 路縮小工の内径と同じ開口については,評価上考慮しないものの保守的に開口補 強筋を設置する。

また,1号機取水槽ピット部については下部に閉塞版を設置したのちに,コン クリートを充填し,閉塞する。

補強工事の一覧表を表 4-1 に示す。また,補強工事の詳細図面を図 4-6~図 4 -9 に1号機取水槽北側壁配筋図を図 4-10 に示す。

部材名 部材位置*1		補強工事概要	
北側壁	1	PHb * 2	
漸拡ダクト部	2	充填コンクリート打設*3	
ピット部	3	充填コンクリート打設	
ピット部 (閉塞版)	4	ピット部閉塞版鉄筋コンクリート打設	

表 4-1 補強工事一覧

注記*1:部材位置図については図4-5に示す。

*2:1号機取水槽北側壁配筋図については図4-10に示す。

*3:充填コンクリート内部には流路縮小工と同じ大きさの開口を設置

図 4-6 補強工事実施後平面図

図 4-9 補強工事実施図(C-C断面)

図 4-10 1 号機取水槽北側壁配筋図 39

4.2 評価方針

1号機取水槽北側壁は、流路縮小工の間接支持構造物である。

1号機取水槽の耐震評価フローを図 4-11 に示す。

1号機取水槽北側壁は、VI-2-10-2-5「1号機取水槽の地震応答計算書」より得られ た地震応答解析の結果に基づき、津波防護施設の間接支持構造物として、表 4-2 に示 すとおり、構造部材の健全性評価及び基礎地盤の支持性能評価を行う。

構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで,構造強度を 有すること及び津波防護施設を支持する機能を損なわないことを確認する。

構造部材の健全性評価については、VI-2-10-2-5「1号機取水槽の地震応答計算書」 より得られた地震応答解析の結果に基づき実施する。1号機取水槽北側壁はPHb工法 を適用する部材であるため、おおむね弾性範囲となる状況下で使用することから、曲 げ・軸力系の破壊に対しては構造部材に発生する曲げモーメントが鉄筋降伏に相当す る降伏モーメントを下回ることを確認する。せん断破壊に対しては照査用せん断力が せん断耐力を下回ることを確認する。

基礎地盤の支持性能評価については、VI-2-10-2-5「1号機取水槽の地震応答計算 書」より得られた地震応答解析の結果に基づき、基礎地盤に発生する接地圧が極限支 持力度を下回ることを確認する。

評価方針	評価項目	部位	評価方法	許容限界		
構造強度を有すること	構造部材の 健全性	鉄筋コンク リート部材	曲げモーメント及びせん断	曲げ・軸力	降伏曲げモ ーメント*	
			力が許容限界 を下回ること を確認	せん断力	せん断耐力*	
	基礎地盤の 支持性能	基礎地盤	発生する接地 圧が許容限界 を下回ること を確認	極限支持力」	度*	

表 4-2 取水槽北側壁 評価項目

注記*:妥当な安全余裕を考慮する。

4.3 適用規格·基準等

適用する規格・基準類を以下に示す。

- ・コンクリート標準示方書[構造性能照査編]((社)土木学会,2002年制定)
- ・原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル((社)土木学 会,2005年)
- ・原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- ・道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平成14年 3月)
- ・建設技術審査証明報告書 技術名称 後施工プレート定着型せん断補強鉄筋「Post-Head-bar」(一般財団法人土木研究センター)

4.4 評価対象断面

1号機取水槽北側壁の評価対象断面位置図を図4-12に示す。構造物の耐震設計に おける評価対象断面は図4-12のA-A断面とする。

評価対象地質断面図を図 4-13 に示す。

4.5 使用材料及び材料の物性値

構造物の使用材料を表 4-3,材料の物性値を表 4-4 に示す。

材料		仕様	
構造物	コンクリート	設計基準強度 20.6N/mm ²	
	充填コンクリート	設計基準強度 21.0N/mm ²	
	鉄筋	SD345	
MMR		設計基準強度 18.0N/mm ²	

表 4-3 使用材料

表 4-4 材料の物性値

材料	ヤング係数 (N/mm ²)	単位体積重量 (kN/m ³)	ポアソン比
構造物 (鉄筋コンクリート)	2. 33×10 ⁴	24. 0*1	
構造物 (漸拡ダクト部充填 コンクリート)* ³	2. 33×10 ⁴	24. 0*1	0.2
構造物 (ピット部 充填コンクリート)* ³	2. 33×10 ⁴	24. 0*1	
MMR	2. 20×10^4	22. 6^{*2}	

注記*1:鉄筋コンクリートの単位体積重量を示す。

*2:無筋コンクリートの単位体積重量を示す。

*3:ヤング係数については設計基準強度 20.6N/mm²の鉄筋コンクリート構造物 と同様の値を設定し、単位体積重量については鉄筋コンクリートの重量を 設定する。

4.6 許容限界

許容限界は、VI-2-1-9「機能維持の基本方針」に基づき設定する。

4.6.1 構造部材の健全性に対する許容限界

(1) 曲げ・軸力系の破壊に対する許容限界

1号機取水槽北側壁はSクラス施設である流路縮小工を間接支持する機能が求められることから、構造物が終局限界に至らないことを確認する。

ただし,照査対象となる1号機取水槽北側壁はPHb工法を適用する部材であ り,PHb工法はおおむね弾性範囲となる状況下で使用することから,構造部材に発 生する曲げモーメントが鉄筋降伏に相当する降伏モーメントを下回ることを確認 する必要がある。

以上を踏まえ、より厳しい許容限界である降伏モーメントによる評価を実施す ることで、構造物が終局限界に至らないことも併せて確認する。 (2) せん断破壊に対する許容限界

照査対象となる北側壁は、PHb 工法を適用する部材であるため、構造部材のせん 断破壊に対する許容限界は、せん断耐力とし、照査用せん断力がせん断耐力を下 回ることを確認する。

なお,設計上の保守的な配慮として,ポストヘッドバー(PHb)によるせん断補 強を配置する場合は,対象とする構造部材の主鉄筋の降伏以下の場合に適用する こととし,せん断破壊に対する照査値は 0.80 程度とする。

後施工せん断補強(ポストヘッドバー(PHb))を配置した構造部材のせん断耐 カについては、「建設技術審査証明報告書 技術名称 後施工プレート定着型せん 断補強鉄筋「Post-Head-bar」,一般財団法人土木研究センター」(以下「建設 技術証明書」という。)に示されている以下の設計式により求める。 PHb が負担するせん断耐力は、先端型定着体の定着長が 3.5D~5.5D であることから、通常のせん断鉄筋に比べ補強効率が低下する。PHb が負担するせん断耐力は 同定着長と補強対象部材の主鉄筋間隔から算出される有効率β_{aw}を通常のせん断 補強鉄筋の負担分に乗じることにより考慮されている。図4-14 に有効率算定に おける概念図を示す。

図 4-14 ポストヘッドバー (PHb) の有効率算定の概念図

- 4.6.2 基礎地盤の支持性能に対する許容限界
 - (1) 基礎地盤

基礎地盤に発生する接地圧に対する許容限界は、VI-2-1-3「地盤の支持性能に 係る基本方針」に基づき、岩盤の極限支持力度とする。

基礎地盤の支持性能に対する許容限界を表 4-5 に示す。

表 4-5 基礎地盤の支持性能に対する許容限界

評価項目	基礎地盤	許容限界 (N/mm ²)
極限支持力度	См級	9.8

4.7 評価方法

1号機取水槽北側壁の耐震評価は、地震応答解析により算定した照査用応答値が、 「4.6 許容限界」に示す許容限界以下であることを確認する。

4.7.1 構造部材の健全性評価

構造部材の曲げ・軸力系及びせん断破壊に対する照査に対して,地震応答解析 により算定した照査用曲げモーメント及び照査用せん断力が許容限界以下である ことを確認する。

曲げ・軸力系の破壊に対して照査値が最大となる地震動及び解析ケースでの断面力図を図 4-15 に、せん断破壊に対する照査値最大時の断面力図を図 4-16 に示す。

(d)断面力分布図化範囲

図 4-15 (2) 曲げ・軸力系の破壊に対する照査値最大時の断面力図(A-A断面,解析ケース①,Ss-D(+-))

(A-A断面,解析ケース②,Ss-D(++))

(d)断面力分布図化範囲

図 4-16(2) せん断破壊に対する照査値最大時の断面力図 (A-A断面, 解析ケース②, Ss-D(++)) 4.7.2 基礎地盤の支持性能評価

基礎地盤の支持性能評価においては基礎地盤に発生する接地圧が許容限界以下 であることを確認する。 5. 耐震評価結果

5.1 構造部材の健全性に対する評価結果

構造部材の曲げ・軸力系の破壊に対する最大照査値を表 5-1 に, せん断破壊に対す る最大照査値を表 5-2 に示す。

1号機取水槽北側壁の照査用モーメント及び照査用せん断力が許容限界以下である ことを確認した。

解析 ケース	地震動	照査用 モーメント M d * (kN・m)	軸力 (kN/m)	降伏 モーメント M _y (kN・m)	照査値 M _d /M _y
1)	S s - D $(+-)$	-106	16	-639	0.17

表 5-1 曲げ・軸力系の破壊に対する最大照査値

注記*:照査用モーメント=発生モーメントM×構造解析係数 γ_{a} (=1.0)

衣も 2 ビル阿板豪に対する取八席直直				
解析 ケース	地震動	照査用 せん断力* V _d (kN)	せん断耐力 V _{yd} (kN)	照査値 V _d /V _{yd}
2	S s - D (++)	214	731	0.30

表 5-2 せん断破壊に対する最大照査値

注記*:照査用せん断力 V_d =発生せん断力 $V \times$ 構造解析係数 γ_a (=1.05)

5.2 基礎地盤の支持性能に対する評価結果

基礎地盤の支持性能に対する照査結果を表 5-3 に示す。基礎地盤の接地圧分布図 を図 5-1 に示す。

解析	生きま	最大接地圧	極限支持力度	照查值
ケース	地辰勤	$ m R_{d}~(N/mm^{2})$	R $_{\rm u}$ (N/mm ²)	R_{d}/R_{u}
1)	S s - D (+-)	2.26	9.8	0.24

表 5-3 基礎地盤の支持性能に対する照査結果

(解析ケース①, Ss-D(+-))

57