島根原子力発電所第2号機 審査資料					
資料番号	NS2-添 2-008-08 改 01				
提出年月日	2023 年 4 月 21 日				

VI-2-8-2-7 第1ベントフィルタ出口放射線モニタ (低レンジ) の 耐震性についての計算書

2023年4月中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

目 次

1. 棋	既要	1
2. –	一般事項	1
2. 1	構造計画	1
2.2	評価方針 ·····	3
2.3	適用規格·基準等 ······	4
2.4	記号の説明	5
2.5	計算精度と数値の丸め方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
3. 意	平価部位	8
4.	固有周期	8
4. 1	基本方針 ·····	8
4.2	固有周期の確認方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
4.3	固有周期の確認結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
5. 柞	構造強度評価	9
5. 1	構造強度評価方法	9
5.2	荷重の組合せ及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
5.3	設計用地震力 ·····	13
5.4	計算方法 ·····	14
5.5	計算条件	20
5.6	応力の評価	21
6. 核	幾能維持評価	22
6.1	電気的機能維持評価方法	22
7. 茅	平価結果	23
7. 1	重大事故等対処設備としての評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23

1. 概要

本計算書は、VI-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、第1ベントフィルタ出口放射線モニタ(低レンジ)が設計用地震力に対して十分な構造強度を有し、電気的機能を維持できることを説明するものである。

第1ベントフィルタ出口放射線モニタ(低レンジ)は、重大事故等対処設備においては常設耐 震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下、重大事故等対処設備と しての構造強度評価及び電気的機能維持評価を示す。

2. 一般事項

2.1 構造計画

第1ベントフィルタ出口放射線モニタ(低レンジ)の構造計画を表 2-1 に示す。

表 2-1 構造計画

表 2-1 構造計画					
計画の	概要	概略構造図			
基礎・支持構造	主体構造				
基礎・支持構造 検出器は、計器取付ボルトにより検出器用架台には 固定され、検出器用架台は は架器収納箱に固定される。 検出器収納箱は、収納箱取付ボルトに設置する。 ・大ヤンネルベースを選出をできる。 ・大ヤンネルインでは、基礎架台は基礎ボルトにて基礎がある。	電離箱	Year 1920 620 620 194			
		(単位:mm)			

2.2 評価方針

第1ベントフィルタ出口放射線モニタ(低レンジ)の応力評価は、VI-2-1-9「機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.1 構造計画」にて示す第1ベントフィルタ出口放射線モニタ(低レンジ)の部位を踏まえ「3. 評価部位」にて設定する箇所において、「4. 固有周期」で測定した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。また、第1ベントフィルタ出口放射線モニタ(低レンジ)の機能維持評価は、VI-2-1-9「機能維持の基本方針」にて設定した電気的機能維持の方針に基づき、機能維持評価用加速度が機能確認済加速度以下であることを、「6. 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「7. 評価結果」に示す。

第1ベントフィルタ出口放射線モニタ(低レンジ)の耐震評価フローを図2-1に示す。

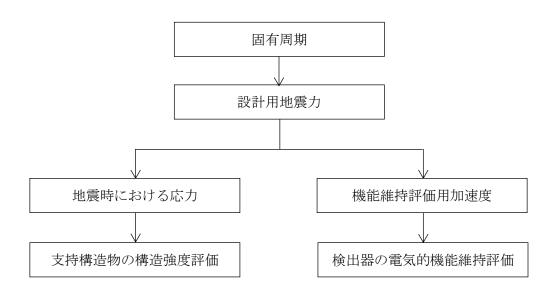


図 2-1 第1ベントフィルタ出口放射線モニタ (低レンジ) の耐震評価フロー

2.3 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補-1984 ((社)日本電気協会)
- ·原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- •原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)
- ・発電用原子力設備規格 設計・建設規格((社)日本機械学会,2005/2007)(以下「設計・建設規格」という。)
- · 建築基準法 · 同施行令

2.4 記号の説明

記号	記号の説明	単位
A b i	ボルトの軸断面積*1	mm^2
Сн	水平方向設計震度	_
Сv	鉛直方向設計震度	_
d i	ボルトの呼び径*1	mm
F i	設計・建設規格 SSB-3121.1(1)に定める値*1	MPa
F i *	設計・建設規格 SSB-3133 に定める値*1	MPa
Fьі	ボルトに作用する引張力(1本当たり)*1	N
$f_{ m s\ b\ i}$	せん断力のみを受けるボルトの許容せん断応力*1	MPa
$f_{ m t~o~i}$	引張力のみを受けるボルトの許容引張応力*1	MPa
ftsi	引張力とせん断力を同時に受けるボルトの許容引張応力(許容組合せ応力)*1	MPa
g	重力加速度(=9.80665)	m/s^2
h i	据付面又は取付面から重心までの距離*2	mm
$\ell_{ ext{1}}$ i	重心とボルト間の水平方向距離*1,*3	mm
ℓ_{2} i	重心とボルト間の水平方向距離*1,*3	mm
m i	検出器収納箱の質量*2	kg
n i	ボルトの本数*1	_
n f i	評価上引張力を受けるとして期待するボルトの本数*1	_
Q b i	ボルトに作用するせん断力*1	N
S u i	設計・建設規格 付録材料図表 Part5 表 9 に定める値*1	MPa
S y i	設計・建設規格 付録材料図表 Part5 表 8 に定める値*1	MPa
S y i (R T)	設計・建設規格 付録材料図表 Part5 表 8 に定める材料の 40℃における値* ¹	MPa
π	円周率	_
о b i	ボルトに生じる引張応力*1	MPa
τ b i	ボルトに生じるせん断応力*1	MPa
P k	風荷重	N
P _s	積雪荷重	N

注記*1: Abi, di, Fi, Fi*, Fbi, fsbi, ftoi, ftsi, ℓ_1 i, ℓ_2 i, ni, nfi, Qbi, Sui, Syi, Syi(RT), σ bi及び τ biの添字iの意味は,以下のとおりとする。

i =1:基礎ボルト

i=2:ベース取付ボルト

i=3:収納箱取付ボルト

*2: h i 及びm i の添字 i の意味は, 以下のとおりとする。

i =1:据付面

i = 2: ベース取付ボルト取付面

i=3:収納箱取付ボルト取付面

 $*3: \ell_1 i \leq \ell_2 i$

2.5 計算精度と数値の丸め方

精度は,有効数字6桁以上を確保する。

表示する数値の丸め方は、表 2-2 に示すとおりである。

表 2-2 表示する数値の丸め方

X 2 2 X/1. / O W (E *) / 10 / 1/2						
数値の種類	単位	処理桁	処理方法	表示桁		
固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位		
震度	_	小数点以下第3位	切上げ	小数点以下第2位		
温度	$^{\circ}\!\mathbb{C}$	_	_	整数位		
質量	kg	_	_	整数位		
長さ	mm		_	整数位*1		
面積	mm^2	有効数字 5 桁目	四捨五入	有効数字 4 桁*2		
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁*2		
算出応力	MPa	小数点以下第1位	切上げ	整数位		
許容応力*3	MPa	小数点以下第1位	切捨て	整数位		
速度	m/s	_	_	小数点以下第1位		
速度圧	$\mathrm{N/m^2}$	有効数字 5 桁目	四捨五入	有効数字4桁*2		

注記*1:設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。

*2:絶対値が1000以上のときは、べき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は比例法により補間した値の小数点以下第1位を切り捨て,整数位までの値とする。

3. 評価部位

第1ベントフィルタ出口放射線モニタ(低レンジ)の耐震評価は、「5.1 構造強度評価方法」に示す条件に基づき、耐震評価上厳しくなる基礎ボルト、ベース取付ボルト及び収納箱取付ボルトについて実施する。

第1ベントフィルタ出口放射線モニタ(低レンジ)の耐震評価部位については、表2-1の概略構造図に示す。

4. 固有周期

4.1 基本方針

第1ベントフィルタ出口放射線モニタ(低レンジ)の固有周期は、振動試験(自由振動試験)にて求める。

4.2 固有周期の確認方法

プラスチックハンマ等により、当該設備に振動を与え自由減衰振動を振動解析装置により記録解析し、固有周期を確認する。第1 ベントフィルタ出口放射線モニタ(低レンジ)の外形図を表 2-1 の概略構造図に示す。

4.3 固有周期の確認結果

固有周期の確認結果を表 4-1 に示す。試験の結果,固有周期は 0.05 秒以下であり,剛構造であることを確認した。

表 4-1	固有周期	(単位:s)
水平		
鉛直		

5. 構造強度評価

5.1 構造強度評価方法

- (1) 検出器収納箱の質量は重心に集中しているものとする。
- (2) 地震力は検出器収納箱に対して水平方向及び鉛直方向から<mark>個別に</mark>作用<mark>させる</mark>。 また、水平方向及び鉛直方向の動的地震力による荷重の組合せには、絶対値和を適用する。
- (3) 検出器収納箱は基礎ボルト、ベース取付ボルト及び収納箱取付ボルトで床面に固定されており、固定端とする。
- (4) 転倒方向は、長辺方向及び短辺方向について検討し、計算書には結果の厳しい方(許容値/発生値の小さい方をいう。)を記載する。
- (5) 検出器収納箱の重心位置については、転倒方向を考慮して、計算条件が厳しくなる位置に 重心位置を設定して耐震性の計算を行う。
- (6) 耐震計算に用いる寸法は、公称値を使用する。

5.2 荷重の組合せ及び許容応力

5.2.1 荷重の組合せ及び許容応力状態

第1ベントフィルタ出口放射線モニタ (低レンジ) の荷重の組合せ及び許容応力状態の うち重大事故等対処設備の評価に用いるものを表 5-1 に示す。

5.2.2 許容応力

第1ベントフィルタ出口放射線モニタ(低レンジ)の許容応力は、VI-2-1-9「機能維持の基本方針」に基づき表 5-2 のとおりとする。

5.2.3 使用材料の許容応力評価条件

第1ベントフィルタ出口放射線モニタ (低レンジ) の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 5-3 に示す。

5.2.4 風荷重

風荷重は、VI-2-1-9「機能維持の基本方針」に基づき、風速 30m/s を使用し、第1ベントフィルタ出口放射線モニタ(低レンジ)の形状、風向きを踏まえ、作用する風圧力を算出する。風圧力の算出の基準となる基準速度圧を表 5-4 に示す。

5.2.5 積雪荷重

積雪荷重は、VI-2-1-9「機能維持の基本方針」に基づき、積雪 100cm に平均的な積雪荷重を与えるための係数 0.35 を考慮し、第 1 ベントフィルタ出口放射線モニタ(低レンジ)の形状を踏まえ、算出する。算出した積雪荷重を表 5-5 に示す。

表 5-1 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設区分		区分 機器名称 設備分類*1 機器等の区分 荷重の組合せ		許容応力状態		
				$D + P_D + M_D + S_s + P_k + P_s^{*3}$	IV A S	
放射線管理施設	放射線管理用計測装置	出口放射線モニタ	常設耐震/防止常設/緩和	<u></u> *2	$D+P_{SAD}+M_{SAD}+S_S+P_k+P_S$	VAS (VASとして
						IVASの許容限界
						を用いる。)

注記*1:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/緩和」は常設重大事故緩和設備を示す。

*2:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

*3: $\lceil D + P_{SAD} + M_{SAD} + S_{S} + P_{k} + P_{s} \rfloor$ の評価に包絡されるため、評価結果の記載を省略する。

表 5-2 許容応力 (重大事故等その他の支持構造物)

表 0 2 前 存心の (重八事成寺 Cの他の大竹冊追物)					
	許容限界* ^{1,*2}				
	(ボルト等)				
許容応力状態	一次応力				
	引張	せん断			
IV A S					
VAS (VASとしてIVASの許容限界を用いる。)	1.5 • f t *	1.5 · f s *			

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5-3 使用材料の許容応力評価条件(重大事故等対処設備)

₹₩ /Ⅲ ∀ ₩ ++	++101	温度条件		Sу	S u	S y (R T)
評価部材	材料	(\mathcal{C})		(MPa)	(MPa)	(MPa)
基礎ボルト	SS400 (径≦16mm)	周囲環境温度	50	241	394	_
ベース取付ボルト	SS400 (16mm<径≦40mm)	周囲環境温度	50	231	394	_
収納箱取付ボルト	SUS304	周囲環境温度	50	198	504	205

表 5-4 基準速度圧 (単位: N/m²)

作用する部位	基準速度圧
第1ベントフィルタ出口	
放射線モニタ (低レンジ)	645.0
(RE295-29)	

表 5-5 積雪荷重 (単位:N)

作用する部位	積雪荷重
第1ベントフィルタ出口	
放射線モニタ (低レンジ)	1.691×10^3
(RE295-29)	

5.3 設計用地震力

評価に用いる設計用地震力を表 5-6 に示す。

「基準地震動Ss」による地震力は、VI-2-1-7「設計用床応答スペクトルの作成方針」に基づき設定する。

表 5-6 設計用地震力(重大事故等対処設備)

据付場所 及び 床面高さ (m)		周期。	弾性設計用地震動 S d 又は静的震度		基準地震動S s		
第1ベント フィルタ 格納槽	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	
1台刊21管 EL 19.4*1			_	_	$C_{H}=6.30^{*2}$	$Cv = 4.68^{*2}$	

注記*1:基準床レベルを示す。

*2:設計用震度 I (基準地震動Ss) を上回る設計震度

5.4 計算方法

5.4.1 応力の計算方法

5.4.1.1 基礎ボルトの計算方法

基礎ボルトの応力は、地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。

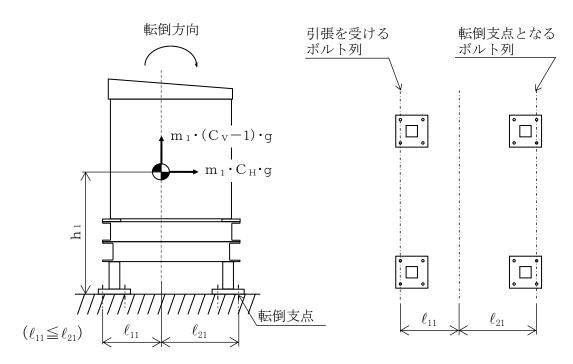


図5-1 計算モデル (短辺方向転倒)

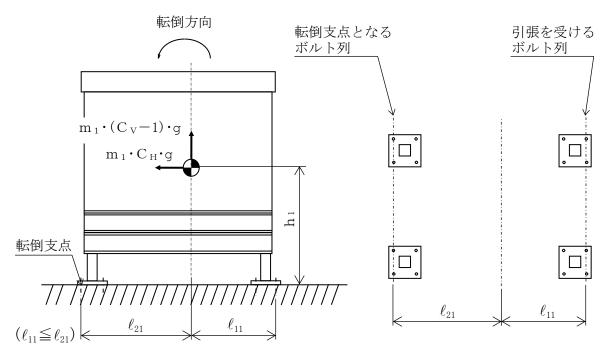


図5-2 計算モデル (長辺方向転倒)

(1) 引張応力

基礎ボルトに対する引張力は、図5-1及び図5-2でそれぞれのボルトを支点とする転倒を考え、これを片側のボルトで受けるものとして計算する。

引張力

$$F_{b1} = \frac{(m_{1} \cdot g + 0.35 \cdot P_{s}) \cdot C_{H} \cdot h_{1} + P_{k} \cdot h_{1}}{n_{f_{1}} \cdot (\ell_{11} + \ell_{21})} - \frac{(m_{1} \cdot g + 0.35 \cdot P_{s}) \cdot (1 - C_{V}) \cdot \ell_{21}}{n_{f_{1}} \cdot (\ell_{11} + \ell_{21})} \cdots (5.4.1.1.1)$$

引張応力

$$\sigma_{b1} = \frac{F_{b1}}{A_{b1}} \qquad (5.4.1.1.2)$$

ここで、基礎ボルトの軸断面積 A b1 は次式により求める。

$$A_{b1} = \frac{\pi}{4} \cdot d_1^2$$
 (5. 4. 1. 1. 3)

(2) せん断応力

基礎ボルトに対するせん断力は、ボルト全本数で受けるものとして計算する。 せん断力

$$Q_{b1} = C_H \cdot (m_1 \cdot q + 0.35 \cdot P_s) + P_k \cdots (5.4.1.1.4)$$

せん断応力

$$\tau_{b1} = \frac{Q_{b1}}{n_1 \cdot A_{b1}} \cdot \dots (5.4.1.1.5)$$

5.4.1.2 ベース取付ボルトの計算方法

ベース取付ボルトの応力は、地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。

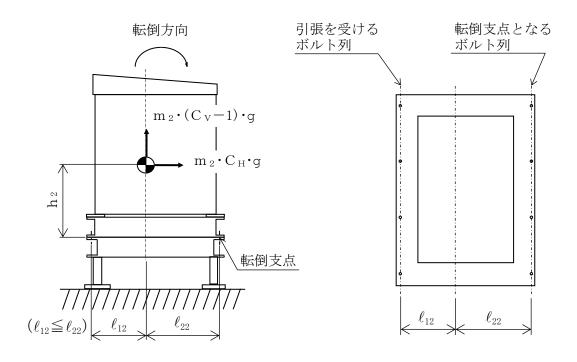


図5-3 計算モデル (短辺方向転倒)

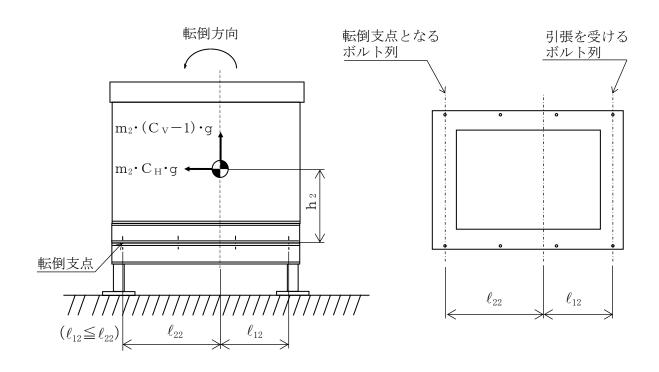


図5-4 計算モデル (長辺方向転倒)

(1) 引張応力

ベース取付ボルトに対する引張力は、図5-3及び図5-4でそれぞれのボルトを支 点とする転倒を考え、これを片側のボルトで受けるものとして計算する。

引張力

$$F_{b2} = \frac{(m_2 \cdot g + 0.35 \cdot P_s) \cdot C_H \cdot h_2 + P_k \cdot h_2}{n_{f2} \cdot (\ell_{12} + \ell_{22})} - \frac{(m_2 \cdot g + 0.35 \cdot P_s) \cdot (1 - C_V) \cdot \ell_{22}}{n_{f2} \cdot (\ell_{12} + \ell_{22})} \cdots (5.4.1.2.1)$$

引張応力

$$\sigma_{b2} = \frac{F_{b2}}{A_{b2}}$$
 (5. 4. 1. 2. 2)

ここで、ベース取付ボルトの軸断面積 A b 2 は次式により求める。

(2) せん断応力

ベース取付ボルトに対するせん断力は、ボルト全本数で受けるものとして計算する。

せん断力

$$Q_{b2} = C_H \cdot (m_2 \cdot g + 0.35 \cdot P_s) + P_k \cdots (5.4.1.2.4)$$

せん断応力

$$\tau_{b2} = \frac{Q_{b2}}{n_2 \cdot A_{b2}} \qquad (5.4.1.2.5)$$

5.4.1.3 収納箱取付ボルトの計算方法

収納箱取付ボルトの応力は、地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。

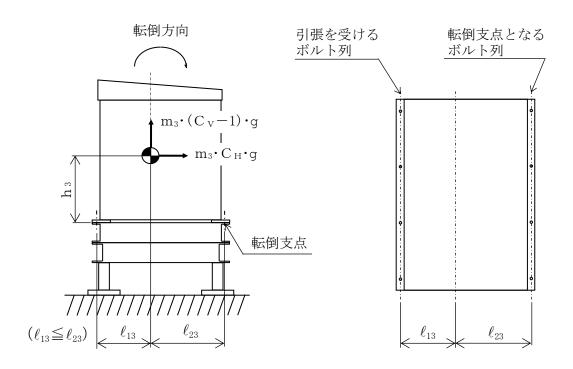


図5-5 計算モデル (短辺方向転倒)

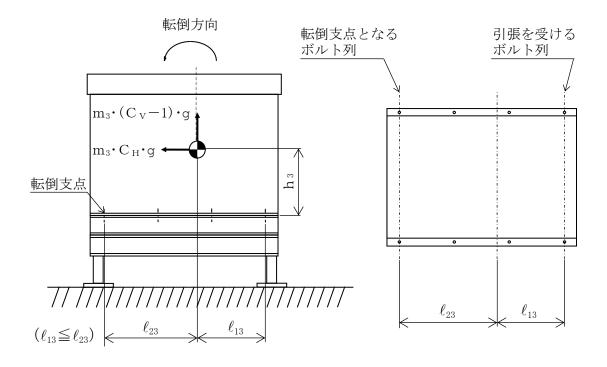


図5-6 計算モデル (長辺方向転倒)

(1) 引張応力

収納箱取付ボルトに対する引張力は、図5-5及び図5-6でそれぞれのボルトを支 点とする転倒を考え、これを片側のボルトで受けるものとして計算する。

引張力

$$F_{b3} = \frac{(m_3 \cdot g + 0.35 \cdot P_s) \cdot C_H \cdot h_3 + P_k \cdot h_3}{n_{f_3} \cdot (\ell_{13} + \ell_{23})} - \frac{(m_3 \cdot g + 0.35 \cdot P_s) \cdot (1 - C_V) \cdot \ell_{23}}{n_{f_3} \cdot (\ell_{13} + \ell_{23})} \cdots (5.4.1.3.1)$$

引張応力

$$\sigma_{b3} = \frac{F_{b3}}{A_{b3}}$$
 (5. 4. 1. 3. 2)

ここで、収納箱取付ボルトの軸断面積 A ы は次式により求める。

(2) せん断応力

収納箱取付ボルトに対するせん断力は、ボルト全本数で受けるものとして計算する。

せん断力

$$Q_{b3} = C_H \cdot (m_3 \cdot g + 0.35 \cdot P_s) + P_k \cdots (5.4.1.3.4)$$

せん断応力

$$\tau_{b3} = \frac{Q_{b3}}{n_3 \cdot A_{b3}} \qquad (5.4.1.3.5)$$

5.5 計算条件

5.5.1 基礎ボルトの応力計算条件

基礎ボルトの応力計算に用いる計算条件は、本計算書の【第1ベントフィルタ出口放射線モニタ(低レンジ)(RE295-29)の耐震性についての計算結果】の設計条件及び機器要目に示す。

5.5.2 ベース取付ボルトの応力計算条件

ベース取付ボルトの応力計算に用いる計算条件は、本計算書の【第1ベントフィルタ出口放射線モニタ(低レンジ)(RE295-29)の耐震性についての計算結果】の設計条件及び機器要目に示す。

5.5.3 収納箱取付ボルトの応力計算条件

収納箱取付ボルトの応力計算に用いる計算条件は、本計算書の【第1ベントフィルタ出口放射線モニタ(低レンジ)(RE295-29)の耐震性についての計算結果】の設計条件及び機器要目に示す。

5.6 応力の評価

5.6.1 ボルトの応力評価

5. 4. 1 項で求めたボルトの引張応力 σ b i は次式より求めた許容組合せ応力 f t s i 以下であること。ただし,f t o i は下表による。

$$f_{t s i} = Min[1.4 \cdot f_{t o i} - 1.6 \cdot \tau_{b i}, f_{t o i}]$$
 (5.6.1.1)

せん断応力 τ b i は、せん断力のみを受けるボルトの許容せん断応力f s b i 以下であること。ただし、f s b i は下表による。

	基準地震動Ssによる 荷重との組合せの場合
許容引張応力 f t o i	$\frac{F_i^*}{2}$ • 1.5
許容せん断応力 $f_{ m sbi}$	$\frac{\mathrm{F_{i}}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6. 機能維持評価

6.1 電気的機能維持評価方法

第1ベントフィルタ出口放射線モニタ (低レンジ) の電気的機能維持評価について以下に示す。

なお、機能維持評価用加速度はVI-2-1-7「設計用床応答スペクトルの作成方針」に基づき、基準地震動Ssにより定まる加速度又はこれを上回る加速度を設定する。

第1ベントフィルタ出口放射線モニタ(低レンジ)の機能確認済加速度は、VI-2-1-9「機能維持の基本方針」に基づき、当該検出器と類似の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 6-1 に示す。

表 6-1 機能確認済加速度

 $(\times 9.8 \text{m/s}^2)$

機器名称	方向	機能確認済加速度				
第1ベントフィルタ出口放射線モニタ	水平					
(低レンジ) (RE295-29)	鉛直					

7. 評価結果

7.1 重大事故等対処設備としての評価結果

第1ベントフィルタ出口放射線モニタ(低レンジ)の重大事故等時の状態を考慮した場合の 耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な 構造強度を有し、電気的機能を維持できることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

電気的機能維持評価の結果を次頁以降の表に示す。

【第1ベントフィルタ出口放射線モニタ(低レンジ)(RE295-29)の耐震性についての計算結果】

1. 重大事故等対処設備

1.1 設計条件

		固有周期(s)		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s			
機器名称	設備分類	据付場所及び床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	周囲環境温度 (℃)
第1ベントフィルタ 出口放射線モニタ (低レンジ) (RE295-29)		第 1 ベントフィルタ格納槽 EL 19.4* ¹			_	ı	C _H =6.30*2	$C_{V}=4.68^{*2}$	50

____ 注記*1:基準床レベルを示す。

*2:設計用震度 I (基準地震動Ss) を上回る設計震度

1.2 機器要目

/// // //							
部材	m i (kg)	h i (mm)	d i (mm)	A b i (mm²)	n i	S y i (MPa)	Sui (MPa)
基礎ボルト (i=1)		823	12 (M12)	113. 1	16	241 (径≦16mm)	394 (径≦16mm)
ベース取付ボルト (i=2)		440	16 (M16)	201. 1	8	231 (16mm<径≦40mm)	394 (16mm<径≦40mm)
収納箱取付ボルト (i=3)		390	16 (M16)	201. 1	8	198	504

		nfi*	P k (N)	P s (N)	F i (MPa)	Fi* (MPa)	転倒方向		
部材							ℓ2 i * (mm)	弾性設計用地震動 Sd又は静的震度	基準地震動 Ss
基礎ボルト	352. 5	402. 5	4	0. 420×103	1 (01) (103		076		模四十五
(i =1)	437. 5	517. 5	4	2.432×10^3 1.691×10^3		276	_	短辺方向	
ベース取付ボルト	305	355	4	0. 420×103	3 1.691×10 ³	_	276	_	長辺方向
(i =2)	355	435	2	2.432×10^3					
収納箱取付ボルト	300	360	4	2. 432×10 ³	1.691×10 ³	_	205	_	長辺方向
(i =3)	335	415	2						

注記*:各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し,

下段は長辺方向転倒に対する評価時の要目を示す。

1.3 計算数値

1.3.1 ボルトに作用する力

(単位:N)

	F	b i	Q b i		
部材	弾性設計用地震動 S d 又は静的震度			基準地震動 S s	
基礎ボルト (i=1)			_		
ベース取付ボルト (i =2)	_		_		
収納箱取付ボルト (i=3)	_		_		

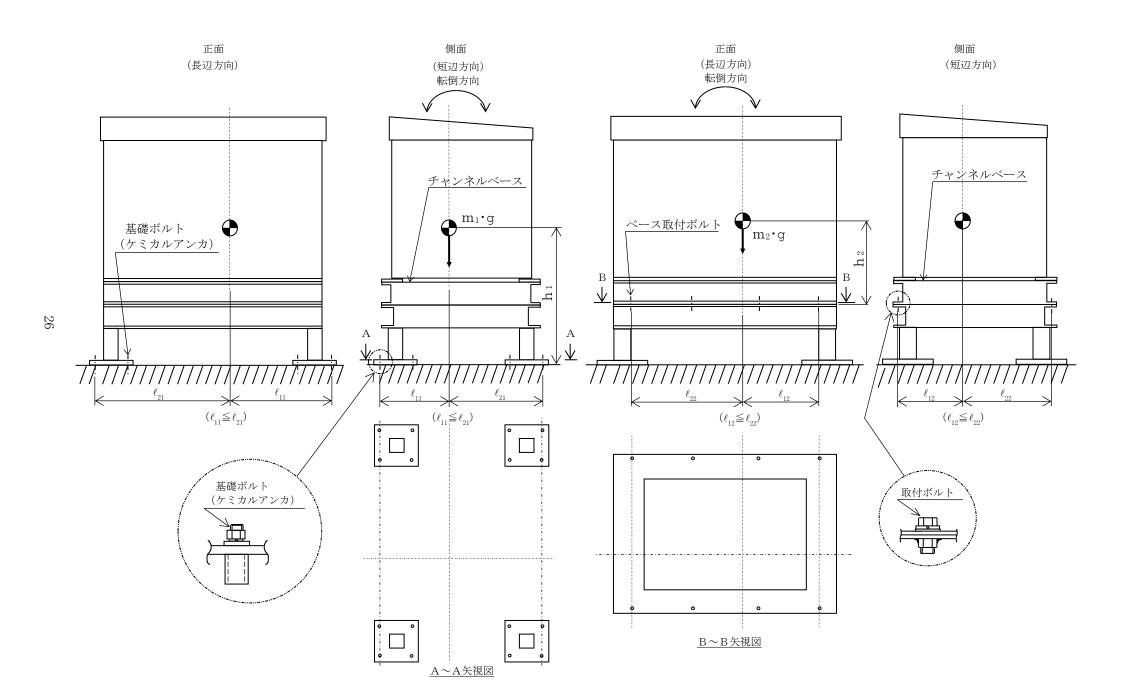
1.4 結論

1.4.1 ボルトの応力

(単位:MPa)

→ 17.++	++161	応力	弾性設計用地震動	Sd又は静的震度	基準地震動S s		
部材 材料		ルロンノ	算出応力	許容応力	算出応力	許容応力	
基礎ボルト	CC 400	引張	_	_	σ ы 1=120	f t s 1 = 165*	
(i = 1) SS40	SS400	せん断	_	_	τ ы 1 = 22	f s b 1 = 127	
ベース取付ボルト	SS400	引張			σ b 2=58	f t s 2=207*	
(i =2)	33400	せん断			τь2=17	f s b 2=159	
収納箱取付ボルト (i=3)	CHCOOA	引張	_	_	σьз=50	f t s 3=153*	
	SUS304	せん断			τ ьз=16	f s b 3=118	

すべて許容応力以下である。


注記*: f t s i = Min[1.4 · f t o i - 1.6 · τ b i, f t o i]

1.4.2 電気的機能維持の評価結果

 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度			
第 1 ベントフィルタ 出口放射線モニタ	水平方向	3. 15				
(低レンジ) (RE295-29)	鉛直方向	4. 04				

注記*:設計用震度Ⅱ (基準地震動Ss) により定まる加速度機能維持評価用加速度はすべて機能確認済加速度以下である。

27