

②-2 地質調査結果(WN2地点)(1/4)

260

○当該範囲のうち中間に位置するWN2地点において、地質調査を行った。

○表土直下の礫混じりシルトは、シルトを主体とし、堆積構造が認められないことから、風成層と考えられる。

Ō

拡大写真③

拡大写真④

2.3 地質調査

2.3.6 ワイスホルン北麓における調査結果

2-2 地質調査結果(WN2地点)(4/4)

○WN2地点においては、火山ガラスを多く含む堆積物は認められない。

②-3 地質調査結果(WN3地点)(1/5)

264

○当該範囲のうち最も東側に位置するWN3地点において、地質調査を行った。

2.3 地質調査 265 265 2.3.6 ワイスホルン北麓における調査結果 ②-3 地質調査結果(WN3地点)(2/5)

○当該範囲のうち最も東側に位置するWN3地点においては、以下の状況が認められる。

・シルト質砂礫及び表土(腐植土及びシルト質砂)からなる

・シルト質砂礫は. 中~大礫サイズの角~亜円を呈する安山岩のクサリ礫を主体とし. 基質はシルト質粗粒砂からなる

・局所的に礫混じりシルトが認められる

・軽石は認められない

2-3 地質調査結果(WN3地点)(3/5)

拡大写真①

拡大写真2

拡大写真3

266

拡大写真④

拡大写真⑤

2.3 地質調査 2.3.6 ワイスホルン北麓における調査結果

②-3 地質調査結果(WN3地点)(4/5)

267

○WN3地点においては、表土(腐植土及びシルト質砂)を除き、火山ガラスを多く含む堆積物は認められない。 ○WN3地点の表土(腐植土及びシルト質砂)については、洞爺火山灰(Toya)の火山ガラスが421/3000粒子認められる*。

※当該堆積物については、降下火砕物由来とした場合、洞爺火山灰(Toya)の二次堆積物bに区分されるが、火砕サージ由来か降下火砕物由来かを厳密に区分することは難しい。

269 2.3 地質調査

2.3.6 ワイスホルン北麓における調査結果

2-3 地質調査結果(火山灰分析結果)(5/5)

※1 町田·新井(2011), ※2 青木·町田(2006)

火山ガラスの主元素組成(ハーカー図)(WN3地点(1-1試料))

2.3.7 敷地前面海域における調査結果

地質調査(調査結果-敷地前面海域における地質調査(No.1試料採取位置)-)(2/6)

一部修正(H28/8/26審査会合)

○No.1試料採取位置は、Uesawa et al. (2022)によれば、クッタラ第2火山灰(Kt-2)の分布範囲に位置する(P127参照)。

○当該位置において、ピストンコアラーにより755cmの柱状試料を採取した。

2.3 地質調査

○複数の深度において有孔虫化石を用いて¹⁴C法年代測定を実施しており、深度約653cmにおいて¹⁴C法年代測定値51,080y.B.P.以前^{*1}が得られ、 その直下にクッタラ第2火山灰(Kt-2)に対比される火山灰を確認している(分析結果はP276参照)。

○当該堆積物は、火山ガラスを多く含む(78/200粒子)ことから、クッタラ第2火山灰(Kt-2)の純層(層厚5cm)に区分される※2。

○一方で,陸域に堆積したものが河川を流下し,堆積した可能性も考えられることから,二次堆積物aに区分される可能性も考えられる。

※2 火山ガラスの粒子数等に着目した、降下火砕物の純層又は二次堆積物への細区分の考え方については、P156~P157参照。

2.3.7 敷地前面海域における調査結果

地質調査(調査結果-敷地前面海域における地質調査(No.1試料採取位置)-)(3/6)

一部修正(H28/8/26審査会合)

273

砂層

火山灰

暗色層

細葉理

2250

上面深度:632cm 火山灰中の火山ガラス及び 斜方輝石の屈折率の類似性

い,支笏第1火山灰(Spfa-1))

深度:707a

有孔虫殻の¹⁴C法年代測定

暗色層(強い生物擾乱あり) 暗色層(強い生物擾乱あり)

暗色層(強い生物擾乱あり) 暗色層(強い生物擾乱あり) 火山灰(支笏第1火山灰)

細互層(生物擾乱なし)

コア長:715cm

~643 細互層 ~688 暗色層(強い生物援乱あり)

海上音波探查記録 測線B-7

2250

2250

2.3 地質調査

2.3.7 敷地前面海域における調査結果

地質調査(調査結果-敷地前面海域における地質調査(No.3試料採取位置)-)(5/6)

一部修正(H28/8/26審査会合)

柱状試料No.3 コア写真

2.3.7 敷地前面海域における調査結果

地質調査(調査結果-敷地前面海域における地質調査(火山灰分析結果)-)(6/6)

2.3 地質調査

一部修正(H28/8/26審査会合)

火山灰分析結果(屈折率)

=-₽₩s			対比される			
武科		火山ガラス	斜方輝石	角閃石	火山灰	
No.1試料採取位置 深度659cm		1.512-1.516	1.712-1.716	検出されず	Kt-2	
No.3試料採取位置 深度632cm		1.500-1.503	1.714-1.718 (23%) 1.729-1.734 (77%)	1.683-1.692	Spfa-1	
Tova Kt-2378Snfa-10	Тоуа	1.494-1.498	1.758-1.761	1.674-1.684		
屈折率	Kt-2	1.505-1.515	1.712-1.718	1.678-1.684		
(町田・新井, 2011より)	Spfa-1	1.501-1.505	1.729-1.735	1.688-1.691		

1. 敷地から半径160km以内の範囲(地理的領域)にある第四紀火山カタログ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••• P. 3
2. 火山影響評価に関する各種調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••• P.120
2. 1 文献調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••• P.121
2. 2 地形調査 ••••••••••••••••••••••••••••••••••••	•••• P.129
2. 3 地質調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••• P.134
2. 4 火山学的調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••• P.278
3. 巨大噴火に伴う火砕流が敷地に到達した可能性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••• P.292
4. 火山影響評価に関する文献レビュー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••• P.314
4.1 巨大噴火の可能性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••• P.315
4.2 火山活動の規模と設計対応不可能な火山事象の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••• P.333
参考文献 ••••••••••••••••••••••••••••••••••••	•••• P.337

火山学的調査(調査結果)(1/2)

一部修正(R5/7/7審査会合)

 $\mathbf{280}$

○地質調査において, 敷地及び敷地近傍で確認した以下の火山噴出物を対象に, 堆積物の分布及び層厚を整理した。

·洞爺火砕流本体※1

・ニセコ火山噴出物 (火砕流堆積物)

•洞爺火山灰 (Toya) *2

・阿蘇4火山灰(Aso-4)

降下火砕物を除く火山噴出物

○整理結果として, 敷地及び敷地近傍における各火山噴出物堆積時の推定分布図を作成し, これに地質調査で確認した層厚も合わせて 示した。

降下火砕物

〇推定分布図は、以下の考えに基づき作成を行った。

・地質調査において各火山噴出物を確認した地点に加え、文献調査 (P122~P128参照) において分布を示されている範囲を網羅する範囲とする。

・火山ガラスが混在する堆積物は、火山ガラスの粒子数が少なく、主に火山砕屑物からなるものではない(P156~P157参照)ことから、当該堆積物のみが認められる調査地点は考慮しない。

※1 当社は, 洞爺火砕流堆積物のうち, 目視可能な大きさの軽石が認められるものを, 洞爺火砕流本体と呼称している。

※2 洞爺火山灰 (Toya) の火山ガラスを多く含む堆積物は、降下火砕物由来として示しているが、火砕サージ由来か降下火砕物由来かを厳密に区分することは難しいと評価している。

(次頁へ続く)

2.4 火山学的調査

火山学的調査(調査結果)(2/2)

一部修正(R5/7/7審査会合)

火山学的調査(調査結果-火山噴出物の推定分布図 洞爺火砕流本体-)(1/2)

○洞爺火砕流本体^{※1}の推定分布図を下図に示す。

再揭(R5/7/7審査会合)

洞爺火砕流本体と呼称している。

敷地及び敷地近傍における洞爺火砕流本体の推定分布範囲

の、推定に基づき、幌似付近を越えて岩内湾まで分布が示されている。

敷地から半径10km以内の第四紀火山地質図

火山学的調査(調査結果-火山噴出物の推定分布図 ニセコ火山噴出物(火砕流堆積物)-)

○ニセコ火山噴出物 (火砕流堆積物)の推定分布図を下図に示す。 ○なお,当図には地質調査で確認している層厚も合わせて示している。

再揭(R5/7/7審査会合)

火山学的調査(調査結果-火山噴出物の推定分布図 洞爺火山灰(Toya)-)(1/2)

一部修正(R5/7/7審査会合)

○地質調査において確認した洞爺火山灰 (Toya) の火山ガラスを多く含む堆積物については、火砕サージ由来か降下火砕物由来かを厳密に区分することは難 しいと評価している。

 ○このため、降下火砕物又は火砕サージそれぞれの分布範囲を推定することは困難ではあるが、Uesawa (2023) 等において、敷地及び敷地近傍の一帯は、 洞爺カルデラの降下火砕物 (洞爺火山灰 (Toya)) の分布範囲として示されていることから、下図の通り降下火砕物としての推定分布図を作成した。
 ○なお、当図には地質調査で確認している層厚も合わせて示している。
 ○当図のうち一部の範囲には火砕サージが分布するものと考えられる。

敷地及び敷地近傍における洞爺火山灰 (Toya)の推定分布範囲

火山学的調査(調査結果-火山噴出物の推定分布図 洞爺火山灰(Toya)-)(2/2)

再揭(R5/7/7審査会合)

1 - 1 - 34

敷地及び敷地近傍における阿蘇4火山灰(Aso-4)の推定分布範囲

火山学的調査((参考)降下火砕物の分布)(1/2)

再揭(R5/7/7審査会合)

○地質調査において,敷地及び敷地近傍に分布が認められないものの,文献調査で分布が示されている火山噴出物の等層厚線図を以下 及び次頁に示す。

火山学的調査((参考)降下火砕物の分布)(2/2)

一部修正(R5/7/7審査会合)

○町田・新井(2011)及びUesawa et al. (2022)の確認では抽出されないものの、より最新の知見に基づき、敷地及び敷地近傍に到達した可能性のある降下火砕物として、以下の文献のとおり、支笏第1降下軽石(Spfa-1)が抽出される。

○最新の野外地質調査と既存文献調査に基づき支笏火砕流堆積物及び支笏第1降下軽石 (Spfa-1)の分布範囲及び層厚等をまとめた 宝田ほか (2022) によれば, 等層厚線図範囲内 (>2cm) に敷地は含まれていないものの, 敷地の北方に位置する日本海 (層厚0.1cm) や 利尻島 (層厚2cm), 敷地の南方に位置する長万部付近 (Tr:微量)において確認されていることを踏まえると, 敷地及び敷地近傍に支笏 第1降下軽石 (Spfa-1) が到達した (降灰した) 可能性が考えられる。

支笏第1降下軽石 (Spfa-1)の層厚分布図 (宝田ほか (2022) に加筆)

1. 敷地から半径160km以内の範囲(地理的領域)にある第四紙	3火山カタログ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P. 3
2. 火山影響評価に関する各種調査 ・・・・・・・・・・・		P.120
2.1 文献調査		P.121
2. 2 地形調査		P.129
2. 3 地質調査		P.134
2. 4 火山学的調査 ••••••		P.278
3. 巨大噴火に伴う火砕流が敷地に到達した可能性評価・・・・・	· · · · · · · · · · · · · · · · · · ·	P.292
 5. 巨大噴火に伴う火砕流が敷地に到達した可能性評価・・・・・・ 4. 火山影響評価に関する文献レビュー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	F	P.292 P.314
 5. 巨大噴火に伴う火砕流が敷地に到達した可能性評価・・・・・ 4. 火山影響評価に関する文献レビュー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	→ 五笏业砂湾 P 201	292 2.314 2.315
 5. 巨大噴火に伴う火砕流が敷地に到達した可能性評価・・・・・ 4. 火山影響評価に関する文献レビュー・・・・・ 4. 1 巨大噴火の可能性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 支笏火砕流 ・・・・・ P. 294 Kt−7 ・・・・・ P. 300	292 2.314 2.315 2.333

3. 巨大噴火に伴う火砕流が敷地に到達した可能性評価

【まとめ】

一部修正(R5/7/7審査会合)

 ○地理的領域にある32火山のうち、過去に巨大噴火が発生した火山は、支笏カルデラ、倶多楽・登別火山群及び洞爺カルデラである(本 編資料4.1.1章参照)。
 ○上記3火山の最大規模の噴出物は、それぞれSp-1(支笏火砕流堆積物(Spfl)及び支笏第1降下軽石(Spfa-1))、Kt-7(pfa及びpfl)

して記る人間の最大規模の項面物は、CitCitSp=1(文刻大呼加速資物(Spii)及び文刻第17年下発行(Spid=1))、Ri=7(pid 及びTp(洞爺火山灰(Toya)及び洞爺火砕流)である。

○Sp-1, Kt-7及びTpのうち,設計対応不可能な火山事象である火砕流が敷地に到達した可能性について,下表のとおり評価を行った。

設計対応不可能な火山事象である火砕流が敷地に到達した可能性に関する評価結果

	敷地から の距離	最大規模の 噴出物	文献に基づく最大到達地点		敷地方向の最大到達地点		敷地方向の分布状況			
火山			給源から の方角	給源から の距離	給源から の方角	給源からの距離 (敷地からの距離)	特記事項	文献	地質調査	評価結果
			伊達市館山町		羊蹄山北側地点				○支笏火砕流堆積物 (Spfl)は, 給源から敷地方向に層	
支笏 カルデラ	74.8km	Sp-1: 支笏火砕流 堆積物(Spfl), 支笏第1降下 軽石(Spfa-1))	南西	約52km	北西	約48km (約28km)	 ○古倶知安湖に直接又は間接的に流入した支 が火砕流が湖底に厚く 堆積した再堆積層 ○当該地点を含む倶知安 盆地のうち、敷地に最 も近い倶知安盆地北 西端地点の給源からの 距離 約54km(敷地からの 距離は約22km) 	なし: 倶知安峠 ~敷地	なし: 敷地近傍 〜敷地	厚を減じながら尻別川沿いを流下したものと考えられ、 羊蹄山北側地点においては、再堆積層が認められる。 ○羊蹄山北側地点を含む倶知安盆地については、盆地 全体が支笏火砕流堆積物に覆われ、敷地に最も近い 倶知安盆地北西端地点まで火砕流が到達していた 可能性は否定できない。 ○しかし、当該地点よりもさらに敷地方向に位置する倶 知安峠を越えてから、敷地までの間には支笏火砕流 堆積物又はその二次堆積物の分布を示した文献等も 認められないことから、敷地には到達していないと判 断される。
	80.5km	Kt-7:pfa, pfl	厚	厚真町				なし: 給源~ 敷地	なし: 敷地近傍 ~敷地	○Kt-7 (pfl)は、給源と敷地の間にはオロフレ山-ホロホロ山が認められ、敷地までの間にはKt-7 (pfl)の分布を示した文献等も認められないことから、敷地には到達していないと判断される。
偶多楽・ 登別火山群			南西	約 63km	_*					
洞爺 カルデラ	54.8km	I.8km Tp: 洞爺火山灰 (Toya), 洞爺火砕流	安平町	追分春日	敷地近傍のうち共和町幌似付近 C-2ボーリング地点		あり: 動地近傍	あり:	○洞爺火砕流堆積物は、敷地方向に向かって堀株川沿 いを流下し敷地のうち№1段丘より低標高側に洞爺	
			東	約85km	北~北西	約48km (約8km)	_	(共和町幌 似付近)	(共和町幌 似付近)	火砕流本体か,MM1段圧より高標高側については火 砕サージが到達した可能性を否定できないものと評価 した。

※俱多楽・登別火山群と敷地との間にKt-7 (plf)の分布を示した文献が認められず、当社地質調査の結果、敷地及び敷地近傍にKt-7 (pfl)は認められないことから、敷地方向の最大到達距離は示していない。

○支笏カルデラ及び倶多楽・登別火山群は、最大規模の噴火に伴う設計対応不可能な火山事象が敷地に到達した可能性はないものと判断される。
 ○洞爺カルデラは、最大規模の噴火に伴う設計対応不可能な火山事象が敷地に到達した可能性を否定できない。

3. 巨大噴火に伴う火砕流が敷地に到達した可能性評価

①-1 支笏火砕流 (まとめ)

一部修正(R5/7/7審査会合)

 ○支笏カルデラの最大規模の噴出物であるSp-1のうち、支笏火砕流堆積物 (Spfl) が敷地に到達した可能性について検討を行った。
 ○検討は、文献に示される支笏火砕流堆積物 (Spfl) の最大到達距離と層厚の確認 (次頁参照) 並びに文献及び当社地質調査を踏まえた、 敷地周辺における支笏火砕流堆積物 (Spfl) の分布状況の確認 (P296~P299参照) に基づき実施した。

 ○支笏火砕流は、給源から敷地方向に層厚を減じながら尻別川沿いを流下したものと考えられ、給源から約42km (敷地からの距離約40km)の真狩村付近まで火砕流堆積物が認められる。
 ○より敷地に近い羊蹄山北側地点(給源から約48km,敷地から約28km)付近においては、古倶知安湖に直接又は間接的に流入した支 笏火砕流が湖底に厚く堆積したrework (再堆積層)が認められる。
 ○再堆積層が認められる各地点の地質状況、標高及び地形状況を踏まえると、盆地全体が古倶知安湖に直接または間接的に流入した支 笏火砕流堆積物に覆われ、敷地に最も近い倶知安盆地北西端地点まで火砕流が到達していた可能性は否定できず、この場合、敷地方 向における支笏火砕流の最大到達距離は約54km (敷地からの距離約22km)となる。
 ○倶知安盆地北西端地点よりもさらに敷地方向に位置する倶知安峠(現河床との比高約80m)を越えてから、敷地までの間には支笏火砕 流堆積物(Spfl)又はその二次堆積物の分布を示した文献等も認められないことから、敷地には到達していないと判断される。

3. 巨大噴火に伴う火砕流が敷地に到達した可能性評価

①-2 支笏火砕流(文献に示される支笏火砕流の最大到達距離と層厚の確認)

一部修正(R5/7/7審査会合)

○支笏火砕流堆積物 (Spfl)の分布範囲を確認するため、支笏カルデラの火山噴出物の分布を示す代表文献である宝田ほか (2022)、敷 地方向の最大到達地点付近の支笏火砕流堆積物 (Spfl)の分布・性状を明らかにしている嵯峨山ほか (2021) 及び井上ほか (2022)を 確認した (P24~P28参照)。

- ○支笏火砕流堆積物(Spfl)は、支笏カルデラ周辺に広範囲に認められ、敷地方向においては、宝田ほか(2022)に示される給源から約 42km(敷地からの距離約40km)の羊蹄山南東側の真狩村付近まで認められ、層厚は0.15~0.05mである。
- ○真狩村付近からさらに敷地方向に向かって,給源から約48kmの地点である羊蹄山北側地点[※](敷地からの距離約28km)においては, 宝田ほか(2022)によってrework(再堆積層)が認められ,層厚は5mである。
- ○また, 羊蹄山北側地点の約1.5km~3km南西の地点[※]においては, 嵯峨山ほか(2021) 及び井上ほか(2022) によって, 層厚は不明であ るものの, 支笏火砕流堆積物(Spfl)の再堆積物が記載されている。
- ○支笏カルデラから全方向を考慮した場合, 文献に示される火砕流堆積物確認地点に基づく支笏火砕流堆積物 (Spfl) の最大到達距離は, 宝田ほか (2022) に示される支笏カルデラから南西方向に位置する伊達市館山町までの約52kmであり, 層厚は1mである。

 ○支笏火砕流堆積物 (Spfl) は支笏カルデラ周辺に広範囲に認められ, rework (再堆積層) も含めた, 火砕流堆積物確認地点に基づく敷地 方向の最大到達地点は, 宝田ほか (2022) に示される羊蹄山北側地点[※] (約48km) である。
 ○支笏カルデラから全方向を考慮した場合, 火砕流堆積物確認地点に基づく支笏火砕流堆積物 (Spfl) の最大到達距離は, 宝田ほか (2022) に示される支笏カルデラから南西方向に位置する伊達市館山町までの約52kmであり, 層厚は1mである。

[※]これらの地点の支笏火砕流堆積物は, rework或いは再堆積層とされているが, Nakagawa et al. (2016)による記載も踏まえると, 古倶知安湖に直接又は間接的に流入した支笏火砕流が, 湖底に厚く堆積し た堆積物と考えられることから, 敷地方向の最大到達地点と評価した (P26~P27参照)。
①-3 支笏火砕流(文献及び当社地質調査結果を踏まえた敷地周辺における支笏火砕流堆積物の分布状況確認)(1/4)

一部修正(R5/7/7審査会合)

- ○文献に示される,火砕流堆積物確認地点に基づく敷地方向の支笏火砕流堆積物(Spfl)の最大到達地点(羊蹄山北側地点)より,さらに 敷地方向に向かって,支笏火砕流が到達した可能性について,以下の検討を行った。
 - ・支笏カルデラから敷地方向に向かい,尻別川沿い及び堀株川沿いの地形断面図を作成し,文献に示される火砕流堆積物確認地点を 投影することで,流路に沿った地形状況と火砕流堆積物の層厚変化を把握した(次頁参照)。
 - ・文献に示される火砕流堆積物確認地点周辺の地質図幅,分布標高及び地形状況を基に,支笏火砕流の到達が否定できない範囲を推定した(P298参照)。
 - ・文献及び当社地質調査結果を踏まえた敷地周辺における支笏火砕流堆積物の分布状況を確認した。

- ○支笏火砕流堆積物(Spfl)は,給源から真狩村付近に向かって層厚を減じながら尻別川沿いを流下したものと考えられ,その層厚は真狩 村付近で0.15~0.05m程度まで減少している[※]。
- ○真狩村付近より敷地方向の羊蹄山北側地点 (敷地からの距離約28km) 付近においては, 宝田ほか (2022), 嵯峨山ほか (2021) 及び 井上ほか (2022) により, 支笏火砕流堆積物の再堆積層 (層厚最大5m) が示されているが, Nakagawa et al. (2016) による記載も踏ま えると, これらの堆積物については, 古倶知安湖に直接又は間接的に流入した支笏火砕流が, 湖底に厚く堆積したものと考えられる。
- ○上記の再堆積層が確認される各地点は、地質図幅において古倶知安湖に堆積したと考えられる倶知安盆地堆積物(Kc)とされる地質分 布域に属しており、各地点の標高及び倶知安盆地の地形状況も踏まえると、盆地全体が古倶知安湖に直接または間接的に流入した支 笏火砕流堆積物に覆われ、敷地に最も近い倶知安盆地北西端地点まで火砕流が到達していた可能性は否定できない(P298参照)。
 ○この場合、敷地方向における支笏火砕流の最大到達距離は約54km(敷地からの距離約22km)となる(P298参照)。
- 〇しかし, 倶知安盆地北西端地点よりもさらに敷地方向に位置する倶知安峠(現河床との比高約80m)を越えてから, 敷地までの間には支 笏火砕流堆積物 (Spfl) 又はその二次堆積物の分布を示した文献は認められない。
- ○また、当社地質調査の結果、敷地及び敷地近傍に支笏火砕流堆積物(Spfl)は認められない(P299参照)。
- ※このことは、支笏火砕流堆積物の火口からの距離と層厚の関係には、距離の増加に応じ層厚がさらに小さくなる傾向が認められるとする山元 (2016) 及び宝田ほか (2022) のレビュー結果 (R5.7.7審査会合 補足説明資料2の3章) と調和的である。

3. 巨大噴火に伴う火砕流が敷地に到達した可能性評価

A-B測線の地形断面図※と火砕流堆積物の分布(地理院地図を基に作成)

※地形断面図の作成に当たっては、宝田ほか(2022)、山元(2016)、嵯峨山ほか(2021)及び井上ほか(2022)で示される支笏火砕流堆積物(Spfl)の位置を投影し、その層厚をプロットした。ここでは、支笏 火砕流堆積物の標高が火砕流堆積物の底面であると仮定し、尻別川沿いに投影している。

<u>297</u>

3. 巨大噴火に伴う火砕流が敷地に到達した可能性評価

①-3 支笏火砕流(文献及び当社地質調査結果を踏まえた敷地周辺における支笏火砕流堆積物の分布状況確認)(3/4)

一部修正(R5/7/7審査会合)

①-3 支笏火砕流(文献及び当社地質調査結果を踏まえた敷地周辺における支笏火砕流堆積物の分布状況確認)(4/4)

一部修正(R5/7/7審査会合)

②-1 Kt-7 pfl (まとめ)

一部修正(R5/7/7審査会合)

○倶多楽・登別火山群の最大規模の噴出物であるKt-7のうち、火砕流が敷地に到達した可能性について検討を行った。
 ○検討は、文献に示されるKt-7(pfl)の最大到達距離と層厚の確認(次頁参照)並びに文献及び当社地質調査を踏まえた、敷地周辺におけるKt-7(pfl)の分布状況の確認(P302~P303参照)に基づき実施した。

○Kt-7 (pfl)は,給源から敷地までの距離(80.5km)と比較し最大到達距離(厚真町付近:約63km)が小さく,給源と敷地の間にはオロフレ山-ホロホロ山が認められ,敷地までの間にはKt-7 (pfl)の分布を示した文献等も認められないことから,敷地には到達していないと判断される。

②-2 Kt-7 pfl (文献に示されるpflの最大到達距離と層厚の確認)

一部修正(R5/7/7審査会合)

○倶多楽・登別火山群起源の火砕流堆積物の分布範囲を確認するため, 倶多楽・登別火山群起源の火山噴出物の分布を示している産業 技術総合研究所地質調査総合センター編(2020)及びAmma-Miyasaka et al. (2020)を確認した(P40参照)。

○これらの文献に基づくと、俱多楽・登別火山群起源の火砕流堆積物の分布範囲として示される範囲は、山体近傍に限定されるものの、 Amma-Miyasaka et al. (2020) によれば、俱多楽・登別火山群から北東方向に位置する厚真町付近においてKt-7 (pumice flow deposit) が認められる。

○上記地点は、火砕流(Kt-7)の最大到達地点に当たり、その距離は約63km, 層厚は0.2mである。

○倶多楽・登別火山群起源の火砕流堆積物のうちKt-7 (pfl)は、倶多楽・登別火山群から北東方向に位置する厚真町付近に認められる。
 ○Kt-7 (pfl)の最大到達距離は、Amma-Miyasaka et al. (2020)に示される倶多楽・登別火山群から北東方向に位置する厚真町付近までの約63kmであり、層厚は0.2mである。

3. 巨大噴火に伴う火砕流が敷地に到達した可能性評価

②-3 Kt-7 pfl (文献及び当社地質調査結果を踏まえた敷地周辺におけるKt-7pflの分布状況確認) (1/2)

一部修正(R5/7/7審査会合)

○俱多楽・登別火山群から敷地方向に向かい、長流川沿い、尻別川沿い及び堀株川沿いの地形断面図を作成した。

○俱多楽・登別火山群と敷地の間には,オロフレ山及びホロホロ山が認められ,さらに敷地方向に向かって,敷地までの間にKt-7 (pfl)の分布を示した 文献も認められない。

○当社地質調査の結果,敷地及び敷地近傍にKt-7(pfl)は認められない(次頁参照)。

※地形断面図作成に当たっては以下の点に留意した。

・Kt-7の詳しい噴出源は不明であるため、中野ほか編 (2013) において倶多楽・登別火山群の代表点として示されている四方嶺を始点とした。

・オロフレ山~ホロホロ山間の鞍部については、最も標高の低い地点(現標高は876m)を通るよう測線を設定した。

・現在の長流川と尻別川水系の分水界をなす広島峠は,主に支笏火砕流堆積物(Spfl)で構成されるため,Kt-7噴出時とは地形が異なる可能性があるが,峠を構成する支笏火砕流堆積物(Spfl)の層厚が不明 であるため,現在の地形で測線を設定した。

・Kt-7の噴出年代 (90-85ka) を踏まえると,噴出時には現在の羊蹄山は存在しなかったと考えられるが,低地が広がっていたと仮定し,現在の尻別川沿いに測線を設定した。

③-1 洞爺火砕流(まとめ)

一部修正(R5/7/7審査会合)

○洞爺カルデラの最大規模の噴出物であるTpのうち,洞爺火砕流が敷地に到達した可能性について検討を行った。
 ○検討は,文献に示される洞爺火砕流の最大到達距離と層厚の確認(次頁確認)並びに文献及び当社地質調査を踏まえた,敷地及び敷地近傍における洞爺火砕流堆積物の分布状況の確認(P306~P312参照)に基づき実施した。

○敷地のうちMm1段丘より低標高側に洞爺火砕流本体が到達した可能性を否定できない。 ○また,敷地のうち,Mm1段丘より高標高側については,火砕サージが到達した可能性を否定できない。

③-2 洞爺火砕流(文献に示される洞爺火砕流の最大到達距離と層厚の確認)

再揭(R5/7/7審査会合)

○洞爺火砕流堆積物の分布範囲を確認するため、以下の文献を確認した。

- 【産業技術総合研究所地質調査総合センター編(2020)確認結果】(P48参照)
- ○同文献に基づくと,洞爺火砕流堆積物は,洞爺カルデラ周辺に広範囲に認められ,敷地方向(北~北西方向)では共和町幌似付近ま で認められる。

○洞爺火砕流堆積物の最大到達距離は、洞爺カルデラから敷地方向(北~北西方向)に位置する共和町幌似付近までの約47kmである。 【Goto et al. (2018) 及び産業技術総合研究所(2022) 確認結果】(P53~P61参照)

- ○これらの文献に基づくと,敷地方向(北~北西方向)では共和町幌似付近まで洞爺火砕流堆積物(層厚は最大で22m;産業技術総合 研究所,2022)が確認され,この状況は産業技術総合研究所地質調査総合センター編(2020)と調和的である。
- ○これらの文献に基づくと, 堆積物は確認されていないものの, 推定に基づき, 共和町幌似付近を越えて岩内湾まで洞爺火砕流堆積物が 分布が示されている。
- ○Goto et al. (2018) によれば, 共和町幌似付近で確認される洞爺火砕流堆積物は, 最も広範囲に広がっていることが示唆されるUnit2 に区分されるものである。

○一方で, 産業技術総合研究所 (2022) によれば, 共和町幌似付近で確認される洞爺火砕流堆積物は, 最も広範囲に広がっていること が示唆されるUnit5に区分されるものである。

- 【Amma-Miyasaka et al. (2020) 確認結果】 (P62~P63参照)
- ○同文献に示される洞爺火砕流堆積物の最大到達距離は、洞爺カルデラから東方向に位置する苫小牧市錦岡(P3地点)までの約47km であり、層厚は1.75mである。
- ○同文献において,洞爺カルデラから東~北東方向に位置する調査地点 (DN2, DC及びDS5地点) で確認される洞爺カルデラ形成噴火 噴出物は,数mm以下の軽石を含む基質支持の堆積物であることから,火砕サージ堆積物であるとしている。
- ○当該火砕サージ堆積物の最大到達距離は、洞爺カルデラから北東方向に位置する安平町追分春日 (DN2地点) までの約85kmであり、 層厚は0.25m以下である。
- 【産業技術総合研究所(2021)確認結果】(P64参照)
- ○同文献に基づくと,洞爺カルデラ形成噴火噴出物である火砕サージ堆積物の最大到達距離は,洞爺カルデラから北東方向に位置する 千歳市までの約80kmであり,層厚は約0.4mである。

○洞爺火砕流は,洞爺カルデラ周辺の広範囲に認められ,敷地方向の最遠方分布地点としては,敷地近傍に位置する共和町幌似付近 (洞爺カルデラから約47km)まで認められる(最大層厚22m)。

○洞爺火砕流の最大到達距離は、Amma-Miyasaka et al. (2020)に示される洞爺カルデラから東方向に位置する安平町追分春日までの約85km (火砕サージ堆積物を確認)であり、給源から敷地までの距離(54.8km)と比較して大きく、層厚は0.25m以下である。

③-3洞爺火砕流(文献及び当社地質調査結果を踏まえた敷地及び敷地近傍における洞爺火砕流堆積物の分布状況確認)(1/6)

一部修正(R5/7/7審査会合)

- ○敷地及び敷地近傍の当社地質調査における洞爺火砕流堆積物の分布は以下のとおり(R5.7.7審査会合補足説明資料2の1章参照)。 [敷地近傍]
 - ○共和町幌似付近に,軽石混じり火山灰の層相を呈する洞爺火砕流堆積物(最大層厚約22m)が認められる。
 - ○共和町幌似付近よりもより敷地に近接する岩内平野西部及び敷地を越えた積丹半島西岸に認められるMIS5eの海成段丘 (Mm1段丘) 堆積 物上位に,洞爺火山灰 (Toya) の火山ガラスを多く含む堆積物が認められ,当該堆積物を火砕サージ由来か降下火砕物由来か厳密に区分 することは難しい (以降,火砕サージと軽石が混じる洞爺火砕流を区別して取り扱う場合は,後者を「火砕流本体」と呼称する)。
- [敷地]
- ○主に火山砕屑物からなる堆積物若しくは軽石を含む堆積物は認められない。
- ○Mm1段丘堆積物(上面標高約24m)上位の陸上堆積物には、その上面、基底面又は当該堆積物中に、洞爺火砕流の到達を示唆する侵食 面は認められない。
- ○共和町幌似付近以西において洞爺火砕流堆積物を確認している文献はないが, 推定に基づき, 岩内湾までの分布を示す文献が認められる(前頁 参照)。
- ○当社地質調査及び文献調査による検討の結果,洞爺火砕流堆積物の火口からの距離と層厚の関係には,洞爺カルデラから概ね敷地方向(北 ~北西方向)に位置する地点に限定した場合,明瞭な傾向は認められないが,大局的には,距離の増加に応じ層厚が小さくなる傾向が認められる(詳細はR5.7.7審査会合補足説明資料2の3章参照)。
- ○このため, 共和町幌似付近において火砕流本体の最大層厚が約22mあることを踏まえると, 火砕流本体は層厚を減じながら幌似付近を越えた 範囲に到達していた可能性も考えられる。
- ○また、岩内平野西部において、堀株川付近に、洞爺火砕流堆積物堆積以降に堆積した沖積層が認められる。
- ○これらの状況に加え,断面図を用いた検討の結果(次頁~P312参照)を踏まえると,火砕流本体は,岩内平野西部において確認されないものの, 共和町幌似付近を越えて堀株川沿いの低地を流下し,現在の岩内湾に到達した後,削剥された可能性を否定できない。

○敷地近傍の共和町幌似付近では,軽石が混じる火砕流本体が認められる。

- ○火砕流本体は,より敷地に近接する岩内平野西部には認められないが,沖積層が分布すること等から,堀株川沿いの低地を流下し,現在の岩 内湾に到達した後,削剥された可能性を否定できない。
- ○堀株川沿いの延長方向に敷地は位置し,敷地には火砕流本体又は火砕サージの到達を示唆する堆積物等は認められないが,敷地のうちMm1 段丘(MIS5e)より低標高側(海側)については、1,2号炉建設前は、標高0m付近に波食棚が分布する状況であったことから(P312参照), MIS5e(Mm1段丘)より新しい時代の堆積物は保存されておらず、堀株川沿いの低地に流下した火砕流本体が敷地に到達した可能性について 検討できない状況である。
- ○また,敷地を挟む岩内平野西部及び積丹半島西岸においては,Mm1段丘堆積物上位に洞爺火山灰(Toya)の火山ガラスを多く含む堆積物が 認められ,当該堆積物を火砕サージ由来か降下火砕物由来か厳密に区分することは難しい。

③-3洞爺火砕流(文献及び当社地質調査結果を踏まえた敷地及び敷地近傍における洞爺火砕流堆積物の分布状況確認)(2/6)

一部修正(R5/1/20審査会合)

- ○共和町幌似付近から堀株川沿いに下流に向かう1-1'断面図及び岩内平野西部において堀株川に直交する2-2'断面図を作成し, 堀 株川付近の堆積物の確認を行った。
- ○断面図作成に当たっては、以下の地点における露頭調査及びボーリング調査結果を用いた(露頭調査及びボーリング調査結果の詳細は、 2.3.2章並びにR5.7.7審査会合補足説明資料2の1.1章及び1.3章参照)。
 - •1-1'断面 : B-5地点, C-2地点, C-3地点, H26共和-7地点
- ・2-2'断面 : 梨野舞納地点, H26共和-5地点, H26共和-6地点, H26共和-4地点, H26共和-3地点
- ○なお, 堀株川沿いの1-1' 断面図については, 周囲の地形状況も把握するため, 以下に示す同じく堀株川に平行な地形断面についても, 併せて示した。
 - ・1a-1a'断面 : 軽石が混じる火砕流本体が認められるB-5地点及びC-2地点付近を通る断面
 - ・1b-1b'断面 : 1a-1a'断面よりも山側において共和台地を通る断面
 - 1c-1c'断面: 岩内台地を通る断面

③-3洞爺火砕流(文献及び当社地質調査結果を踏まえた敷地及び敷地近傍における洞爺火砕流堆積物の分布状況確認)(3/6)

一部修正(R5/1/20審査会合)

【1-1'断面】(次頁参照)

○幌似付近のB-5及びC-2地点においては,軽石が混じる火砕流本体が認められ,C-2地点付近で層厚が急減する。
 ○また,C-2地点においては,氾濫原堆積物(沖積層)も認められ,軽石が混じる火砕流本体及びその二次堆積物を覆って堆積する。
 ○C-2地点と近接するC-3地点においては,岩内層の上位に氾濫原堆積物(沖積層)が認められる。

○C-3地点より下流側に位置するH26共和-7地点においては、岩内層の上位に海成堆積物(沖積層)が認められる。

【2-2'断面】(P311参照)

○岩内台地に位置する梨野舞納地点においては、Mm1段丘堆積物(上面標高約22m)の上位に、陸成層が認められる。

- ○陸成層の上位には、火山灰質砂質シルト層が整合関係で認められる。
- ○火山灰質砂質シルト層については、火山灰分析(組成分析及び屈折率測定)の結果、火砕サージ由来か降下火砕物由来か厳密に区分することは難しい洞爺火山灰(Toya)の火山ガラスを多く含む堆積物に区分される(R5.7.7審査会合補足説明資料2の1.3章参照)。
 ○火山灰質砂質シルト層の上面、基底面又は当該層中に侵食面は認められないことから、火砕流本体は到達していないものと判断される。

○堀株川付近に位置するH26共和-5及びH26共和-6地点においては、岩内層の上位に、海成堆積物(沖積層)が認められる。

○堀株川付近に位置するH26共和-4地点においては、岩内層の上位に扇状地性堆積物が認められる。

○H26共和-3地点においては、発足層の上位に、扇状地性堆積物が認められる。

3. 巨大噴火に伴う火砕流が敷地に到達した可能性評価

1-1'断面図

<u>310</u>

③-3洞爺火砕流(文献及び当社地質調査結果を踏まえた敷地及び敷地近傍における洞爺火砕流堆積物の分布状況確認)(5/6)

一部修正(R5/1/20審査会合)

③-3洞爺火砕流(文献及び当社地質調査結果を踏まえた敷地及び敷地近傍における洞爺火砕流堆積物の分布状況確認)(6/6)

一部修正(H30/5/11審査会合)

改変前の敷地の地形

1. 敷地から半径160Km以内の範囲(地理的視域)にある弗四紀火山刀タロク・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P. 3
2. 火山影響評価に関する各種調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.120
2.1 文献調査	P.121
2. 2 地形調査 ••••••••••••••••••••••••••••••••••••	P.129
2. 3 地質調査 •••••••	P.134
2. 4 火山学的調査 ••••••••••••••••••••••••••••••••••••	P.278
3. 巨大噴火に伴う火砕流が敷地に到達した可能性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.292
4. 火山影響評価に関する文献レビュー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.314
4.1 巨大噴火の可能性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.315
4.2 火山活動の規模と設計対応不可能な火山事象の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.333
参考文献 ••••••••••••••••••••••••••••••••••••	P.337

1. 敷地から半径160km以内の範囲(地理的領域)にある第四紀火山カタログ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P. 3
2. 火山影響評価に関する各種調査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.120
2. 1 文献調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.121
2. 2 地形調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.129
2. 3 地質調査	P.134
2. 4 火山学的調査 ••••••••••••••••••••••••••••••••••••	P.278
3. 巨大噴火に伴う火砕流が敷地に到達した可能性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.292
4. 火山影響評価に関する文献レビュー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.314
4. 1 巨大噴火の可能性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.315
4. 2 火山活動の規模と設計対応不可能な火山事象の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.333
参考文献 ····	P.337
地下構造に戻する文献 (Rita et al., 2014) $\sim \sim \sim$	
地殻変動に関する文献(村上ほか,2001)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
地殻変動に関する文献 (Itoh et al., 2019) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
地殻変動に関する文献 (Suito, 2018) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
地殻変動に関する文献 (Kobavashi et al. (2019))・・・・・・・・・・・・・・・・・ P. 332	

4.1 巨大噴火の可能性評価

地下構造に関する文献 (Nakajima et al. (2001) 及び中道 (2022)) (1/4)

一部修正(R3/10/14審査会合)

[Nakajima et al. (2001)]

○地震波速度構造から東北日本におけるメルトの存在を推定している, Nakajima et al. (2001)をレビューした。

- ・Nakajima et al. (2001) によれば, 東北日本では低速度帯が沈み込む太平洋スラブの下降方向とほぼ平行に分布し、背弧側のマントルウェッジの深部から活火山直下の地殻まで連続的に広がっているとされている (P318左図)。
- ・この活火山直下の低速度領域において、Vp/Vs比は上部地殻では低く(平均1.66),下部地殻(同1.79)と最上部マントル(同 1.85)では高くなっており、特に最上部マントルでは、火山フロントに沿って高Vp/Vs領域が連続的に分布しているとされている (P318右図)。
- ・活火山直下の速度異常の原因について考察するため、岩石中の亀裂に存在する水又はメルトの割合に応じて、上部地殻、下部地 殻、最上部マントル各層の地震波速度がどのように変化するかを計算したとされている(P319参照)。
- ・その結果、上部地殻で観測された速度異常(低Vp,低Vsかつ低Vp/Vs)は数%の水の存在でしか説明できないため、上部地殻内 には少なくともトモグラフィの空間分解能を超える規模の部分溶融域は存在しないと推定されている。
- 下部地殻及び最上部マントルで観測された速度異常(低Vp,低Vsかつ高Vp/Vs)は、数%のメルトの存在で説明できるとされている。
 この速度異常(低Vp,低Vsかつ高Vp/Vs)は、数%の水の存在でも説明できるように見えるが、数%の水を含む亀裂のアスペクト比は非常に小さいとされ、この地域には数百年前に噴火したものも含め多くの第四紀火山があり、活火山直下のマントルウェッジにメルトが分布していると推定している文献があることも踏まえると、下部地殻や最上部マントルの速度異常(低Vp,低Vsかつ高Vp/Vs)はメルトによるものとする方が適当であるとされている。
- ・速度異常域の分布の特徴から,最上部マントルでは火山フロントに沿って連続的に部分溶融域が拡がっており,下部地殻では活火 山直下に部分溶融域が点在すると推定されている。

(次頁へ続く)

4.1 巨大噴火の可能性評価

地下構造に関する文献 (Nakajima et al. (2001) 及び中道 (2022)) (2/4)

一部修正(R3/10/14審査会合)

(前頁からの続き) 【中道(2022)】 ○火山における地震波速度構造の解釈等について至近の知見を解説している中道(2022)をレビューした。 ・中道(2022)によれば、火山直下の低Vp,低Vsかつ高Vp/Vs領域は、岩石が溶融した部分*の存在として火山学的に解釈される ことが多いとされている(下表参照)。 ・一方、低Vp,低Vsかつ低Vp/Vs領域については、水の存在や岩石内のクラック内へのガス充填がある領域として解釈されていると されている(下表参照)。

○Nakajima et al. (2001) に基づくと, 東北日本においては, 活火山直下において, 低速度領域が背弧下のマントルウェッジ内の広範囲に 分布している。

○Nakajima et al. (2001) に基づくと、活火山直下の上部地殻で観測される低Vp、低Vsかつ低Vp/Vs領域は水の存在でしか説明できない とされていることから、同領域は水の存在を示唆するものと判断される。

○また,最上部マントルから下部地殻で観測される低Vp,低Vsかつ高Vp/Vs領域は、メルトによるものとする方が適当であるであるとされていることから、本検討(地震波速度構造の観点からの地下構造の確認)においては、同領域はメルトの存在を示唆するものとして取り扱う。
 ○これらの低Vp,低Vsかつ低Vp/Vs領域が水の存在を示唆し、低Vp,低Vsかつ高Vp/Vs領域がメルトの存在を示唆するものであるとすることは、中道(2022)の記載と調和的である。

○このため、地震波速度構造については、火山直下の上部地殻にマグマ溜まり及びその周囲に分布する部分溶融域中のメルトの存在を示 唆する顕著な低Vpかつ高Vp/Vs領域が存在するか否かを確認する。

Vp,	Vs,	Vp/	′Vs異常域の	解釈(中道	首(2022)に加筆)
-----	-----	-----	---------	-------	--------	-------

Table. 2. P- and S-wave velocity and V_P/V_S anomalies and their interpretation

V_P	V_S	V_P/V_S	Depth 深度	Interpretation 解釈	
High	High	Normal	Ground surface $\sim 3 \text{ km}$	Solidified magma or old edifie	ce
Low	Low	Low	7 ~ 17 km	Supercritical fluid (H ₂ O etc.)	超臨界流体
Low	Low	High	$20 \sim 40 \text{ km}$	Partial melt of rock	メルト

※中道 (2022) によれば、「岩石が溶融した部分」はメルト、「超臨界流体」は水又は二酸化炭素とされている。

地下構造に関する文献 (Nakajima et al. (2001) 及び中道 (2022)) (3/4)

一部修正(R3/10/14審査会合)

4.1 巨大噴火の可能性評価

地下構造に関する文献 (Nakajima et al. (2001) 及び中道 (2022)) (4/4)

一部修正(R5/1/20審査会合)

(Nakajima et al. (2001)に加筆)

4.1 巨大噴火の可能性評価

地下構造に関する文献 (Kita et al., 2014) (1/2)

一部修正(R3/10/14審査会合)

[Kita et al. (2014)]

○Nakajima et al. (2001) は、東北日本における地下構造の特徴を示していることから、北海道における地下構造 (地震波減衰構造) を示しているKita et al. (2014) をレビューした。

・Kita et al. (2014) によれば、高減衰域が北海道東部および南部の背弧下のマントルウェッジ内に明瞭に示されるとされている。

・マントルウェッジ内における高減衰域は、 Zhao et al. (2012) で示された低速度領域と一致するとされている。

・マントルウェッジ内は、低速度領域かつ高減衰域であるとされている。

地下構造に関する文献 (Kita et al., 2014) (2/2)

再揭(R3/10/14審査会合)

北海道における流体移動経路の鉛直断面模式図(Kita et al. (2014)に加筆)

東北日本における流体移動経路の鉛直断面模式図(中島(2017)に加筆)

地殻変動に関する文献 (Ueda et al., 2003) (1/2)

一部修正(R5/1/20審査会合)

[Ueda et al. (2003)]

- ○1993年北海道南西沖地震の余効変動について整理されているUeda et al. (2003)をレビューした。
 - ・Ueda et al. (2003) によれば、1993年北海道南西沖地震後の地殻変動は、北海道南西部の西進、奥尻島の沈下、渡島半島の隆起 によって特徴づけられるとされている (鉛直変位については、次頁図中の黒矢印参照)。
 - ・一般に大地震後の地殻変動は、余効すべり(afterslip)と粘弾性緩和(viscoelastic relaxation)のどちらかが支配的と想定されるとされている。
 - ・北海道南西沖地震後の地殻変動は,単純な3層構造における地震時応力変化による粘弾性緩和で説明できることがわかったが,余効 すべりでは,非現実的な仮定を採用しないと変形を説明することができないとされている。
 - ・この結果は、地震後の変形のメカニズムとして、明らかに粘弾性緩和が支配的であったことを示しているとされている。
 - ・図中に見られるいくつかの差異(次頁図中の観測値(黒矢印)と計算値(白矢印)との差異)は,粘性の横方向の変化や太平洋プレートの沈み込み等,他の効果に起因している可能性があるとされている。

地殻変動に関する文献 (Ueda et al., 2003) (2/2)

一部修正(R5/1/20審査会合)

電子基準点及び奥尻検潮所の鉛直変位速度(Ueda et al. (2003) に加筆)

323

地殻変動に関する文献(村上ほか,2001)(1/2)

【村上ほか(2001)】

- 有珠山を取り囲む基線のGPS連続観測結果及び写真測量,測距・測角観測,水準測量,人工衛星合成開口レーダー画像マッチングによる観測等に基づき,2000年有珠山噴火の地殻変動とマグマモデルを整理した村上ほか(2001)をレビューした。
 - ・地震活動が増加した3/27ごろから、「虻田」、「伊達」及び「壮瞥」を含む基線にわずかな伸びが生じ、ほぼ垂直なダイクの貫入が生じた と推定されている(Phase 1)。
 - ・3/29から4/3にかけて、「虻田」、「伊達」及び「壮瞥」の基線がそれまでの伸びから縮みに反転し、有珠山西側を中心とした地域では 隆起が生じたとされている。これは、有珠山山頂直下の地下約2-3kmにおいて、水平のマグマの板(シル)が及び有珠山北麓地下にダ イクが形成され、逆にマグマを放出したため深さ10kmのマグマ溜まりにおいてデフレーション(収縮)が発生したことで説明できるとされ ている(Phase II)。
 - ・4/3から5月下旬にかけては、周囲では変動が減速したが、噴火が発生した有珠山西側では局所的に顕著な隆起が生じたとされている。これは、有珠山西山西麓地下のドーム形成に、マグマが供給され、一方、地下10kmのマグマ溜まりでは、収縮がさらに進行したことが推定されるとされている(Phase Ⅲ)。
 - ・5月下旬以降については,有珠山西側では隆起が継続したが,9月ごろには終息したとされている。一方,有珠山を中心とする収縮が 進行し,有珠山地下2-3kmシルの収縮が進んでいることが示唆されるとされている(Phase Ⅳ)。

○村上ほか (2001) に基づくと、洞爺カルデラの後カルデラ火山である有珠山西側を中心とした地域と、「虻田」、「伊達」及び「壮瞥」の基準点を含む有珠山を取り囲む地域では、2000年噴火時に異なる地殻変動が観測されており、当該噴火に伴う、有珠山西側の局所的なシル及びダイクの形成と、その供給源となる深さ約10kmのマグマ溜まりとの、少なくとも2段階のマグマプロセスを経ていることが推定されている。

○有珠山を取り囲む「虻田」、「伊達」及び「壮瞥」を含む基線については、深さ約10kmのマグマ溜まりの挙動から大きな影響を受けており、 噴火直前まではわずかに基線の伸びが生じていたが、噴火発生以降はマグマ溜まりの収縮に伴う沈降及び基線の縮みが生じているもの と考えられる。

地殻変動に関する文献(村上ほか,2001)(2/2)

phase	期 間	地	震	地殼変動	model
Phase I	3 /27から 3 /29午後 まで	 地震回数の顕著な 南東に傾き下がる 垂直に立った地震 深さは8kmから 程度に時間ととも なる傾向 	、増加 5, ほぼ 夏分布 5 3 km 5 に浅く	虹田,伊達,壮瞥 のGPS基線にわず かな伸び	ほぼ垂直なダイ クの貫入 8* 10 ^e m ³
Phase II	3 /29から 4 / 3 頃ま で	地震回数の顕著 3/31まで) 南に傾き下がる面 震分布 リング状(ドーナ 地震分布 ドーナツの空白部 とともに拡大	ょ増加(i状の地 ッ状)の 3は時間	虹田,伊達, 社督 のGPS基線が縮み に反転 有珠山から周囲3 0kmのやや違いG PS点の有珠山に 向かう変動 3/31頃まで有珠 山山頂を中心とす る変動(大学, 道 立地質GPS, 水準 測量) 西山西麓を中心と する隆起,周囲へ 測 写真レーザー, 衛星等)	有珠山地下約 2 - 3 kmのシル 5* 10'm' 有珠山北麓地下 のダイク 1* 10'm' 深さ 10kmのマ グマ溜まりのデ フレーション - 2* 10'm'
Phase III	4 / 3 日頃 から5 月下 旬	回数の顕著な減少	>	GPSはほぼ停滞 西山西麓を中心と して顕著な隆起 周囲への押し出し (角,気象庁他GP S,衛星,写真 等)	西山西麓地下の 浅いダイクおよ びシル 3* 10'm ³ 深さ10kmのマ グマ溜まりのデ フレーション - 5* 10'm ³
Phase IV	5月下旬か ら現在	回数の顕著な減少	>	西側では隆起が継 続 変動域の集中 化 有珠山を中心とす るデフレーション (GPS,水準)	有珠山地下 2 – 3 km シ ル の デ フ レー ジョン

2000年有珠山噴火に伴う地震・地殻変動・マグマモデルの 時系列表(村上ほか,2001)

2000年有珠山噴火のマグマ活動の模式図(村上ほか, 2001)

地殻変動に関する文献 (Itoh et al., 2019) (1/2)

[Itoh et al. (2019)]

- ○2003年十勝沖地震 (Mw8.0) の地震前, 地震時及び地震後7.5年間の地殻変動を, 陸上GNSSデータと2つの海底圧力計 (OBP) を用い て, 粘弾性グリーン関数によるモデル化を行ったItoh et al. (2019) をレビューした。同文献によれば, 地震前, 地震時及び地震後の北海 道の地殻変動の特徴が以下のように要約されている。
 - ・解析には、2000年有珠山噴火の影響を受けている観測点を用いていないとされている。また、1993年北海道南西沖地震の地殻変動の影響を取り除いたとされている。
 - ・2003年十勝沖地震以前は概ね内陸方向(北西方向)に移動する水平変位が観測されていたが、地震時に、海溝方向(南東方向)に 反転し、地震後も海溝方向の水平変位が継続しているとされている。
 - ・鉛直変位については,2003年十勝沖地震前は沈降を示し,特に道東地域の太平洋沿岸でその傾向が大きかったとされ,地震時には 震源域(十勝・日高地域)において大きな沈降を示したとされている。地震後は,主に海岸沿いで隆起に転じたとされている。
 - ・北海道のほとんどの観測点で2003年十勝沖地震に伴う余効変動が観測され,地震後7.5年目においてもプレート間固着が2003年以前の状態には完全には回復していないとされている。

○ltoh et al. (2019) に基づくと、北海道のほぼ全域において2003年十勝沖地震に伴う余効変動が認められ、少なくともその影響が地震後7.5年間続いているものと考えられる。

○支笏カルデラ及び倶多楽・登別火山群周辺に着目※すると、当該地震によって海溝方向(南東方向)に引き伸ばされる水平変位が生じ、 地震以降も少なくとも7.5年間は同様の傾向が続いているものと推定される。

○鉛直変位については、当該地震以前は沈降傾向を示していたものの、地震後は隆起傾向を示しているものと推定される。

※洞爺カルデラ周辺は、2000年有珠山噴火の影響を考慮して解析から除外されているため、傾向を判断することはできない。

地殻変動に関する文献 (Itoh et al., 2019) (2/2)

地殻変動に関する文献 (Suito, 2018) (1/4)

一部修正(R5/1/20審査会合)

[Suito (2018)]

○GNSS連続観測システム(GEONET) 及び海底地殻変動観測(SGO)を用いて2011年東北地方太平洋沖地震以降の東日本地域の地殻 変動について整理しているSuito(2018)をレビューした。

・Suito (2018) によれば, 2011年東北地方太平洋沖地震以前の1997~2000年については,東北地方全域で西方への水平変位,太 平洋沿岸での沈降,日本海側でのわずかな隆起が認められるとされている。

・地震後の6.5年間においては,東北地方から中部地方の広い範囲において,東方向の水平変位が生じ,東北地方の変形は地震発生 直後が最も大きく,その後,時間の経過とともに徐々に減衰しているとされている。

・地震後の鉛直変位については、内陸部と日本海沿岸部では10cm程度の累積沈下が、奥羽脊梁部ではかなり大きな沈下が、関東・中部・北海道南部では10cm程度の累積隆起が観測されたとされている(P330参照)。

・地震後の地殻変動を解釈する際には、一般に余効すべり(afterslip)、粘弾性緩和(viscoelastic relaxation, P331参照)、間隙弾性反発(poroelastic rebound)の3つのメカニズムを考慮する必要があるとされている。

・観測された地殻変動には、余効すべり効果やプレート間の固着効果等、様々な効果が含まれているとされている。

・プレート間の固着効果は, 東北地方全域で西方への変位, 太平洋岸での沈下及び日本海側でのわずかな隆起をもたらすとされている (次頁参照)。

○Suito (2018)による2011年東北地方太平洋沖地震以前の1997~2000年の北海道を含む東日本全体の平均変位速度によれば、支 笏カルデラ、倶多楽・登別火山群及び洞爺カルデラが位置する北海道南部(東北日本弧延長部)は、全体的に西方向に向かう水平変 位が認められる。

○同地域における1997~2000年の鉛直変位については、洞爺カルデラ周辺は隆起傾向、支笏カルデラ及び倶多楽・登別火山群周辺の 太平洋側若しくは石狩低地側(東方向)は沈降傾向が認められる[※]。

○一方で, Suito (2018)による当該地震以降6.5年間の累積変位分布によれば,東北地方においては顕著な東方向の水平変位が生じた ものの,北海道南部(東北日本弧延長部)は地震に由来すると考えられる顕著な水平変位は観測されていない。

○当該地震以降の鉛直変位については、プレート間の固着効果、余効変動等様々な効果により、総じて隆起傾向である。

※Suito (2018) による1997年~2000年間の洞爺カルデラ周辺の隆起傾向に関しては、1993年北海道南西沖地震の余効変動に伴う隆起成分 (P322~P323参照) が含まれている可能性があるため、 1993年北海道南西沖地震の影響を取り除いた鉛直変位の傾向を示しているltoh et al. (2019) (P326~P327参照) とは結果が若干異なっているものと考えられる。

地殻変動に関する文献(Suito, 2018)(2/4)

一部修正(R5/1/20審査会合)

・Suito (2018) によれば,プレート間の固着効果は,東北地方全域で西方への変位,太平洋岸での沈下及び日本海側でのわずかな隆起をもたらすとされている。 ・北海道南部 (東北日本弧延長部) においては,全体的に西方向に向かう水平変位が認められ,洞爺カルデラ周辺は隆起傾向,支笏カルデラ及び倶多楽・登 別火山群周辺の太平洋側若しくは石狩低地側 (東側) は沈降傾向が認められる。

> GEONETによる1997年1月から2000年1月までの平均変位速度 (Suito (2018) に加筆)

4.1 巨大噴火の可能性評価

地殻変動に関する文献(Suito, 2018)(3/4)

一部修正(R5/1/20審査会合)

GEONETによる2011年3月東北地方太平洋沖地震以降6.5年間分の地殻変動 (Suito (2018)に加筆)

4.1 巨大噴火の可能性評価

地殻変動に関する文献(Kobayashi et al., 2019)

1. 敷地から半径160km以内の範囲(地理的領域)にある第四紀火山カタログ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2. 火山影響評価に関する各種調査 ····································	20
2.1 文献調査 ····································	21
2. 2 地形調査 ·································· P.1	29
2.3 地質調査 ····································	34
2. 4 火山学的調査 ••••••••••••••••••••••••••••••••••••	278
3. 巨大噴火に伴う火砕流が敷地に到達した可能性評価 ・・・・・ P.2	292
4. 火山影響評価に関する文献レビュー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	314
4.1 巨大噴火の可能性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	315
4.2火山活動の規模と設計対応不可能な火山事象の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	333
参考文献P.3	337
ニセコ・雷電火山群の溶岩流を含む火山噴出物の分布範囲及び活動時期に関する文献(大場, 1960)・・・・・・ P. 334	
□ ニセコ・雷電火山群の活動時期に関する文献(日本地質学会編, 2010)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
ニセコ・雷電火山群の活動時期に関する文献 (Oka et al., 2023) ••••••••••••••••••••••••••••••••••••	

4.2 火山活動の規模と設計対応不可能な火山事象の評価

ニセコ・雷電火山群の溶岩流を含む火山噴出物の分布範囲及び活動時期に関する文献(大場, 1960)

一部修正(H25/11/13審査会合)

火山地質図 (大場 (1960) に加筆)

334

335

4.2 火山活動の規模と設計対応不可能な火山事象の評価

ニセコ・雷電火山群の活動時期に関する文献(日本地質学会編, 2010)

一部修正(H25/11/13審査会合)

【日本地質学会編(2010)】

○ニセコ・雷電火山群の活動時期については、「古期火山群」、「中期火山群」及び「新期火山群」に分類されている。
○各火山群を構成する火山体の活動時期は下表のように示されている。

火山群	火山体	活動時期
古期火山群	雷電火山	2.03 ± 0.28 Ma-0.99 ± 0.12 Ma
	目国内岳火山	1.2±0.2Ma-0.62±0.06Ma
	岩内岳火山	0.64±0.13Ma-0.5±0.2Ma
	ワイスホルン火山	1.3±0.4Ma-0.9±0.3Ma
中期火山群	白樺岳火山	0.68±0.04Ma-0.3±0.2Ma
	シャクナゲ岳火山	0.8±0.05Ma-0.30±0.03Ma
	ニセコアンヌプリ火山	0.69±0.35Ma-0.25±0.13Ma
新期火山群	チセヌプリ火山	0.3±0.2Ma-<0.2Ma
	ニトヌプリ火山	<0.2Ma
	イワオヌプリ火山	<0.2Ma

各火山群を構成する火山体の活動時期

336

4.2 火山活動の規模と設計対応不可能な火山事象の評価

ニセコ·雷電火山群の活動時期に関する文献(Oka et al., 2023)

一部修正(R5/7/7審査会合)

336

【Oka et al. (2023)】
○ワイスホルン・岩内岳・モイワ山・チセヌプリ・ニトヌプリ・イワオヌプリの各火山については、新たに年代測定を実施したとされている。
○年代測定の結果、岩石の年代はそれぞれ、雷電山・ワイスホルン・岩内岳が>0.5Ma、白樺山・シャクナゲ岳・ニセコアンヌプリが0.5~
0.1Ma、イワオヌプリ・チセヌプリ・ニトヌプリが<0.1Ma~<10kaとされている。
○活動年代を基に、雷電山・ワイスホルン・岩内岳をearly stage、チセヌプリ・ニトヌプリ・イワオヌプリをnewer volcanoesと呼称されている。

考文献

- (1) 中野俊・西来邦章・宝田晋治・星住英夫・石塚吉浩・伊藤順一・川辺禎久・及川輝樹・古川竜太・下司信夫・石塚治・山元孝広・岸 本清行編(2013):日本の火山(第3版),200万の1地質編集図,No.11,産業技術総合研究所地質調査総合センター。
- (2) 西来邦章・伊藤順一・上野龍之編(2012, 2015):第四紀火山岩体・貫入岩体データベース.
- (3) 産業技術総合研究所地質調査総合センター編(2022):大規模噴火データベース,産総研地質調査総合センター.
- (4) 第四紀火山カタログ委員会編(2000):日本の第四紀火山カタログ,日本火山学会.
- (5) 町田洋・新井房夫(2011):新編火山灰アトラス[日本列島とその周辺],東京大学出版会.
- (6) Uesawa, S., Toshida, K., Takeuchi, S., and Miura, D. (2022) : Creating a digital database of tephra fallout distribution and frequency in Japan, Journal of Applied Volcanology, 11, 14. (TephraDB_Prototype_ver1.2)
- (7) 中川光弘·後藤芳彦·新井計雄·和田恵治·板谷徹丸(1993):中部北海道,滝川地域の中新世-鮮新世玄武岩のK-Ar年代と主 成分化学組成:東北日本弧-千島弧,島弧会合部の玄武岩単成火山群,岩鉱,第88巻,第8号,pp.390-401.
- (8) 佐川 昭・松井和典・山口昇一(1988):北海道イルムケップ火山音江山溶岩のK-Ar年代と古地磁気,地質調査所月報,第39巻, 第6号,pp.423-428.
- (9) 八木健三・柴田賢・蟹沢聡史(1987):北海道西部の暑寒別岳地域火山岩類のK-Ar年代,日本火山学会講演予稿集,2,p.38.
- (10) 広瀬亘・岩崎深雪・中川光弘(2000):北海道中央部~西部の新第三紀火成活動の変遷: K-Ar年代,火山活動様式および全岩 化学組成から見た東北日本弧北端の島弧火成活動の変遷,地質学雑誌,第106巻,第2号,pp.120-135.
- (11) 重野聖之・垣原康之・岡村 聡・青柳大介(2007):"3 年代測定の結果", 札幌市大型動物化石総合調査報告書~サッポロカイ ギュウとその時代の解明~, 札幌市博物館活動センター編, 札幌市, pp.49-51.
- (12) Watanabe, Y. (1990) : Pliocene to Pliocene volcanism and related vein-type mineralization in Sapporo-Iwanai district, southwest Hokkaido, Japan, Mining Geology, 40 (5), pp.289-298.
- (13) 横山 光・八幡正弘・岡村 聡・西戸裕嗣(2003):西南北海道,赤井川カルデラの火山層序とカルデラ形成史,岩石鉱物科学,第 32巻,第2号,pp.80-95.
- (14) 山元孝広(2014):日本の主要第四紀火山の積算マグマ噴出量階段図, 地質調査総合センター研究資料集, No.613, 産総研地 質調査総合センター.
- (15) 金田泰明・後藤義瑛・西野佑紀・宝田晋治・下司信夫(2020):支笏・洞爺・濁川・大山火山の大規模噴火の前駆活動と噴火推移, 産総研地質調査総合センター研究資料集, No. 699, 産総研地質調査総合センター, 75p.
- (16) Amma-Miyasaka, M., Miura, D., Nakagawa, M., Uesawa, S., Furukawa, R. (2020) : Stratigraphy and chronology of silicic tephras in the Shikotsu-Toya Volcanic Field, Japan: Evidence of a Late Pleistocene ignimbrite flare-up in SW Hokkaido, Quaternary International, 562, pp.58-75.
- (17) 宝田晋治・中川光弘・宮坂瑞穂・山元孝広・山崎 雅・金田泰明・下司信夫(2022):支笏カルデラ支笏火砕流堆積物分布図,大 規模火砕流分布図, no. 2, 産総研地質調査総合センター, 34p.
- (18) 春日井昭・石橋敦子・大貫康行・柏原信・鈴木久恵・田中秀樹・松田紘一(1974):恵庭火山の降下軽石層-分布と層準についての改定-,地球科学,28巻,4号,pp.115-127.

337

- (19) 山縣耕太郎(1994):支笏およびクッタラ火山のテフロクロノロジー, 地学雑誌, 第103巻, 第3号, pp.268-285.
- (20) 産業技術総合研究所編(2003):20万分の1数値地質図幅集「北海道南部」.
- (21) 山元孝広(2016):支笏カルデラ形成噴火のマグマ体積,地質調査総合センター研究資料集, No.632, 産総研地質調査総合セン ター.
- (22) 井上 隆・関根達夫・岡村聡・小田桐 亮・嵯峨山 積(2022):北海道倶知安町高砂の法面に現れた古倶知安湖堆積物,総合地質, 6-1, pp.47-56.
- (23) 嵯峨山積・星野フサ・井島行夫・近藤玲介・関根達夫・小田桐亮・宮入陽介・横山祐典(2021):古倶知安湖の検証-その2-:北 海道倶知安町の上部更新統真狩別層の14C 年代値,火山灰,花粉および珪藻の分析,総合地質,5-1,pp.71-80.
- (24) Uesawa, S., Nakagawa, M., Umetsu, A. (2016) : Explosive eruptive activity and temporal magmatic changes at Yotei volcano during the last 50,000 years, southwest Hokkaido, Japan, J. Volcanol. Geotherm. Res. 325, 27-44.
- (25) Nakagawa, M., Miura, D., Uesawa, S., Amma-Miyasaka. (2016): IWCC 6 Excursion Guide Book CALDERAS AND ACTIVE VOLCANOES IN SOUTHWESTERN HOKKAIDO, JAPAN, IWCC 6 Hokkaido Japan 2016.
- (26) 嵯峨山積・関根達夫・星野フサ(2020):古倶知安湖の検証:北海道倶知安町の後期更新世堆積物の微化石分析,総合地質,4-1, pp.1-7.
- (27) Goto, Y., Suzuki, K., Shinya, T., Yamauchi, A., Miyoshi, M., Danhara, T., Tomiya, A. (2018) : Stratigraphy and lithofacies of the Toya ignimbrite in southwestern Hokkaido, Japan: Insights into the caldera-forming eruption at Toya caldera, Journal of Geography, 127 (2), 191-227.
- (28) 町田洋・新井房夫・宮内崇裕・奥村晃史(1987):北日本を広くおおう洞爺火山灰. 第四紀研究, 26, 2, pp.129-145.
- (29) 山縣耕太郎・町田 洋(1996):北海道伊達における洞爺テフラとその上位の諸テフラ, 第四紀露頭集一日本のテフラ, 日本第四 紀学会, 50.
- (30) 古川竜太・中川光弘(2010):樽前火山地質図,地質調査総合センター.
- (31) 山口昇一・五十嵐昭明・千葉義明・斉藤清次・西村 進(1978):北海道有珠郡北湯沢地熱地域の熱水変質帯,地質調査所報告, No.259, pp.43-84.
- (32) Nakagawa, M. (1992) : Spatial variation in chemical composition of Pliocene and quaternary volcanic rocks in southwestern Hokkaido, northeastern Japan arc, Jour. Fac. Sci, Hokkaido Univ. Ser.4, 23 (2), pp.175-197.
- (33) 森泉美穂子 (1998): クッタラ火山群の火山発達史,火山,第43巻,第3号, pp.95-111.
- (34) Miura, D., Yoshinaka, K., Takeuchi, S., Uesawa, S. (2022): Proximal deposits of the Kuttara-Hayakita tephra at Kuttara caldera volcano, northern Japan: A record of precursor volcanism, Bull. Volcanol. Soc. Japan, 67 (3), 273-294.
- (35) 後藤芳彦・佐々木央岳・鳥口能誠・畠山 信(2013):北海道クッタラ(登別)火山の噴火史,日本火山学会講演予稿集, p.129.
- (36) Goto, Y., Toriguchi, Y., Sasaki, H. and Hatakeyama, A. (2015) : Multiple Vent-forming Phreatic Eruptions after AD 1663 in the Noboribetsu Geothermal Field, Kuttara Volcano, Hokkaido, Japan, Bull. Volcanol. Soc. Japan, Vol. 60, No. 2, pp. 241-249.
- (37) 兼岡一郎・井田喜明編(1997):火山とマグマ,東京大学出版会.

文献

- (38) 太田良平(1956):5万分の1地質図幅説明書「虻田」, 地質調査所, p.76.
- (39) 土居繁雄・松井公平・藤原哲夫(1958):5万分の1地質図幅説明書「豊浦」,北海道開発庁, p.40.
- (40) 北海道立地質研究所(2003):有珠山火山活動災害復興支援土地条件等調査報告,北海道立地質研究所, p.196.
- (41) 李仁雨(1993):洞爺カルデラ火砕噴火の噴出物:全岩化学組成の特徴,日本火山学会講演予稿集, p.87.
- (42) Lee, IW. (1996): Formation of Toya Caldera, Southwest Hokkaido, Japan, 神戸大学博士論文.
- (43) 鴈澤好博・臼井理沙・田中瞳・東剛(2007):SAR法による洞爺火砕流堆積物の赤色熱ルミネセンス年代測定, 地質学雑誌, 第 113, pp.470-478.
- (44) Sanjo, R., and Sugai, T (2023) : Post-caldera boundary fault reactivation by regional tectonic stress at Akaigawa Caldera (Hokkaido, Japan), Geomorphology, Volume 440, 2023, 108866, ISSN 0169-555X.
- (45) 産業技術総合研究所(2021):令和2年度原子力規制庁委託成果報告書 巨大噴火プロセス等の知見整備に係る研究.
- (46) 後藤芳彦・孫入匠・檀原徹・東宮昭彦(2021):北海道洞爺カルデラ地域における先カルデラ期の火砕流堆積物の発見:立香火砕 流堆積物,日本火山学会講演予稿集, p.49.
- (47) 東宮明彦・宮城磯治(2020):洞爺噴火の年代値,火山,第65巻,第1号,pp.13-18.
- (48) Marsden, R.C., Daniš í k, M., Ito, H., Kirkland, C.L., Evans, N.J., Miura, D., Friedrichs, B., Schmitt, A.K., Uesawa, S., Daggitt, M.L. (2021) :Considerations for double-dating zircon in secular disequilibrium with protracted crystallisation histories, Chemical Geology, 581, 120408.
- (49) Miyabuchi, Y., Okuno, M., Torii, M., Yoshimoto, M., Kobayashi, T. (2014) : Tephrostratigraphy and eruptive history of postcaldera stage of Toya Volcano, Hokkaido, northern Japan, J. Volcanol. Geotherm. Res., 281, 34–52.
- (50) 産業技術総合研究所(2022):令和3年度原子力規制庁委託成果報告書 巨大噴火プロセス等の知見整備に係る研究.
- (51) 曽屋龍典・勝井義雄・新井田清信・堺幾久子・東宮昭彦(2007):有珠火山地質図(第2版), 地質調査総合センター.
- (52) Nakagawa, M., Matsumoto, A., Yoshizawa, M. (2022) :Re-investigation of the sector collapse timing of Usu volcano, Japan, inferred from reworked ash deposits caused by debris avalanche, Front. Earth Sci., 10: 967043.
- (53) 藤根 久・遠藤邦彦・鈴木正章・吉本充宏・鈴木 茂・中村賢太郎・伊藤 茂・山形秀樹・Lomtatidze Zaur・横田彰宏・千葉達朗・ 小杉 康(2016):有珠山善光寺岩屑なだれの発生年代の再検討-有珠南麓の過去2万年間の環境変遷との関連で-, 第四紀研 究, 第55巻, 第6号, pp.253-270.
- (54) Goto, Y., Danhara, T., Tomiya, A. (2019) : Catastrophic sector collapse at Usu volcano, Hokkaido, Japan: failure of a young edifice built on soft substratum, Bull Volcanol, 81: 37.
- (55) 新エネルギー総合開発機構(1986):昭和60年度全国地熱資源総合調査(第2次)火山性熱水対流系地域タイプ①(ニセコ地域)調査火山岩分布年代調査報告書要旨.
- (56) Goto, Y., Miyoshi, M., Danhara, T., Tomiya, A. (2020) : Evolution of the Quaternary silicic volcanic complex of Shiribetsu, Hokkaido, Japan: an example of ignimbrite shield volcanoes in an island arc setting, International Journal of Earth Sciences, 109, pp.2619-2642.

- (57) 中川光弘・上澤真平・坪井宏太 (2011):南西北海道, 尻別火山起源の喜茂別火砕流と洞爺火砕流の偽層序関係, 日本火山学 会講演予稿集, p.66.
- (58) 江草匡倫・中川光弘・藤田豪平(2003):西南北海道, 羊蹄火山の活動史: 埋積された古羊蹄火山の発見と噴出率の時間変化, 日本火山学会講演予稿集, p.57.
- (59) 上澤真平・中川光弘・江草匡倫(2011):南西北海道,羊蹄火山の完新世噴火史の再検討,火山,第56巻,第2・3合併号, pp.51-63.
- (60) 佐藤博之(1969):最近測定された北海道の火山活動に関する14C 年代測定, 地質ニュース, 178, pp.30-35.
- (61) 柏原 信(1970):野幌丘陵南部における低位段丘堆積物の14C年代-日本の第四紀層の14C年代(58)-,地球科学,第24巻, 第4号,pp.149-150.
- (62) 佐々木竜男・片山雅弘・富岡悦郎・佐々木清一・矢沢正士・山田忍・矢野義治・北川芳男(1971):北海道における腐植質火山灰の編年に関する研究,第四紀研究,第10巻,第3号,pp.117-123.
- (63) 大貫康行・井島行夫・春日井昭・佐藤博明(1977):"N, US-C"降下軽石層の14C年代-羊蹄火山のテフラとの層位関係について (115)-,地球科学,第31巻,第2号,pp.87-89.
- (64) 小疇尚・野上道男・小野有五・平川一臣編(2003):日本の地形2 北海道,東京大学出版会.
- (65) 日本地質学会編(2010):日本地方地質誌1 北海道地方,朝倉書店.
- (66) 松尾良子・中川光弘(2017):北海道南西部ニセコ火山群,イワオヌプリ火山の形成史と活動年代,日本地球惑星科学連合2017 年大会講演要旨,SVC50-P13.
- (67) Oka, D., Tamura, M., Mogi, T., Nakagawa, M., Takahashi, H., Ohzono, M., and Ichiyanagi, M. (2023): Conceptual model of supercritical geothermal system in Shiribeshi Region, Hokkaido, Japan, Geothermics, 108, 102617.
- (68) 新エネルギー総合開発機構(1987a):昭和61年度全国地熱資源総合調査(第2次) 火山性熱水対流系地域タイプ①(ニセコ地 域)地熱調査成果図集.
- (69) 佐々木龍男(1975):イワオヌプリ火山放出物(火山灰),北海道農試農芸化学部試験研究成績書,pp.37-40.
- (70) 久保和也・柴田 賢・石田正夫(1988):西南北海道,長万部地域の新第三紀火山岩類のK-Ar年代,地質学雑誌,第94巻,第10 号,pp.789-792.
- (71) Kaneoka, I., Yamagishi, H. and Yahata, M. (1987) : K-Ar Ages of the neogene submarine volcanic rocks and overlying quaternary subaerial lavas from the Mt. Karibayama area, southwest Hokkaido, Bull. Volcanol. Soc. Japan, Ser.2, Vol.32, No.4, pp.329-333.
- (72) 第四紀火山カタログ委員会編(1999):日本の第四紀火山カタログ,日本火山学会.
- (73) 山岸宏光・黒沢邦彦(1987):5万分の1地質図幅説明書「原歌および狩場山」,北海道立地下資源調査所.
- (74) 玉生志郎(1978):ガラスによるフィッション・トラック年代測定,日本地質学会学術大会講演要旨,85,p.288.
- (75) 鴈澤好博(1992):西南北海道渡島半島の新第三系層序と古地理, 地質学論集, 37, pp.11-23.
- (76) 新エネルギー総合開発機構(1994):地熱開発促進調査報告書No.33, 奥尻地域.

- (77) 鹿野和彦・吉村洋平・石山大三・Geoffrey J. Orton・大口健志(2006):北海道奥尻島, 勝澗山火山の噴出物と構造, 火山, 第51 巻, 第4号, pp.211-229.
- (78) 能條 歩・都郷義寛・鈴木明彦・嶋田智恵子・板木拓也(1997):西南北海道日本海熊石-乙部地域の鮮新統〜更新統の堆積 年代,地球科学,第51巻,第3号,pp.245-250.
- (79) 新エネルギー総合開発機構(1999):地熱開発促進調査報告書No.B-3, 熊石地域.
- (80) 新エネルギー総合開発機構(1990):地熱開発促進調査報告書No.19, 八雲地域.
- (81) 金田泰明・長谷川健(2022):北海道南西部,濁川火山におけるカルデラ形成期~後カルデラ期の噴出物層序及び噴火推移,火山,第67巻,第1号,pp.1-19.
- (82) 五十嵐昭明・佐藤 浩・井手俊夫・西村 進・角 清愛(1978):北海道茅部郡濁川地熱地域の熱水変質帯, 地質調査所報告, No.259, pp.85-180.
- (83) 柳井清治・鴈澤好博・古森康晴(1992):最終氷期末期に噴出した濁川テフラの層序と分布,地質学雑誌,第98巻,第2号, pp.125-136.
- (84) 黒墨秀行・土井宣夫(2003):濁川カルデラの内部構造,火山,第48巻,第3号,pp.259-274.
- (85) 松下勝秀・鈴木 守・高橋功二(1973):5万分の1地質図幅説明書「濁川」,北海道立地下資源調査所.
- (86) 中川光弘・野上健治・石塚吉浩・吉本充宏・高橋良・石井英一・江草匡倫・宮村淳一・志賀透・岡崎紀俊・石丸聡(2001):北海道 駒ケ岳, 2000年の小噴火とその意義:噴出物と火山灰付着性成分の時間変化から見たマグマ活動活発化の証拠,火山,46巻, 6号,pp.295-304.
- (87) 高田倫義・中川光弘(2016):南西北海道,横津火山群の地質と岩石:150 万年間の活動様式とマグマ化学組成の時間変遷,日本地質学会第123年学術大会講演要旨,R3-0-2.
- (88) 新エネルギー総合開発機構(1988):地熱開発促進調査報告書No.13, 南茅部地域.
- (89) 三谷勝利・鈴木 守・松下勝秀・国府谷盛明(1966):5万分の1地質図幅説明書「大沼公園」,北海道立地下資源調査所.
- (90)藤原哲夫・国府谷盛明(1969):5万分の1地質図幅説明書「恵山」,北海道立地下資源調査所.
- (91) 三浦大助・古川竜太・荒井健一(2022):恵山火山地質図,地質調査総合センター.
- (92) 山縣耕太郎・町田 洋・新井房夫(1989): 銭亀-女那川テフラ: 津軽海峡函館沖から噴出した後期更新世のテフラ, 地理学評論 Ser.A, 第62巻, 第3号, pp.195-207.
- (93) Tsuchiya, N., Ishii, J., Yamazaki, T., Shuto, K. (1989) : A newly discovered Quaternary volcano from northeast Japan Sea : K-Ar age of andesite dredged from the Shiribeshi Seamount, Jour. Min. Petr. Econ. Geol., 84, 391-397.
- (94) 国土地理院(2019):1:500,000デジタル標高地形図北海道I,技術資料D1-No.1053.
- (95) 片山肇・井内美郎・池原研(2012):積丹半島付近表層堆積図,海洋地質図,76(CD),産総研地質調査総合センター.
- (96) 早川由紀夫(1991):火山で発生する流れとその堆積物-火砕流・サージ・ラハール・岩なだれ、火山, 36, 3, pp.357-370.
- (97) 石田正夫・三村弘二・広島俊男(1991):20万分の1地質図幅「岩内」,通商産業省工業技術院地質調査所.
- (98) 小野有五·斎藤海三郎(2019):北海道西部,岩内平野の地形発達史,活断層研究,51,pp.27-52.

- (99) 青木かおり・町田洋(2006):日本に分布する第四紀後期広域テフラの主元素組成,地質調査研究報告,第57巻,第7/8号, pp.239-258.
- (100) 新エネルギー総合開発機構(1987b):全国地熱資源総合調査(第2次)火山性熱水対流系地域タイプ①,ニセコ地域火山地質 図1:50,000,ニセコ地域地熱地質編図1:100,000 説明書.
- (101) 池原研・片山肇・中嶋健(1996):日本海中部一南東部から採取された柱状試料の加速器質量分析法による炭素14年代, 地質 調査所月報 第47巻, 第6号, pp.309-316.
- (102) Nakajima, J., Matsuzawa, T. and Hasegawa, A. (2001) : Three-dimensional structure of Vp, Vs and Vp/Vs beneath northeastern Japan: Implications for arc magmatism and fluids, Journal of geophysical research, Vol.106, No.B10, pp.21843-21857.
- (103) 中道治久(2022):火山における 3 次元地震波速度トモグラフィー実践法,火山,第67巻,第2号,pp.207-220.
- (104) Kita, S., Nakajima, J., Hasegawa, A., Okada, T., Katsumata, K., Asano, Y. and Kimura, T. (2014) : Detailed seismic attenuation structure beneath Hokkaido, northeastern Japan: Arc-arc collision process, arc magmatism, and seismotectonics, Journal of Geophysical Research: Solid Earth, pp.6486-6511.
- (105) Ueda, H., Ohtake, M., and Sato, H. (2003) : Postseismic crustal deformation following the 1993 Hokkaido Nanseioki earthquake, northern Japan: Evidence for a low-viscosity zone in the uppermost mantle, Journal of geophysical research, Vol.108, No.B3, 2151.
- (106) 村上亮・小沢慎三朗・西村卓也・多田堯(2001):2000年有珠山噴火にともなうマグマモデルGPS連続観測を主とする地殻変動 データによる推定, 国土地理院時報, 2001 No.95, 99-105.
- (107) Itoh, Y., Nishimura, T., Ariyoshi, K., & Matsumoto, H. (2019). Interplate slip following the 2003 Tokachi-oki earthquake from ocean bottom pressure gauge and land GNSS data, Journal of Geophysical Research: Solid Earth, 124, 4205–4230.
- (108) Suito, H. (2018) :Current Status of Postseismic Deformation Following the 2011 Tohoku-Oki Earthquake, Journal of Disaster Research Vol.13 No.3, 2018, pp.503-510.
- (109) Kobayashi, T., Hayashi, K. & Yarai, H. (2019) : Geodetically estimated location and geometry of the fault plane involved in the 2018 Hokkaido Eastern Iburi earthquake. Earth Planets Space 71, 62.
- (110) 大場与志男(1960):ニセコ火山群の岩石について, 地質学雑誌, 第66巻, 第783号, pp.788-799.
- (111) 日本地質学会編(2010):日本地方地質誌1 北海道地方,朝倉書店.

- (112) 産業技術総合研究所 日本の火山データベース: https://gbank.gsj.jp/volcano/
- (113) 産業技術総合研究所地質調査総合センター編 (2020) 20万分の1日本火山図 (ver. 1.0d), 産総研地質調査総合センター: https://gbank.gsj.jp/volcano/vmap/
- (114) Uesawa, S. (2023) : TephraDB_Prototype_ver1.3 (1.3) [Data set] . Zenodo. https://doi.org/10.5281/zenodo.7857457

⁽WEB)