島根原子力発電所第2号機 審査資料				
資料番号	NS2-補-027-10-106 改 02			
提出年月日	2023 年 5 月 11 日			

土留め工(親杭)の耐震性についての計算書に関する

補足説明資料

2023年5月

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

目 次

1.	評価方法	• 1
2.	評価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 4
	2.1 適用規格 ·····	• 4
	2.2 構造概要 ·····	· 6
	2.3 評価対象断面の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
	2.4 使用材料及び材料の物性値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
	2.5 地盤物性值	21
	2.6 評価対象部位 ·····	23
	2.7 地下水位	24
	2.8 耐震評価フロー ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	25
3.	地震応答解析	28
	3.1 地震応答解析手法	28
	3.2 地震応答解析モデルの設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
	3.2.1 解析モデル領域 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
	3.2.2 境界条件	31
	3.2.3 構造物のモデル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
	3.2.4 隣接構造物等のモデル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
	3.2.5 地盤, 埋戻コンクリート及びMMRのモデル化 ・・・・・・・・・・・・・	37
	3.2.6 解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
	3.2.7 ジョイント要素の設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
	3.3 減衰定数	46
	3.4 荷重及び荷重の組合せ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	52
	3.4.1 外水圧・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	53
	3.4.2 積雪荷重	53
	 3.5 地震応答解析の解析ケース ······ 	54
	3.5.1 耐震評価における解析ケース ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	54

4.	評価内容57
	4.1 入力地震動の設定
	4.1.1 <mark>③-③'</mark> 断面の入力地震動 ······························58
	4.2 許容限界の設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	4.2.1 親杭に対する許容限界 ······63
	4.2.2 基礎地盤の支持性能に対する許容限界 ・・・・・・・・・・・・・・・・・63
	4.2.3 グラウンドアンカの発生アンカー力に対する許容限界 ・・・・・・・・ 64
5.	評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	5.1 施設の損傷,転倒による影響評価方法
	5.1.1 構造部材の健全性に対する評価方法 ・・・・・・・・・・・・・・・・・・ 69
	5.1.2 基礎地盤の支持性能に対する評価方法 ・・・・・・・・・・・・・・・・ 69
	5.1.3 グラウンドアンカの発生アンカー力に対する評価方法 ・・・・・・・・ 69
6.	評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	6.1 施設の損傷,転倒による影響評価結果
	6.1.1 構造部材の健全性に対する評価結果 ····································
	6.1.2 基礎地盤の支持性能に対する評価結果・・・・・・・・・・・・・・・・・
	6.1.3 グラウンドアンカの発生アンカー力に対する評価結果 ・・・・・・・・

(参考資料<mark>1</mark>)土留め工(親杭)の仮説耐震構台への影響検討について ········77 (参考資料2) 土留め工(親杭)の設置間隔による影響の確認 ·········85

1. 評価方法

土留め工(親杭)については、VI-2-11-1「波及的影響を及ぼすおそれのある下位クラス 施設の耐震評価方針」に基づき、土留め工(親杭)が上位クラス施設である2号機原子炉 建物、2号機廃棄物処理建物、第1ベントフィルタ格納槽、第1ベントフィルタ格納槽遮 蔽及び低圧原子炉代替注水ポンプ格納槽に対して、波及的影響を及ぼさないことを確認す る。

その波及的影響の評価では、上位クラス施設の有する機能が保持されることを確認する ため、基準地震動Ssを用いた地震応答解析を行い、土留め工(親杭)の構造部材の健全 性評価及び基礎地盤の支持性能評価により、施設が損傷及び転倒しないことを確認する。 また、常時応力解析におけるグラウンドアンカの発生アンカー力に対する評価を行う。 安全対策工事に伴う掘削を図 1-1 の平面図のとおり実施しており,掘削箇所には,土 留め工を残置している。本資料は,図 1-2 に示す掘削による地盤の安定性の検討経緯フ ローのうち,残置する土留めの上位クラス施設への波及的影響評価を実施するものであり, 掘削後の状態,及び掘削箇所周辺における追加対策工(改良地盤,埋戻コンクリート)実 施後の状態を前提とする。

図 1-1 安全対策工事に伴う掘削平面位置図

2. 評価条件

2.1 適用規格

土留め工(親杭)の耐震評価にあたっては,道路橋示方書・同解説(下部構造編) (日本道路協会平成14年3月),グラウンドアンカー設計・施工基準,同解説(地盤 工学会 2012年制定),原子力発電所耐震設計技術指針 JEAG4601-1987(社 団法人 日本電気協会 電気技術基準調査委員会)を適用するが,構造部材の曲げ・ 軸力系及びせん断破壊の許容限界については,道路橋示方書・同解説(下部構造編)

(日本道路協会平成14年3月)を適用する。また、グラウンドアンカの発生アンカー カの許容限界については、グラウンドアンカー設計・施工基準、同解説(地盤工学会 2012年制定)を適用する。

表 2-1 に適用する規格,基準類を示す。

項目	適用する規格,基準類	備考
使用材料及	道路橋示方書・同解説 (下部構造編)(日本道 路協会平成14年3月)	親杭, 矢板及び腹起しの材料 諸元
び材料定数	グラウンドアンカー設 計・施工基準,同解説 (地盤工学会,2012年)	グラウンドアンカの材料諸元
荷重及び荷 重の組合せ	道路橋示方書・同解説 (下部構造編)(日本道 路協会平成14年3月)	永久荷重,偶発荷重等の適切 な組合せを検討
許容限界	道路橋示方書・同解説 (下部構造編)(日本道 路協会平成14年3月)	親杭に発生する応力(曲げ軸 力,せん断力)が許容限界を超 えないことを確認
	クラワンドアンカー設 計・施工基準,同解説 (地盤工学会,2012年)	発生アンカー力が許容限界を 超えないことを確認
地震応答解 析	原子力発電所耐震設計 技術指針JEAG46 01-1987(社団法人 日本電気協会 電気技 術基準調査委員会)	有限要素法による二次元モデ ルを用いた時刻歴非線形解析

表 2-1 適用する規格,基準類

2.2 構造概要

土留め工(親杭)は, のH形鋼及びグラウンドアンカで構成される構造物であり,十分な支持性能を有する岩盤に設置されている。

土留め工(親杭)の転倒イメージを図 2-1に,土留め工(親杭)の位置図を図 2-2 に,土留め工(親杭)の断面位置図を図 2-3に,概略断面図を図 2-4に,土留め工(親 杭)を構成する部材の破壊モードを図 2-5に,土留め工(親杭)が損傷・転倒した場 合に影響を及ぼす範囲を図 2-6に,検討対象断面位置図を図 2-7に,検討対象断面図 付近の正面図を図 2-8に示す。

図 2-5 のとおり, 土留め工(親杭) のうち, 親杭以外の土留めを構成する部材は, 損傷, 落下を想定しても, 上位クラス施設への離隔が十分確保できていることから, 波 及的影響評価の対象外とする。親杭については, 図 2-6 に示す範囲において, 上位ク ラス施設までの離隔距離が確保できないことから, 図 2-7 に示す³-3′断面, 4-4′断面及び⑥-⑥′断面を検討対象断面とした。

グラウンドアンカのうち,頭部を埋戻土部に設置しているものについては,「2.8 耐 震評価フロー」で後述するとおり,追加対策工(改良地盤,埋戻コンクリート)の施工 時において撤去する。

なお, 土留め⑥の鋼管矢板についても親杭と同様に転倒のおそれがあるが, 図 2-6 に 示すとおり, 鋼管矢板Aと施設の間は薬液注入工法を施工しているため, 鋼管矢板Aは, 上位クラス施設の方向に転倒しないことから, 波及的影響評価の対象外とする。

図 2-1 土留め工(親杭)の転倒イメージ

図 2-2 土留め工(親杭) 位置図

<mark>図 2-3 土留め工(親杭)断面位置図</mark> 7

図 2-4(1) 土留め工(親杭) 概略断面図(①-①'断面)

図 2-4(2) 土留め工(親杭) 概略断面図(②-②'断面)

図 2-4(3) 土留め工(親杭) 概略断面図(③-③'断面)

図 2-4(5) 土留め工(親杭) 概略断面図(⑤-⑤'断面)

図 2-4(6) 土留め工(親杭) 概略断面図(⑥-⑥'断面)

図 2-5 土留め工(親杭)を構成する部材の破壊モード

図 2-6 土留め工が損傷・転倒した場合に影響を及ぼす範囲

図 2-8(1) 土留め工(親杭) 正面図(③-③'断面)

図 2-8(2) 土留め工(親杭) 正面図(④-④'断面)

図 2-8(3) 土留め工(親杭) 正面図(⑥-⑥'断面)

2.3 評価対象断面の選定

③一③'断面,④一④'断面及び⑥一⑥'断面について,構造的特徴,周辺地盤状況 等の影響要因を比較し,耐震評価上厳しいと考えられる断面を評価対象断面として選定 する。

表 2-2 のとおり、<mark>③-③'断面</mark>は、根入れが浅く、背面の_____よる土圧が想定されることから、評価対象断面に選定する。

検討対象地質断面図を図 2-9~図 2-11 に示す。

なお,③-③'断面より南西には,図2-8のとおり,親杭の設置間隔が1.5mと他の 箇所よりも広くなっている箇所がある。当該箇所は,グラウンドアンカが1段目にも設 置されていることから(③-③'断面位置は2段目と3段目のみ),③-③'断面より も耐震裕度が高いと考えられるが,念のため,親杭の設置間隔が広い箇所をモデル化し た影響検討を実施する。(参考資料2参照)

表 2-2 評価対象断面の選定結果

(岩級図)

(速度層図)

図 2-9 土留め工(親杭) 検討対象断面図(③-③'断面)

(概略断面図)

図 2-10 土留め工(親杭) 検討対象断面図(④-④'断面)

(岩級図)

(速度層図)

図 2-11 土留め工(親杭) 検討対象断面図(⑥-⑥'断面)

2.4 使用材料及び材料の物性値

構造物の使用材料を表 2-3 に,材料の物性値を表 2-4 に示す。 矢板及び腹起しは,保守的に重量のみ考慮する。

材料	仕様			
親杭	$\rm H700\!\times\!300\!\times\!13\!\times\!24$	SM490		
矢板	軽量鋼矢板(LSP-5)	SS400		
腹起し(1段目)	$\mathrm{H400}\!\times\!400\!\times\!13\!\times\!21$	SS400		
腹起し(2段目)	$\rm H500 {\times} 500 {\times} 25 {\times} 25$	SS400		
腹起し(3段目)	$\rm H300\!\times\!300\!\times\!10\!\times\!15$	SS400		
グラウンドアンカ(2 段目)	アンカー体長 6.5(m)	SWPR7B		
グラウンドアンカ(3 段目)	アンカー体長 3.0(m)	SWPR7B		

表 2-3 使用材料

表 2-4(1) 材料の物性値(親杭)

キキ 米 /	ヤング係数	単位体積重量	ポアソンセ
171 177	(N/mm^2)	(kN/m^3)	ベノノマル
土留め工(親杭)	2. 0×10^{5}	77.0	0.3
矢板	—	77.0	—
腹起し	_	77.0	—

表	2 - 4(2)	材料の物性値	(グラウンドアンオ	5)
---	----------	--------	-----------	----

	グラウンドアンカ		
	2 段目	3段目	
アンカー種別	SWPR7B	SWPR7B	
削孔径 (mm)	135	135	
テンドンの見かけの周長 (mm)	166.9	90.7	
PC 鋼φ (mm)	12.7	12.7	
PC 鋼本数(本)	10	4	
緊張時自由長 (mm)	11570	5680	
アンカー体長(テンドン拘束長) (mm)	6500	3000	
テンドンの極限引張り力(kN)	1830	732	
テンドンの降伏引張り力(kN)	1560	624	

2.5 地盤物性値

地盤については、VI-2-1-3「地盤の支持性能に係る基本方針」にて設定している物性値を用いる。地盤の物性値を表 2-5 に示す。

	S波速度	P波速度	単位体積重量	ポアソン比	せん断弾性係数	減衰定数
眉畓丂	V_{s} (m/s)	$V_{p}(m/s)$	γ (kN/m ³)	ν	$G~(\times 10^5 k N/m^2)$	h (%)
1 層	250	800	20.6	0.446	1.31	3
2 層	900	2100	23.0	0.388	19.0	3
3 層	1600	3600	24.5	0.377	64.0	3
4 層	1950	4000	24.5	0.344	95.1	3
5 層	2000	4050	26.0	0.339	105.9	3
6 層*	2350	4950	27.9	0.355	157.9	3

表 2-5(1) 地盤の解析用物性値(岩盤)

注記*:入力地震動の算定においてのみ用いる解析用物性値

₹ 2 0(2) 地 盖 の所有所物性他(在庆工)					
				解析用物性值	
物理特性	密度	$ ho_{\rm s}$	(g/cm^3)	2.11	
改度快快	初期せん断強度	τ ₀	(N/mm^2)	0.22	
強度特性	内部摩擦角	φ	(°)	22	
動的変形特性	如期止? 账题贴长发粉	C	$(\mathbf{N}/\mathbf{z}, 2)$	G ₀ =749 σ $^{0.66}$ (N/mm ²)	
	初期せん剛弾性術数	G ₀	(N/mm ⁻)	$G / G_0 = 1 / (1 + \gamma / 0.00027)$	
	動ポアソン比	νd		0.45*	
減衰特性	減衰定数	h		h=0.0958 × $(1-G/G_0)^{0.85}$	

表 2-5(2) 地盤の解析用物性値(埋戻土)

注記*:常時応力解析においては、土木学会マニュアル 2005 に基づき、静止土圧(K₀ = $\nu / (1 - \nu) = 0.5$)を作用させるため、 $\nu = 0.333$ とする。

<u>.</u>				
				解析用物性值
物理特性	密度	ρ	(g/cm^3)	2.11
油度性性	初期せん断強度	τ ο	(N/mm^2)	1.25
強度特性	内部摩擦角	ϕ	(°)	0.00
動的変形特性	初期せん断弾性係数	G ₀	(N/mm^2)	G ₀ =1135 G/G ₀ =1/(1+γ/0.0011)
	動ポアソン比	${\cal V}$ d		0.33
減衰特性	減衰定数	h		h=0.0958 × $(1-G/G_0)^{1.007}$

表 2-5(3) 地盤の解析用物性値(改良地盤⑦)

2.6 評価対象部位

③−③[・]断面の評価対象部位は、親杭及びグラウンドアンカとする。

土留め工(親杭)の評価対象部位とその仕様を表 2-6 に評価部位の位置図を図 2-12 に示す。

グラウンドアンカは「2.8 耐震評価フロー」で後述するとおり,追加対策工(改良地盤)施工時に撤去するため,常時応力解析時にのみ考慮し,地震応答解析に考慮しない。

部位		使用材料	
親杭	$\rm H700\!\times\!300\!\times\!13\!\times\!24$	SM490	
グラウンドアンカ(2 段目)	アンカー体長 6.5(m)	SWPR7B	
グラウンドアンカ(3 段目)	アンカー体長 3.0(m)	SWPR7B	

表 2-6 評価対象部位とその仕様(3-3,断面)

(<mark>③一③'</mark>断面)

図 2-12 評価対象部位 位置図

2.7 地下水位

設計地下水位は, VI-2-1-3「地盤の支持性能に係る基本方針」に従い設定する。設計地下水位を表 2-7 に示す。

	Ϋ́ι ΝΠ地Γ/Λ⊡♥	9 2
施設名称	解析断面	設計地下水位 (EL m
土留め工(親杭)	<mark>③一③</mark> '断面	

表 2-7 設計地下水位の一覧

2.8 耐震評価フロー

土留め工(親杭)の上位クラス施設に対する波及的影響の評価は,基準地震動Ss に対する評価を行う。

波及的影響の評価にあたっては、VI-2-11-1「波及的影響を及ぼすおそれのある下位 クラス施設の耐震評価方針」に基づき、地震応答解析による評価を行う。施設の損傷、 転倒及び落下等による影響では、VI-2-1-9「機能維持の基本方針」に基づき、構造部材 の健全性評価及び基礎地盤の支持性能評価を行う。

土留め工(親杭)の背面は,安全対策工事に伴う掘削を考慮した基礎地盤及び斜面の 耐震安全性評価の裕度向上を目的とし,高圧噴射撹拌工法により地盤改良することとし ているが,土留め工(親杭)については,地盤改良前に設置されており,背面埋戻土の 緩みによる主働土圧を負担し,変形及び断面力が発生している。

このため、土留め工(親杭)の構造部材の健全性評価については、土留め工(親杭) 背面が地盤改良前の常時応力と、地盤改良後の地震時増分応力の足し合わせにより健全 性評価を実施することとし、常時応力解析では、図2-13のとおり、施工順序を考慮し、 以下の理由から、土留め工背面が地盤改良前の埋戻土の状態で常時応力解析を実施する。

【土留め工背面が埋戻土の状態で常時応力解析を実施する理由】

- 1) 埋戻土及び岩盤に親杭を設置後,段階的に掘削しながら腹起し,矢板及びグラウ ンドアンカを設置するが,この際に,埋戻土の掘削による応力解放に伴い,親杭 に変形及び断面力が発生する。(施工順序 B)
- 2)その後、土留め工背面においては、高圧噴射攪拌工法により、埋戻土を攪拌しながらセメントを混合して改良するため、掘削による応力解放の影響は解消されるが、親杭には施工順序Aの時の応力解放に伴う変形及び断面力は残存すると考えられる。改良地盤の施工に伴い、改良地盤内のグラウンドアンカは撤去する。(施工順序C)
 - 3)親杭背面が改良地盤である施工順序Cで常時応力解析を実施すると、親杭に 残存する断面力を考慮できないため、親杭背面が埋戻土である施工順序Bで 常時応力解析を実施する。

また, グラウンドアンカについては, 常時応力解析時にのみ, 引張力を考慮するため, 常時応力解析時の発生アンカー力により照査を実施する。

図 2-13 施工状況及び常時応力解析のモデル

土留め工(親杭)の評価フローを図 2-14 に示す。

注記*1:土留め工(親杭)背面が改良地盤の状態

*2:土留め工(親杭)背面が埋戻土の状態

*3:地震時増分応力は,地震応答解析(改良地盤)の応力から,常時応力解析(改良地盤)の応力 を差し引いた応力

図 2-14 土留め工(親杭)の評価フロー

- 3. 地震応答解析
- 3.1 地震応答解析手法

地震応答解析は,構造物と地盤の相互作用を考慮できる2次元有限要素法により, 基準地震動Ssに基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間 積分の時刻歴応答解析により行うこととする。

土留め工(親杭)周辺の地下水位は親杭下端より高いが土留め工(親杭)周辺に地 下水位以深の液状化対象層が存在しないため「全応力解析」を選定する。

構造部材のうち評価対象部位については、線形はり要素によりモデル化する。また、 地盤については、平面ひずみ要素でモデル化することとし、岩盤は線形でモデル化する。 埋戻土及び改良地盤については、地盤のひずみ依存性を適切に考慮できるようマルチス プリングモデルを用いることとし、ばね特性は双曲線モデル(修正 GHE モデル)を用い て非線形性を考慮する。なお、MMR及び埋戻コンクリートについては線形の平面ひず み要素でモデル化する。地震応答解析については、解析コード「TDAPⅢ」を使用す る。なお、解析コードの検証及び妥当性確認等の概要については、VI-5「計算機プログ ラム(解析コード)の概要」に示す。

地震応答解析手法の選定フローを図 3-1 に示す。

図 3-1 地震応答解析手法の選定フロー

3.2 地震応答解析モデルの設定

評価対象断面である<mark>③-③'</mark>断面は,

に親杭及び改良地盤

を反映してモデル化することとする。

3.2.1 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を 及ぼさないよう、十分広い領域とする。JEAG4601-1987を参考に、図3-2に示すとおりモデル幅を構造物基礎幅の5倍以上、モデル高さを構造物基礎幅の 1.5倍~2倍以上とする。

上記の考え方に加えて,隣接構造物外側の地盤応答を適切に 表現できる範囲までモデル化領域を拡大して設定する。

なお,解析モデルの境界条件は,側面及び底面ともに粘性境界とする。 地盤の要素分割については,波動をなめらかに表現するために,対象とする波 長の5分の1程度を考慮し,要素高さを1m程度まで細分割して設定する。

構造物の要素分割については、土木学会マニュアル 2005 に従い、要素長さを部材の断面厚さ又は有効高さの 2.0 倍以下とし、1.0 倍程度まで細分して設定する。

図 3-2 モデル化範囲の考え方

- 3.2.2 境界条件
 - (1) 固有值解析時

固有値解析は, 土留め工(親杭) 背後の埋戻土を地盤改良した後の解析モデル により実施する。

固有値解析を実施する際の境界条件は,境界が構造物を含めた周辺地盤の振動 特性に影響を与えないよう設定する。ここで,底面境界は地盤のせん断方向の卓 越変形モードを把握するために固定とし,側方境界はフリーとする。境界条件の 概念図を図 3-3 に示す。

図 3-3 固有値解析における境界条件の概念図

(2) 常時応力解析時

常時応力解析は,地盤や構造物の自重等の静的な荷重を載荷することによる常 時応力を算定するために行う。そこで,常時応力解析時の境界条件は底面固定と し,側方は自重等による地盤の鉛直方向の変形を拘束しないよう鉛直ローラーと する。境界条件の概念図を図 3-4 に示す。

図 3-4 常時応力解析における境界条件の概念図

(3) 地震応答解析時

地震応答解析時の境界条件については,有限要素解析における半無限地盤を模 擬するため,粘性境界を設ける。底面の粘性境界については,地震動の下降波が モデル底面境界から半無限地盤へ通過していく状態を模擬するため,ダッシュポ ットを設定する。側方の粘性境界については,自由地盤の地盤振動と不整形地盤 側方の地盤振動の差分が側方を通過していく状態を模擬するため,自由地盤の側 方にダッシュポットを設定する。

境界条件の概念図を図 3-5 に示す。

図 3-5 地震応答解析における境界条件の概念図
3.2.3 構造物のモデル化

評価対象部位(親杭)を線形はり要素によりモデル化する。

「2.8 耐震評価フロー」に記載のとおり,親杭の構造部材の健全性評価にあた っては,背後が埋戻土時点での常時応力解析による応力と,地盤改良後の地震応 答解析による地震時増分応力を足し合わせた応力により照査を実施する。

グラウンドアンカについては、常時応力解析でのみモデル化し、地盤改良後の 地震時の解析モデルではモデル化しない。グラウンドアンカのモデル化方法につ いては、補足-027-08「浸水防護施設の耐震性に関する説明書の補足説明資料」の うち、2.1.3「防波壁(逆T擁壁)の耐震性についての計算書に関する補足説明」 に基づき、頭部を節点共有、自由長部を非線形ばね、拘束長部を MPC によりモデ ル化する。 グラウンドアンカについては、図 2-8(1)のとおり③-③[']断面位置に おいて、1 段目のグラウンドアンカが撤去されているため、2 段目、3 段目のグラ ウンドアンカのみモデル化する。

なお,矢板及び腹起しについては,線形はり要素の節点に付加重量として与えることで,保守的に重量のみ考慮する。

③一③^{*}断面の解析モデル図を図 3-6 に,解析モデルの仕様及び物性値を表 3-1 に,図 3-7 にグラウンドアンカの非線形ばねモデルの概念図を示す。

(地盤改良前)

(地盤改良後)

図 3-6 解析モデル図(<mark>③-③'</mark>断面)

材料	単位体積重量 (kN/m ³)	断面積 (cm²)	ヤング係数E (N/mm ²)	ポアソン比 ν	減衰定数
親杭	77.0	231.5	2. 0×10^{5}	0.3	0.03
矢板	77.0 * 1	* 2	* 2	* 2	_ * 2
腹起し	77.0 * 1	* 2	* 2	* 2	* 2

表 3-1(1) 解析モデルの仕様及び物性値(3-3,断面)

注記*1:設置位置を考慮し、節点に負荷荷重として与えることで考慮する。

*2: 矢板及び腹起しについては保守的に重量のみを考慮し,腹起しについては1段 当り2本の重量を考慮する。

表 3-1(2) 解析モデルの仕様及び物性値(<mark>3-3)</mark>断面)(グラウンドアンカ)

	引張剛性 k (kN/m)	テンドン 降伏引張り力* ² (kN)	設計 アンカー力 ^{*2} (kN)
グラウンドアンカ*1 (2段目)	5687	520	150
グラウンドアンカ*1 (3段目)	4634	208	30

注記*1:グラウンドアンカについては常時応力解析のみモデル化する。

*2: テンドン降伏引張り力及び設計アンカー力は単位奥行当たりの値とする。

図 3-7 グラウンドアンカの非線形ばねモデルの概念図

3.2.4 隣接構造物等のモデル化

3.2.5 地盤, 埋戻コンクリート及びMMRのモデル化

岩盤, 埋戻コンクリート及びMMRは線形の平面ひずみ要素でモデル化する。 埋戻土及び改良地盤は, 地盤の非線形性をマルチスプリング要素で考慮した平 面ひずみ要素でモデル化する。なお, 掘削箇所の耐震評価については, VI-1-1-7-別添1「可搬型重大事故等対処設備の保管場所及びアクセスルート」に記載する。 地盤のモデル化に用いる, 地質断面図を図3-8に示す。

(岩級図)
(速度層図)
図 3-8(1) 評価対象地質断面図(<mark>③-③'</mark> 断面)

(地盤改良前)

(岩級図)

図 3-8(2) 評価対象地質断面図(<mark>3-3</mark>) (地盤改良後) 3.2.6 解析モデル

評価対象地質断面図を踏まえて設定した常時応力解析モデル図及び地震応答解 析モデル図を図 3-9 に示す。

(全体図)

(拡大図) 図 3-9(1) 常時応力解析モデル図

(<mark>③-③'</mark>断面,地盤改良前)

(全体図)

(<mark>③一③'</mark>断面,地盤改良後)

3.2.7 ジョイント要素の設定

地盤と構造物との接合面にジョイント要素を設けることにより, 地震時の地盤 と構造物の接合面における剥離及びすべりを考慮する。

ジョイント要素は、地盤と構造物の接合面で法線方向及びせん断方向に対して 設定する。法線方向については、常時状態以上の引張荷重が生じた場合、剛性及 び応力をゼロとし、剥離を考慮する。せん断方向については、地盤と構造物の接 合面におけるせん断強度以上のせん断荷重が生じた場合、せん断剛性をゼロと し、すべりを考慮する。

せん断強度 τ_{f} は次式の Mohr - Coulomb 式により規定される。粘着力 c 及び内部 摩擦角 ϕ は周辺地盤の c , ϕ とし, VI-2-1-3「地盤の支持性能に係る基本方針」 に基づき表 3-2 のとおりとする。また,要素間の粘着力 c 及び内部摩擦角 ϕ は, 表 3-3 のとおり設定する。

 $\tau_{\rm f} = c + \sigma \tan \phi$

ここに、 τ_f: せん断強度
 c:粘着力(=初期せん断強度τ_o)
 φ:内部摩擦角

地盤	粘着力 c(N/mm ²)	内部摩擦角 φ (°)
岩盤 (C _H 級)	1.62	53
岩盤 (C _M 級)	1.23	52
岩盤(C _L 級)	0.56	37
改良地盤	1.25	0
埋戻コンクリート・MMR (f' _{ck} =18.0N/mm ²)	3. 58	40

表 3-2 周辺地盤との境界に用いる強度特性

接合	条件	粘着力 c	内部摩擦角 φ
材料1	材料 2	(N/mm^2)	(°)
	無筋コンクリート*1	材料2のc	材料2のφ
楼达州	埋戻土	材料2のc	材料2のφ
件 迫 物	岩盤	材料2のc	材料2のφ
	改良地盤	材料2のc	材料2のφ
花白地般	C _H 級・C _M 級岩盤	材料1のc	材料1のφ
以戊地盈	C _L 級岩盤	材料2のc	材料2のφ
	毎なっンカリート*1	設計基準強度が	設計基準強度が
無筋コンクリート*1		小さい材料の c	小さい材料のφ
	埋戻土	材料2のc	材料2のφ
	岩盤	*2	* 2

表 3-3 要素間の粘着力と内部摩擦角

注記*1:MMR,置換コンクリート及び埋戻コンクリートの総称

*2:表面を露出させて打継処理が可能である箇所については、ジョイント要素を 設定しない。

ジョイント要素のばね定数は、土木学会マニュアル 2005 を参考に、数値計算 上、不安定な挙動を起こさない程度に周囲材料の剛性よりも十分に大きな値を設 定する。表 3-4 にジョイント要素のばね定数を示す。

また,ジョイント要素の力学特性を図 3-10 に,ジョイント要素の配置を図 3-11 に示す。

圧縮剛性 k n	せん断剛性k 。
$(k N/m^3)$	$(k N/m^3)$
1.0×10^{7}	1.0×10^{7}

表 3-4 ジョイント要素のばね定数

(全体図)

(拡大図)

図 3-11(1) ジョイント要素の配置(3-3) 断面,常時応力解析モデル図)

(全体図)

(拡大図)

図 3-11(2) ジョイント要素の配置(3-3[']断面,地震応答解析モデル図)

3.3 減衰定数

減衰定数は、粘性減衰及び履歴減衰で考慮する。

固有値解析にて求められる固有周期と各材料の減衰比に基づき、質量マトリックス 及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に 与える。

Rayleigh 減衰の設定フローを図 3-12 に示す。

[C]=α[M]+β[K]
[C]:減衰係数マトリックス
[M]:質量マトリックス
[K]:剛性マトリックス
α, β:係数

図 3-12 Rayleigh 減衰の設定フロー

Rayleigh 減衰における係数α, βは,低次のモードの変形が支配的となる土留め工 (親杭)に対して,その特定の振動モードの影響が大きいことを考慮して,固有値解 析結果より得られる卓越するモードの減衰と Rayleigh 減衰が一致するように設定す る。なお,卓越するモードは全体系の固有値解析における刺激係数及びモード図にて 決定するが,係数α, βが負値となる場合は当該モードを選定しない。

 $h i = \alpha / 2 \omega i + \beta \omega i / 2$

hi:固有値解析により求められたi次モードの減衰定数

ωi:固有値解析により求められた i 次モードの固有円振動数

固有値解析結果の一覧を表 3-5 に、固有値解析におけるモード図を図 3-13 に、係数 α 、 β を表 3-6 に、固有値解析結果に基づき設定した Rayleigh 減衰を図 3-14 に示す。

なお,卓越するモードの選定にあたっては,鉛直モードが卓越する場合及び Rayleigh 減衰が各モードの減衰より過度に大きくなる場合を除外した。

	固有振動数	有効質量比(%)		刺激係数		供考
	(Hz)	Tx	Ту	βх	βу	佣石
1	2.386	31	0	6.99	-0.56	1次として採用
2	2.936	36	0	-7.18	-0.50	
3	3.714	3	2	2.97	-2.23	
4	4.423	0	3	0.71	1.76	
5	4.986	4	13	1.64	2.86	
6	5.102	2	1	-1.96	1.20	2次として採用
7	5.510	2	7	-2.01	4.54	
8	5.816	0	15	-0.52	5.24	
9	5.937	3	1	1.89	-0.95	
10	6.152	1	2	-0.85	-1.01	

表 3-5 固有值解析結果(3-3,断面)

図 3-13(1) 固有値解析結果(モード図)(<mark>3-3'</mark>断面)

図 3-13(2) 固有値解析結果(モード図)(<mark>③-③'</mark>断面)

評価対象断面	α	β
<mark>③一③'</mark> 断面	3.744×10^{-1}	8.753 $ imes$ 10 ⁻⁴

表 3-6 Rayleigh 減衰における係数 α , β の設定結果

3.4 荷重及び荷重の組合せ

耐震評価にて考慮する荷重は,通常運転時の荷重(永久荷重)及び地震荷重を抽出 し,それぞれを組み合わせて設定する。地震荷重には,地震時土圧及び機器・配管系 からの反力による荷重が含まれるものとする。

荷重の組合せを表 3-7 に示す。

種別	荷重			算定方法の概要
	固定	躯体自重	0	設計図書に基づいて,対象構造物 の体積に材料の密度を乗じて設定 する。
	何重	機器・配管荷重	_	機器・配管系がないことから考慮 しない。
		静止土圧	0	常時応力解析により設定する。
		外水圧	0	地下水位に応じた静水圧として考 慮する。 地下水の密度を考慮する。
永久荷重		積雪荷重	0	地表面に考慮する。
(常時荷重)	積載荷重	風荷重		地表面より下に設置されているこ とから,風荷重を考慮しない。
		土被り荷重	_	土被りがないことから考慮しな い。
		永久上載荷重		地表面に恒常的に置かれる設備等 はないことから考慮しない。
偶発荷重		水平地震動	0	基準地震動 S s による水平・鉛直
(地震荷重)	鉛直地震動		0	同時加振を考慮する。

表 3-7 荷重の組合せ

3.4.1 外水圧

外水圧は、地下水位に応じた静水圧を設定する。地下水位については、「2.7 地下水位」のとおりとし、地下水の密度として 1.00g/cm³を考慮する。

3.4.2 積雪荷重

積雪荷重は、VI-1-1-3-1-1「発電用原子炉施設に対する自然現象等における損 傷の防止に関する基本方針」に基づき、発電所敷地に最も近い気象官署である松 江地方気象台で観測された観測史上1位の月最深積雪100cmに平均的な積雪荷重 を与えるための係数0.35を考慮し35.0 cmとする。積雪荷重については、松江市 建築基準法施行細則により、積雪量1 cmごとに20N/m²の積雪荷重が作用すること を考慮し設定する。

- 3.5 地震応答解析の解析ケース
 - 3.5.1 耐震評価における解析ケース

地震応答解析に用いる埋戻土及び岩盤の物性は,平均物性を用いる。解析ケースを表 3-8 に示す。

土留め工(親杭)の耐震評価において支配的な改良地盤⑦については, VI-2-1-3「地盤の支持性能に係る基本方針」のとおり,解析用物性値の設定において耐震評価上保守的になるように設定されていること,及び実施工において設計値を上回るように施工されることから,改良地盤のばらつきを踏まえても保守的な設定になっていると判断し,地盤のばらつきは考慮しないこととする。

御たケーフ	地盤物性		
丹牛 忉 [ク ヘ	改良地盤⑦	岩盤	
ケース① (基本ケース)	平均值	平均值	

表 3-8 解析ケース

土留め工(親杭)の耐震評価における解析ケースは,背面の改良地盤から作用 する土圧の合力が土留め工(親杭)の損傷及び転倒に対して厳しくなるケースと する。

このため、「4.1 入力地震動の設定」に示す入力地震動のうち、水平動が卓越したSs-D及びSs-N1とし、Ss-N1については、図3-15のとおり、水平加速度最大となる時刻において、土留め工(親杭)背後の山体に作用する慣性力の合力が、土留め工(親杭)の損傷及び転倒に対して厳しい方向となるSs-N1(--)とする。

耐震評価における解析ケースは、表 3-9 に示す。

	破垢を一つ		ケース①		
	丹牛 101 10		基本ケース		
	地盤物性		平均值		
	Ss-D	+ + *	0		
地震	Ss-D	+-*	0		
動 (位	Ss-D	-+*	0		
相)	Ss-D	*	0		
	S s - N 1*		0		

表 3-9 耐震評価における解析ケース

注記*:地震動の位相について,左側は水平動,右側は鉛直動を表し,「++」は反転な しケースを示す。

- 4. 評価内容
- 4.1 入力地震動の設定

入力地震動は、VI-2-1-6「地震応答解析の基本方針」のうち「2.3 屋外重要土木構 造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ssを 一次元波動論により地震応答解析モデル下端位置で評価したものを用いる。なお,入 力地震動の設定に用いる地下構造モデルは,VI-2-1-3「地盤の支持性能に係る基本方 針」のうち「7.1 入力地震動の設定に用いる地下構造モデル」を用いる。

入力地震動算定の概念図を図4-1に示す。入力地震動の算定には,解析コード「S HAKE」を使用する。解析コードの検証及び妥当性確認の概要については, VI-5 「計算機プログラム(解析コード)の概要」に示す。

図 4-1 入力地震動算定の概念図

4.1.1 3-3, 断面の入力地震動

図 4-2~図 4-5 に 3-3, 断面の入力地震動の加速度時刻歴波形及び加速度応 答スペクトルを示す。

図 4-2 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平成分: S s-D, EL-130m)

図 4-3 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直成分: S s - D, EL-130m)

(a) 加速度時刻歷波形

図 4-4 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平成分: Ss-N1, EL-130m)

図 4-5 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直成分: Ss-N1, EL-130m)

4.2 許容限界の設定

土留め工(親杭)の耐震評価における許容限界は, VI-2-11-1「波及的影響を及ぼす おそれのある下位クラス施設の耐震評価方針」に記載の許容限界を参考に設定する。 土留め工(親杭)の耐震評価における許容限界を表 4-1 に示す。

機能設計上の 性能目標	地震力	断面	部位	機能維持のための 考え方	許容限界
原子炉建物,			如七	発生する応力(曲 げ軸力,せん断力)	短期許容曲げ 圧縮応力度 ^{*1} 277.5N/mm ²
廃棄物処理建 物,第1ベン トフィルタ格 納槽,第1ベ ントフィルタ	基準 地震動 S s	<u>3−3'</u>	宠兄 个几	が許容限界を超え ないことを確認	短期許容せん断 応力度*1 157.5 N/mm ²
格納槽遮蔽及 び低圧原子炉 代替注水ポン プ格納槽に波 及的影響を及		断面	基礎地盤	発生する接地圧が 許容限界を超えな いことを確認	極限支持力度*2 9.8N/mm ²
ぼさないこと	* 4		グラウンドアンカ	グラウンドアンカ の発生アンカー力 が許容アンカー力 を超えないことを 確認	許容アンカー力 別途算出 ^{*3}

表 4-1 土留め工(親杭)の耐震評価における許容限界

注記*1:「4.2.1 親杭に対する許容限界」に示す。

*2: VI-2-1-3「地盤の支持性能に係る基本方針」に示す妥当な安全余裕を考慮する。 *3:「4.2.3 グラウンドアンカの発生アンカー力に対する許容限界」に示す。

*4:「1. 評価方法」のとおり、常時応力解析による照査を行う。

- 4.2.1 親杭に対する許容限界
 - (1) 曲げ軸力に対する許容限界

親杭の曲げ軸力に対する許容限界は、「道路橋示方書・同解説 下部構造編 平成14年3月(日本道路協会)」に基づき、以下のとおり設定する。

表 4-2 評価対象部位(親杭)の曲げ軸力に対する許容限界

評価項目	許容限界 (N/mm ²)
短期許容曲げ圧縮応力度	277.5

(2) せん断力に対する許容限界

親杭のせん断に対する許容限界は、「道路橋示方書・同解説 下部構造編 平 成14年3月(日本道路協会)」に基づき、以下のとおり設定する。

表 4-3 評価対象部位(親杭)のせん断力に対する許容限界

評価項目	許容限界(N/mm ²)
短期許容せん断応力度	157.5

4.2.2 基礎地盤の支持性能に対する許容限界

基礎地盤に発生する接地圧に対する許容限界は, VI-2-1-3「地盤の支持性能 に係る基本方針」に基づき, 岩盤の極限支持力度とする。

基礎地盤の支持性能に対する許容限界を表 4-4 に示す。

評価	許容限界 (N/mm ²)	
極限支持力度	C _M 級岩盤	9.8

表 4-4 基礎地盤の支持性能に対する許容限界

4.2.3 グラウンドアンカの発生アンカー力に対する許容限界

グラウンドアンカの許容アンカー力は、補足-027-08「浸水防護施設の耐震性に 関する説明書の補足説明資料」のうち、2.1.3「防波壁(逆T擁壁)の耐震性につ いての計算書に関する補足説明」と同様に「グラウンドアンカーの設計・施工基 準,同解説(地盤工学会、2012年)」(以下 設計・施工基準)に基づき、テンド ンの許容引張力、テンドンの許容拘束力、アンカーの許容引抜き力のうち、最も 小さい値を設定する。

土留め工(親杭)に施工されたグラウンドアンカは仮設のグラウンドアンカで あり,供用期間は2年程度であるため,設計・施工基準に基づきランクBのアン カーに分類した。(図4-6参照)。

図 4-6 グラウンドアンカー設計・施工基準記載のアンカーの分類

(1) テンドンの許容引張力の設定

図 4-7 のとおり、テンドンの許容引張力は、テンドンの極限引張り力の 0.65 倍 またはテンドンの降伏引張り力の 0.80 倍のうち、いずれか小さい値を採用する。

図 4-7 テンドンの許容引張力の設定方法(設計・施工基準に赤枠で加筆)

上記を踏まえ、テンドンの許容引張力 Tasは表 4-5のとおり設定した。

		(A)引張力	(B)乗率	(C)設置間隔	$(A \times B/C)$	採用値
		(kN)		(m)		
2段目	極限引張力	1830	0.65		396.5	396.5
	降伏引張力	1560	0.80	3 0	416.0	
3段目	極限引張力	732	0.65	5.0	158.6	159 6
	降伏引張力	624	0.80		166.4	198.0

表 4-5 テンドンの許容引張力(単位奥行当たり)

(2) テンドンの許容拘束力の設定

図 4-7 の赤枠で示した式に基づき,次式により算定する。グラウトとテンドンの許容付着応力度はグラウトの設計基準強度が 24N/mm²であること及び図 4-8 の 青枠に基づき,1.2N/mm²に設定する。

 $Tab = 1a \times U \times \tau \ ba \swarrow d$

- $=6500 (\text{mm}) \times 166.9 (\text{mm}) \times 1.2 (\text{N/mm}^2)/3 = 433.9 (\text{kN})$ (2 段目)
- $= 3000 (\text{mm}) \times 90.7 (\text{mm}) \times 1.2 (\text{N/mm}^2)/3 = 108.8 (\text{kN})$ (3 段目)

図 4-8 テンドンの許容拘束力の設定方法(設計・施工基準に赤・青枠で加筆)

上記を踏まえ、テンドンの許容拘束力 Tab は表 4-6 のとおり設定した。

	テンドンの許容引張力 T _{ab} (kN)
2段目	433.9
3段目	108.8

表 4-6 テンドンの許容拘束力 T_{ab}(単位奥行当たり)

(3) アンカーの許容引抜き力の設定

アンカーの許容引抜き力は図 4-9 の青枠に示す次式により算定する。安全対策 工事に伴う掘削箇所に設置されたグラウンドアンカは仮設アンカーであり、ランク Bのアンカーに分類されるため、図 4-9 の赤枠で示すとおり、安全率 1.5 を考慮 する。また、アンカーの極限周面摩擦については、保守的に図 4-9 の緑枠に示す 軟岩の摩擦抵抗 1.0N/mm²を採用する。

Tag=1sa $\times \pi \times da \times \tau / fs/d$

=6500	(mm)	$\times \pi \times 135$	(mm)	$\times 1.0$	(N/mm_2)	/1.5/3 =	612.6	(kN)	(2段目)
=3000	(mm)	$\times \pi \times 135$	(mm)	$\times 1.0$	(N/mm_2)	/1.5/3 =	282.7	(kN)	(3段目)

図 4-9 アンカーの許容引張力の設定方法(設計・施工基準に赤・青・緑枠で加筆)

上記のとおりアンカーの許容拘束力 Tag は表 4-7 のとおり設定した。

	アンカーの許容引抜き力 T _{ag} (kN)
2段目	612.6
3段目	282.7

表 4-7 アンカーの許容引抜き力の Tag(単位奥行当たり)

(4) 許容アンカー力及び設計アンカー力の設定

表 4-8 のとおり、テンドンの許容引張力、テンドンの許容拘束力、アンカーの 許容引抜き力を考慮し、最も小さい値を許容アンカー力とする。設計アンカー力 は許容アンカー力を超えない値に保守的に設定した。

	2段目	3段目
テンドンの許容引張力(kN)	396.5	158.6
テンドンの許容拘束力(kN)	433.9	108.8
アンカーの許容引抜き力(kN)	612.6	282.7
許容アンカー力(kN)	396.5	108.8
設計アンカー力(kN)	150.0	30.0

表 4-8 許容アンカー力及び設計アンカー力の設定(単位奥行あたり)

5. 評価方法

土留め工(親杭)の耐震評価は,常時応力解析及び地震応答解析により算定した照査 用応答値が「4.2 許容限界の設定」において設定した許容限界以下であることを確認す る。

- 5.1 施設の損傷,転倒による影響評価方法
 - 5.1.1 構造部材の健全性に対する評価方法

親杭に対する評価においては、地震時応答解析に基づく発生断面力に対する部 材の曲げ軸力照査及びせん断力照査を行う。曲げ軸力照査については、「4.2.1 親杭に対する許容限界」の「(1)曲げ軸力に対する許容限界」に示す許容限界以 下であることを確認する。せん断力照査については、「4.2.1 親杭に対する許容 限界」の「(2) せん断力に対する許容限界」に示す許容限界以下であることを確 認する。

5.1.2 基礎地盤の支持性能に対する評価方法 基礎地盤の支持性能評価においては、地震時応答解析により基礎地盤に生じる 接地圧が極限支持力度に基づく許容限界以下であることを確認する。

5.1.3 グラウンドアンカの発生アンカー力に対する評価方法

グラウンドアンカの発生アンカー力に対する評価については,常時応力解析に おける発生アンカー力が許容限界以下であることを確認する。
6. 評価結果

- 6.1 施設の損傷,転倒による影響評価結果
 - 6.1.1 構造部材の健全性に対する評価結果

③一③'断面の土留め工(親杭)の曲げ軸力に対する照査値を表 6-1 に,せん 断力に対する照査値を表 6-2 に示す。曲げ軸力の最も厳しい照査値の断面力を図 6-1 に,せん断力の最も厳しい照査値の断面力を図 6-2 に示す。

③一③^{*}断面の土留め工(親杭)の評価対象部位に発生する曲げ軸力及びせん 断力が許容限界以下であることを確認した。

			発生購		
解析 ケース	地震	勆	曲げ モーメント (kN・m)	軸力 (kN)	照查値
	Ss-D	+ + *	1321	708.0	0.72
	Ss-D	+-*	1324	781.4	0.73
1)	Ss-D	-+*	1315	689.3	0.72
	Ss-D	*	1309	654.6	0.71
	S s - N 1	*	1309	672.0	0.71

表 6-1 曲げ軸力に対する照査値(親杭)

注記*:地震動の位相について,左側は水平動,右側は鉛直動を表し,「++」は反転な しケースを示す。

(親杭 曲げモーメント Ss-D(+-),t=8.91s) 図 6-1 曲げ軸力の最も厳しい照査値となったケースの断面力

	解析 ケース	地震動		発生応力度*2 (N/mm ²) 短期許容 せん断応力度 (N/mm ²)		照査値
		Ss-D	$++*^{1}$	146.8		0.94
		Ss-D	$+-*^{1}$	147.3		0.94
	1	Ss-D	$-+*^{1}$	145.4	157.5	0.93
		Ss-D	*1	143.9		0.92
		S s - N 1	*1	143.6		0.92

表 6-2 せん断力に対する照査値(親杭)

注記*1:地震動の位相について,左側は水平動,右側は鉛直動を表し,「++」は反転な しケースを示す。

 $\tau = Q/Aw$, Aw: 親杭ウェブ断面積=((700-2×24)/13) mm²/0.75m=11301(mm²/m)

^{*2:}発生応力度 τ は親杭の設置間隔(0.75m)を考慮し,発生断面力 Q から次式によって算定している。

(親杭 せん断力 Ss-D(+-),t=8.91s)

図 6-2 せん断力の最も厳しい照査値となったケースの断面力

6.1.2 基礎地盤の支持性能に対する評価結果

③一③'断面の基礎地盤の支持性能に対する照査結果を表 6-3 に示す。

③一③'断面の土留め工(親杭)の基礎地盤に生じる最大接地圧が許容限界以下であることを確認した。

また,図 6-3 に親杭根入れ部周辺の岩盤の局所安全係数分布図を示す。図 6-3 のとおり,根入れ部周辺の岩盤は健全であることを確認した。

解析 ケー ス	地震動		軸力 Nmax(kN)	軸応力度 R d (N/mm²)	極限 支持力度 R _u (N/mm ²)	照査値 R _d /R _u
	Ss-D	++*	622	0.41		0.05
	Ss-D	+-*	610	0.40		0.05
1	Ss-D	-+*	467	0.31	9.8	0.04
	Ss-D	*	471	0.31		0.04
	S s - N 1	*	422	0.28		0.03

表 6-3 基礎地盤の支持性能評価結果(<mark>③-③</mark>)断面)

注記*:地震動の位相について,左側は水平動,右側は鉛直動を表し,「++」は反転な しケースを示す。

図 6-3 局所安全係数分布図(③-③'断面)

(親杭に発生する曲げモーメント及びせん断力が最大となるSs-D(+-),t=8.91s)

6.1.3 グラウンドアンカの発生アンカー力に対する評価結果

③-③'断面の常時応力解析におけるグラウンドアンカの発生アンカー力に対 する照査結果を表 6-4 に示す。

③一③'断面のグラウンドアンカの発生アンカー力が許容アンカー力以下であることを確認した。

表 6-4 グラウンドアンカの発生アンカー力に対する評価結果(3-3,断面)

解析 ケース	配置	発生 アンカー力 T(kN)	許容 アンカー力 T _a (kN)	照査値 T/Ta
	2段目	286.4	396.5	0.73
Û	3段目	87.6	108.8	0.81

(参考資料1) 土留め工(親杭)の仮設耐震構台への影響検討について

1. 概要

土留め工(親杭)は,仮設耐震構台に近接していることから,仮設耐震構台に対する影響検討を実施する。

影響検討では,地震時応答解析により,土留め工(親杭)及び仮設耐震構台の相対変 位を算出することで,両者の離隔が確保されており,土留め工(親杭)が仮設耐震構台 に衝突しないことを確認する。

なお、低圧原子炉代替注水ポンプ格納槽東側に施工された埋戻コンクリートについて も、仮設耐震構台に近接しているが、NS2-補-027-10-93「仮設構台の耐震性についての 計算書に関する補足説明資料」に示すとおり、当該埋戻コンクリートが安定性を有する ことを確認している。 2. 評価方針及び評価方法

土留め工(親杭)及び仮設耐震構台について,変形性評価上厳しいと考えられる断面 を選定し,地震時応答解析を実施し,相対変位量を算出することで,両者の離隔が確保 されており,土留め工(親杭)が仮設耐震構台に衝突しないことを確認する。 評価フローを図1に示す。

注記*1:土留め工(親杭)背面が改良地盤の状態

*2:土留め工(親杭)背面が埋戻土の状態

図1 評価フロー

仮設耐震構台に影響を及ぼすおそれのある土留め工(親杭)の範囲を図2に示す。 図2の③-③'断面は、「2.3 評価対象断面の選定」に記載のとおり、耐震評価上厳 しいと考えられる断面であり、変形性評価上も厳しいと考えられることから、土留め工 (親杭)の変形性評価の対象断面として③-③'断面を選定する。

図2 仮設耐震構台に影響を及ぼすおそれのある土留め工(親杭)の範囲

仮設耐震構台でも、土留め工(親杭)と同様、耐震評価上厳しいと考えられる断面 が、変形性評価においても厳しいと考えられることから、VI-2-11-2-13「仮設耐震構台 の耐震性についての計算書」に基づく評価対象断面である⑦-⑦,断面を、変形性評価 の対象断面として選定する。 以上より選定した変形性評価の対象断面を図3に示す。

図3 変形性評価の対象断面位置図

解析ケースを表1及び表2に示す。

土留め工(親杭)は、「3.5 地震応答解析の解析ケース」に記載のとおり、S = D(++, +-, -+, --)及びS = N1(--)の5波とする。

仮設耐震構台は、VI-2-11-2-13「仮設耐震構台の耐震性についての計算書」に記載のと おり、おおむね左右対称の構造物であり、水平動の位相反転の影響は軽微であること、及 び水平方向の慣性力による影響が支配的であり、鉛直動の位相反転の影響は軽微であるこ とから、Ss - D(++), Ss - F1(++), Ss - F2(++), Ss - N1(++), Ss - N2(NS)(++)及びSs - N2(EW)(++)の6波とする。

相対変位算出時は、土留め工(親杭)のSs-D(++、+-、-+、--)と仮設 耐震構台のSs-D(++)、土留め工(親杭)のSs-N1(--)と仮設耐震構台 のSs-N1(++)をそれぞれ足し合わせて算出する。

	解析ケース		ケース①
	71T VI / / /		基本ケース
	地盤物性		平均值
	Ss-D	++*	0
地震	Ss-D	+-*	0
動 (位	Ss-D	-+*	0
1相)	Ss-D	*	0
	S s - N 1	*	0

表1 変形性評価における解析ケース(土留め工(親杭))

注記*:地震動の位相について,左側は水平動,右側は鉛直動を表し, 「++」は反転なしケースを示す。

解析ケーマ			ケース①
	所作 101 10 11 1		基本ケース
	地盤物性		平均值
	Ss-D	+ + *	0
地	S s - F 1	+ + *	0
震 動	S s - F 2	++*	0
(位 相	S s - N 1	++*	0
\bigcirc	S s - N 2 (N S)	++*	0
	S s - N 2 (EW)	++*	0

表2 変形性評価における解析ケース(仮設耐震構台)

注記*:地震動の位相について,左側は水平動,右側は鉛直動を表し, 「++」は反転なしケースを示す。

その他の評価方法,解析用物性値,解析モデル等は,「3.地震応答解析」及び「4. 評価内容」並びにVI-2-11-2-13「仮説耐震構台の耐震性についての計算書」と同様とする。 3. 許容限界の設定

土留め工(親杭)と仮設耐震構台との離隔距離を図4に示す。

構造物間の相対変位に対する許容限界は, 土留め工(親杭)と仮設耐震構台の離隔距離 とする。構造物間の相対変位に対する許容限界を表3に示す。土留め工(親杭)と仮設耐 震構台の最大相対変位が許容限界以下であることを確認する。

図4 土留め工(親杭)と仮設耐震構台の離隔距離

表3 構造物間の相対変位に対する許容限界

評価項目	許容限界 (mm)
構造物間の離隔距離	270
(土留め工 (親杭) と仮設耐震構台)	370

4. 評価結果

基準地震動Ssに対する土留め工(親杭)と仮設耐震構台の最大相対変位を表4に, 各構造物の変位抽出位置を図5示す。

最大相対変位は、148.1mmであり、許容限界(370mm)を超えないことを確認した。

解析 ケース	地震動	地震動 ^{*1} 土留め工(親杭) 最大変位(mm) ^{*2} 仮設耐震構台 最大変位(mm) ^{*3}		最大相対 変位* ⁴ (mm)	離隔距離 (mm)		
	Ss-D	$+ + *^{1}$	139.1		148.1		
	Ss-D	$+-*^{1}$	139.1	0.0*5	148.1	370	
1	Ss-D	$-+*^{1}$	139.1	9.0	148.1		
	Ss-D	*1	134.4		143.4		
	S s - N 1	*1	138.5	4. 0^{*6}	142.5		

表4 土留め工(親杭)と仮設耐震構台の最大相対変位

注記*1:地震動の位相について,左側は水平動,右側は鉛直動を表し,「++」は反転なしケースを示

す。

*2:北側(仮設耐震構台)への最大変位

*3:南側(土留め工(親杭)側)への最大変位

*4:時刻性を考慮していない最大変位の足し合わせによる最大相対変位

*5:「2.評価方針及び評価方法」のとおり、Ss-D(++)の最大変位とする。

*6:「2. 評価方針及び評価方法」のとおり、Ss-N1 (++)の最大変位とする。

(参考資料2)土留め工(親杭)の設置間隔による影響の確認

1. 概要

土留め工(親杭)の上位クラス施設への波及的影響を及ぼすおそれのある範囲のうち, 図1の赤枠で示す箇所において,親杭の設置間隔が1.5mと他の箇所よりも広くなってい る。当該箇所は,グラウンドアンカが1段目にも設置されていることから(③-③'断 面位置は2段目と3段目のみ),③-③'断面よりも耐震裕度が高いと考えられるが, 念のため,親杭の設置間隔が広い箇所をモデル化した影響検討を実施する。

2. 評価方針及び評価方法

評価に用いる入力地震動については、「6. 評価結果」において、照査結果が最も厳 しいケースのSs-D(+-)とする。

モデル化する範囲は、図1に示す赤枠の範囲とする。モデル化対象範囲には、グラウンドアンカが1段目から3段目まで設置されており、親杭の根入れが1.98mの範囲であるため、これらをモデルに反映する(本編のモデルでは、グラウンドアンカは2段目と3段目に設置されており、根入れは0.98mとなっている)。

解析モデル図を図2に示す。グラウンドアンカの解析モデルの仕様及び物性値を表1 に示す。

解析条件及び評価方法は「2. 評価条件」及び「3. 地震応答解析」と同様とする。

	引張剛性 k (kN/m)	テンドン 降伏引張り力* ² (kN)	設計 アンカー力 ^{*2} (kN)				
グラウンドアンカ ^{*1} (1段目)	3118	416	105				
グラウンドアンカ*1 (2段目)	5687	520	150				
グラウンドアンカ*1 (3段目)	4634	208	30				

表1 解析モデルの仕様及び物性値(③-③'断面)(グラウンドアンカ)

注記*1: グラウンドアンカについては常時応力解析のみモデル化する。

*2: テンドン降伏引張り力及び設計アンカー力は単位奥行当たりの値とする。

3. 評価結果

親杭の設置間隔が広い範囲をモデル化した場合の評価結果を表2~表5及び図3に示 す。

本検討の結果,親杭の設置間隔が広い箇所においても,構造部材の健全性評価及び基 礎地盤の支持性能評価により,施設が損傷及び転倒しないことを確認した。

			発生購			
解析 ケース	地震	勆	曲げ モーメント (kN・m)	軸力 (kN)	照査値	
① (杭間隔 1.5m)	Ss-D	+-*	686.2	670.9	0.82	
【参考】 ① (杭間隔 0.75m)	Ss-D	+-*	1324	781.4	0.73	

表2 曲げ軸力に対する照査値(親杭)

注記*:地震動の位相について,左側は水平動,右側は鉛直動を表し,「++」は反転な しケースを示す。

解析 ケース	地震動		発生応力度*2 (N/mm ²)	短期許容 せん断応力 度 (N/mm ²)	照查値
① (杭間隔 1.5m)	Ss-D	$+-*^{1}$	89.5	157.5	0.57
【参考】 ① (杭間隔 0.75m)	S s – D	$+-*^{1}$	147.3	157.5	0.94

表3 せん断力に対する照査値(親杭)

注記*1:地震動の位相について,左側は水平動,右側は鉛直動を表し,「++」は反転な しケースを示す。

*2:発生応力度 τ は親杭の設置間隔(1.5m)を考慮し,発生断面力 Q から次式によって算定している。

 $\tau = Q/Aw$, Aw: 親杭ウェブ断面積=((700-2×24)/13)mm²/1.5m=5651(mm²/m)

解析 ケース	地震動		軸力 Nmax(kN)	軸応力度 R d (N/mm²)	極限 支持力度 R _u (N/mm ²)	照査値 R d / R u
① (杭間隔 1.5m)	Ss-D	+-*	476	0.63	9.8	0.07
【参考】 ① (杭間隔 0.75m)	Ss-D	+-*	610	0.40	9.8	0.05

表4 基礎地盤の支持性能評価結果(③-③'断面)

注記*:地震動の位相について,左側は水平動,右側は鉛直動を表し,「++」は反転な しケースを示す。

図3 局所安全係数分布図(③-③'断面)

(親杭に発生する曲げモーメント及びせん断力が最大となるSs-D(+-),t=8.91s)

解析 ケース	配置	発生 アンカー力 T(kN)	許容 アンカー力 T _a (kN)	照査値 T/Ta
① (杭間隔 1.5m)	1段目	147.3	339.6	0.44
	2段目	196.4	396.5	0.50
	3段目	67.5	108.8	0.63
【参考】 ① (杭間隔 0.75m)	2段目	286.4	396.5	0.73
	3段目	87.6	108.8	0.81

表5 グラウンドアンカの発生アンカー力に対する評価結果(③-③)断面)