島根原子力発電所第2号機 審査資料					
資料番号	NS2-添 2-019-07改02				
提出年月日	2023 年 4 月 13 日				

VI-2-別添 4-3-5 揚水井戸の耐震性についての計算書

2023年4月

中国電力株式会社

1.	概要·	
2.	基本方	針 ••••••
4	2.1 位置	髶 • • • • • • • • • • • • • • • • • • •
4	2.2 構造	き概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4	2.3 評句	西方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2.3.1	2 次元地震応答解析 ······
	2.3.2	鉛直断面に対する耐震評価 ・・・・・
	2.3.3	水平断面に対する耐震評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2.3.4	底版に対する耐震評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2.4 適月	月規格・基準等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	耐震評	価 · · · · · · · · · · · · · · · · · · ·
:	3.1 評伺	西対象断面 ·····
	3.2 使月	目材料及び材料の物性値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	3.3 許容	家限界 ····································
	3.3.1	 構造部材の健全性に対する許容限界 · · · · · · · · · · · · · · · · · · ·
	3.3.2	基礎地盤の支持性能に対する許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	3.4 評句	西方法
	3.4.1	構造部材の健全性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	3. 4. 2	基礎地盤の支持性能評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	耐震評	
	4.1 構造	
	4, 1, 1	
	4.1.2	水平断面に対する耐震評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	4 1 3	底版に対する耐震評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	1. 1. 0	

4.2 基礎地盤の支持性能に対する評価結果 …………………………………

(別紙1)敷地側集水桝の耐震性について
 (別紙2)屋外排水路(防波壁横断部)の耐震性について
 (別紙3)出口側集水桝の耐震性について

目次

今回提出範囲

.

1. 概要

本資料は、VI-2-1-1-別添1「地下水位低下設備の設計方針」において、地震時に屋外 排水路の排水異常により敷地内に地下水が溢れた場合の対応として、敷地側集水桝、屋 外排水路(防波壁横断部)及び出口側集水桝の耐震性を確保することで、海までの排水 経路を確保する方針としている。このうち、敷地側集水桝について、基準地震動Ssに よる地震動に対する耐震評価を実施し、排水可能であることを確認するものである。

- 2. 基本方針
- 2.1 位置

敷地側集水桝の設置位置図を図 2-1 に示す。

図 2-1 敷地側集水桝の設置位置図

2.2 構造概要

敷地側集水桝は,屋外排水路の集水桝であり,内空1.0m×2.4m,壁厚0.8m,高さ約6mの鉄筋コンクリート造の地中構造物であり,周囲を埋め戻し,マンメイドロック(以下「MMR」という。)を介して岩盤に支持されている。また頂部には,集水のため

のグレーチングを設置する。

敷地側集水桝の概略平面図を図 2-2 に、概略断面図を図 2-3 に、概略配筋図を図 2-4、地盤への支持構造を図 2-5 に示す。

図 2-3(1) 敷地側集水桝の概略断面図

2

(単位:mm)

図 2-3(2) 敷地側集水桝の概略断面図

(単位:mm)

図 2-5 敷地側集水桝の地盤への支持構造

2.3 評価方針

敷地側集水桝の耐震評価は,基準地震動Ss(6波)による一次元地震応答解析に より算定した設計用地震力に対して排水断面を確保することを確認するため,曲げ・ 軸力系及びせん断破壊に対する照査を実施する。また,基礎地盤の支持性能評価を実 施する。

基準地震動 S s を対象とした地震応答解析により敷地側集水桝位置での変位を抽出 する。また、フレーム解析に用いる地盤ばね設定のため地盤の剛性を設定する。

次に,敷地側集水桝の側壁を線形はり要素にてモデル化し,応答変位法によるフレ ーム解析を実施する。常時及び地震荷重から算定した断面力に基づき発生応力を算出 し,許容限界以下であることを確認する。底版については,四辺固定版モデルとして 算定した断面力に基づき発生応力を算出し,許容限界以下であることを確認する。

基礎地盤の支持性能評価においては,最大接地圧が許容限界以下であることを確認 する。

敷地側集水桝の耐震評価フローを図 2-6 に示す。

図 2-6 敷地側集水桝の耐震評価フロー

2.4 適用規格·基準等

適用する規格・基準等を以下に示す。

- ・土木学会 2002 年 コンクリート標準示方書[構造性能照査編](以下「コンクリート標準示方書」という。)」
- ・日本道路協会 平成 24 年 3 月 道路橋示方書・同解説 Ⅰ 共通編・Ⅳ下部構造編 (以下「道路橋示方書」という。)」
- ・原子力発電所耐震設計技術指針(JEAG4601-1987)

- 3. 耐震評価
- 3.1 評価対象断面及び評価対象部位

評価対象断面は,排水断面の確保を確認する観点から水路直交断面であるA-A断 面を選定し,評価対象部位は,敷地側集水桝を構成する側壁及び底版とする。

3.2 荷重及び荷重の組み合わせ

荷重は、VI-2-1-9「機能維持の基本方針」に基づき設定する。

- 3.2.1 荷重の設定 敷地側集水桝の耐震評価には、以下の荷重を用いる。
 - (1) 固定荷重(G)固定荷重として, 躯体自重を考慮する。
 - (2) 積載荷重(P)積載荷重として、グレーチングの荷重を考慮する。
 - (3) 地震荷重(Ss)
 地震荷重として,基準地震動Ssによる地震力を考慮する。

8

3.2.2 荷重の組合せ

荷重の組合せを表 3-1 に示す。

表 3-1(1) 荷重の組合せ

外力の状態	荷重の組合せ
地震時	G + P + S s
G :固定荷重	

P :積載荷重

Ss:地震荷重

利	重別	荷重		算定方法			
		皈休白舌	\bigcirc	設計図書に基づいて,対象構造物の体積に材料			
		11.11.11.11.11.11.11.11.11.11.11.11.11.	0	の密度を乗じて設定する。			
	吊吁右	機器・配管自重	0	グレーチングの荷重を考慮する。			
<u></u> э. н	思何里	土被り荷重	_	土被りはないため考慮しない。			
水人		積載荷重	_	積載荷重は考慮しない。			
何里	外水圧		0	外水圧を考慮する(地表面)。			
	内水圧		0	内水圧を考慮する(満水)。			
	積雪荷重		_	積雪荷重は考慮しない。			
	風荷重		_	風荷重は考慮しない。			
	水平地震動		0	基準地震動Ssによる水平及び鉛直同時加振を			
		一声山雪乱	(考慮する。			
偶発	新旦地震動 		\cup	躯体の慣性力を考慮する。			
荷重		動水圧	0	動水圧を考慮する。			
	44	h電哄士匠	\bigcirc	基準地震動Ssによる地震応答解析により設定			
	地宸守土上		\bigcirc	する。			

表 3-1(2) 荷重の組合せ

敷地側集水桝の耐震評価は許容応力度法による照査を行う。構造部材の曲げ・軸力 系の破壊に対する許容限界は、短期許容応力度とする。また、基礎地盤の支持性能に 対する許容限界は、VI-2-1-3「地盤の支持性能に係る基本方針」に基づき、岩盤の極 限支持力度とする。

コンクリート及び鉄筋の許容限界を表 3-2 に,基礎地盤の支持性能に対する許容限 界を表 3-3 に示す。

	許容限界 (N/mm ²)		
コンクリ	<u>ート*</u>	短期許容曲げ圧縮応力度σ _{ca}	13.5
f' _{c k} = 24	(N/mm^2)	短期許容せん断応力度 τ _{a1}	0.67
鉄筋*	294		

表 3-2 構造部材の健全性に対する許容限界

注記*:コンクリート標準示方書

表 3-3 基礎地盤の支持性能に対する許容限界

評価項目	基礎地盤	許容限界 (N/mm ²)
極限支持力度	С _м 級	9.8

3.4 使用材料及び材料の物性値

構造物の使用材料を表 3-4 に、使用材料の物性値を表 3-5 に示す。

表 3-4 使用材料

	材料	仕様
構造物	コンクリート	設計基準強度 24.0N/mm ²
	鉄筋	SD345

表 3-5 使用材料の物性値

材料	ヤング係数 (N/mm ²)	単位体積重量 (kN/m ³)	ポアソン比
構造物	2. 50×10 ⁴	24.0*	0.2

注記*:鉄筋コンクリートの単位体積重量を示す。

3.5 地震応答解析

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ssを 一次元波動論により地表面位置で評価したものを用いる。敷地側集水桝周辺には,埋 戻しコンクリートが施されており,液状化対象層が存在しないため,1次元地震応答 解析における応答解析は,全応力解析とする。

解析には解析コードは「SHAKE」を使用する。解析コードの検証及び妥当性確認の概要については、VI-5「計算機プログラム(解析コード)の概要」に示す。

1次元地震応答解析の地盤モデルを図 3-1 に示す。

地盤については、VI-2-1-3「地盤の支持性能に係る基本方針」にて設定している物 性値を用いる。設計地下水位は、VI-2-1-3「地盤の支持性能に係る基本方針」に従 い、地表面(EL 8.5m)に設定する。

地震応答解析結果より得られた,各ケースにおける最大水平変位分布,最大水平変 位発生時刻での加速度分布,最大水平変位発生時刻でのせん断応力分布を図 3-3 に示 す。水平変位は地震力による反力を,加速度は慣性力を,せん断応力は壁面摩擦力を 算出するため使用する。

水平変位最大となった基準地震動 Ss-D により応答変位法に使用する水平変位を設定 する。なお,水平変位については,集水桝下端位置よりも下方の EL 1.5m から集水桝 上端である EL 8.5m までを保守的に設定する。

また,底版及び基礎地盤の支持性能の評価に使用する設計用地震力は,1次元地震 応答解析における集水桝位置の応答加速度(鉛直)に基づき設定する。底版及び基礎 地盤の支持性能の評価に用いる設計用地震力を表3-6に示す。

図 3-3(1) 地震応答解析結果(最大水平変位分布)

図 3-3(2) 地震応答解析結果(最大水平変位発生時刻での水平加速度分布 及び鉛直加速度分布)

図3-3(3) 地震応答解析結果(最大水平変位発生時刻でのせん断応力分布)

抽出位置	設計用地震力 (鉛直)
敷地側集水桝	0.56

表 3-6 敷地側集水桝の評価に用いる設計用地震力

- 4. 評価方法
- 4.1 敷地側集水桝 (側壁)

側壁を線形はり要素でモデル化し、1次元地震応答解析を踏まえて設定した荷重を 作用させ、フレーム解析を実施する。フレーム解析は、鉛直モデル及び水平モデルに 分けて実施する。

フレーム解析に用いる地盤ばねは、地盤の剛性を踏まえて設定し、モデルに作用させる荷重のうち、地震時増分応力については、応答変位法により算出する。フレーム 解析に使用した地盤ばね定数を表 4-1 に、フレーム解析モデルを図 4-2 に示す。

解析には解析コード「FREMING」及び「EMRGING」を使用する。解析 コードの検証及び妥当性確認の概要については、VI-5「計算機プログラム(解析コー ド)の概要」に示す。

方向	節点番号	kx(kN/m)	ky(kN/m)
↑	16	5500000	1833000
上	15	8250000	2750000
	14	5500000	1833000
	13	8250000	2750000
	12	11000000	3667000
	11	11000000	3667000
	10	11000000	3667000
	9	11000000	3667000
	8	11000000	3667000
	7	11000000	3667000
	6	11000000	3667000
	5	12100000	4033000
	4	11000000	3667000
	3	6600000	2200000
下	2	4400000	1467000
\downarrow	1	_	_

表 4-1(1) フレーム解析に使用した地盤ばね定数(鉛直モデル) (kx:地盤ばね定数(水平), ky:地盤ばね定数(鉛直))

位置	方向	節点番号	kx(kN/m)	ky(kN/m)		位置	方向	節点番号	kx(kN/m)	ky(kN/m)
		1	2200000	733300				22	2200000	733300
		2	4400000	1467000				21	4400000	1467000
		3	6600000	2200000				20	6600000	2200000
		4	8800000	2933000				19	8800000	2933000
		5	8800000	2933000				18	8800000	2933000
	西	6	8800000	2933000			東	17	8800000	2933000
		7	8800000	2933000		側壁		16	8800000	2933000
		8	8800000	2933000				15	8800000	2933000
側壁		9	6600000	2200000				14	6600000	2200000
		10	4400000	1467000				13	4400000	1467000
		11	2200000	733300	•			12	2200000	733300
		29	1467000	4400000	•			28	1467000	4400000
		30	2200000	6600000				27	2200000	6600000
	北	31	2200000	6600000	•		南	26	2200000	6600000
		32	2200000	6600000	t			25	2200000	6600000
		33	2200000	6600000	+			24	2200000	6600000
		34	1467000	4400000	t			23	1467000	4400000

表 4-1(2) フレーム解析に使用した地盤ばね定数(水平モデル) (kx:地盤ばね定数(水平), ky:地盤ばね定数(鉛直))

(単位:mm)

図 4-1 フレーム解析モデル図

4.2 敷地側集水桝(底版)

集水桝の底版については、法線方向及び法線直交方向の側壁との結合部を固定端と する四辺固定版モデルとして鉄筋コンクリート部材の構造健全性を確認する。集水桝 底版に作用する集水桝及び内部貯留水の慣性力による鉛直方向の合力を用い、底版に 生じる曲げモーメント及びせん断力によって底版のみを有効断面として応力度を算出 し許容限界以下であることを確認する。四辺固定版モデル概要図を図 4-2 に示す。

図 4-2 四辺固定版モデル概要図

4.3 基礎地盤の支持性能の評価

基礎地盤の支持性能評価においては,集水桝底版に作用する集水桝及び内部貯留水 の慣性力による鉛直方向の合力を底版面積で除すことにより接地圧を算出し,基礎地 盤に生じる接地圧が極限支持力度に基づく許容限界以下であることを確認する。

5. 評価結果

- 5.1 構造部材の健全性に対する評価結果
 - 5.1.1 敷地側集水桝(側壁)

敷地側集水桝(側壁)の曲げ軸力に対する照査結果を表 5-1 に, せん断に対 する照査結果を表 5-2 に示す。また,最大照査値となる断面力図分布図を図 5-1 ~2 に示す。

評価対象部材に発生する曲げ圧縮応力,曲げ引張応力及びせん断応力が許容限 界以下であることを確認した。

<u>⇒n./#. // 2/-</u>	側壁寸法	曲げ	曲げ	曲げ	許容 (N/ı	限界 nm ²)	曲げ	曲げ
	(mm))上 hh 心 / J	5 坂心刀	曲げ	曲げ	<u></u> 工 釉 心 力	り 成 加 力
		(KN·III)	(1)/11111)	(1/ 11111)	圧縮	引張	思重阻	思重阻
敷地側集水桝	6800×4000	41. 03*1	0.67^{*1}	32. 98^{*2}	13.5	294	0.05^{*1}	0.12^{*2}
		$115.\ 26^{*2}$. –		

表 5-1 曲げ軸力に対する照査結果(側壁)

注記 *1: 鉛直モデルによる照査結果

*2:水平モデルによる照査結果

表 5-2	せん断力に対する照査結果	(側壁)

設備名称	設計基準強度	発生せん断 応力度 (N/mm ²)	許容限界 (N/mm ²)	照查値
敷地側集水桝	$24 \mathrm{N/mm^2}$	0.15*	0.67	0.22*

注記 *: 鉛直モデルによる照査結果

5.1.2 敷地側集水桝(底版)

敷地側集水桝(底版)の曲げ軸力に対する照査結果を表 5-3 に、せん断に対 する照査結果を表 5-4 に示す。

評価対象部材に発生する曲げ圧縮応力,曲げ引張応力及びせん断応力が許容限 界以下であることを確認した。

設備名称	底版寸法 (mm)	曲げ モーメント (kN・m)	曲げ 圧縮応力 (N/mm ²)	曲げ 引張応力 (N/mm ²)	許容 (N/n 曲げ 圧縮	限界 mm ²) 曲げ 引張	曲げ 圧縮応力 照査値	曲げ 引張応力 照査値
敷地側集水桝	4000×2600	13.08	0.23	10.07	13.5	294	0.02	0.04

表 5-3 曲げ軸力に対する照査結果(底版)

表 5-4 せん断力に対する照査結果(底版)

設備名称	設計基準 強度	せん断補強筋	発生せん断 応力度 (N/mm ²)	許容限界 (N/mm ²)	照查値
敷地側集水桝	$24 \mathrm{N/mm^2}$	SD345	0.12	0.67	0.18

5.2 基礎地盤の支持性能に対する評価結果

基礎地盤の支持性能に対する照査結果を表 5-5 に示す。 基礎地盤の支持力に対する照査を行った結果,最大接地圧が極限支持力度以下である

ことを確認した。

設備名称	解析ケース	最大接地圧 (N/mm ²)	極限支持力度 (N/mm ²)	支持力照査値
敷地側集水桝	Ss-D	0.2	9.8	0.02

表 5-5 基礎地盤の支持性能に対する照査結果

1. 概要

本資料は、VI-2-1-1-別添1「地下水位低下設備の設計方針」において、地震時に屋外 排水路の排水異常により敷地内に地下水が溢れた場合の対応として、屋外排水路(防波 壁横断部),屋外排水路(防波壁横断部)及び出口側集水桝の耐震性を確保すること で、排水経路を確保する方針としている。このうち、屋外排水路(防波壁横断部)につ いて、基準地震動Ssによる地震動に対する耐震評価を実施し、排水可能であることを 確認するものである。

- 2. 基本方針
- 2.1 位置

屋外排水路(防波壁横断部)の設置位置図を図 2-1 に示す。

図 2-1 屋外排水路(防波壁横断部)の設置位置図

2.2 構造概要

屋外排水路(防波壁横断部)は,高さ1.5m(水路幅1.5m×延長約6m)及び高さ 2.0m(水路幅2.0m×延長約13m)の鉄筋コンクリート造の地中構造物であり,改良地 盤で支持されている。

屋外排水路(防波壁横断部)の概略平面図を図 2-2 に, 概略縦断図を図 2-3 に, 概略断面図を図 2-4 に, 概略配筋図を図 2-5 に示す。

図 2-2 屋外排水路(防波壁横断部)の概略平面図

(単位:mm)

図 2-3 屋外排水路(防波壁横断部)の概略縦断図

(単位:mm)

(A-A断面:□1500×1500)図 2-4(1) 屋外排水路(防波壁横断部)の概略断面図

(単位:mm)

(B-B断面,□2000×2000)図 2-4(2) 屋外排水路(防波壁横断部)の概略断面図

(単位:mm)

(A-A断面:□1500×1500)図 2-5(1) 屋外排水路(防波壁横断部)の概略配筋図

(単位:mm)

(B-B断面,□2000×2000)図 2-5(2) 屋外排水路(防波壁横断部)の概略配筋図

4

2.3 評価方針

屋外排水路(防波壁横断部)の耐震評価は,基準地震動Ss(6波)による一次元 地震応答解析により算定した設計用地震力に対して排水断面を確保することを確認す るため,曲げ・軸力系及びせん断破壊に対する照査を実施する。また,基礎地盤の支 持性能評価を実施する。

基準地震動Ssを対象とした地震応答解析により屋外排水路(防波壁横断部)位置 での変位を抽出するとともに、フレーム解析に用いる地盤ばね設定のため収束剛性を 算出する。

次に,屋外排水路(防波壁横断部)を線形はり要素にてモデル化し,応答変位法に よるフレーム解析を実施する。常時及び地震荷重から算定した断面力に基づき発生応 力を算出し,許容限界以下であることを確認する。

基礎地盤の支持性能評価においては、地震時接地圧が許容限界以下であることを確認する。

屋外排水路(防波壁横断部)の耐震評価フローを図 2-5 に示す。

図 2-5 屋外排水路(防波壁横断部)の耐震評価フロー

6

2.4 適用規格·基準等

適用する規格・基準等を以下に示す。

- ・土木学会 2002 年 コンクリート標準示方書[構造性能照査編](以下「コンクリート標準示方書」という。)」
- ・日本道路協会 平成 24 年 3 月 道路橋示方書・同解説 Ⅰ 共通編・Ⅳ下部構造編 (以下「道路橋示方書」という。)」
- ・原子力発電所耐震設計技術指針(JEAG4601-1987)

- 3. 耐震評価
- 3.1 評価対象断面及び評価対象部位

屋外排水路(防波壁横断部)は,内空寸法及び壁厚が異なるが,大部分が防波壁 (逆T擁壁)の直下であり,周囲は全線にわたり改良地盤に囲まれている。

屋外排水路(防波壁横断部)の平面図を図 3-1 に,縦断図を図 3-2 に,評価対象 断面の選定の考え方を表 3-1 に示す。

屋外排水路(防波壁横断部)の設置状況から,防波壁の荷重の影響を受け,耐震評価上,厳しくなると考えられる断面として,②断面,③断面及び④断面の3断面が抽出される。

この3断面うち、②断面(□1500mm)及び④断面(□2000mm)については、内空寸 法及び壁厚が異なるものの、構造及び材料が同仕様である。このため、内空寸法が大 きく、岩盤上面の深さが深い位置にある④断面(□2000mm)を評価対象断面とする。

また、③断面(旧集水桝)については、桝構造であり延長も短く、壁厚も比較的大 きいため、地震時に排水経路が閉塞に至るような変形・破壊は生じないと考える。 評価対象部位については、屋外排水路を構成する側壁、底版及び頂版とする。

S2 補 VI-2-別添 4-3-5 R0

図 3-1 屋外排水路(防波壁横断部)の平面図

図 3-2 屋外排水路(防波壁横断部)の縦断図

9

F					
紙五	敷地側		海側		
	1)	2	3	4	5
排水路の 内空寸法 及び壁厚	排水路 □1500mm (t=150mm)	排水路 □1500mm (t=150mm)	旧集水桝 H2235mm× B3000mm (t=350mm)	排水路 □2000mm (t=180mm)	排水路 □2000mm (t=180mm)
防波壁の 荷重の影響	無	有	有	有	無
岩盤上面の深 さ(地表面)	約 9.7m	約 10.0m	約 10.2m	約 10.7m	約 10.1m
評価対象 断面	×	×	×	0	×

表 3-1 屋外排水路(防波壁横断部)の評価対象断面選定の考え方

3.2 荷重及び荷重の組み合わせ

荷重は、VI-2-1-9「機能維持の基本方針」に基づき設定する。

- 3.2.1 荷重の設定 屋外排水路(防波壁横断部)の耐震評価には,以下の荷重を用いる。
 - (1) 固定荷重(G)
 固定荷重として, 躯体自重を考慮する。
 - (2) 積載荷重(P) 積載荷重として,防波壁の自重を考慮する。荷重は30°の角度を持ち分散して 屋外排水路(防波壁横断部)に伝達する。
 - (3) 積雪荷重(Ps)

積雪荷重は,発電所最寄りの気象官署である松江地方気象台(松江市)での観 測記録(1941~2018 年)より,観測史上1位の月最深積雪100cm(1971 年2 月 4 日)に平均的な積雪荷重を与えるための係数0.35 を考慮した35.0 cmとする。 積雪荷重については,松江市建築基準法施行細則により,積雪量1cm ごとに 20N/m²の積雪荷重が作用することを考慮する。

(4) 地震荷重(Ss)
 地震荷重として,基準地震動Ssによる地震力を考慮する。

11

3.2.2 荷重の組合せ

荷重の組合せを表 3-1 に示す。

表 3-1(1) 荷重の組合せ

外力の状態	荷重の組合せ
地震時	G + P s + S s
G :固定荷重	

Ps:積雪荷重

Ss:地震荷重

利	重別	荷重		算定方法			
	~~ 마누 - + 7.	皈体占重		設計図書に基づいて、対象構造物の体積に材料の			
		12111111111111111111111111111111111111	0	密度を乗じて設定する。			
	吊吁右	機器・配管自重		機器・配管自重は考慮しない。			
i. h	思刊里	土被り荷重	\bigcirc	土被りを考慮する。			
水人		積載荷重	\bigcirc	防波壁の荷重を考慮する。			
何里	何里 外水圧		\bigcirc	外水圧を考慮する(地表面)。			
		内水圧		内水圧を考慮する(満水)。			
		積雪荷重		積雪荷重(0.7kN/m ²)を考慮する。			
	風荷重		_	風荷重は考慮しない。			
	水平地震動		0	基準地震動Ssによる水平及び鉛直同時加振を考			
	4	一古世雪動		慮する。			
偶発	留 一 一 二		0	躯体及び満水位の内水による慣性力を考慮する。			
荷重			_	動水圧は考慮しない。			
			\bigcirc	基準地震動Ssによる地震応答解析により設定す			
			\cup	る。			

表 3-1(2) 荷重の組合せ

3.3 許容限界

屋外排水路(防波壁横断部)の耐震評価は、コンクリート標準示方書[構造性能照 査編](土木学会)に基づき、曲げ耐力及びせん断耐力を許容限界とする。また、基 礎地盤の支持性能に対する許容限界は、VI-2-1-3「地盤の支持性能に係る基本方針」 に基づき、改良地盤③の極限支持力度とする。

基礎地盤の支持性能に対する許容限界を表 3-2 に示す。

表 3-2 基礎地盤の支持性能に対する許容限界

評価項目	基礎地盤	許容限界(N/mm²)
極限支持力度	改良地盤③	1.4

3.4 使用材料及び材料の物性値

構造物の使用材料を表 3-3 に、使用材料の物性値を表 3-4 に示す。

材料		仕様		
構造物	コンクリート	設計基準強度 40.0N/mm ²		
	鉄筋	SD295A		

表 3-3 使用材料

表 3-4 使用材料の物性値

*† *51	ヤング係数	単位体積重量	ポアソンド	
	(N/mm^2)	(kN/m^3)	ホテノンに	
構造物	2. 50×10 ⁴	24.0*	0.2	

注記*:鉄筋コンクリートの単位体積重量を示す。

3.5 地震応答解析及び設計用地震力

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ssを 一次元波動論により評価したものを用いる。屋外排水路(防波壁横断部)周辺には, 改良地盤が施されており,液状化対象層が存在しないため,1次元地震応答解析にお ける応答解析は,全応力解析とする。

解析には解析コード「SHAKE」を使用する。解析コードの検証及び妥当性確認の概要については、Ⅵ-5「計算機プログラム(解析コード)の概要」に示す。

1次元地震応答解析の地盤モデルを図 3-2 に示す。

地盤については、VI-2-1-3「地盤の支持性能に係る基本方針」にて設定している物 性値を用いる。設計地下水位は、VI-2-1-3「地盤の支持性能に係る基本方針」に従 い、地表面(EL 8.5m)に設定する。

図 3-3 1次元地震応答解析用地盤モデル

15

3.6 地震応答解析結果

地震応答解析結果より得られた,各ケースにおける最大水平変位分布,最大水平変 位発生時刻での加速度分布,最大水平変位発生時刻でのせん断応力分布及び収束剛性 を図 3-4 に示す。水平変位は地震力による反力を,加速度は慣性力を,せん断応力は 壁面摩擦力を,収束剛性はばね定数を算出するため使用する。

水平変位最大となった基準地震動 Ss-Dにより応答変位法に使用する水平変位を設定する。

また,底版及び基礎地盤の支持性能の評価に使用する設計用地震力は,1次元地震 応答解析における屋外排水路位置の応答加速度(鉛直)に基づき設定する。基礎地盤 の支持性能の評価に用いる設計用地震力を表3-5に示す。

図 3-4(1) 地震応答解析結果(最大水平変位分布) 16

及び鉛直加速度分布)

図3-4(3) 地震応答解析結果(最大水平変位発生時刻でのせん断応力分布)

図3-4(4) 地震応答解析結果(収束剛性)

 抽出位置
 設計用地震力 (鉛直)

 敷地側集水桝
 0.67

表 3-5 屋外排水路(防波壁横断部)の評価に用いる設計用地震力

19

4. 評価方法

- 4.1 屋外排水路
 - 4.1.1 評価対象部位

屋外排水路(防波壁横断部)は地中に埋設することから,地震時には土圧が主 たる荷重として作用すると考えられる。評価対象部位は,弱軸方向(水路直交方 向)の頂版,側壁及び底版とする。

4.1.2 解析方法

頂版,側壁及び底版を線形はり要素でモデル化し,地震応答解析を踏まえて設 定した荷重を載荷し,フレーム解析を実施する。フレーム解析に用いる地盤ばね は地震応答解析結果から算出した等価剛性を踏まえて設定し,モデルに作用させ る荷重のうち,地震時増分応力については,応答変位法により算出する。

解析には解析コード「FREMING」及び「EMRGING」を使用する。 解析コードの検証及び妥当性確認の概要については、VI-5「計算機プログラム (解析コード)の概要」に示す。

4.1.3 解析モデル

解析に用いるフレームモデルは,屋外排水路(防波壁横断部)の頂版,側壁及 び底版を線形はり要素にて模擬し,地盤応答解析から算出した等価剛性よりばね 定数を設定した地盤ばねを側部及び底部に配置する。

フレーム解析に使用した地盤ばね定数を表 4-1 に,2次元フレーム解析モデル 図を図 4-1 に示す。

位置	方向	節点番号	kx(kN/m)	ky(kN/m)	位置	節点番号	kx(kN/m)	ky(kN/m)
	Î	15	75560	25190	底版	1	23180	69530
	上	14	125100	41700		31	38630	115900
		13	124700	41580		32	38630	115900
		12	86940	28980		33	27040	81110
		11	206900	68960		34	64380	193100
		10	356300	118800		35	112000	336000
		9	487500	162500		36	154500	463500
		8	640000	213300		37	206000	618000
		7	473100	157700		38	154500	463500
		6	340600	113500		39	112000	336000
		5	194400	64790		40	64380	193100
		4	81590	27200		41	27040	81110
		3	116300	38780		42	38630	115900
	下	2	116200	38730		43	38630	115900
们辟	Ļ	1	69530	23180		16	23180	69530
则至	Î	30	75560	25190	頂板	15	25190	75560
	上	29	125100	41700		44	41980	125900
		28	124700	41580		45	41980	125900
		27	86940	28980		46	29380	88150
		26	206900	68960		47	69960	209900
		25	356300	118800		48	121700	365200
		24	487500	162500		49	167900	503700
		23	640000	213300		50	223900	671600
		22	473100	157700		51	167900	503700
		21	340600	113500		52	121700	365200
		20	194400	64790		53	69960	209900
		19	81590	27200		54	29380	88150
		18	116300	38780		55	41980	125900
	下	17	116200	38730		56	41980	125900
	\downarrow	16	69530	23180		30	25190	75560

表 4-1 フレーム解析に使用した地盤ばね定数

(kx:地盤ばね定数(水平), ky:地盤ばね定数(鉛直))

21

図 4-1 2次元フレーム解析モデル図

4.2 基礎地盤の支持性能の評価

基礎地盤の支持性能評価においては,集水桝底版に作用する防波壁,集水桝及び内 部貯留水の慣性力による鉛直方向の合力を底版面積で除すことにより接地圧を算出 し,基礎地盤に生じる接地圧が極限支持力度に基づく許容限界以下であることを確認 する。

22

5. 評価結果

5.1 構造部材の健全性に対する評価結果

鉄筋コンクリートの曲げ・軸力系破壊に対する照査値を表 5-1 に, せん断破壊に関 する照査値を表 5-2 に示す。また,最大照査値となる断面力分布図を図 5-1 に示 す。

評価対象部位の発生応力度及びせん断力は,終局限界以下であり,屋外排水路(防 波壁横断部)が基準地震動Ssによる地震力に対して損壊に至らず,排水断面が確保 されていることを確認した。

評価対象 部位	地震動	設計断面力		出ったエー	
		曲げ モーメント M _d (kN・m)	軸力 N'd (kN)	囲 げ mf 万 M _{ud} (N/mm ²)	照査値 M _d /M _{ud}
頂版	Ss-D	30.54	182.80	53.02	0.58
側壁	Ss-D	25.38	157.55	57.53	0.45
底版	Ss-D	42.69	253.09	58.07	0.74

表 5-1 曲げ・軸力系破壊に対する最大照査値

表 5-2 せん断破壊に対する最大照査値

評価対象 部位	地震動	設計 せん断力 V _d (kN)	せん断耐力 V _{yd} (kN)	照査値 V d/Vyd
頂版	Ss-D	102.18	192.41	0.54
側壁	Ss-D	139.01	178.80	0.78
底版	Ss-D	129.97	206.93	0.63

49

5.2 基礎地盤の支持性能に対する評価結果

基礎地盤の支持性能に対する照査結果を表 5-3 に示す。

基礎地盤の支持力に対する照査を行った結果,最大接地圧が極限支持力度以下である ことを確認した。

設備名称	解析ケース	最大接地圧 (N/mm ²)	極限支持力度 (N/mm ²)	支持力照查值
敷地側集水桝	Ss-D	0.1	1.4	0.08

表 5-3 基礎地盤の支持性能に対する照査結果

25

(別紙3)出口側集水桝の耐震性について

出口側集水桝は,浸水防止設備である屋外排水路逆止弁⑨の間接支持構造物であり, 耐震性については, VI-2-10-2-7 「屋外排水路逆止弁の耐震性についての計算書」に示 す。