島根原子力発	電所第2号機 審査資料
資料番号	NS2-補-023-01 改 14
提出年月日	2023年3月27日

地盤の支持性能について

2023年3月

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

目次

1. 概要

2. 基本方針

- 3. 対象施設周辺の地質等
 - 3.1 対象施設周辺の地質
 - 3.2 対象施設周辺の地質状況整理結果
 - 3.3 敷地の地下水位分布及び耐震評価における地下水位設定方針
 - 3.3.1 敷地の地下水位分布
 - 3.3.2 耐震評価における設計地下水位設定方針

4. 地盤の解析用物性値

- 4.1 設置変更許可申請書に記載された解析用物性値
- 4.2 設置変更許可申請書に記載されていない解析用物性値
 - 4.2.1 有効応力解析に用いる解析用物性値
 - 4.2.2 改良地盤に用いる解析用物性値
 - 4.2.3 その他の解析用物性値
 - 4.2.4 地盤の物性のばらつきについて

5. 極限支持力

- 5.1 基礎地盤(岩盤)の極限支持力度
- 5.2 直接基礎の支持力算定式
- 5.3 杭基礎の極限支持力度

5.4 MMRの支圧強度

6. 地盤の速度構造

- 6.1 入力地震動の設定に用いる地下構造モデル
- 6.2 地震応答解析に用いる解析モデル

参考資料1 浸透流解析に用いた解析コード「Dtransu-3D・EL」の適用性について

- 参考資料 2-1 浸透流解析に用いる透水係数について
- 参考資料 2-2 浸透流解析に用いる有効間隙率について
- 参考資料3 地下水位低下設備(既設)について
- 参考資料4 非定常解析の降雨に対する感度向上についての取り組み
- 参考資料 5 地下水位観測記録について
- 参考資料6 予測解析における降雨条件について
- 参考資料 7 地下水位低下設備(新設)について
- 参考資料 8-1 1号機建物・構築物の地下水位について
- 参考資料 8-2 土木構造物の設計地下水位の設定方法

参考資料 9	砂礫層の解析用物性値について
参考資料 10	埋戻土(粘性土)の解析用物性値について
参考資料 11	基礎捨石及び被覆石の解析用物性値について
参考資料 12	液状化強度試験の詳細について
参考資料 13	改良地盤における補足
参考資料 14	砕石の解析用物性値について
参考資料 15	地震応答解析にて考慮する地盤物性のばらつき
参考資料 16	入力地震動の設定に用いる地下構造モデルのエリア区分について
参考資料 17	埋戻土の骨格曲線について
参考資料 18	基準地震動 S s に対する液状化強度試験の妥当性確認
参考資料 19	輪谷湾における海底堆積物の分布状況及び解析用物性値について
参考資料 20	改良地盤の強度特性について
参考資料 21	岩盤の引張強度について

1. 概要

本資料は、VI-2-1-1「耐震設計の基本方針」に基づき,設計基準対象施設並びに常設 耐震重要重大事故防止設備以外の常設重大事故防止設備,常設耐震重要重大事故防止設 備,常設重大事故緩和設備が設置される重大事故等対処施設(特定重大事故等対処施設 を除く。),常設重大事故防止設備(設計基準拡張)が設置される重大事故等対処施設 (特定重大事故等対処施設を除く。)(以下「常設重大事故等対処施設」という。)及 び波及的影響の設計対象とする下位クラス施設の耐震安全性評価を実施するにあたり, 対象施設を設置する地盤の物理特性,強度特性,変形特性等の地盤物性値の設定及び支 持性能評価で用いる地盤諸元の基本的な考え方を示したものである。

2. 基本方針

設計基準対象施設,常設重大事故等対処施設及び波及的影響の設計対象とする下位クラス施設において,これらの対象施設を設置する地盤の物理特性,強度特性,変形特性等の 解析用物性値については,各種試験に基づき設定する。また,全応力解析及び有効応力解 析等に用いる解析用物性値をそれぞれ設定する。全応力解析に用いる解析用物性値は,設 置変更許可申請書(添付書類六)に記載した調査・試験結果に基づき設定することを基本 とする。有効応力解析に用いる解析用物性値は,設計及び工事の計画の認可申請において 設定する。

対象施設を設置する地盤の地震時における支持性能評価については,設計基準対象施設 及び常設重大事故等対処施設の耐震重要度分類又は施設区分に応じた地震力により地盤 に作用する接地圧が,地盤の極限支持力度に対して妥当な安全余裕を有することを確認す ることによって行う。

極限支持力は、「道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路 協会、平成14年3月)」(以下「道路橋示方書」という。)の支持力算定式に基づき、対 象施設の支持地盤の平板載荷試験又は室内試験の結果により設定する。

杭基礎の押込み力及び引抜き力に対する支持力評価において,杭周面摩擦力を支持力と して考慮せず,支持力評価を行うことを基本とする。

耐震評価における地下水位は、地下水位低下設備の効果が及ぶ範囲においては、その機 能を考慮した設計地下水位を設定し、地下水位低下設備の効果が及ばない範囲においては、 自然水位より保守的に高く設定した水位又は地表面にて設計地下水位を設定する。

防波壁(逆T擁壁)は,設置許可段階において地震動及び地殻変動による基礎地盤の傾 斜が基本設計段階の目安値である 1/2,000 を上回ることを確認したことから,施設の安全 機能を損なわないよう,PS検層等に基づく改良地盤の物性値を確保する。

3. 対象施設周辺の地質等

3.1 対象施設周辺の地質

敷地の地質層序を表 3.1-1 に,地質調査位置図を図 3.1-1 に,敷地の地質平面図 を図 3.1-2 に,敷地の地質断面位置を図 3.1-3 に,地質断面図を図 3.1-4~図 3.1 -14 に示す。

敷地の地質は,新第三紀中新世の堆積岩類から成る成相寺層及び貫入岩類,並びに それらを覆う被覆層から構成される。成相寺層は海成層で,下位より下部頁岩部層, 火砕岩部層及び上部頁岩部層に区分される。

なお,原子炉建物基礎地盤及び周辺斜面には,成相寺層のうち下部頁岩部層,貫入 岩類が分布する。

敷地に分布する成相寺層の構造は,露頭状況の良好な北部の海岸付近では,おおむ ね走向N60°~80°W,傾斜12°~20°Nの同斜構造を示す。

原子炉建物設置位置の約 200m 南方にはN85°E~E-Wの軸をもつ背斜構造が存在し、背斜軸より南では緩い傾斜を示す。

また,平面図及び断面図では,地層の食違いがなく,連続して分布することから, 敷地において,地層と斜交し破砕を伴う断層は認められないが,粘土分を含み,平板 状あるいは平面状の形態を持ち,この面に沿って変位している可能性があり,地層と 平行な断層であるシームが認められる。

	地質	時代		地層名	主要構成地質		
	第四	今我丰	被要	盛土	礫混じり砂質土・礫混じり粘性土		
	紀	元利巴	層	崖錐堆積物	礫混じり砂質土・礫混じり粘性土		
新生		中於世		貫入岩類	ドレライト・安山岩		
全代	王 代 第 三 紀		成	上部頁岩部層	黒色頁岩		
		〒初1匹	相寺	火砕岩部層	凝灰岩·凝灰角礫岩		
			層	下部頁岩部層	黒色頁岩·凝灰質頁岩		

表 3.1-1 敷地の地質層序

図 3.1-1 地質調査位置図

図 3.1-3 地質断面図位置

図 3.1-4 原子炉建物等の地質断面図 (A-A'断面)

図 3.1-7 1号機取水槽流路縮小工の地質断面図 (D-D'断面)

図 3.1-8 ガスタービン発電機建物の地質断面図(E-E'断面)

図 3.1-9 ガスタービン発電機建物等の地質断面図 (F-F'断面)

(G-G'断面)

図 3.1-12 防波壁(逆T擁壁)の地質断面図(H'-I断面)

図 3.1-13 防波壁(多重鋼管杭式擁壁)の地質断面図(I-I"断面)

図 3.1-14 防波壁(多重鋼管杭式擁壁)の地質断面図(K-K'断面)

3.2 対象施設周辺の地質状況整理結果

対象施設の配置図を図 3.2-1 に示す。「3.1 対象施設周辺の地質」において作成した地質断面図等より,対象施設周辺の地質分布状況を整理した結果を表 3.2-1 に示す。 これらの地質に対し,図 3.1-1 に示すような広範囲における調査結果等に基づき解析 用物性値を設定した。

図 3.2-1 対象施設の配置図

	施設+A2:J33名	埋戻土	砂礫層	埋戻土 (粘性土)	改良地盤*1	岩盤	MMR他 ^{*2}	砕石	海底堆積物 •風化岩
	原子炉建物	•	—	—	—	•	•	_	—
	タービン建物	•	—	—	—	•	•	_	—
建物	廃棄物処理建物	•	—	—	—	•	0	_	—
· 構	制御室建物	•	—	—	—	•	0	_	—
築物	排気筒	•	—	—	—	•	•	_	—
	緊急時対策所	_	—	—	—	•	—	_	—
	ガスタービン発電機建物	•	_	_	—	•	—	_	—
	取水槽	0	_	_	•	•	•	_	—
	取水管	_	—	_	—	0	0	•	0
	取水口		—	—	—	•	•		0
	屋外配管ダクト (タービン建物〜排気 筒)	•	—	—	—	0	•	_	—
	屋外配管ダクト (タービン建物~放水 槽)	•	—	—	0	0	•	_	—
	B-ディーゼル燃料貯蔵タンク格納槽	•	—	—	—	•	•	_	—
	屋外配管ダクト (B - ディーゼル燃料 貯蔵タンク~原子炉建物)	•	_	—	—	•	•	_	—
土	防波壁(多重鋼管杭式擁壁)	•	0	•	•	•	_	_	0
木構	防波壁 (逆T擁壁)	•	—	—	•	0	—		0
造物	防波壁(波返重力擁壁)	•	0	—	0	•	•		0
	1号機取水槽流路縮小工	•	—	—	—	•	•		—
	防波壁通路防波扉*3	•	—	—	•	•	•	_	—
	第1ベントフィルタ格納槽	•	—	—	—	•	•	_	—
	低圧原子炉代替注水ポンプ格納槽	•	—	—	—	•	•	_	—
	緊急時対策所用燃料地下タンク	0	_	_	—	•	•	_	_
	ガスタービン発電機用軽油タンク基礎	•	_	_	_	0	•	_	_
	屋外配管ダクト(ガスタービン発電機 用軽油タンク~ガスタービン発電機)	•	_	_	_	0	•	_	_

表 3.2-1 対象施設周辺の地質分布一覧

注記*1:改良地盤①~⑧を指す。

*2:MMR, 埋戻コンクリート及び置換コンクリート等を指す。

*3:防波壁通路防波扉(荷揚場南,3号機東側)を指す。

凡例 ●:施設直下あるいは直近に分類している地質

○:施設直下及び直近には分布しているが、地質断面図内に現れる地質

-:施設直下及び直近には分布しておらず、地質断面図内にも現れない地質

- 4. 地盤の解析用物性値
- 4.1 設置変更許可申請書に記載された解析用物性値

全応力解析に用いる解析用物性値として,設置変更許可申請書に記載された解析用物 性値を表4.1-1~表4.1-3に,設定根拠を表4.1-4及び表4.1-5に示す。動せん断 弾性係数及び減衰定数のひずみ依存特性を図4.1-1~図4.1-7に示す。設置変更許可 申請書に記載された解析用物性値については,原位置試験及び室内試験から得られた各 種物性値を基に設定した。

减衰特性	减衰定数 h								0.03							
特性	動ポアソン比 vd								-2参照							
動的変形	動せん断弾性係数 G _a (×10 ³ N/mm ²)								表4.1-							
纬性	静ポアソン比 ッ。	0.19	0.20	0.20	0.19	0.20	0.20	0.19	0.20	0.25	0.22	0.25	0.25	0.25	0.25	0.25
静的変形	静弹性係数 E (×10 ³ N/mm ²)	3.74	1.95	0.54	3.74	1.95	0.43	7.78	1.47	0.43	7.78	1.47	0.43	7.78	1.47	0.43
特性	残留強度 τ (N/mm ²)	1. 48 $\sigma^{0.72}$	0. $34 \sigma^{0.54}$	0. 34 $\sigma^{0.54}$	1. 28 $\sigma^{0.72}$	0. $34 \sigma^{0.54}$	0. $34 \sigma^{0.54}$	1. 28 $\sigma^{0.72}$	0. $34 \sigma^{0.54}$	0. $34 \sigma^{0.54}$	1. 56 $\sigma^{0.72}$	0.36 $\sigma^{0.54}$	0.36 $\sigma^{0.54}$	1. 56 $\sigma^{0.72}$	0.36 $\sigma^{0.54}$	0.36 $\sigma^{0.54}$
強度	内部摩擦角	54	54	45	54	54	28	55 55	47	28	52	52	43	52	52	43
特性	せん断強度 で。(N/mm ²)	1.14	0.92	0.28	1.14	0.92	0.28	1.54	1.14	0.60	2.14	1.58	0.83	2.14	1.58	0.83
物理	密度 p _s (g/cm ³)	2.57	2.52	2.44	2.56	2.49	2. 33	2.51	2.44	2.30	2. 78	2.60	2. 53	2.68	2.68	2.59
		CH 殺	Cw級	Cr 殺	CH 殺	C _M 殺	CL 殺	CH 殺	Cn級	Cr 殺	CH 殺	Cw級	CL 殺	CH 殺	Cw級	Cr 殺
			頁岩			頁岩と凝灰岩 の互層			凝灰岩 · 凝灰角礫岩			ドレライト			安山岩	
						岩盤 (成相寺層)							北魏	(貫入岩)		

表 4.1-1 設置変更許可申請書に記載された解析用物性値

(岩盤)

19

	第6 速度層								0.35							
	第[5] 速度層								0.34							
とた	第1 建度層								0.34							
動ポア v	第33 速度層				******	*****			0.38							
	第[2] 速度層								0.39							
	第[1] 速度層								0.45							
	第6 速度層	14. 19	13.92	13.47	14.14	13.75	12.87	13.86	13.47	12.70	15.35	14.36	13.97	14.80	14.80	14.30
	第[5] 速度層	10. 28	10.08	9.76	10.24	9.96	9, 32	10.04	9. 76	9.20	11.12	10.40	10.12	10.72	10.72	10.36
单性係数 N/mm ²)	第1 建度層	9. 77	9.58	9, 28	9.73	9.47	8, 86	9.54	9, 28	8. 75	10.57	9.89	9.62	10. 19	10.19	9.85
動せん断 Ga (×10 ³	第[3] 速度層	6.58	6.45	6. 25	6. 55	6. 37	5.96	6.43	6. 25	5.89	7.12	6.66	6.48	6.86	6.86	6. 63
	第[2] 速度層	2.08	2.04	1. 98	2.07	2.02	1. 89	2.03	1.98	1.86	2.25	2. 11	2.05	2.17	2.17	2.10
	第11 速度層	0. 16	0. 16	0. 15	0. 16	0. 16	0. 15	0.16	0. 15	0.14	0.17	0. 16	0. 16	0.17	0.17	0. 16
		C _{ll} 殺	C _M 級	Ci. 殺	C _H 後	C ₄₁ 殺	Cı, 級	C _H 殺	Cai 殺	Ci. 殺	C _H 殺	C ₄ 級	Ci 殺	C _H 殺	C _a 殺	Cr 級
			頁岩			頁岩と凝灰岩 の互層			凝灰岩 · 凝灰角礫岩			ドレライト			安山岩	
						岩盤 (成相寺層)							北	(貫入岩)		

(岩盤)

減衰特性	減衰定数 h	$ \begin{split} \gamma \leq & 1 \times 10^{-4} : h=0.023 \\ \gamma > & 1 \times 10^{-4} : h=0.023 \\ +0.071 \cdot & \log(\gamma/0.0001) \end{split} $	h= $\gamma/(2.14\gamma$ +0. 017) +0. 031	h=0. 0958 $\gamma/(\gamma$ +0. 00020)	h=0, 2179 γ / (γ +0, 00085)	h=0. 20 γ / (γ +0. 000413)	0. 05	0.03	h=0. 0958 $\gamma/(\gamma$ +0. 00020)		h=0. 0958 $\gamma/(\gamma$ +0. 00020)	
	動ポアンン 比 "	0.45	0.45	0.45	0.45	0.45	0.20	0.38	0.45	0, 33	0.33	0.33
動的変形特性	動社私断 碰性係数 G _a (N/mm ²)	$\begin{split} 6_{\rm o} &= 148 \ \sigma^{0.49} \ (\rm N/mm^2) \\ 6/6_{\rm o} &= 1/ \ (1+\gamma/0,\ 00062) \end{split}$	$\begin{array}{c} G_{o}{=}225 ~\sigma^{0.31} \left(N/\text{nm}^{2}\right) \\ G/G_{o}{=}1/\left[1+(~\gamma~/0,~00149)^{0.849}\right] \end{array}$	G_o =749 $\sigma^{0.66}$ (N/mm ²) G/G _o =1/ (1+ γ /0.00027)	$\begin{array}{c} {\rm G_o=}275 ~\sigma^{~0.~\rm 61} (\rm N/mm^2) \\ {\rm G/G_o=}1/ (1+~\gamma~/0,~00048) \end{array}$	$\begin{array}{c} G_{o}{=}240 \ \sigma^{\ 0.01} (N/ {\rm mm}^2) \\ G/G_{o}{=}1/ (1+\gamma \ /0. \ 0011) \end{array}$	9, 792	6, 250	$\begin{array}{c} {\rm G_o=749} \ \sigma^{0.66}(\rm N/mm^2) \\ {\rm G/G_o=1/(1+\gamma/0.00027)} \end{array}$	$G_{0}=409$ $G/G_{0}=1/(1+\gamma/0.00027)$	$G_{0}=338$ $G/G_{0}=1/(1+\gamma/0,00027)$	$G_{0}=785$ $G/G_{0}=1/(1+\gamma/0,00027)$
特性	静ポアンン 比 ど。	0.30	0.40	0, 40	0.40	0, 40	0, 20	0.20	0.40	0, 33	0. 33	0. 33
静的変形	静弾性係数 E (N/mm ²)	$141 \sigma^{0.39}$	$G_{0.5}=44~\sigma^{-0.34}$	E _{0.5} =1.15 a ^{0.61}	$E_{0.5}$ =227 $\sigma^{0.75}$	$E_{0.5}=37 \sigma^{0.79}$	23, 500	1, 470	$E_{0.5}$ =115 $\sigma^{0.61}$	1, 087	898	2, 088
	残留強度 τ (N/mm ²)	$\begin{array}{c} 0.\ 11+\\ \sigma \ \tan 6^{\circ} \end{array}$	0.19+ σ tan18°	0.22+ σ tan22°	0.04+ σ tan21°	0.03+ σ tan21°	I	0. 34 o ^{0. 54}	0.22+ σ tan22°	0.63+ σ tan38°	0.49+ σ tan41°	l. 14+ σ tan41°
強度特性	内 離 (。) (。)	9	18	22	21	21	I	47	22	38	41	41
	せん断 強度 _{て o} (N/mun ²)	0.11	0.19	0.22	0,04	0. 03	I	1.14	0. 22	0. 63	0.49	1. 14
物理特性	密度 _{ゆ "} (g/cm ³)	2.28	2.23	2, 11	2,01	2.00	2.35	2.44	2. 11	2. 11	2. 11	2. 11
		盤	Þ	盛土	【入土)	+1		撬 排工法)	器 I (工法)	改良地盤①	改良地盤②	改良地盤③
		D級指	r	埋戻土,	埋戻士 (購	旧表。	MMR	改良堆 (高圧噴射撹	改良地仍 (葉液注入		改良地盤II (薬液注入工法)	

表 4.1-3 設置変更許可申請書に記載された解析用物性値 (D級岩盤・シーム・埋戻土・旧表土・MMR・改良地盤)

减衰特性		减衰定数								慣用値 ^{%1}							
	排性	動ポアソン比								険層							
特性	動的	動 世 ん断 弾性係数								Sd							
変形	特性	静ポアソン比								一軸圧縮試験							
	倪뤺	静弹性係数					平板載荷試験							40 MR (14	揆异他		
特性		残留強度															
強度		ピーク強度	インロックを振行したので、「「「」」である。														
	物理特性									密度試験 (飽和)							
	岩級		CH級	Cu殺	CL 級	CH級	Cu殺	CL.殺	CH級	Gu殺	CL級	CH級	Cu殺	CL級	CH級	Cu殺	CL級
	当種		 第 1 1 1<td>安山岩</td><td></td>							安山岩							
	74	指 (副 書) 書 書 書 書 書 書 書 書 書 書 書 書 書 書 書 書 書 書															

表 4.1-4 設置変更許可申請書に記載された解析用物性値の設定根拠(岩盤)

注記 *1 社団法人日本電気協会「原子力発電所耐震設計技術指針」(JEAG4601-2015)を参考に設定。

		強度特性	1		変	形特性		减衰特性
	物理特性			静的特性	生	動的特性		
7		ピーク強度	残留強度	静弹性係数	静ポアソン 比	動せん断弾性係数	動ポアンン 比	减衰定数
		中型三軸圧縮試験		中型三軸圧縮試験		動的中型三軸圧縮試験	慣用値 ^{#2}	動的中型三軸 圧縮試験
		単純せん断試験		単純せん断試験		動的単純せん断試験		動的単純 せん断試験
1 T	密度試驗 (飽和)	大型三軸圧縮試験	ピーク 運用 して の に	大型三軸圧縮試験	慣用値 ^{#2}	動的大型三軸圧縮試驗	4 m 田 (大学3	動的大型三軸 圧縮試験
(Ħ)		정폐석순당장 그리 무뿌		· · · · · · · · · · · · · · · · · · ·		繰返し中空ねじり せん断試験	阆州偃	繰返し中空ねじり せん断試験
				—— 毕山/二 作日 计入改入		動的三軸圧縮試験		動的三軸圧縮試験
	慣用値 ^{#1}	I	Ī	慣用値*	慣用値 ^{#1}	慣用値 ^{#1}	慣用値 ^{業1}	慣用値 ^{約1}
是 毕工法)				凝灰岩·凝灰	角礫岩(Ca級)) を流用		
I 工法)				埋戻」	ヒ, 盛土を流用			
I 工法)	密度試験 (飽和)(埋 戻土, 盛土 を流用)	せん断強度は セム断強度は 換算値 内部障線角は 商易設定法に用いた N値に基づく 換算値	ピーク強度 と同じ値	PS 検層に基づく 換算値	慣用値 ^{%4}	60は PS 検層 ひずみ依存特性は 動的大型三輪圧縮試験 (埋戻土,盛土を流用)	慣用値 ^{%4}	動的大型三軸 圧縮試験 (埋戻土,盛土を流)

表 4.1-5 設置変更許可申請書に記載された解析用物性値の設定根拠 (D級岩盤・シーム・埋戻土・旧表土・MMR・改良地盤)

注記 *1 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル(社団法人土木学会, 1992 年・2005 年)を参考に設定。 注記 *2 設計用地盤定数の決め方-岩盤編-(社団法人地盤工学会, 2007 年)を参考に設定。 注記 *3 原子力発電所の基礎地盤及び周辺斜面の安定性評価技術(技術資料)(社団法人土木学会, 2009 年)を参考に設定。 注記 *4 港湾の施設の技術上の基準・同解説(公益社団法人日本港湾協会, 2018 年)を参考に設定。

図 4.1-1 D級岩盤(頁岩,頁岩・凝灰岩の互層)の動せん断弾性係数及び減衰定数のひ ずみ依存特性

図 4.1-2 D級岩盤(凝灰岩・凝灰角礫岩)の動せん断弾性係数及び減衰定数のひずみ依 存特性

図 4.1-3 D級岩盤(ドレライト・安山岩)の動せん断弾性係数及び減衰定数のひずみ依 存特性

図 4.1-4 シームの動せん断弾性係数及び減衰定数のひずみ依存特性

図 4.1-5 埋戻土・盛土の動せん断弾性係数及び減衰定数のひずみ依存特性

図 4.1-6 埋戻土(購入土)の動せん断弾性係数及び減衰定数のひずみ依存特性

図 4.1-7 旧表土の動せん断弾性係数及び減衰定数のひずみ依存特性

4.2 設置変更許可申請書に記載されていない解析用物性値

設置変更許可申請書に記載されていない解析用物性値のうち,有効応力解析に用い る解析用物性値を表 4.2-2~表 4.2-3 に,設定根拠を表 4.2-12~表 4.2-13 に示 す。改良地盤に用いる解析用物性値を表 4.2-4<mark>~表 4.2-6</mark>に,設定根拠を表 4.2-14 ~表 4.2-16 に示す。その他の解析用物性値を表 4.2-7~表 4.2-11 に,設定根拠を 表 4.2-17~表 4.2-21 に示す。

設置変更許可申請書に記載されていない解析用物性値の詳細な設定根拠について, 表 4.2-1 に示す資料において説明する。

なお,地質断面図に示す第1層は,岩盤に加えて,同程度のS波速度である埋戻土, 砂礫層,埋戻土(粘性土)及び海底堆積物・風化岩等も含まれている。地質断面図に示 す第1層のうち岩盤については表 4.2-7 に示す解析用物性値を設定し,埋戻土等につ いてはそれぞれの解析用物性値を設定する。

対象土 4.2.1 有効応力解析に用いる 御礫層 建戻土(粘性: 基礎捨石及び者 4.2.2 改良地盤に用いる 解析用物性値 出こ 基礎 日本 単実土(粘性: 基礎 4.2.2 改良地盤 単原土 単原土 4.2.3 4.2.3	対象土層	詳細な設定根拠
	埋戻土	補足 020 安全設備及び重大事故等対処設備が使 用される条件の下における健全性に関する説明書
4. 2. 1	砂礫層	補足 023-01 地盤の支持性能について (参考資料 9) 砂礫層の解析用物性値について
有効応力解析に用いる 解析用物性値	埋戻土(粘性土)	補足 023-01 地盤の支持性能について (参考資料 10) 埋戻土(粘性土)の解析用物性値 について
	基礎捨石及び被覆石	補足 023-01 地盤の支持性能について (参考資料 11) 基礎捨石及び被覆石の解析用物性 値について
4.2.2 改良地盤に用いる 解析用物性値	改良地盤	補足 023-01 地盤の支持性能について (参考資料 13) 改良地盤における補足 (参考資料 20) 改良地盤の強度特性について
	岩盤	補足 023-01 地盤の支持性能について (参考資料 16)入力地震動の設定に用いる地下構 造モデルのエリア区分について
	埋戻土	補足 023-01 地盤の支持性能について (参考資料 17) 埋戻土の骨格曲線について
4. 2. 3	砕石	補足 023-01 地盤の支持性能について (参考資料 14) 砕石の解析用物性値について
その他の解析用物性値	MMR 埋戻コンクリート 置換コンクリート	コンクリート標準示方書[構造性能照査編]((社) 土木学会,2002年制定) コンクリート標準示方書[ダムコンクリート 編]((社)土木学会,2013年制定)
	海底堆積物 海底堆積物・風化岩	補足 023-01 地盤の支持性能について (参考資料 19)輪谷湾における海底堆積物の分布 状況及び解析用物性値について

表 4.2-1 設置変更許可申請書に記載されていない解析用物性値の詳細な設定根拠

26

表 4.2-2 設置変更許可申請書に記載されていない解析用物性値

(有効応力解析)

(液状化検討対象層)

				埋戻土	砂礫層
物理	密度	ρ (g/cm ³)		2.11 【2.00】	2.05
特性	間隙率	n		0.45	0.45
	動せん断弾性係数	G_{ma} (kN/m ²)		154600	225400
変 形	基準平均有効拘束圧	σ_{ma} ' (kN/m ²)		98.00	98.00
特性	ポアソン比	ν		0.33	0.33
	減衰定数の上限値	hmax		0.095	0.095
強度	粘着力	c' (kN/m ²)		0	0
特性	内部摩擦角	φ' (°)		40.17	38.74
	変相角	φp (°)		28	28
			S1	0.005	0.005
液状化			w1	4.080	4.020
特性	液状化パラメータ		Ρ1	0.500	0.500
			Ρ2	0.990	1.100
			C1	2.006	1.916

注:括弧内【】の数字は地下水位以浅の数値を示す。

動せん断弾性係数、内部摩擦角及び液状化パラメータは代表的な数値を示す。

表 4.2-3 設置変更許可申請書に記載されていない解析用物性値

		(非新	<mark>亥状化層)</mark>	
			埋戻土(粘性土)	基礎捨石及び被覆石
物理	密度	ρ (g/cm ³)	2.07 【2.03】	2.04 【1.84】
竹性	間隙率	n	0.55	0.45
	動せん断弾性係数	G _{ma} (kN∕m²)	186300	180000
変形	基準平均有効拘束圧	σ_{ma} ' (kN/m ²)	151.7	98.00
特性	ポアソン比	ν	0.33	0.33
	減衰定数の上限値	h max	0.095	0.24
強度	粘着力	c' (kN/m ²)	0	20
度 特 性	内部摩擦角	φ' (°)	30.00	35.00

(有劾応力解析)

注:括弧内【】の数字は地下水位以浅の数値を示す。

動せん断弾性係数及び基準平均有効拘束圧は代表的な数値を示す。

表 4.2-4(1) 設置変更許可申請書に記載されていない解析用物性値

(有効応力解析)

(改良地盤)

计在协议		防波壁					雨水博
	刘家旭苡	逆T擁壁		多重鋼管杭式擁壁		波返重力擁壁	以小智
任日	(丁汁 - 山殿呑町)	改良地盤①, ②	改良地盤③	改良地盤④	改良地盤⑤	改良地盤⑥	改良地盤⑦
作里 万.	(上伝, 地盛裡別)	(薬液注入)	(薬液注入)	(薬液注入)	(高圧噴射)	(高圧噴射)	(高圧噴射)
	密度	0 11	2. 11	2.05	2. 11	2.05	2.11
物 理	ρ (g/cm ³)	2.11					【2.00】
特性	間隙率	0.45	0.45	0.45	0.45	0.45	0.45
	n	0.45	0.45	0.45	0.45	0.45	
	動せん断弾性係数	765000	056500	000000	0.00100	0.00500	1105000
	G _{ma} (kN∕m ²)	765800	956500	880300	368100	300300	1135000
	基準平均有効拘束圧	00.00	98.00	98.00	98.00	98.00	98.00
変 形	σ_{ma} ' (kN/m ²)	98.00					
特性	ポアソン比	0.00	0.00	0.00	0.00	0.00	0.00
	ν	0.33	0.33	0.33	0.33	0.33	0.33
	減衰定数の上限値	0,005	0.095	0.095	0.095	0.095	0.095
	h max	0.095					
	粘着力	600	1140	300	1250	1250	1250
強度	c $(kN \neq m^2)$	628					
特性	内部摩擦角	28.00	40 E 4	38.74	0	0	0
	φ'	38.00	40.54			0	U

注:括弧内【】の数字は地下水位以浅の数値を示す。

動せん断弾性係数,基準平均有効拘束圧及び液状化パラメータは代表的数値を示す。

表 4.2-4(2) 設置変更許可申請書に記載されていない解析用物性値

(有効応力解析)

(改良地盤)

	Ť	防波壁		
	Х	逆T擁壁		
		改良地盤⑧		
	1里方1 (上	(流動化処理工法)		
物 理	密度	ho (g/cm ³)	1.89	
特性	間隙率	n	0.45	
変形	弾性係数	E $(kN \neq m^2)$	9108000	
特性	ポアソン比	ν	0.33	
強度	粘着力	c $(kN \neq m^2)$	1550	
特 性	内部摩擦角	φ'	38.71	

注:動せん断弾性係数は代表的な数値を示す。

表 4.2-5 設置変更許可申請書に記載されていない解析用物性値

(全応力解析)

(改良地盤)

	対象施設	取水槽	
	種別(地盤種別)	改良地盤⑦	
物理特性	密度	ho (g/cm ³)	2.11
改在性社	初期せん断強度	τ ₀ (N/mm ²)	1.25
强度特性	内部摩擦角	ϕ (°)	0.00
		$C = (N/mm^2)$	G ₀ =1135
動的変形 特性	初期でん例弾性係数	G_0 (N/IIIII ⁻)	$G/G_0=1/(1+\gamma /0.0011)$
	動ポアソン比	ν _d	0.33
減衰特性	減衰定数	h	h=0. $0958 \times (1-G/G_0)^{1.007}$

(改良地盤)								
		改良地盤	改良地盤	改良地盤	改良地盤	改良地盤	改良地盤	
		1), 2	3	4	5	6	\bigcirc	
残留	粘着力 c'(kN/m²)	91	205	0	0	0	205	
強度	内部摩擦角 ϕ^{\prime} (°)	46.08	42.71	43.03	35.60	48.80	42.71	
引張 強度	σ t (kN/m ²)	258	495	109	1160	436	625	

表 4.2-6 設置変更許可申請書に記載されていない解析用物性値

表 4.2-7(1) 設置変更許可申請書に記載されていない解析用物性値

			; = 500 ,			
	岩盤1	岩盤2	岩盤3	岩盤4	岩盤5	岩盤6
	速度層	速度層	速度層	速度層	速度層	速度層
P波速度	200	0100	2600	4000	4050	4050
Vp (m/s)	800	2100	3600	4000	4050	4950
S波速度	050	000	1600	1050	0000	0.050
Vs (m/s)	250	900	1600	1950	2000	2350
単位体積重量	20.0	0.0	04 5	04 5	26.0	07.0
γ (kN/m ³)	20.6	23.0	24.5	24.5	26.0	27.9
動ポアソン比	0 446	0.200	0.977	0.244	0.220	0.255
νd	0.446	0.388	0.377	0.344	0. 339	0.355
減衰定数	0.020	0.020	0.020	0.020	0.020	0.020
h	0.030	0.030	0.030	0.030	0.030	0.030

(岩盤(1,2号機エリア))

表 4.2-7(2) 設置	変更許可申請書に記載され	ていない	解析用物性值
---------------	--------------	------	--------

	岩盤② 速度層	岩盤③ 速度層	岩盤④ 速度層	岩盤⑤ 速度層	岩盤⑥ 速度層	岩盤⑦ 速度層
P波速度 Vp (m/s)	1710	2270	3240	3860	4150	3800
S波速度 Vs (m/s)	620	960	1520	1900	2100	1770
単位体積重量γ(kN/m ³)	23.3	23.4	24.5	25.2	24.4	25.1
動ポアソン比 v d	0.42	0.39	0.36	0.34	0.33	0.36
減衰定数 h	0.030	0.030	0.030	0.030	0.030	0.030

(岩盤 (3号機エリア))

表 4.2-8 設置変更許可申請書に記載されていない解析用物性値

(全応力解析)

	種別(地盤種別)	埋戻土						
物理特性	密度	ho (g/cm ³)	2.11					
改広性地	初期せん断強度	τ ₀ (N/mm ²)	0.22					
加度村住	内部摩擦角	ϕ (°)	22					
	初期せん断弾性係数	$C = (N/mr^2)$	$G_0=749~\sigma^{-0.66}$					
動的変形 特性		G_0 (N/mm ⁻)	$G/G_0=1/(1+\gamma/0.00027)$					
	動ポアソン比	νd	0.45*					
減衰特性	減衰定数	h	h=0.0958 × $(1-G/G_0)^{0.85}$					

注記*:常時応力解析においては、静止土圧(K₀= ν /(1- ν)=0.5)を作用さ せるため、 $\nu = 0.33$ とする。

表 4.2-9 設置変更許可申請書に記載されていない解析用物性値 (全応力解析)

(砕石)

	対象施設	取水管	
Ŧ	種別(地盤種別)	砕石	
物理特性	密度	ho s (g/cm ³)	1.56
	動せん断弾性係数G _d (N/mm ²)		G ₀ =67600
動的変形特性			$G/G_0=1/(1+\gamma/0.000889)$
	動ポアソン比	ν _d	0.45
減衰特性	減衰定数	h	h=0. 2557 γ / (γ +0. 00114)

(埋戻十)
++ */	単位体積重量	ポアソンド	ヤング係数
14 P.	(kN/m^3)	ホノノン比	(N/mm^2)
MMR (f' _{ck} =15.6N/mm ²)	22.6	0.20	2.08×10 ⁴
MMR (f' _{ck} =18.0N/mm ²)	22.6	0.20	2. 20×10^4
MMR (f' _{ck} =24.0N/mm ²)	24.0	0.20	2. 50×10^4
埋戻コンクリート (f' _{ck} =18.0N/mm ²)	22.6	0.20	2. 20×10^4
置換コンクリート (f' _{ck} =15.6N/mm ²)	22.6	0. 20	2.08×10 ⁴
置換コンクリート (f' _{ck} =24.0N/mm ²)	22.6	0.20	2. 50×10^4

表 4.2-10 設置変更許可申請書に記載されていない解析用物性値

12 52 5 5	
(MMR,	埋戻コンクリート及び置換コンクリート)

表 4.2-11 設置変更許可申請書に記載されていない解析用物性値 (MMR及び置換コンクリート)

	せん断強度	引張強度
竹 本	(N/mm^2)	(N/mm^2)
MMR (f' _{ck} =15.6N/mm ²)	3.12	1.43
MMR (f' _{ck} =18.0N/mm ²)	3.60	1.58
MMR (f' _{ck} =24.0N/mm ²)	4.80	1.91
置換コンクリート (f' _{ck} =15.6N/mm ²)	3.12	1.43
置換コンクリート (f' _{ck} =24.0N/mm ²)	4.80	1.91

表 4.2-12 設置変更許可申請書に記載されていない解析用物性値の設定根拠

(有効応力解析)

		埋戻土	砂礫層			
物理	密度	ρ		物理	試験	
特性	間隙率	n		慣用	值 ^{*1}	
	動せん断弾性係数	G_{ma}		動的変形特性に基づき設定	PS検層によるS波速度, 密度に基づき設定	
変形	基準平均有効拘束圧	σ_{ma} '		慣用	值*1	
特性	特 性 ポアソン比 v			慣用値*1		
減衰定数の上限値 h max		h max		動的変形特性に基づき設定		
強度	強 度 ^推			慣用値*1		
特性	内部摩擦角	ϕ '		文献 ^{*1} からN値(原位置試験)と 有効上載圧により設定		
	変相角	ϕ p				
液状化				文献 ^{*1,*2} からN値(原位置試験). 有効上載圧及び		
特性	液状化パラメータ		P1	細粒分含有率(物理	里試験)により設定	
			P2			
			C1			

(液状化検討対象層)

注記*1:液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法 (港湾技研資料No.869,平成9年6月) *2:FLIPの解析における解析精度向上に関する諸検討成果報告書(付録) (第2期FLIP研究会解析精度向上作業部会,2004.6)

表 4.2-13 設置変更許可申請書に記載されていない解析用物性値の設定根拠

(有効応力解析)

(非液状化層)

			埋戻土(粘性土)	基礎捨石及び被覆石
物理	密度	ρ	物理試験	
特性	間隙率	n	慣用値*1	
	動せん断弾性係数	G _{ma}	PS検層によるS波速度,密度に基づき 設定	
変形	基準平均有効拘束圧	σ _{ma} ,	G _{ma} に対応する値	慣用值*1
符性	ポアソン比	ν	慣用値*1	
	減衰定数の上限値	h max	動的変形特性に基づき設定	
強度	粘着力	с'	慣用値*1	
特性	内部摩擦角	φ'	慣用値*1	

注記*1:港湾構造物設計事例集(沿岸技術研究センター,平成19年3月)

表 4.2-14(1) 設置変更許可申請書に記載されていない解析用物性値の設定根拠

(有効応力解析)

(改良地盤)

	动伤长的			TFr Jr HW			
刘承旭政			逆T擁壁	多重鋼管	杭式擁壁	波返重力擁壁	· 其义-/1、作智
	種別(地盤種別	1)	改良地盤①, ②, ③ (薬液注入)	改良地盤①,②,③ 改良地盤④ 改良地盤⑤ (薬液注入) (薬液注入) (高圧噴射)			改良地盤⑦ (高圧噴射)
物理	密度	ρ	室内配合試験の物理試験を踏まえ, 原地盤である埋戻土の密度を設定	物理試験を踏まえ,原地盤である砂 礫層の密度を設定	物理試験を踏まえ、原地盤である埋 戻土の密度を設定	物理試験を踏まえ,原地盤である砂 礫層の密度を設定	室内配合試験の物理試験を踏まえ, 原地盤である埋戻土の密度を設定
特性	間隙率	n	室内配合試験の物理試験を踏まえ, 慣用値 ^{*1} を設定	物理試験を踏まえ,慣用値* ¹ を設定	物理試験を踏まえ,慣用値*1を設定	物理試験を踏まえ,慣用値 ^{*1} を設定	室内配合試験の物理試験を踏まえ, 慣用値 ^{*1} を設定
	動せん断弾性係数	G _{na}	設計S波速度,密度に基づき設定 設計S波速度は,室内配合試験及び 既往文献を踏まえて設定	原位置試験を踏まえ,目標S波速 度,密度に基づき設定	原位置試験を踏まえ,目標S波速 度,密度に基づき設定	原位置試験を踏まえ,目標S波速 度,密度に基づき設定	設計S波速度,密度に基づき設定 設計S波速度は,室内配合試験及び 既往文献を踏まえて設定
変形	基準平均有効拘束圧	σ "					
特性	ポアソン比	ν	慣用値*1				
	減衰定数の上限値	h max	室内配合試験の繰返し三軸試験を踏 まえ,原地盤である埋戻土のhmaxを 設定	繰返し三軸試験を踏まえ,原地盤で ある砂礫層のhmaxを設定	繰返し三輪試験を踏まえ,原地盤で ある埋戻土のhmaxを設定	繰返し三輪試験を踏まえ,原地盤で ある砂礫層のhmaxを設定	室内配合試験の繰返し三軸試験を踏 まえ,原地盤である埋戻土のhmaxを 設定
強度	粘着力	с	室内配合試験の三軸圧縮試験を踏ま え,設置変更許可申請に記載された 粘着力を設定	三軸圧縮試験を踏まえ,設計強度及 び文献* ² に基づき設定	三軸圧縮試験を踏まえ,設計強度及 び文献 ^{*2} に基づき設定	三軸圧縮試験を踏まえ,設計強度及 び文献* ² に基づき設定	室内配合試験の三軸圧縮試験を踏ま え,設計強度及び文献 ^{v2} に基づき設 定
度特性	内部摩擦角	φ	室内配合試験の三軸圧縮試験を踏ま え,設置変更許可申請に記載された 内部摩擦角を設定	三輪試験を踏まえ、原地盤である砂 礫層の内部摩擦角を設定	_	_	-

注記*1:液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法 (港湾技研資料No.869, 平成9年6月) *2:浸透固化処理工法技術マニュアル2010年版,沿岸開発技術研究センター

*3:地盤工学用語辞典(地盤工学会, 2006.3)

表 4.2-14(2) 設置変更許可申請書に記載されていない解析用物性値の設定根拠

(有効応力解析)

(改良地盤)

	1.1 de 11m	防波壁		
	对象施設	逆丁擁壁		
	種別(工法,地盤種別)	改良地盤⑧ (流動化処理工法)		
物 理	密度 ρ	室内試験の物理試験結果に基づいて, 密度を設定		
告 性	- 間隙率 n	室内試験の物理試験結果に基づいて, 間隙率を設定		
変形	弾性係数 E	室内試験の密度試験及び原位置試験のPS検層に基 づいて,弾性係数を設定		
形 特 性	ポアソン比 v	慣用値*		
<u>強</u> 度 特 性	粘着力 c	室内試験の三軸圧縮試験結果に基づいて, 粘着力を設定		
	内部摩擦角 φ'	室内試験の三軸圧縮試験結果に基づいて, 内部摩擦角を設定		

注記*:液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法 (港湾技研資料No. 869, 平成9年6月)

表 4.2-15 設置変更許可申請書に記載されていない解析用物性値の設定根拠

	対象施設	 取水槽
	種別 (工法, 地盤種別)	改良地盤⑦ (高圧噴射撹拌工法)
物理特性	密度 ρ	室内試験の物理試験結果に基づいて, 密度を設定
強度	初期せん断強度 _{て 0}	室内配合試験の三軸圧縮試験を踏まえ,設計強度及 び文献 ^{*2} に基づき設定
度特性	内部摩擦角 φ	_
変形	初期せん断弾性係数 G ₀	設計S波速度,密度に基づき設定 設計S波速度は,室内配合試験及び既往文献を踏ま えて設定
が 特 性	動ポアソン比 ν	- 慣用値 ^{*1}
減衰特性	減衰定数 h	室内配合試験の繰返し三軸試験を踏まえ, 原地盤である埋戻土のhmaxを設定

(全応力解析)

(改良地盤)

 注 | 注記*1:液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法 (港湾技研資料No.869, 平成9年6月)

*2:浸透固化処理工法技術マニュアル2010年版,沿岸開発技術研究センター

表 4.2-16 設置変更許可申請書に記載されていない解析用物性値の設定根拠

	(改	良北	1盤)
--	----	----	-----

		改良地盤 ①, ②	改良地盤 ③	改良地盤 ④	改良地盤 ⑤	改良地盤 ⑥	改良地盤 ⑦		
难即改在	粘着力 c'(kN/m ²)	三軸圧縮試験(せん断破壊・ひずみ軟化後の残留強さを用いる)							
残留强度	内部摩擦角 φ'(°)	三軸圧縮試験(せん断破壊・ひずみ軟化後の残留強さを用いる)							
引張強度	σ t (kN/m ²)	圧裂引張試験							

表 4.2-17(1) 設置変更許可申請書に記載されていない解析用物性値の設定根拠

(岩盤(1,2号機エリア))

		岩盤1速度層	岩盤2]速度層	岩盤3速度層	岩盤4速度層	岩盤5速度層	岩盤6速度層	
P波速度	Vp (m/s)	PS検層						
S波速度	Vs (m/s)		PS検層					
単位体積重量	γ (kN/m ³)		密度試験					
動ポアソン比	u d	PS検層						
減衰定数	h	慣用値						

表 4.2-17(2) 設置変更許可申請書に記載されていない解析用物性値の設定根拠 (岩盤(3 号機エリア))

		岩盤②速度層	岩盤③速度層	岩盤④速度層	岩盤⑤速度層	岩盤⑥速度層	岩盤⑦速度層
P波速度	Vp (m/s)	PS検層					
S波速度	Vs (m/s)		PS検層				
単位体積重量	γ (kN/m ³)		密度試験				
動ポアソン比	u d	PS検層					
減衰定数	h	慣用値					

表 4.2-18 設置変更許可申請書に記載されていない解析用物性値の設定根拠

(全応力解析)

(埋戻土)

種別(地盤種別)		重另门)	埋戻土	
物 理 特 性	密度	ho (g/cm ³)	密度試験	
強度	初期せん断強度	$\tau_0 \ (kN \swarrow m^2)$	大型三軸圧縮試験	
特性	内部摩擦角	ϕ (°)	大型三軸圧縮試験	
動的変形特性	初期せん断弾性係数	G_0 (kN/m ²)	動的大型三軸圧縮試験	
	動ポアソン比	ν _d	慣用値*	
減衰特性	減衰定数	h	動的大型三軸圧縮試験	

注記*:原子力発電所の基礎地盤及び周辺斜面の安定性評価技術<技術資料> ((社)土木学会,2009年)を参考に設定

表 4.2-19 設置変更許可申請書に記載されていない解析用物性値の設定根拠 (全応力解析)

(砕石)

対象施設			取水管	
種別(地盤種別)			砕石	
物理特性	物理特性 密度 $ ho$ (g/cm^3)		密度試験	
	動せん断弾性係数	G_d (kN/m ²)	繰返し三軸試験	
期的変形特性	動ポアソン比	ν	慣用値*	
減衰特性	減衰定数の上限値	h _{max}	繰返し三軸試験	

注記*:埋立地の液状化対策ハンドブック(改訂版)(沿岸開発技術研究センター,平成9年)

表 4.2-20 設置変更許可申請書に記載されていない解析用物性値の設定根拠

	mm、主人 ····································			
	材料	単位体積重量 (kN∕m ³)	ポアソン比	ヤング係数 (N/mm ²)
MMR	$(f'_{ck} = 15.6 N/mm^2)$			
MMR	(f' _{ck} =18.0N/mm ²)			
MMR	(f' _{ck} =24.0N/mm ²)	Len. 177 /-t- *		
埋戻コンクリート	$(f'_{ck} = 18.0 \text{N/mm}^2)$	1頁用1個		[[] 〕 [[] 〕 [] 〕 [] 〕
置換コンクリート	$(f'_{ck} = 15.6 \text{N/mm}^2)$			
置換コンクリート	(f' _{ck} =24.0N/mm ²)			

(MMR, 埋戻コンクリート及び置換コンクリート)

表 4.2-21 設置変更許可申請書に記載されていない解析用物性値の設定根拠 (MMR及び置換コンクリート)

材料		せん断強度 (N/mm ²)	引張強度 (N∕mm ²)
MMR	$(f'_{ck} = 15.6 N/mm^2)$		
MMR	$(f'_{ck} = 18.0 \text{N/mm}^2)$		
MMR	(f' _{ck} =24.0N/mm ²)	設計基準強度を踏まえ, 文献 ^{*1} より設定	設計基準強度を踏まえ, 文献 ^{*2} より設定
置換コンクリート	$(f'_{ck} = 15.6 N/mm^2)$		
置換コンクリート	$(f'_{ck} = 24.0 \text{N/mm}^2)$		

注記*1:コンクリート標準示方書[ダムコンクリート編]((社)土木学会,2013年制定)

*2:コンクリート標準示方書[構造性能照査編]((社)土木学会,2002年制定)

4.2.1 有効応力解析に用いる解析用物性値

建物・構築物及び土木構造物の動的解析において,地震時における地盤の有効応 力の変化に応じた影響を考慮する必要がある場合は,有効応力解析を実施する。

地盤の液状化強度特性は、敷地の原地盤における代表性及び網羅性を踏まえたう えで実施した液状化強度試験結果よりも保守的な「有効応力解析(FLIP)の簡 <mark>易パラメータ設定法」(以下「</mark>簡易設定法」という。)により決定される液状化強 度を用いて設定する。

設置変更許可申請書における解析用物性値は全応力解析用に設定しているため, 液状化検討対象層の物理的及び力学的特性から,各層の有効応力解析に必要な物性 値を設定する。

また,有効応力解析に用いる岩盤の解析用物性値は,設置変更許可申請書(添付 書類六)に記載した値に基づき設定する。岩盤の速度構造については,後述の「(6. 地盤の速度構造)」に示す。

なお,地盤の物理的及び力学的特性は,日本産業規格(JIS)又は地盤工学会 (JGS)等の基準に基づいた試験の結果及び文献等を踏まえ設定することとした。

(1) 液状化評価方針の概要

液状化評価のフローを図 4.2-1 に示す。

液状化評価については「道路橋示方書(V耐震設計編)・同解説((社)日本道 路協会,H24.3)」(以下「道路橋示方書V」という。)及び「港湾構造物設計事例 集(沿岸技術研究センター,平成19年3月)」(以下「港湾構造物設計事例集」 という。)を基本とするが,液状化評価の対象外となっている土層についても,液 状化の有無を確認して保守的な評価を実施する。

液状化強度試験に基づいて,地震時の地盤の状態を『液状化』又は『繰返し軟化 (サイクリックモビリティ含む)』,若しくは『非液状化』と判定する。

液状化強度特性は、「港湾の施設の技術上の基準・同解説(国土交通省港湾局、 2007 年版)」(以下「港湾基準」という。)に基づく詳細な計算例をまとめた「港 湾構造物設計事例集」に準拠し、簡易設定法により設定する。なお、液状化強度試 験結果が繰返し軟化(サイクリックモビリティ含む)、若しくは非液状化となる土 層も、念のため液状化強度特性を設定して保守的な構造物評価を実施する。また、 地盤の液状化強度特性は、敷地の原地盤における代表性及び網羅性を踏まえたうえ で実施した液状化強度試験結果よりも保守的な簡易設定法により決定される液状 化強度を用いて設定する。

図 4.2-1 液状化評価のフロー

(2) 液状化評価対象層の抽出

表 3.1-1 に敷地の地質層序を示す。敷地の地質は,新第三紀中新世の堆積岩類 からなる成相寺層及び貫入岩類,並びにそれらを覆う被覆層から構成される。成相 寺層は海成層で,下位より下部頁岩部層,火砕岩部層及び上部頁岩部層に区分され る。

被覆層は, 崖錐・海底堆積物及び盛土からなる。崖錐・海底堆積物は主に礫混じ り砂質土及び礫混じり粘性土からなり,約2m~5mの厚さで,斜面中腹や裾部,あ るいは谷部等の傾斜面に分布する。また,盛土は1号機,2号機及び3号機建設時 の埋立地等に分布する。

敷地の被覆層である盛土は、埋戻土と埋戻土(粘性土)に分類している。

埋戻土は,発電所建設時の敷地造成において発生した新第三紀中新世の成相寺層 の岩砕が主体となっており,広く分布する。

埋戻土(粘性土)は,護岸建設時に,背面の止水性を担保するために幅 20m 程度 にわたり裏込めしたものである。図 4.2-2に被覆層のボーリング柱状図を示す。

敷地の被覆層である崖錐・海底堆積物は、砂礫層として分類している。

図 4.2-3 に発電所建設前の地形立体図を示す。1号機,2号機及び3号機の建 設に当たり,周辺の山を掘削して敷地を造成し,原子炉建物,取水槽等の施設を岩 盤上に設置した。敷地の前面(北側)に護岸を設置し,敷地造成において発生した 岩砕を主体とする埋戻土により埋戻した。なお,護岸背面の止水性を担保するため の埋戻土(粘性土)が1,2号機北側に分布し,砂礫層として分類した崖錐・海底 堆積物が1号機東側,3号機北側及び輪谷湾周辺において局所的に分布する。

対象設備周辺の地層の分布状況について図 4.2-4, 図 4.2-5 及び図 4.2-6 に 整理した。

埋戻土は、敷地全体においておおむね全域にわたって広範囲に分布する。

埋戻土(粘性土)は、1、2号機北側護岸背面にのみ分布する。

砂礫層は,1号機東側のEL 15m以下の敷地,3号機北側のEL 8.5m以下の敷地 及び輪谷湾周辺において局所的に分布する。

敷地内における購入地盤材料の使用箇所を図 4.2-7 に示す。取水管,3号機東 側護岸・岸壁,1,2号機北側護岸,防波堤等において,砕石,基礎捨石,被覆石 を使用している。

購入地盤材料は天然石材であり、粒度調整されたものである。

埋戻土(粘性土)は、護岸建設時に、背面の止水性を担保するために施工してい る。埋戻土(粘性土)の分布状況,試験に用いた試料の採取位置を図 4.2-8 に、 採取した埋戻土(粘性土)の写真を図 4.2-9 に示す。また、塑性図による粘性土 の分類を図 4.2-10 に示す。図 4.2-10 より、埋戻土(粘性土)は、土の液性限界・ 塑性限界試験(JIS A 1205)より、低液性限界の粘土(CL)に分類される。A線よ

り下側の場合はシルトに分類されるが, 埋戻土(粘性土)は塑性指数 Ip が大きいため粘土に分類される。

基礎捨石は、1,2号機北側護岸,防波堤等に使用している。寸法200mmから250mm程度の材料を使用しているため間隙が大きく、十分な透水性を有する。基礎 捨石の設置状況の写真を図4.2-11に示す。

被覆石は、1,2号機北側護岸等に使用している。寸法700mmから800mm程度の 材料を使用しているため間隙が大きく、十分な透水性を有する。被覆石の寸法及び 設置状況の写真を図4.2-12に示す。

敷地内で EL 15m 以下に分布する地盤材料のうち液状化判定を実施する地盤材料 の抽出結果を表 4.2-22 に示す。埋戻土(粘性土)は、粘土質であるため、液状化 判定の対象外とする。また、砕石、基礎捨石及び被覆石は、間隙が大きく、十分な 透水性を有するため、液状化判定の対象外とする。よって、埋戻土及び砂礫層を対 象として液状化判定を実施する。

埋戻土及び砂礫層を対象として、「道路橋示方書V」及び「港湾基準」に基づい て液状化評価対象層を抽出した。図4.2-13に「道路橋示方書V」の液状化評価対 象層の抽出フローを示す。また、図4.2-14に「港湾基準」の液状化判定に用いる 粒度分布図を示す。「道路橋示方書V」に基づき液状化評価対象層を抽出した結果、 液状化の判定を行う必要がある土層は砂礫層のみである。「港湾基準」に基づき液 状化評価対象層を抽出した結果、埋戻土及び砂礫層の粒径加積曲線が「液状化の可 能性あり」の範囲内に含まれないため、液状化の判定を行う必要がある土層はない。

「道路橋示方書V」では、50%粒径が10mm以下で、かつ、10%粒径が1mm以下 である土層について液状化評価対象層としているが、本評価では50%粒径が10mm を超過する、又は、50%粒径が10mm以下であっても10%粒径が1mmを超過する土 層についても、同様に抽出対象とする。また、「港湾基準」では、粒度による土の 分類を行い、粒径加積曲線が「液状化の可能性あり」の範囲内に含まれる土を液状 化評価対象層としているが、範囲以外に含まれる土についても同様に抽出対象とす る。これに伴い、埋戻土は、50%粒径が10mmを超過することから、液状化の判定 を行う必要がある土層として抽出した。

以上より,敷地内の液状化評価対象層として,被覆層の分布状況,「道路橋示方 書V」及び「港湾基準」に基づく液状化評価対象層の抽出結果(図4.2-15,図4.2 -16)を踏まえ,保守的に埋戻土及び砂礫層を抽出した。

図 4.2-2 被覆層のボーリング柱状図

注記*:航空レーザー測量で取得した2mメッシュのDEMデータに、空中写真により取得した旧地形のDEMデータを合成して作成したもの

図 4.2-3 発電所建設前の地形立体図

図 4.2-4 敷地の被覆層(平面図)

(a) 埋戻土

図 4.2-5(1) 敷地の地層分布状況(平面図)

(a) 3号機北側エリア分布図

 (b) 3号機東側エリア分布図
 図 4.2-6(1) 敷地の地層分布状況(断面図) 49

(c) 1, 2 号機北側エリア分布図図 4.2-6(2) 敷地の地層分布状況(断面図)

敷地平面図

(b) 1, 2号機北側護岸

図 4.2-8 埋戻土(粘性土)の分布状況及び試料採取位置

図 4.2-9 採取した埋戻土(粘性土)

図 4.2-11 基礎捨石の設置状況(防波堤)

被覆石の寸法(1,2号機北側護岸)

被覆石の設置状況(1,2号機北側護岸) 図 4.2-12 被覆石の寸法及び設置状況の写真

衣 4.2 ⁻²² 地盤材料の被扒化刊たの安告(EL 15m 以下)				
地盤材料	規格	分布場所・使用場所	液状化判定の要否	
埋戻土	-	・概ね全域に分布	粒径2mm未満の砂を含むため,道路橋示方書Vに基づ き液状化判定を実施する。	
埋戻土 (粘性土)	-	 ・1,2号機北側護岸 背面に分布 	粘土質であるため対象外とする(土の液性限界・塑性 限界試験(JIS A 1205)結果: I _p =27.3)。	
砂礫層 (崖錐・海 底堆積物)	_	 1号機東側に局所的に分布 3号機北側に局所的に分布 輪谷湾内に分布 	粒径2mm未満の砂を含むため,道路橋示方書Vに基づ き液状化判定を実施する。	
砕石	20~80mm (底部のみ5~20mm)	・取水管	粒径の大きい地盤材料であるため港湾基準の「液状化 の可能性あり」の範囲外であること,十分な透水性を 有することから,対象外とする。	
基礎捨石	200~250mm程度 (30kg/個以上)	 ・1,2号機北側護岸 ・3号機東側護岸・岸壁 	粒径の大きい地盤材料であるため港湾基準の「液状化 の可能性あり」の範囲外であること,十分な透水性を 有することから,対象外とする。	
被覆石	700~800mm程度 (1.5t/個)	 ・1,2号機北側護岸 	粒径の大きい地盤材料であるため港湾基準の「液状化 の可能性あり」の範囲外であること,十分な透水性を 有することから,対象外とする。	

表 4.2-22 地盤材料の液状化判定の要否(EL 15m以下)

地層名	50%粒径 (平均) (mm)	10%粒径 (平均) (mm)	細粒分含有率 (平均) (%)
埋戻土	16.5	_	_
砂礫層	9.1	0.0651	15.6

埋戻土の粒度による液状化判定

砂礫層の粒度による液状化判定 図 4.2-16 「港湾基準」に基づく抽出結果

- (3) 液状化強度試験試料採取位置とその代表性
- a. 液状化強度試験試料の採取方法 ロータリー式三重管サンプラーに加えて,液状化強度試験データ数を確実に増 やす観点から,表層試料採取により液状化強度試験試料を採取した。
- b. 液状化強度試験試料採取位置とその代表性

図 4.2-17 に敷地内の試料採取地点位置図を示す。

敷地内の液状化評価対象層として, 埋戻土及び砂礫層の分布状況から以下のと おり地点を選定し, 試料を採取して液状化強度試験を実施する。

埋戻土は3号機西側から1,2号機東側に広く分布している。このうち,地下 水位以下で埋戻土が厚く分布している護岸法線に沿った地点を広範囲に選定し, ロータリー式三重管サンプラーにより試料採取した(E-2~E-8)。なお, 埋戻土に対する液状化強度試験の位置及びデータ数について,代表性・網羅性の 確保及び保守的な液状化強度の設定の観点から,ロータリー式三重管サンプラー により液状化強度試験データが得られていない位置を選定し,表層試料採取を追 加実施した(A~E)。

砂礫層は局所的に分布していることから,分布箇所である3号機北側西端及び 1,2号機北側東端の地点を選定し,ロータリー式三重管サンプラーにより試料 採取した(E-1,E-7,E-8)。

ロータリー式三重管サンプラーにより,地表から岩盤まで不攪乱試料の採取を 実施した。供試体作製が可能な試料(巨礫の有無,必要高さ,自立性等)を確認 し,液状化強度試験を実施した。

併せて,近傍においてボーリング調査を実施し,標準貫入試験及び粒度試験用の試料採取を実施した。ロータリー式三重管サンプラーによる液状化強度試験実施箇所を図 4.2-18 に示す。

液状化強度試験箇所のボーリング柱状図・コア写真について, 「参考資料 12 液状化強度試験の詳細について」に示す。

図 4.2-17 液状化強度試験試料採取地点位置図

(b) 3号機東側エリア

(c) 1, 2号機北側エリア

図 4.2-18 ロータリー式三重管サンプラーによる液状化強度試験実施個所

敷地の被覆層(埋戻土)は敷地造成において発生した岩砕を主体とする材料に より埋戻した人工地盤であることから,埋戻土の粒径加積曲線となるように粒度 調整行い,敷地の埋立工事における施工管理基準値となるよう密度調整を行うこ とにより,人工地盤である敷地の被覆層(埋戻土)を再現した供試体を作製す る。図 4.2-19に表層採取試料による供試体作成方法を示す。

路盤材以深の埋戻土を対象として表層試料採取を実施した(A~E地点)。表 層試料採取による液状化強度試験実施箇所を図4.2-20に示す。また,表層試料 採取にあたり,巨礫を除いて採取した。図4.2-21に表層試料採取状況及び巨礫 の例を示す。

図 4.2-19 表層採取試料による供試体作成方法

図 4.2-20 表層採取試料による液状化強度試験実施個所

表層採取試料状況(A地点)

巨礫の例 図 4.2-21 表層試料採取状況及び巨礫の例 63

ロータリー式三重管サンプラーの試料採取位置の粒径加積曲線と同等になるよう,最大粒径 53mm として表層採取試料の粒度調整を実施した。粒度調整後の表層 採取試料の粒径加積曲線及び細粒分含有率を図 4.2-22 に示す。

表層採取試料の細粒分含有率の平均値は、ロータリー式三重管サンプラーの試 料採取位置の細粒分含有率の平均値及び平均値-1σ値の範囲内である。土の三軸 試験の供試体作製・設置方法(JGS 0520)に基づき,表層採取試料による供試体 を作製した。

表層採取試料の細粒分含有率

	細粒分含有率(%)
А	6.6/6.5
В	13.3
С	4.2
D	8.0
Е	6.9
平均值	7.6

ロータリー式三重管サンプラーの 試料採取位置の細粒分含有率

	細粒分含有率(%)
平均值	9.8
平均值-σ	4.7

図 4.2-22 表層採取試料とロータリー式三重管サンプラーの試料採取位置の粒径加積曲線 及び細粒分含有率 3 号機建設時の敷地の埋戻しに当たり、大型締固め試験により乾燥密度 ρ_d を算 出した(締固めエネルギー1.0E_c,乾燥密度 ρ_d =1.874g/cm³)。乾燥密度 ρ_d = 1.874g/cm³を踏まえ、礫補正後乾燥密度 ρ_d '=1.95g/cm³を算出し、施工管理基 準値とした。図 4.2-23 に締固めエネルギーと乾燥密度の関係図を示す。

礫補正後乾燥密度とは、粒径 53mm 以下の材料を対象に実施した大型締固め試験 結果に対し、53mm 以上の礫を含む実際の埋戻土の乾燥密度を算出するための補正 である。したがって、表層採取試料の最大粒径は 53mm であることから、表層採取 試料による供試体作製に当たっては、乾燥密度ρd=1.874g/cm³を目標値とした。

供試体作製は、土の三軸試験の供試体作製・設置方法(JGS 0520)に準拠して 実施した。試料を5層に分けてモールド(直径 100mm)に入れ、静的締固め法によ り作製した。

以上の方法により表層採取試料による供試体を作製し、土の繰返し非排水三軸 試験方法(JGS 0541)を実施した。

表 4.2-23 に表層採取試料による供試体の乾燥密度を示す。

図 4.2-23 締固めエネルギーと乾燥密度の関係図

	乾燥密度 (g/cm ³)		乾燥密度 (g/cm ³)
AI	1.866	C2	1.873
A2	1.877	C3	1.873
B①	1.868	C④	1.877
B②	1.871	D①	1.872
C①	1.875	E①	1.875

表 4.2-23 表層採取試料による供試体の乾燥密度

c. 液状化強度試験試料採取位置の代表性確認

液状化強度試験試料採取位置の代表性確認を目的に,液状化強度試験試料採取 位置と周辺調査位置を含めた敷地全体との比較,検討を行った。比較する指標と しては,N値,細粒分含有率を選定する。表 4.2-24 に各基準類における液状化 強度比 R_Lと基本物性の相関性を示す。

N値は,各基準類の液状化判定における液状化強度比 R_Lの算定式がいずれもN 値をパラメータとした式であり,また,有効応力解析(FLIP)の簡易設定法 にN値がパラメータとして用いられており,液状化強度比 R_Lとの相関が最も高い と考えられることから,指標として選定する。

細粒分含有率は、各基準類の液状化判定における液状化強度比 RL の算定式において、液状化強度比 RL を補正するパラメータとして用いられており、液状化強度 比 RL との相関が高いと考えられることから、指標として選定する。

各基準における設計で設定する地盤物性値のばらつきに対する考え方は、「地盤 工学会基準 JGS 4001:性能設計概念に基づいた基礎構造物等に関する設計原則 (2006)」や「港湾基準」、「道路橋示方書V」によると、平均値を原則とし、ば らつきを考慮する場合は変動係数等などに応じて設定するという考え方が示され ている。

液状化強度試験試料採取位置と周辺調査位置を含めた敷地全体とのN値等の比 較に際しては,各基準における地盤物性値のばらつきに対する考え方を参考に,

「平均値」及び平均値から標準偏差 σ を減じた「平均値-1 σ (以下「-1 σ 値」という)」について整理した。表 4.2-25 に各基準類における地盤物性値のばらつきに対する考え方を示す。

液状化強度試験を実施した箇所のうち,埋戻土及び砂礫層の液状化強度試験試 料採取位置と周辺調査位置を含めた敷地全体や防波壁近傍におけるN値や物理特 性(細粒分含有率)の比較を行い,代表性を確認した。図4.2-24に各土層の基 本物性の比較結果を示す。なお,各種試験は,JISに基づき実施した。

 $E-2 \sim E-8$ 地点の埋戻土は,敷地全体と比べて,N値及び細粒分含有率と もに,液状化強度試験試料採取位置の平均値及び-1 σ 値が,敷地全体のばらつき (±1 σ)の範囲内であることから,液状化強度試験試料採取位置は代表性を有し ていると評価した。また,埋戻土は敷地全体に分布するため,場所によって埋戻 土の性状が異なる懸念があることから,敷地の広範囲にわたって設置された防波 壁に着目して,液状化強度試験試料採取位置と3つの構造形式の防波壁近傍の基 本物性を比較したところ,N値及び細粒分含有率ともに,液状化強度試験試料採 取位置の平均値が,防波壁近傍のばらつき(±1 σ)の範囲内であることから,液 状化強度試験試料採取位置は代表性を有していると評価した。

E-1, E-7, E-8地点の砂礫層の細粒分含有率は,液状化強度試験試料 採取位置の平均値及び-1 σ 値が,敷地全体のばらつき(±1 σ)の範囲内であっ た。また,N値は,液状化強度試験試料採取位置の平均値は敷地全体のばらつき (±1 σ)の範囲内であり,液状化強度試験試料採取位置の-1 σ 値は敷地全体のば らつき(±1 σ)の範囲から僅かに外れているもののおおむね一致していることか ら,液状化強度試験試料採取位置は代表性を有していると評価した。なお,砂礫 層は敷地の局所的な範囲で確認されており,液状化強度試験試料採取位置と敷地 全体の調査位置とは近接している。

表 4.2-24 各基準類における液状化強度比 RLと

基本物性の相関性

甘油稻友	液状化強度比R _L の算定	液状化強度比RLの補正
	に用いる主物性	に用いる物性
道路橋示方書・同解説 V 耐震設計編,日本道路協会,H24 (下水道施設の耐震対策指針と解説,日本下水道協会,H18) (河川砂防技術基準(案)同解説 設計編,日本河川協会編,H9) (高圧ガス設備等耐震設計指針,高圧ガス保安協会,H12)		細粒分含有率Fc
港湾の施設の耐震設計に係る当面の措置(その2),日本港湾協会,H19 (部分改訂,H24)	N値	細粒分含有率Fc
建築基礎構造設計指針,日本建築学会,H13 (水道施設耐震工法指針・同解説,日本水道協会,H9)	(有効上載圧を考慮した 補正を行う)	細粒分含有率Fc
鉄道構造物等設計標準・同解説 耐震設計, (財)鉄道総合技術研究所, H24		細粒分含有率Fc 平均粒径D ₅₀
港湾の施設の技術上の基準・同解説,日本港湾協会,H19 埋立地の液状化対策ハンドブック(改訂版),運輸省港湾局監修,H9		細粒分含有率Fc

表 4.2-25 各基準類における地盤物性値のばらつきに対する考え方

基準類名	地盤物性値のばらつきに対する考え方
	・設計に用いる「特性値」の決定にあたっては、過去の経験にもとづき、地盤パラメータのばらつきや単純 化したモデルの適用性に十分留意しなければならない。
地盤工学会基準 JGS4001	 この特性値は、<u>原則として導出値の平均値(期待値)</u>である。この平均値は単なる機械的な平均値では なく、統計的な平均値の推定誤差を勘案したものでなければならない。
	 ・特性値を示すにあたっては、地盤の特性を記述するために、特性値に加えて、導出値のばらつきの指標 (たとえば標準誤差や変動係数)を含めることが望ましい。
	・性能照査に用いる地盤定数の設計用値は、原則として地盤工学会基準JGS4001に基づき、推定する。
港湾基準	 ・地盤定数の代表値である特性値は、データ数が十分かつ導出値のばらつきが小さい場合には、原則とし て導出値の平均値をもって算定することができる。ただし、データ数が不足している場合(10個未満)及 び導出値のばらつきが大きい場合には、<u>導出値の平均値を補正した上で、特性値を設定する</u>必要がある。
	・特性値は、 <u>導出値のばらつきに関する補正係数b1を標準偏差として定義される変動係数に応じて設定す</u> <u>る</u> ことにする。
道路橋示方書	 ・地盤は複雑でばらつきの大きい材料であるが、設計に用いる地盤定数は、基礎に作用する荷重に対して、 その条件下で最も高い確率で起こり得る基礎の挙動を推定するものである。したがって、地盤定数は、計 算式の精度や特性を考慮したうえで、当該地盤の平均的な値と考えられるものを求めることが原則である。
	 ・自然地盤から得られる計測データは多様で、しかもばらつくのがふつうである。データのばらつきだけでなく、データ数を合理的に評価して設計に用いる地盤定数を定める必要がある。

図 4.2-24(1) 埋戻土の液状化強度試験試料採取位置と 敷地全体の基本物性比較(N値)

図 4.2-24(2) 埋戻土の液状化強度試験試料採取位置と 敷地全体の基本物性比較(細粒分含有率)

図 4.2-24(3) 埋戻土の液状化強度試験試料採取位置と 防波壁近傍の基本物性比較(N値)

図 4.2-24(4) 埋戻土の液状化強度試験試料採取位置と 防波壁近傍の基本物性比較(細粒分含有率)

図 4.2-24(5) 砂礫層の液状化強度試験試料採取位置と 敷地全体の基本物性比較(N値)

図 4.2-24(6) 砂礫層の液状化強度試験試料採取位置と 敷地全体の基本物性比較(細粒分含有率)

- (4) 液状化強度試験結果と液状化強度特性の設定
- a. 液状化強度試験方法

地盤工学会では,地盤の液状化強度特性を求めるための繰返し非排水三軸試験 方法(JGS 0541)(地盤工学会,H21)が規定されている。実務的には,地盤の液 状化強度特性を求める試験方法として,繰返し非排水三軸試験のほかに,中空円 筒供試体による繰返しねじりせん断試験等が用いられる。(安田,H3)

図 4.2-25 に一般的な液状化強度試験方法の例を,図 4.2-26 に液状化強度試験結果の例を示す。

繰返し非排水三軸試験では,等方に拘束圧をかけた状態で軸方向に外力を繰返 し与えて液状化させるので,圧縮側と引張側で応力経路やひずみの生じ方が異な る。一方,繰返しねじりせん断試験では,円周方向に回転させるように外力を加 える。原地盤の拘束圧に近い異方応力状態での試験も可能である。また,応力経 路も原地盤に近い挙動となる。

ただし,実務では装置や操作が比較的容易であり,実績の多い繰返し非排水三 軸試験が用いられることが多い。また,繰返しねじりせん断試験では中空の円筒 状の供試体を用いるので,粒径が大きい試料には適用が困難である。

以上を踏まえ, 埋戻土及び砂礫層を対象とした液状化強度試験を実施するに当 たり, 繰返し非排水三軸試験を採用した。

図 4.2-25 一般的な液状化強度試験方法の例(吉田, H22)

図 4.2-26 液状化強度試験結果の例 [上図:応力-ひずみ関係,下図:応力経路] (土木学会,H15)

実施した繰返し非排水三軸試験の概要を図 4.2-27 に示す。

土の繰返し非排水三軸試験方法(JGS 0541-2009)を参考に実施した。なお、供 試体はロータリー式三重管サンプラー及び表層試料採取により採取した試料とした。

【試験概要】

- ・供試体寸法 : 外径 88mm, 高さ 176mm
- ・載荷波形 :正弦波(0.1Hz)
- ・ 拘束圧 : 供試体平均深度の有効土被り圧を考慮して設定
- ・両振幅軸ひずみ10%に達するまで試験を実施する。
- ・所定の両振幅軸ひずみ(1,2,5,10%)及び過剰間隙水圧比 0.95の繰返し回数を評価。

図 4.2-27 繰返し非排水三軸試験の概要

b. 液状化強度試験結果の分類に対する基本的考え方

レベル2地震動による液状化研究小委員会活動成果報告書(土木学会,H15)では、地盤の液状化及びそれに関連する事象の定義として、以下のように記載されている。図4.2-28に地盤の強度とダイレイタンシー特性の概要を示す。 【液状化】

地震の繰返しせん断力などによって,飽和した砂や砂礫などの緩い非粘性土からなる地盤内での間隙水圧が上昇・蓄積し,有効応力がゼロまで低下し液体状となり,その後地盤の流動を伴う現象。

【サイクリックモビリティ】

繰返し載荷において土が「繰返し軟化」する過程で,限られたひずみ範囲では せん断抵抗が小さくなっても、ひずみが大きく成長しようとすると、正のダイレ イタンシー特性のためにせん断抵抗が急激に作用し、せん断ひずみの成長に歯止 めがかかる現象。主に、密な砂や礫質土、過圧密粘土のように正のダイレイタン シー特性が著しい土において顕著に現れる。

【繰返し軟化】

繰返し載荷による間隙水圧上昇と剛性低下によりせん断ひずみが発生し、それ が繰返し回数とともに徐々に増大するが、土の持つダイレイタンシー特性や粘性 のためにひずみは有限の大きさにとどまり、大きなひずみ範囲にいたるまでの流 動は起きない。

これらの事象のうちサイクリックモビリティは、その現象の違いから一般的に液 状化とは区別されている(表 4.2-26 参照)。以下に既往文献におけるサイクリ ックモビリティの記述を示す。また、図 4.2-29 及び図 4.2-30 に緩い砂と密な

砂の液状化強度試験結果の比較を示し,液状化とサイクリックモビリティの違い を整理した。

- ・サイクリックモビリティとは、砂などの繰返し載荷において、有効拘束圧が ゼロに近づいてから、載荷時にせん断剛性の回復、除荷時に有効応力の減少 を繰り返していくが、ひずみは有限の大きさにとどまる現象であり、液状化 とは区別して用いられることがある。(地盤工学会、H18)
- ・地盤の液状化は、緩い砂地盤が繰り返しせん断を受け、せん断振幅が急増し、地盤全体が泥水状態となり、噴砂や噴水を伴うことが多いので、現象的にサイクリックモビリティとは異なる。(井合、H20)
- ・サイクリックモビリティにおいて、有効応力がゼロになるのは、せん断応力がゼロになる瞬間だけであり、せん断応力が作用している間は有効応力が存在するので、間隙水圧比が100%に達した後でも、繰返しせん断に対して相当な剛性を保持する。(吉見、H3)
- 密詰めの場合には大ひずみは生じない。一時的に有効拘束圧が0になって
 も、その後にせん断力を加えると負の過剰間隙水圧が発生して有効拘束圧が
 増加(回復)し、有限の小さなひずみ振幅しか発生しない。この現象を"サイクリックモビリティー"と呼んで液状化と区別することもある。(安田、H3)

これらの知見を踏まえて,液状化試験結果を,「液状化」,「繰返し軟化 (サイクリックモビリティ含む)」及び「非液状化」の3つに大別することと した。

図 4.2-28 地盤の強度とダイレイタンシー特性の概要

判定項目	液状化	繰返し	、軟化 サイクリック モビリティ	非液状化
 ・間隙水圧が上昇・蓄積する。 (過剰間隙水圧比95%を超える。) 	0	0	0	×
 有効応力がゼロまで低下する。 	0	×	0	×
 液体状となり流動する。 (ひずみが急増する。) 	0	×	×	×
 正のダイレイタンシー特性により せん断抵抗が作用する。 (有効応力が回復する。) 	×	0	0	0

表 4.2- <mark>2</mark> 6	液状化強度試験結果の分類

○:該当する ×:該当しない

図 4.2-29 緩い砂の液状化強度試験結果

図 4.2-30 密な砂の液状化強度試験結果

c. 液状化強度試験結果の分類

埋戻土及び砂礫層の液状化強度試験結果のまとめを表 4.2-27 及び表 4.2-28 に示す。液状化強度試験結果の詳細については、「参考資料 12 液状化強度試験 の詳細について」に示す。

埋戻土の試験結果は過剰間隙水圧比が上昇・下降を繰返し、上昇時に1.0に近 づき(0.95を上回り), せん断ひずみは緩やかに上昇する。また、有効応力は保 持している、若しくは減少するがせん断変形時の正のダイレイタンシー特性によ り回復した。一方、E-4'地点及びD地点では過剰間隙水圧比が0.95を上回ら なかった。これらの状況から、埋戻土(掘削ズリ)は非液状化、若しくは繰返し 軟化(サイクリックモビリティ含む)であると判断した。

供試体直径の1/5を超える礫を含む供試体については、土の三軸試験の供試体作製・設置方法(JGS 0520)を満足しないため、試験結果を参考値とし、以降の評価には採用しない。埋戻土の液状化強度試験結果のうち、供試体直径の1/5を超える礫を含む供試体について、液状化試験後の写真を表 4.2-29 に示す。

砂礫層の試験結果は過剰間隙水圧比が上昇・下降を繰返し,上昇時に1.0に近づき(0.95を上回り),せん断ひずみは緩やかに上昇する。また,有効応力は保持している,若しくは減少するがせん断変形時の正のダイレイタンシー特性により回復した。これらの状況から,砂礫層は繰返し軟化(サイクリックモビリティ含む)であると判断した。

これらの区分を整理して,表 4.2-30 に示す。

すべての土層で、液状化強度試験結果は繰返し軟化(サイクリックモビリティ 含む)あるいは非液状化を示している。このことは、50%粒径が10mm超過、又 は、10%粒径が1mm超過である、粗粒で均等係数が低い礫質土では透水係数が高 く液状化しにくいという「道路橋示方書V」の記載に整合する。

埋戻土及び砂礫層は液状化を示さず、「道路橋示方書V」の液状化判定法(F L法)が適用できないと考えられることから、埋戻土について、液状化強度試験 が基準地震動Ss相当の地盤の状態を模擬していることを確認する。基準地震動 Ssに対する液状化強度試験の妥当性確認の結果について、参考18に示してお り、液状化強度試験は基準地震動Ssをおおむね再現できていると判断した。

表 4.2-27(1) 液状化強度試験結果のまとめ

(埋戻土, ロータリー式三重管サンプラー)

	E-2		E-3			
			埋痕	 実土		
試料番号	S2-9*2	S2-10	S2-14-1*2	S3-9-1*2	S3-9-2*2	S3-11* ²
過剰間隙水圧比95%を超えない。*1	×	×	×	×	×	×
有効応力がゼロまで低下しない。	×	×	×	0	0	0
液体状となり流動しない。(ひずみ が急増しない。)	0	0	0	0	0	0
正のダイレイタンシー特性によりせ ん断抵抗が作用する。(有効応力が 回復する。)	0	0	0	0	0	0
現象の整理	サイクリック モヒ゛リティ	サイクリック モヒ゛リティ	サイクリック モヒ゛リティ	繰返し 軟化	繰返し 軟化	繰返し 軟化

		E-	E-5			
			埋痕	旲土		
試料番号	S4-5①*2	S4-5②*2	S4-6	S4-8-2*2	S5-1	S5-3*2
過剰間隙水圧比95%を超えない。*1	×	×	0	0	×	×
有効応力がゼロまで低下しない。	0	0	0	0	0	0
液体状となり流動しない。(ひずみ が急増しない。)	0	0	0	0	0	0
正のダイレイタンシー特性によりせ ん断抵抗が作用する。(有効応力が 回復する。)	0	0	0	0	0	0
現象の整理	繰返し 軟化	繰返し 軟化	非液状化	非液状化	繰返し 軟化	繰返し 軟化

	E-6			E-7		
			埋痕	- 灵土		
試料番号	S6-1-1*2	S6-1-2*2	S6-3①*2	S7-3①	\$7-33 ^{*2}	S7-3④*2
過剰間隙水圧比95%を超えない。*1	×	×	×	×	×	×
有効応力がゼロまで低下しない。	×	0	×	0	0	0
液体状となり流動しない。(ひずみ が急増しない。)	0	0	0	0	0	0
正のダイレイタンシー特性によりせ ん断抵抗が作用する。(有効応力が 回復する。)	0	0	0	0	0	0
現象の整理	サイクリック モヒ [°] リティ	繰返し 軟化	サイクリック モヒ゛リティ	繰返し 軟化	繰返し 軟化	繰返し 軟化

		E-8	
		埋戻土	
試料番号	S8-2*2	S8-43*2	S8-4④*2
過剰間隙水圧比95%を超えない。*1	×	×	×
有効応力がゼロまで低下しない。	×	0	×
液体状となり流動しない。(ひずみ が急増しない。)	0	0	0
正のダイレイタンシー特性によりせ ん断抵抗が作用する。(有効応力が 回復する。)	0	0	0
現象の整理	サイクリック モヒ [°] リティ	繰返し 軟化	サイクリック モヒ゛リティ

注記*1:JGS 0541-2009において過剰間隙水圧比0.95を液状化の目安としている。 *2:供試体直径の1/5を超える礫を含む一部の供試体も試験を実施し,液状化判定の参考とするが,評価には採用しない。

表 4.2-27(2) 液状化強度試験結果のまとめ

(埋戻土,表層試料採取)

	А		В		С	
		埋戻土				
試料番号	AD	A(2)	B①	B(2)	CI	C2
過剰間隙水圧比95%を超えない。*	×	0	×	0	×	×
有効応力がゼロまで低下しない。	×	0	×	0	×	×
液体状となり流動しない。(ひずみ が急増しない。)	0	0	0	0	0	0
正のダイレイタンシー特性によりせ ん断抵抗が作用する。(有効応力が 回復する。)	0	0	0	0	0	0
現象の整理	サイクリック モヒ゛リティ	非液状化	サイクリック モヒ [°] リティ	非液状化	サイクリック モヒ [°] リティ	サイクリック モヒ [°] リティ

	(C		Е
		埋痕	灵土	
試料番号	C3	C④	DI	E①
過剰間隙水圧比95%を超えない。*	×	×	0	×
有効応力がゼロまで低下しない。	×	×	0	×
液体状となり流動しない。(ひずみ が急増しない。)	0	0	0	0
正のダイレイタンシー特性によりせ ん断抵抗が作用する。(有効応力が 回復する。)	0	0	0	0
現象の整理	サイクリック モヒ゛リティ	サイクリック モヒ゛リティ	非液状化	サイクリック モヒ゛リティ

注記*: JGS 0541-2009において過剰間隙水圧比0.95を液状化の目安としている。

表 4.2-28 液状化強度試験結果のまとめ

(砂礫層)

		E-1					
			砂藏	樂層			
試料番号	S1-23-3①*2	S1-23-3②	S1-24	S1-25*2	S1-26*2	S7-15	
過剰間隙水圧比95%を超えない。*1	×	×	×	×	×	×	
有効応力がゼロまで低下しない。	0	0	0	0	×	0	
液体状となり流動しない。(ひずみ が急増しない。)	0	0	0	0	0	0	
正のダイレイタンシー特性によりせ ん断抵抗が作用する。(有効応力が 回復する。)	0	0	0	0	0	0	
現象の整理	繰返し 軟化	繰返し 軟化	繰返し 軟化	繰返し 軟化	サイクリック モヒ゛リティ	繰返し 軟化	

	E-7			E-8		
		砂礫層				
試料番号	S7-16①*2	S7-16②	S7-17	S8-23-1	S8-24①	S8-24②
過剰間隙水圧比95%を超えない。 *1	×	×	×	×	×	×
有効応力がゼロまで低下しない。	×	×	0	0	×	×
液体状となり流動しない。(ひずみ が急増しない。)	0	0	0	0	0	0
正のダイレイタンシー特性によりせ ん断抵抗が作用する。(有効応力が 回復する。)	0	0	0	0	0	0
現象の整理	サイクリック モヒ [°] リティ	サイクリック モヒ゛リティ	繰返し 軟化	繰返し 軟化	サイクリック モヒ゛リティ	サイクリック モヒ゛リティ

	E-8				
		砂礫層			
試料番号	S8-25①*2	S8-25②	S8-253		
過剰間隙水圧比95%を超えない。 *1	×	×	×		
有効応力がゼロまで低下しない。	0	0	0		
液体状となり流動しない。(ひずみ が急増しない。)	0	0	0		
正のダイレイタンシー特性によりせ ん断抵抗が作用する。(有効応力が 回復する。)	0	0	0		
現象の整理	繰返し 軟化	繰返し 軟化	繰返し 軟化		

注記*1:JGS 0541-2009において過剰間隙水圧比0.95を液状化の目安としている。 *2:供試体直径の1/5を超える礫を含む一部の供試体も試験を実施し,液状化判定の参考とするが,評価には採用しない。

表 4.2-<mark>2</mark>9 埋戻土の液状化強度試験結果 (供試体直径の1/5を超える礫を含む供試体)

表 4.2-30 液状化強度試験結果の分類

対象層	埋戻土	砂礫層		
液状化試験の状況	 過剰間隙水圧比が0.95を上回るが、有効応力は0にならない。なお、一部の供試体では、過剰間隙水圧比が0.95を下回る。 有効応力は減少するが、回復する。 ひずみが緩やかに上昇する。 	 過剰間隙水圧比が0.95を上回るが、 有効応力は0にならない。 有効応力は減少するが、回復する。 ひずみが緩やかに上昇する。 		
試験結果の分類	 試験結果は、非液状化又は繰返し軟化(サイクリックモビリティ含む)であり、液状化ではない。 有効応力は維持又は回復するため、支持力が期待できる。 	 試験結果は、繰返し軟化(サイクリックモビリティ含む)であり、液状化ではない。 有効応力は維持又は回復するため、支持力が期待できる。 		
基準地震動Ssに対する 液状化判定	基準地震動Ssに対する液状化試験の妥当性確認			

液状化強度試験結果(埋戻土)による液状化強度曲線を図 4.2-31 に示す。液 状化強度曲線は,試験結果から得られる近似曲線が試験結果の下限値を通るよう に保守的に設定する。

表層採取試料による供試体は、人工地盤である敷地の被覆層(埋戻土)を再現 するため粒度調整及び密度調整を行い作製した。一方、敷地の埋立工事から1, 2号機エリアで30年以上、3号機エリアで10年以上経過しており、被覆層(埋 戻土)は経年的な圧密を受けていることから、液状化強度試験結果①(ロータリ ー式三重管サンプラー)は液状化強度試験結果②(表層試料採取)の上側に位置 する。

上記と同様に,液状化強度試験結果(砂礫層)による液状化強度曲線を図 4.2-32 に示す。

図 4.2-32 砂礫層の液状化強度曲線

83

d. 有効応力解析の液状化強度特性の設定方針

「港湾基準」では,有効応力解析(FLIP)に使用する地盤の物性に関する パラメータの設定方法について,原位置で行われた詳細な土質データを用いて検 討することを基本としているが,簡易設定法による方法も明記されている。

簡易設定法は、「港湾基準」に基づく詳細な計算例をまとめた「港湾構造物設計事例集」に準拠し、液状化強度比 R_Lと相関が高いN値、有効上載圧及び細粒分含有率を用いて、有効応力解析(FLIP)の解析理論に則った液状化強度特性を設定することができる。

有効応力解析(FLIP)は、解析において土粒子と間隙水の両方を取り扱う ことによって、過剰間隙水圧の上昇を模擬できるとともに、過剰間隙水圧の上昇 に伴う土要素の剛性及び強度の低下、すなわち液状化現象を模擬することができ る解析コードである。更に、地盤の液状化に伴う構造物の変形等、地盤と構造物 の相互作用を模擬することができる。

有効応力解析(FLIP)で用いる有効応力モデルのパラメータのうち,液状 化強度特性(過剰間隙水圧の発生)を設定するパラメータを表 4.2-31 に示す。

表 4.2-<mark>3</mark>1 有効応力解析(FLIP)で用いる有効応力モデルの主なパラメータ

分類	モデルパラメータ	
液状化特性	$\phi_{ m p}$	変相角
	w ₁	過剰間隙水圧上昇の全体を規定するパラメータ
	\mathbf{p}_1	過剰間隙水圧上昇の前半を規定するパラメータ
	p_2	過剰間隙水圧上昇の後半を規定するパラメータ
	c_1	液状化強度の下限値を規定するパラメータ
	S_1	液状化の終局状態を規定するパラメータ

液状化強度特性を設定するパラメータは,繰返し非排水三軸試験結果を踏ま え,FLIPで試行的な繰返し計算を行い,全てのせん断応力比における整合性 を確認して設定する方法が標準的とされている。

一方,簡易設定法は標準的な液状化パラメータ設定法を基に,これらのパラメ ータを,通常の地盤調査で比較的入手しやすい標準貫入試験のN値等と関連付け て設定する方法である。

簡易設定法では,原位置のN値及び有効上載圧より求まる等価N値をもとに簡 易的に求めた液状化強度曲線が,FLIPを用いた繰返し三軸試験のシミュレー ション結果に合うように求める。その液状化パラメータのうち p2 については,以 下の式で算出する。 $(N)_{0.66} = (N-1.828(\sigma_v'-0.66)) / (0.399(\sigma_v'-0.66)+1)$ $N_a = (1/0.66) 0.5 \times (N_{0.66} + dNt)$ $p_2 = -0.0166N_a + 1.215$ ここに、 $(N)_{0.66}$:等価N値 $\sigma_v': 有効上載圧$

注記:dNt は森田ら(1997)の図 4.2-33 から求める<mark>。</mark>

図 4.2-33 細粒分含有率に応じた補正N値の増分値

w₁, c₁については,最新の研究成果に基づき図 4.2-34 から算出する。なお, 変相角 φ_p=28 度, p₁=0.5, s₁=0.005 については,「液状化による構造物被害予測 プログラムFLIPにおいて必要な各種パラメタの簡易設定法(森田ら)」に基 づき固定値とする。

図 4.2-34 等価 N 値と液状化パラメータ w1 及び c1 の関係

標準貫入試験(JIS A 1219)*で求めたN値については,以下のとおり扱うこと により,保守的に液状化強度特性を設定する。N値の評価概要図を図 4.2-35 に示 す。

①N値=50以上:非常に密な地盤であるため、液状化強度特性の設定に使用しない。

②N値=30以上:密な地盤であるため、保守的に補正し、以下のとおり扱う。

- ・10cm 毎の打撃回数の最小値を3倍した値とし、その値が30以上の場合、結果 を液状化強度特性の設定に使用しない。
- ・10cm 毎の打撃回数の最小値を3倍した値とし、その値が30未満の場合、結果 を液状化強度特性の設定に使用する。
- ③N値=30未満:液状化強度特性の設定にそのまま使用する。
- 注記*:標準貫入試験(JIS A 1219)は、標準貫入試験用サンプラーを動的貫入 することによって原位置における地盤の硬軟、締まり具合又は土層の構 成を判定するためのN値を得るために行う。試験は、質量 63.5kg のハン マーを 76cm の高さから自由落下させ、標準貫入試験用サンプラーを打ち 込む。N値は、標準貫入試験用サンプラーを 30cm 打ち込むために必要な 打撃回数である。

図 4.2-35 N値の評価概要図(②N値=30以上)

	打撃回数		数	N値	N店(湖正)	〒/冊25日
		No	- N-	(JIS A 1219)	N1世(1冊止) (旱小店の2位)	
IN1	IN2	IN3	$(N_1 + N_2 + N_3)$	(取小順の31日)	(フ凹)	
	50	-	-	50	-	使用しない
1	17	33	-	50	-	使用しない
	17	11	22	50	-	使用しない
	15	12	18	45	36	使用しない
	15	9	18	42	27	27
3	8	10	5	23	-	23

表 4.2-<mark>3</mark>2 簡易設定法におけるN値の考え方

上述の方法等で求まる液状化パラメータに基づき, FLIPにおいて各せん断 応力比に対する繰返し回数を計算すると,図4.2-36及び図4.2-37に示す簡易 設定法に基づく液状化強度曲線が設定される。なお,敷地全体としての評価を行 うことにより代表性・網羅性を確保する観点から,埋戻土及び砂礫層のN値及び 細粒分含有率については,敷地全体の平均値を用いる。

88

簡易設定法により設定された液状化強度特性は、液状化強度試験結果下限値の 液状化強度特性よりも保守的であることを確認する。

図 4.2-38 及び図 4.2-39 に簡易設定法による液状化強度曲線と液状化強度試験結果による液状化強度曲線を示す。

簡易設定法により設定した液状化強度曲線(埋戻土)は、液状化強度試験結果 ①(ロータリー式三重管サンプラー)及び液状化強度試験結果②(表層試料採 取)による液状化強度曲線の下側に位置する。そのため、簡易設定法による液状 化強度比 R_L(0.26)は、液状化強度試験①(ロータリー式三重管サンプラー)に よる液状化強度比 R_L(0.61)及び液状化強度試験結果②(表層試料採取)による 液状化強度比 R_L(0.40)を下回り、保守的であることを確認した。また、簡易設 定法により設定した液状化強度曲線(砂礫層)は液状化強度試験結果による液状 化強度曲線の下側に位置し、簡易設定法による液状化強度比 R_L(0.25)は液状化 強度試験による液状化強度比 R_L(0.27)を下回り、保守的であることを確認し た。液状化強度試験と簡易設定法による液状化強度の差異の要因として、表 4.2-32 に示すように高い N 値を除外するよう補正した N 値を用いることで、簡易設定 法による液状化強度が保守的に設定されることが挙げられる。

また,簡易設定法による液状化強度特性を設定した埋戻土及び砂礫は,液状化 強度試験を模擬する要素シミュレーションにより液状化することを確認した。要 素シミュレーション結果の詳細について,参考12に示す。

e. 簡易設定法の適用範囲

「液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメ タの簡易設定法(森田ら)」では、FLIPを用いて解析を行う場合の種々のパ ラメータの設定方法として標準貫入試験のN値から簡易的に設定する方法が示さ れており、この検討で用いられているせん断応力比は、0.2~0.9程度(Fc=10~ 20%)と幅の広い値としている。

島根2号機における埋戻土の累積損傷度理論に基づく評価において,基準地震動Ssでの最大せん断応力比は0.4~0.7程度である。

島根2号機における埋戻土の最大せん断応力比は,森田らの検討で使用されて いるせん断応力比に包含されていることから,簡易設定法が適用できると考えら れる。簡易設定法の根拠資料を図4.2-40に示す。

表-6 等価N値(N) ωω に対するせん断応力比τ₁/σm'(細粒分含有率F。≥10%の場合)
 (a) F = 10%の場合

(N) 0. 66	N a	10回	15回	26回
5 10 15	12 18 24	0.24 0.35 0.69	0.22 0.31 0.54	最小 0.21 0.28 0.43

(b) F_e=20%の場合

(N) 0.66	N a	10回	15回	26回
5 10 14	14 20 25	0.26 0.41 0.85 最大	0.24 0.36 0.66	0.22 0.32 0.51

図 4.2-40 簡易設定法の根拠資料

「液状化解析プログラムFLIPによる動的解析の実務(財団法人沿岸技術研 究センター)」では,兵庫県南部地震における神戸RF3岸壁及び神戸港T桟橋の 被災状況に対して,簡易設定法により液状化パラメータを設定した再現解析にて 検証を行った実績が示されている。

「神戸 RF 3 岸壁」は重力式構造物を、「神戸港 T 桟橋」は杭式構造物を対象と しており、「神戸 RF 3 岸壁」においては、埋立土及び置換砂の液状化パラメータ を簡易設定法で設定し、おおむね被災状況を再現できている。図4.2-41 に神戸 RF 3 岸壁 標準断面図を示す。

以上の実績を踏まえ,島根2号機における防波壁等に対する液状化影響評価に おいて簡易設定法が適用できると判断した。表4.2-33 簡易設定法におけるN値 の考え方を示す。

図 4.2-41 神戸 RF 3 岸壁 標準断面図

地震名	対象施設	被災状況	再現解析
平成7年 兵庫県南部 地震	神戸 RF3岸壁	水平変位 3.7m	水平変位 3.09m
	神戸港 T桟橋	水平変位 1.4~1.5m	水平変位 2.01m

表 4.2-33 簡易設定法におけるN値の考え方

液状化解析プログラムFLIPによる動的解析の実務(財団法 人沿岸技術研究センター)より引用 N値及び粒径加積曲線について,島根2号機の埋戻土及び砂礫層と,神戸港の 埋立土との比較を図 4.2-42 に示す。

神戸港の埋立土のN値は、いずれも5~10前後,最大20程度を示しており、島 根2号機と同程度である。神戸港の埋立土の粒径は、島根2号機の埋戻土(掘削 ズリ)より小さく、砂礫層と同程度であるが、両者とも粒径が広い範囲にわたっ て分布し、礫を含む土層である。

以上より, 簡易設定法により液状化パラメータを設定した再現解析にて検証を 行った実績のある神戸港の埋立土に対し, 島根2号機の埋戻土及び砂礫層の土質 性状は類似していることから, 簡易設定法の適用は妥当であると判断した。

図 4.2-42 島根 2 号機の埋戻土及び砂礫層と

神戸港埋立土の比較

- f. 参考文献
- ・道路橋示方書:道路橋示方書・同解説(V耐震設計編),(社)日本道路協会, H24.3
- ・港湾基準:港湾の施設の技術上の基準・同解説,(社)日本港湾協会,H19年版
- ・港湾構造物設計事例集,沿岸技術研究センター,H19年版
- ・地盤工学会基準 JGS4001:性能設計概念に基づいた基礎構造物等に関する設計原則 (H18)
- ・地盤工学会,H21:地盤材料試験の方法と解説,平成21年11月
- ・安田,H3:液状化の調査から対策工まで、安田進、鹿島出版会、H3.5
- ・吉田,H22:地盤の地震応答解析,吉田望,鹿島出版会,H22.10
- ・土木学会,H15:過剰間隙水圧の発生過程が地盤の地震応答に与える影響,土木学会地震工学委員会レベル2地震動による液状化研究小委員会レベル2地震動による液状化に関するシンポジウム論文集,pp397-400,H15.6
- ・地盤工学会,H18:地盤工学用語辞典, pp219-220, H18.3
- ・井合進,H20:サイクリックモビリティ Cyclic Mobility, 地盤工学会誌, 56-8, H20.3
- ・吉見,H3:砂地盤の液状化(第二版),技報堂出版,H3.5
- ・井合進, 飛田哲男, 小堤治(H20):砂の繰返し載荷時の挙動モデルとしてのひずみ 空間多重モデルにおけるストレスダイレイタンシー関係, 京都大学防災研究所年 報, 第51号, pp.291-304, H20
- ・鉄道総合技術研究所(H24):鉄道構造物等設計標準・同解説,H24.9
- Iai, S., Matsunaga, Y. and Kameoka, T(1992): STRAIN SPACE PLASTICITY MODEL FOR CYCLIC MOBILITY, SOILS AND FOUNDATIONS, Vol, 32, No. 2, pp. 1-15.
- Iai. S., Morita, T., Kameoka, T., Matsunaga, Y. and Abiko, K.
 (1995): RESPONSE OF A DENSE SAND DEPOSIT DURING 1993 KUSHIRO-OKI
 EARTHQUAKE, SOILS AND FOUNDATIONS, Vol, 35, No. 1, pp. 115-131.
- ・コンクリート標準示方書[構造性能照査編], (社)土木学会, H14 年制定
- ・建築物荷重指針・同解説,日本建築学会,H16年版
- ・建築物の構造関係技術基準解説書,国土交通省住宅局建築指導課,国土交通省国 土技術政策総合研究所,独立行政法人建築研究所,日本建築行政会議 監修, H19.8
- ・森田ら, H9:液状化による構造物被害予測プログラム FLIP において必要な各種パ ラメタの簡易設定法,運輸省港湾技術研究所,港湾技研資料, No. 869, H9.6
- ・第四期 FLIP 研究会 14 年間のまとめ WG, H23: 液状化解析プログラム FLIP による動 的解析の実務,財団法人沿岸技術研究センター,H23.8
- ・地盤工学会,H22:土質試験 基本と手引き

・兵庫県南部地震による港湾施設の被害考察:運輸省港湾技術研究所,港湾技研資料, No. 813, H7

4.2.2 改良地盤に用いる解析用物性値

改良地盤については,対象設備別,工法別に,原位置試験,室内試験及び文献等 を踏まえ設定することとし,表 4.2-4~6表 4.2-14~16のとおり,解析用物性値 を設定する。

また,改良地盤における補足を<mark>「</mark>参考資料 13 改良地盤における補足」及び「参 <mark>考資料 20 改良地盤の強度特性について」</mark>に示す。

- 4.2.3 その他の解析用物性値
 - (1) 岩盤

岩盤については, 表 4.2-<mark>7</mark>及び表 4.2-<mark>17</mark>のとおり, 解析用物性値を設定する。 詳細については, 「参考資料 16 入力地震動の設定に用いる地下構造モデルのエリ ア区分について」に示す。

(2) 埋戻土

全応力解析における埋戻土については、表 4.2-8 及び表 4.2-18 のとおり解析
 用物性値を設定する。

全応力解析における埋戻土の解析用物性値の設定の妥当性については、「参考資 料 17 埋戻土の骨格曲線について」に示す。

(<mark>3</mark>) 砕石

取水管における砕石については、<mark>室内試験結果</mark>に基づき、表 4.2-<mark>9</mark>及び表 4.2-19のとおり解析用物性値を設定する。

砕石の解析用物性値の設定の妥当性については, <mark>「</mark>参考資料 14 <mark>砕石の解析用物</mark> 性値について」に示す。

(4) MMR, 埋戻コンクリート及び置換コンクリート

MMR, 埋戻コンクリート及び置換コンクリートについては, 「コンクリート標 準示方書[構造性能照査編]((社)土木学会, 2002 年制定)」及び「コンクリート 標準示方書[ダムコンクリート編]((社)土木学会, 2013 年制定)」に基づき,表 4.2-10,11 及び表 4.2-20,21 のとおり解析用物性値を設定する。

(5) 海底堆積物及び海底堆積物・風化岩 海底堆積物は,液状化検討対象層である埋戻土の解析用物性値を流用する。 また,海底堆積物・風化岩は,岩盤の中で最も保守的な第1層の解析用物性値を 設定する。海底堆積物の分布状況及びその解析用物性値の設定の考え方については, 「参考資料 19 輪谷湾における海底堆積物の分布状況及び解析用物性値について」 に示す。

4.2.4 地盤の物性のばらつきについて

建物・構築物及び土木構造物の地震応答解析においては地盤の物性のばらつきを 考慮している。詳細については、「参考資料 15 地震応答解析にて考慮する地盤物 性のばらつき」に示す。

5. 極限支持力

極限支持力度は、平板載荷試験結果又は<mark>「</mark>道路橋示方書」の支持力算定式に基づき設 定することを基本とする。

5.1 基礎地盤(岩盤)の極限支持力度

基礎地盤(岩盤)の極限支持力度を表 5.1-1 に示す。

基礎地盤(岩盤)の極限支持力度は,設置変更許可申請書(添付資料六)に示した 平板載荷試験結果を基に設定する。設置変更許可申請書(添付資料六)に示した平板 載荷試験実施位置を図 5.1-1,平板載荷試験結果を図 5.1-2~図 5.1-4に示す。な お,基礎地盤の短期許容支持力度は,「原子力発電所耐震設計技術指針 JEAG 4 601-1987((社)日本電気協会))」に基づき,極限支持力度の 2/3 として設定す る。

岩級	極限支持力度 (N/mm ²)
С _н 級	0.8
С м級	9.8
C L 級	3.9

表 5.1-1 基礎地盤(岩盤)の極限支持力度

N

図 5.1-1 平板載荷試験実施位置

99

図 5.1-2 平板載荷試験結果 (C_H級)

図 5.1-3 平板載荷試験結果 (C_M級)

図 5.1-4 平板載荷試験結果 (C_L級)

5.2 直接基礎の支持力算定式

改良地盤及び砕石の極限支持力の算定に当たっては、「道路橋示方書」に基づき算 定する。「道路橋示方書」による直接基礎の支持力算定式を以下に示す。

・「道路橋示方書」による極限支持力算定式(直接基礎)

 $Q_{u} = A e \cdot \{ \alpha \cdot \kappa \cdot c \cdot N_{c} \cdot S_{c} + \kappa \cdot q \cdot N_{q} \cdot S_{q} + 1 \neq 2 \gamma_{1} \cdot \beta \cdot B_{e} \cdot N_{q} \cdot S_{q} \}$

- ここで,
- Q_u:荷重の偏心傾斜,支持力係数の寸法効果を考慮した地盤の極限支持力(kN)
- c: 地盤の粘着力(kN/m²)
- $q: 上載荷重 (kN/m²) で, q = \gamma_2 \cdot D_f$
- A_e:有効載荷面積(m²)
- γ₁, γ₂:支持地盤及び根入れ地盤の単位体積重量(kN/m³)

ただし、地下水位以下では水中単位体積重量とする。

B。:荷重の偏心を考慮した基礎の有効載荷幅(m)

 $B_e = B - 2 \cdot e_B$

- B:基礎幅 (m)
- e_B:荷重の偏心量(m)
- D_f: 基礎の有効根入れ深さ(m)
- α , β :基礎の形状係数
- κ:根入れ効果に対する割増し係数
- Ν c, Ν g, Ν y:荷重の傾斜を考慮した支持力係数
- S_c, S_q, S_y:支持力係数の寸法効果に関する補正係数

5.3 杭基礎の極限支持力度

杭基礎の押込み力及び引抜き力に対する支持力評価において,杭周面摩擦力を支持 力として考慮せず,支持力評価を行うことから,基礎地盤の極限支持力度を用いる。

5.4 MMRの支圧強度

MMRの支圧強度は,「コンクリート標準示方書[構造性能照査編](土木学会, 2002

年制定)」に基づき設定する。MMRの支圧強度を表 5.4-1 に示す。

MMR	支圧強度 (N/mm ²)
f' _{c k} = 15. $6N/mm^2$	15.6
f' _{c k} = 18. $0N/mm^2$	18.0
f' _{c k} = 24. $0N/mm^2$	24.0

表 5.4-1 MMRの支圧強度

6. 地盤の速度構造

6.1 入力地震動の設定に用いる地下構造モデル

入力地震動の設定に用いる地下構造モデルについては、解放基盤表面(EL-10m)から EL-215m までの地盤をモデル化する。地下構造モデルの概要を表 6.1-1 及び表

6.1-2に示す。入力地震動算定の概念図を図 6.1-1及び図 6.1-2に示す。

対象施設に適用する地下構造モデルについて、「参考資料 16 入力地震動の設定に 用いる地下構造モデルのエリア区分について」に示す。
表 6.1-1 入力地震動の策定に用いる地下構造モデル

速度層	P 波速度 (km/s)	S 波速度 (km/s)	単位体積重量 (kN/m ³)	ポアソン比
1 層	0.80	0.25	20.6	0.446
2.層	2.10	0.90	23.0	0.388
3層	3.60	1.60	24.5	0.377
4.層	4.00	1.95	24.5	0.344
5層	4.05	2.00	26.0	0.339
6層	4.95	2.35	27.9	0.355

(1, 2号機エリア)

表 6.1-2 入力地震動の策定に用いる地下構造モデル (3号機エリア)

速度層	P波速度	S波速度	単位体積重量	ポアソン比
	(km/s)	(km/s)	(kN/m^3)	
1層	0.52	0.27	22.4	0.45
2層	1.71	0.62	23.3	0.42
③層	2.27	0.96	23.4	0.39
④層	3.24	1.52	24.5	0.36
⑤層	3.86	1.90	25.2	0.34
6層	4.15	2.10	24.4	0.33
7層	3.80	1.77	25.1	0.36

図 6.1-1 入力地震動算定の概念図(建物・構築物)

図 6.1-2 入力地震動算定の概念図(土木構造物)

6.2 地震応答解析に用いる解析モデル

建物・構築物の地震応答解析に用いる地盤モデルは,地盤調査結果に基づいて設定 する。建物・構築物の地震応答解析に用いる地盤モデルの地盤物性値は「4.1 設置変 更許可申請書に記載された解析用物性値」を基本として設定する。

また,土木構造物の地震応答解析に用いる地盤モデルは,構造物周辺の地盤調査結 果に基づいて設定する。土木構造物の地震応答解析に用いる地盤モデルの地盤物性値 は,「4.1 設置変更許可申請書に記載された解析用物性値」及び「4.2 設置変更許 可申請書に記載されていない解析用物性値」を基本として設定する。

108

(参考資料9) 砂礫層の解析用物性値について

1. 島根原子力発電所における砂礫層について

島根原子力発電所において砂礫層は、図 1-1 に示す通り、1号機東側及び3号機北側の EL 8.5m 以下の敷地の谷部に局所的に分布する。

津波防護施設である防波壁(多重鋼管杭式擁壁)及び防波壁(波返重力擁壁)の周囲に, 砂礫層が分布しており,防波壁(多重鋼管杭式擁壁)及び防波壁(波返重力擁壁)の解析 モデルに取り入れる必要があることから,砂礫層に適切な解析用物性値を設定する。

図 1-1 砂礫層の分布状況

- 2. 砂礫層の解析用物性値の設定
- 2.1 設定方針

砂礫層の解析用物性値については,原位置試験,室内試験の試験結果及び「液状化に よる構造物被害予測プログラム FLIP において必要な各種パラメタの簡易設定法(「港 湾技研資料 No. 869)」(以下「港湾技研資料」という。))を踏まえて設定する。

- 2.2 原位置試験及び室内試験
 - (1) 試験方法

砂礫層の原位置試験及び室内試験は、日本産業規格(JIS)又は地盤工学会(JGS)の試験基準に基づき、表 2-1の項目について実施する。

項目	規格・基準名称	試験規格
飽和密度	土の湿潤密度試験方法	JIS A 1225
間隙率	土粒子の密度試験方法	JIS A 1202
S波速度	地盤の弾性波速度検層方法	JGS 1122
G/G0~γ関係	土の変形特性を求めるための繰返し	ICS 0549
h~γ関係	三軸試験方法	JGS 0542

表 2-1 砂礫層の試験項目

(参考) 9-2

(2) 原位置試験及び試料採取位置

砂礫層の原位置試験及び試料採取位置について、図 2-1 及び表 2-2 に示す。

図 2-1 砂礫層の原位置試験及び試料採取位置

孔名	原位置試験 (試料採取深度含む)			
No.1	GL-14.5∼-18.5m			
No. 2	GL-12.5∼-18.5m			

表 2-2 砂礫層の原位置試験及び試料採取深度

(3) 試験結果

砂礫層の原位置試験及び室内試験結果について,表 2-3 に示す。また,砂礫層の 繰返し三軸試験結果におけるG/G₀のひずみ依存特性を図 2-2 に,減衰定数のひず み依存特性を図 2-3 に,繰返し三軸試験後の供試体写真を図 2-4 に示す。

孔名	飽和密度 (g/cm ³)		間隙率		S 波速度 (m/s)		G/G0~γ関係 h~γ関係	
10,11	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均
No.1	5	2.05	5	0.39	5	450		
No. 2					8	570	1	図 2-2 図 2-3 参照
平均值		2.05		0.39		524		

表 2-3 砂礫層の原位置試験及び室内試験結果

(参考) 9-4

図 2-3 砂礫層における減衰定数のひずみ依存特性

図 2-4 に示す繰返し三軸試験後の供試体写真より,供試体は破壊していないことから試験結果は妥当であると判断した。

図 2-4 砂礫層における繰返し三軸試験後の供試体写真 (No. 2)

2.3 解析用物性値の設定方針

砂礫層の解析用物性値は,原位置試験,室内試験の試験結果及び<mark>「</mark>港湾技研資料」 を踏まえて設定する。

(1) 密度 ρ 及び間隙率 n

砂礫層の密度ρ及び間隙率nは,砂礫層における室内試験の試験結果を踏まえて 設定する。

(2) 動せん断弾性係数Gma

 G_{ma} は,密度 ρ ,S波速度 V_sより,(式1)に基づき算定したせん断弾性係数G m及び「港湾技研資料」に基づく(式2)のとおり設定した。

$$G_{ma} = G_{m} \cdot (\sigma_{ma}' / \sigma_{m}')^{0.5}$$
 (式2)
 $G_{ma} : 基準せん断弾性係数 (kN/m2)$
 $\sigma_{ma}' : 基準平均有効拘束圧 (kN/m2)$
 $\sigma_{m}' : 平均有効拘束圧 (kN/m2)$
ここで、 $\sigma_{m}' = (\sigma_{v}' + \sigma_{h}') / 2 = (1+K_{0}) \sigma_{v}' / 2, K_{0} = 0.5$
 $\sigma_{v}' : 改良地盤の層中心における有効上載圧 (kN/m2)$
図 2-5 に示す防波壁 (多重鋼管杭式擁壁)の砂礫層に
おける $\sigma_{v}' = 276.61kN$ を採用

(参考) 9-6

(単位:m)

(参考) 9-7

(3) 動的変形特性

砂礫層の動的変形特性は、繰返し三軸試験の試験結果を踏まえて設定する。

有効応力解析では、ひずみ依存特性として、H-D(Hardin-Drnevich)モデルを設 定するため、以下の式を用いる。

(4) ポアソン比v

改良地盤のポアソン比vは,「港湾技研資料」に基づき,(式6)により算定した。

v = K₀/(1+K₀) (式 6)
 v:ポアソン比
 K₀:静止土圧係数 (=0.5)

(5) 粘着力 c 及び内部摩擦角 φ

砂礫層の強度特性である粘着力 c 及び内部摩擦角 φ については, 「港湾技研資料」 に基づき設定する。 2.4 解析用物性値の設定

砂礫層の室内試験における試験結果を踏まえ、解析用物性値を設定する。

(1) 密度 ρ 及び間隙率 n

室内試験で確認された密度ρは、平均値 2.05g/cm³を採用する。

また,室内試験で確認した間隙率nは,「港湾構造物設計事例集(沿岸技術研究センター,平成19年3月)」(以下「港湾構造物設計事例集」という。)に基づき,より大きな間隙率0.45を採用する。

(2) 動せん断弾性係数 Gma

砂礫層の原位置試験におけるS波速度及び設計S波速度を表 2-4 に示す。

構造物評価の観点では、せん断弾性係数が低いほど地盤剛性が低くなり、地盤変形 に伴う土木構造物の変形が大きくなることで保守的な評価となることが想定される ことから、砂礫層の動せん断弾性係数 Gmaの算出に用いるS波速度 Vs について、原位 置試験で確認したS波速度(平均値-1σ)よりも安全側に設計S波速度を設定する。

表 2-4 砂礫層の原位置試験における S 波速度及び設計 S 波速度

	原位置に	設計S波速度		
	平均一σ	平均	平均+σ	(m/s)
砂礫層	463	524	585	400

(3) 動的変形特性

砂礫層における繰返し三軸試験結果を踏まえ、G/G₀のひずみ依存特性(図 2-6)及び減衰定数のひずみ依存特性(図 2-7)を設定する。

図 2-6 G/G₀のひずみ依存特性

⁽参考) 9-9

図 2-7 減衰定数のひずみ依存特性

(4) 液状化パラメータ

動せん断弾性係数*G_{ma}*及び減衰定数の上限値*h_{max}の変更に伴い、図 2-8 に示す設* 置許可審査の液状化強度曲線を変えないように液状化パラメータを再設定した。

(参考) 9-10

(5) 粘着力及び内部摩擦角

「港湾技研資料」に基づき、粘着力Cをゼロとし、内部摩擦角 φ_f については、図 2-5 で求めた有効拘束圧 σ'_v を用い、式(7)、式(8)及び式(9)により相対密度 D_r を算定し、図 2-9 に示す相対密度と内部摩擦角 φ_f の関係から読み取って設定した。

(N)_{0.66} = (N - 1.828(σ'_v - 0.66))/(0.399(σ'_v - 0.66) + 1) (式 7)
(N)_{0.66}: 有効上載圧σ'_v = 0.66(kgf/cm²)の時のN値
N:敷地に分布する砂礫層を対象とした標準貫入試験によるN値(N = 15)
σ'_v: 有効上載圧(kgf/cm²)
(図 2-5 に示す防波壁(多重鋼管杭式擁壁)の有効上載圧σ'_v =

276.61 $kN/m^2 = 2.82kgf/cm^2$ を採用)

$$\begin{split} N_1 &= (N)_{0.66} (0.399(\sigma'_v - 0.66) + 1) + 1.828(\sigma'_v - 0.66) \qquad (式 8) \\ N_1 &: 基準拘束圧 \sigma'_{ma} = 1(kgf/cm^2) の時のN値 \\ &\subset の時, \ \sigma'_{ma} = (\sigma'_v + \sigma'_h)/2 = (1 + K_0)\sigma'_v/2, \ K_0 = 0.5 \downarrow 0, \\ \sigma'_{ma} &= 1.333(kgf/cm^2) \end{split}$$

$$D_r = 21 \times (N_1 / (1.333 + 0.7))^{0.5} \qquad (\exists 9)$$

図 2-9 相対密度と内部摩擦角 φ_f の関係(<mark>「</mark>港湾技研資料」,赤字で加筆)

(参考) 9-11

また,砂礫は,図2-10に示す「道路土工 盛土工指針(平成22年度版) (2010 年4月,(社)日本道路協会)」(以下「道路土工 盛土工指針」という。) に記載 の自然地盤の礫,礫まじり砂に相当すると考えられ,それらの内部摩擦角φは35~ 40°とされており,内部摩擦角の設定は妥当であると判断する。

なお、内部摩擦角φを35°及び40°とした場合のひずみ依存特性 G/G₀~γは図 2-11のとおりであり,解析用物性値として設定した38.74°と大きな差がないため、 耐震評価への影響は軽微であると考えられるが、内部摩擦角φを35°とした場合 の影響検討を実施する。

	種 類		状 態	単位体積 重量 (kN/m ²)	せん断 抵抗角 (度)	粘着力 (kN/m²)	地盤工学 会基準 ^{注2)}		
	礫および礫 まじり砂	締め固めたもの		20	40	0	{G}		
成	TIN	締め固めたも	20	35	0	101			
	11.9	の	分級されたもの	19	30	0	151		
土	砂質土	締め固めたも	の	19	25	30 以下	{SF}		
	粘性土	締め固めたも	18	15	50 以下	$\{M\}, \{C\}$			
	関東ローム	締め固めたも	カ	14	20	10 以下	{V}		
	7565	密実なものま	たは粒径幅の広いもの	20	40	0	101		
	他来	密実でないも	18	35	0	101			
	礫まじり砂	密実なもの	21	40	0	{G}			
		密実でないも	19	35	0				
	砂	密実なものま	20	35	0	{S}			
		密実でないもの	18	30	0				
自	-1.55.1	密実なもの	19	30	30 以下				
伙	砂頁工	密実でないもの	の	17	25	0	(SF)		
		固いもの(指す	ご強く押し多少へこむ) ^{注1)}	18	25	50 以下			
地般	粘性土	やや軟らかいもの(指の中程度の力で貫 入) ^{±1)}		17	20	30 以下	$(M), \{C\}$		
2000-		軟らかいもの	軟らかいもの(指が容易に貫入) ^{注1)}			15 以下	1		
		固いもの(指っ	で強く押し多少へこむ) ^{注1)}	17	20	50 以下			
	粘土および シルト	やや軟らかい 入) ^{注1)}	16	15	30以下	{M}, {C}			
		軟らかいもの	(指が容易に貫入) ^{注1)}	14	10	15 以下			
	関東ローム			14	$5(\phi_u)$	30 以下	{V}		

解表 4-2-4 設計時に用いる土質定数の仮定値4)

注1);N値の目安は次のとおりである。

固いもの (N=8~15), やや軟らかいもの (N=4~8), 軟らかいもの (N=2~4) 注2); 地盤工学会基準の記号は, およその目安である。

図 2-11 砂礫層におけるG/G₀のひずみ依存特性(φ35°, 40°)
 (参考) 9-12

(6) 砂礫層の解析用物性値

以上を踏まえ、砂礫層における解析用物性値を表 2-5 に、その設定根拠を表 2-6 に示す。

		砂礫層		
物 理	密度	ρ (g/cm ³)		2.05
特性	間隙率	n		0.45
	動せん断弾性係数	G_{ma} (kN/m ²)		225400
変 形	基準平均有効拘束圧	σ_{ma} ' (kN/m ²)		98.00
特 性	ポアソン比	0.33		
	減衰定数の上限値	0.095		
強度	粘着力 c' (kN/m ²)			0
特性	内部摩擦角			38.74
	変相角	φp (°)		28
			S1	0.005
液状化			w1	4.020
特性	液状化パラメータ		P1	0.500
			P2	1.100
			C1	1.916

表 2-5 砂礫層における解析用物性値

注記*:括弧内【】の数字は地下水位以浅の数値を示す。

動せん断弾性係数、内部摩擦角及び液状化パラメータは代表的な数値を示す。

				砂礫層		
物 理	密度	度 ρ		物理試験		
特 性	間隙率	n		慣用値*1		
	動せん断弾性係数	G_{ma}		PS検層によるS波速度, 密度に基づき設定		
変形特性	基準平均有効拘束圧	。準平均有効拘束圧 σ _{ma} '		慣用値*1		
	ポアソン比	ν		慣用値*1		
	減衰定数の上限値 h max			動的変形特性に基づき設定		
強度	粘着力	с'		慣用値*1		
特 性	内部摩擦角	φ'		文献 ^{*1} からN値(原位置試験)と 有効上載圧により設定		
	変相角	φp				
\ 			S1			
被状			w1	文献 ^{*1,*2} からN値(原位置試験),有効上載圧及び		
化特性	液状化パラメータ		P1	細粒分含有率(物理試験)により設定		
1-1-			P2			
			C1			

表 2-6 砂礫層における解析用物性値の設定根拠

注記*1:液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法 (港湾技研資料No.869,平成9年6月) *2:FLIPの解析における解析精度向上に関する諸検討成果報告書(付録)

(第2期FLIP研究会解析精度向上作業部会, 2004.6)

(参考) 9-14

(参考資料10) 埋戻土(粘性土)の解析用物性値について

1. 島根原子力発電所における埋戻土(粘性土)について

島根原子力発電所の施設護岸建設時において,図 1-1 に示すとおり,護岸背面の止水 性を確保するために埋戻土(粘性土)を施工している。

津波防護施設である防波壁(多重鋼管杭式擁壁)の周囲に,埋戻土(粘性土)が分布し ており,防波壁(多重鋼管杭式擁壁)の解析モデルに取り入れる必要があることから,埋 戻土(粘性土)に適切な解析用物性値を設定する。また,「FLIP研究会 14 年間の検 討成果まとめの作成について(FLIP研究会 14 年間の検討成果まとめ WG)」(以下「F LIP研究会報告」という。)を踏まえ,強度特性として粘着力 c'=0,内部摩擦角φ'=30° を設定する。

「FLIP研究会報告」における強度特性(粘着力 c'=0,内部摩擦角 φ'=30°)について,島根原子力発電所における埋戻土(粘性土)の三軸圧縮試験を実施し,妥当性を確認する。

図 1-1 埋戻土(粘性土)の分布状況

- 2. 埋戻土(粘性土)の解析用物性値の設定
- 2.1 設定方針

埋戻土(粘性土)の解析用物性値については,原位置試験,室内試験の試験結果及び 「FLIP研究会報告」を踏まえて設定する。

- 2.2 原位置試験及び室内試験
 - (1) 試験方法

Г

埋戻土(粘性土)の原位置試験及び室内試験は、日本産業規格(JIS)又は地 盤工学会(JGS)の試験基準に基づき、表 2-1の項目について実施する。

項目	規格・基準名称	試験規格
飽和密度	土の湿潤密度試験方法	JIS A 1225
間隙率	土粒子の密度試験方法	JIS A 1202
S波速度	地盤の弾性波速度検層方法	JGS 1122
G/G0~γ関係	土の変形特性を求めるための繰返し	ICS 0549
h~γ関係	三軸試験方法	JUS VO42

表 2-1 埋戻土(粘性土)の試験項目

(2) 原位置試験及び試料採取位置

埋戻土(粘性土)の原位置試験及び試料採取位置について,図 2-1 及び表 2-2 に示す。

図 2-1 埋戻土(粘性土)の原位置試験及び試料採取位置

孔名	原位置試験 (試料採取深度含む)
No.1	GL-7.5∼-15.5m
No. 2	GL-9.5∼-13.5m
No.3	GL-8.5∼-10.5m
No.4	GL-6.5∼-10.5m
No.5	GL-7.5∼-12.5m
No.6	GL-9.5∼-12.5m
No.7	GL-6.5∼-11.5m
No. 8	GL-9.5∼-11.5m

表 2-2 埋戻土(粘性土)の原位置試験及び試料採取深度

(参考) 10-3

128

(3) 試験結果

埋戻土(粘性土)の原位置試験及び室内試験結果について,表 2-3 に示す。また,埋戻土(粘性土)の繰返し三軸試験結果におけるG/G。のひずみ依存特性を図 2-2 に,減衰定数のひずみ依存特性を図 2-3 に,繰返し三軸試験後の供試体写真を 図 2-4 に示す。

	飽和密度 (/ _ 3)		間隙率		S 波速度		G/G0~γ関係	
孔名	(g	/ cm°)			(m/s)		n~	γ渕馀
	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均
No. 1	8	2.04	8	0.42	9	371		
No. 2	5	2.13	5	0.33	5	530		
No. 3		/	/		5	490		
No. 4					5	430		
No. 5					6	510	1	
No.6					4	490	1	
No.7					6	413	1	因 2—3 参照
No. 8					3	430	1	
平均值		2.07		0.39		451		

表 2-3 埋戻土(粘性土)の原位置試験及び室内試験結果

図 2-2 埋戻土(粘性土)におけるG/G₀のひずみ依存特性

(参考) 10-4

図 2-4 に示す繰返し三軸試験後の供試体写真より,供試体は破壊していないこと から試験結果は妥当であると判断した。

(No.5)

(No.6)

(参考) 10-5

130

2.3 解析用物性値の設定方針

埋戻土(粘性土)の解析用物性値は,原位置試験,室内試験の試験結果及び「FL IP研究会報告」を踏まえて設定する。

(1) 密度 ρ 及び間隙率 n

埋戻土(粘性土)の密度ρ及び間隙率nは,室内試験の試験結果を踏まえて設定 する。

(2) 動せん断弾性係数Gma

 G_{ma} は,密度 ρ ,S波速度 V_s より,(式1)に基づき算定したせん断弾性係数 G_m 及び「液状化による構造物被害予測プログラム FLIP において必要な各種パラメタの簡易設定法(「港湾技研資料 No. 869)」(以下「港湾技研資料」という。)に基づく(式2)のとおり設定した。

G_m=ρV_s² (式1) G_m: せん断弾性係数 (kN/m²) ρ:密度 (g/cm³) V_s: S波速度 (m/s)

G_{ma}=G_m・(σ_{ma}'/σ_m')^{0.5} (式2) G_{ma}:基準せん断弾性係数 (kN/m²) σ_{ma}':基準平均有効拘束圧 (kN/m²) σ_m':平均有効拘束圧 (kN/m²) ここで,σ_m'=(σ_v'+σ_h')/2=(1+K₀)σ_v'/2, K₀=0.5 σ_v':改良地盤の層中心における有効上載圧 (kN/m²) 図 2-5 に示す防波壁 (多重鋼管杭式擁壁)の埋戻土 (粘性土)層におけるσ'_v = 202.29kNを採用

図 2-5 平均有効拘束圧の算定位置(防波壁(多重鋼管杭式擁壁)埋戻土(粘性土))

(参考) 10-7

(3) 動的変形特性

埋戻土(粘性土)の動的変形特性は,繰返し三軸試験の試験結果を踏まえて設定 する。

有効応力解析では、ひずみ依存特性として、H-D(Hardin-Drnevich)モデルを設 定するため、以下の式を用いる。

$$\frac{G}{G_0} = \frac{1}{1 + \gamma/\gamma_r} \quad (式3)$$

$$h = h_{max} \left(1 - \frac{G}{G_0}\right) = \frac{h_{max}\gamma/\gamma_r}{1 + \gamma/\gamma_r} \quad (式4)$$

$$\gamma_r = \frac{\tau_{ma}}{G_{ma}} = (c' + \sigma'_{ma} \cdot tan \phi')/G_{ma} \quad (式5)$$

$$G : t \delta m \mu t \delta m \mu t G \%$$

$$g_0 : \partial n n t \delta m \mu t G \%$$

$$\gamma_r : 基 \mu \Psi \eta f \partial n n \pi E H O = \mu O = \mu$$

(4) ポアソン比v

改良地盤のポアソン比 v は, 「港湾技研資料」に基づき, (式6)により算定した。

- ν = K₀/(1+K₀) (式 6)
 ν:ポアソン比
 K₀:静止土圧係数(=0.5)
- (5) 粘着力 c 及び内部摩擦角 φ

埋戻土(粘性土)の強度特性である粘着力 c 及び内部摩擦角 φ については,「F L I P 研究会報告」を踏まえ,強度特性として粘着力 c'=0,内部摩擦角 φ'=30° を設定 する。

2.4 解析用物性値の設定

埋戻土(粘性土)の室内試験における試験結果を踏まえ,解析用物性値を設定す る。

(1) 密度 ρ 及び間隙率 n

室内試験で確認された密度ρは、平均値2.07g/cm³を採用する。

また,室内試験で確認した間隙率nは,「港湾構造物設計事例集(沿岸技術研究センター,平成19年3月)」(以下「港湾構造物設計事例集」という。)に基づき,より大きな間隙率0.55を採用する。

(2) 動せん断弾性係数 Gma

埋戻土(粘性土)の原位置試験におけるS波速度及び設計S波速度を表 2-4 に示 す。

構造物評価の観点では、せん断弾性係数が低いほど地盤剛性が低くなり、地盤変形 に伴う土木構造物の変形が大きくなることで保守的な評価となることが想定される ことから、埋戻土(粘性土)の動せん断弾性係数 Gmaの算出に用いるS波速度 Vsにつ いて、原位置試験で確認したS波速度(平均値-1σ)よりも安全側に設計S波速度 を設定する。

表 2-4 埋戻土(粘性土)の原位置試験におけるS波速度及び設計S波速度

	原位置におけるS波速度(m/s)			設計S波速度
	平均-σ	平均	平均+σ	(m/s)
埋戻土(粘性土)	391	451	511	300

(3) 動的変形特性

埋戻土(粘性土)における繰返し三軸試験結果を踏まえ,G/G₀のひずみ依存特 性(図2-6)及び減衰定数のひずみ依存特性(図2-7)を設定する。

図 2-6 G/G₀のひずみ依存特性

(参考) 10-10

(4) 埋戻土(粘性土)の解析用物性値

以上を踏まえ、埋戻土(粘性土)における解析用物性値を表 2-5 に、その設定根拠を表 2-6 に示す。

			埋戻土(粘性土)
物理特性	密度	ρ (g/cm ³)	2.07
			[2.03]
	間隙率	n	0.55
変形特性	動せん断弾性係数	G_{ma} (kN/m ²)	186300
	基準平均有効拘束圧	σ_{ma} ' (kN/m ²)	151.7
	ポアソン比	ν	0.33
	減衰定数の上限値	h max	0.095
強度特性	粘着力	c' (kN/m^2)	0
	内部摩擦角	ϕ ' (°)	30.00

表 2-5 埋戻土(粘性土)における解析用物性値

注記*:括弧内【】の数字は地下水位以浅の数値を示す。

動せん断弾性係数及び基準平均有効拘束圧は代表的な数値を示す。

表 2-6 埋戻土(粘性土)における解析用物性値の設定根拠

			埋戻土 (粘性土)	
物理特性	密度	ρ	物理試験	
	間隙率	n	慣用値*	
変形特性	動せん断弾性係数	G_{ma}	PS検層によるS波速度,密度に基づき 設定	
	基準平均有効拘束圧	σ _{ma} ,	G _{ma} に対応する値	
	ポアソン比	ν	慣用値*	
	減衰定数の上限値	h max	動的変形特性に基づき設定	
強度特性	粘着力	c'	慣用値*	
	内部摩擦角	φ'	慣用値*	

注記*:港湾構造物設計事例集(沿岸技術研究センター,平成19年3月)

- 3. 埋戻土(粘性土)の強度特性の妥当性について
- 3.1 妥当性の確認方針

「FLIP研究会報告」等の文献を整理し、埋戻土(粘性土)に設定する強度特性 の妥当性を確認したうえで、島根原子力発電所における埋戻土(粘性土)の三軸圧縮 試験結果より妥当性を確認する。

3.2 文献調查

「地盤調査・土質試験結果の解釈と適用例」(地盤工学会)では,排水条件の異なる 先行圧密応力を受けた粘土の強度の関係について説明しており,排水条件の異なった3 種の直接せん断試験を行った結果の模式図を図 3-1 に示す。非圧密非排水試験(UU) では,応力 σ によらず,せん断強度 $\tau_f = c_u$ となる一方,圧密非排水試験(CU)及び圧 密排水試験(CD)では応力 σ に応じてせん断強度 τ_f が大きくなることが示されてい る。

図 3-1 先行圧密応力を受けた粘土における排水条件と強度の関係 (地盤工学会「地盤調査・土質試験結果の解釈と適用例」より抜粋)

飽和した粘性土について、非圧密非排水試験(UU)を実施した場合、軸圧縮前に非 排水状態で拘束圧を変動させる。土が飽和している場合、拘束圧の変動は間隙水圧の変 化となり、供試体に働く有効拘束圧は変わらない。よって、複数の供試体に複数の拘束 圧をかけて試験を実施しても、同じ拘束圧で試験を実施していることになり、図 3-2 の ようにピーク強度は変わらないため、飽和した粘性土の非圧密非排水試験(UU)では、 せん断強度は粘着力 c のみで表現され、内部摩擦角 ϕ =0°となる。

一方, 圧密非排水試験(CU)を実施した場合, 軸圧縮前に供試体を圧密するため, 供試体内の間隙が減少し, 緻密化が進む。よって, 圧密応力が大きいほど緻密化し, 軸 圧縮した際のピーク強度が大きくなるため, 内部摩擦角 φ が発生する。

(参考) 10-12

137

図 3-2 粘土における非圧密非排水試験(UU)結果 (地盤工学会「地盤調査・土質試験結果の解釈と適用例」より抜粋)

有効応力解析を実施する場合は、圧密非排水試験(CU)により有効応力に関するパ ラメータを取得するため、粘土のせん断強度は粘着力 c',内部摩擦角 φ'により表現され る。

また,正規圧密粘土については,一般的に粘着力 c'は 0 とされていることから,有効 応力解析における正規圧密粘土は内部摩擦角 φ'のみとなる。

(参考) 10-13

138

「FLIP研究会報告」に引用される「三軸試験による自然粘性土地盤の強度設定法 に関する研究(土田,1990)」では、関西国際空港における埋立地点における海底地盤 に対する土質調査を実施しており、沖積粘土における軸差応力の最大時における有効応 力に関するモールの応力円の頂点をプロットした結果を、図 3-3 に示す。正規圧密時 として粘着力 c'を 0 とした場合の沖積粘土では内部摩擦角 \offerightarrow 'は 30° を上回る結果が得 られている。また、図 3-4 では、正規圧密時の内部摩擦角 \offerightarrow 'は塑性指数 Ip との関連は 見られないことを確認している。

以上を踏まえ, 「FLIP研究会<mark>報告」</mark>では, 粘性土は c'=0, φ'=30°と設定している。

図 3-3(1) 軸差応力最大時の (σ₁'-σ₃') /2 と (σ₁'+σ₃') /2 の関係 (沖積粘土)

図 3-3(2) 軸差応力最大時の (σ₁'-σ₃') /2 と (σ₁'+σ₃') /2 の関係 (沖積粘土, 深度 15~60m)

図 3-3(3) 軸差応力最大時の (σ1'-σ3') /2 と (σ1'+σ3') /2の関係 (沖積粘土, 深度 60~200m)

図 3-3(4) 軸差応力最大時の (σ1'-σ3') /2 と (σ1'+σ3') /2の関係 (沖積粘土, 深度 200~330m)

図 3-4 正規圧密時の内部摩擦角と塑性指数の関係

3.3 島根原子力発電所における埋戻土(粘性土)の室内試験結果

島根原子力発電所における埋戻土(粘性土)の液性限界・塑性限界試験結果を表 3 -1に示す。表 3-1より, 埋戻土(粘性土)の液性限界は 48.5%, 塑性指数は I_p=27.3 となり,図 3-5に示す塑性図により, 埋戻土(粘性土)は「粘土」に分類される。

表 3-1埋戻土(粘性土)の液性限界・塑性限界試験結果液性限界
 w_L (%)塑性限界
塑性指数
 w_p (%)塑性指数
Ip埋戻土(粘性土)
(平均値,試験数:22)48.521.227.3

図 3-5 塑性図による埋戻土(粘性土)の分類 (地盤工学会「土質試験 基本と手引き」に一部加筆)

(参考) 10-16

島根原子力発電所の埋戻土(粘性土)から採取した不攪乱試料により三軸圧縮試験を 実施した。埋戻土(粘性土)の試料採取位置を図3-6に,三軸圧縮試験の結果を表3-2,図3-7に示す。埋戻土(粘性土)の粘着力c'は0~58kN/m²となり,内部摩擦角 φ' はすべての供試体において30°を上回った。

図 3-6 埋戻土(粘性土)の粘性土試料採取位置

地点	粘着力	内部摩擦角	
	c' (kN/m2)	ϕ ' (°)	
No. 5	58	34.9	
No. 6	12	36.5	
No. 7	0	38.9	
No. 8	17	31.0	
平均	21.7	35.3	

表 3-2 埋戻土(粘性土)の強度特性

(参考) 10-17

142

図 3-7(2) 埋戻土(粘性土)における三軸圧縮試験結果(No.6)

図 3-7(3) 埋戻土(粘性土)における三軸圧縮試験結果(No.7)

図 3-7(4) 埋戻土(粘性土)における三軸圧縮試験結果(No.8)

3.4 妥当性確認結果

表 3-2 に示す三軸圧縮試験結果の値は、「FLIP研究会報告」により設定した粘着力 c'=0kN/m2,内部摩擦角 φ'=30°をいずれも上回っており、島根原子力発電所の埋戻 土(粘性土)において設定している強度特性は妥当と判断する。
(参考資料 11) 基礎捨石及び被覆石の解析用物性値について

1. 島根原子力発電所における基礎捨石及び被覆石について

島根原子力発電所の護岸において,基礎捨石(200~250mm, 30kg/個以上)及び被覆石 (700~800mm, 1.5t/個)を使用している。

津波防護施設である防波壁(多重鋼管杭式擁壁),防波壁(逆T擁壁)及び防波壁(波 返重力擁壁)の周囲に,基礎捨石及び被覆石が分布しており,防波壁の解析モデルに取り 入れる必要があることから,適切な解析用物性値を設定する。

島根原子力発電所において使用している基礎捨石及び被覆石は,「港湾の施設の技術上の基準・同解説(国土交通省港湾局,2007年版)」(以下「港湾基準」という。)及び「港 湾構造物設計事例集(沿岸技術研究センター,平成19年3月)」(以下「港湾構造物設計 計事例集」という。)に記載される解析用物性値を設定することから,その適用性を判断 する。

図 1-1 防波壁周囲の基礎捨石及び被覆石の分布例

145

- 2. 基礎捨石及び被覆石の解析用物性値の設定
- 2.1 設定方針

基礎捨石及び被覆石の解析用物性値については,現地の基礎捨石及び被覆石は粒径が 大きく,室内試験が非常に困難であることから,一般的に,標準的なパラメータを用い て解析が実施されている。

基礎捨石及び被覆石の強度特性は、「港湾基準」では粘着力 c=20kN/m², せん断抵抗 角φ=35°が標準の値とされており、表 2-1 に示す「港湾構造物設計事例集」に記載さ れる解析用物性値が一般に使用されている。

したがって、島根原子力発電所の基礎捨石及び被覆石について、「港湾構造物設計事 例集」で記載される解析用物性値の適用性を確認し採用する。

		2 cl	_												94 2.8					
	++£.	e,													5 0.9					
大化特计	彼状化	Ы					-								.0				-	
蒐		[A					L								6 6.0				-	
		Įs													0.00					
	変相多	à	Ĵ												8					
せん夢	格拉雷	ò	6)		'		·		'	35	40			33	39	8	,		33	35
粘着力		J	(e)/N90	44	146		·	1	1	8	. С.,	146		'	1	(11)	961		8	8
最大	经设定物	ĥ ma		0.20	0.20		•	- C	1	0.24	0.23	0.20		0.24	0.24	0.20	0.20		0.24	0.24
木の体語	第九係数	<i>K</i> ^a	(KN/m ²)	2. 2E+06	2.2E+06			- ¢	1	2.26+04	2.26+06	2.2E+06		1	2.2E+06	2.25+06	2.25+06		2.26+04	- 1
	部制	R		0.55	0.55		1	1	1	0.45	0.47	0.55		0.45	0.45	0.55	0.55		0.45	0.45
資重量	本	, B	(sN/e)	6.0	0.7		1		11.0	10.0	9.2	7.0			10.0	6.0	7.0		10.0	а.
举位体	飽和	h	(19,199)	16.0	17.0		22.6	21.0	21.0	20.0	19.2	17.0		18.0	20.0	16.0	17.0		20.0	18.0
	H/54.5	*		0.33	0.33		,	1	1	0.33	0.33	0.33		0.33	0.33	0.33	0.33		0.33	0.33
Commy	SACE	N RI		0.5	0.5			6	0	0.5	0.5	0.5		0.5	0.5	0.5	0.5		0.5	0.5
影体街	新生祭教	K.	(J=/NR)	39, 100	29, 300					69,400	39, 200	29, 300		92, 500	92, 500	68, 300	29, 300		169, 400	169, 400
Gen		0 MI		0.5	0.5			¢.		0.5	0.5	0.5		0.5	0.5	0.5	0.5		0.5	0.5
Character, M	第九保戦	G	(fm/m)	15, 000	19, 600			e.	,	180, 000	168, 400	49,600		73, 800	73, 800	26, 200	49,600		180, 000	180, 000
遊	遊廣	r.	(s/a)	061	336	1600		- 6	1	965 855	582	336	1600	88	378	252	336	1600	<u>386</u>	965
撼	速度	ν,	(s/a)	R	69	300		1		300	293	169	300	201	061	127	69I	300	300	300
张忠 有23	拘束圧	0 m.	(kK/m ²)	25.7	61.8			1	1	98.0	227.6	262.2		98.0	98.0	154.7	201.2		98.0	98.0
	4 3 M C E		0cK/m ²)	25.7	61.8		15.2	37.6	109.1	188.4	227.6	262.2		19.6	78.9	154.7	201.2			- 1
戀	1 Miles	۰.,	(sk/n ²)	34.2	82.4		20.3	50.1	145.4	251.2	303.4	349.6		26.1	105.2	206.2	268.2		1	1
筑加	157df	2	E	-20.30	-28.00		2.40	1.05	-7.20	-17,00	-22.50	-28,00		2.05	-4.70	-18, 00	-28, 00		1	0
条件及1	世間		E	11.4	4.0		1.8	0.9	15.6	4.0	7.0	4.0		5.6	10.6	16.0	4.0		1	1
七陽	靉		(B) - (B)	-26.0	-30.0		L.5	0.6	-15.0	-19.0	-26.0	-30.0		0.6	-10.0	-26.0	-30.0		0.6	-19.0
	22		· .	-14.6	-26.0	-30.0	3.3	- <u>-</u>	0.6	-15.0	-19.0	-26.0	-30.0	3.5	0.6	-10.0	-26.0	-30.0	L5	0.6
	•	e.''100	-						,	÷.	<u>0</u>	1		8	8	. 1	1		1.1	1
設定	6	101	İ		1			11	1	1	с.	-		8	20		1		1	
LIPÉ	NB	nn'*		31				1	1	î.	t.	1		11.4	11.4		1			
	Nes			1	1		,		1	1	C	ì		00	00	1	,			,
聚結果	at the second	2	8	9	,		1	1	1	4	0	1		14	14	1	1		1	1
現他就	響	N		1	- 1			аr.	1	1	- U			6	6		1		1	1
土賞記号				Acl_12	Del_JI	Dg1				suteishi	Scp_80%	Del_21	Del	Asl_a	Asl_w	Acl_32	Del_31	Dg1	e" voulern	a"aoudrum
菜				附性土	路性土	國際	4-14-75	ン (気中)	ン (永中)	路石	0%改良) 関格士	瑞姓土	豊富さ	E (気中)	5 (朱中)	鹅性土	能推土	國國	(本本) 5	5 (気中)
22				歴史	洪相	ndi	FRIS	4-7.	4-4	-	SCP(8) 建築	業	ndH	赛煙 <u>1</u>	裏堤土	龙	霦	904	裏込る	真込.
村科書				12	=		83	23	51	53	83	21		з	33	20	31		41	\$
医分				唐朝					通常部	(1-12)						婚士聖			裏込石	

表 2-1 「港湾<mark>構造物</mark>設計事例集」における捨石の解析用物性値 (「港湾<mark>構造物</mark>設計事例集」より引用・一部加筆)

(参考) 11-3

2.2 解析用物性値について

島根原子力発電所における基礎捨石及び被覆石の解析用物性値を表 2-2 に示す。

			基礎捨石及び被覆石
物理	密度	ho (g/cm ³)	2.04 【1.84】
竹性	間隙率	n	0.45
	動せん断弾性係数	G _{ma} (kN∕m²)	180000
変形	基準平均有効拘束圧	$\sigma_{\rm ma}$ ' (kN/m ²)	98.00
特 性	ポアソン比	ν	0.33
	減衰定数の上限値	h max	0.24
強度	粘着力	c' (kN/m ²)	20
特 性	内部摩擦角	φ' (°)	35.00

表 2-2 基礎捨石及び被覆石の解析用物性値

注記*:括弧内【】の数字は地下水位以浅の数値を示す。

動せん断弾性係数及び基準平均有効拘束圧は代表的な数値を示す。

(参考) 11-4

148

- 3. 基礎捨石及び被覆石の解析用物性値の妥当性について
- 3.1 妥当性の確認方針

「港湾基準」に記載されている内容について、その引用文献の目的、結果を整理する とともに、地震時の動的挙動への適用性についても文献の内容を検討する。また、先行 炉における基礎捨石等の解析用物性値を確認し、基礎捨石及び被覆石の解析用物性値の 妥当性を確認する。

3.2 「港湾構造物設計事例集」に記載される解析用物性値の妥当性

「港湾構造物設計事例集」に記載される解析用物性値のうち主要な物性値について、 島根原子力発電所の基礎捨石及び被覆石に適用することの妥当性を確認する。

(1) 強度特性

「「港湾基準」では、図 3-1 に示すとおり基礎捨石及び被覆石の強度特性として、 粘着力 c=20kN/m², せん断抵抗角 φ = 35° が記載されている。

(6) マウンド材及び基礎地盤の強度定数

① マウンド材 偏心傾斜した作用を受ける支持力の模型実験及び現地実験の結果によれば、三軸圧縮試験から求 められた強度定数を用いてビショップ法による円弧滑り解析を行えば精度の高い結果が得られるこ とが明らかになっている⁵⁾。また、砕石の大型三軸圧縮試験から、粒径の大きい粒状体の強度定数 は均等係数の等しい相似粒度の材料から求められる値にほぼ等しいことが確認されている。した がって、捨石の強度定数を正確に推定するには相似粒度の試料を用いた三軸圧縮試験を実施するこ とが望ましいが、強度試験を行わない場合には、一般に用いられている通常の捨石に対する標準的 な強度定数として粘着力 $c_D=20$ kN/m²、せん断抵抗角 $\phi_D=35^\circ$ の値が用いられている。実際の捨石にお いては現地での捨石の密度に対応して強度に相違が生じることが予想されるが、現地での捨石の状 態を把握することは非常に困難であるので、標準的な強度定数の値が設定されている。 標準値は砕石の大型三軸圧縮試験の結果からやや安全側に求めた値であり、既存防波堤及び係留 施設の解析結果からも妥当な値である。なお、強度定数として粘着力 cn=20kN/m²としているが、こ れは砕石のせん断抵抗角のの拘束圧による変化を考慮するための見掛けの粘着力である。図-2.2.7 は各種の砕石に関する三軸試験結果をまとめたものであるが 5、拘束圧が大きくなるととも に粒子破砕によってめは減少する。図中に実線で示された値は見掛けの粘着力 co=20kN/m², do=35° とした値であるが、見掛けの粘着力を考慮することによってかの拘束圧依存性が反映されている。 母岩の一軸圧縮強さと強度定数の関連を調べた結果によると、これらの標準値が適用できるのは母 岩の一軸圧縮強さが 30MN/m²以上の石材である。母岩の強度が 30MN/m²以下である弱い石材をマ ウンドの一部として用いる場合、強度定数はほぼ c_D=20kN/m², ϕ_D =30°となる^の。

> 図 3-1 「港湾基準」における捨石の強度特性の設定方法 (「港湾基準」より引用・一部加筆)

「港湾基準」の引用文献である「港湾技術研究所報告 捨石マウンドの支持力の新 しい計算法(1987.6)」(以下「文献①」という。)では,捨石マウンド上に重力式 構造物が設けられる場合における捨石の力学的特性の検討を目的とした実験が行わ れている。

ここで、「文献①」では、直轄港湾工事に用いられる基礎捨石に対して質量~粒径 換算を行い、それらと同程度の強度・比重を有する「砕石(D_{max}=25mm~200mm:砂岩と 花崗岩の2種類)」を対象に、試験条件として均等係数 Uc、拘束圧及び締固め程度を 変化させた供試体を準備し、直径 60cm・高さ 120cm の供試体では中型三軸圧縮試験、 直径 120cm・高さ 240cm の供試体では大型三軸圧縮試験をそれぞれ実施して捨石の力 学特性を検討している。「文献①」の三軸圧縮実験ケース及び実験結果を図 3-2 に 示す。

上述の試験結果より、「捨石の強度定数は粘着力 c=2tf/m², せん断抵抗角 φ =35°を 標準とする」とされている。

図 3-2 「文献①」の三軸圧縮実験ケース及び実験結果 (「文献①」より引用)

「文献①」は,捨石マウンドにおける支持力の新しい計算方法の提案を目的に,捨 石マウンド上の重力式構造物の安定性(静的)に関して現地実験(小名浜港:基礎捨 石 50kg~800kg/個,被覆石 600kg~800kg/個(推定))が行われている。

現地実験は、マウンド肩幅を 10m から 25m, 15m, 5m に変更した 4 ケースで行われて おり、実験ケーソン(幅 22m×奥行 15m)に油圧ジャッキで水平力を与えてマウンド 及び基礎地盤に偏心傾斜荷重を加えることで、実験ケーソンの回転角や水平変位が計 測されている。

現地実験から得られた最大水平力を用いた円形すべり計算結果によると、「捨石の 三軸試験による強度定数 c=2tf/m², φ=35°を用いたビショップ法の結果が実験結果と 良く一致する」とされている。小名浜港の現地試験の概要図を図 3-3 に示す。

小名浜港現地試験概要図 (文献①「港湾技術研究所報告 捨石マウンドの支持力の新しい計算法(1987.6)」より引用)

図 3-3 小名浜港現地試験概要図

「港湾技研資料 マウンド用石材の大型三軸試験による強度特性(1991.3)」(以下「文献②」という。)では、「品質が劣ると考えられてきた石材の強度特性を明らかにする」ことを目的として、「文献①」で用いた比較的良質な花崗岩等よりも性質が劣る石灰岩及び軟質な砂岩等について、一軸圧縮強度に着目した分類で大型三軸圧縮試験(供試体寸法:直径30 cm,高さ60 cm)が行われている。また、一軸圧縮強度との相関関係を得るため、幅広い範囲の一軸圧縮強度を持つ特殊モルタルも使用している。

大型三軸圧縮試験の結果、「母岩の一軸圧縮強度が 300kgf/cm^2 以上であれば、「文献①」で報告された捨石の標準値である c=2tf/m²、 ϕ =35°をほぼ満足する」とされている。

「文献②」の三軸圧縮実験ケース及び実験結果を図 3-4 に示す。

図 3-4 「文献②」の三軸圧縮実験ケース及び実験結果

(参考) 11-8

工藤ら(1985)^{*1}は,既往のケーソン式防波堤基礎捨石の粒度とほぼ相似な,均等係数 U_c=2.3 の 3 種類(15mm, 25mm, 30mm)の相似粒度の試料を用いて三軸圧縮試験を実施し,図 3-5 に示すように,内部摩擦角 ϕ はゆる詰めでも密詰めでも 35°~36°,粘着力 c はゆる詰めで 0.2kgf/cm²(約 20kN/m²)~密詰めで 0.6kgf/cm²(約 60kN/m²)との結果を得ている。

捨石の標準的なモデル化案である内部摩擦角 $\phi=35^\circ$,粘着力 c=20kN/m²は図 3-5 に おいて間隙比 e_i=0.9 程度のかなり空隙の多い状態を想定したせん断強度となってお り,保守的な設定となっていることが分かる。なお,島根原子力発電所の基礎捨石及 び被覆石について,輪谷湾内の1・2号機エリアは昭和45年(1970年)12月竣工, 3号機エリアは平成22年(2010年)3月竣工と年月を経ており,ある程度締まった 密な状態であると考えられることから,この強度特性は保守的な設定と判断する。

図 3-5 間隙比 ei に対する粘着力 c と内部摩擦角 φ の推定図表 (工藤ら(1985) *1より引用・加筆)

(参考) 11-9

(2) 動せん断弾性係数

「埋立地の液状化対策ハンドブック(改訂版)(財団法人沿岸開発技術研究センター,平成9年)」には、「混成防波堤における地震観測結果から得られた算定式により水深-10m程度の大型岸壁における捨石のせん断波速度としてV_s=300m/sを用いる。」との記載があり、算定式については、上部ら(1983)*²に記載されている表 3-1を指していると考えられる。表 3-1 は沢田ら(1977)*³による国内の複数のロックフィルダムにおける弾性波測定結果から得られた速度分布モデルであり、ロック材における深さ 0~10m の S 波速度 V_sの平均値が約 300m/s となり、5m 以深は深いほど V_sは増加する(図 3-6)。

島根原子力発電所における基礎捨石の分布範囲は、おおむね深さ15mの範囲内に分 布することから、せん断波速度は V_s=300m/s を上回るが、「港湾構造物設計事例集」 に記載の V_s=300m/s を採用することは保守的な設定と判断する。

表 3-1 ロックフィルダムの一般的物性値を与える速度分布モデル (上部ら(1983)*²より抜粋・一部加筆)

· · ··································	体のゾーン	י ם	, 1	2	7		
お推位 の種類	材料の 状態 (m)	不飽和	飽和	S 波速度の大きい材料 の分布	S 波遠度の小さい材料 の分布		
	0 - 5	V. =	245	$V_{s} = 210$			
S波速度	5 - 30	$V_{\rm s} = 250 Z^{0.20}$	$V = 250 \ 70.20$	$V = 180.7^{0.35}$	V = 140.70.34		
	30-	$V_s = 200 Z^{0.315}$	1, 2002	1, 1002	, 102		
ポアソン比 全体		$\nu = 0.375 - 0.006 Z^{0.58}$	$\nu = 0.49 - 0.01Z^{0.95}$	$\nu = 0.45 - 0.006 Z^{0.60}$			
				V ₄ :S波速朋	또 (m/s)		

ν:ポアソン比 Z:深さ(m)

^{2 ·} 探 さ (m)

図 3-6 ロック材のS波速度について (表 3-1 におけるロック材のS波速度をグラフ化) (参考) 11-10

- 注記*1:工藤康二,西好一,田中幸久,国生剛治:護岸基礎捨石マウンドの沈 下予測(その1) 捨石マウンド材料の物理特性ならびに静的力学特性, 電力中央研究所報告,研究報告 384030,1985 年
 - *2:上部達生,土田肇,倉田栄一,国生剛治:大型混成式防波堤の強震記録 に基づく水-構造物連成系の地震応答解析,港湾技術研究所報告,第 22巻,第2号,1983年,pp289-326
 - *3:沢田義博,高橋忠,桜井彰雄,矢島浩:ロックフィルダムの物性値分布 特性および堤体の動的特性-弾性波動に基づく考察-,電力中央研究 所報告,研究報告 377008, 1977 年

3.3 地震時の検討における基礎捨石及び被覆石の物性に関する文献調査

島根原子力発電所での適用性を目的として,地震時(動的)の検討で用いられる基礎 捨石及び被覆石の解析用物性値について,文献調査を行った。

捨石の動的挙動に関して検討している文献「捨石のモデル化に関する検討報告書(F LIP研究会 企画委員会捨石作業部会,平成13年5月)」(以下「文献③」という。) によると,「港湾構造物設計事例集」に示される捨石の解析用物性値が用いられた事例 検証が行われている。

事例検証は 1995 年兵庫県南部地震における六甲アイランド RF3 岸壁及び神戸港第7 防波堤の被災事例と, 1993 年釧路沖地震における釧路港北埠頭の被災事例を対象に行われており, 簡易モデルによる検討やパラメトリックスタディーを踏まえ, 表 2-1 に示すパラメータを捨石の標準的なパラメータとして提案している。

(参考) 11-11

155

「文献③」では、1995年兵庫県南部地震における神戸港六甲アイランド RF-3 岸壁の 被災断面を検討対象としている。六甲アイランド RF3 岸壁の検討用地震動及び検討対象 断面を図 3-7 に、検討結果を表 3-2 に示す。検討結果において、表 2-1 に示すパラ メータを捨石の解析用物性値として設定した CASE4 では観測値の変位を再現できてい る。

図 3-7 六甲アイランド RF3 岸壁の検討用地震動及び検討対象断面 (「文献③」より引用・一部加筆)

表 3-2 六甲アイランド RF3 岸壁の検討結果

(捨石は主に 200kg~400kg/個程度)

ſ							
		せん断弦	岐特性				
	検討ケース*	$C(kN/m^2)$	ф (°)	水平	鉛直	傾斜	備考
			$\Psi(3)$	(m)	(m)	(°)	
	CASE3	0	40	6.10	2.11	10.6	従来方法
	CASE4	20	35	4.33	2.00	4.69	提案方法
	観測値			4.1~4.6	1.7~2.0	4.1~5.1	

注記*:結果は捨石強度特性のみが異なる CASE3(従来方法)と CASE4(提案方法)のみ 抜粋している

「文献③」では、常時土圧の作用を受けない構造物として、1995年兵庫県南部地震に おける神戸港第七防波堤の被災断面を検討対象としている。神戸港第七防波堤の検討用 地震動及び検討対象断面を図 3-8 に、検討結果を表 3-3 に示す。検討結果において、 表 2-1 に示すパラメータを捨石の解析用物性値として設定した CASE4 では観測値の変 位を再現できている。

(参考) 11-13

157

表 3-3 神戸港第七防波堤の検討結果

6 2	せん断弦	的情性	残留刻	变位量	
検討ケース*	$C(kN /m^2)$	ф (0)	水平	鉛直	備考
		Ψ (3)	(m)	(m)	
CASE2	0	40	0.04	4.39	従来方法
CASE4	20	35	0.00	2.26	提案方法
観測値			_	1.4~2.6	

⁽捨石は主に 10~200kg/個程度)

注記*:結果は捨石強度特性のみが異なる CASE2(従来方法)と CASE4(提案方法)のみ 抜粋している

「文献③」では、1993年釧路沖地震における釧路港北埠頭岸壁の被災断面を検討対象 としている。釧路港北埠頭岸壁の検討用地震動及び検討対象断面を図 3-9 に、検討結 果を表 3-4 に示す。検討結果において、表 2-1 に示すパラメータを捨石の解析用物性 値として設定した CASE3 では観測値の変位を再現できている。

(「文献③」より引用・一部加筆)

3 3	せん断強	渡特性	残留3		
検討ケース*	$C(kN/m^2)$	<u> </u>	水平	鉛直	備考
	$C(KIN/III^{-})$	$\Psi(1)$	(m)	(m)	
CASE1	0	40	0.89	0.21	従来方法
CASE3	20	35	1.28	0.22	提案方法
観測値			0.8~1.6	0.2~0.5	

表 3-4 釧路港北埠頭岸壁の検討結果

注記*:結果は捨石強度特性の設定の違いに着目し、CASE1(従来方法)とCASE3(提案 方法)のみ抜粋している。

「文献③」で検討した事例は、いずれも重力式岸壁あるいはケーソン式防波堤である ことから、鋼管杭を使用した構造物を対象とした被災事例の再現解析における捨石の解 析用物性値の設定状況についても確認した。

「二次元有効応力解析による直杭式横桟橋の被災事例の再現解析(2009)」(以下「文献④」という。)では、1995年兵庫県南部地震による神戸港工桟橋の被災事例を対象とした再現解析が行われた際、「港湾構造物設計事例集」に示される捨石の解析用物性値が設定されている。解析断面図を図 3-10 に、解析用物性値を表 3-5 に示す。「文献④」において、鋼管杭の座屈位置という被災事例を再現できたとされている。

図 3-10 断面図(神戸港T桟橋) (「文献④」より引用・一部加筆)

表 3-5 FLIPにおける解析用物性値(神戸港T桟橋) (「文献④」より引用・一部加筆)

土層名	湿潤	間隙			変形特	性		~
	密度	率	初期	基準	拘束圧	内部	粘着	履歴
			せん断	化拘	依存	摩擦	力	減衰
			剛性	束圧	係数	角		上限值
	ρt	п	G_{ma}	σ ma'	m	ϕ_f	С	hmax
	(t/m^3)		(kPa)	(kPa)		(°)	(kPa)	
Asl	1.8	0.45	111900	98.0	0.5	40.7	0	0.24
Ag1	2.0	0.45	226500	98.0	0.5	44.4	0	0.24
Dc1	1.9	0.44	51000	43.4	0.0	0.0	150	0.20
埋立土	1.8	0.45	65840	98.0	0.5	38.9	0	0.24
捨石	2.0	0.45	180000	98.0	0.5	35.0	20	0.24
裏込土	2.0	0.45	180000	98.0	0.5	35.0	20	0.24
Ac1	1.5	0.67	3750	5.0	0.5	25.0	0	0.20
Dc2	1.7	0.55	34000	86.4	0.0	0.0	100	0.20
Dg1	2.0	0.45	228200	98.0	0.5	44.5	0	0.24

(参考) 11-16

160

「2011 年東北地方太平洋沖地震において地震動により被災した小名浜港5号埠頭耐 震強化岸壁(-12m)の再現解析(2014)」(以下「文献⑤」という。)では,2011 年東北地 方太平洋沖地震による小名浜港5号埠頭耐震強化岸壁の被災を対象とした再現解析が 行われた際,「港湾構造物設計事例集」に示される捨石の解析用物性値が設定されてい る。なお,当該岸壁の基礎捨石は30~200 kg/個とされている。解析断面図を図3-11 に,解析用物性値を表3-6に示す。「文献⑤」において,岸壁背後の沈下等の被災結 果に調和的な変形を再現可能であるとされている。

図 3-11 断面図(小名浜港5号埠頭耐震強化岸壁) (「文献⑤」より引用・一部加筆)

表 3-6 FLIPにおける解析用物性値

(小名浜港5号埠頭耐震強化岸壁)

(「文献⑤」より引用・一部加筆)

地層名	N65	ρ_t (t/m ³)	ρ_{sat} (t/m^3)	σ'_{ma} (kN/m ²)	G_{ma} (kN/m ²)	ν	K_{ma} (kN/m ²)	C (kN/m ²)	¢ (°)	n	h max
埋立土	8.3	1.8	2.0	98	75400	0.33	196600	-	39	0.45	0.24
岩ずり	10.4	1.8	2.0	98	86600	0.33	225800	-	39	0.45	0.24
砂質上	22.2	-	2.0	98	140600	0.33	366700	-	41	0.45	0.24
固結シルト (風化部)	-	-	1.8	171.88	10200	0.33	26600	30	-	0.55	0.20
基礎捨石	•	-	2.0	98	180000	0.33	469400	20	35	0.45	0.24
雜石	-	-	2.0	98	180000	0.33	469400	20	35	0.45	0.24

「相馬港2号埠頭-12m岸壁を対象とした事例解析(2012年度)」(以下「文献⑥」という。)では、2011年東北地方太平洋沖地震による相馬港2号埠頭-12m岸壁の被災を対象とした再現解析が行われた際、「港湾構造物設計事例集」記載の値におおむね近い 捨石の解析用物性値が設定されている。断面図を図 3-12 に、解析用物性値を表 3-7 に示す。「文献⑥」において、被災状況や背後地盤の沈下や段差について再現できたと されている。

表 3-7 FLIPにおける解析用物性値(相馬港2号埠頭-12m岸壁)

(<mark>「</mark> 文献⑥」	より引用・	一部加筆)
-----------------------	-------	-------

記号	土質	ρ (t/m³)	σ_{ma} ' (kN/m ²)	Vs (m/s)	G _{ma} (kN∕m²)	m _G	K _{ma} (kN/m²)	m _K	c (kN/m²)	¢ _f	hmax	n	E (kN/m²)
в	埋土(浚渫砂)	1.80	98	162	75246	0.5	196230	0.5	0.0	39.38	0.24	0.45	
As	砂質土(細砂)	2.00	98	269	125095	0.5	326228	0.5	0.0	41.33	0.24	0.45	
R	岩盤(砂質泥岩)	1.73						-					1392000
	裏込石	2.00	98		101300	0.5	264000	0.5	20.00	35.00	0.24	0.45	

捨石の動的挙動について,重力式岸壁,ケーソン式防波堤及び鋼管杭を使用した構造物を対象とした被災事例の事例検証が行われており,「港湾構造物設計事例集」に示される捨石の解析用物性値を設定した場合,解析結果はそれぞれの観測値と適合性が良いとされている。

以上より,「港湾構造物設計事例集」に示される捨石の解析用物性値は妥当であると 判断した。

3.4 先行炉における基礎捨石等の解析用物性値

島根原子力発電所における基礎捨石及び被覆石の解析用物性値の妥当性を判断する ため,先行炉における基礎捨石等の解析用物性値を確認する。なお,先行炉の情報に係 る記載内容については,審査資料等をもとに独自に解釈したものである。

(1) 東海第二発電所

東海第二発電所において,図 3-13 に示すとおり,津波防護施設である貯留堰の外 側に位置する土留鋼管矢板の背面に捨石が分布していることから,解析断面にモデル 化している。

(平面図) S N T. P. (m) T. P. (m) 10.0 10.0 貯留堰 ゆ2000 貯留堰 φ2000 0.0 ▽L.W.L. T.P. -0.81m 0.0 T. P. -4. 9m T. P. -4, 9m T. P. -6, 9 -10.0 10.0 Ac 土留鋼管矢板 -20.0 20.0 Ac -30, 0 30.0 土留鋼管矢板 Agl -40, 0 40.0 -50, 0Ag1 -50, 0 -60, 0 -60, 0 Km -70.0 70.0 -80.0 80.0 50m 0 (断面図)

図 3-13 東海第二発電所 貯留堰の周辺地盤における捨石の施工状況

東海第二発電所の捨石は主に 100kg~500kg/個程度の質量を有するとしており, 基礎捨石の解析用物性値については,現地の捨石での試験が非常に困難であることか ら,表 3-8 に示すとおり,「港湾構造物設計事例集」に記載される値を用いている。

	パラメー	Ø		捨石
物	密度 () は地下水位以浅	ρ	g/cm^2	2.04 (1.84)
理特性	間隙比	e	_	0. 82
	ポアソン比	ν _{CD}	-	0.33
変形	基準平均有効主応力 ()は地下水位以浅	σ' _{ma}	kN/m²	98
特性	基準初期せん断剛性 () は地下水位以浅	G _{ma}	kN/m 2	180000
	最大履歴減衰率	h _{max}	_	0.24
強度	粘着力	C _{CD}	N/mm^2	0.02
特性	内部摩擦角	φ _{cd}	度	35

表 3-8 東海第二発電所 捨石の解析用物性値

(2) 高浜発電所

高浜発電所において,津波防護施設である放水口側防潮堤周辺の改良地盤の前面 において基礎捨石及び被覆石が分布していることから,解析断面にモデル化してい る。

高浜発電所における基礎捨石等の解析用物性値については,FLIP研究会が推奨する手法*,「港湾基準」及び「埋立地の液状化ハンドブック(改訂版)(沿岸開発技術研究センター,平成9年)」等から,表 3-9に示す解析用物性値を設定している。

注記*:例えば,液状化解析プログラム FLIP による動的解析の実務
 FLIP 研究会の14年間の研究成果 平成23年8月3日
 第四期 FLIP 研究会14年間のまとめWG 沿岸技術研究センター

表 3-9 高浜発電所 基礎捨石等の解析用物性値

飽和密度	間隙率	動せん断弾性係数	体積弾性係数	ポアソン比	基準拘束圧	粘着力	内部摩擦角	最大減衰比
ρ (g/cm ³)	n	$G_{ma} (kN/m^2)$	$K_{ma} (kN/m^2)$	ν	σ_{ma} ' (kN/m ²)	$c (kN/m^2)$	φ _f (°)	h _{max}
2.04	0.45	1.80×10^{5}	4.69×10^{5}	0.33	98	20	35	0.24

3.5 基礎捨石及び被覆石の解析用物性値の妥当性

島根原子力発電所の基礎捨石及び被覆石と文献に記載された捨石の諸元の比較を表3 -10に示す。島根原子力発電所の基礎捨石は、文献に記載された捨石の諸元の範囲内で あることから、「港湾構造物設計事例集」で示される解析用物性値を島根原子力発電所 の基礎捨石に適用することは妥当と判断する。被覆石については、文献に記載された捨 石の諸元の範囲を超えているが、礫径の大きい被覆石は比較的礫径の小さい捨石より粘 着力、せん断抵抗角共に大きいと考えられ、「港湾構造物設計事例集」で示される捨石 の解析用物性値を被覆石に適用することにより保守的な評価になるため妥当と判断す る。

また,島根原子力発電所の基礎捨石及び被覆石の解析用物性値は,先行炉である東海 第二発電所及び高浜発電所の基礎捨石等の解析用物性値と同じである。したがって,島 根原子力発電所の基礎捨石及び被覆石の解析用物性値は妥当と判断した。

	島根原子力発電所	文献に記載された値
一軸圧縮強さ	30N/mm ² 以上	$30MN/m^2$
D _{max}	200~250mm(基礎捨石) 700~800mm(被覆石)	25~200mm
質量	30kg以上/個程度(基礎捨石) 1.5t/個(被覆石)	 ・六甲アイランドRF3岸壁 200~400kg/個程度 ・神戸港第七防波堤 10~200kg/個程度 ・小名浜港5号埠頭耐震強化岸壁 30~200kg/個程度

表 3-10 島根原子力発電所の基礎捨石及び被覆石と

文献に記載された捨石の諸元の比較

(補足1) 島根原子力発電所の岩石試験

島根原子力発電所の石材(基礎捨石及び被覆石)は主に発電所敷地内の凝灰岩を使用しており,これについて実施した岩石試験の概要を示す。

ボーリングコアから採取した試料を用いて一軸圧縮試験を実施した結果, 30N/mm²を上回る結果となった。一軸圧縮試験概要を図 1-1, 岩石試料採取位置図を図 1-2 に示す。

	供試体りイズ	直径 : 50mm 高さ : 100mm
	最大能力	980kN(100t)
甘原	試料採取ボーリング	306,308,309,310,316
全礎 一型 一型 一型	試験個数	18個
盤笏	一軸圧縮強度	82.57N/mm ²
西原	試料採取ボーリング	324,319,328,329
切取	試験個数	10個
科笏 面 ^物	一軸圧縮強度	122.98N/mm ²

図 1-1 一軸圧縮試験概要

図 1-2 岩石試料採取位置図

(補足2) 島根原子力発電所の押し崩し試験

独立行政法人土木研究所では,ロックフィルダムの主要築堤材料として使用されるロッ ク材料のせん断強度の評価について,原位置における表層すべり試験(切り崩し試験及び 押し崩し試験)を実施し,原粒度条件下でのロック材料のせん断強度の評価を論文「拘束 圧依存性を考慮したロック材料の強度評価(山口ほか)」で示している。

ロック材料を 100t 級大型ブルドーザで静かに谷に押し崩す「押し崩し試験」を実施して、安息角を計測しているが、「得られた平均 38.5°の結果は、大型三軸圧縮(CD)試験により求められた内部摩擦角 41.0°とほぼ同等の値である」とされている。

島根原子力発電所にて,押し崩し試験を模擬した安息角の現地試験を実施した。現地試験には基礎捨石と同様の石材(凝灰岩主体:D_{max}=200~250mm 程度)を用いて,40t ダンプにて平坦な場所でダンプアップすることで試料塊を作り,ダンプが逃げる方向以外の3辺を測線として試料塊の角度計測を行った。

試験は3回行い,合計9測線から得られた平均値は38.5°であり,「文献①」のせん断 抵抗角φ=35°と同等な結果となった。

試験の概要を図 2-1に、試験結果を表 2-1に示す。

安息角試験写真(計測全景)

図 2-1 試験の概要

試験	測線	角度	平均角度
	1	35.2	
1回目	2	36.8	
	3	46.3	
	1	29.8	
2回目	2	37.8	38.5
	3	35.3	
	1	44.4	
3回目	2	36.3	
	3	44.8	

表 2-1 安息角試驗 試驗值一覧表

(参考資料 12) 液状化強度試験の詳細について

1. 液状化強度試驗試料

敷地内の被覆層として埋戻土及び砂礫層が分布する範囲において採取した試料を用い た液状化強度試験を実施している。液状化強度試験試料の採取位置を図1-1,液状化強度 試験試料の採取方法を表1-1に示す。

E-1~E-8 地点は、ロータリー式三重管サンプラーによる液状化強度試験試料として採取したものである。粒径加積曲線のグラフには「港湾の施設の技術上の基準・同解説(国土交通省港湾局,2007年版)」及び「道路橋示方書(V耐震設計編)・同解説((社)日本道路協会、平成14年3月)」による液状化判定指標についても記載する。E-1~E-8 地点における、N値、細粒分含有率、粒径加積曲線、ボーリング柱状図及びコア写真を図1 -2~図1-27に示す。なお、E-1、E-2、E-6、E-7 地点は、ごく近傍の既往ボーリングの調査結果より、液状化検討対象層を確認し、液状化強度試験試料を採取しているため、既往のボーリング調査におけるボーリング柱状図及びコア写真を参考として示す。

A~E 地点においては表層試料採取による液状化強度試験試料を採取しているため「2. 液状化試験結果」において試験結果のみ示す。

(埋戻土)

(砂礫層)図 1-1 液状化強度試験試料の採取位置

試料採取	夜雨十年	既往ボーリング	ボーリング柱状図,
位置	採取力法	調査結果利用	コア写真の地点名
E-1		\bigcirc	P1*
E-2		\bigcirc	P2*
E-3		_	E-3(調査孔)
E-4 [′]	ロータリー式	_	E-4′(調査孔)
E-5	三重管サンプラー	—	E-5(調査孔)
E-6		\bigcirc	P7*
E-7		\bigcirc	P11*
E-8		_	E-8(調査孔)
А		_	_
В		_	
С	表層試料採取	—	_
D			_
E		_	_

表 1-1 液状化強度試験試料の採取方法一覧

注記*:参考として既往ボーリング調査におけるボーリング柱状図及びコア写真を示す。

図 1-2 N値・細粒分含有率及び粒径加積曲線(E-1)

7	ドー	-リング名 P1 孔口標高												6.2	26m			総掘進長 30.5										Om					
標	標	層	深	柱	±	色	相	相	記	1		孔 内					標	準	貫	入	試	験		原	ſ	立 置	活 引	験	試料	斗採	取	室内	掘
					質		対	対				水位	深	10cmご 打 撃	<u> との</u> 回 数) 打 撃					N	値		深		試 およ	験 び 縦	名	深	活	睬	記験	進
尺	高	厚	度	状	X		密	稠				(11) 川	度	0 1	0 20	数/					_			度		(度	料]	取		月
	63			500	~	-364	r#F	œ	-			定月		2 2	2	貫入量														番 :	方		
(m)	(m)	(m)	(m)		Л	詞	皮	度		+	$\left \right $	<u> </u>	(m)	10 2	0 30) (cm)	<u>,</u>	0	10	2	0	30	40 50	60 (m	<u>'</u>	$\frac{1}{1}$		_/	(m)	号	法	-	H
- 1				000 0000					0.45mまでコンクリ	ート及び栗石。			1.15	6 10	0 11	27 30	27			_	•			_					1.15	P-1	 第 	渡渡	
- 2				°.0°°									2.15	6 8	10	24 30	24			_									2.15	P-2	 ○ 	渡渡	
- 3				0000 0000 00000	玉石				礫径75mm以下を主作 規則に20%程度混入	本に、細粒分を不 、し、マトリック			3.15	3 3	8	14 2 30	14		,	Α									3.15	P-3	 	渡渡	- Internet
4				000	混 り 砂	黒裕	甲位		スは粗砂で径100~ を多量含む。	-150mm程度の玉石			4.15	4 3	4	11 30	11		-	_									4.15	P-4	 第前 	度渡	
5				°.0°°	礫				5.2~5.6m付近にコ 含む。	ンクリート片を		1	5.15 5.17	2	+	50 2	750												5.15	P-5	Θ		_
6				0000								1	6.05 6.24	21 25	9	50 / 19	79												6.05	P=6	 餐前 	渡渡	3/7
7	1.54			000								1	7.15	4 6	17	27 30	27		-	_		-							7.15	P=7	□ ≤	渡	-
8	-1.54	7.8	7.8	0.000								1	8.15	4 6	4	14 30	14		•										8.15	P-8	 () 	渡渡	
9				0.00	粘							2	9.15	5 5	8	18 30	18			\mathbf{b}									9.15	P-9		渡	
10				0.000	土質	黒灰	中位		礫径60mm以下を主体 スは粘土分を20~3 10、7m付近に径150m	本に、マトリック 80%含んだ中粗砂。 m程度の玉石を挟		1	9.45 0,15	2 2	3	7 2 30	7	•	\langle					_					9.45	P-10	〇	渡渡	
11				0000	硬				₹£e			1	1.15	12 9	3	24 30	24				•								11.15	P-11	 ● 着 	渡渡	10/8
12	-6.44	4.00	12.7	0000								1	2.15	10 10	0 4	24 30	24		_	_	•			_					12.15	P-12	 ^密 ^総 	渡渡	
13	-7.24	0.80	13.5	000	玉石	暗灰			径100mm程度の玉石	を主体とする。		1 1 1	2.45 3.05 3.10	50/5	+	5	300		_	_				_					12.45				
14	-8.44	1.20	14.7	0.000	砂礁	暗灰	級 い		礫径60mm以下を主作 スは粗砂。	本に、マトリック		1	4.15	4 4	2	10 30	10		•					_					14.15	P-14	Θ		_
15	-0.11	1.0	14.7	0.000								1	4.45 5.15	18 6	4	28 30	28					,		_					14.45	P-15	 () /ul>	渡渡	
16				0.00 0.00 0.00	粘土				礫径60mm以下を主(本に、マトリック		1	5.45 6.15	9 5	4	18 20	18		-	•	_			_					15.45	P-16	○ 第	渡渡	
17				0.00	質砂	西福	位		スは粘土質砂。 部分的に径100mm程 する。	度の玉石が点在		1	6.45 7.15	4 5	6	15 30	15		-					_					16.45	P-17	 () 名前 	渡渡	
18					使裝							1	8.15 8.25	50		50 10	150			_									18.15	P-18	〇 前	渡	9
19	-12.64	4.20	18.9									1	9.15	12 6	5	23 30	23		-		•			_					19.15	P-19	 ^第 ^前 ¹ ^前 ¹ /li>	渡渡	
20					砂			軟				2	0.15	1 1	1	3/ 30	3	•	-					_					20,15	P-20	田 田 田 田	渡渡	-
21					質粘	黄褐		らか	礫径15mm以下が点イ 30%混入する。 粘着性が強い。	生し、砂分を20~		2	1.15	2 2	4	8 30	8	\rightarrow	•	_				_					21.15	P-21	○	渡渡	
22					±							2	2.15	1 1	1	3/ 30	3	\mathbf{k}	_	_									22.15	P-22	 	渡渡	
23	-16.94	4.30	23.2		醸混り	級	ф1		粗砂を主体に、礫谷	620mm以下を20%		2	3.15	5 5	12	22 30	22				•								23.20	23-2	 ^密 	渡渡	_
24	-19.44		94.7		シルト 質砂 シルト	灰暗	位中		程度及び細粒分を2 <u> 貝殻小片が少量混</u> 礫径30mm以下を主 (20%程度混入し、 じる。 本に、マトリック		2	3,45 24,15	8 2	4	14 / 30	14		,	A				_					23,45	P-24	 ○ 総 	渡渡	
25	-19.34	0.90	25.6		質砂礫 確混り	灰暗雪	位級		スは中粗砂で細胞 し、貝殻小片が少量 中砂砂を主体に、横	分を20%程度混入 記記る。 基礎名の 単体を20mm以下を2		2	4.45 5.15	2 2	4	8 20	8		\langle	_				_					24.45	P-25	○	渡渡	3 10
26	10101		and to		シルト 質砂 粘土質	灰	い 中		0%程度及び細粒分々 る。 種径20mm以下を主(を30~40%混入す 本に、マトリック		2	5.45 6.15	6 5	4	15 30	15		\uparrow	•				_					25.45 26.15	P-26	 () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () ()<!--</td--><td>度</td><td>-</td>	度	-
27	-20.54	0.70	26.8	10°	砂礫	褐黄	位	非常	スは相砂で細粒分? る。 礫径20mm以下を20%	を205程度混入す 程度及び中砂を2		2	6.45 7.15	7 5	6	18 30	18			\mathbf{i}									26.45	P-27	 第 	渡渡	
28	-22.14	0.90	28.4		2000 土 粘土質	褐 褐	密	に使い	0%程度混入する。 確径50mm以下を主住 スけ知砂で知らい。	本に、マトリック を2008程度泡スナ		2 2 2	7.45 8.15 8.33	12 38	8	50 18	83		-				->						27.45 28.15 28.33	P=28	 ① 	渡渡	
29					砂礫	灰	な		では出起していたした。 硬質な頁岩である。 風化し若干暗い	<u>~ 2000年月9日に</u> 入り 54、28.9m付近で		222	9.00 9.00	- R.2	不能	30			-										20.00				3
30	-24.24	2.10	30.5	0	甲硬岩	黒灰			29.4m付近まで岩片 は短棒状で水平方	*状を呈し、以深 句の亀裂が目立									-														12
									RQD:23.8%、最大=	コア長:15cm。																							

図 1-3 ボーリング柱状図 (P1:E-1 地点の参考)

(参考)12-5

【砂礫層】

【岩盤】

図 1-4 ボーリングコア写真 (P1:E-1 地点の参考)

(参考) 12-6

(参考) 12-7

7	ボー	- IJ	ング	ノグ名 P2 孔口標高									6.26m							総掘進長						21.40m								
標	標	層	深	柱	±	色	相	相	Ē		i F Z	孔内水。	75 10	enz	との	打	標	準	貫	入	試	験			厞	頁 亻	位前	置 試 験	験名	試米	→採 	取	室内試	擁
尺	高	厦	度	北	質		対	対			1	位 m)	来 ¹⁰ 打	撃回	目数	撃回数					N	値			1	禾	おし	、び糸	吉果	依	武料	採取	武験 (進
	2				区		密	稠			1	/ 測定	要 0)	10	20	∭/ 貫									J	度	ĺ			度	番	方		月
(m)	(m)	(m)	(m)	2	分	調	度	度	事		Ĵ	月日(m) 1(20	30	入 量 (cm)	a		10	2)	30	40	50	60 (m)				(m)	号	法	_	E
1				0000 0000 0000	砂織	黒灰	中位		上部30cmは鉄筋コン 礫径75mm以下を主体 スは砂で、一部径38 を含む。	✓クリート。 料に、マトリック 50mm以下の玉石		1	<u>15</u> 7 .45	7	9	23 30	23				•				_					1.15	P-1	Θ	密度	
2	4.36	2.00	2.0			+	+					2	.15 18	5 17	10	42 30	42						>							2.15	P=2	Θ	密度	.
3				00000	粘土質	淡青田	中位		礫径75mm以下を主体 スは中粗砂で細粒の し、径150mm程度の	れに、マトリック ♪を20%程度混入 玉石が点在する。		3	.15 15 .45 .15 7	i 6 3	7	28 30	28				/									3.15 3.45 4.15	P-3	Θ	密度	-
5				0000	碟				佛がは用~里川線々	ビ土体とする。		4	45	5	11	30	16				<u></u>									4.45	P-4	Θ	密度	1
6	0.76	3.60	5.6	0.000 0.000		-						5	.45	7	7	30	24													5.45	P-5	Θ	密度 粒度	
7				0 0 0 0 0 0 0 0								6	.45	ľ	, ,	30	17			Í										6.45	P=6	Θ	密度	
(၀.၀၀ ၀.၀၀	玉石				逓辺75い下さ-ナ/	kr ⇔liluzz		7	.15 3	4	9	30	16			•										7.15	P=7	Θ	密度	
8				0000	混り	黒灰	中位		株住10mm以下を主 スは中租砂で径300 点在する。 練分は角礫を主体。	こ、「「リッシッ 」 「「「」」 に、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、		8	15 10 .45	13	16	39 30	39					\triangleright	•							8.15	P-8	Θ	密度	10/0
9					祿							9	. <u>15</u> 7 .45	4	5	16 30	16			•<	\langle									9.15 9.45	P=9	Θ	密度 粒度	
10				000								10	1 <u>15</u> 20	12	6	38 30	38					\triangleright	•							10.15 10.15	P-10	Θ	密度	.
11	-4.64	5.40	11.0	0.000		+	t					11	.15 7 .45	10	11	28 30	28				,									11.15	P-11	Θ	密度	.
12				0.00								12	.15 9	5	7	21 30	21				$\langle -$		-	_						12.15	P=12	Θ	密度	5 10
13				000								13	.15 7	8	8	23 30	23						-		_					13.15	P-13	o	密度	.
14				0.000 0.000	玉石混							13	L15 3	5	6	14 30	14			A				_	_					13.45	P-14	Θ	密度	.
15					り 粘 土	暗灰	中位		礫径75mm以下を主f スは粗砂で径500mm 在する。 礫公は色。西色漂3	料に、マトリック 以下の玉石が点 ンナ体レナス		14 15	145 15 7	7	8	22	22			\rightarrow	•				_					14.45 15.15	P-15	Θ	密度	.
16				000	質砂				88.77 × 14 - 32 / 488 3	L II HAC 9 '0's		15 16 16	145 50 100 5 105	2		50 25	300 -							-	_					15.45		-	eria.	
17					106							17	.15 5	4	7	16									_					17.15	D-17		密度	5
18				0.000								17	.45	17	26	50	10					-	-							17.45 18.15			粒度	
19	-12.64	8.00	19.0			- vik						18 19	140 50	2	5	25 50 2	750 -													18.45	P=18	Θ	粒度	
20					軟 岩 Ⅱ	次茶褐 ~ 乳			弱風化の凝灰岩で、 を呈し、亀裂は多い となっている。全体	岩片状~短棒状 が密着した状態 向に若干脆い。							-								_									-
21	-15.04	2.40	21.4	d		緑灰			1640:30%、東大二ア	Jc : 20cm,													-											3. 12
22																																		.
23																			-				-		_									
24																			-				-		_									
25																			_				_											

図 1-6 ボーリング柱状図 (P2:E-2 地点の参考)

【埋戻土】

標準貫入 試験試料 GL.9.15m ~9.45m N=16回/30cm

標準貫入 試験試料 GL.11.15m ~11.45m N=28回/30cm

標準貫入 <u>試験試料</u> GL.15.15m ~15.45m N=22回/30cm

【岩盤】

図 1-7 ボーリングコア写真 (P2: E-2 地点の参考)

(参考) 12-9

図1-8 N値・細粒分含有率及び粒径加積曲線(E-3)

λ	ボー	·IJ	ンク	「名		E-	-3	(]	調査孔)	ł	l	□標	高			8.475m							総掘進長							20.00m							
標	標	層	深	柱	±	色	相	目木	3	2		孔内					樗	 [1] 刘	ŧ ţ	町 ジ	λ	試	験			Jj	乳	位背	置試	験	試業	斗採	取	室	掘		
尺	高	厚	度	状	質区		交響	寸 文	t N			木位(三/測定	深度	10cm 打 弊 0 2	ごとの E回ま 10 20 2 2	り 汝 0 ,	丁隆司炎/ 町				N	0	値			ļ	深度	試おし	験 にび経	名果	深度	試 料 番	採取方	内試験(進月		
(m)	(m)	(m)	(m)	図	分	調	良	E J	E	ļi.	_	月日	(m)	10	20 3	0 (c	赴 m)	0	10)	20	5	0	40	50	60 ((m)				(m)	号	法	~	日		
1	6,98	1.50	1.50		玉石 進 り 砂 健	暗褐			試掘区間の埋戻し 石点在、 670mmの にて採取。礫は 6 石状の角礫、礫間 低含水。GL−0.72m スファルト。	注、片状の玉 片状~角礫状 50mm以下の砕 は細礫が充填。 ~0.81m間にア																									5		
2													2.15 2.45	7	7 1	8 3	2 33	2					2												20		
3					玉		綴し	8	玉石を片状〜角線	財にて採取。			3.15	15	13 1	5 4	3 0 4:	3				_	/	7											5		
4					記り	暗祕	~ 非常	E E		5の角礫混入す 粘土質砂から ばらつきあり、			4.15 4.45	6	4 3	3	3 0 1:	3		T															23		
5					切 質 碟		に 密 な	-	含水。GL-6.8m~7 の葉液伴う。	土面示する。13 .0m付近ゲル状			5.15 5.45	4	2 4	3	0 1)	/	/																	
6													6.15 6.45	2	2 1	3	0 5 0		4		-				_												
7	0.98	6.00	7.50					_			埋戻	5/21 7.50	7.15	5		Ţ	530	0						12	>										5		
8					Ŧ						上(綱		8,15 8,45	4	3 8	3 1	0 1	5		5	-				-										5		
9					石混り	暗褐~	¢	r	玉石は片状~150 採取。670mm以下 纏間は転上が混し	■柱状コアにて の亜角礫主体、 ろ崖錐状〜風	削ズリ		9.15 9.45	10	5 4	3	9 0 1!)																	25		
10					砂質研	褐灰	10	ζ	化礫層状の細礫~ 般に含水高い。	粘土質砂。全			10.15 10.45	3	5 1	5 2	3 0 2:	1			\rangle																
- 11	0.50		10.00										11.15	4	6 8	3 1	8 0 11	8			<																
12	-3,53	4.50	12.00		粘土油 り砂智	褐灰	中位	r Z	粘土質、基質は粘 り不明。	土質被膜によ			12.15 12.45	8	12 7	3	7 0 2 0	1				6			_												
13	-4.53	0.60	13.00		玉石	青灰	後 力	1	硬質な角礫凝灰岩 00mm柱状にて採用 整金属音。	憤の玉石、L=5 し、ハンマー打			13.00	5		1	530	0						-	•										5 26		
14					砂質	褐	中位イ	2	上部に片状の礫~ ~50mm角礫状に将 場色の礫質砂~#	玉石混入す15 取。基質は淡 電碟 全般に			14.15	5	6 5	5 1	6 0 1	5		G	<		_	-	-												
15	-6.83	1.70	15.30		· 傑		著な	5 2 48*	粘土分伴う。 片状の玉石L=50~ は 430mm以下 其	-100mm混入。礫 町は細胞分か			15.15 15.39	20	21 9	1 2	0 46	3						-	>										10.3		
16	-7.93	0.60	16.40		り砂智様	福	がにな	密	伴う砂、細礫。玉 土の様相をなすど 上を挟む。	石間には海成粘	ł		16.15 16.45	6	8 2:	2 3	6 0 31	3					~	\langle											5 27		
17	-8.53 -8.93	0.60	17.00	64 1957 -	砂質商	淡 褐 淡林	※ な 引	6	角礫礫や亜円礫 礫からなり、全体 上部は粘性強い。 L=200mm前後の玉	はび粗砂〜細 に細粒分伴い、 石と確間を埋め			17.15	4	17 29	9 5	0 7 51 0	5						-	*										5		
18					10 質量 一位 10 質量 10 (10 質量) 10 (10 (10 質量) 10 (10 (10 (10 (10 (10 (10 (10 (10 (10 (灰暗 淡	日本	常密	る砂質様からなる m以下の細様およ 角碟碟や亜円碟お	。礫間は φ 10m び粗砂。 らよび粗砂〜細	基		18.11 18.11	页	入不能	8 (5	-			-			1	>										1		
19					W7 mt H		12		くしていたからなり、全体 使質な凝灰岩類() 目間隔は20~100 目間隔は20~100	に細粒分件う。 基盤岩)。割れ 電程度で全般に	治																								5		
20	-11.53	2.60	20.00		・中郁岩	~ 青褐四			8m以浅の割れ目に し、亀裂密集部は となる。ハンマー	山口にて休取。」 山開いて褐色化 碟状〜岩片状 の打撃で半濁																									31		
21						BK	8		iř.																										B. B.		

図 1-9 ボーリング柱状図 (E-3)

(参考)12-11

図 1-10 ボーリングコア写真 (E-3)

図 1-11 N値・細粒分含有率及び粒径加積曲線(E-4')

	ボー	- บ	ング	「名		E-4	ĺ	(調査孔)	刊	Lロ	標	高					8	8. 52	22m				絲	氵掘	進	ii 文]	14.	00	m		
標	標	層	深	柱	±	色	相	相	記			孔内					枝	画示	準	貫	入	試	験				原	位	置	試	験	試米	₩採	取	室内	掘
尺	高	厚	度	状	質区		対密	対稒				水 位 (m)/ 測	深度	10cm 打撃 0	ごとo M回 利 10 2	の設置する	日撃可数/-				Ņ	V ————————————————————————————————————					深度	試 お	身よて) ド結:	名果	深度	試料	採取	試験(進月
(m)	(m)	(m)	(m)	[図]	分	調	度	度	事			定月日	(m)	≀ 10 :	∂ 20 3		買入 量 m)	0		10	20		30	40	50	60	(m)					(m)	番号	方法)	日
- 1	7.02	1.50	1.50		砂質礙	青褐灰			試掘の埋戻区間。表 アスファルト、GL-0. m砕石。GL-0.5~0.1 アスファルト。その mの礫主体、礫間粗稻 -1.20m以梁は玉石を	層11cm厚の 3mまでφ20 5m間20cm厚 也φ10~50m シ〜編碟。GL 混入、								_																		
2					Ŧ		密か						2.15 2.35	11	39		50 20 7	75					-		->											
3					石混り砂	青褐灰	なと非常に		L=3~15cm柱状の玉 は ₀ 30mm以下主体、 ~角礫、若干細粒分	日を混入。礫 礫間は粗砂 混じる。	埋戻土		3.15 3.45 4.15	3	9 1 10 1	7	32 30 : 30	32					T													
5					質碟		に密な				(据削ズ		4.45 5.15 5.32	19	31 7		30 3 50 17 8	30 88			_				-											
6	2.62	4.40	5.90		玉石混	赤褐灰	緩い				y _		6,15 6,45	4	2 :	3	9	9		5	+		-		-											9
8					り粘土質	~ 暗青褐、	~非常に		L=5cm片状~30cm相対 じる。 φ 30mm以下の 間は粘土質細礫~砂	犬の玉石が混 角礫主体、礫 が充填。		9/16 8,15	7.15 7.45 8.15	6 14	6 6 18 1	0	18 30 1 42	18																		
9	-0.83	3.45	9.35	j. J.	砂質碟	~ 淡黄褐	密な						8.45 9.15	2	3 4	5 1	30 4 50 22 6	68			_		-		\ 											
10					凝灰岩 · 軟岩	淡褐灰 / 淡青			基盤岩、L=15~40cm で採取。10.5m以浅に 深は30cm~70cm間隔 と褐色部繰り返す。	柱状コアに は褐色化、以 で原岩色部	基		9,37 10,00 10,00	<u>, ŭ</u>	入不前	10	0								->											9 15
12	-3,48	2.65	12.00		凝灰角	灰青			基盤岩、L=5~40cm相	時代にて採	盤岩										+															
13	-5.48	2.00	14.00		棘岩.	灰			取。割れ日本へ働き、 円盤状コアを挟む。	,所々再荣~																										9 16
15																					+															
16																																				
17																																				

図 1-12 ボーリング柱状図 (E-4[´])

図 1-13 ボーリングコア写真 (E-4[´])

図 1-14 N値・細粒分含有率及び粒径加積曲線(E-5)

	ボー	- IJ	ング	ブ名		E-	-5	(🖬	周查孔)	孔⊏	標	高					6.19	91m			総执	围進于				19.	00n	1		
標 尺	標 高	層 厚	深 度 (m)	柱状図	土質区分	色	E オ ジャンションションションションションションションションションションションションション	相 相 对 交 密 度			孔内水位(m/測定月	深度(11	10cm 打 弊 0 : 2	ごとの E 回 着 10 2 く し	り 後 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	標丁達可效	進	貫う	太 試 N	験			原深度(11	位 置 診 款 験 および約	t 験 名 果	試業 震 (1)	¥採 試 打 料 番 二	取採取方法	室内試験()	掘進月日
- 1	4.69	1.50	1.5		砂質礫	暗袍	7 5		試掘区間の埋戻し土、礫(m以下の砕石状の角礫、礫 礫、租砂が充填。低含水。	よ <i>る</i> 50m 割問は細	H	(m)	10 /	20 3	U (cr	m)	0	10	20	30	40 5	50 60				(11)				
2 3 4 5 6 7 8 9 10 11 11 12 13	-7.31	12.00	13,50		玉石混り砂質礫	暗裙	寄し、日本自有い	委い~ 申寄ご寄な	玉石を片状~30cm柱状に 650m~30mm以下の角膜 名。瞬間は細塵~私上置度 イタ)、酸盐人民に打ちっ字 一部風化硬層式、全涵木	て混みからり、 埋 戻 土 (細 剤 ズ リ)	7/25	2.15 2.45 3.15 5.07 6.15 6.45 7.15 7.45 8.45 9.06 10.15 10.49 11.15 12.15 13.15	4 6 3 5 5 2 5 5 3 3 2 2 5 0 1 1 20	4 6 (10 1) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 14 30 5 18 30 50 50 2 2 30 50 50 2 2 30 4 13 30 50 50 2 2 30 4 13 30 50 50 2 2 30 30 50 50 2 2 30 30 50 50 50 50 50 50 50 50 50 5	4 6 14 8 8 0 18 8 0 18 8 0 30 23 3 0 23 3 0 13 8 0 150 8 4 7 0 0 150 150 150 150 150 150 15														7 22 7 22
14	-9.91	2.60	16.10	0.0.0.0.0.0	シルト・砂・玉石	淡褐灰		暖い~ 非常ご密な	L=500~800mm転石主体、- 転石は表面や想れ目沿い 粘土状に軟化する。磔問:: 質で風化起隙のシルト質 ~ 具数細片が混じる海水 ルト混り中砂。 φ 10mm前秒 礫が混じる。	一部の で 酒 お す 不 均 上 細 粒 上 秋 の 小 炎 の 小		13,48 14,60 14,90 15,25 16,00	2 Ø4 50 1	1 3	6 50 15 50 1	6 6 5 100														7_26
10 17 18 19 20	-11.71	1.80	17.90		凝灰岩·軟岩 凝灰岩·軟岩 凝軟	青灰~青裾灰 青裾 灰	F 2 F 8 2 F 8 2		基盤岩、円盤状〜10cm柱 全般にコアは癒く、液度、 硬質となる。GーTadf近: 化して軟化する。 縦亀裂が伏在する100cm相 ア、沿行は比較の硬度、係 治いやや癒く割れやすい。	大コア。 こ住い 基盤 岩 七 大コ 裂 。		16.01 17.00 17.02 18.01 19.00 19.01	50 2 50 1 50 1		50 2 50 1 50 1	-130 0 	0									-				7 27 7 28

図 1-15 ボーリング柱状図 (E-5)

(参考)12-17

図 1-16 ボーリングコア写真 (E-5)

図 1-17 N値・細粒分含有率及び粒径加積曲線(E-6)

;	ボー	リン	~)	ガ名				Р	7	孔口	標	高					8.3	394:	m			総	掘進	長		Ι		2	0. (00r	n		
標	標	層	深	柱	±	色	相	相	記		孔内					材	夏 準	貫	入	試	験			原	位	置	弒	験言	试料	採	取	室内	掘
尺	高	厚	度	状	質		対	対			水 位 (m) /	深	10cm 打 1	ごと 筆回	の数	打撃回数				N	<u>_</u> 値			深	試お	よて	_険 名 び結り	ら れてい こう	深	試	採取	「試験(進
					X	day	密	稠	-		測定月	度	5	202	20	/ 貫 入量								度				l	度	番	方		月
(m)	(m)	(m)	(m)		分	調	度	度	- 101012125-7	_	日	(m)	10	20 3	30 (cm)	0	10	2	20	30	40	50 6	60 (m)	1			10	(m)	号	法	_	H
	7.99	0.40	0.4	40	塗工	-		-	0. 10ASEAR/ 77 A	-																							
1				0.0.000								<u>1.15</u> 1.45	5	5	3	13 30	3	(Ĵ														
E 2				0.000								2.15	6	3 11	1	31	.5		þ						-			- 2	2.15	P=2	Ð	粒度・ 合水・ 密度	
- 3				0.000						る砂	7/8 3 <u>.4</u> 0	3.15	2	4	5	11	.—	1	/		+		_	-					240				
Ē,				0.000	***	暗	中位		礫。 部分的に 450mm前後の玉石	い景会	Ť	3.45			1	30			~						11.								
E 4				0.0.0	砂礫	褐灰	~ 密		有する程度。			4.30	12	9	8	29 30	19				P							4	4.45	P-4	P	粒度・ 含水 密度	
E 5				0.000			な		候間充填物は、小檗宮有する 砂主体。 部分的に確密集状能となる。	₽~租		5.15	4	12	11	27		+		1			_	-									-
E 6				0.0.0					HEAT AND			5.51	16			36				1													7/8
				0.0.0								6,15	6 21 80	10	12	28 41	:0			L			_										
7				0.000								7.00	5	6	7	5 3	00	-	_		-	-	->	-									
	0.39	7.60	8.0	000000							7/12 7.88	7,55	6	4	3	30 13	1			2	-					_							
				0.0.00								8.15	, in the second	-		30	3	1	1														
9				0.000	シル				全体に粘土少量含有し、φ10 の礫多く含有する。	~30mm		9.15	3	2	2	7	7 0	/			-			-					9.15	P-9	e	粒度・	
10				0.000	ト 混	暗			GL-8.80mと11.9~12.2m付近: 状で採取。	石柱		9.45	6	3	8	17								9.50	76	ele de	792.44.444	9	9.45			密度	
10				0000	じり	馬	位		部分的に細粒分流出し、礫密	転状態		10.45		-	-	30 1	7		P					10.50	E=	1.23	0//m2	PASE					7
11				0.000	砂礫	灰			となる。 全体の確全有率は60~70%程度			11.15	4	6	10	20	0	+	-)	5	-		-	-					1.15	P-11	P	粒度・ 含木・	9
12	-2.01	4.90	12.4	00000					THE PARTY OF THE P			11.45			1													11	1,45			密度・粒度・	
	-3.61	4.20	16.4		確混じ り粘土	暗褐		硬い	小礫を多く含有する	_		12.35	5	3	4	12 30 1	2	đ										15	2.45 P	P-12	Ð	営木・ 密度性 ・	
13	-4.55	0.75	12.5	0.000	砂		密			6分的		13.15	13	7	18	38 30 3	8	+	_		-	a		1				13	3.15 F	9-13	P	型住 粒度・ 含水・	H
14	-5.61	1.05	14.0	0.0.0	碟	赤	な		に礫密集となる。			13.45	4	11	35	50	_						-					13	3.45		1	密度	
				0000								14.39		-	4	24 6	3					-											7
15				0.00	玉				新鮮・硬質で、柱状で採取され 石主体	る玉		15.15	23	9	10	42 30 4	2	+	_		+	<	1	1	-			-					. 11
16				0000	石砂市	灰			GL-15.00m~15.70m間砂礫状と	なる		15.45	12	18 2	20 8	50		+						-									-
ndian .				0.00	傈				ものの、他は玉石密集状態。			16.53	-	-	3	23 6	5					-	~										
17	-9.11	3.50	17.5	50 CO CO								17.35	6	11	33 8	50	0	+					3	1									
18												18.00	<u>R</u>	入不	能	0	-	+			_		-	-				-					-
10					中硬	灰			破灰岩 新鮮・硬質で柱状〜岩片コア: 亀裂面の酸化認められる。	E体。		19.00		入不能	龍	50																	
19					岩				CL~CM級			19.00	Î		E	50									-			1					7
÷	-11.61	2.50	20.0	0		-						20.00	15	入不能	E 1	0																	12

図 1-18 ボーリング柱状図 (P7:E-6 地点の参考)

(参考)12-20

図 1-19 ボーリングコア写真 (P7:E-6 地点の参考)

図 1-20 N値・細粒分含有率及び粒径加積曲線(E-7)(埋戻土)

図 1-21 N値・細粒分含有率及び粒径加積曲線(E-7)(砂礫層)

(参考) 12-22

:	ボー	- บ	ン	グ名				Р	11	孔口	□標	高					8	3. 38	30m	l			総拆	围進;	長				2	6.	00r	n		
標尺	標	層厚	ž	梁 柱 度 状	土質区	色	相対密	利利	記		孔内水位(m/測定	深度	10c 打! 0	mごと 撃回 10 :	の 数 20	打撃回数/貫	画示	準	貫	入 N	活	験			原深度	位試お	置 勝 よび	試り	験名果	武料 深度	採試料	取採取方	室内試験(掘進月
(m)	(m)	(m)	(1	m) 🗵	分	調	度	度	事		足月日	(m)	10	20 3	30 (入 量 cm)	0		10	20	3	in	40 5	0 60	(m)					(m)	号	法	_	日
	7.58	0.80	>	0.80	盛土	淤 灰			0.05AS以深バラス			Γ	50			50				20			10 0		,									
1 2 3					玉石混	暗黄四	緩い		部分的に1=10~20cg される玉石を多く含	の短柱状で採取		1.15 1.23 2.15 2.45 3.15 3.45	6	6	6	8 1 18 30 15 30	188		d	ſ										2.15	P-2	P	应度• 度水度	7
4 5 6					じり砂礫	庆 2 暗灰	~ 中位		14日に使賞で担任わ 礫間充填物は、若干 有する中~相応が注 礫・玉石含有率は40	(コノ主体。 細粒分(粘土)含 :体。 (~50%程度。		4.65 4.95 5.15 5.45 6.15	8	5 1 13 7	2 1 2 5	15 30 30 30 18	15 3	<		,					-	1 1				4.65 4.95 6.15	P-4	P	位含意 意 変 度 ・	7/14
7	1.38	6.20	0	7.000.000								6,45	3	2	3	30 8	18			>										6.45	P-6	(P) 1	5水。 密度	7
8 9					礫混じり砂	暗褐灰〉			上部硬質な φ 20mm ^p 有。 下部に従い砂と風化	9外の角礫多く含 2礫多く含有する		7,45 8,15 8,45 9,15	5 2 5 3	2	2	30 6 30 7 30	8 6 7								9.50					8.15 8.45	P-8	P	应含 <i>密</i> 液理	1 - 1 - 1
10					質シルト	、赤褐			粘土。 含水少なく粘着力力	50		9.45 10.1 10.4 11.1	5 5 5 5 4	3 5	2	7/30	7	q	6						10.50	孔 E=	内水 ³ 5.325	平載荷 MN/㎡	微驗	10.15	P-10	P	应度→ 度水度性性	17/16
12 13 14 15 16		4.50	0 1		玉石				細粒分流出し、種・ 部分的にコブ採取す る10~50mの覆とし 採取される玉石多い 種・玉石は新鮮・便	玉石密集。 単著しく低くな =10~20cm前後で 、又mx=50cm 質。		11.4 12.1 12.5 12.6 14.0 14.0 15.1 15.4 15.4 16.1	5 50 0 0 0 1 0 5 50 25 0 5 12 7	寬入不	能	30 50\ 5 \10 50\0 50\25 50\12	114 150 60 125						11	-										16 7/18 7/19 7/20
17 18 19 20	-8.62	2 5.5	0 1		粘土質砂礫				全体に粘土分多く1 線は310~30mm主日 部分的に310mm目の 在。 線形充填物は粘土3	有。 業取される玉石点 まじり砂〜砂礫。		17.1 17.4 18.1 18.4 19.1 19.4 20.1 20.4	5 10 30 5 12 30 5 7 30 5 7 30 5 5 5 2 5	1	4	10 30 12 30 7 30 7 30 7 30	10 12 7 7	0	5											18.15 18.45 20.15 20.45	P-18 P-20	P	拉合着 粒合密 約	7/21
21	-14.12	2 4.0	0 2	22.50	- 礫混し り粘性 土	黑灰			上部均質であり、GL 機物(木片)や小薬研 粘土。	21.50m以深有 ゆを多く含有する		21.1 21.4 22.1	5 5 5 9	2	2	5 30 44 30	5	L	-		_		-		-					21.15	P-21	P	6 密度性 型	0.010
23					軟岩	灰~黑灰			上部凝灰角礫岩 凝灰岩〜泥岩〜凝約 G_23.0m付近うすぐ る。 G_23.0=24.0m間= 変色著しい。 以深、泥岩は破砕状 鮮・硬質となる。 亀烈沿いに礫状風们 岩質は硬質で短柱記 C_へM級岩鑑。	R課。 (粘土化認められ コア肌粗く、酸化 、凝死岩は新 と。 大コア主体。		22.4 23.1 23.1 24.0 24.0 25.0 25.0		戦入不 戦入不 戦入不	能能	5/0 5/0 5/0																		7/22 7/
26	-17.62	3.5	0 2	25.00																														23

図 1-22 ボーリング柱状図 (P11:E-7 地点の参考)

(参考)12-23

図 1-23 ボーリングコア写真 (P11:E-7 地点の参考)

図 1-24 N値・細粒分含有率及び粒径加積曲線(E-8)(埋戻土)

図 1-25 N値・細粒分含有率及び粒径加積曲線(E-8)(砂礫層)

(参考) 12-25

7	ボー	·IJ	ンク	名		E-	8	(調	 査孔)	孔口	□標i	高					6.32	20m			総掘ì	隹長					31	. 0	Om		
相關	400	62	3975	+}-	1.	12.	+0	+0	÷7		孔				_	1705	滩	四 · 1	1 +1	A 手会		四	E	4 B	퐈 크	4 E	4= 6	sici its	5 Ho		407
保	悰	眉	休	仕	T	E	们	作日	πC		内水位	深	10cm.	ごとの	打	标	1 ;	貝 /	ζ ñ ^μ			深	11	試	主幹	名	深	計試	採取	至内試	加出
尺	高	厚	度	状	質		対	対			11/. (m)		打撃	回数	手回数				N	。值				おし	こび	信 果		料	取	験(進
					X		密	稠			測定	度	2	.0 20 2 2	/貫入							度					度	番	方		月
(m)	(m)	(m)	(m)	図	分	調	度	度	事		月日	(m)	10 2	20 30	量 (cm)	0		10	20	30	40 50	60 (m)					(m)	号	法	0	H
1	4.82	1.50	1.50		玉石混 り砂質 礫	暗褐灰			試掘区間の埋戻し土 石点在、φ70mmの片 にて採取。礫はφ50 礫、礫間は砂~細礫	こ、片状の玉 状〜角礫状 um以下の角 が充填。低含												_									and and and
2							中位		/N ₀			2.15	8	6 <u>36</u> 7	50 27	56					>	-					- j.,				- Aller
- 3					玉石混りシル	暗 褐 ~	之 (非		玉石を片状~角礫状 →50mm~30mm以下の ろ 趣聞に知識~数	にて採取。)角礫混入す :十雪砂から		3.15	10	7 6	23 30	23			<	_		-									milian
4					下質妙質碟	黄褐	常に密		なり、礫混入量にば 一部風化礫層状。低	らつきあり、 含水。		4.15	19	8 9	36 30	36															
5	0.82	4.00	5.50	Â	コンク		t _x				6/7 5.43	5.15 5.35	10 4	10	20	75															6 6
6	-0.18	0.70	6.50		リート砂質繰	灰	密な		旧表層コンクリート 細礫〜粗砂主体。含	水中位。		6.15 6.45	14 1	12 11	37	37				_											7
7					傑 質 砂	暗 灰 >	63		AD 22. OWNED ALL A	anu - WAL		7.15	3 12	3 2 8	8 30	8	T	-													dum
8					· 砂 留	暗背	6.02		和6~神味主体、主 で崩壊性に富む。	机和一向百小		8.15 8.45	2 12	3 2 8	7 30	7	1														- International Contraction
9	-3.03	2.85	9.35		一様 シルト	灰暗灰	643		粗砂~細葉主体、一	部 o 50mm前		9.15 9.47	4	2 1	7/32	7	0														6
10	~4.13	1.10	10.45		賀碟質 砂	~暗禄灰	U.V.		後の斤状燥、亜肉燥 般にシルト混じる。 壊性に富む。	の混しる。主理高含水で崩戻		10.15	4 	12 8	30	7	Ļ		-												8
11	-5.08 -5.38	0.95 0.30	11.40	् काल्य	玉石				と-900mの転石、括石 やや軟質、伏在亀裂 い。コア採取時に分	で割れやす(離する。掘削掘		11.00	31/	6 8	17																6/9
12				11	玉石混 り砂質	い 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一			し=10cmの玉石、φ50 礫主体、碶問は細礫	。 mm以下の角 ~粗砂。若干 ズ		12.15	1	9 7	30	17		1													6
13	-7.38	2.00	13.70		粘土質	八階灰 出	ф 44		●30mm以下の亜角酮 礫間はやや粘土~シ	●、細礫主体。 ・ ルト質、含 ●		13.15 13.45	50	7 3	30 50	10															10
- 14				12	正石混り転上	與灰 淡田	非常		水高い。 L=10cm柱状~片状の	⊃玉石、φ50m		14.15 14.22	7	6 6	7	214															6
15	-8.98	1.60	15.30	980 - 0 2492	質砂質	武褐灰	な一中位		■以下の角礫、礫間に 砂、全体に細粒分あ	は細礫〜租 り。		15.15 15.45	4	3 2	30	15		1													
16					Æ		緩い					16.15 16.45	8 1	15 27	30 50	9	G	-													Internet
17					石混り	青褐	~ 非		L=10cm柱状~片状の m以下の角礁 礫間に	○玉石、φ50m †細礫~細		17.15	2	9	29 7	52															- Internet
18					砂質	灰	常に密		砂、全体に細砂〜細	粒分質。		18.15 18.45			30	7	×	\leq													6 14
19	-13.68	4.70	20.00		磲		な					19.30 19.60	6	5 3	26 30 14	26			\geq	6											- Contraction
20					玉石混 り 転上	背	中位		L=20cm柱状~片状の	⊃玉石、φ50m		20.15 20.45 21.05	50		38	14		4	-												Contrast.
21	15.00				記録で	褐灰	常なな		in以下の角礫、礫間に 砂、全体に細砂〜細	は細礫~粗 粒分質。		21.10	50		50	300					-										and and
22	15.88	2.20	62.20	ni si Ma	コンク リート	灰			基礎コンクリート。			22.11 23.00	())	人不能	50 0	250															6
20	-17.03 -17.48	1.15 0.45	23.35	<i>397</i>	碟質粗 砂	淡灰			上層10cm弱は暗灰色 深は半固結状の砂。	もの細砂、以		23.00	5	9 6	20												- 24 1				15
24	-18.68	1.20	25.00		玉石混り醸混	淡~祝	中位		固結状~未固結状、 伴う。GL-24.8m~25	変状の玉石 .0m間にはニ		24.45	1	1 2	30 4	20		/	1								24.4	P8-2	Θ	物理	in the second
20	-19.18	0.50	25.50	ille M	礫質砂 質粘土	暗灰		軟い	高含水、620mm以下 入、木片挟む。	の藤、砂を混一地		25.45	13 11	7 6 4	30 21	4	<										25.4	P8-2	9 0	物理 波塑	and the second
20	-20.58	1.40	26.90		粘土質 砂質礫	暗灰 一 裕灰	中位		₀20mm以下の礫~網 体に粘土質。	職主体。全間		26.45	50		30 50	21											26.4	P8-2	0	物理 液塑	6 16
- 28					玉石混りシル	暗赤~	中位		基底礫層。片状~20 石が混じる 450	em柱状の玉 以下の更円		27.25	10	8 7	25	150											27.2	P8-2	Θ	物理	- munit
29	-22.28	1.70	28.60		ト混り	育褐灰	常な		礫主体、礫間は細礫	~砂が充填。		28.45 29.00	R 2	人不能	30 0	25			G		_						28.4	P8-2	Θ	物理	
30					凝灰岩 • 軟岩	淡市~日			基盤石、硬火岩〜火 〜GL-30.8m以深は清 cm柱状コア主体、一	山傈競庆岩 基 2質。5cm~20 部岩片状~		30.00	nt)	入不能	50 0																6 20
31	-24.68	2.40	31.00			明庆			円盤状コア。GL-29m は開口し細粒分が清	以我の割目 岩 〔入する。		31.00	g ()	入不能	50 0				_												6
32												- 4 + 1994																			dimmi

図 1-26 ボーリング柱状図 (E-8)

(参考)12-26

図 1-27 ボーリングコア写真 (E-8)

2. 液状化強度試験結果

繰返し非排水三軸試験による液状化強度試験結果を表 2-1~表 2-15, 図 2-1~図 2-46 に示す。島根原子力発電所における埋戻土及び砂礫層は,繰返し軟化(サイクリックモ ビリティ含む)又は非液状化となった。

į	試料番号		S1-2	23-3	S1-24	S1-25	S1-26
į	深度(m)	I	23.93~	~24.55	24.85 ~ 25.55	25.55 ~ 26.50	26.50 ~ 27.40
:	土質材料				砂礫層		
1	供試体 🛚	lo.	1	2	1	1	1
土粒	子の密度	$\rho_{\rm s}({\rm g/cm}^3)$	2.6	90	砂礫層 1 1 2.685 2.724 350 350 0.381 0.281 1.5 15.1	2.730	
圧	密応 力 の	'c(kN∕m²)	35	50	350	350	350
繰返し	応力振幅	比 ゐ/2♂'。	0.301	0.273	0.381	0.281	0.323
		DA = 1%	4.5	44.7	1.5	15.1	3.0
絕	軸 ひ「	DA = 2%	9.5	66.7	4.5	22.7	5.0
返回	ず ^振 み ^幅	DA = 5%	18.6	95.0	10.8	33.6	8.5
数		DA = 10%	30.6	122.8	19.5	44.7	-
	過剰間隙	∦水圧比 95% Nu95	16.0	64.0	9.0	29.0	4.0

表 2-1 液状化強度試験結果(E-1)

日本語の1.0に近づく(0.95を超えるもの)
 日本語の1.0に近づく(0.95を超えるもの)
 日本語の1.0に近づく(0.95を超えるもの)

・繰返し荷重を載荷しても、有効応力がゼロになること はなく、液状化になることはない。

図 2-1 液状化強度試験結果(E-1:S1-23-3-1)

(参考) 12-30

図 2-2 液状化強度試験結果(E-1:S1-23-3-2)

(参考) 12-31

図 2-3 液状化強度試験結果(E-1:S1-24)

図 2-4 液状化強度試験結果 (E-1:S1-25)

図 2-5 液状化強度試験結果 (E-1:S1-26)

訂	【料番号		S2-9	S2-10	S2-14-1
深	程(m)		9.20 ~ 10.20	10.20~11.20	14.12~15.12
ŧ	_質材料			埋戻土	
伊	t試体 No	0.	1	1	1
土粒	立子の密度	度ρ _s (g/cm ³)	2.714	2.716	2.723
圧	密応力。	σ' _c (kN/m²)	130	130	130
繰返し	応力振幅	記比	0.463	0.522	0.551
		DA = 1%	1.5	2.5	0.6
编	軸の両の	DA = 2%	2.5	9.5	1.5
返回	ず ず 転 み	DA = 5%	6.0	37.6	5.0
数		DA = 10%	-	92.9	7.0
	過剰間	像水圧比 95% N _{u95}	3.0	7.0	3.0
	: 最大間	隙水圧比が1.0に	丘づく(0.95を起	置えるもの)	

表 2-2 液状化強度試験結果(E-2)

_____: DA=5%の値を繰返し回数Nとする

(参考)12-35

図 2-6 液状化強度試験結果(E-2:S2-9)

図 2-7 液状化強度試験結果(E-2:S2-10)

図 2-8 液状化強度試験結果(E-2:S2-14-1)

	 大料番号		S3-9-1	S3-9-2	S3-11
済	程(m)		9.10 ~ 9.75	9.85 ~ 10.65	11.80~12.70
ŧ	質材料			埋戻土	
伊	t試体 N	0.	1	1	1
土粒	立子の密度	度 _{ク s} (g/cm ³)	2.641	2.619	2.685
圧	密応力	σ' _c (kN/m²)	180	180	180
繰返し	応力振幅	記比	0.258	0.323	0.357
		DA = 1%	20.9	4.5	3.5
编	軸の両の	DA = 2%	28.9	7.5	5.5
返回	ず 板 み	DA = 5%	49.8	14.1	10.0
数		DA = 10%	97.9	26.9	-
	過剰間	像水圧比 95% _{№95}	40.0	12.0	9.0
	: 最大間	隙水圧比が1.0に近	丘づく (0.95を起	えるもの)	

表 2-3 液状化強度試験結果(E-3)

_____: DA=5%の値を繰返し回数Nとする

(参考) 12-39

図 2-9 液状化強度試験結果(E-3:S3-9-1)

図 2-10 液状化強度試験結果(E-3:S3-9-2)

図 2-11 液状化強度試験結果(E-3:S3-11)

	【料番号		S4	-5	S4-6	S4-8-2
済	程(m)		5.50~	~6.50	6.50 ~ 7.50	8.90~9.90
Ŧ	質材料			埋房	灵土	
伊	t試体 N	0.	1	2	1	1
土粒	立子の密度	度 _{ク s} (g/cm ³)	2.7	/46	2.733	2.648
圧	密応力	$\sigma'_{c}(kN/m^{2})$	9	0	90	90
繰返し	応力振幅	記して _d / 2 σ'o	0.336	0.435	0.560	0.636
		DA = 1%	9.5	10.6	4.0	0.5
絕	軸 ひ _拒	DA = 2%	14.9	21.2	13.6	0.9
返回	ず ^振 み ^幅	DA = 5%	27.7	45.9	38.7	2.5
数		DA = 10%	49.8	90.4	94.7	5.5
	過剰間	像水圧比 95% N _{u95}	20.0	52.0	_	_
]: 最大間	隙水圧比が1.0に	ゴづく(0.95を超	呈えるもの)		

表 2-4 液状化強度試験結果(E-4[´])

_____: DA=5%の値を繰返し回数Nとする

図 2-12 液状化強度試験結果(E-4': S4-5-1)

図 2-13 液状化強度試験結果(E-4': S4-5-2)

図 2-14 液状化強度試験結果(E-4': S4-6)

図 2-15 液状化強度試験結果 (E-4': S4-8-2)
Ē	【料番号		S5-1	S5-3	
済	程(m)		1.50~2.35	3.35 ~ 3.98	
ŧ	質材料		埋戻土		
伊	t試体 No	0.	1	1	
土粒子の密度 ρ _s (g/cm ³)			2.687	2.705	
圧密応力 σ' _c (kN/m ²)			120 120		
繰返し応力振幅比 $\sigma_{d}/2\sigma'_{O}$			0.426	0.647	
	軸 の ず み	DA = 1%	66.9	15.8	
絕		DA = 2%	94.6	29.2	
返回		DA = 5%	121.6	62.2	
齿数		DA = 10%	145.0	115.0	
過剰間隙水圧比 95% N _{u95}			91.0	41.0	

表 2-5 液状化強度試験結果(E-5)

: DA=5%の値を繰返し回数Nとする

・繰返し荷重を載荷しても、有効応力がゼロになること はなく、液状化になることはない、また、せん断応力 (軸差応力) 作用時に有効応力は回復し、粘り強い挙 動を示す。

図 2-16 液状化強度試験結果(E-5:S5-1)

図 2-17 液状化強度試験結果 (E-5:S5-3)

(参考) 12-50

試料番号			S6-1-1	S6-1-2	S6-3		
深度 (m)			1.50 ~ 1.86	1.86~2.86	3.00~4.00		
土質材料				埋戻土			
供	t試体 No	0.	1	1	1		
土粒子の密度 ρ _s (g/cm ³)			2.663	2.685	2.695		
圧密応力 σ' _c (kN/m ²)			70	70	70		
繰返し応力振幅比 $\sigma_{d}/2\sigma_{0}$			0.276	0.461	0.345		
		DA = 1%	30.6	8.0	10.0		
絕	軸 ひ 振	DA = 2%	41.9	17.8	16.9		
返回	ず ^恢 み ^幅	DA = 5%	69.9	34.7	35.6		
数		DA = 10%	118.7	47.9	54.0		
	過剰間	\$水圧比 95% N _{u95}	43.0	30.0	17.0		

表 2-6 液状化強度試験結果(E-6)

(参考) 12-51

図 2-18 液状化強度試験結果(E-6:S6-1-1)

図 2-19 液状化強度試験結果(E-6:S6-1-2)

図 2-20 液状化強度試験結果(E-6:S6-3)

試料番号			S7-3					
深度 (m)			3.40~4.40	3.40~4.40	3.40~4.40			
Ŧ	質材料			埋戻土				
伊	t試体 No	0.	1	3	4			
土粒	立子の密度	度ρ _s (g/cm ³)	2.701	2.701	2.701			
圧密応力 σ' _c (kN/m ²)			80	80	80			
繰返し応力振幅比 $\sigma_{d}/2\sigma'_{0}$			0.336	0.457	0.366			
		DA = 1%	96.6	0.8	9.0			
級	軸の両の	DA = 2%	167.7	2.5	21.3			
返回	ず ず い の 幅	DA = 5%	252.8	10.9	52.9			
数		DA = 10%	324.6	24.8	99.3			
過剰間隙水圧比 95% N _{u95}		127.0	14.0	38.0				
	: 最大間	: 最大間隙水圧比が1.0に近づく(0.95を超えるもの)						

表 2-7 液状化強度試験結果(E-7) (埋戻土)

_____: DA=5%の値を繰返し回数Nとする

図 2-21 液状化強度試験結果(E-7:S7-3-1)(埋戻土)

図 2-22 液状化強度試験結果(E-7:S7-3-3)(埋戻土)

図 2-23 液状化強度試験結果(E-7:S7-3-4)(埋戻土)

試料番号			S7-15	S7-16		S7-17		
深度 (m)			15.70 ~ 16.60	16.00~16.80		17.60~18.60		
土質材料			砂礫層					
	供試体 N	0.	1	1	2	1		
土粒子の密度 $ ho$ $_{\rm s}$ (g/cm 3)			2.702	2.707		2.709		
圧密応力 σ' _c (kN/m ²)		260	260		260			
繰返し	芯力振幅比	Ł σ _d /2σ'o	0.401	0.300	0.350	0.324		
		DA = 1%	0.7	21.0	3.5	5.5		
繰	軸 ひ _拒	DA = 2%	2.0	28.7	6.0	8.0		
返回	ず ^振 み	DA = 5%	6.0	39.6	10.4	12.3		
数		DA = 10%	11.8	48.6	14.4	16.4		
	過剰間隙	水圧比 95% N _{u95}	6.0	27.0	9.0	9.0		

表 2-8 液状化強度試験結果(E-7) (砂礫層)

: 最大間隙水圧比が1.0に近づく(0.95を超えるもの)
 : DA=5%の値を繰返し回数Nとする

(参考) 12-59

図 2-24 液状化強度試験結果(E-7:S7-15)(砂礫層)

(参考) 12-60

図 2-25 液状化強度試験結果 (E-7: S7-16-1) (砂礫層)

図 2-26 液状化強度試験結果 (E-7: S7-16-2) (砂礫層)

・繰返し荷重を載荷しても、有効応力がゼロになること はなく、液状化になることはない。

図 2-27 液状化強度試験結果(E-7:S7-17)(砂礫層)

試料番号			S8-2	S8	3-4	
深度(m)			2.50 ~ 3.50	4.50~5.00		
土質材料				埋戻土		
供試体 No.			2	3	4	
土粒	立子の密度	をρ _s (g/cm ³)	2.672	2.6	570	
圧密応力 σ' _c (kN/m ²)			170	170		
繰返し応力振幅比 $\sigma_{d}/2\sigma_{0}$			0.327	0.351	0.403	
		DA = 1%	9.5	5.5	2.0	
经	軸 ひ 両	DA = 2%	16.8	10.9	5.5	
返回	ず ^恢 み ^幅	DA = 5%	31.6	23.6	22.8	
数		DA = 10%	55.8	34.8	66.8	
過剰間隙水圧比 95 N _{u95}		\$ Nu95 ■	19.0	6.0	3.0	

表 2-9 液状化強度試験結果(E-8) (埋戻土)

......:: 最大間隙水圧比が1.0に近づく(0.95を超えるもの)

_____: DA=5%の値を繰返し回数Nとする

(参考) 12-64

図 2-28 液状化強度試験結果(E-8:S8-2)(埋戻土)

図 2-29 液状化強度試験結果(E-8:S8-4-3)(埋戻土)

図 2-30 液状化強度試験結果(E-8:S8-4-4)(埋戻土)

試料番号		S8-23-1	S8-	-24	S8-25				
深度 (m)		23.00 ~ 23.70	24.00~25.00		25.00~26.00				
土質材料				砂礫層					
ł	供試体 N	0.	1	1	2	1	2	3	
土粒子の密度 $ ho$ $_{\rm s}$ (g/cm 3)		2.700	2.647		2.706				
圧密応力 ஏ'。(kN/m²)		360	360		360				
繰返し	芯力振幅比	± σ _d /2σ'o	0.302	0.314	0.276	0.301	0.352	0.251	
		DA = 1%	1.0	2.5	3.0	5.5	0.8	24.7	
縵	軸 の し	DA = 2%	3.5	5.5	7.5	10.0	3.0	38.0	
with a strain	ず ず 転 み	DA = 5%	10.5	13.7	16.0	17.5	7.5	56.7	
		DA = 10%	19.7	21.7	24.5	25.6	13.6	67.9	
過剰間隙水圧比 95% N _{u95}		12.0	5.0	11.0	9.0	5.0	34.0		

表 2-10 液状化強度試験結果(E-8)(砂礫層)

(参考) 12-68

・繰返し荷重を載荷しても、有効応力がゼロになること はなく、液状化になることはない。

図 2-31 液状化強度試験結果(E-8:S8-23-1)(砂礫層)

図 2-32 液状化強度試験結果(E-8:S8-24-1)(砂礫層)

図 2-33 液状化強度試験結果(E-8:S8-24-2)(砂礫層)

図 2-34 液状化強度試験結果 (E-8: S8-25-1) (砂礫層)

・繰返し荷重を載荷しても、有効応力がゼロになること はなく、液状化になることはない。

図 2-35 液状化強度試験結果(E-8:S8-25-2)(砂礫層)

図 2-36 液状化強度試験結果(E-8:S8-25-3)(砂礫層)

試料番号			A		
済	程(m)		0.30~0.70	0.30~0.70	
ŧ	質材料		埋房	夷土	
供	ŧ試体 N	0.	1	2	
土粒子の密度 P _s (g/cm ³)			2.647	2.647	
圧密応力 ஏ' _c (kN/m ²)			80	80	
繰返	繰返し応力振幅比 $\sigma_d/2\sigma'_o$			0.498	
		DA = 1%	14.9	7.0	
絕	軸 両 ず 福 み	DA = 2%	20.5	10.0	
返回		DA = 5%	26.2	13.0	
数		DA = 10%	31.0	16.0	
	過剰間	閒隙水圧比 95 <mark>%</mark> N _{u95}	22.0	-	

表 2-11 液状化強度試験結果(A地点)

図 2-37 液状化強度試験結果 (A-1)

図 2-38 液状化強度試験結果 (A-2)

試料番号			E	3		
済	程(m)		0.30~0.90	0.30~0.90		
ŧ	質材料		埋戻土			
伊	ŧ試体 N	0.	1	2		
土粒子の密度 P _s (g/cm ³)			2.684	2.684		
圧密応力 ஏ'。(kN/m²)			80	80		
繰返し応力振幅比 $\sigma_d/2\sigma'_o$			0.388	0.452		
	軸 両 振 幅	DA = 1%	18.9	12.0		
编		DA = 2%	24.7	15.0		
返回		DA = 5%	29.8	17.0		
凶数		DA = 10%	33.6	19.0		
過剰間隙水圧比 95% N _{u95}			29.0	_		
	:最大間隙水圧比が1.0に近づく(0.95を超えるもの)					

表 2-12 液状化強度試験結果(B地点)

: 最大間隙水圧比が1.0に近つく (0.
 : DA=5%の値を繰返し回数Nとする

図 2-39 液状化強度試験結果 (B-1)

図 2-40 液状化強度試験結果 (B-2)

試料番号			С					
深度 (m)			0.30~0.90	0.30~0.90	0.30~0.90	0.30~0.90		
ŧ	_質材料			埋戻土				
伊	共試体 N	0.	1	2	3	4		
±	粒子の密	習度 ρ _s (g/cm ³)	2.659	2.659	2.659	2.659		
圧密応力 ஏ'。(kN/m²)			120	80	80	80		
繰返し応力振幅比 $\sigma_d/2\sigma'_o$			0.350	0.391	0.514	0.655		
		DA = 1%	28.0	24.0	6.5	1.5		
緺	軸 ひ 博	DA = 2%	36.0	33.0	11.0	4.5		
返回	ず ^振 み	DA = 5%	42.0	40.0	17.0	8.0		
数		DA = 10%	47.0	46.0	21.0	10.0		
過剰間隙水圧比 95% N _{u95}		43.0	39.0	18.0	9.5			

表 2-13 液状化強度試験結果(C地点)

(参考) 12-81

図 2-41 液状化強度試験結果 (C-1)

図 2-42 液状化強度試験結果 (C-2)

図 2-43 液状化強度試験結果 (C-3)

図 2-44 液状化強度試験結果 (C-4)

	【料番号		D		
深度 (m)			0.30~0.50		
土質材料			埋戻土		
供	t試体 N	0.	1		
土粒子の密度 $ ho_{ m s}(m g/cm^3)$			2.653		
圧密応力 ஏ'。(kN/m²)			80		
繰返し応力振幅比 $\sigma_d/2\sigma'_o$			0.446		
繰返回数	軸 両 振 幅	DA = 1%	8.5		
		DA = 2%	11.0		
		DA = 5%	13.0		
		DA = 10%	15.0		
	過剰間隙水圧比 95% N _{u95}		_		
: 最大間隙水圧比が1.0に近づく(0.95を超えるもの) : DA=5%の値を繰返し回数Nとする					

表 2-14 液状化強度試験結果(D地点)

(参考) 12-86

図 2-45 液状化強度試験結果 (D-1)

悥	【料番号		Е		
深度 (m)			0.30~0.70		
土質材料			埋戻土		
伊	ŧ試体 N	0.	1		
±	.粒子の密	習度 ρ _s (g/cm ³)	2.678		
圧密応力 ஏ'。(kN/m ²)			80		
繰返し応力振幅比 σ _d /2 σ 'ο			0.317		
繰返回数	軸 両 振 幅	DA = 1%	84.0		
		DA = 2%	94.0		
		DA = 5%	104.0		
		DA = 10%	114.0		
	過剰間隙水圧比 95% N _{u95}		100.0		
: 最大間隙水圧比が1.0に近づく(0.95を超えるもの) : DA=5%の値を繰返し回数Nとする					

表 2-15 液状化強度試験結果(E地点)

液状化強度試験結果(E-1) 図 2-46

 簡易設定法で比較した液状化強度特性における要素シミュレーション結果 島根原子力発電所における埋戻土及び砂礫層について、液状化強度試験結果より繰返し 軟化(サイクリックモビリティ含む)又は非液状化であることを確認した。

設計基準対象施設,常設重大事故等対処施設及び波及的影響の設計対象とする下位クラス施設において,液状化強度試験結果で得られた液状化強度特性よりも保守的な簡易設定 法により設定された液状化強度特性(図 3-1)を用いて耐震安全性評価を実施する。

簡易設定法により設定された液状化強度特性により,液状化強度試験を模擬する要素シ ミュレーションを実施した結果を図 3-2 に示す。要素シミュレーション結果として,過 剰間隙水圧比が上昇し,平均有効拘束圧が0に達していることから,簡易設定法による液 状化強度特性を設定した埋戻土及び砂礫層は液状化することを確認した。

図 3-1 簡易設定法及び液状化強度試験結果による液状化強度曲線の比較

(参考) 12-90

(砂礫層)図 3-2 要素シミュレーション結果

(参考) 12-91