島根原子力発電所第2号機 審査資料		
資料番号	NS2-添 3-014改01	
提出年月日	2023年3月27日	

WI-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針

2023年3月

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

目	欠
---	---

1. 概要 ······	1
2. 強度評価の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2.1 評価対象施設	2
3. 構造強度設計	3
3.1 構造強度の設計方針	3
3.2 機能維持の方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
4. 荷重及び荷重の組合せ並びに許容限界 ・・・・・・・・・・・・・・・・・・・・・	19
4.1 荷重及び荷重の組合せ	19
4.2 許容限界	24
5. 強度評価方法	35
5.1 機器・配管系	35
5.1.1 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ ・・・・・	35
5.1.2 ディーゼル機関給気口 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
5.2 建物等	4 <mark>9</mark>
5.2.1 原子炉建物	4 <mark>9</mark>
5.2.2 タービン建物 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<mark>50</mark>
5.2.3 制御室建物	5 <mark>1</mark>
5.2.4 廃棄物処理建物	5 <mark>1</mark>
5.2.5 排気筒モニタ室 ・・・・・	5 <mark>2</mark>
5.2.6 ディーゼル燃料貯蔵タンク室及びB-ディーゼル燃料貯蔵タンク格納	槽
	5 <mark>3</mark>
6. 適用規格・基準等 ·····	5 <mark>4</mark>

1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準規則」という。)第7条及びその「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(以下「解釈」という。)に適合し、技術基準規則第54条及びその解釈に規定される重大事故等対処設備に配慮する設計とするため、VI-1-1-3「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちVI-1-1-3-4-3「降下火砕物の影響を考慮する施設の設計方針」の「4.1 構造物への荷重を考慮する施設」にて設定している評価対象施設が、降下火砕物に対して構造健全性を維持することを確認するための強度評価方針について説明するものである。

強度評価は、VI-1-1-3「発電用原子炉施設の自然現象等による損傷の防止に関する説 明書」のうちVI-1-1-3-4-1「火山への配慮に関する基本方針」に示す適用規格・基準等 を用いて実施する。

降下火砕物の影響を考慮する各施設の具体的な計算の方法及び結果は, VI-3-別添 2-3 からVI-3-別添 2-10 の各施設の強度計算書に示す。 2. 強度評価の基本方針

強度評価は、「2.1 評価対象施設」に示す評価対象施設を対象として、「4.1 荷重及 び荷重の組合せ」で示す降下火砕物による荷重と組み合わすべき他の荷重による組合せ 荷重により発生する応力等が、「4.2 許容限界」で示す許容限界を超えないことを、 「5. 強度評価方法」で示す方法を使用し、「6. 適用規格・基準等」で示す適用規 格・基準等を用いて確認する。

2.1 評価対象施設

本資料における評価対象施設は、VI-1-1-3-4-3「降下火砕物の影響を考慮する施設 の設計方針」の「4. 要求機能及び性能目標」で設定している構造物への荷重を考慮 する施設を強度評価の対象とする。評価対象施設を表 2-1 に示す。

区分	施設名称	
機器・	・原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ	
配管系	・非常用ディーゼル発電設備ディーゼル機関給気口	
	・原子炉建物	
建物等	・タービン建物	
	・制御室建物	
	・廃棄物処理建物	
	・排気筒モニタ室	
	 ・ディーゼル燃料貯蔵タンク室及びB-ディーゼル燃料貯蔵タンク格納槽 	

表 2-1 評価対象施設

3. 構造強度設計

Ⅵ-1-1-3-4-1「火山への配慮に関する基本方針」で設定している降下火砕物特性に対し、「3.1 構造強度の設計方針」で設定している構造物への荷重を考慮する施設が、構造強度設計上の性能目標を達成するように、Ⅵ-1-1-3-4-3「降下火砕物の影響を考慮する施設の設計方針」の「5. 機能設計」で設定している各施設が有する機能を踏まえて、構造強度の設計方針を設定する。

また,想定する荷重及び荷重の組合せを設定し,それらの荷重に対し,各施設の構造 強度を保持するように構造設計と評価方針を設定する。

3.1 構造強度の設計方針

評価対象施設は、VI-1-1-3-4-3「降下火砕物の影響を考慮する施設の設計方針」の 「4. 要求機能及び性能目標」の「4.1(3) 性能目標」で設定している構造強度設計 上の性能目標を踏まえ、主要な構造部材が構造健全性を維持する設計とする。

降下火砕物及び積雪(以下「降下火砕物等」という。)による荷重を短期荷重とす るために,降下火砕物の降灰から30日を目途に降下火砕物を適切に除去すること, また,降灰時には除雪も併せて実施することを保安規定に定める。

- (1) 機器・配管系
 - a. 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ
 - 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプは,想定する降下 火砕物,積雪及び風(台風)を考慮した荷重に対し,降下火砕物堆積時の機能維 持を考慮して,取水槽海水ポンプエリアの基礎部に固定し,原子炉補機海水ポン プ及び高圧炉心スプレイ補機海水ポンプの主要な構造部材が構造健全性を維持す る設計とする。
 - b. 非常用ディーゼル発電設備ディーゼル機関給気口

非常用ディーゼル発電設備ディーゼル機関給気ロ(以下「ディーゼル機関給気 ロ」という。)は、想定する降下火砕物、積雪及び風(台風)を考慮した荷重に 対し、降下火砕物堆積時の機能維持を考慮して、架構を基礎部に固定し、ディー ゼル機関給気口の主要な構造部材が構造健全性を維持する設計とする。

- (2) 建物等
 - a. 原子炉建物,タービン建物,制御室建物,廃棄物処理建物及び排気筒モニタ室 各建物は,想定する降下火砕物,積雪及び風(台風)を考慮した荷重に対し, 降下火砕物堆積時の機能維持を考慮して,鉄筋コンクリート造の屋根スラブを鉄 骨フレーム(以下「屋根トラス」という。),鉄筋コンクリート造の耐震壁等で支 持し,支持性能を有する基礎スラブにより支持する構造とする。

- b. ディーゼル燃料貯蔵タンク室及びB-ディーゼル燃料貯蔵タンク格納槽 ディーゼル燃料貯蔵タンク室及びB-ディーゼル燃料貯蔵タンク格納槽は、想 定する降下火砕物、積雪及び風(台風)を考慮した荷重に対し、降下火砕物堆積 時の機能維持を考慮して、鉄筋コンクリート造の躯体は十分な強度を有する構造 とし、十分な支持性能を有する底版により支持する構造とする。
- 3.2 機能維持の方針

Ⅵ-1-1-3-4-3「降下火砕物の影響を考慮する施設の設計方針」の「4. 要求機能及び性能目標」で設定している構造強度設計上の性能目標を達成するために、「3.1 構造強度の設計方針」に示す構造を踏まえ、Ⅵ-1-1-3-4-1「火山への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重条件を適切に考慮して、構造設計及びそれを踏まえた評価方針を設定する。

- (1) 機器・配管系
 - a. 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ

(a) 構造設計

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプは,鋼製の立形 ポンプ,原動機及び端子箱等で構成される。原動機は立形ポンプの上に取り付 け,原動機によりポンプの軸を回転させる。

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプは、ポンプベー スに固定する。原動機は、原動機台と結合する。原動機台は、ポンプベースに 固定し、取水槽海水ポンプエリアの基礎部に据え付ける。端子箱等のポンプの 機能維持に必要な付属品は、原動機にボルトで結合する。原動機の形状は、円 筒形を基本とした適切な強度を有する鋼製のフレームに端子箱等が付加された 形態である。

降下火砕物等の堆積による鉛直荷重は,原動機の上部カバー及びキャップに 作用し,原動機フレーム及び原動機台を介して基礎部に伝達する。また,風

(台風)による水平荷重は,原動機フレーム及び原動機台に作用し,原動機台 を介して基礎部に伝達する。更に,ポンプスラスト荷重は軸受を介し,全て原 動機フレーム及び原動機台に作用する。

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの設置位置を図 3-1に,構造計画を表 3-1及び表 3-2に示す。

(b) 評価方針

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプは、「(a)構造 設計」を踏まえ、以下の強度評価方針とする。想定する降下火砕物、積雪及び 風(台風)を考慮した荷重に対し、荷重の作用する部位及び荷重が伝達する部 位を踏まえて、原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプを

RO

VI-3-別添 2-1

補

32

構成する上部カバー及びキャップ,原動機フレーム及び原動機台が,おおむね 弾性状態に留まることを「5. 強度評価方法」に示す計算により確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を, VI-3-別添2-3 「原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの強度計算書」 に示す。

図 3-1 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの設置位置

众。 I 小 I 》 而风海尔 A · · · 》 臣臣 田 邑				
	計画の概要		→ ¥ 11 153	
施設名称	主体構造	支持構造	說明図	
【位置】				
原子炉補機注	原子炉補機海水ポンプは、取水槽の取水槽海水ポンプエリアに設置する。			
原子炉補機 海水ポンプ	原 動 機 及 び 結 ン プ で 構 成 す る。	基礎部に基 礎ボルトで 固定する。	(a)上面図 原動機フレーム 広都市 場子箱 原動機台 A部詳細(内部) 基礎ボルト (b)側面図	

表 3-1 原子炉補機海水ポンプの構造計画

	衣3-2 向	」圧炉心へノレ	1 桶機 御 小 か ノ ク 博 垣 司 画	
	計画の概要			
施設名称	主体構造	支持構造	記明凶	
【位置】	·			
高圧炉心スス	高圧炉心スプレイ補機海水ポンプは,取水槽の取水槽海水ポンプエリアに設置する。			
高 圧 炉 心 ス プ レ イ 補 機 海 水 ポ ン プ	原 動 機 及 び 原 動 機 に ポ ン プ で 構 成 す る。	基礎部に基 礎ボルトで 固定する。	(a)上面図 キャップ 「動機台 原動機台 基礎ボルト (b)側面図	

表3-2 高圧炉心スプレイ補機海水ポンプの構造計画

b. ディーゼル機関給気口

(a) 構造設計

ディーゼル機関給気口は,適切な強度を有する鋼製の天板及び架構を主体構 造とし,原子炉建物屋上に設けた基礎部に溶接で固定する。

想定する降下火砕物等の堆積による鉛直荷重は,給気口上面の天板に作用 し,天板に接続する架構を介して基礎部に伝達する。また,風(台風)による 水平荷重は,架構に作用し,架構を介して基礎部に伝達する。

ディーゼル機関給気口の設置位置を図 3-2 に,構造計画を表 3-3 に示す。 (b) 評価方針

ディーゼル機関給気口は,「(a)構造設計」を踏まえ,以下の評価方針とする。

想定する降下火砕物,積雪及び風(台風)を考慮した荷重に対し,荷重の作 用する部位及び荷重が伝達する部位を踏まえて,ディーゼル機関給気口を構成 する天板及び架構が,おおむね弾性状態に留まることを「5. 強度評価方法」 に示す計算式を用いて確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を, VI-3-別添 2-4「非常用ディーゼル発電設備ディーゼル機関給気口の強度計算書」に示す。

図3-2 ディーゼル機関給気口の設置位置

計画の推画		
計画の概要		
主体構造	支持構造	記 明 凶

表 3-3 ディーゼル機関給気口の構造計画

【位置】	
------	--

施設名称

ディーゼル機関給気口は、原子炉建物の屋上に設置する。

ディーゼ ル 機 関 給 気口	鋼製の天板 及び架構に より構成す る。	原子炉建物 屋上の基礎 部に溶接で 固定する。	天板 平B 天板 (a) 上面図 大板 (b) (側面図 (A-A矢視)	版 (c) 側面図 (B-B矢視) (d) 断面図 (C-C断面)

- (2) 建物等
 - a. 原子炉建物,タービン建物,制御室建物,廃棄物処理建物及び排気筒モニタ室 (a)構造設計

各建物は,屋根スラブを屋根トラス,耐震壁等で支持し,支持性能を有する 基礎スラブにより支持する構造とする。屋根スラブ,屋根トラス,耐震壁等は 適切な強度を有する構造とする。

降下火砕物等の堆積による鉛直荷重は,屋根スラブに作用する構造とする。 各建物の設置位置を図 3-3 に,構造計画を表 3-4~表 3-8 に示す。

(b) 評価方針

各建物は、「(a)構造設計」を踏まえ、以下の評価方針とする。

想定する降下火砕物,積雪及び風(台風)を考慮した荷重に対し,各建物の 屋根スラブ,屋根トラス,耐震壁等が,「4.2 許容限界」で示す許容限界を超 えないことを確認する。

降下火砕物,積雪及び風(台風)を考慮した荷重に対する強度評価を,VI-3-別添2-5「原子炉建物の強度計算書」,VI-3-別添2-6「タービン建物の強度計 算書」,VI-3-別添2-7「制御室建物の強度計算書」,VI-3-別添2-8「廃棄物処理 建物の強度計算書」及びVI-3-別添2-9「排気筒モニタ室の強度計算書」に示す。

図3-3 各建物の設置位置

計画の概要		ジ 田 図
主体構造	支持構造	
鉄筋コンクリート 造(一部鉄骨鉄筋	荷重は建物の外殻を 構成する屋根,耐震	EL 63.5 H. 51.7 H. 42.8 H. 33.5 H. 42.8 H. 33.6 H. 33.6 H. 33.8 H. 30.5 H. 42.8 H. 30.5 H. 30.5 H. 40.6 J. J
 ニシグリート造) の主体構造及び鉄 骨造の屋根トラス ご携式ます 	壁等に作用し、耐震 壁等を介し、基礎ス ラブへ伝達する構造	
で 体 成 す る 。	とす る。	L 63.5 H 70.

表 3-4 原子炉建物の構造計画

表 3-5 タービン建物の構造計画

表 3-6 制御室建物の構造計画

計画	の概要	説明図
主体構造	支持構造	
鉄筋コンクリート造の主体構造で構成する。	荷殻根作等える構正を、前し、「「」では「」では「」では「」では「」では「」では「」では「」では、「」では、	<complex-block> Image: Constrained state sta</complex-block>

表 3-7 廃棄物処理建物の構造計画

表 3-8 排気筒モニタ室の構造計画

- b. ディーゼル燃料貯蔵タンク室及びB-ディーゼル燃料貯蔵タンク格納槽
 - (a) 構造設計

ディーゼル燃料貯蔵タンク室は、地下に埋設された鉄筋コンクリート造と し、地上部には頂版が露出し、頂版の開口部には鋼製の蓋を設置する。鉄筋コ ンクリート造の躯体は適切な強度を有する構造とし、十分な支持性能を有する 底版により支持する構造とする。

B-ディーゼル燃料貯蔵タンク格納槽は、地下に埋設された鉄筋コンクリー ト造とし、地上部には頂版及び側壁の一部が露出し、頂版の開口部には鋼製の 蓋を設置する。鉄筋コンクリート造の躯体は適切な強度を有する構造とし、十 分な支持性能を有する底版により支持する構造とする。

降下火砕物等の堆積による鉛直荷重は, 頂版及び鋼製蓋に作用する構造とす る。

ディーゼル燃料貯蔵タンク室及びB-ディーゼル燃料貯蔵タンク格納槽の設置位置を図 3-4 に,構造計画を表 3-9 及び表 3-10 に示す。

(b) 評価方針

ディーゼル燃料貯蔵タンク室及びB - ディーゼル燃料貯蔵タンク格納槽 は、「(a)構造設計」を踏まえ、以下の評価方針とする。

想定する降下火砕物,積雪及び風(台風)を考慮した荷重に対し,頂版及び 鋼製蓋並びに地上に露出した側壁が,「4.2 許容限界」で示す許容限界を超え ないことを確認する。

降下火砕物,積雪及び風(台風)を考慮した荷重に対する強度評価を,VI-3-別添 2-10「ディーゼル燃料貯蔵タンク室及びB-ディーゼル燃料貯蔵タン ク格納槽の強度計算書」に示す。

図 3-4 ディーゼル燃料貯蔵タンク室及びB-ディーゼル燃料貯蔵タンク格納槽の 設置位置

計画の概要		弐 田 図	
主体構造	支持構造	武巧区	
鉄筋コンクリー ト造の躯体及び 鋼製蓋で構成す る。	荷重は鉄筋コンク リート造の頂版及 び鋼製蓋に作用す る構造とする。	平面図 A—A 断面図 (単位:mm)	

表 3-9 ディーゼル燃料貯蔵タンク室の構造計画

計画	の概要	
主体構造	支持構造	記明凶
鉄筋コンクリー ト造の躯体及び 鋼製蓋で構成す る。	荷重は鉄筋コンク リート造の頂版及 び鋼製蓋並びに地 上に露出した側壁 に作用する構造と する。	→ 面凶 A-A断面図 (単位:mm)
		B-B断面図 (単位:mm)

表 3-10 B-ディーゼル燃料貯蔵タンク格納槽の構造計画

4. 荷重及び荷重の組合せ並びに許容限界

強度評価に用いる荷重の種類,荷重の組合せ及び荷重の算定方法を「4.1 荷重及び荷 重の組合せ」に,許容限界を「4.2 許容限界」に示す。

4.1 荷重及び荷重の組合せ

強度評価にて考慮する荷重及び荷重の組合せは、VI-1-1-3-4-1「火山への配慮に関 する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」を踏まえ、以下のとおり 設定する。

- 荷重の種類
 - a. 常時作用する荷重(Fd)

常時作用する荷重は、VI-1-1-3-4-1「火山への配慮に関する基本方針」の 「2.1.3(2)a. 荷重の種類」で設定している常時作用する荷重に従って、持続的 に生じる荷重として機器・配管系は自重とし、建物等は固定荷重及び積載荷重と する。

b. 降下火砕物による荷重(Fa)

降下火砕物による荷重は、VI-1-1-3「発電用原子炉施設の自然現象等による損 傷の防止に関する説明書」のうちVI-1-1-3-1-1「発電用原子炉施設に対する自然 現象等による損傷の防止に関する基本方針」の「4.1 自然現象の組合せについ て」で設定している自然現象の組合せに従って、主荷重として扱うこととし、VI -1-1-3-4-1「火山への配慮に関する基本方針」の「2.1.2 設計に用いる降下火 砕物特性」に示す降下火砕物の特性及び「2.1.3(2)a.荷重の種類」に示す降下 火砕物による荷重を踏まえて、湿潤密度 1.5g/cm³の降下火砕物が 56cm 堆積した 場合の荷重として堆積量 1cm ごとに 147.1N/m²の降下火砕物による荷重が作用す ることを考慮し設定する。

c. 積雪荷重(F_s)

積雪荷重は、VI-1-1-3-1-1「発電用原子炉施設に対する自然現象等による損傷 の防止に関する基本方針」の「4.1 自然現象の組合せについて」で設定している 自然現象の組合せに従って、従荷重として扱うこととし、VI-1-1-3-1-1「発電用 原子炉施設に対する自然現象等による損傷の防止に関する基本方針」の「4.1 自 然現象の組合せについて」に示す組み合わせる積雪深を踏まえて、発電所敷地に 最も近い気象官署である松江地方気象台で観測された観測史上1位の月最深積雪 100cm に平均的な積雪荷重を与えるための係数 0.35 を考慮し 35.0cm とする。積 雪荷重については、松江市建築基準法施行細則により、積雪量 1cm ごとに 20N/m²の積雪荷重が作用することを考慮し設定する。 d. 風荷重(W)

風荷重は、VI-1-1-3-1-1「発電用原子炉施設に対する自然現象等による損傷の 防止に関する基本方針」の「4.1 自然現象の組合せについて」に示す組み合わせ る風速を踏まえて、建築基準法施行令に基づく平成12年建設省告示第1454 号に定められた松江市の基準風速である30m/sとする。

風荷重については,施設の形状により風力係数等が異なるため,施設ごとに設 定する。

e. 運転時の状態で作用する荷重(P)

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプに運転時の状態で 作用する荷重は、VI-1-1-3-4-1「火山への配慮に関する基本方針」の

「2.1.3(2)a. 荷重の種類」で設定している運転時の状態で作用する荷重に従って、ポンプスラスト荷重等の運転時荷重とする。

- (2) 荷重の組合せ
 - a. 機器 · 配管系
 - (a) 降下火砕物による荷重, 積雪荷重及び風荷重の組合せ

降下火砕物による荷重,積雪荷重及び風荷重については, VI-1-1-3-4-1「火山への配慮に関する基本方針」の「2.1.3(2)b. 荷重の組合せ」を踏まえて, それらの組合せを考慮し,自然現象の荷重として扱う。自然現象の荷重は短期 荷重として扱う。

(b) 荷重の組合せ

荷重の組合せについては,自然現象の荷重及び常時作用する荷重を組み合わせる。

強度評価における荷重については,施設の設置状況及び構造等を考慮し,設 定する。

ただし,原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプは動的 機器であるため,運転時の状態で作用する荷重を考慮する。

評価対象施設における荷重の組合せを表 4-1 に示す。

		荷重*					
	本南小フ世	常時作	吃一口市屿		ポンプ		
施設名称	方 想 り る 何 手 の 如 へ 나	用する	降下火砕物	<mark>積雪荷重</mark>	スラス	風荷重	
	重の組合せ	荷重	による何里	(F s)	ト荷重	(W)	
		(F d)	(F <mark>a</mark>)		(P)		
原子炉補機海水							
ポンプ及び高圧	k. 71	\bigcirc	\bigcirc		\bigcirc	\bigcirc	
炉心スプレイ補	ケース 1	0	U		U	0	
機海水ポンプ							
ディーゼル機関	L 7 1	\bigcirc	\frown			\frown	
給気口	<i>リース</i> 1	U	U		—	U	

表 4-1 荷重の組合せ

注記*:〇は考慮する荷重を示す。

b. 建物等

(a)降下火砕物による荷重,積雪荷重及び風荷重の組合せ 降下火砕物による荷重,積雪荷重及び風荷重については, VI-1-1-3-4-1「火山への配慮に関する基本方針」の「2.1.3(2)b. 荷重の組合せ」を踏まえて, それらの組合せを考慮し,自然現象の荷重として扱う。自然現象の荷重は短期 荷重として扱う。

(b) 荷重の組合せ

荷重の組合せについては,自然現象の荷重及び常時作用する荷重を組み合わ せる。上記を踏まえ,強度評価における荷重の組合せの設定については,建物 等の設置状況及び構造を考慮し設定する。評価対象施設における荷重の組合せ を表 4-2 に示す。

		荷重*1					
		常時作	常時作用する		従着	苛重	
旋弧反敌	考慮する荷	荷重	(F _d)	降下火砕			
加政力抑	重の組合せ	固定	積載	物による	積雪荷重	風荷重	
		荷重	荷重	荷重	(F _s)	(W)	
				(F a)			
原子炉建物,タ							
ービン建物,制	ケース1	\bigcirc	\bigcirc	0	0	\bigcirc	
御室建物,廃棄							
物処理建物及び	ケースの	\bigcirc	\bigcirc	\bigcirc	\bigcirc	_	
排気筒モニタ室							
ディーゼル燃料							
貯蔵タンク室及	ケース 1*2	0	\bigcirc	\bigcirc	\bigcirc	_	
びB-ディーゼ							
ル燃料貯蔵タン	ケース 2*3	0	0	0	0	0	
ク格納槽							

表 4-2 荷重の組合せ

注記*1:〇は考慮する荷重を示す。

*2:ケース1は、ディーゼル燃料貯蔵タンク室及び鋼製蓋を対象とする。 *3:ケース2は、B-ディーゼル燃料貯蔵タンク格納槽を対象とする。

(3) 荷重の算定方法

降下火砕物による荷重,積雪荷重及び風荷重の算出式及び算出方法を以下に示 す。

a. 記号の定義

荷重の算出に用いる記号を表 4-3 に示す。

記号	単 位	定義
A 1	m^2	風の受圧面積(風向に垂直な面に投影した面積)
С	—	風力係数
Е'	—	建築基準法施行令第87条第2項に規定する数値
F		建設省告示第1454号の規定によって算出した平均風速の高
E r	_	さ方向の分布を表す係数
F a	N/m^2	湿潤状態の降下火砕物による荷重
F d	Ν	常時作用する荷重
F s	N/m^2	従荷重として組み合わせる積雪荷重
F v'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
f ' s	$N/(m^2 \cdot cm)$	建築基準法施行令に基づき設定する積雪の単位荷重
G	_	ガスト影響係数
g	m/s^2	重力加速度 (=9.80665)
Н	m	全高
H a	сm	降下火砕物の層厚
H s	сm	組合せ荷重として考慮する積雪深
q	N/m^2	設計用速度圧
Р	kg	ポンプスラスト荷重
V d	m/s	基準風速
W	Ν	風荷重
Z b	m	地表面粗度区分に応じて建設省告示第1454号に掲げる数値
ZG	m	地表面粗度区分に応じて建設省告示第1454号に掲げる数値
α	_	地表面粗度区分に応じて建設省告示第1454号に掲げる数値
ρv	kg/m^3	降下火砕物の湿潤密度

表 4-3 荷重の算出に用いる記号

b. 鉛直荷重

鉛直荷重については,湿潤状態の降下火砕物及び積雪を考慮する。 湿潤状態の降下火砕物による荷重は,次式のとおり算出する。

 $F_a = \rho_v \cdot g \cdot H_a \cdot 10^{-2}$

積雪荷重は、次式のとおり算出する。

 $F s = f' s \cdot H s$

湿潤状態の降下火砕物に積雪を踏まえた鉛直荷重は、次式のとおり算出する。

 F_v ' = $F_a + F_S$

表 4-4 に入力条件を示す。

表 4-4 入力条件

ρv	g	H a	f's	H s
(kg/m^3)	(m/s^2)	(cm)	$(N/(m^2 \cdot cm))$	(cm)
1500	9.80665	56	20	35

以上を踏まえ,降下火砕物等の堆積による鉛直荷重は,Fv'=8938N/m²とする。

c. 水平荷重

水平荷重については、風(台風)を考慮する。風速を建築基準法施行令の基 準風速に基づき 30m/s に設定し、風荷重については施設の形状により異なるた め、施設ごとに算出する。

風荷重の算出式は建築基準法施行令第87条に基づき、以下のとおりである。

 $W = q \cdot C \cdot A_1$

ここで、 q =0.6・E' ・VD² E' = E_r²・G E r = 1.7・(H/ZG) ^α (HがZbを超える場合) E r = 1.7・(Zb/ZG) ^α (HがZb以下の場合)

4.2 許容限界

許容限界は、VI-1-1-3-4-3「降下火砕物の影響を考慮する施設の設計方針」の「4. 要求機能及び性能目標」で設定している構造強度設計上の性能目標及び「3.2機能維持の方針」に示す評価方針を踏まえて、評価対象部位ごとに設定する。

(1) 機器・配管系

a. 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ

「4.1 荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを含めた,評価対象部位ごとの許容限界を表 4-5 に示す。

構造強度評価においては,降下火砕物等の堆積による鉛直荷重,風(台風)に よる水平荷重及びその他の荷重に対し,原子炉補機海水ポンプ及び高圧炉心スプ レイ補機海水ポンプを構成する上部カバー,キャップ,原動機台及び原動機フレ ームが,おおむね弾性状態に留まることを計算により確認する評価方針としてい ることを踏まえ,原子力発電所耐震設計技術指針 JEAG 4601-1987

((社)日本電気協会)(以下「JEAG4601」という。)に準じて許容応力 状態ⅢASの許容応力を許容限界として設定する。許容応力状態ⅢASにおける 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの許容限界を表4-6に示す。

	世重の	亚伍哥伊	機能損傷	モ ード	
施設名称	利 単 の 組合せ	部位	応力の 状態	限界状態	許容限界
原子炉補機 海水ポンプ	$F_{d} + F_{a} + F_{s} + P + W$	原動機台	圧縮,曲げ	部材が弾性	J E A G 4 6 0 1 に 準
及び高圧炉 心スプレイ	F d + F <mark>a +</mark> <mark>F s</mark> + P + W	原動機 フレーム	圧縮,曲げ	域に留まら ず,塑性域	じて許容応 力状態ⅢA Sの許容応
補機海水ポ ンプ	F d + F <mark>a +</mark> <mark>F s</mark>	上部カバー, キャップ	曲げ	に入る状態	カ以下とする。

表 4-5 許容限界

表 4-6 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの許容限界

		許容限界			
	許容応力状態	一次応力			
		圧縮	曲げ		
	III ∧ S	1.5 • f c	1.5 • f ь		

b. ディーゼル機関給気口

「4.1 荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを含めた,評価対象部位ごとの許容限界を表 4-7 に示す。

構造強度評価においては、降下火砕物等の堆積による鉛直荷重、風(台風)に よる水平荷重及びその他の荷重に対し、ディーゼル機関給気口を構成する天板及 び架構が、おおむね弾性状態に留まることを計算により確認する評価方針として いることを踏まえ、「JEAG4601」に準じて許容応力状態ⅢASの許容応 力を許容限界として設定する。許容応力状態ⅢASにおけるディーゼル機関給気 口の許容限界を表4-8に示す。

	# * •	ᆕᇴ/ᆓᆂᇉᄼᆇ	機能損傷		
施設名称	何 里 の 組合 せ	評価対象 部位	応力等の 状態	限界状態	許容限界
ディーゼル機関	F d + F <mark>a +</mark> <mark>F s</mark>	天板	曲げ	部材が弾性 域に留まら	JEAG460 1に準じて許容
ディー ビル機関 給気口	$F_{d} + F_{a} + \frac{F_{s}}{F_{s}} + W$	架構	曲げ, 圧縮, 座屈	ず, 塑性域 に入る状態	応力状態ⅢAS の許容応力以下 とする。

表 4-7 許容限界

表 4-8 ディーゼル機関給気口の許容限界

	許容限界				
		(才	(ルト以外)		
許容応力状態					
	圧縮	圧縮 曲げ 座屈			
III ∧ S	1.5 • f c	1.5•fь	$\frac{\sigma_{b 2}}{1.5 \cdot f_{b}} + \frac{\sigma_{c}}{1.5 \cdot f_{c}} \leq 1$		

(2) 建物等

構造強度評価においては,降下火砕物,積雪及び風(台風)を考慮した荷重に対し,評価対象部位ごとに求められる機能が担保できる許容限界を設定する。

a. 原子炉建物

「4.1 荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを踏まえた,評価対象部位ごとの許容限界を表 4-9 に示す。

(a) 屋根スラブ

屋根スラブは,構造健全性,遮蔽性能及び気密性能を維持することを性能目標としており,「原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会,2005年制定)」(以下「RC-N規準」という。)に基づく短期許容応力度を許容限界として設定する。

(b) 主トラス及び二次部材

主トラス及び二次部材は、構造健全性を維持することを性能目標としてお り、「鋼構造設計規準-許容応力度設計法-((社)日本建築学会、2005年改 定)」(以下「S規準」という。)に基づく短期許容応力度を許容限界として設 定する。

(c) 耐震壁

耐震壁は、構造健全性、遮蔽性能及び気密性能を維持することを性能目標としており、「JEAG4601」に基づき最大せん断ひずみ2.0×10⁻³を耐震 壁の許容限界として設定する。

要求	機能設計上	-		機能維持	許容限界	
機能	の性能目標		部位	のための考え方	(評価基準値)	
			B 49		「RC-N規準」	
			産根		に基づく短期許容	
			スフフ		応力度*1	
			主トラス			
			(上弦材)	部材に生じる応力が		
		屋	屋 下弦材	構造強度を確保する		
		根	根 斜材	ための許容限界を超	「S規準」に基	
	構造強度を			えないことを確認	づく短期許容応	
—	有すること		ラニ次部材		力度*1	
			ス(もや)			
			つなぎばり			
			サブビーム			
				最大せん断ひずみが		
		耐震壁*2		構造強度を確保する	せん断ひずみ	
				ための許容限界を超	2. 0×10^{-3}	
				えないことを確認		
				部材に生じる応力が		
		屋根スラブ		遮蔽性を維持するた	「RC-N規準」	
	遮蔽体の損傷により遮			めの許容限界を超え	に基つく短期計容 応力度 ^{*1}	
				ないことを確認		
遮蔽性	蔽性能を損			最大せん断ひずみが		
	なわないこ		耐震壁*2	遮蔽性を維持するた	せん断ひずみ	
	2	(二次遮蔽壁)		めの許容限界を超え	2. 0×10^{-3}	
				ないことを確認		
				部材に生じる応力が		
				気密性を維持するた	RC-N規準」	
	換気性能と		屋根スラブ	めの許容限界を超え	に基づく短期許容	
	あいまって			ないことを確認	応力度*1	
気密性	気密性能を		耐震壁*3	最大せん断ひずみが		
	維持するこ	(原	子炉建物原子炉	気密性を維持するた	せん断ひずみ	
	2	棟	(二次格納施	めの許容限界を超え	2. 0×10^{-3}	
			設))	ないことを確認		

表 4-9 原子炉建物の許容限界

- 注記*1:許容限界は終局強度に対し妥当な安全余裕を有したものとして設定することとし、さらなる安全余裕を考慮して短期許容応力度とする。
 - *2:建物全体としては、水平力を主に耐震壁で負担する構造となっており、柱、はり、間仕切壁等が耐震壁の変形に追従すること、また、全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの変形が抑えられるため、各層の耐震壁の最大せん断ひずみが許容限界を満足していれば、建物・構築物に要求される機能は維持される。
 - *3:事故時に換気性能とあいまって気密性を有する設計とする。耐震壁の気密性に 対する許容限界の適用性は、VI-2-9-3-1「原子炉建物原子炉棟(二次格納施 設)の耐震性についての計算書 別紙1 原子炉建物原子炉棟の気密性に関する 計算書」に示す。
 - b. タービン建物

「4.1 荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを踏まえた,評価対象部位ごとの許容限界を表 4-10 に示す。

- (a) 屋根スラブ 屋根スラブは、内包する防護すべき施設に波及的影響を及ぼさないことを性 能目標としており、「RC-N規準」に基づく短期許容応力度を許容限界とし て設定する。
- (b) 主トラス及び二次部材

主トラス及び二次部材は、内包する防護すべき施設に波及的影響を及ぼさな いことを性能目標としており、「S規準」に基づく短期許容応力度を許容限界 として設定する。

(c) 耐震壁

耐震壁は、内包する防護すべき施設に波及的影響を及ぼさないことを性能目標としており、「JEAG4601」に基づき最大せん断ひずみ4.0×10⁻³を耐震壁の許容限界として設定する。

表4-10 タービン建物の計符限外							
要求機能設計上機能の性能目標	部位		機能維持 のための考え方	許容限界 (評価基準値)			
		屋根 スラブ		「RC-N規準」に基 づく短期許容応力度*1			
内包する防 護すべき施 設に波及的 影響を及ぼ さないこと	屋根	主トラス 上弦材 下弦材 ド弦材 京材 文部材 ス ・ <td>内包する防護すべ き施設に波及的影 響を及ぼさないた めに落下しないこ とを確認</td> <td>「S規準」に基づく 短期許容応力度*1</td>	内包する防護すべ き施設に波及的影 響を及ぼさないた めに落下しないこ とを確認	「S規準」に基づく 短期許容応力度*1			
	耐震壁*2		最大せん断ひずみ が波及的影響を及 ぼさないための許 容限界を超えない ことを確認	せん断ひずみ 4.0×10 ⁻³			

表 4-10 タービン建物の許容限界

- 注記*1:許容限界は終局強度に対し妥当な安全余裕を有したものとして設定することとし、さらなる安全余裕を考慮して短期許容応力度とする。
 - *2:建物全体としては、水平力を主に耐震壁で負担する構造となっており、柱、はり、間仕切壁等が耐震壁の変形に追従すること、また、全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの変形が抑えられるため、各層の耐震壁の最大せん断ひずみが許容限界を満足していれば、建物・構築物に要求される機能は維持される。
 - c. 制御室建物

「4.1 荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを踏まえた,評価対象部位ごとの許容限界を表 4-11 に示す。

(a) 屋根スラブ

屋根スラブは、構造健全性及び遮蔽性能を維持することを性能目標としており、「RC-N規準」に基づく短期許容応力度を許容限界として設定する。

(b) 耐震壁

耐震壁は、構造健全性及び遮蔽性能を維持することを性能目標としており、「JEAG4601」に基づき最大せん断ひずみ2.0×10⁻³を耐震壁の許容限界として設定する。

要求 機能	機能設計上 の性能目標	部位	機能維持 のための考え方	許容限界 (評価基準値)
_ 構造強度を _ 有すること	構造強度を	屋根スラブ	部材に生じる応力が 構造強度を確保する ための許容限界を超 えないことを確認	「RC-N規準」 に基づく短期許容 応力度 ^{*1}
	耐震壁*2	最大せん断ひずみが 構造強度を確保する ための許容限界を超 えないことを確認	せん断ひずみ 2.0×10 ⁻³	
遮蔽体の損 傷により遮 蔽性 蔽性能を損 なわないこ と	屋根スラブ	部材に生じる応力が 遮蔽性を維持するた めの許容限界を超え ないことを確認	「RC-N規準」 に基づく短期許容 応力度 ^{*1}	
	敵性能を損 なわないこ と	を損 いこ 耐震壁 ^{*2} (中央制御室遮 蔽)	最大せん断ひずみが 遮蔽性を維持するた めの許容限界を超え ないことを確認	せん断ひずみ 2.0×10 ⁻³

表 4-11 制御室建物の許容限界

注記*1:許容限界は終局強度に対し妥当な安全余裕を有したものとして設定することとし、さらなる安全余裕を考慮して短期許容応力度とする。

*2:建物全体としては、水平力を主に耐震壁で負担する構造となっており、柱、はり、間仕切壁等が耐震壁の変形に追従すること、また、全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの変形が抑えられるため、各層の耐震壁の最大せん断ひずみが許容限界を満足していれば、建物・構築物に要求される機能は維持される。

d. 廃棄物処理建物

「4.1 荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを踏まえた,評価対象部位ごとの許容限界を表 4-12 に示す。

(a) 屋根スラブ

屋根スラブは、内包する防護すべき施設に波及的影響を及ぼさないことを性 能目標としており、「RC-N規準」に基づく短期許容応力度を許容限界とし て設定する。

(b) 耐震壁

耐震壁は、内包する防護すべき施設に波及的影響を及ぼさないことを性能目標としており、「JEAG4601」に基づき最大せん断ひずみ4.0×10⁻³を耐震壁の許容限界として設定する。

		我 · 12 元未初入	建建物学们在极外	
要求	機能設計上	立[] (古	機能維持	許容限界
機能	の性能目標	日1 <u>11</u>	のための考え方	(評価基準値)
			内包する防護すべき	_
		民根	施設に油及的影響を	「RC-N規準」
		座似	旭以に仅及时影響で	に基づく短期許容
	内包する防	スラブ	及ぼさないために落	亡于年*1
	護すべき施		下しないことを確認	心力皮
—	設に波及的		最大せん断ひずみが	
	影響を及ぼ		波及的影響を及ぼさ	+ / 斯ひずひ
	さないこと	耐震壁*2	ないための許容限界	$e \mathcal{N} = 10^{-3}$
			を超えないことを確	4.0×10
			認	

表 4-12 廃棄物処理建物の許容限界

注記*1:許容限界は終局強度に対し妥当な安全余裕を有したものとして設定することとし、さらなる安全余裕を考慮して短期許容応力度とする。

*2:建物全体としては、水平力を主に耐震壁で負担する構造となっており、柱、はり、間仕切壁等が耐震壁の変形に追従すること、また、全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの変形が抑えられるため、各層の耐震壁の最大せん断ひずみが許容限界を満足していれば、建物・構築物に要求される機能は維持される。

e. 排気筒モニタ室

「4.1 荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを踏まえた,評価対象部位ごとの許容限界を表 4-13 に示す。

(a) 屋根スラブ

屋根スラブは、内包する防護すべき施設に波及的影響を及ぼさないことを性 能目標としており、「RC-N規準」に基づく短期許容応力度を許容限界とし て設定する。

(b) 耐震壁

耐震壁は、内包する防護すべき施設に波及的影響を及ぼさないことを性能目標としており、「JEAG4601」に基づき最大せん断ひずみ4.0×10⁻³を耐震壁の許容限界として設定する。

		双王 IO DF X 向 C		
要求	機能設計上	立[[合	機能維持	許容限界
機能	の性能目標	<u>-1</u> 11日	のための考え方	(評価基準値)
			内包する防護すべき	
		民根	施設に油及的影響を	「RC-N規準」
		座似	旭以に仮及り影響で	に基づく短期許容
	内包する防	スラブ	及ぼさないために落	亡士庄*1
	護すべき施		下しないことを確認	心力皮
—	設に波及的		最大せん断ひずみが	
	影響を及ぼ		波及的影響を及ぼさ	井 / 斯 7 デ ブ
l	さないこと	耐震壁*2	ないための許容限界	しん時10、9 み 4 0×10 ⁻³
			を超えないことを確	4.0 ~ 10
			認	

表 4-13 排気筒モニタ室の許容限界

注記*1:許容限界は終局強度に対し妥当な安全余裕を有したものとして設定することとし、さらなる安全余裕を考慮して短期許容応力度とする。

*2:建物全体としては、水平力を主に耐震壁で負担する構造となっており、柱、はり、間仕切壁等が耐震壁の変形に追従すること、また、全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの変形が抑えられるため、耐震壁の最大せん断ひずみが許容限界を満足していれば、建物・構築物に要求される機能は維持される。

 f. ディーゼル燃料貯蔵タンク室及びB-ディーゼル燃料貯蔵タンク格納槽
 「4.1 荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを踏ま えた許容限界を表 4-14~表 4-16 に示す。

要求	機能設計上	立[[]	機能維持	許容限界
機能	の性能目標	고기리	のための考え方	(評価基準値)
		造強度を すること 道版	部材に生じる応力が	<mark>コンクリート標 準</mark>
_	構造強度を		構造強度を確保する	示方書[構造性能照
	有すること		ための許容限界を超	<mark>査編]に基づく短期</mark>
			えないことを確認	<mark>許容応力度</mark>

表 4-14 ディーゼル燃料貯蔵タンク室の許容限界

表 4-15 B-ディーゼル燃料貯蔵タンク格納槽の許容限界

要求	機能設計上	立[7] 人士	機能維持	許容限界
機能	の性能目標	立し	のための考え方	(評価基準値)
		頂版	部材に生じる応力が	コンクリート標準
	構造強度を		構造強度を確保する	示方書[構造性能照
_	有すること	地上に露	ための許容限界を超	査編]に基づく短期
		出した側	えないことを確認	許容応力度
		壁		

表 4-16 鋼製蓋の許容限界

要求 機能	機能設計上 の性能目標	部位	応力等 の状態	機能維持の ための考え方	許容限界 (評価基準値)
_				部材が弾性域 J	J E A G 4 6 0 1
	構造強度を	鋼板,	組合せ	に留まらず塑	に準じた許容応力
	有すること	支持脚		性域に入る状	状態IVASの許容応
				態	力

- 5. 強度評価方法
- 5.1 機器·配管系
 - 5.1.1 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ

評価手法は,以下に示すとおり,適用性に留意の上,規格及び基準類や既往の文献 において適用が妥当とされる手法に基づき実施することを基本とする。

・定式化された評価式を用いて算出

風荷重による影響を考慮する施設については、建築基準法施行令等に基づき風荷重 を考慮し、設備の受圧面に対して等分布荷重として扱って良いことから、原子炉補機 海水ポンプ及び高圧炉心スプレイ補機海水ポンプの評価上高さの1/2に集中荷重とし て作用するものとしており、これはJEAG4601耐震評価における1質点系モデ ルと等価なものであり、地震荷重を風荷重と置き換えJEAG4601に基づき評価 を行う。

風荷重を考慮した,降下火砕物等の堆積による鉛直荷重が作用する場合に強度評価 を行う施設の強度評価方法として,原子炉補機海水ポンプ及び高圧炉心スプレイ補機 海水ポンプの強度評価方法を以下に示す。

(1) 評価条件

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの強度評価を行う場 合,以下の条件に従うものとする。

- a. 風荷重による影響が大きな原動機フレーム及び原動機台の強度計算モデルは、1 質点系モデルとして評価を行う。なお、1質点系モデルの強度計算において、 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの評価上高さの 1/2に集中荷重として作用するものとする。計算モデル図を図 5-1に示す。
- b. 鉛直荷重によって一様な応力が発生する上部カバー及びキャップは,機械工学 便覧の計算方法を用いて評価を行う。計算モデル図を図 5-2 に示す。
- c. 計算に用いる寸法は、公称値を使用する。
- (2) 評価対象部位

評価対象部位及び評価内容を表 5-1 に示す。

評価対象部位	応力の状態
原動機台	圧縮,曲げ
原動機フレーム	圧縮,曲げ
上部カバー,キャップ	曲げ

表 5-1 評価対象部位及び評価内容

- (3) 強度評価方法
 - a. 記号の説明

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの強度評価に用いる記号を表 5-2 に示す。

表 5-2 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの強度評価に 用いる記号(1/3)

記号	単 位	定義
A_1	m^2	風の受圧面積(風向に垂直な面に投影した面積)
A 11	m^2	原動機台の評価に考慮する風の受圧面積(風向に垂直な
		面に投影した面積)
A 12	m^2	原動機フレームの評価に考慮する風の受圧面積(風向に
		垂直な面に投影した面積)
A_2	m^2	降下火砕物等の堆積面積
а	mm	上部カバー, キャップ外径
B 1	mm	原動機台外径
B 2	mm	原動機台内径
Вз	mm	原動機フレーム外径
B ₄	mm	原動機フレーム内径
С	_	風力係数
Е'	—	建築基準法施行令第87条第2項に規定する数値
Б		建設省告示第1454号の規定によって算出した平均風
Еr	—	速の高さ方向の分布を表す係数
F	MPa	J S M E SSB-3121.1 により規定される値
F d	Ν	自重による軸方向荷重
F d 1	Ν	原動機台自重及び原動機自重による軸方向荷重
${ m F}$ d 2	Ν	原動機自重による軸方向荷重
F p	Ν	ポンプスラスト荷重による軸方向荷重
F v	Ν	降下火砕物等の堆積による鉛直荷重
Fv'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
£	ИД	J S M E SSB-3121.1 により規定される供用状態A 及び
Гр	MPa	Bでの許容曲げ応力
c	ИД	J S M E SSB-3121.1 により規定される供用状態A及び
I c	мра	Bでの許容圧縮応力
G	_	ガスト影響係数
g	m/s^2	重力加速度(=9.80665)
Н	m	ポンプ高さ(全高)

表 5-2 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの強度評価に

記号	単 位	定義
IIar	N	原動機台に作用する原動機台自重,原動機自重及びポン
II S I	IN	プスラスト荷重による軸方向荷重
TT		原動機フレームに作用する原動機自重及びポンプスラス
H S 2	IN	ト荷重による軸方向荷重
h 1	mm	原動機台取付面から風荷重作用点までの高さ
h 2	mm	原動機取付面から風荷重作用点までの高さ
М	N•mm	原動機台に作用するモーメント
М'	N•mm	原動機フレームに作用するモーメント
M 11	N•mm	風(台風)による水平荷重により原動機台に作用するモ
		ーメント
M_{12}	N•mm	風(台風)による水平荷重により原動機フレームに作用
		するモーメント
${ m M}_{21}$	N•mm	鉛直荷重により原動機台に作用するモーメント
${ m M}$ 22	N•mm	鉛直荷重により原動機フレームに作用するモーメント
m 1	kg	原動機台の質量
m 2	kg	原動機の質量
Р	kg	ポンプスラスト荷重
р	N/m^2	上部カバー、キャップ評価時の等分布荷重
q	N/m^2	設計用速度圧
S 1	mm^2	原動機台の断面積
S 2	mm^2	原動機フレームの断面積
S	MD -	JSME 付録材料図表 Part5の表にて規定される設計
Su	мга	引張り強さ
C	14D	JSME 付録材料図表 Part5の表にて規定される設計
Зy	мга	降伏点
t	mm	上部カバー,キャップ厚さ
V d	m/s	基準風速
W	Ν	風荷重
W_1	Ν	原動機台評価に対する風(台風)による水平荷重
${ m W}_2$	Ν	原動機フレーム評価に対する風(台風)による水平荷重
Z 1	mm ³	原動機台の断面係数
Z 2	mm ³	原動機フレームの断面係数
7		地表面粗度区分に応じて建設省告示第1454号に掲げ
Z b	m	る数値

用いる記号 (2/3)

表 5-2 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの強度評価に 用いる記号(3/3)

記号	単 位	定義
7		地表面粗度区分に応じて建設省告示第1454号に掲げ
ΖG	m	る数値
		地表面粗度区分に応じて建設省告示第1454号に掲げ
α		る数値
π	—	円周率
σ b 1	MPa	原動機台に生じる曲げ応力
σ b 2	MPa	原動機フレームに生じる曲げ応力
σb'	MPa	上部カバー、キャップに生じる曲げ応力
σ c 1	MPa	原動機台に生じる圧縮応力
σ c 2	MPa	原動機フレームに生じる圧縮応力

b. 計算モデル

図 5-1 1 質点系モデル図(原動機台,原動機フレーム)

図 5-2 等分布荷重モデル図(上部カバー及びキャップ)

- c. 強度評価方法
 - (a) 鉛直荷重
 - イ. 降下火砕物等の堆積による鉛直荷重

 $F_v = F_v' \cdot A_2$

- ロ. 自重及びポンプスラスト荷重による軸方向荷重
 - (イ) 原動機台に作用する原動機台自重,原動機自重及びポンプスラスト荷重による軸方向荷重

 $H_{s1} = F_{d1} + F_{p}$ $\sub ,$ $F_{d1} = (m_1 + m_2) \cdot g$ $F_{p} = P \cdot g$

(ロ) 原動機フレームに作用する原動機自重及びポンプスラスト荷重による 軸方向荷重

$$H_{s 2} = F_{d 2} + F_{p}$$

$$\Xi \subset \mathfrak{C},$$

$$F_{d 2} = m_{2} \cdot g$$

$$F_{p} = P_{p} \cdot g$$

- (b) 水平荷重
 - イ.風(台風)による水平荷重

風(台風)による水平荷重は、4.1(3)c.に示す式に従い、算出する。全高 Hが 5m 以下であるため、HがZb以下の場合の式を用いる。

- (c) 応力評価
 - イ. 原動機台に生じる応力
 - (イ)曲げ応力

原動機台に生じる曲げ応力σь1は次式により算出される。なお,鉛直 荷重により作用するモーメントの算出においては,保守的に原動機台の外 周部に荷重の作用点を設定し算出する。

- i.風(台風)による水平荷重により原動機台に作用するモーメントM₁₁
 M₁₁=W₁・h₁
- ii. 鉛直荷重により原動機台に作用するモーメントM21

$$M_{21} = \frac{(F_v + H_{s1}) \cdot B_1}{2}$$

iii. 原動機台に作用するモーメントM
 M=M₁₁+M₂₁

iv. 曲げ応力

$$\sigma_{b1} = \frac{M}{Z_{1}}$$

$$\Xi \equiv \overline{\mathcal{C}},$$

$$Z_{1} = \frac{\pi}{32} \cdot \left(\frac{B_{1}^{4} - B_{2}^{4}}{B_{1}}\right)$$

(ロ) 圧縮応力

原動機台に生じる圧縮応力σ 。1 は次式より算出される。

$$\sigma_{c1} = \frac{F_v + H_{s1}}{S_1}$$

$$\Xi \subseteq \tilde{C},$$

$$S_1 = \frac{\pi}{4} \cdot (B_1^2 - B_2^2)$$

原動機台の断面図を図 5-3 に示す。

図 5-3 原動機台の断面図

- ロ. 原動機フレームに生じる応力
 - (イ)曲げ応力

原動機フレームに生じる曲げ応力 σ b2 は次式により算出される。なお, 鉛直荷重により作用するモーメントの算出においては,保守的に原動機フ レームの外周部に荷重の作用点を設定し算出する。

i. 風(台風)による水平荷重により原動機フレームに作用するモーメ ントM₁₂

 $M_{12} = W_2 \cdot h_2$

ii. 鉛直荷重により原動機フレームに作用するモーメントM22

$$\mathbf{M}_{22} = \frac{(\mathbf{F}_{v} + \mathbf{H}_{s\,2}) \cdot \mathbf{B}_{3}}{2}$$

iii. 原動機フレームに作用するモーメントM'
 M' = M₁₂+M₂₂

iv. 曲げ応力

$$\sigma_{b2} = \frac{M'}{Z_{2}}$$

$$\Xi \Xi \tilde{C},$$

$$\pi = \int B_{2}^{4} -$$

$$Z_{2} = \frac{\pi}{32} \cdot \left(\frac{B_{3}^{4} - B_{4}^{4}}{B_{3}} \right)$$

(ロ) 圧縮応力

原動機フレームに生じる圧縮応力σ。2は次式より算出される。

$$\sigma_{c2} = \frac{F_v + H_{s2}}{S_2}$$

$$\Xi \equiv \overline{\sigma},$$

$$S_2 = \frac{\pi}{4} \cdot (B_{3^2} - B_{4^2})$$

原動機フレームの断面図を図 5-4 に示す。

図 5-4 原動機フレームの断面図

ハ. 上部カバー, キャップに生じる応力

(イ)曲げ応力

上部カバー,キャップの天板に生じる曲げ応力 σ_b'は次式により算出 される。

$$\sigma_{b}' = 1.24 \cdot \frac{p \cdot (a/2)^{-2}}{t^{-2}}$$

上部カバー,キャップの応力評価モデル図を図 5-5 に示す。

5.1.2 ディーゼル機関給気口

評価手法は,以下に示すとおり,適用性に留意の上,規格及び基準類や既往の文献 において適用が妥当とされる手法に基づき実施することを基本とする。

・定式化された評価式を用いて算出

風荷重による影響を考慮する施設については、建築基準法施行令等に基づき風荷重 を考慮し、設備の受圧面に対して等分布荷重として発生する荷重の合計が、集中荷重 として給気口の上端部に作用するものとする。これは、JEAG4601耐震評価に おける1質点系モデルと等価なものであり、地震荷重を風荷重と置き換えJEAG4 601に基づき評価を行う。

風荷重を考慮した降下火砕物等の堆積による鉛直荷重が作用する場合に強度評価を 行う施設の強度評価方法として,ディーゼル機関給気口の強度評価方法を以下に示 す。 (1) 評価条件

ディーゼル機関給気口の強度評価を行う場合、以下の条件に従うものとする。

- a. 降下火砕物が堆積する天板に対し,等分布荷重が作用する4辺固定長方形板として機械工学便覧の計算方法を用いて評価を行う。計算モデル図を図5-6に示す。
- b. 風荷重による影響が大きな架構の強度計算モデルは、1 質点系モデルとして評価を行う。なお、1 質点系モデルの強度計算において、ディーゼル機関給気ロの上端に集中荷重として作用するものとする。計算モデル図を図 5-7 に示す。
- c. 計算に用いる寸法は,公称値を使用する。
- d. 降下火砕物等の堆積による鉛直方向荷重については、天板の投影面積又は天板の補強材で囲まれた領域に対し降下火砕物等の層厚より上載質量を算出し入力荷重として設定する。
- (2) 評価対象部位

評価対象部位及び評価内容を表 5-3 に示す。

評価対象部位	応力等の状態
天板	曲げ
架構	曲げ、圧縮、座屈

表 5-3 評価対象部位及び評価内容

- (3) 強度評価方法
 - a. 記号の説明

ディーゼル機関給気口の強度評価に用いる記号を表 5-4 に示す。

記号	単位	定義
А	mm^2	架構の断面積
A 1	m^2	受圧面積(風向に垂直な面に投影した面積)
A o	m^2	天板の降下火砕物等の堆積面積(補強材で囲まれた領域の面 積)
а	m	天板のうち補強材で囲まれた領域の短辺側の長さ
b	m	天板のうち補強材で囲まれた領域の長辺側の長さ
С	_	風力係数
Е'	_	建築基準法施行令第87条第2項に規定する数値
E r	_	建設省告示第1454号の規定によって算出した平均風速の高さ方 向の分布を表す係数
F	MPa	J S M E SSB-3121.1 (1) により規定される値
F _{d1}	Ν	自重により天板に作用する荷重
F _{d2}	Ν	自重により架構に作用する荷重
F k 1	Ν	降下火砕物の堆積により天板に作用する鉛直荷重
F k 2	Ν	降下火砕物の堆積により架構に作用する鉛直荷重
F s 1	Ν	積雪により天板に作用する鉛直荷重
F _{s2}	Ν	積雪により架構に作用する鉛直荷重
fь	MPa	J S M E SSB-3121.1により規定される供用状態A 及びB での 許容曲げ応力
f c	MPa	J S M E SSB-3121.1により規定される供用状態A 及びB での 許容圧縮応力

表 5-4 ディーゼル機関給気口の強度評価に用いる記号(1/3)

	<u> 秋0 1</u> / /	
記号	単位	定義
G	_	ガスト影響係数
g	m/s^2	重力加速度(=9.80665)
Н	m	地表面からの給気口高さ(建物含む)
H f	mm	給気口高さ(全高)
h k	m	降下火砕物の堆積高さ
h s	m	積雪高さ
1 1	m	天板の短辺側の長さ
12	m	天板の長辺側の長さ
M o	N•mm	風荷重により架構に作用する曲げモーメント
m	kg	給気口の自重
р	MPa	天板に作用する等分布荷重
q	N/m^2	設計用速度圧
r	m	給気口(フード部)の端部の丸みの半径
S _y	MPa	JSME付録材料図表Part5の表にて規定される設計降伏点
S _u	MPa	JSME付録材料図表Part5の表にて規定される設計引張強さ
t	mm	天板の板厚
V d	m/s	地域区分に応じて建設省告示1454号に掲げる基準風速
W	Ν	風荷重
Ζ 1	mm ³	架構の断面係数
Z b	m	地表面粗度区分に応じて建設省告示第1454号に掲げる数値
Z g	m	地表面粗度区分に応じて建設省告示第1454号に掲げる数値
α	_	地表面粗度区分に応じて建設省告示第1454号に掲げる数値
ß	_	新版機械工学便覧の平板の曲げにおける長方形板の最大応力
q		の係数
π	_	円周率

表 5-4 ディーゼル機関給気口の強度評価に用いる記号(2/3)

記号	単位	定義
ho d	kg/m^3	天板材の密度
ρk	kg/m^3	降下火砕物の密度
f's	$N/(m^2 \cdot cm)$	建築基準法施行令に基づき設定する積雪の単位荷重
σь1	MPa	天板に生じる曲げ応力
σь2	MPa	架構に生じる曲げ応力
σс	MPa	架構に生じる圧縮応力

表 5-4 ディーゼル機関給気口の強度評価に用いる記号(3/3)

b. 計算モデル

図 5-<mark>6</mark> 計算モデル (天板)

- c. 強度評価方法
 - (a) 鉛直荷重
 - イ. 常時作用する荷重

天板に常時作用する荷重(F d 1)は, 天板の補強材で囲まれた領域の自 重を考慮する。

 $F_{d1} = t / 10^3 \cdot A_0 \cdot \rho_d \cdot g$

ここで,

 $A_o = a \cdot b$

架構に常時作用する荷重(Fd2)は、給気口の自重を考慮する。

 $F_{d 2} = m \cdot g$

ロ. 降下火砕物の堆積による鉛直荷重(Fk1, Fk2)

降下火砕物の堆積高さは、h k = 0.56m とする。

降下火砕物の堆積により天板に作用する鉛直荷重(F k 1)は,天板の補 強材で囲まれた領域に対して考慮する。

 $F_{k 1} = \rho_k \cdot A_o \cdot h_k \cdot g$

降下火砕物の堆積により架構に作用する鉛直荷重(F k 2)は,端部の丸 み部分を含めた天板の投影面積に対して考慮する。

 $F_{k 2} = \{2 \cdot (r^{2} - \pi \cdot r^{2}/4) \cdot 1_{2} + 1_{1} \cdot 1_{2} \cdot h_{k}\} \cdot \rho_{k} \cdot g$

ハ. 積雪による鉛直荷重(Fs1, Fs2)

積雪高さは、hs=0.35mとする。

積雪により天板に作用する鉛直荷重(F_{s1})は,天板の補強材で囲まれ た領域に対して考慮する。

 $F_{s 1} = f'_{s \cdot} \cdot A_{o} \cdot h_{s} \cdot 10^{2}$

積雪により架構に作用する鉛直荷重(F_{s2})は, 天板の投影面積に対し て考慮する。なお, 積雪は降下火砕物の上部に堆積するものとする。

 $F_{s 2} = f'_{s \cdot \cdot} \cdot 1_{1} \cdot 1_{2} \cdot h_{s} \cdot 10^{2}$

(b) 水平荷重

イ.風(台風)による水平荷重

風(台風)による水平荷重は,4.1(3)c.に示す式に従い,算出する。地表 面からの給気口高さHが 5m を超えるため,HがZ b を超える場合の式を用い る。 (<mark>c</mark>) 天板の応力

鉛直荷重により天板に作用する最大曲げ応力σь1は次による。

$$\sigma_{b1} = \frac{\beta \cdot p \cdot (a \cdot 10^3)^2}{t^2}$$

$$\Xi \equiv \mathfrak{C},$$

$$p = \frac{F_{d1} + F_{k1} + F_{s1}}{A_{\circ} \cdot 10^6}$$

- (<mark>d</mark>)架構の応力
- イ. 曲げ応力

架構の計算モデルは1質点系モデルとし、給気口の上端に風荷重が作用す ることとする。

架構に生じる最大曲げ応力 σ b 2 は次による。

$$\sigma_{b2} = \frac{M_o}{Z_1}$$

ここで, M₀=W・H_f

口. 圧縮応力

E縮応力は,給気口の自重と降下火砕物及び積雪による荷重が作用することによる。

架構に生じる圧縮応力σ。は次による。

$$\sigma_{\rm c} = \frac{F_{\rm d} \,_2 + F_{\rm k} \,_2 + F_{\rm s} \,_2}{A}$$

ハ. 座屈評価

座屈評価は, 次の式により行う。

$$\frac{\sigma_{b2}}{1.5 \cdot f_{b}} + \frac{\sigma_{c}}{1.5 \cdot f_{c}} \leq 1$$

- 5.2 建物等
 - 5.2.1 原子炉建物
 - (1) 強度評価条件

原子炉建物の強度評価を行う場合、以下の条件に従うものとする。

- a. 降下火砕物等の堆積による鉛直荷重を短期荷重として評価する。
- b. 降下火砕物等の堆積による鉛直荷重としてF_v'=8938N/m²,風荷重については、基準風速 30m/s を考慮する。
- c. 風荷重の算出は,建物の形状を考慮して算出した風力係数及び受圧面積に基づ き実施し,受圧面積算定において,隣接する建物の遮断効果による面積の低減 は考慮しない。
- d. 水平方向の風荷重が作用した場合,屋根に対し鉛直上向きの荷重が働き下向き 荷重は低減されるため,屋根面の評価においては,保守的に水平方向の風荷重 は考慮しない。
- e. 耐震壁の応力計算には、地震応答解析に用いた質点系モデルを用い、耐震壁の 復元力特性の設定においては、鉛直荷重の増加による軸力を考慮すると第1折 れ点の増大が見込まれるため、耐震壁の評価においては、保守的に降下火砕物 等堆積による鉛直荷重は考慮しない。
- (2) 強度評価方法
 - a. 屋根スラブの応力計算

応力解析モデルを用いて,屋根スラブに作用する固定荷重,積載荷重,積雪荷 重及び降下火砕物堆積による鉛直荷重により屋根スラブに発生する応力を求め る。

b. 主トラスの応力計算

3次元フレームモデルによる応力解析により,主トラスに発生する応力を求める。

c. 二次部材の応力計算

応力解析モデルを用いて,二次部材に作用する固定荷重,積載荷重,積雪荷重 及び降下火砕物堆積による鉛直荷重により,二次部材に発生する応力を求める。

d. 耐震壁の応力計算

「4. 荷重及び荷重の組合せ並びに許容限界」の荷重条件を踏まえた原子炉建物の質点系モデルを用いて,風荷重により耐震壁に発生するせん断ひずみを求める。

- 5.2.2 タービン建物
- (1) 強度評価条件

タービン建物の強度評価を行う場合、以下の条件に従うものとする。

- a. 降下火砕物等の堆積による鉛直荷重を短期荷重として評価する。
- b. 降下火砕物等の堆積による鉛直荷重としてF_v'=8938N/m²,風荷重については、基準風速 30m/s を考慮する。
- c. 風荷重の算出は,建物の形状を考慮して算出した風力係数及び受圧面積に基づ き実施し,受圧面積算定において,隣接する建物の遮断効果による面積の低減 は考慮しない。
- d. 水平方向の風荷重が作用した場合,屋根に対し鉛直上向きの荷重が働き下向き 荷重は低減されるため,屋根面の評価においては,保守的に水平方向の風荷重 は考慮しない。
- e. 耐震壁の応力計算には、地震応答解析に用いた質点系モデルを用い、耐震壁の 復元力特性の設定においては、鉛直荷重の増加による軸力を考慮すると第1折 れ点の増大が見込まれるため、耐震壁の評価においては、保守的に降下火砕物 等堆積による鉛直荷重は考慮しない。
- (2) 強度評価方法
 - a. 屋根スラブの応力計算

応力解析モデルを用いて,屋根スラブに作用する固定荷重,積載荷重,積雪荷 重及び降下火砕物堆積による鉛直荷重により屋根スラブに発生する応力を求め る。

b. 主トラスの応力計算

2次元フレームモデルによる弾性応力解析により,主トラスに発生する応力を 求める。

c. 二次部材の応力計算

応力解析モデルを用いて,二次部材に作用する固定荷重,積載荷重,積雪荷重 及び降下火砕物堆積による鉛直荷重により,二次部材に発生する応力を求める。

d. 耐震壁の応力計算

「4. 荷重及び荷重の組合せ並びに許容限界」の荷重条件を踏まえたタービン 建物の質点系モデルを用いて,風荷重により耐震壁に発生するせん断ひずみを求 める。

- 5.2.3 制御室建物
- (1) 強度評価条件

制御室建物の強度評価を行う場合、以下の条件に従うものとする。

- a. 降下火砕物等の堆積による鉛直荷重を短期荷重として評価する。
- b. 降下火砕物等の堆積による鉛直荷重としてF、'=8938N/m²,風荷重については、基準風速 30m/s を考慮する。
- c. 風荷重の算出は,建物の形状を考慮して算出した風力係数及び受圧面積に基づ き実施し,受圧面積算定において,隣接する建物の遮断効果による面積の低減 は考慮しない。
- d. 水平方向の風荷重が作用した場合,屋根に対し鉛直上向きの荷重が働き下向き 荷重は低減されるため,屋根面の評価においては,保守的に水平方向の風荷重 は考慮しない。
- e. 耐震壁の応力計算には、地震応答解析に用いた質点系モデルを用い、耐震壁の 復元力特性の設定においては、鉛直荷重の増加による軸力を考慮すると第1折 れ点の増大が見込まれるため、耐震壁の評価においては、保守的に降下火砕物 等堆積による鉛直荷重は考慮しない。
- (2) 強度評価方法
 - a. 屋根スラブの応力計算

解析モデルを用いて,屋根スラブに作用する固定荷重,積載荷重,積雪荷重及 び降下火砕物堆積による鉛直荷重により屋根スラブに発生する応力を求める。

b. 耐震壁の応力計算

「4. 荷重及び荷重の組合せ並びに許容限界」の荷重条件を踏まえた制御室建物の質点系モデルを用いて,風荷重により耐震壁に発生するせん断ひずみを求める。

5.2.4 廃棄物処理建物

(1) 強度評価条件

廃棄物処理建物の強度評価を行う場合、以下の条件に従うものとする。

- a. 降下火砕物等の堆積による鉛直荷重を短期荷重として評価する。
- b. 降下火砕物等の堆積による鉛直荷重としてF_v'=8938N/m²,風荷重については、基準風速 30m/s を考慮する。
- c. 風荷重の算出は,建物の形状を考慮して算出した風力係数及び受圧面積に基づ き実施し,受圧面積算定において,隣接する建物の遮断効果による面積の低減 は考慮しない。
- d. 水平方向の風荷重が作用した場合,屋根に対し鉛直上向きの荷重が働き下向き 荷重は低減されるため,屋根面の評価においては,保守的に水平方向の風荷重

RO

は考慮しない。

- e. 耐震壁の応力計算には、地震応答解析に用いた質点系モデルを用い、耐震壁の 復元力特性の設定においては、鉛直荷重の増加による軸力を考慮すると第1折 れ点の増大が見込まれるため、耐震壁の評価においては、保守的に降下火砕物 等堆積による鉛直荷重は考慮しない。
- (2) 強度評価方法
 - a. 屋根スラブの応力計算

解析モデルを用いて,屋根スラブに作用する固定荷重,積載荷重,積雪荷重及 び降下火砕物堆積による鉛直荷重により屋根スラブに発生する応力を求める。

b. 耐震壁の応力計算

「4. 荷重及び荷重の組合せ並びに許容限界」の荷重条件を踏まえた廃棄物処 理建物の質点系モデルを用いて,風荷重により耐震壁に発生するせん断ひずみを 求める。

- 5.2.5 排気筒モニタ室
- (1) 強度評価条件

排気筒モニタ室の強度評価を行う場合、以下の条件に従うものとする。

- a. 降下火砕物等の堆積による鉛直荷重を短期荷重として評価する。
- b. 降下火砕物等の堆積による鉛直荷重としてF_v'=8938N/m²,風荷重については、基準風速 30m/s を考慮する。
- c. 風荷重の算出は,建物の形状を考慮して算出した風力係数及び受圧面積に基づ き実施し,受圧面積算定において,隣接する建物の遮断効果による面積の低減 は考慮しない。
- d. 水平方向の風荷重が作用した場合,屋根に対し鉛直上向きの荷重が働き下向き 荷重は低減されるため,屋根面の評価においては,保守的に水平方向の風荷重 は考慮しない。
- e. 耐震壁の応力計算には、地震応答解析に用いた質点系モデルを用い、耐震壁の 復元力特性の設定においては、鉛直荷重の増加による軸力を考慮すると第1折 れ点の増大が見込まれるため、耐震壁の評価においては、保守的に降下火砕物 等堆積による鉛直荷重は考慮しない。
- (2) 強度評価方法
 - a. 屋根スラブの応力計算

解析モデルを用いて,屋根スラブに作用する固定荷重,積載荷重,積雪荷重及 び降下火砕物堆積による鉛直荷重により屋根スラブに発生する応力を求める。 b. 耐震壁の応力計算

「4. 荷重及び荷重の組合せ並びに許容限界」の荷重条件を踏まえた排気筒モニタ室の質点系モデルを用いて、風荷重により耐震壁に発生するせん断ひずみを求める。

- 5.2.6 ディーゼル燃料貯蔵タンク室及びB-ディーゼル燃料貯蔵タンク格納槽
- (1) 強度評価条件

ディーゼル燃料貯蔵タンク室及びB-ディーゼル燃料貯蔵タンク格納槽の強度評価を行う場合,以下の条件に従うものとする。

- a. 降下火砕物等の堆積による鉛直荷重を短期荷重として評価する。
- b. 降下火砕物等の堆積による鉛直荷重としてF_v'=8938N/m²,風荷重については、基準風速 30m/s を考慮する。
- c. 風荷重の算出は,構造物の形状を考慮して算出した風力係数及び受圧面積に基 づき実施し,受圧面積算定において,隣接する建物の遮断効果による面積の低 減は考慮しない。
- (2) 強度評価方法

ディーゼル燃料貯蔵タンク室及び鋼製蓋は2次元はりモデル及び3次元有限要素 法による解析モデルを用いて,各部位に作用する固定荷重,積載荷重,積雪荷重及 び降下火砕物堆積による鉛直荷重により頂版及び鋼製蓋に発生する応力を求める。

B-ディーゼル燃料貯蔵タンク格納槽及び鋼製蓋は2次元及び3次元有限要素法 による解析モデルを用いて,各部位に作用する固定荷重,積載荷重,積雪荷重及び 降下火砕物堆積による鉛直荷重及び風荷重により頂版及び鋼製蓋並びに地上に露出 した側壁に発生する応力を求める。 6. 適用規格·基準等

VI-1-1-3-4-1「火山への配慮に関する基本方針」においては,降下火砕物の影響を 考慮する施設の設計に係る適用規格・基準等を示している。

これらのうち、評価対象施設の強度評価に用いる規格、基準等を以下に示す。

- ・建築基準法及び同施行令
- ·松江市建築基準法施行細則(平成17年3月31日 松江市規則第234号)
- ·鋼構造設計規準-許容応力度設計法-((社)日本建築学会,2005年改定)
- ・鉄筋コンクリート構造計算規準・同解説-許容応力度設計法-((社)日本建築学 会,1999年改定)
- ・原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会,2005年 制定)
- ・建築物荷重指針・同解説 ((社) 日本建築学会, 2004 年改定)
- ・原子力発電所耐震設計技術指針 JEAG 4601-1987((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG 4601・補-1984 ((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG 4601-1991 追補版((社)日本電気協会)
- ・発電用原子力設備規格 設計・建設規格(2005 年版(2007 年追補版含む。))(JS
 ME S NC1-2005/2007)((社)日本機械学会)
- 新版機械工学便覧((社)日本機械学会)
- ・日本産業規格(JIS)
- ・コンクリート標準示方書[構造性能照査編](土木学会,2002年制定)
- ・原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル(土木学会, 2005年制定)
- ・発電用原子力設備規格 コンクリート製原子炉格納容器規格((社)日本機械学 会, 2003)