| 島根原子力発電所第2号機 審査資料 |                 |  |  |
|-------------------|-----------------|--|--|
| 資料番号              | NS2-補-027-10-91 |  |  |
| 提出年月日             | 2023年3月9日       |  |  |

# 免震重要棟遮蔽壁の耐震性についての計算書に

関する補足説明資料

2023年3月

中国電力株式会社

| 1. 評価方法                   | 1 |
|---------------------------|---|
| 2. 評価条件                   | 1 |
| 2.1 適用規格                  | 1 |
| 2.2 構造概要                  | 3 |
| 2.3 評価断面の方向               | 7 |
| 2.4 評価対象断面の選定             | 7 |
| 2.5 使用材料及び材料の物性           | 9 |
| 2.6 地盤物性値 1               | 0 |
| 2.7 評価構造物諸元 1             | 1 |
| 2.8 地下水位 1                | 2 |
| 2.9 耐震評価フロー 1             | 3 |
| 3. 地震応答解析 1               | 4 |
| 3.1 地震応答解析手法 1            | 4 |
| 3.2 地震応答解析モデルの設定 1        | 6 |
| 3.2.1 解析モデル領域 1           | 6 |
| 3.2.2 境界条件 1              | 7 |
| 3.2.3 構造物のモデル化 2          | 0 |
| 3.2.4 地盤のモデル化 2           | 1 |
| 3.2.5 地震応答解析モデル 2         | 2 |
| 3.2.6 ジョイント要素 2           | 3 |
| 3.2.7 材料特性の設定 2           | 5 |
| 3.3 减衰定数 2                | 7 |
| 3.4 荷重及び荷重の組合せ3           | 3 |
| 3.4.1 積雪荷重 3              | 3 |
| 3.4.2 風荷重                 | 3 |
| 3.4.3 地震荷重 3              | 3 |
| 3.5 地震応答解析の解析ケース 3        | 4 |
| 3.5.1 耐震評価における解析ケース 3     | 4 |
| 3.6 入力地震動の設定 3            | 6 |
| 3.6.1 A-A断面の入力地震動 3       | 7 |
| 4. 耐震評価 4                 | 9 |
| 4.1 許容限界                  | 9 |
| 4.1.1 遮蔽壁の許容限界 4          | 9 |
| 4.1.2 鋼管杭の許容限界 5          | 3 |
| 4.1.3 杭頭部の許容限界 5          | 4 |
| 4.1.4 基礎地盤の支持性能に対する許容限界 5 | 6 |
| 5. 評価結果 5                 | 7 |
| 5.1 構造部材の健全性に対する評価結果 5    | 7 |
| 目-1                       |   |

| 5.1.1  | 遮蔽壁(鉄筋コンクリート部材)              | 57 |
|--------|------------------------------|----|
| 5.1.2  | 鋼管杭                          | 61 |
| 5.1.3  | 杭頭部                          | 65 |
| 5.2 基礎 | <sup>巻</sup> 地盤の支持性能に対する評価結果 | 66 |

(参考資料1)免震重要棟遮蔽壁のアクセスルートへの影響確認について

### 1. 評価方法

免震重要棟遮蔽壁は、VI-2-11-1「波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」に基づき、上位クラス施設である緊急時対策所に対して波及的影響を及ぼさないことが要求される。

波及的影響の評価として、上位クラス施設の機能が保持されることをSsを用いた地震応答解 析を行い、構造部材の健全性評価及び基礎地盤の支持性能評価を実施することにより、免震重要 棟遮蔽壁が上位クラスである緊急時対策所に対して波及的影響を及ぼさないことを確認する。

- 2. 評価条件
- 2.1 適用規格

適用する規格・基準等を以下に示す。

- ・原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会, 1987 年)
- ・原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル((社)土木学会・原 子力土木委員会,2005年)(以下「土木学会マニュアル」という。)
- ・コンクリート標準示方書 [構造性能照査編] ((社) 土木学会, 2002年)
- ・道路橋示方書・同解説(I共通編・IV下部構造編)((社)日本道路協会,平成14年3 月)
- ・杭基礎設計便覧((社)日本道路協会,2007年)

項目 適用する規格,基準類 備考 コンクリート標準示方書 [構造] 鉄筋コンクリートの材料諸元 性能照查編]((社)土木学 (単位体積重量、ヤング係数、ポアソ 使用材料及び材料 会,2002年) ン比) 定数 道路橋示方書·同解説(I共通 鋼管杭の材料諸元 編) ((社) 日本道路協会 平 (単位体積重量, ヤング係数, ポアソ 成14年3月) ン比) コンクリート標準示方書[構造 荷重及び荷重の組 永久荷重, 偶発荷重等の適切な組合せ 性能照查編] ((社) 土木学会 合せ を検討 2002年) 曲げ・軸力系の破壊に対する照査は, 原子力発電所屋外重要土木構造 発生ひずみが限界ひずみ(圧縮縁コン クリートひずみ1.0%)以下であること 物の耐震性能照査指針・マニュ アル((社)土木学会,2005 を確認 年) せん断破壊に対する照査は,発生せん 断力がせん断耐力を下回ることを確認 基礎地盤の支持性能に対する照査は, 基礎に発生する応力が極限支持力を下 許容限界 道路橋示方書·同解説(I共通 回ることを確認 鋼管杭に発生する曲げモーメントが全 **編**•Ⅳ下部構造編)((社)日 本道路協会,平成14年3月) 塑性モーメントを下回ること及びせん 断力が短期許容せん断力を下回ること を確認 杭頭部に発生する押抜きせん断応力及 杭基礎設計便覧((社)日本道 び支圧応力が許容限界以下であること 路協会, 2007) を確認 原子力発電所耐震設計技術指針

表 2-1 適用する規格,基準類

有限要素法による二次元モデルを用い

た時刻歴非線形解析

J E A G 4 6 0 1 - 1987

年)

((社)日本電気協会, 1987

地震応答解析

2.2 構造概要

免震重要棟遮蔽壁の位置図を図 2-1 に,波及的影響範囲を図 2-2 に,免震重要棟遮蔽壁の 平面図を図 2-3 に,断面図を図 2-4 に,概略配筋図を図 2-5 に示す。

免震重要棟遮蔽壁は,鉄筋コンクリート造の杭基礎(鋼管杭)構造であり,幅0.5~2.4m, 高さ10.3mの鉄筋コンクリート造の壁部と,径1.2m,高さ6mの鋼管杭の地下部により構成さ れる。また,免震重要棟遮蔽壁は,鋼管杭を介して,マンメイドロック(以下「MMR」とい う。)及び十分な支持性能を有する岩盤に支持される。



図 2-1 免震重要棟遮蔽壁の設置位置





図 2-3 免震重要棟遮蔽壁の概要図(平面図)(単位:mm)



図 2-4 免震重要棟遮蔽壁の概要図(断面図)(単位:mm)



図 2-5(1) 免震重要棟遮蔽壁の概略配筋図(単位:mm)



図 2-5(2) 免震重要棟遮蔽壁の概略配筋図(杭頭補強筋)(単位:mm)

2.3 評価断面の方向

免震重要棟遮蔽壁は,上部工は鉄筋コンクリート造,下部工は鋼管杭で構成される線状構造 物であるため,遮蔽壁の軸方向が強軸断面方向,遮蔽壁に直交する方向が弱軸断面方向にな る。

以上より、弱軸断面方向となる遮蔽壁に直交する方向を評価対象断面とする。

2.4 評価対象断面の選定

2.3 評価対象断面に示すとおり,評価対象断面は,線状構造物であるため,弱軸断面方向 となる遮蔽壁に直交する方向から選定する。遮蔽壁が倒壊した場合に影響を与える区間の構造 は一様であることから,評価対象断面はA-A断面とする。なお,西側の免震重要棟遮蔽壁に よるアクセスルートへの波及的影響に関する確認結果を参考資料1に示す。

免震重要棟遮蔽壁の評価対象断面位置図及び評価対象地質断面図を図 2-6 及び図 2-7 に示す。



図 2-6 免震重要棟遮蔽壁の評価対象断面位置図



図 2-7 評価対象地質断面図

## 2.5 使用材料及び材料の物性

構造物の使用材料を表 2-2 に、材料の物性値を表 2-3 に示す。

| 材料     |        | 仕様                           |
|--------|--------|------------------------------|
| 推出出版   | コンクリート | 設計基準強度 30.0N/mm <sup>2</sup> |
| 1円121初 | 鉄筋     | SD345                        |
|        |        | SKK490                       |

表 2-2 使用材料

| 材料          | ヤング係数                | 単位体積重量     | ポアソンド |
|-------------|----------------------|------------|-------|
|             | $(N/mm^2)$           | $(kN/m^3)$ | ホテノンに |
| 鉄筋コンクリート    |                      | 24.5       | _     |
| 鉄筋          | 2.00 $\times 10^{5}$ | 77.0       | 0.3   |
| コンクリート      | 2.80×10 <sup>4</sup> | —          | 0.2   |
| MMR         | $2.20 \times 10^4$   | 22.6       | 0.2   |
| 鋼管杭(SKK490) | $2.00 \times 10^{5}$ | 77.0       | 0.3   |

表 2-3 材料の物性値

## 2.6 地盤物性値

地盤については、VI-2-1-3「地盤の支持性能に係る基本方針」にて設定している物性値を用いる。地盤の物性値を表 2-4 及び表 2-5 に示す。

| 因乎已  | S波速度          | P波速度          | 単位体積重量                        | ポアソン比 | せん断弾性係数                                 | 減衰定数  |
|------|---------------|---------------|-------------------------------|-------|-----------------------------------------|-------|
| 眉笛万  | $V_{s}~(m/s)$ | $V_{p} (m/s)$ | $\gamma$ (kN/m <sup>3</sup> ) | ν     | G ( $\times 10^{5}$ kN/m <sup>2</sup> ) | h (%) |
| 2 層  | 900           | 2100          | 23.0                          | 0.388 | 19.0                                    | 3     |
| 3 層* | 1600          | 3600          | 24.5                          | 0.377 | 64.0                                    | 3     |
| 4 層* | 1950          | 4000          | 24.5                          | 0.344 | 95.1                                    | 3     |
| 5層*  | 2000          | 4050          | 26.0                          | 0.339 | 105. 9                                  | 3     |
| 6 層* | 2350          | 4950          | 27.9                          | 0.355 | 157.9                                   | 3     |

表 2-4 地盤の解析用物性値(岩盤)

注記\*:入力地震動の算定においてのみ用いる解析用物性値

|        |           |                | 解析用物性值               |                                                                  |
|--------|-----------|----------------|----------------------|------------------------------------------------------------------|
|        |           |                |                      | 埋戻土                                                              |
| 物理特性   | 密度        | ρ              | (g/cm <sup>3</sup> ) | 2.11                                                             |
| 強度特性   | 初期せん断強度   | τ <sub>0</sub> | (N/mm²)              | 0.22                                                             |
|        | 内部摩擦角     | φ              | (°)                  | 22                                                               |
| 動的変形特性 | 初期せん断弾性係数 | G o            | (N/mm²)              | $G_0=749 \sigma^{0.66} (N/mm^2)$<br>$G/G_0=1/(1+\gamma/0.00027)$ |
|        | 動ポアソン比    | νd             |                      | 0.45                                                             |
| 減衰特性   | 減衰定数      | h              |                      | h=0.0958×(1-G/G <sub>0</sub> ) <sup>0.85</sup>                   |

表 2-5 地盤の解析用物性値(埋戻土)

# 2.7 評価構造物諸元

免震重要棟遮蔽壁の諸元を表 2-6 に,評価部位を図 2-8 に示す。

|          |   | 仕様          |             | 材料                                               |       |
|----------|---|-------------|-------------|--------------------------------------------------|-------|
| 部位       |   | 部材幅<br>(mm) | 部材厚<br>(mm) | コンクリート<br>設計基準強度<br>f ' c k (N/mm <sup>2</sup> ) | 鉄筋    |
| 遮蔽壁(上部)  | 1 | 4000        | 500         | 30.0                                             | SD345 |
| 遮蔽壁 (中部) | 2 | 4000        | 800         | 30.0                                             | SD345 |
| 遮蔽壁 (下部) | 3 | 2300        | 2400        | 30.0                                             | SD345 |

表 2-6(1) 評価部位とその仕様(遮蔽壁)

表 2-6(2) 評価部位とその仕様(鋼管杭)

|     |   | 仕様     | *+\%]  |
|-----|---|--------|--------|
| 台灯  |   | 杭径(mm) | 材料     |
| 鋼管杭 | 4 | 1200   | SKK490 |



図 2-8 評価部位位置図

## 2.8 地下水位

設計地下水位は、VI-2-1-3「地盤の支持性能に係る基本方針」に従い設定する。設計地下水 位の一覧を表 2-7 に示す。

なお,免震重要棟遮蔽壁直下の地下水位は,免震重要棟遮蔽壁下端より低いことから,地下 水による浮力は考慮しない。

| 表 2-7 設計用地下水( | 立 |
|---------------|---|
|---------------|---|

| 施設名称     | 解析断面  | 設計用地下水位 (EL m) |
|----------|-------|----------------|
| 免震重要棟遮蔽壁 | A-A断面 | 23. 0          |

2.9 耐震評価フロー

免震重要棟遮蔽壁の耐震評価フローを図 2-9 に示す。



図 2-9 免震重要棟遮蔽壁の耐震評価フロー

- 3. 地震応答解析
- 3.1 地震応答解析手法

地震応答解析は、構造物と地盤の相互作用を考慮できる2次元動的有限要素法により、基準 地震動Ssに基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴 応答解析を行う。

解析手法については、図3-1に示す解析手法の選定フローに基づき選定する。

免震重要棟遮蔽壁は,施設周辺の地下水位が底版より低いことから,解析手法は「①全応力 解析」とする。

構造部材については、ファイバーモデルで考慮する。また、地盤については、平面ひずみ要素でモデル化することとし、岩盤及びMMRは線形でモデル化する。埋戻土のばね特性は双曲線モデル(修正 GHE モデル)を用いて非線形性を考慮する。

地震応答解析については,解析コード「TDAPⅢ」を使用する。なお,解析コードの検証 及び妥当性確認等の概要については, Ⅵ-5「計算機プログラム(解析コード)の概要」に示 す。



図 3-1 解析手法の選定フロー

- 3.2 地震応答解析モデルの設定
- 3.2.1 解析モデル領域

地震応答解析モデルのモデル化領域を図 3-2 に示す。

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう十分広い領域とする。具体的には、「原子力発電所耐震設計技術指針 JEAG4 601-1987(日本電気協会、1987)」を参考に、モデル幅を構造物基礎幅の5倍以上、 モデル高さを構造物基礎幅の1.5倍~2倍確保している。

地盤の要素分割については、波動をなめらかに表現するために、対象とする波長の5分の1程度を考慮し、要素高さを1m程度まで細分割して設定する。

構造物の要素分割については、「土木学会マニュアル」に従い、要素長さを部材の断面 厚さ又は有効高さの2.0倍以下とし、1.0倍程度まで細分して設定する。



図 3-2 モデル化範囲の考え方

- 3.2.2 境界条件
  - (1) 固有值解析時

固有値解析を実施する際の境界条件は、境界が構造物を含めた周辺地盤の振動特性に影響を与えないよう設定する。ここで、底面境界は地盤のせん断方向の卓越変形モードを把握するために固定とし、側方境界はフリーとする。

境界条件の概念図を図 3-3 に示す。



図 3-3 固有値解析における境界条件の概念図

#### (2) 常時応力解析時

常時応力解析は、地盤や構造物の自重等の静的な荷重を載荷することによる常時応力を 算定するために行う。そこで、常時応力解析時の境界条件は底面固定とし、側方は自重等 による地盤の鉛直方向の変形を拘束しないよう鉛直ローラーとする。境界条件の概念図を 図 3-4 に示す。



図 3-4 常時応力解析における境界条件の概念図

(3) 地震応答解析時

地震応答解析時の境界条件については,有限要素解析における半無限地盤を模擬するため,粘性境界を設ける。底面の粘性境界については,地震動の下降波がモデル底面境界から半無限地盤へ通過していく状態を模擬するため,ダッシュポットを設定する。側方の粘 性境界については,自由地盤の地盤振動と不整形地盤側方の地盤振動の差分が側方を通過 していく状態を模擬するため,自由地盤の側方にダッシュポットを設定する。 境界条件の概念図を図 3-5 に示す。



図 3-5 地震応答解析における境界条件の概念図

3.2.3 構造物のモデル化

免震重要棟遮蔽壁のうち,遮蔽壁は非線形はり要素でモデル化する。なお,部材厚 50cmと部材厚 80cmの境界の部材は,偏心を考慮したモデルとし,剛梁(線形はり要素) でモデル化する。鋼管杭については線形はり要素によりモデル化する。また,遮蔽壁と鋼 管杭の接続部については,「道路橋示方書・同解説(I共通編・IN下部構造編)(日本道 路協会 平成14年3月)」に基づく接合方法Bにより接続することから,剛結とする。モ デル概要図を図3-6に示す。



図 3-6 モデル概要図

3.2.4 地盤のモデル化

岩盤は線形の平面ひずみ要素でモデル化する。埋戻土は、地盤の非線形性を考慮した平面ひずみ要素でモデル化する。なお、MMRは周辺岩盤と同様とし、線形の平面ひずみ要素としてモデル化する。解析用地盤断面図を図 3-7 に示す。



図 3-7 解析用地盤断面図 (A-A断面)

3.2.5 地震応答解析モデル

解析用地盤断面図を踏まえて設定した地震応答解析モデル図を図 3-8 に示す。



注記:設計地下水位は解析モデル下端に対して十分低い

図 3-8 免震重要棟遮蔽壁の解析モデル図

3.2.6 ジョイント要素

地盤と構造物との接合面にジョイント要素を設けることにより,地震時の地盤と構造物 の接合面における剥離及びすべりを考慮する。

ジョイント要素は、地盤と構造物の接合面で法線方向及びせん断方向に対して設定す る。法線方向については、常時状態以上の引張荷重が生じた場合、剛性及び応力をゼロと し、剥離を考慮する。せん断方向については、地盤と構造物の接合面におけるせん断抵抗 力以上のせん断荷重が生じた場合、せん断剛性をゼロとし、すべりを考慮する。

せん断強度  $\tau_{f}$ は次式の Mohr-Coulomb 式により規定される。粘着力 c 及び内部摩擦角  $\phi$  は埋戻土の c ,  $\phi$  とする。埋戻土の粘着力 c 及び内部摩擦角  $\phi$  は, 「道路橋示方 書・同解説 (I 共通編・IV下部構造編) (日本道路協会 平成 14 年 3 月)」に基づき表 3 -1 のとおりとする。また,要素間の粘着力 c 及び内部摩擦角  $\phi$  は表 3-2 のとおり設 定する。

 $\tau_{f} = c + \sigma \tan \phi$ (1) ここに,  $\tau_{f}: せん断強度$   $c: 粘着力 (=初期せん断強度 \tau_{0})$ 

φ:内部摩擦角

| 地盤                                          | 粘着力 c(N/mm²) | tanφ<br>(φ:内部摩擦角(°)) |
|---------------------------------------------|--------------|----------------------|
| 埋戻土                                         | 0            | 0.26                 |
| 岩盤                                          | 0            | 0.6                  |
| MMR                                         | 3 58         | 40                   |
| (f' $_{\rm c~k}$ = 18.0 N/mm <sup>2</sup> ) | 5.00         | 40                   |

表 3-1 周辺地盤との境界に用いる強度特性

表 3-2 要素間の粘着力と内部摩擦角

| 接合       | 条件   | 粘着力 c      | 内部摩擦角φ |
|----------|------|------------|--------|
| 材料1      | 材料 2 | $(N/mm^2)$ | (° )   |
|          | 埋戻土  | 材料2のc      | 材料2のφ  |
| 構造物      | 岩盤   | 材料2のc      | 材料2のφ  |
|          | MMR  | 材料2のc      | 材料2のφ  |
|          | 埋戻土  | 材料2のc      | 材料2のφ  |
| IVIIVI K | 岩盤   | *          | _*     |

注記\*:表面を露出させて打継処理が可能である箇所については、ジョイント要素を設 定しない。 ジョイント要素のばね定数は、「土木学会マニュアル」を参考に、数値計算上、不安定 な挙動を起こさない程度に周囲材料の剛性よりも十分に大きな値を設定する。表 3-3 に ジョイント要素のばね定数を示す。

また,ジョイント要素の力学特性を図 3-9 に,ジョイント要素の配置概念図を図 3-10 に示す。

表 3-3 ジョイント要素のばね定数

| 圧縮剛性 k <sub>n</sub> | せん断剛性k s            |  |
|---------------------|---------------------|--|
| $(k N/m^3)$         | $(k N/m^3)$         |  |
| $1.0 \times 10^{7}$ | $1.0 \times 10^{7}$ |  |



3.2.7 材料特性の設定

鉄筋コンクリート部材は、ファイバーモデルによる非線形はり要素でモデル化する。フ アイバーモデルは、はり要素の断面を層状に分割し各層に材料の非線形特性を考慮する材 料非線形モデルであり(図 3-11 参照)、図 3-12 に示すコンクリートの応力-ひずみ関 係を考慮する。

また、図 3-13 に鉄筋の応力-ひずみ関係を示す。



図 3-11 ファイバーモデルの概念図



(コンクリート標準示方書[設計編](土木学会,2017年制定)より引用) 図 3-12 構造部材の非線形特性(コンクリートの応力-ひずみ関係)



(コンクリート標準示方書 2002 より引用) 図 3-13 構造部材の非線形特性(鉄筋の応力-ひずみ関係)



#### 3.3 減衰定数

減衰定数は、「補足-026-01 屋外重要土木構造物の耐震安全性評価について」の「9. 地 震応答解析における減衰定数」に基づき、粘性減衰及び履歴減衰で考慮する。

粘性減衰は、固有値解析にて求められる固有周期と各材料の減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。

Rayleigh 減衰の設定フローを図 3-14 に示す。

 $[C] = \alpha [M] + \beta [K]$ 

- [C] :減衰係数マトリックス
- [M] :質量マトリックス
- [K] :剛性マトリックス
- $\alpha$ ,  $\beta$ :係数



図 3-14 Rayleigh 減衰の設定フロー

Rayleigh 減衰における係数  $\alpha$ ,  $\beta$  は,低次のモードの変形が支配的となる地中埋設構造物 に対して,その特定の振動モードの影響が大きいことを考慮して,固有値解析結果より得られ る卓越するモードの減衰と Rayleigh 減衰が一致するように設定する。なお、卓越するモード は全体系の固有値解析における刺激係数及びモード図にて決定するが、係数  $\alpha$ ,  $\beta$  が負値と なる場合は当該モードを選定しない。

A-A断面の固有値解析結果の一覧を表 3-4 に、固有値解析におけるモード図を図 3-15 及び図 3-16 に、係数  $\alpha$ 、  $\beta$  を表 3-5 に、固有値解析結果に基づき設定した Rayleigh 減哀 を図 3-17 に示す。

なお、減衰の考慮の方法には様々な手法があるが、「土木学会マニュアル」に示されている とおり、Rayleigh減衰を解析モデル全体に与えることが実務的であること、また、図 3-15 に示すとおり 2 次及び 6 次モードで全体系で大きく振動していることから、本解析モデルにお ける Reyleigh減衰の設定は適切である。

|    | 固有振動数  | 有効質量比(%) |    | 刺激係数  |        | <i>(</i> 世 <b> </b> |
|----|--------|----------|----|-------|--------|---------------------|
|    | (Hz)   | Tx       | Ту | βх    | βу     | 加方                  |
| 1  | 6.085  | 2        | 0  | 6.27  | 0.05   | —                   |
| 2  | 9.661  | 77       | 0  | 37.20 | 0.07   | 1次として採用             |
| 3  | 19.176 | 0        | 39 | 2.41  | -26.44 | —                   |
| 4  | 20.598 | 3        | 0  | 7.16  | 3.16   | _                   |
| 5  | 20.765 | 2        | 9  | 5.93  | 12.87  | —                   |
| 6  | 21.636 | 3        | 1  | -7.20 | 4.31   | 2次として採用             |
| 7  | 23.806 | 0        | 0  | 0.68  | 0.76   | —                   |
| 8  | 24.927 | 0        | 4  | -3.37 | -8.13  | —                   |
| 9  | 27.946 | 0        | 0  | -0.99 | -0.99  | _                   |
| 10 | 28.327 | 2        | 18 | 5.60  | -17.95 | —                   |

表 3-4 固有值解析結果(A-A断面)



図 3-15 固有値解析結果(モード図) (A-A断面)



図 3-16 固有値解析結果(モード図) (A-A断面)

| 解析ケース           | α      | β                       |
|-----------------|--------|-------------------------|
| ケース①<br>(基本ケース) | 2. 638 | 2. $527 \times 10^{-4}$ |
| ケース2            | 2.924  | 2.480 $\times 10^{-4}$  |
| ケース③            | 1.941  | $3.829 \times 10^{-4}$  |

表 3-5 Rayleigh 減衰における係数  $\alpha$ ,  $\beta$  の設定結果



図 3-17 設定した Rayleigh 減衰 (ケース①)

3.4 荷重及び荷重の組合せ

免震重要棟遮蔽壁の地震応答解析において考慮する荷重は,通常運転時の荷重(永久荷重) 及び地震荷重を抽出し,それぞれを組み合わせて設定する。

荷重の組合せを表 3-6 に示す。

| 種別     |       | 荷重      |   | 算定方法の概要          |  |
|--------|-------|---------|---|------------------|--|
|        | 固定    | 躯体重量    | 0 | 設計図書に基づいて、設定する。  |  |
|        | 荷重    | 機器・配管荷重 | 0 | 機器・配管等を考慮する。     |  |
|        |       | 静止土圧    | 0 | 常時応力解析により設定する。   |  |
|        |       | 外水圧     | Ι | 地下水位が底版底面より低い位置に |  |
|        |       |         |   | あるため考慮しない。       |  |
| 永久荷重   |       | 積雪荷重    | 0 | 地表面及び構造物天端に考慮する。 |  |
| (常時荷重) | 積載荷重  | 風荷重     | 0 | 構造物に作用する風荷重を考慮す  |  |
|        |       |         |   | る。               |  |
|        |       | 土被り荷重   | _ | 土被りの影響を受けないため考慮し |  |
|        |       |         |   | ない。              |  |
|        |       | 永久上載荷重  | _ | 永久上載荷重は存在しないため考慮 |  |
|        |       |         |   | しない。             |  |
| 偶発荷重   | 水平地震動 |         | 0 | 基準地震動Ssによる水平・鉛直  |  |
| (地震荷重) | 鉛直地震動 |         | 0 | 同時加振を考慮する。       |  |

表 3-6 荷重の組合せ

#### 3.4.1 積雪荷重

積雪荷重として,発電所敷地に最も近い気象官署である松江地方気象台で観測された観 測史上1位の月最深積雪100cmに平均的な積雪荷重を与えるための係数0.35を考慮し 35.0 cmとする。積雪荷重については,松江市建築基準法施行細則により,積雪量1 cmご とに 20N/m<sup>2</sup>の積雪荷重が作用することを考慮し設定する。

#### 3.4.2 風荷重

風荷重については、設計基準風速を 30m/s とし、建築基準法に基づき算定する。

3.4.3 地震荷重

基準地震動Ssによる荷重を考慮する。
- 3.5 地震応答解析の解析ケース
  - 3.5.1 耐震評価における解析ケース
    - (1) 地盤物性のばらつきを考慮した解析ケース

免震重要棟遮蔽壁の解析ケースのうち,ばらつきを考慮する地盤を,「補足-026-01 屋外重要土木構造物の耐震安全性評価について」に従い選定する。免震重要棟遮蔽壁の周 辺には,主として岩盤が分布しており,この岩盤のせん断変形が地震時に免震重要棟遮蔽 壁の応答に影響を与えると判断されることから,岩盤の物性(せん断弾性係数)のばらつ きを考慮する。

ばらつきを考慮する物性値は地盤のせん断変形を定義するせん断弾性係数とし、平均値 を基本ケース(表 3-7 に示すケース①)とした場合に加えて、平均値±1.0×標準偏差 (σ)のケース(表 3-8 に示すケース②及び③)について確認を行う。

| <b>X</b> 3 1 元産業 安保 心服 至 9 前 辰 前 画 に 45 (7 5 所 所 ) / / |                 |                        |         |  |  |
|--------------------------------------------------------|-----------------|------------------------|---------|--|--|
|                                                        |                 | 地盤物性                   |         |  |  |
| 解析ケース                                                  | 韶折千辻            | 埋戻土                    | 岩盤      |  |  |
|                                                        | <b>丹</b> 中初 于 伝 | (G <sub>0</sub> :初期せん断 | (G:せん断  |  |  |
|                                                        |                 | 弾性係数)                  | 弾性係数)   |  |  |
| ケース①                                                   | 令亡力破垢           | 亚坎荷                    | 亚均结     |  |  |
| (基本ケース)                                                | 王ルロノノ州牛切        | 千均恒                    | 千均旭     |  |  |
| ケース2                                                   | 全応力解析           | 平均值                    | 平均值+1 σ |  |  |
| ケース③                                                   | 全応力解析           | 平均值                    | 平均值-1 σ |  |  |

表 3-7 免震重要棟遮蔽壁の耐震評価における解析ケース

## (2) 耐震評価における解析ケースの組合せ

耐震評価においては、すべての基準地震動Ssに対し、解析ケース①(基本ケース)を 実施する。曲げ・軸力系の破壊、せん断破壊及び基礎地盤の支持力照査の各照査項目ごと に照査値が0.5を超える照査項目に対して、最も厳しい(許容限界に対する裕度が最も小 さい)地震動を用いてケース②及び③を実施する。耐震評価における解析ケースを表3-8に示す。

|          |           | ケース①  | ケース②          |                  | ケース③                   |              |           |  |
|----------|-----------|-------|---------------|------------------|------------------------|--------------|-----------|--|
|          | 御作を一つ     |       |               | 地盤物性0            | 地盤物性のばらつき              |              | 地盤物性のばらつき |  |
|          |           | 基本ケース | $(+1 \sigma)$ | を考慮し             | $(-1 \sigma)$          | を考慮した        |           |  |
|          |           |       | た解析           | ケース              | 解析                     | ケース          |           |  |
| 地盤物性     |           | 平均值   | 平均值           | +1 σ             | 平均值                    | [-1 σ        |           |  |
|          |           | ++*   | 0             |                  | 甘油山青毛                  |              |           |  |
| Ss-D     | -+*       | 0     |               | 基準地震動<br>  波)に位相 |                        |              |           |  |
|          | +-*       | 0     |               | 慮した地震            |                        |              |           |  |
|          | *         | 0     |               | を加えた全<br>  し,ケース |                        |              |           |  |
| 地震       | S s - F 1 | ++*   | 0             |                  | ケース)を                  | 実施し,<br>系の球壊 |           |  |
| <b>動</b> | S s - F 2 | ++*   | 0             |                  | ■け・軸刀糸の破壊<br>及びせん断破壊照査 |              |           |  |
| 位        |           | ++*   | 0             |                  | の各照査項                  |              |           |  |
| 相        | 5 s - N 1 | -+*   | 0             |                  | る照査項目                  |              |           |  |
|          | S s - N 2 | ++*   | 0             |                  | て、最も厳                  | しい(許<br>するが産 |           |  |
|          | (NS) -+   | -+*   | 0             |                  | が最も小さ                  | りる保及<br>い)地震 |           |  |
|          | S s - N 2 | ++*   | 0             |                  | 動を用いてケース②              |              |           |  |
|          | (EW)      | -+*   | 0             |                  |                        |              |           |  |

表 3-8 耐震計価における解析ケース

注記\*:地震動の位相について、++の左側は水平動、右側は鉛直動を表し、「-」は位相 を反転させたケースを示す。 3.6 入力地震動の設定

入力地震動は、VI-2-1-6「地震応答解析の基本方針」のうち「2.3 屋外重要土木構造物」 に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ssを一次元波 動論により地震応答解析モデル下端位置で評価したものを用いる。なお,入力地震動の設定に 用いる地下構造モデルは,VI-2-1-3「地盤の支持性能に係る基本方針」のうち「7.1入力地 震動の設定に用いる地下構造モデル」を用いる。

図 3-18 に入力地震動算定の概念図を示す。入力地震動の算定には、解析コード「SHAK E」及び「microSHAKE」を使用する。解析コードの検証及び妥当性確認の概要につ いては、VI-5「計算機プログラム(解析コード)の概要」に示す。



図 3-18 入力地震動算定の概念図

3.6.1 A-A断面の入力地震動

図 3-19~図 3-30 にA-A断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトルを示す。



(a) 加速度時刻歷波形



図 3-19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル

(水平成分: S s-D)













(b) 加速度応答スペクトル









(b) 加速度応答スペクトル









図 3-23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平成分: Ss-F2)







図 3-24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直成分: Ss-F2)





図 3-25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平成分: Ss-N1)





(b) 加速度応答スペクトル







図 3-27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平成分: Ss-N2, NS方向)





図 3-28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直成分: Ss-N2, NS方向)





(b) 加速度応答スペクトル









(b) 加速度応答スペクトル



- 4. 耐震評価
- 4.1 許容限界
  - 4.1.1 遮蔽壁の許容限界
    - (1) 曲げ・軸力系の破壊に対する許容限界

免震重要棟遮蔽壁の曲げ・軸力系の破壊に対する許容限界は、「土木学会マニュアル」 に基づき、限界ひずみ(圧縮縁コンクリートひずみ1.0%)とする。

「土木学会マニュアル」では、曲げ・軸力系の破壊に対する限界状態は、コンクリートの圧縮縁のかぶりが剥落しないこととされており、圧縮縁コンクリートひずみ1.0%の状態は、かぶりコンクリートが剥落する前の状態であることが、屋外重要土木構造物を模したラーメン構造の破壊実験及び数値シミュレーション等の結果より確認されている。この状態を限界値とすることで構造全体としての安定性が確保できるとして設定されたものである。

曲げ・軸力系の破壊に対する照査に用いる照査用ひずみは、地震応答解析により得られ た応答値に安全係数(構造解析係数)1.2を乗じることにより、曲げ・軸力系の破壊に対 する安全余裕を見込んだ評価を実施する。

鉄筋コンクリートの曲げ・軸力系の破壊に対する許容限界を表 4-1 に示す。

表 4-1 曲げ・軸力系の破壊に対する許容限界

| 許容限界  |                       |  |  |
|-------|-----------------------|--|--|
| 限界ひずみ | 圧縮縁コンクリートひずみ          |  |  |
|       | 1.0% (10000 $\mu$ ) * |  |  |

注記\*:
$$\gamma_i \frac{\varepsilon_d}{\varepsilon_R} < 1.0$$

ここで、 $\gamma_i$ :構造物係数 $(\gamma_i = 1.0)$   $\epsilon_R$ :限界ひずみ(圧縮縁コンクリートひずみ 10000  $\mu$ )  $\epsilon_d$ :照査用ひずみ $(\epsilon_d = \gamma_a \cdot \epsilon$ )  $\gamma_a$ :構造物解析係数 $(\gamma_a = 1.2)$ 

ε : 圧縮縁の発生ひずみ

(2) せん断破壊に対する許容限界

構造強度を有することの確認における構造部材(遮蔽壁)のせん断破壊に対する許容限 界は、「土木学会マニュアル」に基づくせん断耐力とする。せん断耐力は、「土木学会マ ニュアル」に基づき、棒部材式とする。

a/d : せん断スパン比 y<sub>bc</sub> : 部材係数

## $\mathbf{V}_{sd} = \left\{ \mathbf{A}_{w} \cdot \mathbf{f}_{wyd} \cdot (\sin \alpha + \cos \alpha) / s \right\} \cdot \mathbf{z} / \gamma_{bs}$ ここで、A<sub>w</sub> : 区間 s におけ

| ここで、A <sub>w</sub> | : 区間 s におけるせん断補強鉄筋の総断面積                                 |
|--------------------|---------------------------------------------------------|
| $f_{\rm wyd}$      | : せん断補強鉄筋の降伏強度で,400N/mm²以下とする。                          |
|                    | ただし,コンクリート圧縮強度の特性値 f' <sub>ck</sub> が                   |
|                    | 60N/mm <sup>2</sup> 以上の場合, 800 N/mm <sup>2</sup> 以下とする。 |
| α                  | : せん断補強鉄筋と部材軸のなす角度                                      |
| S                  | : せん断補強鉄筋の配置間隔                                          |
| Z                  | : 圧縮応力の合力の作用位置から引張鋼材図心までの                               |
|                    | 距離で, d/1.15 とする。                                        |
| $\gamma$ bs        | : 部材係数                                                  |

また,「土木学会マニュアル」におけるせん断耐力式による評価においては,表4-2 に示すとおり,複数の安全係数が見込まれていることから,せん断破壊に対して安全余裕 を見込んだ評価を実施することが可能である。

| 安全区粉   |             |                 | せん世   | 所照査   | 古穷          |  |
|--------|-------------|-----------------|-------|-------|-------------|--|
|        | 女主怵剱        |                 | 応答値算定 | 限界值算定 | 内谷          |  |
|        | 材料係数 コンクリート |                 | 1.0   | 13    | コンクリートの特性値を |  |
| 材料係数   |             |                 | 1.0   | 1. 0  | 低減          |  |
| 鉄筋     |             | $\gamma_{m\ s}$ | 1.0   | 1.0   | —           |  |
|        | コンクリート      | $\gamma_{b\ c}$ | —     | 1.3   | せん断耐力(コンクリー |  |
|        |             |                 |       |       | ト負担分)を低減    |  |
| 可忆休致   | 鉄筋          | $\gamma_{b\ s}$ |       |       | せん断耐力(鉄筋負担  |  |
|        |             |                 | _     | 1.1   | 分)を低減       |  |
| 構造解析係数 |             | 24              | 1 05  |       | 応答値(断面力)の割り |  |
|        |             | Υ <sub>a</sub>  | 1.05  | —     | 増し          |  |

表 4-2 せん断耐力式による評価において考慮している安全係数

注記\*:土木学会マニュアルでは、部材係数 $\gamma_b = \gamma_{b1} \cdot \gamma_{b2}$ 

$$\gamma_{b1} = \begin{cases} 1.3 & (コンクリート) \\ 1.1 & (鉄筋) \end{cases}$$
$$\gamma_{b2} = \begin{cases} 1.0 & (R \le 0.01) \\ \frac{100R+2}{3} & (0.01 < R \le 0.025) \\ 1.5 & (R > 0.025) \end{cases}$$

ここで, R:層間変形角

とされている。

γ<sub>b2</sub>は層間変形角の値によらず,部材が降伏していない状態であれば, γ<sub>b2</sub>=1.0 としてよいとされている。



4.1.2 鋼管杭の許容限界

鋼管杭の断面照査は、「道路橋示方書・同解説(I共通編・IV下部構造編)((社)日本道路協会、平成14年3月)」に基づき、曲げ・軸力に対する断面照査(全塑性モーメントに対する評価)及びせん断に対する断面照査を行う。

(1) 曲げ・軸力に対する断面照査(全塑性モーメントに対する評価)

鋼管杭の曲げ・軸力に対する断面照査は,全塑性モーメント Mp を算定し,鋼管杭に発 生する最大曲げモーメントが全塑性モーメント以下となることを確認する。

 $M_{\rm p} = M_{\rm p0} \cos\left(\alpha \pi/2\right)$ ここで,  $M_p: 全塑性モーメント (kN・m)$ M<sub>p0</sub>:軸力がない場合の全塑性モーメント(kN・m)  $M_{p0} = Z_p \sigma_v$ α:モーメントがない場合の降伏軸力Noと作用軸力Nの比  $\alpha = N/N_0$ N<sub>0</sub>:モーメントがない場合の降伏軸力(kN)  $N_0 = \sigma_v A$ Z<sub>n</sub>:塑性断面係数(m<sup>3</sup>)  $Z_p = \frac{4}{3} r^3 \{1 - (1 - t/r)^3\}$ σ<sub>v</sub>:鋼管杭の降伏点強度(kN/m<sup>2</sup>) N:軸力 (kN) A:鋼管杭の断面積(m<sup>2</sup>) t: 鋼管杭の板厚(m) r : 鋼管杭の半径 (m)

(2) せん断に対する断面照査

鋼管杭のせん断に対する断面照査は,鋼管杭のせん断応力度が,終局強度以下となるこ とを確認する。なお,鋼管杭のせん断応力度は,鋼管杭内部が中詰めコンクリートで充填 されているため,鋼管杭の全断面積を有効断面積として算定する。



4.1.3 杭頭部の許容限界

杭頭部の許容限界は、「杭基礎設計便覧((社)日本道路協会,2007年)」に基づき、水平力及び曲げモーメントに対する照査を行う。

(1) 水平力に対する照査

鋼管杭の杭頭部の水平力に対する照査は、図4-1に示す水平支圧応力 σ<sub>ch</sub>及び水平方向の押抜きせん断応力 τ<sub>h</sub>が許容限界以下であることを確認する。

 $\sigma_{ch} = H/DL$ 

 $\tau_{\rm h} = {\rm H/h'} (2{\rm L+D+2h'})$ 

ここに,

- σ<sub>ch</sub>:杭頭結合部に発生する水平支圧応力度 (N/mm<sup>2</sup>)
- τ<sub>h</sub>:杭頭結合部に発生する水平押抜きせん断応力度 (N/mm<sup>2</sup>)
- H : 杭頭結合部に作用する水平力 (N)
- D : 鋼管杭径 (mm)
- L : 杭の埋込長 (mm)
- h':水平方向の押し抜きせん断に抵抗するフーチング有効厚(mm)



図 4-1 水平力に対する照査

(「杭基礎設計便覧((社)日本道路協会,2007年)」より引用に一部加筆)

(2) 曲げモーメントに対する照査

鋼管杭の杭頭部の曲げモーメントに対する照査は、杭頭部に発生する曲げモーメント が、仮想鉄筋コンクリート断面の降伏曲げモーメント以下であることを確認する。仮想鉄 筋コンクリートの取り方を図 4-2 に示す。



図 4-2 仮想鉄筋コンクリート断面の取り方 (「杭基礎設計便覧((社)日本道路協会,2007年)」より引用)

4.1.4 基礎地盤の支持性能に対する許容限界

基礎地盤に発生する接地圧に対する許容限界は, VI-2-1-3「地盤の支持性能に係る基本 方針」に基づき, 岩盤の極限支持力度とする。

基礎地盤の支持性能に対する許容限界を表 4-3 に示す。

| 評価項目   | 基礎地盤  | 許容限界 (N/mm <sup>2</sup> ) |
|--------|-------|---------------------------|
| 極限支持力度 | CL級岩盤 | 3. 9                      |

表 4-3 免震重要棟遮蔽壁の許容限界



- 5. 評価結果
- 5.1 構造部材の健全性に対する評価結果
  - 5.1.1 遮蔽壁(鉄筋コンクリート部材)

遮蔽壁(鉄筋コンクリート部材)の曲げ・軸力系の破壊に対する照査における最大照査 値を表 5-1 に、せん断破壊に対する照査における最大照査値を表 5-2 に示す。また、曲 げ・軸力系の破壊に対する照査が最も厳しくなるケースの圧縮縁コンクリートひずみの時 刻歴波形及び発生位置を図 5-1 に、せん断破壊に対する照査値最大時の断面力図を図 5 -2 に示す。

免震重要棟遮蔽壁の圧縮縁コンクリートひずみ及びせん断力が、構造部材の許容限界以下であることを確認した。

|       |                  |    | 照查用圧縮縁     | 圧縮縁コンク       |      |
|-------|------------------|----|------------|--------------|------|
| 解析ケース | 地震動              |    | コンクリート     | リート限界ひ       | 照査値  |
|       |                  |    | ひずみ*       | ずみ           |      |
|       |                  | ++ | $506\mu$   | $10000  \mu$ | 0.06 |
|       |                  | -+ | $471\mu$   | $10000  \mu$ | 0.05 |
|       | 5 s - D          | +- | $491\mu$   | $10000  \mu$ | 0.05 |
|       |                  |    | $458  \mu$ | $10000  \mu$ | 0.05 |
|       | S s - F 1        | ++ | $389\mu$   | $10000  \mu$ | 0.04 |
|       | S s - F 2        | ++ | $374\mu$   | $10000  \mu$ | 0.04 |
|       |                  | ++ | $484  \mu$ | $10000  \mu$ | 0.05 |
|       | 5 s - N 1        | -+ | $413  \mu$ | $10000  \mu$ | 0.05 |
|       | S s - N2 (NS)    | ++ | $425  \mu$ | $10000  \mu$ | 0.05 |
|       |                  | -+ | $419\mu$   | $10000  \mu$ | 0.05 |
|       |                  | ++ | $402\mu$   | $10000  \mu$ | 0.05 |
|       | 5  s - N 2  (EW) | -+ | $334\mu$   | $10000  \mu$ | 0.04 |
| 2     | S s - N 1        | ++ | $473\mu$   | $10000  \mu$ | 0.05 |
| 3     | S s - N 1        | ++ | $489\mu$   | $10000  \mu$ | 0.05 |

表 5-1 曲げ・軸力系の破壊に対する最大照査値

注記\*:照査用圧縮縁コンクリートひずみ=圧縮縁コンクリートひずみ×構造解析係数ya(=1.2)

| 解析ケース | 地震動                   |    | 照査用<br>せん断力*<br>V <sub>d</sub> (kN) | せん断耐力<br>V <sub>yd</sub> (kN) | 照査値<br>V <sub>d</sub> /V <sub>yd</sub> |
|-------|-----------------------|----|-------------------------------------|-------------------------------|----------------------------------------|
|       |                       | ++ | 89                                  | 444                           | 0.21                                   |
|       | S a D                 | -+ | 178                                 | 755                           | 0.24                                   |
|       | 5 S - D               | +- | 85                                  | 440                           | 0.20                                   |
|       |                       |    | 171                                 | 759                           | 0.23                                   |
|       | S s - F 1             | ++ | 77                                  | 442                           | 0.18                                   |
| Û     | S s - F 2             | ++ | 146                                 | 760                           | 0.20                                   |
|       | S s - N 1             | ++ | 177                                 | 754                           | 0.24                                   |
|       |                       | -+ | 147                                 | 756                           | 0.20                                   |
|       | $S_{a} = NS_{a} (NS)$ | ++ | 144                                 | 758                           | 0.19                                   |
|       | 55 - 112 (115)        | -+ | 86                                  | 443                           | 0.20                                   |
|       | Ss-N2 (EW)            | ++ | 86                                  | 443                           | 0.20                                   |
|       |                       | -+ | 121                                 | 767                           | 0. 16                                  |
| 2     | S s - N 1             | ++ | 176                                 | 756                           | 0. 24                                  |
| 3     | S s - N 1             | ++ | 179                                 | 756                           | 0.24                                   |

表 5-2 せん断破壊に対する最大照査値

注記\*:照査用せん断力 $V_d$ =発生せん断力 $V \times$ 構造解析係数 $\gamma_a$ (=1.05)



(圧縮を正で示す。)



図 5-1 曲げ・軸力系の破壊に対する照査が最も厳しくなるケースの圧縮縁コンクリートひずみ の時刻歴波形及び発生位置(解析ケース①, Ss-D(++))



図 5-2 せん断破壊に対する照査値最大時の断面力図(解析ケース③, Ss-N1(++), t=7.56s)

## 5.1.2 鋼管杭

鋼管杭の曲げ・軸力系の破壊に対する照査における最大照査値を表 5-3 に、せん断破 壊に対する照査における最大照査値を表 5-4 に示す。また、曲げ・軸力系の破壊及びせ ん断破壊に対する照査値最大時の断面力図を図 5-3 及び図 5-4 に示す。

鋼管杭の曲げモーメント及びせん断力が,構造部材の許容限界以下であることを確認した。

| 解析ケース | 地震動             |    | 照査用<br>発生曲げ<br>モーメント*<br>M(kN・m) | 全塑性曲げ<br>モーメント*<br>M <sub>p</sub> (kN・m) | 照查値<br>M/M <sub>p</sub> |
|-------|-----------------|----|----------------------------------|------------------------------------------|-------------------------|
| 1     |                 | ++ | 3105                             | 7884                                     | 0.40                    |
|       | S a – D         | -+ | 3703                             | 7883                                     | 0.47                    |
|       | 5 S - D         | +- | 2985                             | 7880                                     | 0.38                    |
|       |                 |    | 3561                             | 7879                                     | 0.46                    |
|       | S s - F 1       | ++ | 2405                             | 7881                                     | 0.31                    |
|       | S s - F 2       | ++ | 2897                             | 7881                                     | 0.37                    |
|       | S s - N 1       | ++ | 3778                             | 7885                                     | 0.48                    |
|       |                 | -+ | 3205                             | 7885                                     | 0.41                    |
|       |                 | ++ | 2920                             | 7881                                     | 0.38                    |
|       | 5 s - N 2 (N 5) | -+ | 2903                             | 7883                                     | 0.37                    |
|       | Sa NO (EW)      | ++ | 2839                             | 7881                                     | 0.37                    |
|       | SS = NZ (EW)    | -+ | 2336                             | 7880                                     | 0.30                    |
| 2     | S s - N 1       | ++ | 3756                             | 7884                                     | 0.48                    |
| 3     | S s - N 1       | ++ | 3816                             | 7884                                     | 0.49                    |

表 5-3 鋼管杭の曲げ・軸力系の破壊に対する評価結果

注記\*:照査用発生曲げモーメント及び全塑性曲げモーメントは杭1本当りの数値を示す。

| 解析ケース | 地震動             |    | 照査用<br>発生応力度<br>τ (N/mm <sup>2</sup> ) | せん断強度<br>τ <sub>s</sub> (N/mm²) | 照査値<br>τ/τs |
|-------|-----------------|----|----------------------------------------|---------------------------------|-------------|
|       |                 | ++ | 61                                     | 181                             | 0.34        |
|       | S a D           | -+ | 73                                     | 181                             | 0.41        |
|       | 5 S - D         | +- | 59                                     | 181                             | 0.33        |
|       |                 |    | 70                                     | 181                             | 0.39        |
|       | S s - F 1       | ++ | 47                                     | 181                             | 0.26        |
|       | S s - F 2       | ++ | 57                                     | 181                             | 0.32        |
|       | S s - N 1       | ++ | 74                                     | 181                             | 0.41        |
|       |                 | -+ | 63                                     | 181                             | 0.35        |
|       | S s - N 2 (N S) | ++ | 57                                     | 181                             | 0.32        |
|       |                 | -+ | 57                                     | 181                             | 0.32        |
|       |                 | ++ | 56                                     | 181                             | 0.31        |
|       | $S_s = N2$ (EW) | -+ | 46                                     | 181                             | 0.26        |
| 2     | S s - N 1       | ++ | 74                                     | 181                             | 0. 41       |
| 3     | S s - N 1       | ++ | 75                                     | 181                             | 0.42        |

表 5-4 鋼管杭のせん断破壊に対する評価結果







数値:評価位置における断面力 (b)軸力(kN/本)(+:引張,-:圧縮)



数値:評価位置における断面力 (c)せん断力(kN/本)

 図 5-3 鋼管杭の曲げ・軸力系の破壊に対する照査値最大時の断面力図 (解析ケース③, S s - N 1 (++), t=7.56s)



数値:評価位置における断面力 (a)曲げモーメント(kN・m/本)



数値:評価位置における断面力 (b)軸力(kN/本)(+:引張,-:圧縮)



図 5-4 鋼管杭のせん断破壊に対する照査値最大時の断面力図 (解析ケース③, Ss-N1(++), t=7.56s)

5.1.3 杭頭部

杭頭部の水平支圧応力に対する照査における最大照査値を表 5-5 に,水平方向押抜き せん断に対する最大照査値を表 5-6 に,仮想鉄筋コンクリート断面の曲げモーメントに 対する最大照査値を表 5-7 に示す。

杭頭部の水平支圧応力,水平方向押抜きせん断応力及び仮想鉄筋コンクリート断面の曲 げモーメントが,許容限界以下であることを確認した。

| 解析<br>ケース | 地震動             | 水平力 H*<br>(kN/本) | 水平支圧応力度 σ <sub>ch</sub><br>(N/mm <sup>2</sup> ) | 許容支圧応力度<br>σ <sub>ba</sub> (N/mm <sup>2</sup> ) | 照查値  |
|-----------|-----------------|------------------|-------------------------------------------------|-------------------------------------------------|------|
| 1         | S s - D<br>(-+) | 1,004            | 5. 58                                           | 13. 5                                           | 0.42 |

表 5-5 水平支圧応力に対する最大照査値

注記\*:水平力は,構造解析係数1.05を考慮した数値を示す。

表 5-6 水平方向押抜きせん断に対する最大照査値

| 每71斤     | · 解析 · 水亚-      | →v 亚 + 11*                   | 押抜きせん断応力度  | 許容押抜き                      |      |
|----------|-----------------|------------------------------|------------|----------------------------|------|
| 一 アキヤー フ | 地震動             | 水平力H <sup>++</sup><br>(kN/本) | au h       | せん断応力度                     | 照査値  |
| 7-5      |                 |                              | $(N/mm^2)$ | au a1 (N/mm <sup>2</sup> ) |      |
| 1        | S s - D<br>(-+) | 1,004                        | 0.62       | 1.0                        | 0.62 |

注記\*:水平力は,構造解析係数1.05を考慮した数値を示す。

| 表 5-7 | 仮想鉄筋コン | /クリー | -ト断面の曲げモー | -メン | /トに対する | 最大照查值 |
|-------|--------|------|-----------|-----|--------|-------|
|-------|--------|------|-----------|-----|--------|-------|

| 解析<br>ケース | 地震動               | 発生曲げモ<br>ーメント*<br>(kN・m/<br>本) | 発生軸力*<br>(kN/本) | 降伏曲げ<br>モーメント<br>(kN・m/本) | 照査値  |
|-----------|-------------------|--------------------------------|-----------------|---------------------------|------|
| 1)        | S s - N 1<br>(++) | 3, 938                         | 572             | 6, 622                    | 0.60 |

注記\*:発生断面力は、構造解析係数1.05を考慮した数値を示す。

5.2 基礎地盤の支持性能に対する評価結果

基礎地盤の支持性能に対する評価結果を表 5-8 に示す。 免震重要棟遮蔽壁の基礎地盤に発生する最大接地圧が許容限界以下であることを確認した。

| 御たた。フ | 地震動             |    | 最大接地圧                        | 極限支持力                            | 照査値           |
|-------|-----------------|----|------------------------------|----------------------------------|---------------|
| 脾別クース |                 |    | $R_{d}$ (N/mm <sup>2</sup> ) | $R_{\rm U}$ (N/mm <sup>2</sup> ) | $R_{d}/R_{U}$ |
| (I)   |                 | ++ | 0.85                         | 3. 9                             | 0.22          |
|       | Ss-D            | -+ | 0.84                         | 3. 9                             | 0.22          |
|       |                 | +- | 0.82                         | 3. 9                             | 0.21          |
|       |                 |    | 0.83                         | 3. 9                             | 0.22          |
|       | S s - F 1       | ++ | 0.80                         | 3.9                              | 0.21          |
|       | S s - F 2       | ++ | 0.82                         | 3. 9                             | 0.21          |
|       | S s – N 1       | ++ | 0.81                         | 3. 9                             | 0.21          |
|       |                 | -+ | 0.81                         | 3. 9                             | 0.21          |
|       | S a N.9 (N.S.)  | ++ | 0.83                         | 3. 9                             | 0.22          |
|       | 5 s - N 2 (N 5) | -+ | 0.84                         | 3. 9                             | 0.22          |
|       | Ss-N2 (EW)      | ++ | 0.85                         | 3. 9                             | 0.22          |
|       |                 | -+ | 0.83                         | 3. 9                             | 0.22          |
| 2     | S s - N 1       | ++ | 0.80                         | 3.9                              | 0.21          |
| 3     | S s - N 1       | ++ | 0.82                         | 3.9                              | 0. 22         |

表 5-8 基礎地盤の支持性能に対する評価結果

(参考資料1)免震重要棟遮蔽壁のアクセスルートへの影響確認について

1. 概要

免震重要棟遮蔽壁の地震応答解析の評価対象断面は,緊急時対策所に対する波及的影響を 評価するために,緊急時対策所近傍の免震重要棟(東側)の区間を選定している。一方,免 震重要棟遮蔽壁のうち西側斜面近傍部は,アクセスルートに面している。

そこで、免震重要棟遮蔽壁(西側)によるアクセスルートへの波及的影響を確認する。

2. 周辺状況の整理及び評価方針

免震重要棟遮蔽壁の西側には斜面が位置し,その斜面の下方にはアクセスルートがある。 免震重要棟遮蔽壁(東側)の評価対象断面(A-A断面)及び西側斜面を含むB-B断面に おいて地震応答解析を実施し,免震重要棟遮蔽壁のうち西側斜面近傍部(位置①)及び緊急 時対策所近傍部(位置②)における地表面の応答加速度を比較する。地震応答解析について は,解析コード「FLUSH」を使用する。

免震重要棟遮蔽壁の周辺状況及び地震応答解析位置を図1に示す。



図1 免震重要棟遮蔽壁の周辺状況及び地震応答解析位置

3. 解析モデル

地震応答解析を実施する解析モデルを図2に,解析モデルの作成に用いた地質断面図を 図3に示す。



図2 解析モデル








4. 確認結果

免震重要棟遮蔽壁のうち西側斜面近傍部(位置①)及び緊急時対策所近傍部(位置②)に おける地表面の応答加速度を表1に示す。位置①及び位置②において,最大水平加速度,最 大鉛直加速度共に,おおむね同等の値であることを確認した。

以上を踏まえ,免震重要棟遮蔽壁(東側)が緊急時対策所に対して波及的影響を及ぼさな い構造強度を有していることから,西側斜面近傍の免震重要棟遮蔽壁(西側)が,アクセス ルートへ波及的影響を及ぼさないことを確認した。

| 抽出位置 |          | 最大水平加速度    | 最大鉛直加速度    |
|------|----------|------------|------------|
|      |          | $(cm/s^2)$ | $(cm/s^2)$ |
| 位置①  | 西側斜面近傍   | -759       | 493        |
| 位置②  | 緊急時対策所近傍 | -741       | 512        |

表1 地表面の応答加速度