島根原子力発電所第2号機 審査資料		
資料番号	NS2-添 3-015-08改01	
提出年月日	2023 年 3 月 2 日	

Ⅵ-3-別添3-2-5 防水壁の強度計算書

2023年3月

中国電力株式会社

目	次
---	---

1. 概要
2. 一般事項 ····································
2.1 配置概要
2.2 構造計画・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.2.1 タービン建物復水器エリア防水壁・・・・・・・・・・・・・・・・・・・・・・・4
 2.2.2 取水槽除じん機エリア防水壁······ 8
2.3 評価方針・・・・・9
2.4 適用規格・基準等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3. タービン建物地下1階復水系配管室防水壁・・・・・・・・・・・・・・・・・・・・・12
3.1 強度評価方法・・・・・・12
3.1.1 記号の説明・・・・・・12
3.1.2 評価対象部位・・・・・14
3.1.3 荷重及び荷重の組合せ······15
3.1.4 許容限界・・・・・・17
3.1.5 評価方法・・・・・・19
3.1.6 評価条件・・・・・ 25
4. タービン建物地下1階復水器室北西側防水壁・・・・・・・・・・・・・・・・・・26
4.1 強度評価方法
4.1.1 記号の説明・・・・・ 26
4.1.2 評価対象部位・・・・・ 29
4.1.3 荷重及び荷重の組合せ····································
4.1.4 許容限界・・・・・・
4.1.5 評価方法・・・・・・
4.1.6 評価条件・・・・・・ 47
5. タービン建物地下1階復水器室北側防水壁・・・・・・・・・・・・・・・・・・・・・・ 49
5.1 強度評価方法・・・・・・ 49
5.1.1 記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.1.2 評価対象部位・・・・・.52
5.1.3 荷重及び荷重の組合せ······54
5.1.4 許容限界・・・・・ 57
5.1.5 評価方法・・・・・・59
5.1.6 評価条件・・・・・ 71
6. タービン建物地下1階復水器室北東側防水壁・・・・・・・・・・・・・・・・・・
6.1 強度評価方法

	6.1.1	記号の説明・・・・・・
	6.1.2	評価対象部位 · · · · · · · · · · · · · · · · · · ·
	6.1.3	荷重及び荷重の組合せ・・・・・ 80
	6.1.4	許容限界
	6.1.5	評価方法
	6.1.6	評価条件・・・・・ 100
7.	取水槽腳	余じん機エリア防水壁・・・・・・102
7.	1 強度	評価方法
	7.1.1	記号の説明・・・・・・102
	7.1.2	評価対象部位 · · · · · · · · · · · · · · · · · · ·
	7.1.3	荷重及び荷重の組合せ・・・・・ 105
	7.1.4	許容限界107
	7.1.5	評価方法・・・・・・109
	7.1.6	評価条件・・・・・・115
8.	評価結果	果

1. 概要

本計算書は、VI-3-別添 3-1「津波への配慮が必要な施設の強度計算の基本方針」に基 づき、浸水防止設備であるタービン建物復水器エリア防水壁及び取水槽除じん機エリア 防水壁(以下「防水壁」という。)が、地震による溢水に加えて津波の流入を考慮した 浸水に伴う津波荷重及び余震による荷重又は地震後の繰返しの来襲を想定した経路から の津波の流入に伴う津波荷重及び風による荷重に対して、十分な構造健全性及び止水性 を有していることを説明するものである。

2. 一般事項

2.1 配置概要

防水壁の一覧及び設置位置図を図 2-1 に示す。

1	タービン建物地下1階復水系配管室防水壁	
2	タービン建物地下1階復水器室北西側防水壁	
3	タービン建物地下1階復水器室北側防水壁	
4	タービン建物地下1階復水器室北東側防水壁	
図 2-1(1) 防水壁の設置位置図(タービン建物復水器エリア)		

取水槽除じん機エリア EL 8800

5	取水槽除じん機エリア防水壁		
义	2-1(2)	防水壁の設置位置図	(取水槽除じん機エリア)

2.2 構造計画

2.2.1 タービン建物復水器エリア防水壁

タービン建物復水器エリア防水壁は鋼板、柱、はり、胴縁、根太、斜材、ブレ ース及びアンカーボルトにより構成され、アンカーボルトにより建物躯体と接合 する構造とする。タービン建物復水器エリア防水壁の構造計画を表 2-1 に示す。

表 2-1(1) タービン建物復水器エリア防水壁の構造計画

計画の概要 基礎· 概略構造図 主体構造 支持構造 B 柱及び胴縁 鋼板, 胴縁, 柱及びアン で補強した 鋼板を建物 カーボルトに A. 床及び壁面 B より構成す にアンカーボ る。 平面図 ルトにて固 定する。 -柱・ 胴縁 1 鋼板 >カーボルト A-A正面図 B-B 断面図

(タービン建物地下1階復水系配管室防水壁)

表 2-1(3) タービン建物復水器エリア防水壁の構造計画

表 2-1(4) タービン建物復水器エリア防水壁の構造計画

2.2.2 取水槽除じん機エリア防水壁

取水槽除じん機エリア防水壁は、鋼板,はり,柱及びアンカーボルトにより構 成され、アンカーボルトにより取水槽躯体と接合する構造とする。

取水槽除じん機エリア防水壁の構造計画を表 2-2 に示す。

計画の概要 基礎· 概略構造図 主体構造 支持構造 はり, 柱で 鋼板,柱, $_{\bigtriangledown}$ EL 11.30m はり、 ベー 補強した鋼 板ををベー スプレー 鋼板 スプレート ト,アンカ はり を介して取 ーボルトに 水槽にアン より構成す ·柱 カーボルト る。 にて固定す る。 ベースプレート U 取水槽躯体 アンカーボルト 正面図 取水槽外側 取水槽内側 鋼板 -柱 4 ベースプレートオートアンカーボルト 断面図 注記*:入力津波高さを踏まえ, EL 10.80m~EL 11.30m において嵩上げする。

表 2-2 取水槽除じん機エリア防水壁の構造計画

2.3 評価方針

防水壁の強度評価は、VI-3-別添 3-1「津波への配慮が必要な施設の強度計算の基本 方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて、防水壁の 評価対象部位に作用する応力等が許容限界内に収まることを、各設備の「3.1 強度評 価方法」「4.1 強度評価方法」「5.1 強度評価方法」「6.1 強度評価方法」「7.1 強度評価方法」に示す方法により、「3.1.6 評価条件」「4.1.6 評価条件」「5.1.6 評価条件」「6.1.6 評価条件」「7.1.6 評価条件」に示す評価条件を用いて評価し、 応力評価の確認事項を「8. 評価結果」にて確認する。

防水壁の強度評価フローを図 2-2 に示す。防水壁の強度評価においては、その構造 を踏まえ、静水圧荷重、余震に伴う荷重及び風荷重の作用方向及び伝達経路を考慮し、 評価対象部位を設定する。

図 2-2 防水壁の強度評価フロー

2.4 適用規格·基準等

適用する規格,基準等を以下に示す。

- ·建築基準法 · 同施行令
- ・鋼構造設計規準-許容応力度設計法-((社)日本建築学会,2005改定)
- ・各種合成構造設計指針・同解説((社)日本建築学会,2010改定)
- ・日本産業規格(JIS)
- ・水道施設耐震工法指針・解説 2009 年版((社)日本水道協会)

- 3. タービン建物地下1階復水系配管室防水壁
- 3.1 強度評価方法
 - 3.1.1 記号の説明

タービン建物地下1階復水系配管室防水壁の評価に用いる記号を表 3-1 に示す。

表 3-1(1) タービン建物地下1階復水系配管室防水壁の強度評価に用いる記号

記号	単位	定義
W 1	kN/m	鋼板に作用する静水圧荷重及び余震を考慮した荷重
P _h	kN/m^2	静水圧荷重
$ ho_{\circ}$	t/m^3	水の密度
g	m/s^2	重力加速度
Н	mm	浸水深さ
h	mm	水圧作用高さ
Р	kN/m^2	動水圧荷重
β	_	浸水エリアの幅と水深の比による補正係数(1.0)
αн	_	水平方向の余震震度
S d	kN/m	余震による地震荷重
t	mm	鋼板の厚さ
ρ _s	t/m^3	鋼板の密度
σ 1	N/mm^2	鋼板に生じる曲げ応力度
M 1	kN • m	鋼板の曲げモーメント
Ζ ₁	mm^3	鋼板の断面係数
L ₁	mm	鋼板の短辺長さ
W 2	kN/m	胴縁に作用する静水圧荷重及び余震を考慮した荷重
b ₂	mm	胴縁に作用する荷重の負担幅
m 2	kg/m	胴縁の質量分布
σ2	N/mm^2	胴縁に生じる曲げ応力度
M_2	kN • m	胴縁の曲げモーメント
Z 2	mm ³	胴縁の断面係数
L ₂	mm	胴縁の支持スパン
τ2	N/mm^2	胴縁に生じるせん断応力度
\mathbf{Q}_2	kN	胴縁のせん断力
A _{S 2}	mm^2	胴縁のせん断断面積

記号	単位	定義
sft2	N/mm^2	胴縁の短期許容引張応力度
W 3	kN/m	柱に作用する静水圧荷重及び余震を考慮した荷重
b 3	mm	柱に作用する荷重の負担幅
m 3	kg/m	柱の質量分布
σ ₃	N/mm^2	柱に生じる曲げ応力度
M ₃	kN • m	柱の曲げモーメント
Z 3	mm^3	柱の断面係数
L ₃	mm	柱全長
τ ₃	N/mm^2	柱に生じるせん断応力度
Q 3	kN	柱のせん断力
A _{S 3}	mm^2	柱のせん断断面積
sft3	N/mm^2	柱の短期許容引張応力度
Q d	kN	アンカーボルト1本当りに生じるせん断力
Q_4	kN	柱に生じるせん断力
n	本	柱に取り付くアンカーボルトの本数

表 3-1(2) タービン建物地下1階復水系配管室防水壁の強度評価に用いる記号

3.1.2 評価対象部位

当該防水壁の評価対象部位は「2.2 構造計画」に示す構造上の特性を踏まえ選 定する。

当該防水壁に生じる静水圧及び余震に伴う荷重は鋼板, 胴縁及び柱に伝わり, 柱を固定するアンカーボルトを介して躯体に伝達されることから, 評価対象部位 を鋼板, 胴縁, 柱及びアンカーボルトとする。評価対象部位を図 3-1 に示す。

A-A正面図

B-B 断面図

3.1.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは, Ⅵ-3-別添 3-1「津波への配慮が必要な施設の強度計算の基本方針」の「4.1 荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを踏まえて設定する。

(1) 荷重の組合せ

当該防水壁の強度評価に用いる荷重の組合せは, VI-3-別添 3-1「津波への配慮 が必要な施設の強度計算の基本方針」を踏まえて下記のとおりに設定する。

 $P_h + K S d$

P_h :静水圧荷重

- KSd :余震荷重
- (2) 荷重の設定
 - a. 静水圧荷重(P_h)

浸水に伴う静水圧荷重を考慮する。静水圧荷重は,評価対象部位周辺の水の 密度に当該部分の浸水深さを考慮した水圧作用高さを乗じた次式により算出す る。この時,当該防水壁下端の最大静水圧が等分布に作用するものとして安全 側に評価する。静水圧荷重の算定に用いる水圧作用高さ及び水の密度を表 3-2 に示す。

 $P_{h} = \rho_{o} \cdot g \cdot h \cdot 10^{-3}$

P_h:静水圧荷重(kN/m²)

- ρ。:水の密度(t/m³)
- g : 重力加速度(m/s²)
- h :水圧作用高さ(mm)

b. 余震荷重(KSd)

余震荷重として,弾性設計用地震動Sdによる地震力及び動水圧を考慮する。 評価に用いる余震震度はVI-2-1-7「設計用床応答スペクトルの作成方針」に基 づき設定する。また,余震震度は防水壁設置階と上階の最大値とし,水平震度 はNS方向とEW方向の大きい方を用いる。当該防水壁の余震震度を表 3-3 に 示す。

動水圧荷重は「水道施設耐震工法指針・解説 2009 年版((社)日本水道協 会)」(以下「水道施設耐震工法指針・解説」という。)に基づき,各部位に 作用する動水圧を次式により算出する。この時,当該防水壁下端の最大動水圧 が等分布に作用するものとして安全側に評価する。動水圧荷重の算定に用いる 浸水深さ及び水圧作用高さ表3-2に,動水圧荷重の算出結果は表3-4に示す。

 $P = \beta \cdot 7 / 8 \cdot \alpha_{\rm H} \cdot \rho_{\rm o} \cdot g \cdot \sqrt{H \cdot h \cdot 10^{-6}}$

- P : 動水圧荷重(kN/m²)
- *β* : 浸水エリアの幅と水深の比による補正係数(1.0)
- α_H:水平方向の余震震度
- ρ。:水の密度(t/m³)
- g : 重力加速度(m/s²)
- H :浸水深さ(mm)
- h :水圧作用高さ(mm)

表 3-2 浸水深さ,水圧作用高さ及び水の密度

浸水深さ	水圧作用高さ	水の密度
H (mm)	h (mm)	$ ho$ $_{\rm o}$ (t/m ³)
3300	3300	1.03

表 3-3 余震震度

		弾性設計用地震動 S d の		
建物	設置場所	余震震度*		
		水平 а н		
タービン建物	EL 2.0m	0.60		

注記*:設計用震度 I (1.0ZPA)を示す。

表 3-4 動水圧荷重の算出結果 部位 防水壁 17.50

3.1.4 許容限界

許容限界は, VI-3-別添3-1「津波への配慮が必要な施設の強度計算の基本方針」 にて設定している許容限界を踏まえて設定する。

(1) 使用材料

当該防水壁を構成する鋼板, 胴縁, 柱及びアンカーボルトの使用材料を表 3-5 に示す。

評価対象部位	材質	仕様
鋼板	SS400	PL-16
胴縁	SS400	$[-200\times90\times8\times13.5]$
柱	SS400	$\text{H-}300\times300\times10\times15$
アンカーボルト	SS400	M24

表 3-5 使用材料

(2) 許容限界

a. 鋼材

鋼材の許容限界は、「鋼構造設計規準-許容応力度設計法-((社)日本建築学会、2005改定)」(以下「S規準」という。)を踏まえて表 3-6の値とする。

材質	短期許容応力度(N/mm ²)			
	引張	圧縮	曲げ*	せん断
SS400	235	235	235	135

表 3-6 鋼材の許容限界

注記*:上限値であり,座屈長さ等を勘案して設定する。

b. アンカーボルト

アンカーボルトの許容限界は「各種合成構造設計指針・同解説((社)日本 建築学会,2010 改定)」(以下「各種合成構造設計指針・同解説」という。) を踏まえて表 3-7の値とする。

なお,アンカーボルトがせん断力を受ける場合においては,アンカーボルト のせん断強度により決まる耐力,定着したコンクリート躯体の支圧強度及びコ ーン状破壊により決まる耐力を比較して,いずれか小さい値を採用する。

++ 府	許容耐力(kN)	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	せん断	
SS400(M24)	58	

表 3-7 アンカーボルトの許容限界

3.1.5 評価方法

当該防水壁を構成する鋼板,胴縁,柱及びアンカーボルトに発生する応力より 算定する応力度が,許容限界以下であることを確認する。

(1) 鋼板

鋼板に生じる応力は、鋼板を両端ピンの単純はりとして次式により算出し、鋼板の短期許容応力度以下であることを確認する。鋼板に作用する荷重の例を図 3 -2に示す。

- a. 単位長さ当たりの等分布荷重
 w₁ = (P_h + P) ・ b₁ + S d
 - w₁:静水圧荷重及び余震を考慮した荷重(kN/m)
 - P_h :静水圧荷重(kN/m²)
 - P : 動水圧荷重(kN/m²)
 - b₁ : 鋼板の幅(単位幅:1.0m)
 - Sd : 余震による地震荷重 (kN/m) (t・10⁻³・α_H・ρ_s・g)
 - t : 鋼板の厚さ(mm)
 - α_H :水平方向の余震震度
 - ρ_s:鋼板の密度(t/m³)
 - g : 重力加速度(m/s²)

b. 鋼板に生じる曲げ応力度

 $\sigma_1 = (M_1 \cdot 10^6) \nearrow Z_1$

 $M_1 = w_1 \cdot (L_1 \cdot 10^{-3})^2 / 8$

- **σ**₁ :鋼板に生じる曲げ応力度 (N/mm²)
- M₁ :鋼板の曲げモーメント (kN・m)
- Z₁ : 鋼板の断面係数 (mm³)
- L₁ :鋼板の短辺長さ (mm)

図 3-2 鋼板に作用する荷重の例

(2) 胴縁

胴縁に生じる応力は、胴縁を両端ピンの単純はりとして次式により算出し、胴縁の短期許容曲げ応力度以下であることを確認する。胴縁に作用する荷重の例を図 3-3 に示す。

- a. 単位長さ当たりの等分布荷重
 w₂=(P_h+P)・b₂・10⁻³+Sd
 - w₂:静水圧荷重及び余震を考慮した荷重(kN/m)
 - P_h :静水圧荷重(kN/m²)
 - P : 動水圧荷重(kN/m²)
 - b₂ : 胴縁に作用する荷重の負担幅(mm)
 - S d : 余震による地震荷重(kN/m)

(($\rho_{\rm s} \cdot b_2 \cdot t \cdot 10^{-6} + m_2 \cdot 10^{-3}$) $\cdot \alpha_{\rm H} \cdot g$)

- ρ_s:鋼板の密度(t/m³)
- t :鋼板の厚さ(mm)
- m₂ : 胴縁の質量分布(kg/m)
- α_H :水平方向の余震震度
- g : 重力加速度(m/s²)

b. 胴縁に生じる曲げ応力度

 $\sigma_2 = (M_2 \cdot 10^6) / Z_2$ $M_2 = w_2 \cdot (L_2 \cdot 10^{-3})^2 / 8$

- σ₂ : 胴縁に生じる曲げ応力度 (N/mm²)
- M_2 : 胴縁の曲げモーメント (kN・m)
- Z₂ : 胴縁の断面係数 (mm³)
- L₂ : 胴縁の支持スパン (mm)
- c. 胴縁に生じるせん断応力度

 $\tau_{2} = (Q_{2} \cdot 10^{3}) / A_{S2}$ $Q_{2} = w_{2} \cdot (L_{2} \cdot 10^{-3}) / 2$

- τ₂ : 胴縁に生じるせん断応力度 (N/mm²)
- Q₂ : 胴縁のせん断力 (kN)
- A_{s2} : 胴縁のせん断断面積 (mm²)
- L₂ : 胴縁の支持スパン(mm)
- d. 胴縁に生じる組合せ応力度

胴縁に生じる曲げ応力度とせん断応力度から、組合せ応力度を「S規準」に 基づく次式により算定し、短期許容応力度以下であることを確認する。

T

 $\sqrt{\sigma_2^2 + 3 \cdot \tau_2^2} \leq_{\mathrm{s}} \mathrm{f}_{\mathrm{t}\,2}$

- σ₂ : 胴縁に生じる曲げ応力度 (N/mm²)
- τ₂ : 胴縁に生じるせん断応力度 (N/mm²)
- sft2: 短期許容引張応力度 (N/mm²)

図 3-3 胴縁に作用する荷重の例

(3) 柱

柱に生じる応力は、柱を両端ピンの単純はりとして次式により算出し、柱の短期許容応力度以下であることを確認する。柱に作用する荷重の例を図 3-4 に示す。

a. 単位長さ当たりの等分布荷重

 $w_3 = (P_h + P) \cdot b_3 \cdot 10^{-3} + S d$

- w₃:静水圧荷重及び余震を考慮した荷重(kN/m)
- P_h :静水圧荷重(kN/m²)
- P : 動水圧荷重(kN/m²)
- b₃ : 柱に作用する荷重の負担幅(mm)
- Sd : 余震による地震荷重(kN/m)
 - (($\rho_{\rm s} \cdot b_{\rm 3} \cdot t \cdot 10^{-6} + m_2 \cdot L_2 / b_2 \cdot 10^{-3} + m_3 \cdot 10^{-3}$) $\cdot \alpha_{\rm H} \cdot g$)
- ρ_s:鋼板の密度(t/m³)
- t :鋼板の厚さ(mm)
- m₂ : 胴縁の質量分布(kg/m)
- L₂ : 胴縁の支持スパン(mm)
- b₂ : 胴縁に作用する荷重の負担幅(mm)
- m₃ :柱の質量分布(kg/m)
- α_H :水平方向の余震震度
- g : 重力加速度(m/s²)
- b. 柱に生じる曲げ応力度

 $\sigma_{3} = (M_{3} \cdot 10^{6}) / Z_{3}$ $M_{3} = w_{3} \cdot (L_{3} \cdot 10^{-3})^{2} / 8$

- **σ**₃ : 柱に生じる曲げ応力度 (N/mm²)
- M₃ :柱の曲げモーメント (kN・m)
- Z₃ : 柱の断面係数 (mm³)
- L₃ : 柱全長 (mm)

c. 柱に生じるせん断応力度

$$\tau_{3} = (Q_{3} \cdot 10^{3}) / A_{S3}$$
$$Q_{3} = w_{3} \cdot (L_{3} \cdot 10^{-3}) / 2$$

- τ₃ : 柱に生じるせん断応力度 (N/mm²)
- Q₃ : 柱のせん断力 (kN)
- A_{S3} : 柱のせん断断面積 (mm²)
- L₃ : 柱全長 (mm)
- d. 柱に生じる組合せ応力度

柱に生じる曲げ応力度とせん断応力度から,組合せ応力度を「S規準」に基 づく次式により算定し,短期許容応力度以下であることを確認する。

 $\sqrt{\sigma_3^2 + 3 \cdot \tau_3^2} \leq f_{t3}$

- σ₃ : 柱に生じる曲げ応力度 (N/mm²)
- τ₃ : 柱に生じるせん断応力度 (N/mm²)
- sft3:短期許容引張応力度(N/mm²)

(4) アンカーボルト

アンカーボルト1本当たりに生じるせん断力は次式より算出し,アンカーボルトの短期許容荷重以下であることを確認する。アンカーボルトに生じる荷重の例を図 3-5に示す。

 $Q_{d} = Q_{4} \diagup n$

- Q_d:アンカーボルト1本当りに生じるせん断力(kN)
- **Q**₄ : 柱に生じるせん断力 (kN)
- n :柱に取り付くアンカーボルトの本数(本)

図 3-5 アンカーボルトに生じる荷重の例

3.1.6 評価条件

「3.1.5 評価方法」に用いる入力値を表 3-8 に示す。

対象部位	記号	単位	定義	数値
	h	mm	水圧作用高さ	3300
	Н	mm	浸水深さ	3300
	$ ho_{ m o}$	t/m^3	水の密度	1.03
共通	g	m/s^2	重力加速度	9.80665
	lpha H	_	水平方向の余震震度	0.60
	β	_	浸水エリアの幅と水深の比 による補正係数	1.0
	ρs	t/m^3	鋼板の密度	7.85
	t	mm	鋼板の厚さ	16
 逝 权	Z 1	mm ³	鋼板の断面係数	42.67 $\times 10^{3}$
	L 1	mm	鋼板の短辺長さ	620
	b ₂	mm	胴縁に作用する荷重の負担幅	606
	m_2	kg/m	胴縁の質量分布	51.0
胴縁	Z_2	mm ³	胴縁の断面係数	249×10^{3}
	L ₂	mm	胴縁の全長	1500
	A_{S2}	mm^2	胴縁のせん断断面積	1384
	b ₃	mm	柱に作用する荷重の負担幅	1500
	m 3	kg/m	柱の質量分布	153.0
柱	Z 3	mm ³	柱の断面係数	1350×10^{3}
	L ₃	mm	柱全長	2816
	A _{S 3}	mm^2	柱のせん断断面積	2700
アンカーボルト	n	本	柱に取り付くアンカーボルトの本数 6	

表 3-8 強度評価に用いる入力値

- 4. タービン建物地下1階復水器室北西側防水壁
- 4.1 強度評価方法
 - 4.1.1 記号の説明

タービン建物地下1階復水器室北西側防水壁の評価に用いる記号を表 4-1 に 示す。

表 4-1(1) タービン建物地下1階復水器室北西側防水壁の強度評価に用いる記号

記号	単位	定義
W 1	kN/m	鋼板に作用する静水圧荷重及び余震を考慮した荷重
P _h	kN/m^2	静水圧荷重
$ ho$ $_{ m o}$	t/m^3	水の密度
g	m/s^2	重力加速度
Н	mm	浸水深さ
h	mm	水圧作用高さ
Р	kN/m^2	動水圧荷重
β	_	浸水エリアの幅と水深の比による補正係数(1.0)
αн	—	水平方向の余震震度
αv	_	鉛直方向の余震震度
S d	kN/m	余震による水平地震荷重
S d v	kN/m	余震による鉛直地震荷重
t	mm	鋼板の厚さ
ρ _s	t/m^3	鋼板の密度
σ _{b1}	N/mm^2	鋼板に生じる曲げ応力度
M 1	kN • m	鋼板の曲げモーメント
Ζ 1	mm^3	鋼板の断面係数
L 1	mm	鋼板の短辺長さ
W x 2	kN/m	胴縁に作用する静水圧荷重及び余震を考慮した荷重
W y 2	kN/m	胴縁に作用する余震を考慮した荷重
b ₂	mm	胴縁に作用する荷重の負担幅
m_2	kg/m	胴縁の質量分布
σ _{bx2}	N/mm^2	胴縁に生じる強軸回りの曲げ応力度
σ _{by2}	N/mm^2	胴縁に生じる弱軸回りの曲げ応力度
M _{x 2}	kN•m	胴縁に生じる強軸回りの曲げモーメント
M _{y 2}	kN • m	胴縁に生じる弱軸回りの曲げモーメント
Z x 2	mm ³	胴縁の強軸回りの断面係数

記号	単位	定義
Z y 2	mm ³	胴縁の弱軸回りの断面係数
L ₂	mm	胴縁の全長
τ x 2	N/mm^2	胴縁に生じる強軸方向のせん断応力度
τ _{y2}	N/mm^2	胴縁に生じる弱軸方向のせん断応力度
Q x 2	kN	胴縁の強軸方向のせん断力
Q _{y 2}	kN	胴縁の弱軸方向のせん断力
A _{Sx2}	mm^2	胴縁の強軸方向のせん断断面積
A s y 2	mm^2	胴縁の弱軸方向のせん断断面積
sft2	N/mm^2	胴縁の短期許容引張応力度
W x 3	kN/m	柱の強軸方向に作用する静水圧荷重及び余震を考慮した荷重
W y 3	kN/m	柱の弱軸方向に作用する静水圧荷重及び余震を考慮した荷重
b 3	mm	柱に作用する荷重の負担幅
m 3	kg/m	柱の質量分布
О b x 3	N/mm^2	柱に生じる強軸回りの曲げ応力度
О b у 3	N/mm^2	柱に生じる弱軸回りの曲げ応力度
M $_{\rm x}$ $_3$	kN • m	柱の強軸回りの曲げモーメント
${ m M}$ y $_3$	kN • m	柱の弱軸回りの曲げモーメント
Z _{x 3}	mm^3	柱の強軸回りの断面係数
Z_{y3}	mm^3	柱の弱軸回りの断面係数
L ₃	mm	柱全長
$ au_{{f x}3}$	N/mm^2	柱に生じる強軸方向のせん断応力度
τ _{у3}	N/mm^2	柱に生じる弱軸方向のせん断応力度
Q _{x 3}	kN	柱の強軸方向のせん断力
Q _{y 3}	kN	柱の弱軸方向のせん断力
A s x 3	mm^2	柱の強軸方向のせん断断面積
A s y 3	mm^2	柱の弱軸方向のせん断断面積
σ _c (t) 3	N/mm^2	柱に生じる軸応力度
N $_{\rm c}$ (t) $_{\rm 3}$	kN	柱の圧縮又は引張軸力
A _{g3}	mm^2	柱の断面積
N 3	kN	柱の軸力
sf _{bx3}	N/mm^2	柱の強軸方向の短期許容曲げ応力度
sf by 3	N/mm^2	柱の弱軸方向の短期許容曲げ応力度
s f c (t) 3	N/mm^2	柱の短期許容圧縮又は許容引張応力度

表 4-1(2) タービン建物地下1階復水器室北西側防水壁の強度評価に用いる記号

記号	単位	定義
sft3	N/mm^2	柱の短期許容引張応力度
W x 4	kN/m	はりに作用する静水圧荷重及び余震を考慮した荷重
W y 4	kN/m	はりに作用する余震を考慮した荷重
b ₄	mm	はりに作用する荷重の負担幅
о _{bx4}	N/mm^2	はりに生じる強軸回りの曲げ応力度
о _{b у 4}	N/mm^2	はりに生じる弱軸回りの曲げ応力度
M_{x4}	kN • m	はりの強軸回りの曲げモーメント
M y 4	kN • m	はりの弱軸回りの曲げモーメント
Z x 4	mm ³	はりの強軸回りの断面係数
Z y 4	mm ³	はりの弱軸回りの断面係数
L ₄	mm	はり全長
τ χ4	N/mm^2	はりに生じる強軸方向のせん断応力度
τ _{у4}	N/mm^2	はりに生じる弱軸方向のせん断応力度
Q x 4	kN	はりの強軸方向のせん断力
Q_{y4}	kN	はりの弱軸方向のせん断力
A_{Sx4}	mm^2	はりの強軸方向のせん断断面積
$A_{s_y_4}$	mm^2	はりの弱軸方向のせん断断面積
σ _c (t)4	N/mm^2	はりに生じる軸応力度
N $_{\rm c}$ (t) $_{\rm 4}$	kN	はりの圧縮又は引張軸力
A $_{\rm g 4}$	mm^2	はりの断面積
sf _{bx4}	N/mm^2	はりの強軸方向の短期許容曲げ応力度
sf by4	N/mm^2	はりの弱軸方向の短期許容曲げ応力度
s f c (t) 4	N/mm^2	はりの短期許容圧縮又は許容引張応力度
sft4	N/mm^2	はりの短期許容引張応力度
Τ 5	kN	柱又ははりに生じる引張力
n 5	本	柱又ははりに取り付くアンカーボルトの本数
T _{d5}	kN	アンカーボルト1本当たりに生じる引張力
T _a	kN	アンカーボルト1本当たりの短期許容引張力
${f Q}$ 5	kN	柱又ははりに生じるせん断力
${ m Q}$ d 5	kN	アンカーボルト1本当りに生じるせん断力
Q a	kN	アンカーボルト1本当たりの短期許容せん断力

表 4-1(3) タービン建物地下1階復水器室北西側防水壁の強度評価に用いる記号

4.1.2 評価対象部位

当該防水壁の評価対象部位は「2.2 構造計画」に示す構造上の特性を踏まえ選 定する。

当該防水壁に生じる静水圧及び余震に伴う荷重は鋼板, 胴縁, 柱及びはりに伝わり,柱及びはりを固定するアンカーボルトを介して躯体に伝達されることから, 評価対象部位を鋼板, 胴縁, 柱, はり及びアンカーボルトとする。評価対象部位 を図 4-1 に示す。

S2 補 VI-3-別添 3-2-5 R0

図 4-1 評価対象部位

4.1.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは, Ⅵ-3-別添 3-1「津波への配慮が必要な施設の強度計算の基本方針」の「4.1 荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを踏まえて設定する。

(1) 荷重の組合せ

当該防水壁の強度評価に用いる荷重の組合せは, VI-3-別添 3-1「津波への配慮 が必要な施設の強度計算の基本方針」を踏まえて下記のとおりに設定する。

 $P_h + K S d$

P_h :静水圧荷重

- KSd :余震荷重
- (2) 荷重の設定
 - a. 静水圧荷重(P_h)

浸水に伴う静水圧荷重を考慮する。静水圧荷重は,評価対象部位周辺の水の 密度に当該部分の浸水深さを考慮した水圧作用高さを乗じた次式により算出す る。この時,鋼板,胴縁及び柱においては当該防水壁下端の最大静水圧が等分 布に作用するものとして安全側に評価する。また,はりにおいては荷重負担幅 下端の最大静水圧が等分布に作用するものとして安全側に評価する。静水圧荷 重の算定に用いる水圧作用高さ及び水の密度を表 4-2 に,防水壁の水圧作用高 さの概念図を図 4-2 に示す。

 $P_{h} = \rho_{o} \cdot g \cdot h \cdot 10^{-3}$

- P_h :静水圧荷重(kN/m²)
- ρ。:水の密度(t/m³)
- g : 重力加速度(m/s²)
- h :水圧作用高さ(mm)

b. 余震荷重(KSd)

余震荷重として,弾性設計用地震動Sdによる地震力及び動水圧を考慮する。 評価に用いる余震震度はVI-2-1-7「設計用床応答スペクトルの作成方針」に基 づき設定し,設計用床応答スペクトルに基づき設定する場合に適用する減衰定 数は2%とする。また,余震震度は防水壁設置階と上階の最大値とし,水平震 度はNS方向とEW方向の大きい方を用いる。当該防水壁の余震震度を表4-3 に示す。

動水圧荷重は「水道施設耐震工法指針・解説」に基づき,各部位に作用する 動水圧を次式により算出する。この時,鋼板,胴縁及び柱においては当該防水 壁下端の最大動水圧が等分布に作用するものとして安全側に評価する。また, はりにおいてははりの荷重負担幅下端の最大動水圧が等分布に作用するものと して安全側に評価する。防水壁の水圧作用高さの概念図を図4-2に,動水圧荷 重の算定に用いる浸水深さ及び水圧作用高さを表4-2に,動水圧荷重の算出結 果を表4-4に示す。

$P = \beta \cdot 7 / 8 \cdot \alpha_{\rm H} \cdot \rho_{\rm o} \cdot g \cdot \sqrt{H \cdot h \cdot 10^{-6}}$

- P : 動水圧荷重(kN/m²)
- β : 浸水エリアの幅と水深の比による補正係数(1.0)
- α_H:水平方向の余震震度
- ρ。:水の密度(t/m³)
- g : 重力加速度(m/s²)
- H :浸水深さ(mm)
- h : 防水壁の水圧作用高さ(mm)

図 4-2 防水壁の水圧作用高さの断面概念図

	水圧作用高さ			
浸水深さ	$h_1(mm)$	$h_2(mm)$	水の密度	
H (mm)	鋼板, 胴縁, 柱	はり	$ ho_{\rm o}({ m t/m^3})$	
5050	5050	145	1.03	

表 4-2 浸水深さ,水圧作用高さ及び水の密度

表 4-3 余震震度

設置場所		タービン建物 EL 0.25m		
固有周期(s)		NS方向:0.050	6 EW方向:0.	0329 鉛直:0.0181
減衰定数(%)		NS方向:2.0 EW方向:- 鉛直:-		
地震力		弹性設計用地震動 S d		
T	固有周期	水平震度		い古ま在
(s)		NS方向	EW方向	如但辰皮
1次	0.0506	1.72^{*1}	—	—
動的地震力*2		_	0.60	0.32

注記*1:設計用床応答スペクトルI(Sd)に基づき設定した震度

*2:設計用震度 I (1.0ZPA)を示す。
立て (去	動水圧荷重
小小	$P(kN/m^2)$
鋼板,胴縁,柱	76.77
はり	13.01

表 4-4 動水圧荷重の算出結果

4.1.4 許容限界

許容限界は, VI-3-別添3-1「津波への配慮が必要な施設の強度計算の基本方針」 にて設定している許容限界を踏まえて設定する。

(1) 使用材料

当該防水壁を構成する鋼板, 胴縁, 柱, はり及びアンカーボルトの使用材料を 表 4-5 に示す。

評価対象部位	材質	仕様
鋼板	SS400	PL-22
杜	SN/QOB	$BH-600\times600\times28\times40$
化土	5114300	$BH-600\times940\times40\times40$
N+ M	SN400P	$BH-400\times400\times36\times40$
はり	5N490B	$BH-400\times500\times28\times40$
胴縁	SS400	$2 - [-380 \times 100 \times 10.5 \times 16]$
アンカーボルト	SS400	M24

表 4-5 使用材料

(2) 許容限界

a. 鋼材

鋼材の許容限界は、「S規準」を踏まえて表 4-6の値とする。

表 4-6 鋼材の許容限界

1.1. FF	部材厚さ	短期許容応力度(N/mm ²)			
材貨	材質 (mm)		圧縮 ^{*2}	曲げ* ²	せん断
SS400 $t \leq 40^{*1}$ $40 < t \leq 100^{*1}$	235	235	235	135	
	$40 < t \le 100^{*1}$	215	215	215	124
SN490B	t \leq 40 ^{*1}	325	325	325	187
	$40 < t \le 100^{*1}$	295	295	295	171

注記*1: t は板厚を示す。

*2:上限値であり、座屈長さ等を勘案して設定する。

b. アンカーボルト

アンカーボルトの許容荷重は「各種合成構造設計指針・同解説」を踏まえて 表 4-7 の値とする。

なお,アンカーボルトが引張力を受ける場合においては,アンカーボルトの 降伏により決まる耐力及び付着力を比較して,いずれか小さい値を採用する。 また,アンカーボルトがせん断力を受ける場合においては,アンカーボルトの せん断強度により決まる耐力,定着したコンクリート躯体の支圧強度及びコー ン状破壊により決まる耐力を比較して,いずれか小さい値を採用する。

++	許容耐力(kN)		
	引張	せん断	
SS400(M24)	76	58	

表 4-7 アンカーボルトの許容限界

4.1.5 評価方法

当該防水壁を構成する鋼板, 胴縁, 柱, はり及びアンカーボルトに発生する応 力より算定する応力度が, 許容限界以下であることを確認する。

(1) 鋼板

鋼板に生じる応力は、鋼板を両端ピンの単純はりとして次式により算出し、鋼板の短期許容応力度以下であることを確認する。鋼板に作用する荷重の例を図 4-3に示す。

- a. 単位長さ当たりの等分布荷重
 w₁ = (P_h + P) ・ b₁ + S d
 - w₁ :静水圧荷重及び余震を考慮した荷重(kN/m)
 - P_h :静水圧荷重(kN/m²)
 - P : 動水圧荷重(kN/m²)
 - b₁ : 鋼板の幅(単位幅:1.0m)
 - Sd : 余震による地震荷重 (t · 10⁻³ · α_H · ρ_s · g) (kN/m)
 - t :鋼板の厚さ(mm)
 - α_H :水平方向の余震震度
 - ρ_s:鋼板の密度(t/m³)
 - g : 重力加速度(m/s²)
- b. 鋼板に生じる曲げ応力度 σ_{b1}= (M₁ · 10⁶) / Z₁ M₁=w₁ · (L₁ · 10⁻³)²/8

σ_{b1} :鋼板に生じる曲げ応力度 (N/mm²)

- M_1 :鋼板の曲げモーメント ($kN \cdot m$)
- Z₁ : 鋼板の断面係数 (mm³)
- L₁ :鋼板の短辺長さ (mm)

(2) 胴縁

胴縁に生じる応力は、胴縁を両端ピンの単純はりとして次式により算出し、胴
縁の短期許容応力度以下であることを確認する。胴縁に作用する荷重の例を図 4 -4に示す。

a. 単位長さ当たりの等分布荷重
 w x 2 = (P_h + P) ・ b 2 ・ 10⁻³ + S d
 w y 2 = S d y

w x2 :静水圧荷重及び余震を考慮した荷重(kN/m)

- w_{y2} : 余震を考慮した荷重(kN/m)
- P_h :静水圧荷重(kN/m²)
- P : 動水圧荷重(kN/m²)
- b₂ : 胴縁に作用する荷重の負担幅(mm)
- S d : 胴縁に生じる余震による水平地震荷重(kN/m)

 $((\rho_{\rm s} \cdot b_2 \cdot t \cdot 10^{-6} + m_2 \cdot 10^{-3}) \cdot \alpha_{\rm H} \cdot g)$

 $((\rho_{s} \cdot b_{2} \cdot t \cdot 10^{-6} + m_{2} \cdot 10^{-3}) \cdot (1 \pm \alpha_{V}) \cdot g)$

- ρ_s:鋼板の密度(t/m³)
- t :鋼板の厚さ(mm)
- m₂ : 胴縁の質量分布(kg/m)
- α_H :水平方向の余震震度

- αv : 鉛直方向の余震震度
- g : 重力加速度(m/s²)

b. 胴縁に生じる曲げ応力度 $\sigma_{bx2} = (M_{X2} \cdot 10^6) / Z_{x2}$ $\sigma_{by2} = (M_{Y2} \cdot 10^6) / Z_{y2}$ $M_{x2} = w_{x2} \cdot (L_2 \cdot 10^{-3})^2 / 8$ $M_{y2} = w_{y2} \cdot (L_2 \cdot 10^{-3})^2 / 8$

σ_{bx2}, σ_{by2}: 胴縁に生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)M_{x2}, M_{y2}: 胴縁の強軸及び弱軸回りの曲げモーメント (kN・m)Z_{x2}, Z_{y2}: 胴縁の強軸及び弱軸回りの断面係数 (mm³)L₂: 胴縁全長 (mm)

- c. 胴縁に生じるせん断応力度 $\tau_{x2} = (Q_{x2} \cdot 10^3) / A_{5x2}$ $\tau_{y2} = (Q_{y2} \cdot 10^3) / A_{5y2}$ $Q_{x2} = w_{x2} \cdot (L_2 \cdot 10^{-3}) / 2$ $Q_{y2} = w_{y2} \cdot (L_2 \cdot 10^{-3}) / 2$
 - τx2, τy2
 : 胴縁に生じる強軸及び弱軸方向のせん断応力度 (N/mm²)

 Qx2, Qy2
 : 胴縁の強軸及び弱軸方向のせん断力 (kN)

 Asx2, Asy2
 : 胴縁の強軸及び弱軸方向のせん断断面積 (mm²)

 L2
 : 胴縁全長 (mm)
- d. 胴縁に生じる組合せ応力度

胴縁に生じる曲げ応力度とせん断応力度から、組合せ応力度を「S規準」に 基づく次式により算定し、短期許容応力度以下であることを確認する。

 $\sqrt{(\sigma_{bx2} + \sigma_{by2})^{2} + 3 \cdot \tau_{2}^{2}} \leq_{s} f_{t2}$ $\sigma_{bx2}, \sigma_{by2} : 胴縁に生じる強軸及び弱軸回りの曲げ応力度(N/mm^{2})$ $\tau_{2} : 胴縁に生じるせん断応力度 max(\tau_{x2}, \tau_{y2})(N/mm^{2})$ $s f_{t2} : 短期許容引張応力度(N/mm^{2})$

図 4-4 胴縁に作用する荷重の例

(3) 柱

柱に生じる応力は、柱を両端ピンの単純はりとして次式により算出し、柱の短期許容応力度以下であることを確認する。柱に作用する荷重の例を図 4-5 に示す。

a. 単位長さ当たりの等分布荷重 w_{x3}= (P_h+P) ・ b₃・10⁻³+S d w_{y3}= (P_h+P) ・ b₃・10⁻³+S d

wx3 : 強軸方向に作用する静水圧荷重及び余震を考慮した荷重(kN/m)

- wy3 : 弱軸方向に作用する静水圧荷重及び余震を考慮した荷重(kN/m)
- P_h :静水圧荷重(kN/m²)
- P : 動水圧荷重(kN/m²)
- b₃ : 柱に作用する荷重の負担幅(mm)
- Sd : 余震による地震荷重(kN/m)

((ρ_s・b₃・t・10⁻⁶+m₂・L₂/b₂・10⁻³+m₃・10⁻³)・α_H・g)
 ρ_s :鋼板の密度(t/m³)
 t :鋼板の厚さ(mm)

- m₂ : 胴縁の質量分布(kg/m)
- L₂ : 胴縁全長(mm)
- **b**₂ : 胴縁に作用する荷重の負担幅(mm)
- m₃ : 柱の質量分布(kg/m)
- α_H :水平方向の余震震度

g : 重力加速度(m/s²)

b. 柱に生じる曲げ応力度

 $\sigma_{b x 3} = (M_{x 3} \cdot 10^{6}) / Z_{x 3}$ $\sigma_{b y 3} = (M_{y 3} \cdot 10^{6}) / Z_{y 3}$ $M_{x 3} = w_{x 3} \cdot (L_{3} \cdot 10^{-3})^{2} / 8$ $M_{y 3} = w_{y 3} \cdot (L_{3} \cdot 10^{-3})^{2} / 8$

σ _{bx3} , σ _{by3}	:柱に生じる強軸及び弱軸回りの曲げ応力度 (N/mm ²)
M_{x3} , M_{y3}	:柱の強軸及び弱軸回りの曲げモーメント(kN・m)
Z x 3, Z y 3	:柱の強軸及び弱軸回りの断面係数 (mm ³)
L ₃	: 柱全長 (mm)

c. 柱に生じるせん断応力度 $\tau_{x3} = (Q_{x3} \cdot 10^3) / A_{5x3}$ $\tau_{y3} = (Q_{y3} \cdot 10^3) / A_{5y3}$ $Q_{x3} = w_{x3} \cdot (L_3 \cdot 10^{-3}) / 2$ $Q_{y3} = w_{y3} \cdot (L_3 \cdot 10^{-3}) / 2$

τ_{x3}, τ_{y3} :柱に生じる強軸及び弱軸方向のせん断応力度 (N/mm²)
 Q_{x3}, Q_{y3} :柱の強軸及び弱軸方向のせん断力 (kN)
 A_{Sx3}, A_{Sy3} :柱の強軸及び弱軸方向のせん断断面積 (mm²)

d. 柱に生じる軸応力度

 $\sigma_{c (t) 3} = (N_{c (t) 3} \cdot 10^{3}) / A_{g3}$ $N_{c (t) 3} = N_{3} \cdot (1 \pm \alpha_{V})$

σ_{c(t)3}:柱に生じる軸応力度(N/mm²)
 N_{c(t)3}:柱の圧縮又は引張軸力(kN)
 A_{g3}:柱の断面積(mm²)
 N₃:柱の軸力(kN)
 α_V:鉛直方向の余震震度

e. 柱に生じる組合せ応力度

柱に生じる曲げ応力度と軸応力度の組合せに対する検定比は,次式により算 出し,検定比1.0以下であることを確認する。

 $\sigma_{bx3/s} f_{bx3} + \sigma_{by3/s} f_{by3} + \sigma_{c(t)3/s} f_{c(t)3} \le 1.0$

σ_{bx3}, **σ**_{by3} : 柱に生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)

- sf_{bx3},sf_{by3}:柱の強軸及び回りの短期許容曲げ応力度 (N/mm²)
- σ_{c(t)3}:柱に生じる軸応力度 (N/mm²)
- sf_{c(t)3}: 短期許容圧縮又は許容引張応力度 (N/mm²)

柱に生じる曲げ応力度,軸応力度及びせん断応力度の組合せに対する応力度 は、次式により算出し,短期許容引張応力度以下であることを確認する。

 $\sqrt{\left(\sigma_{bx3} + \sigma_{by3} + \sigma_{c(t)3}\right)^{2} + 3 \cdot \tau_{3}^{2}} \leq f_{t3}$

σ _{bx3} , σ _{by3}	:柱に生じる強軸及び弱軸回りの曲げ応力度 (N/mm ²)
Ос(t) 3	:柱に生じる軸応力度 (N/mm²)
τ ₃	: 柱に生じるせん断応力度 max (τ _{x3} , τ _{y3}) (N/mm ²)
f + 3	:短期許容引張応力度 (N/mm ²)

(4) はり

はりに生じる応力は、はりを両端ピンの単純はりとして次式により算出し、は りの短期許容応力度以下であることを確認する。はりに作用する荷重の例を図4-6に示す。

a. 単位長さ当たりの等分布荷重 w_{x4}= (P_h+P) ・ b₄・10⁻³+S d w_{y4}=S d_V

- wx4 :静水圧荷重及び余震を考慮した荷重(kN/m)
- w_{y4} : 余震を考慮した荷重(kN/m)
- P_h :静水圧荷重(kN/m²)
- P : 動水圧荷重(kN/m²)
- b₄ : はりに作用する荷重の負担幅(mm)
- Sd : 余震による地震荷重(kN/m)
- S d v : 余震による鉛直地震荷重(kN/m)

b. はりに生じる曲げ応力度

 $\sigma_{b x 4} = (M_{x 4} \cdot 10^{6}) / Z_{x 4}$ $\sigma_{b y 4} = (M_{y 4} \cdot 10^{6}) / Z_{y 4}$ $M_{x 4} = w_{x 4} \cdot (L_{4} \cdot 10^{-3})^{2} / 8$ $M_{y 4} = w_{y 4} \cdot (L_{4} \cdot 10^{-3})^{2} / 8$

σ_{bx4}, σ_{by4} :はりに生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)
 M_{x4}, M_{y4} :はりの強軸及び弱軸回りの曲げモーメント (kN・m)
 Z_{x4}, Z_{y4} :はりの強軸及び弱軸回りの断面係数 (mm³)
 L₄ :はり全長 (mm)

c. はりに生じるせん断応力度

 $\tau_{x4} = (Q_{x4} \cdot 10^3) / A_{5x4}$ $\tau_{y4} = (Q_{y4} \cdot 10^3) / A_{5y4}$ $Q_{x4} = w_{x4} \cdot (L_4 \cdot 10^{-3}) / 2$ $Q_{y4} = w_{y4} \cdot (L_4 \cdot 10^{-3}) / 2$

τ_{x4}, τ_{y4} : はりに生じる強軸及び弱軸方向のせん断応力度 (N/mm²)
 Q_{x4}, Q_{y4} : はりの強軸及び弱軸方向のせん断力 (kN)
 A_{sx4}, A_{sy4} : はりの強軸及び弱軸方向のせん断断面積 (mm²)

d. はりに生じる軸応力度

 $\sigma_{c(t)4} = (N_{c(t)4} \cdot 10^3) / A_{g4}$

- σ_{c(t)4}:はりに生じる軸応力度 (N/mm²)
- N_{c(t)4}:はりの圧縮又は引張軸力(kN)
- A_{g4} :はりの断面積 (mm²)
- e. はりに生じる組合せ応力度

はりに生じる曲げ応力度と軸応力度の組合せに対する検定比は,次式により 算出し,検定比1.0以下であることを確認する。

 $\sigma_{bx4/s} f_{bx4} + \sigma_{by4/s} f_{by4} + \sigma_{c(t)4/s} f_{c(t)4} \le 1.0$

σ_{bx4}, **σ**_{by4} : はりに生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)

sf_{bx4}, sf_{by4}:はりの強軸及び弱軸回りの短期許容曲げ応力度 (N/mm²)

- σ_{c(t)4} :はりに生じる軸応力度 (N/mm²)
- sf_{c(t)4}:短期許容圧縮又は許容引張応力度(N/mm²)

はりに生じる曲げ応力度,軸応力度及びせん断応力度の組合せに対する応力 度は,次式により算出し,短期許容引張応力度以下であることを確認する。

$$\sqrt{\!\left(\sigma_{\text{b}\,\text{x}\,4} \ + \ \sigma_{\text{b}\,\text{y}\,4} \ + \ \sigma_{\text{c}} \ _{(\text{t}\,)} \ _{4}\right)^{\!2} \ + \ 3 \ \cdot \ \tau_{4}^{\ 2}} \! \leq_{\text{s}} \! f_{\text{t}\,4}$$

 σ_{bx4}, σ_{by4}
 :はりに生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)

 σ_{c(t)4}
 :はりに生じる軸応力度 (N/mm²)

 τ₄
 :はりに生じるせん断応力度 max (τ_{x4}, τ_{y4}) (N/mm²)

 s f_{t4}
 :短期許容引張応力度 (N/mm²)

図 4-6 はりに作用する荷重の例

(5) アンカーボルト

アンカーボルト1本当たりに生じる引張力又はせん断力が,「各種合成構造設計指針」に基づき算定したアンカーボルトの短期許容荷重以下であることを確認する。アンカーボルトに生じる荷重の例を図4-7に示す。

 $(T_{d_{5}}/T_{a})^{2} + (Q_{d_{5}}/Q_{a})^{2} \leq 1$

 $T_{d5} = T_5 / n_5$

$T_{d5}/T_a \leq 1.0$

- T₅ : 柱又ははりに生じる引張力(kN)
- n₅ : 柱又ははりに取り付くアンカーボルトの本数(本)
- T_{d5}:アンカーボルト1本当たりに生じる引張力(kN)
- T。:アンカーボルト1本当たりの短期許容引張力(kN)

$Q_{d5} = Q_5 / n_5$

$Q_{d\,5} / Q_{a} \leq 1.0$

- Q₅ : 柱又ははりに生じるせん断力(kN)
- Q_{d5} : アンカーボルト1本当たりに生じるせん断力(kN)
- Q。 : アンカーボルト1本当たりの短期許容せん断力(kN)

図 4-7 アンカーボルトに生じる荷重の例

4.1.6 評価条件

「4.1.4 評価方法」に用いる評価条件に用いる入力値を表 4-8 に示す。

対象部位	記号	単位	定義	数値
	Н	mm	浸水深さ	5050
	ρο	t/m^3	水の密度	1.03
	g	m/s^2	重力加速度	9.80665
共通	lpha H	_	水平方向の余震震度	1.72
	α v	_	鉛直方向の余震震度	0.32
	β	_	浸水エリアの幅と水深の比 による補正係数	1.0
	h	mm	水圧作用高さ	5050
	$\rho_{\rm s}$	t/m^3	鋼板の密度	7.85
鋼板	t	mm	鋼板の厚さ	22
	Z 1	mm ³	鋼板の断面係数	80. 67×10^3
	L ₁	mm	鋼板の短辺長さ	750
	h	mm	水圧作用高さ	5050
	b ₂	mm	胴縁に作用する荷重の負担幅	725
ID 63.	m_2	kg/m	胴縁の質量分布	214.1
	Z_{x^2}	mm ³	胴縁の強軸回りの断面係数	1526×10^{3}
用吗 形象	Z y 2	mm^3	胴縁の弱軸回りの断面係数	141×10^{3}
	L ₂	mm	胴縁全長	2300
	A s x 2	mm^2	胴縁の強軸方向のせん断断面積	7308
	A s y 2	mm^2	胴縁の弱軸方向のせん断断面積	6400
	h	mm	水圧作用高さ	5050
	b 3	mm	柱に作用する荷重の負担幅	1800
	m 3	kg/m	柱の質量分布	601.6
	Z_{x^3}	mm^3	柱の強軸回りの断面係数	13659×10^{3}
柱	Z _{y 3}	mm ³	柱の弱軸回りの断面係数	4803×10^{3}
	L ₃	mm	柱全長	5280
	A _{Sx3}	mm^2	柱の強軸方向のせん断断面積	14560
	Asy3	mm^2	柱の弱軸方向のせん断断面積	48000
	A g 3	mm^2	柱の断面積	62560

表 4-8(1) 強度評価に用いる入力値

対象部位	記号	単位	定義	数值
	h		水圧作用高さ	145
	Z_{x4}	mm ³	はりの強軸回りの断面係数	$5697 imes10^3$
	Z y 4	mm^3	はりの弱軸回りの断面係数	2140×10^{3}
いたわ	b ₄	mm	はりに作用する荷重の負担幅	575
12 9	L ₄	mm	はり全長	3600
	A_{Sx4}	mm^2	はりの強軸方向のせん断断面積	11520
	A_{Sy4}	mm^2	はりの弱軸方向のせん断断面積	32000
	A $_{g 4}$	mm^2	はりの断面積	43520
アンカーボルト	n 5	本	柱又ははりに取り付くアンカーボルト の本数	16

表 4-8(2) 強度評価に用いる入力値

- 5. タービン建物地下1階復水器室北側防水壁
- 5.1 強度評価方法
 - 5.1.1 記号の説明

タービン建物地下1階復水器室北側防水壁の評価に用いる記号を表 5-1 に示す。

表 5-1(1) タービン建物地下1階復水器室北側防水壁の強度評価に用いる記号

記号	単位	定義
W 1	kN/m	鋼板に作用する静水圧荷重及び余震を考慮した荷重
P _h	kN/m^2	静水圧荷重
$ ho$ $_{ m o}$	t/m^3	水の密度
g	m/s^2	重力加速度
Н	mm	浸水深さ
h	mm	水圧作用高さ
Р	kN/m^2	動水圧荷重
β	—	浸水エリアの幅と水深の比による補正係数(1.0)
αн	_	水平方向の余震震度
lpha v	_	鉛直方向の余震震度
S d	kN/m	余震による水平地震荷重
S d $_{\rm V}$	kN/m	余震による鉛直地震荷重
t	mm	鋼板の厚さ
ρ _s	t/m^3	鋼板の密度
σ _{b1}	N/mm^2	鋼板に作用する曲げ応力度
M 1	kN • m	鋼板の曲げモーメント
Ζ 1	mm^3	鋼板の断面係数
L ₁	mm	鋼板の短辺長さ
W x 2	kN/m	胴縁に作用する静水圧荷重及び余震を考慮した荷重
W y 2	kN/m	胴縁に作用する余震を考慮した荷重
b ₂	mm	胴縁に作用する荷重の負担幅
m_2	kg/m	胴縁の質量分布
О _{b x 2}	N/mm^2	胴縁に生じる強軸回りの曲げ応力度
σ _{by2}	N/mm^2	胴縁に生じる弱軸回りの曲げ応力度
M _{x 2}	kN•m	胴縁に生じる強軸回りの曲げモーメント
M y 2	kN•m	胴縁に生じる弱軸回りの曲げモーメント
Z x 2	mm ³	胴縁の強軸回りの断面係数

記号	単位	定義
Z y 2	mm ³	胴縁の弱軸回りの断面係数
L ₂	mm	胴縁全長
τ _{x2}	N/mm^2	胴縁に生じる強軸方向のせん断応力度
τ _{y2}	N/mm^2	胴縁に生じる弱軸方向のせん断応力度
Q _{x 2}	kN	胴縁の強軸方向のせん断力
Q _{y 2}	kN	胴縁の弱軸方向のせん断力
A _{Sx2}	mm ²	胴縁の強軸方向のせん断断面積
A s y 2	mm^2	胴縁の弱軸方向のせん断断面積
sft2	N/mm^2	胴縁の短期許容引張応力度
W x 3	kN/m	柱の強軸方向に作用する静水圧荷重及び余震を考慮した荷重
W y 3	kN/m	柱の弱軸方向に作用する静水圧荷重及び余震を考慮した荷重
b 3	mm	柱に作用する荷重の負担幅
m 3	kg/m	柱の質量分布
О b x 3	N/mm^2	柱に作用する強軸回りの曲げ応力度
О b у 3	N/mm^2	柱に作用する弱軸回りの曲げ応力度
$M_{x}{}_3$	kN • m	柱の強軸回りの曲げモーメント
M_{y3}	kN • m	柱の弱軸回りの曲げモーメント
Z _{x 3}	mm ³	柱の強軸回りの断面係数
Z y 3	mm ³	柱の弱軸回りの断面係数
L 3	mm	柱全長
τ _{x3}	N/mm^2	柱に生じる強軸方向のせん断応力度
τ _{у3}	N/mm^2	柱に生じる弱軸方向のせん断応力度
Q _{x 3}	kN	柱の強軸方向のせん断力
Q _{y 3}	kN	柱の弱軸方向のせん断力
A s x 3	mm ²	柱の強軸方向のせん断断面積
A s y 3	mm^2	柱の弱軸方向のせん断断面積
σ _c (t)3	N/mm^2	柱に生じる軸応力度
N c (t) 3	kN	柱の圧縮又は引張軸力
A g 3	mm ²	柱の断面積
N 3	kN	柱の軸力
sf _{bx3}	N/mm^2	柱の強軸方向の短期許容曲げ応力度
sf by 3	N/mm^2	柱の弱軸方向の短期許容曲げ応力度
s f c (t) 3	N/mm^2	柱の短期許容圧縮又は許容引張応力度

表 5-1(2) タービン建物地下1階復水器室北側防水壁の強度評価に用いる記号

記号	単位	定義
sft3	N/mm^2	柱の短期許容引張応力度
W x 4	kN/m	はりに作用する静水圧荷重及び余震を考慮した荷重
W y 4	kN/m	はりに作用する余震を考慮した荷重
b ₄	mm	はりに作用する荷重の負担幅
о _{bx4}	N/mm^2	はりに生じる強軸回りの曲げ応力度
о _{by4}	N/mm^2	はりに生じる弱軸回りの曲げ応力度
M _{x 4}	kN•m	はりの強軸回りの曲げモーメント
M _{y 4}	kN•m	はりの弱軸回りの曲げモーメント
Z x 4	mm ³	はりの強軸回りの断面係数
Z y 4	mm ³	はりの弱軸回りの断面係数
τ _{x4}	N/mm^2	はりに生じる強軸方向のせん断応力度
τ _{у4}	N/mm^2	はりに生じる弱軸方向のせん断応力度
Q _{x 4}	kN	はりの強軸方向のせん断力
Q y 4	kN	はりの弱軸方向のせん断力
A_{Sx4}	mm^2	はりの強軸方向のせん断断面積
A_{Sy4}	mm^2	はりの弱軸方向のせん断断面積
σ _c (t)4	N/mm^2	はりに生じる軸応力度
N $_{\rm c}$ (t) 4	kN	はりの圧縮又は引張軸力
A $_{g 4}$	mm^2	はりの断面積
s f _{x b 4}	N/mm^2	はりの強軸方向の短期許容曲げ応力度
sfyb4	N/mm^2	はりの弱軸方向の短期許容曲げ応力度
s f c (t) 4	N/mm^2	はりの短期許容圧縮又は許容引張応力度
sft4	N/mm^2	はりの短期許容引張応力度
σ _c (t)5	N/mm^2	水平ブレースに生じる軸応力度
N c (t) 5	kN	水平ブレースの圧縮又は引張軸力
A g 5	mm^2	水平ブレースの断面積
Τ ₆	kN	柱又ははりに生じる引張力
n ₆	本	柱又ははりに取り付くアンカーボルトの本数
T _{d6}	kN	アンカーボルト1本当たりに生じる引張力
T _a	kN	アンカーボルト1本当たりの短期許容引張力
Q 6	kN	柱又ははりに生じるせん断力
Q _{d6}	kN	アンカーボルト1本当りに生じるせん断力
Q a	kN	アンカーボルト1本当たりの短期許容せん断力

表 5-1(3) タービン建物地下1階復水器室北側防水壁の強度評価に用いる記号

5.1.2 評価対象部位

当該防水壁の評価対象部位は「2.2 構造計画」に示す構造上の特性を踏まえ選 定する。

当該防水壁に生じる静水圧及び余震に伴う荷重は鋼板, 胴縁, 柱, はり及び水 平ブレースに伝わり, 柱及びはりを固定するアンカーボルトを介して躯体に伝達 されることから, 評価対象部位を鋼板, 胴縁, 柱, はり, 水平ブレース及びアン カーボルトとする。評価対象部位を図 5-1 に示す。

図 5-1 評価対象部位

5.1.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは, Ⅵ-3-別添 3-1「津波への配慮が必要な施設の強度計算の基本方針」の「4.1 荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを踏まえて設定する。

(1) 荷重の組合せ

当該防水壁の強度評価に用いる荷重の組合せは, VI-3-別添 3-1「津波への配慮 が必要な施設の強度計算の基本方針」を踏まえて下記のとおりに設定する。

 $P_h + K S d$

P_h:静水圧荷重

- KSd :余震荷重
- (2) 荷重の設定
 - a. 静水圧荷重(P_h)

浸水に伴う静水圧荷重を考慮する。静水圧荷重は,評価対象部位周辺の水の 密度に当該部分の浸水深さを考慮した水圧作用高さを乗じた次式により算出す る。この時,鋼板,胴縁,柱,はり及び水平ブレースにおいては当該防水壁下 端の最大静水圧が等分布に作用するものとして安全側に評価する。なお,はり (上段)においてははりの荷重負担幅下端の最大静水圧が等分布に作用するも のとして安全側に評価する。静水圧荷重の算定に用いる水圧作用高さ及び水の 密度を表 5-2 に,防水壁の水圧作用高さの概念図を図 5-2 に示す。

 $P_{h} = \rho_{o} \cdot g \cdot h \cdot 10^{-3}$

- P_h :静水圧荷重(kN/m²)
- ρ。:水の密度(t/m³)
- g : 重力加速度(m/s²)
- h :水圧作用高さ(mm)

b. 余震荷重(KSd)

余震荷重として,弾性設計用地震動Sdによる地震力及び動水圧を考慮する。 評価に用いる余震震度はVI-2-1-7「設計用床応答スペクトルの作成方針」に基 づき設定し,設計用床応答スペクトルに基づき設定する場合に適用する減衰定 数は2%とする。また,余震震度は防水壁設置階と上階の最大値とし,水平震 度はNS方向とEW方向の大きい方を用いる。当該防水壁の余震震度を表 5-3 に示す。

動水圧荷重は「水道施設耐震工法指針・解説」に基づき,各部位に作用する 動水圧を次式により算出する。この時,鋼板,胴縁,柱,はり及び水平ブレー スにおいては当該防水壁下端の最大動水圧が等分布に作用するものとして安全 側に評価する。なお,はり(上段)においてははりの荷重負担幅下端の最大動 水圧が等分布に作用するものとして安全側に評価する。防水壁の水圧作用高さ の概念図を図 5-2 に,動水圧荷重の算定に用いる浸水深さ及び水圧作用高さを 表 5-2 に,動水圧荷重の算出結果を表 5-4 に示す。

 $P = \beta \cdot 7 / 8 \cdot \alpha_{\rm H} \cdot \rho_{\rm o} \cdot g \cdot \sqrt{H \cdot h \cdot 10^{-6}}$

- P : 動水圧荷重(kN/m²)
- β :浸水エリアの幅と水深の比による補正係数(1.0)
- α_H:水平方向の余震震度
- ρ。:水の密度(t/m³)
- g : 重力加速度(m/s²)
- H :浸水高さ(mm)
- h :水圧作用高さ(mm)

図 5-2 防水壁の水圧作用高さの断面概念図

表 5-2	浸水深さ	. 水圧作用高	iさ及び水	の密度
-------	------	---------	-------	-----

	水圧作用高さ		
ゴナディ	$h_1(mm)$	$h_2(mm)$	水の密度
(文小休 C) 日 (mm)	鋼板, 胴縁,		小り名及 a (t /m ³)
F1 (mm)	柱,水平ブレー	はり (上段)	$\rho_{o}(t/m)$
	ス,はり(中段)		
5050	5050	810	1.03

表 5-3 余震震度

設置	場所	タービン建物 EL 0.25m			
固有属	周期(s)	NS方向:0.0154 EW方向:0.0207 鉛直:0.0593			
減衰深	宦数(%)	NS方向:- EW方向:- 鉛直:2.0			
地	震力	弹性設計用地震動 S d			
エード	固有周期	水平震度		公 古 雪 庄	
τーr	(s)	NS方向	EW方向	」	
1次	0.0593	—	_	1.44^{*1}	
動的地	1震力*2	0.56	0.60	—	

注記*1:設計用床応答スペクトルI(Sd)に基づき設定した震度

*2:設計用震度 I (1.0ZPA)を示す。

	動水圧荷重
〒13-1 <u>22</u>	$P (kN/m^2)$
鋼板,胴縁,柱,はり(中段)	26.78
はり(上段)	10.73

表 5-4 動水圧荷重の算出結果

5.1.4 許容限界

許容限界は, VI-3-別添 3-1「津波への配慮が必要な施設の強度計算の基本方針」 にて設定している許容限界を踏まえて設定する。

(1) 使用材料

防水壁を構成する鋼板, 胴縁, 柱, はり, 水平ブレース及びアンカーボルトの 使用材料を表 5-5 に示す。

評価対象部位	材質	仕様
鋼板	SS400	PL-22
柱	SN490B	$BH-500\times500\times22\times32$
はり	SN490B	$BH-500\times500\times19\times22$
水平ブレース	SS400	$2 - [-380 \times 100 \times 10.5 \times 16]$
胴縁	SS400	$2 - [-380 \times 100 \times 10.5 \times 16]$
アンカーボルト	SS400	M24

表 5-5 使用材料

- (2) 許容限界
 - a. 鋼材

鋼材の許容限界は、「S規準」を踏まえて表 5-6の値とする。

部材厚さ		短期許容応力度(N/mm ²)			
N 筫	(mm)	引張	圧縮* ²	曲げ* ²	せん断
55400	t \leq 40 ^{*1}	235	235	235	135
55400	$40 < t \le 100^{*1}$	215	215	215	124
SN490B	t \leq 40 ^{*1}	325	325	325	187
	$40 < t \leq 100^{*1}$	295	295	295	171

表 5-6 鋼材の許容限界

注記*1: t は板厚を示す。

*2:上限値であり、座屈長さ等を勘案して設定する。

b. アンカーボルト

アンカーボルトの許容限界は「各種合成構造設計指針・同解説」を踏まえて 表 5-7 の値とする。

なお,アンカーボルトが引張力を受ける場合においては,アンカーボルトの 降伏により決まる耐力及び付着力を比較して,いずれか小さい値を採用する。 また,アンカーボルトがせん断力を受ける場合においては,アンカーボルトの せん断強度により決まる耐力,定着したコンクリート躯体の支圧強度及びコー ン状破壊により決まる耐力を比較して,いずれか小さい値を採用する。

 材質
 許容耐力(kN)

 引張
 せん断

 SS400(M24)
 83
 58

表 5-7 アンカーボルトの許容限界

5.1.5 評価方法

当該防水壁を構成する鋼板, 胴縁, 柱, はり, 水平ブレース及びアンカーボル トに発生する応力より算定する応力度が, 許容限界以下であることを確認する。

(1) 鋼板

鋼板に生じる応力は、鋼板を両端ピンの単純はりとして次式により算出し、鋼板の短期許容応力度以下であることを確認する。鋼板に作用する荷重の例を図 5 -3に示す。

- a. 単位長さ当たりの等分布荷重
 w₁ = (P_h + P) ・ b₁ + S d
 - w₁ :静水圧荷重及び余震を考慮した荷重(kN/m)
 - P_h :静水圧荷重(kN/m²)
 - P : 動水圧荷重(kN/m²)
 - b₁ : 鋼板の幅(単位幅:1.0m)
 - Sd : 余震による地震荷重 (t · 10⁻³ · α_H · ρ_s · g) (kN/m)
 - t :鋼板の厚さ(mm)
 - ρ_s:鋼板の密度(t/m³)
 - α_H :水平方向の余震震度
 - g : 重力加速度(m/s²)
- b. 鋼板に生じる曲げ応力度 σ_{b1}= (M₁・10⁶) / Z₁ M₁=w₁・ (L₁・10⁻³)²/8

σ_{b1} :鋼板に生じる曲げ応力度 (N/mm²)

- M_1 :鋼板の曲げモーメント (kN・m)
- Z₁ : 鋼板の断面係数 (mm³)
- L₁ :鋼板の短辺長さ (mm)

(2) 胴縁

胴縁に生じる応力は、胴縁を両端ピンの単純はりとして次式により算出し、胴
縁の短期許容応力度以下であることを確認する。胴縁に作用する荷重の例を図 5
-4に示す。

a. 単位長さ当たりの等分布荷重 w_{x2}= (P_h+P) ・ b₂・10⁻³+S d w_{y2}=S d_V

- w x2 :静水圧荷重及び余震を考慮した荷重(kN/m)
- w_{y2} : 余震を考慮した荷重(kN/m)
- P_h :静水圧荷重(kN/m²)
- P : 動水圧荷重(kN/m²)
- b₂ : 胴縁に作用する荷重の負担幅(mm)
- Sd : 胴縁に生じる余震による水平地震荷重(kN/m)

(($\rho_{\rm s} \cdot b_2 \cdot t \cdot 10^{-6} + m_2 \cdot 10^{-3}$) $\cdot \alpha_{\rm H} \cdot g$)

- S d_V : 胴縁に生じる余震による鉛直地震荷重(kN/m) ((ρ_s・b₂・t・10⁻⁶+m₂・10⁻³)・(1±α_V)・g)
- ρ_s:鋼板の密度(t/m³)
- t :鋼板の厚さ(mm)
- m₂ : 胴縁の質量分布(kg/m)

- α_H :水平方向の余震震度
- α_V :鉛直方向の余震震度
- g : 重力加速度(m/s²)
- b. 胴縁に生じる曲げ応力度

 $\sigma_{b x 2} = (M_{x 2} \cdot 10^{6}) / Z_{x 2}$ $\sigma_{b y 2} = (M_{y 2} \cdot 10^{6}) / Z_{y 2}$ $M_{x 2} = w_{x 2} \cdot (L_{2} \cdot 10^{-3})^{2} / 8$ $M_{y 2} = w_{y 2} \cdot (L_{2} \cdot 10^{-3})^{2} / 8$

σ b x 2, σ b y 2	:胴縁に生じる強軸及び弱軸回りの曲げ応力度(N/mm ²)
$M_{\rm x\ 2},~M_{\rm y\ 2}$:胴縁の強軸及び弱軸回りの曲げモーメント(kN・m)
Z_{x2}, Z_{y2}	: 胴縁の強軸及び弱軸回りの断面係数(mm ³)
L ₂	:胴縁全長(mm)

- c. 胴縁に生じるせん断応力度
 - $\tau_{x2} = (Q_{x2} \cdot 10^3) / A_{5x2}$ $\tau_{y2} = (Q_{y2} \cdot 10^3) / A_{5y2}$ $Q_{x2} = w_{x2} \cdot (L_2 \cdot 10^{-3}) / 2$ $Q_{y2} = w_{y2} \cdot (L_2 \cdot 10^{-3}) / 2$
 - τ_{x2}, τ_{y2} : 胴縁に生じる強軸及び弱軸方向のせん断応力度 (N/mm²)
 - Q_{x2}, Q_{y2} : 胴縁の強軸及び弱軸方向のせん断力 (kN)
 - A_{Sx2}, A_{Sy2} : 胴縁の強軸及び弱軸方向のせん断断面積 (mm²)
 - L₂ : 胴縁全長(mm)

d. 胴縁に生じる組合せ応力度

胴縁に生じる曲げ応力度とせん断応力度から、組合せ応力度を「S規準」に 基づく次式により算定し、短期許容応力度以下であることを確認する。

 $\sqrt{(\sigma_{bx2} + \sigma_{by2})^{2} + 3 \cdot \tau_{2}^{2}} \leq_{s} f_{t2}$ $\sigma_{bx2}, \sigma_{by2} : 胴縁に生じる強軸及び弱軸回りの曲げ応力度(N/mm^{2})$ $\tau_{2} : 胴縁に生じるせん断応力度 max(\tau_{x2}, \tau_{y2})(N/mm^{2})$ $s f_{t2} : 短期許容引張応力度(N/mm^{2})$

(3) 柱

柱に生じる応力は、柱を両端ピンの単純はりとして次式により算出し、柱の短期許容応力度以下であることを確認する。柱に作用する荷重の例を図 5-5 に示す。

a. 単位長さ当たりの等分布荷重

 $w_{x3} = (P_h + P) \cdot b_3 \cdot 10^{-3} + S d$ $w_{y3} = (P_h + P) \cdot b_3 \cdot 10^{-3} + S d$

- w_{x3}:強軸方向に作用する静水圧荷重及び余震を考慮した荷重(kN/m)
- wy3 : 弱軸方向に作用する静水圧荷重及び余震を考慮した荷重(kN/m)
- P_h :静水圧荷重(kN/m²)
- P : 動水圧荷重(kN/m²)
- **b**₃ : 柱に作用する荷重の負担幅(mm)
- S d :余震による地震荷重(kN/m)
 - (($\rho_{s} \cdot b_{3} \cdot t \cdot 10^{-6} + m_{2} \cdot L_{2} / b_{2} \cdot 10^{-3} + m_{3} \cdot 10^{-3}$) $\cdot \alpha_{H} \cdot g$)
- ρ_s:鋼板の密度(t/m³)
- t :鋼板の厚さ(mm)
- m₂ : 胴縁の質量分布(kg/m)
- L₂ : 胴縁全長(mm)
- **b**₂ : 胴縁に作用する荷重の負担幅(mm)
- m₃ : 柱の質量分布(kg/m)
- α_H :水平方向の余震震度
- g : 重力加速度(m/s²)
- b. 柱に生じる曲げ応力度

 $\sigma_{b x 3} = (M_{x 3} \cdot 10^{6}) / Z_{x 3}$ $\sigma_{b y 3} = (M_{y 3} \cdot 10^{6}) / Z_{y 3}$ $M_{x 3} = w_{x 3} \cdot (L_{3} \cdot 10^{-3})^{2} / 8$ $M_{y 3} = w_{y 3} \cdot (L_{3} \cdot 10^{-3})^{2} / 8$

σ_{bx3}, σ_{by3}: 柱に生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)
 M_{x3}, M_{y3}: 柱の強軸及び弱軸回りの曲げモーメント (kN・m)
 Z_{x3}, Z_{y3}: 柱の強軸及び弱軸回りの断面係数 (mm³)
 L₃: 柱全長 (mm)

c. 柱に生じるせん断応力度

 $\tau_{x3} = (Q_{x3} \cdot 10^3) / A_{5x3}$ $\tau_{y3} = (Q_{y3} \cdot 10^3) / A_{5y3}$ $Q_{x3} = w_{x3} \cdot (L_3 \cdot 10^{-3}) / 2$ $Q_{y3} = w_{y3} \cdot (L_3 \cdot 10^{-3}) / 2$

τ_{x3}, τ_{y3} : 柱に生じる強軸及び弱軸方向のせん断応力度 (N/mm²)
 Q_{x3}, Q_{y3} : 柱の強軸及び弱軸方向のせん断力 (kN)
 A_{sx3}, A_{sy3} : 柱の強軸及び弱軸方向のせん断断面積 (mm²)
 L₃ : 柱全長 (mm)

- d. 柱に作用する軸応力度

 σ_c(t)₃=(N_c(t)₃·10³) / A_{g3}
 N_c(t)₃=N₃・(1±α_V)
 - σ_{c(t)3}:柱に生じる軸応力度(N/mm²)
 N_{c(t)3}:柱の圧縮又は引張軸力(kN)
 A_{g3}:柱の断面積(mm²)
 N₃:柱の軸力(kN)
 α_V:鉛直方向の余震震度

e. 柱に作用する組合せ応力度

柱に生じる曲げ応力度と軸応力度の組合せに対する検定比は,次式により算 出し,検定比1.0以下であることを確認する。

 $\sigma_{bx3/s} f_{bx3} + \sigma_{by3/s} f_{by3} + \sigma_{c(t)3/s} f_{c(t)3} \le 1.0$

σ_{bx3}, **σ**_{by3} :柱に生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)

- sfbx3,sfby3:柱の強軸及び弱軸回りの短期許容曲げ応力度(N/mm²)
- σ_{c(t)3}:柱に生じる軸応力度 (N/mm²)
- sf_{c(t)3}:短期許容圧縮又は許容引張応力度(N/mm²)

柱に生じる曲げ応力度,軸応力度及びせん断応力度の組合せに対する応力度 は、次式により算出し,短期引張応力度以下であることを確認する。

 $\sqrt{\left(\sigma_{bx3} + \sigma_{by3} + \sigma_{c(t)3}\right)^{2} + 3 \cdot \tau_{3}^{2}} \leq f_{t3}$

σ _{bx3} , σ _{by3}	:柱の強軸及び弱軸回りの曲げ応力度 (N/mm ²)
σ $_{c}$ ($_{t}$) $_{3}$:柱に生じる軸応力度 (N/mm²)
τ 3	: 柱に生じるせん断応力度 max (τ _{x3} , τ _{y3}) (N/mm ²)
s f t 3	:短期許容引張応力度 (N/mm ²)

(4) はり及び水平ブレース

はり及び水平ブレースは、2次元フレームモデルにモデル化し、はり及び水平ブレースに生じる応力がはり及び水平ブレースの短期許容応力度以下であることを 確認する。

a. 解析モデル

はり及び水平ブレースは、はり要素にモデル化し、2次元フレーム解析により 応力を算定する。検討スパンは、接合部の現況を考慮した有効長さとして評価 する。解析に使用するコードは、「SD」である。なお、解析コードの検証及 び妥当性の確認の概要については、VI-5「計算機プログラム(解析コード)の 概要」に示す。解析モデル図を図 5-6 に、はりに作用する荷重の例を図 5-7 に示す。解析に用いる物性値は以下とする。

ヤング係数 : $E = 2.05 \times 10^{5} (N/mm^{2})$ せん断弾性係数: $G = 0.79 \times 10^{5} (N/mm^{2})$

条件	記号	備考
部材接合条件	0	ピン接合
支点境界条件	\bigtriangleup	ピン支点

<u>はり(上段)</u> 図 5-6(1) はり解析モデル図

条件	記号	備考
部材接合条件	0	ピン接合
支点境界条件	\bigtriangleup	ピン支点

はり (中段)

図 5-6(2) はり及び水平ブレース解析モデル図

b. 単位長さ当たりの等分布荷重

 $w_{x4} = (P_h + P) \cdot b_4 \cdot 10^{-3} + S d$ $w_{y4} = S d_V$

wx4 :静水圧荷重及び余震を考慮した荷重(kN/m)

w_{y4} : 余震を考慮した荷重(kN/m)

- P_h :静水圧荷重(kN/m²)
- P : 動水圧荷重(kN/m²)
- **b**₄ : はりに作用する荷重の負担幅(mm)
- Sd : 余震による地震荷重(kN/m)
- Sdv: 余震による鉛直地震荷重(kN/m)

c. はりに生じる曲げ応力度 σ_{bx4}= (M_{x4}・10⁶) /Z_{x4} σ_{by4}= (M_{y4}・10⁶) /Z_{y4}

σ_{bx4}, σ_{by4}:はりに生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)M_{x4}, M_{y4}:はりの強軸及び弱軸回りの曲げモーメント (kN・m)Z_{x4}, Z_{y4}:はりの強軸及び弱軸回りの断面係数 (mm³)

d. はりに生じるせん断応力度

 τ_{x4}= (Q_{x4} · 10³) /A_{Sx4}

 τ_{y4}= (Q_{y4} · 10³) /A_{Sy4}

τ_{x4}, τ_{y4} :はりに生じる強軸及び弱軸方向のせん断応力度 (N/mm²)
 Q_{x4}, Q_{y4} :はりの強軸及び弱軸方向のせん断力 (kN)
 A_{sx4}, A_{sy4} :はりの強軸及び弱軸方向のせん断断面積 (mm²)

e. はりに生じる軸応力度

 $\sigma_{c}(t)_{4} = (N_{c}(t)_{4} \cdot 10^{3}) / A_{g4}$

σ_{c(t)4}:はりに生じる軸応力度(N/mm²)
 N_{c(t)4}:はりの圧縮又は引張軸力(kN)
 A_{g4}:はりの断面積(mm²)

f. はりに生じる組合せ応力度
 はりに生じる曲げ応力度と軸応力度の組合せに対する検定比は、次式により
 算出し、検定比 1.0 以下であることを確認する。

 $\sigma_{bx4}/s_{fbx4} + \sigma_{by4}/s_{fby4} + \sigma_{c(t)4}/s_{fc(t)4} \le 1.0$

 σ_{bx4}, σ_{by4}
 :はりに生じる強軸及び弱軸回りの曲げ応力度(N/mm²)

 s f_{bx4}, s f_{by4}
 :はりの強軸及び弱軸回りの短期許容曲げ応力度(N/mm²)

 σ_{c(t)4}
 :はりに生じる軸応力度(N/mm²)

 s f_{c(t)4}
 :短期許容圧縮又は許容引張応力度(N/mm²)

はりに生じる曲げ応力度,軸応力度及びせん断応力度の組合せに対する応力 度は,次式により算出し,短期許容引張応力度以下であることを確認する。

$$\sqrt{\left(\sigma_{b\,x\,4} \ + \ \sigma_{b\,y\,4} \ + \ \sigma_{c\ (\,t\,)\ 4}\,\right)^2 \ + \ 3 \ \cdot \ \tau_4^{\ 2}} \! \leq_{\rm s} \! f_{t\,4}$$

 σ_{bx4}, σ_{by4}
 :はりに生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)

 σ_{c(t)4}
 :はりに生じる軸応力度 (N/mm²)

 τ₄
 :はりに生じるせん断応力度 max (τ_{x4}, τ_{y4}) (N/mm²)

 s f_{t4}
 :短期許容引張応力度 (N/mm²)

g. 水平ブレースに生じる軸応力度

 $\sigma_{c (t)5} = (N_{c (t)5} \cdot 10^3) / A_{g5}$

σ_{c(t)5}:水平ブレースに生じる軸応力度 (N/mm²)
 N_{c(t)5}:水平ブレースの圧縮又は引張軸力 (kN)
 A_{g5}:水平ブレースの断面積 (mm²)
(5) アンカーボルト

アンカーボルト1本当たりに生じる引張力又はせん断力が,「各種合成構造設計指針」に基づき算定したアンカーボルトの短期許容荷重以下であることを確認する。アンカーボルトに生じる荷重の例を図 5-8 に示す。

 $(T_{d_{6}}/T_{a})^{2} + (Q_{d_{6}}/Q_{a})^{2} \leq 1$

 $T_{d 6} = T_6 / n_6$

 $T_{d 6} / T_a \leq 1.0$

- T₆ : 柱又ははりに生じる引張力(kN)
- n₆:柱又ははりに取り付くアンカーボルトの本数(本)
- T_{d6}:アンカーボルト1本当たりに生じる引張力(kN)
- T。:アンカーボルト1本当たりの短期許容引張力(kN)

 $Q_{d 6} = Q_6 / n_6$

 $Q_{d 6} / Q_a \leq 1.0$

- Q₆ : 柱又ははりに生じるせん断力(kN)
- Q_{d6}:アンカーボルト1本当たりに生じるせん断力(kN)
- Qa : アンカーボルト1本当たりの短期許容せん断力(kN)

図 5-8 アンカーボルトに生じる荷重の例

5.1.6 評価条件

「5.1.5 評価方法」に用いる評価条件を表 5-8 に示す。

対象部位	記号	単位	定義	数値
	Н	mm	浸水深さ	5050
	$ ho$ $_{ m o}$	t/m^3	水の密度	1.03
	g	m/s^2	重力加速度	9.80665
共通	lpha H	_	水平方向の余震震度	0.60
	α v	_	鉛直方向の余震震度	1.44
	β	_	浸水エリアの幅と水深の比 による補正係数	1.0
	h	mm	水圧作用高さ	5050
	$\rho_{\rm s}$	t/m^3	鋼板の密度	7.85
鋼板	t	mm	鋼板の厚さ	22
	Ζ1	mm ³	鋼板の断面係数	80. 67×10^3
	L ₁	mm	鋼板の短辺長さ	850
	h	mm	水圧作用高さ	5050
	b 2	mm	胴縁に作用する荷重の負担幅	700
	m_2	kg/m	胴縁の質量分布	265.1
旧经	Z_{x^2}	mm^3	胴縁の強軸回りの断面係数	1526×10^{3}
用吗 孙家	Z_{y2}	mm ³	胴縁の弱軸回りの断面係数	141×10^{3}
	L ₂	mm	胴縁の全長	1610
	A s $_{x 2}$	mm^2	胴縁の強軸方向のせん断断面積	7308
	A_{sy2}	mm^2	胴縁の弱軸方向のせん断断面積	6400
	h	mm	水圧作用高さ	5050
	b 3	mm	柱に作用する荷重の負担幅	2040
	m_3	kg/m	柱の質量分布	428.3
	Z_{x^3}	mm^3	柱の強軸回りの断面係数	7627×10^{3}
柱	Z_{y3}	mm^3	柱の弱軸回りの断面係数	2668×10^{3}
	L ₃	mm	柱全長	2850
	A _{S x 3}	mm^2	柱の強軸方向のせん断断面積	9592
	Asy3	mm^2	柱の弱軸方向のせん断断面積	32000
	A g 3	mm^2	柱の断面積	41592

表 5-8(1) 強度評価に用いる入力値

対象部位	記号	単位	定義	数值
	b ₄	mm	はりに作用する荷重の負担幅	810
	1			5050
	n	mm	水圧作用高さ	(810*)
	M $_{x 4}$	kN • m	はりの強軸回りの曲げモーメント	89.7
	M y 4	kN•m	はりの弱軸回りの曲げモーメント	3.18
	Z_{x4}	mm ³	はりの強軸回りの断面係数	5631×10^{3}
はり	Z_{y4}	mm ³	はりの弱軸回りの断面係数	1834×10^{3}
	Q_{x4}	kN	はりの強軸方向のせん断力	87.7
	Q_{y4}	kN	はりの弱軸方向のせん断力	9.86
	A s $_{x 4}$	mm^2	はりの強軸方向のせん断断面積	8664
	A s $_{y 4}$	mm^2	はりの弱軸方向のせん断断面積	22000
	$N_{\ c}$ (t) $_4$	kN	はりの圧縮又は引張軸力	318.64
	A $_{\rm g 4}$	mm^2	はりの断面積	30664
水亚ブレーフ	N _{c (t)} 5	kN	水平ブレースの圧縮又は引張軸力	298.33
	A g 5	mm^2	水平ブレースの断面積	13880
アンカーボルト	n 6	本	柱又ははりに取り付くアンカーボ ルトの本数	16

表 5-8(2) 強度評価に用いる入力値

注記*:はり(上段)の水圧作用高さを示す。

- 6. タービン建物地下1階復水器室北東側防水壁
- 6.1 強度評価方法
 - 6.1.1 記号の説明

タービン建物地下1階復水器室北東側防水壁の評価に用いる記号を表 6-1 に 示す。

表 6-1(1) タービン建物地下1階復水器室北東側防水壁の強度評価に用いる記号

記号	単位	定義	
W 1	kN/m	鋼板に作用する静水圧荷重及び余震を考慮した荷重	
P _h	kN/m^2	静水圧荷重	
ρ _o	t/m^3	水の密度	
g	m/s^2	重力加速度	
Н	mm	浸水深さ	
h	mm	水圧作用高さ	
Р	kN/m^2	動水圧荷重	
β	—	浸水エリアの幅と水深の比による補正係数(1.0)	
αн	—	水平方向の余震震度	
S d	kN/m	余震による水平地震荷重	
t	mm	鋼板の厚さ	
ρ _s	t/m^3	鋼板の密度	
σ bl	N/mm^2	鋼板に生じる曲げ応力度	
M 1	kN • m	鋼板の曲げモーメント	
Ζ ₁	mm^3	鋼板の断面係数	
L ₁	mm	鋼板の短辺長さ	
W x 2	kN/m	胴縁に作用する静水圧荷重及び余震を考慮した荷重	
W y 2	kN/m	胴縁に作用する余震を考慮した荷重	
S d v	kN/m	余震による鉛直地震荷重	
b ₂	mm	胴縁に作用する荷重の負担幅	
m ₂	kg/m	胴縁の質量分布	
αν	_	鉛直方向の余震震度	
σ _{bx2}	N/mm^2	胴縁に生じる強軸回りの曲げ応力度	
о _{by2}	N/mm^2	胴縁に生じる弱軸回りの曲げ応力度	
M _{x 2}	kN•m	胴縁に生じる強軸回りの曲げモーメント	
$M_{y 2}$	kN•m	胴縁に生じる弱軸回りの曲げモーメント	
Z x 2	mm ³	胴縁の強軸回りの断面係数	

記号 単位		定義
Z mm ³ L mm		胴縁の弱軸回りの断面係数
		胴縁全長
τ x 2	N/mm^2	胴縁に生じる強軸方向のせん断応力度
τ _{у2}	N/mm^2	胴縁に生じる弱軸方向のせん断応力度
Q _{x 2}	kN	胴縁の強軸方向のせん断力
Q _{y 2}	kN	胴縁の弱軸方向のせん断力
A _{sx2}	mm^2	胴縁の強軸方向のせん断断面積
A s y 2	mm^2	胴縁の弱軸方向のせん断断面積
σ _c (t) 2	N/mm^2	胴縁に生じる軸応力度
N c (t) 2	kN	胴縁の圧縮又は引張軸力
A g 2	mm^2	胴縁の断面積
${f N}_2$	kN	胴縁の軸力
sfbx2	N/mm^2	胴縁の強軸方向の短期許容曲げ応力度
sf by2	N/mm^2	胴縁の弱軸方向の短期許容曲げ応力度
s f c (t) 2	N/mm^2	胴縁の短期許容圧縮又は許容引張応力度
sft2 N/mm ²		胴縁の短期許容引張応力度
W _{x 3}	kN/m	根太に作用する静水圧荷重及び余震を考慮した荷重
W _{y 3}	kN/m	根太に作用する余震を考慮した荷重
b ₃ mm		根太に作用する荷重の負担幅
m 3	kg/m	根太の質量分布
σ _{bx3}	N/mm^2	根太に生じる強軸回りの曲げ応力度
о _{b у 3}	N/mm^2	根太に生じる弱軸回りの曲げ応力度
M $_{\rm x}$ $_3$	kN • m	根太に生じる強軸回りの曲げモーメント
М у 3	kN • m	根太に生じる弱軸回りの曲げモーメント
Z x 3	mm^3	根太の強軸回りの断面係数
Z y 3	mm^3	根太の弱軸回りの断面係数
L ₃	mm	根太全長
$ au_{{f x}3}$	N/mm^2	根太に生じる強軸方向のせん断応力度
τ _{у3}	N/mm^2	根太に生じる弱軸方向のせん断応力度
Q _{x 3}	kN	根太の強軸方向のせん断力
Q _{y 3}	kN	根太の弱軸方向のせん断力
A _{s x 3}	mm^2	根太の強軸方向のせん断断面積
Asy3	mm^2	根太の弱軸方向のせん断断面積

表 6-1(2) タービン建物地下1階復水器室北東側防水壁の強度評価に用いる記号

記号	単位	定義		
s f t N/mm ² w x 4 kN/m w y 4 kN/m		根太の短期許容引張応力度		
		柱の強軸方向に作用する静水圧荷重及び余震を考慮した荷重		
		柱の弱軸方向に作用する静水圧荷重及び余震を考慮した荷重		
b ₄	mm	柱に作用する荷重の負担幅		
σ _{bx4}	N/mm^2	柱に生じる強軸回りの曲げ応力度		
σ _{by4}	N/mm^2	柱に生じる弱軸回りの曲げ応力度		
M _{x 4}	kN•m	柱の強軸回りの曲げモーメント		
M $_{y 4}$	kN•m	柱の弱軸回りの曲げモーメント		
Z x 4	mm ³	柱の強軸回りの断面係数		
Z y 4	mm ³	柱の弱軸回りの断面係数		
L ₄	mm	柱全長		
τ _{x4}	N/mm^2	柱に生じる強軸方向のせん断応力度		
τ _{у4}	N/mm^2	柱に生じる弱軸方向のせん断応力度		
Q x 4	kN	柱の強軸方向のせん断力		
Q y 4	kN	柱の弱軸方向のせん断力		
A_{S_X4} mm ²		柱の強軸方向のせん断断面積		
A_{Sy4}	mm^2	柱の弱軸方向のせん断断面積		
σ _c (t)4	N/mm^2	柱に生じる軸応力度		
N _{c(t)4} kN		柱の圧縮又は引張軸力		
A $_{g 4}$	mm^2	柱の断面積		
N $_4$	kN	柱の軸力		
sfbx4	N/mm^2	柱の強軸方向の短期許容曲げ応力度		
sf by4	N/mm^2	柱の弱軸方向の短期許容曲げ応力度		
s f c (t) 4	N/mm^2	柱の短期許容圧縮又は許容引張応力度		
s f t4	N/mm^2	柱の短期許容引張応力度		
W x 5	kN/m	はりに作用する静水圧荷重及び余震を考慮した荷重		
W _{y 5}	kN/m	はりに作用する余震を考慮した荷重		
b 5	mm	はりに作用する荷重の負担幅		
О _{b x 5}	N/mm^2	はりに生じる強軸回りの曲げ応力度		
О ьу5	N/mm^2	はりに生じる弱軸回りの曲げ応力度		
M $_{\mathrm{x}~5}$	kN • m	はりの強軸回りの曲げモーメント		
M $_{\rm y}$ $_5$	kN•m	はりの弱軸回りの曲げモーメント		
Z x 5	mm ³	はりの強軸回りの断面係数		

表 6-1(3) タービン建物地下1階復水器室北東側防水壁の強度評価に用いる記号

記号	単位定義	
Z y 5 mm ³ L 5 mm		はりの弱軸回りの断面係数
		はり全長
τ _{x5}	N/mm^2	はりに生じる強軸方向のせん断応力度
τ _{у5}	N/mm^2	はりに生じる弱軸方向のせん断応力度
Q $_{\rm x~5}$	kN	はりの強軸方向のせん断力
Q _{y 5}	kN	はりの弱軸方向のせん断力
A _{sx5}	mm^2	はりの強軸方向のせん断断面積
A _{sy5}	mm^2	はりの弱軸方向のせん断断面積
σ _c (t)5	N/mm^2	はりに生じる軸応力度
N c (t) 5	kN	はりの圧縮又は引張軸力
A g 5	mm^2	はりの断面積
sfbx5	N/mm^2	はりの強軸方向の短期許容曲げ応力度
sf by5	N/mm^2	はりの弱軸方向の短期許容曲げ応力度
s f c (t) 5	N/mm^2	はりの短期許容圧縮又は許容引張応力度
sft5	N/mm^2	はりの短期許容引張応力度
W _{x 6}	kN/m	斜材に作用する静水圧荷重及び余震を考慮した荷重
W y 6	kN/m	余震を考慮した荷重
b 6	mm	斜材に作用する荷重の負担幅
о _{b х 6}	N/mm^2	斜材に生じる強軸回りの曲げ応力度
о _{руб}	N/mm^2	斜材に生じる弱軸回りの曲げ応力度
M $_{\rm x~6}$	kN • m	斜材の強軸回りの曲げモーメント
Муб	kN • m	斜材の弱軸回りの曲げモーメント
Z x 6	mm ³	斜材の強軸回りの断面係数
Z y 6	mm ³	斜材の弱軸回りの断面係数
L 6	mm	斜材全長
τ _{x6}	N/mm^2	斜材に生じる強軸方向のせん断応力度
τ _{у6}	N/mm^2	斜材に生じる弱軸方向のせん断応力度
Q _{x 6}	kN	斜材の強軸方向のせん断力
Q y 6	kN	斜材の弱軸方向のせん断力
A _{Sx6}	mm ²	斜材の強軸方向のせん断断面積
A s y 6	mm^2	斜材の弱軸方向のせん断断面積

表 6-1(4) タービン建物地下1階復水器室北東側防水壁の強度評価に用いる記号

記号	単位定義		
$\sigma_{\rm c~(t)~6}$ N/mm ²		斜材に生じる軸応力度	
N c (t) 6	kN	斜材の圧縮又は引張軸力	
A g 6	mm^2	斜材の断面積	
sf bx6	N/mm^2	はりの強軸方向の短期許容曲げ応力度	
sf by6	N/mm^2	はりの弱軸方向の短期許容曲げ応力度	
s f c (t) 6	N/mm^2	斜材の短期許容圧縮又は許容引張応力度	
sft6	N/mm^2	斜材の短期許容引張応力度	
T ₇ kN n ₇ 本 T _{d7} kN		斜材に発生する引張力	
		斜材に取り付くアンカーボルトの本数	
		アンカーボルト1本当たりに生じる引張力	
T a	kN	アンカーボルト1本当たりの短期許容引張力	
Q 7 kN Q d 7 kN Q a kN		斜材に生じるせん断力	
		アンカーボルト1本当りに生じるせん断力	
		アンカーボルト1本当たりの短期許容せん断力	

表 6-1(5) タービン建物地下1階復水器室北東側防水壁の強度評価に用いる記号

6.1.2 評価対象部位

当該防水壁の評価対象部位は「2.2 構造計画」に示す防水壁の構造上の特性を 踏まえ選定する。

当該防水壁に生じる静水圧及び余震に伴う荷重は鋼板, 胴縁, 根太, 柱, はり 及び斜材に伝わり, はり及び斜材を固定するアンカーボルトを介して躯体に伝達 されることから, 評価対象部位を鋼板, 胴縁, 根太, 柱, はり, 斜材及びアンカ ーボルトとする。評価対象部位を図 6-1 に示す。

図 6-1(1) 評価対象部位

6.1.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは, Ⅵ-3-別添 3-1「津波への配慮が必要な施設の強度計算の基本方針」の「4.1 荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを踏まえて設定する。

(1) 荷重の組合せ

当該防水壁の強度評価に用いる荷重の組合せは, VI-3-別添 3-1「津波への配慮 が必要な施設の強度計算の基本方針」を踏まえて下記のとおりに設定する。

 $P_h + K S d$

P_h :静水圧荷重

- KSd :余震荷重
- (2) 荷重の設定
 - a. 静水圧荷重(P_h)

浸水に伴う静水圧荷重を考慮する。静水圧荷重は,評価対象部位周辺の水の 密度に当該部分の浸水深さを考慮した水圧作用高さを乗じた次式により算出す る。この時,鋼板,はり,胴縁,根太及び柱においては当該防水壁下端の最大 静水圧が等分布に作用するものとして安全側に評価する。また,斜材において は斜材のフランジ下端の最大静水圧が等分布に作用するものとして安全側に評 価する。静水圧荷重の算定に用いる水圧作用高さ及び水の密度を表 6-2 に,防 水壁の水圧作用高さの概念図を図 6-2 に示す。

 $P_{h} = \rho_{o} \cdot g \cdot h \cdot 10^{-3}$

- P_h :静水圧荷重(kN/m²)
- ρ。:水の密度(t/m³)
- g : 重力加速度(m/s²)
- h :水圧作用高さ(mm)

b. 余震荷重(KSd)

余震荷重として,弾性設計用地震動Sdによる地震力及び動水圧を考慮する。 評価に用いる余震震度はVI-2-1-7「設計用床応答スペクトルの作成方針」に基 づき設定する。また,余震震度は防水壁設置階と上階の最大値とし,水平震度 はNS方向とEW方向の大きい方を用いる。当該防水壁の余震震度を表 6-3 に 示す。

動水圧荷重は「水道施設耐震工法指針・解説」に基づき,各部位に作用する 動水圧は次式により算出する。この時,鋼板,はり,胴縁,根太及び柱におい ては当該防水壁下端の最大動水圧が等分布に作用するものとして安全側に評価 する。また,斜材においては,斜材のフランジ下端の最大動水圧が等分布に作 用するものとして安全側に評価する。防水壁の水圧作用高さの概念図を図 6-2 に,動水圧荷重の算定に用いる浸水深さ及び水圧作用高さを表 6-2 に,動水圧 荷重の算出結果は表 6-4 に示す。

 $P = \beta \cdot 7 / 8 \cdot \alpha_{\rm H} \cdot \rho_{\rm o} \cdot g \cdot \sqrt{H \cdot h \cdot 10^{-6}}$

- P : 動水圧荷重(kN/m²)
- β : 浸水エリアの幅と水深の比による補正係数(1.0)
- α_H:水平方向の余震震度
- ρ。:水の密度(t/m³)
- g : 重力加速度(m/s²)
- H :浸水深さ(mm)
- h :水圧作用高さ(mm)

図 6-2 防水壁の水圧作用高さの断面概念図

	水圧作用高さ		
浸水深さ	$h_1(mm)$	$h_2(mm)$	水の密度
H (mm)	鋼板, 胴縁, 根太, 柱, はり	斜材	$ ho_{ m o}({ m t/m^3})$
5050	1494	3550	1.03

表 6-2 浸水深さ,水圧作用高さ及び水の密度

表 6-3 余震震度

		弾性設計用地震動 S d の		
建物	設置場所	余震震度*		
		水平ан	鉛直 α v	
タービン建物	EL 0.250m	0.60	0.32	

注記*:設計用震度 I (1.0ZPA)を示す。

表 6-4 動水圧荷重の算出結果

±r /÷	動水圧荷重	
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	$P(kN/m^2)$	
鋼板、胴縁、根太、柱、はり	14.57	
斜材	22.45	

6.1.4 許容限界

許容限界は、VI-3-別添 3-1-1「津波への配慮が必要な施設の強度計算の基本方 針」にて設定している許容限界を踏まえて設定する。

(1) 使用材料

当該防水壁を構成する鋼板, 胴縁, 根太, 柱, はり, 斜材及びアンカーボルトの使用材料を表 6-5 に示す。

評価対象部位		材質	仕様			
鋼板		SS400	PL-22			
	胴縁,根太	SS400	$[-300 \times 90 \times 10 \times 15.5]$			
	柱,はり,斜材	SS400	$\text{H-}300\!\times\!300\!\times\!10\!\times\!15$			
	アンカーボルト	SS400	M22			

表 6-5 使用材料

(2) 許容限界

a. 鋼材

鋼材の許容限界は、「S規準」を踏まえて表 6-6の値とする。

表 6-6 鋼材の許容限界

1.1. FF	部材厚さ	短期許容応力度(N/mm ²)			
材貨	(mm)	引張	圧縮 ^{*2}	曲げ* ²	せん断
55400	t \leq 40 ^{*1}	235	235	235	135
55400	$40 < t \le 100^{*1}$	215	215	215	124

注釈*1: t は板厚を示す。

*2:上限値であり、座屈長さ等を勘案して設定する。

b. アンカーボルト

アンカーボルトの許容限界は「各種合成構造設計指針・同解説」を踏まえて 表 6-7 の値とする。

なお,アンカーボルトが引張力を受ける場合においては,アンカーボルトの 降伏により決まる耐力及び付着力を比較して,いずれか小さい値を採用する。 また,アンカーボルトがせん断力を受ける場合においては,アンカーボルトの せん断強度により決まる耐力,定着したコンクリート躯体の支圧強度及びコー ン状破壊により決まる耐力を比較して,いずれか小さい値を採用する。

材質	許容耐力(kN)	
	引張	せん断
SS400	71	49

表 6-7 アンカーボルトの許容限界

6.1.5 評価方法

当該防水壁を構成する鋼板, 胴縁, 根太, 柱, はり, 斜材及びアンカーボルト に発生する応力より算定する応力度が, 許容限界以下であることを確認する。

(1) 鋼板

鋼板に生じる応力は、鋼板を両端ピンの単純はりとして次式により算出し、鋼板の短期許容応力度以下であることを確認する。鋼板に作用する荷重の例を図 6 -3に示す。

- a. 単位長さ当たりの等分布荷重
 w₁ = (P_h+P) ・ b₁+S d
 - w1 :静水圧荷重及び余震を考慮した荷重(kN/m)
 - P_h :静水圧荷重(kN/m²)
 - P : 動水圧荷重(kN/m²)
 - b₁ : 鋼板の幅(単位幅:1.0m)
 - Sd :鋼板に生じる余震による地震荷重(t・10⁻³・α_H・ρ_s・g)(kN/m)
 - t :鋼板の厚さ(mm)
 - α_H :水平方向の余震震度
 - ρ_s :鋼板の密度(t/m³)
 - g : 重力加速度(m/s²)
- b. 鋼板に生じる曲げ応力度 σ_{b1}= (M₁・10⁶) / Z₁ M₁=w₁・ (L₁・10⁻³)²/8
 - **σ**_{b1} : 鋼板に生じる曲げ応力度(N/mm²)
 - M₁ :鋼板の曲げモーメント(kN・m)
 - Z₁:鋼板の断面係数(mm³)
 - L₁ : 鋼板の短辺長さ(mm)

図 6-3 鋼板に作用する荷重の例

(2) 胴縁

胴縁に生じる応力は、胴縁を両端ピンの単純はりとして次式により算出し、胴
縁の短期許容応力度以下であることを確認する。胴縁に作用する荷重の例を図 6 -4に示す。

a. 単位長さ当たりの等分布荷重 w_{x2}= (P_h+P) ・ b₂・10⁻³+S d w_{y2}=S d_V

- w x 2 :静水圧荷重及び余震を考慮した荷重(kN/m)
- w_{y2} : 余震を考慮した荷重(kN/m)
- P_h :静水圧荷重(kN/m²)
- P : 動水圧荷重(kN/m²)
- b₂ : 胴縁に作用する荷重の負担幅(mm)
- Sd : 胴縁に生じる余震による水平地震荷重(kN/m)

 $((\rho_{s} \cdot b_{2} \cdot t \cdot 10^{-6} + m_{2} \cdot 10^{-3}) \cdot \alpha_{H} \cdot q)$

- S d_V : 胴縁に生じる余震による鉛直地震荷重(kN/m) ((ρ_s・b₂・t・10⁻⁶+m₂・10⁻³)・(1±α_V)・g)
- ρ_s:鋼板の密度(t/m³)
- t :鋼板の厚さ(mm)
- m₂ : 胴縁の質量分布(kg/m)

- α_H :水平方向の余震震度
- α_v :鉛直方向の余震震度
- g : 重力加速度(m/s²)
- b. 胴縁に生じる曲げ応力度

 $\sigma_{b x 2} = (M_{x 2} \cdot 10^{6}) / Z_{x 2}$ $\sigma_{b y 2} = (M_{y 2} \cdot 10^{6}) / Z_{y 2}$ $M_{x 2} = w_{x 2} \cdot (L_{2} \cdot 10^{-3})^{2} / 8$ $M_{y 2} = w_{y 2} \cdot (L_{2} \cdot 10^{-3})^{2} / 8$

σ b x 2, σ b y 2	:胴縁に生じる強軸及び弱軸回りの曲げ応力度(N/mm ²)
$M_{\rm ~x~2,}~M_{\rm ~y~2}$:胴縁の強軸及び弱軸回りの曲げモーメント(kN・m)
Z_{x2}, Z_{y2}	: 胴縁の強軸及び弱軸回りの断面係数(mm ³)
L ₂	:胴縁全長(mm)

- c. 胴縁に生じるせん断応力度
 - $\tau_{x2} = (Q_{x2} \cdot 10^3) / A_{Sx2}$ $\tau_{y2} = (Q_{y2} \cdot 10^3) / A_{Sy2}$ $Q_{x2} = w_{x2} \cdot (L_2 \cdot 10^{-3}) / 2$ $Q_{y2} = w_{y2} \cdot (L_2 \cdot 10^{-3}) / 2$
 - τ_{x2}, τ_{y2} : 胴縁に生じる強軸及び弱軸方向のせん断応力度(N/mm²)
 Q_{x2}, Q_{y2} : 胴縁の強軸及び弱軸方向のせん断力(kN)
 A_{sx2}, A_{sy2} : 胴縁の強軸及び弱軸方向のせん断断面積(mm²)
 L₂ : 胴縁全長(mm)
- d. 胴縁に作用する軸応力度

 $\sigma_{c (t) 2} = (N_{c (t) 2} \cdot 10^{3}) / A_{g2}$ $N_{c (t) 2} = N_{2} \cdot (1 \pm \alpha_{V})$

 σ_{c(t)2}
 : 胴縁に生じる軸応力度(N/mm²)

 N_{c(t)2}
 : 胴縁の圧縮又は引張軸力(kN)

 A_{g2}
 : 胴縁の断面積(mm²)

 N₂
 : 胴縁の軸力(kN)

 α_V
 : 鉛直方向の余震震度

e. 胴縁に生じる組合せ応力度

胴縁に生じる曲げ応力度と軸応力度の組合せに対する検定比は,次式により 算出し,検定比1.0以下であることを確認する。

 $\sigma_{bx2/s} f_{bx2} + \sigma_{by2/s} f_{by2} + \sigma_{c(t)2/s} f_{c(t)2} \le 1.0$

σ_{bx2}, **σ**_{by2} : 胴縁に生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)

- sf_{bx2},sf_{by2}:胴縁の強軸及び弱軸回りの短期許容曲げ応力度(N/mm²)
- **σ**_{c(t)2} : 胴縁に生じる軸応力度 (N/mm²)
- 。f_{c(t)2}:短期許容圧縮又は許容引張応力度(N/mm²)

胴縁に生じる曲げ応力度,軸応力度及びせん断応力度の組合せに対する応力 度は,次式により算出し,短期許容引張応力度以下であることを確認する。

 $\sqrt{\left(\sigma_{\mathrm{bx2}} + \sigma_{\mathrm{by2}} + \sigma_{\mathrm{c(t)2}}\right)^{2} + 3 \cdot \tau_{2}^{2}} \leq \mathrm{sf_{t2}}$

- **σ**_{bx2}, **σ**_{by2} : 胴縁の強軸及び弱軸回りの曲げ応力度 (N/mm²)
- σ_{c(t)2} : 胴縁に生じる軸応力度 (N/mm²)
- τ₂ : 胴縁に生じるせん断応力度 max (τ_{x2}, τ_{y2}) (N/mm²)
- s f t 2 : 短期許容引張応力度 (N/mm²)

図 6-4 胴縁に作用する荷重の例

(3) 根太

根太に生じる応力は、根太を両端ピンの単純はりとして次式により算出し、根 太の短期許容応力度以下であることを確認する。根太に作用する荷重の例を図 6 -5に示す。

a. 単位長さ当たりの等分布荷重

 $w_{x3} = (P_h + P) \cdot b_3 \cdot 10^{-3} + S d_v$ $w_{y3} = S d$

- wx3 :静水圧荷重及び余震を考慮した荷重(kN/m)
- w_{y3} : 余震を考慮した荷重(kN/m)
- P_h :静水圧荷重(kN/m²)
- P : 動水圧荷重(kN/m²)
- b₃:根太に作用する荷重の負担幅(mm)
- S d : 根太に生じる余震による水平地震荷重(kN/m)

 $((\rho_{s} \cdot b_{3} \cdot t \cdot 10^{-6} + m_{3} \cdot 10^{-3}) \cdot \alpha_{H} \cdot g)$

S d_v :根太に生じる余震による鉛直地震荷重(kN/m)

$$((\rho_{s} \cdot b_{3} \cdot t \cdot 10^{-6} + m_{3} \cdot 10^{-3}) \cdot (1 \pm \alpha_{V}) \cdot q)$$

- ρ_s:鋼板の密度(t/m³)
- t :鋼板の厚さ(mm)
- m₃ : 根太の質量分布(kg/m)
- α_H :水平方向の余震震度
- α_V:鉛直方向の余震震度
- g : 重力加速度(m/s²)

b. 根太に生じる曲げ応力度

 $\sigma_{b x 3} = (M_{x 3} \cdot 10^{6}) / Z_{x 2}$ $\sigma_{b y 3} = (M_{y 3} \cdot 10^{6}) / Z_{y 2}$ $M_{x 3} = w_{x 3} \cdot (L_{3} \cdot 10^{-3})^{2} / 8$ $M_{y 3} = w_{y 3} \cdot (L_{3} \cdot 10^{-3})^{2} / 8$

σ_{bx3}, σ_{by3}: 根太に生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)
 M_{x3}, M_{y3}: 根太の強軸及び弱軸回りの曲げモーメント(kN・m)
 Z_{x3}, Z_{y3}: 根太の強軸及び弱軸回りの断面係数(mm³)
 L₃: 根太全長(mm)

c. 根太に生じるせん断応力度

 $\tau_{x3} = (Q_{x3} \cdot 10^3) / A_{Sx2}$ $\tau_{y3} = (Q_{y3} \cdot 10^3) / A_{Sy2}$ $Q_{x3} = w_{x3} \cdot (L_3 \cdot 10^{-3}) / 2$ $Q_{y3} = w_{y3} \cdot (L_3 \cdot 10^{-3}) / 2$

- τ_{x3}, τ_{y3} :根太に生じる強軸及び弱軸方向のせん断応力度(N/mm²)
 Q_{x3}, Q_{y3} :根太の強軸及び弱軸方向のせん断力(kN)
 A_{sx3}, A_{sy3} :根太の強軸及び弱軸方向のせん断断面積(mm²)
 L₃ :根太全長(mm)
- d. 根太に生じる組合せ応力度

根太に生じる曲げ応力度とせん断応力度から、組合せ応力度を「S規準」に 基づく次式により算定し、短期許容応力度以下であることを確認する。

 $\sqrt{(\sigma_{bx3} + \sigma_{by3})^{2} + 3 \cdot \tau_{3}^{2}} \leq {}_{s}f_{t3}$ $\sigma_{bx3, \sigma_{by3}} : 根太に生じる強軸及び弱軸回りの曲げ応力度 (N/mm^{2})$ $\tau_{3} : 根太に生じるせん断応力度 max (\tau_{x3}, \tau_{y3}) (N/mm^{2})$ ${}_{s}f_{t3} : 短期許容引張応力度 (N/mm^{2})$

断面概念図

平面図

図 6-5 根太に作用する荷重の例

(4) 柱

柱に生じる応力は、柱を両端ピンの単純はりとして次式により算出し、柱の短期許容応力度以下であることを確認する。柱に作用する荷重の例を図 6-6 に示す。

a. 単位長さ当たりの等分布荷重

 $w_{x4} = (P_h + P) \cdot b_4 \cdot 10^{-3} + S d$ $w_{y4} = (P_h + P) \cdot b_4 \cdot 10^{-3} + S d$

w_{x4}:強軸方向に作用する静水圧荷重及び余震を考慮した荷重(kN/m)

- wy4 : 弱軸方向に作用する静水圧荷重及び余震を考慮した荷重(kN/m)
- P_h :静水圧荷重 (kN/m²)
- P : 動水圧荷重(kN/m²)
- **b**₄ : 柱に作用する荷重の負担幅(mm)
- Sd : 余震による地震荷重(kN/m)

b. 柱に生じる曲げ応力度

 $\sigma_{b x 4} = (M_{x 4} \cdot 10^{6}) / Z_{x 4}$ $\sigma_{b y 4} = (M_{y 4} \cdot 10^{6}) / Z_{y 4}$ $M_{x 4} = w_{x 4} \cdot (L_{4} \cdot 10^{-3}) / 8$ $M_{y 4} = w_{y 4} \cdot (L_{4} \cdot 10^{-3}) / 8$

σ_{bx4}, σ_{by4}: 柱に生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)
 M_{x4}, M_{y4}: 柱の強軸及び弱軸回りの曲げモーメント(kN・m)
 Z_{x4}, Z_{y4}: 柱の強軸及び弱軸回りの断面係数(mm³)
 L₄: 柱全長(mm)

c. 柱に生じるせん断応力度

 $\begin{aligned} \tau_{x4} &= (Q_{x4} \cdot 10^3) \ / A_{5x4} \\ \tau_{y4} &= (Q_{y4} \cdot 10^3) \ / A_{5y4} \\ Q_{x4} &= w_{x4} \cdot (L_4 \cdot 10^{-3}) \ / 2 \\ Q_{y4} &= w_{y4} \cdot (L_4 \cdot 10^{-3}) \ / 2 \end{aligned}$

L₄ : 柱全長(mm)

d. 柱に生じる軸応力度

 $\sigma_{c (t) 4} = (N_{c (t) 4} \cdot 10^{3}) / A_{g4}$ $N_{c (t) 4} = N_{4} \cdot (1 \pm \alpha_{V})$

σ_{c(t)4}:柱に生じる軸応力度(N/mm²)

- N_{c(t)4}:柱の圧縮又は引張軸力(kN)
- A_{g4} : 柱の断面積(mm²)
- N₄ :柱の軸力(kN)
- α v:鉛直方向の余震震度
- e. 柱に生じる組合せ応力度

柱に生じる曲げ応力度と軸応力度の組合せに対する検定比は,次式により算 出し,検定比1.0以下であることを確認する。

 $\sigma_{b x 4}/_{s} f_{b x 4} + \sigma_{b y 4}/_{s} f_{b y 4} + \sigma_{c (t) 4}/_{s} f_{c (t) 4} \leq 1.0$

 σ_{bx4}, σ_{by4}
 : 柱に生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)

 s f_{bx4}, s f_{by4}
 : 柱の強軸及び弱軸回りの短期許容曲げ応力度 (N/mm²)

 σ_{c(t)4}
 : 柱に生じる軸応力度 (N/mm²)

sfc(t)4 : 短期許容圧縮又は許容引張応力度(N/mm²)

柱に生じる曲げ断応力度,軸応力度及びせん断応力度の組合せに対する応力 度は,次式により算出し,短期許容引張応力度以下であることを確認する。

 $\sqrt{\left(\sigma_{bx4} + \sigma_{by4} + \sigma_{c(t)4}\right)^2 + 3 \cdot \tau_4^2} \leq sf_{t4}$

 σ_{bx4}, σ_{by4}
 : 柱に生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)

 σ_{c(t)4}
 : 柱に生じる軸応力度 (N/mm²)

 τ₄
 : 柱に生じるせん断応力度 max (τ_{x4}, τ_{y4}) (N/mm²)

 s f_{t4}
 : 短期許容引張応力度 (N/mm²)

(5) はり

はりに生じる応力は、はりを両端ピンの単純はりとして次式により算出し、は りの短期許容応力度以下であることを確認する。はりに作用する荷重の例を図 6 -7に示す。

a. 単位長さ当たりの等分布荷重 w_{x5}= (P_h+P) ・ b₅・10⁻³+S d w_{y5}=S d_V

wx5 :静水圧荷重及び余震を考慮した荷重(kN/m)

- w_{y5} : 余震を考慮した荷重(kN/m)
- P_h :静水圧荷重(kN/m²)
- P : 動水圧荷重(kN/m²)
- b₅ : はりに作用する荷重の負担幅(mm)
- S d :余震による地震荷重(kN/m)
- Sdv: 余震による鉛直地震荷重(kN/m)

b. はりに生じる曲げ応力度

 $\sigma_{b x 5} = (M_{x 5} \cdot 10^{6}) / Z_{x 5}$ $\sigma_{b y 5} = (M_{y 5} \cdot 10^{6}) / Z_{y 5}$ $M_{x 5} = w_{x 5} \cdot (L_{5} \cdot 10^{-3})^{2} / 8$ $M_{y5} = W_{y5} \cdot (L_5 \cdot 10^{-3})^2 / 8$

 σ_{bx5}, σ_{by5}
 : はりに生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)

 M_{x5}, M_{y5}
 : はりの強軸及び弱軸回りの曲げモーメント(kN・m)

 Z_{x5}, Z_{y5}
 : はりの強軸及び弱軸回りの断面係数(mm³)

 L₅
 : はり全長(mm)

c. はりに生じるせん断応力度

 $\tau_{x5} = (Q_{x5} \cdot 10^3) / A_{5x5}$ $\tau_{y5} = (Q_{y5} \cdot 10^3) / A_{5y5}$ $Q_{x5} = w_{x5} \cdot (L_5 \cdot 10^{-3}) / 2$ $Q_{y5} = w_{y5} \cdot (L_5 \cdot 10^{-3}) / 2$

τ_{x5}, τ_{y5} : はりに生じる強軸及び弱軸方向のせん断応力度 (N/mm²)
 Q_{x5}, Q_{y5} : はりの強軸及び弱軸方向のせん断力(kN)
 A_{Sx5}, A_{Sy5} : はりの強軸及び弱軸方向のせん断断面積(mm²)
 L₅ : はり全長(mm)

d. はりに生じる軸応力度 σ_{c(t)5}=(N_{c(t)5}・10³)/A_{g5}

σ_{c(t)5} :はりに生じる軸応力度(N/mm²)

N_{c(t)5}:はりの圧縮又は引張軸力(kN)

A_{g5} : はりの断面積(mm²)

e. はりに生じる組合せ応力度

はりに生じる曲げ応力度と軸応力度の組合せに対する検定比は,次式により 算出し,検定比1.0以下であることを確認する。

 $\sigma_{bx5/s} f_{bx5} + \sigma_{by5/s} f_{by5} + \sigma_{c(t)5/s} f_{c(t)5} \le 1.0$

σ_{bx5}, **σ**_{by5} : はりに生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)

sfbx5, sfby5:はりの強軸及び弱軸回りの短期許容曲げ応力度(N/mm²)

- σ_{c(t)5}:はりに生じる軸応力度(N/mm²)
- sfc(t)5 : 短期許容圧縮又は許容引張応力度(N/mm²)

はりに生じる曲げ断応力度,軸応力度及びせん断応力度の組合せに対する応 力度は,次式により算出し,短期許容引張応力度以下であることを確認する。

 $\sqrt{\left(\sigma_{\text{bx5}} + \sigma_{\text{by5}} + \sigma_{\text{c(t)}5}\right)^2 + 3 \cdot \tau_5^2} \leq _{s} f_{t5}$

:はりに生じる強軸及び弱軸回りの曲げ応力度 (N/mm²) σ_{bx5}, σ_{by5} : はりに生じる軸応力度(N/mm²) **σ**_c(t) 5 :はりに生じるせん断応力度 max (τ_{x5}, τ_{y5}) (N/mm²) τ₅ :短期許容引張応力度(N/mm²) sft5

図 6-7 はりに作用する荷重の例

(6) 斜材

斜材に生じる応力は、斜材を一端ピン他端固定の単純はりとして次式により算 出し、斜材の短期許容応力度以下であることを確認する。斜材に作用する荷重の 例を図 6-8 に示す。

a. 単位長さ当たりの等分布荷重
 w_{x6}=(P_{h6}+P₆)・b₆・10⁻³+Sd
 w_{y6}=Sdv

- w_{x6}:静水圧荷重及び余震を考慮した荷重(kN/m)
- wy6 : 余震を考慮した荷重(kN/m)
- P_h :静水圧荷重 (kN/m²)
- P : 動水圧荷重(kN/m²)
- b₆:斜材に作用する荷重の負担幅(mm)
- Sd : 余震による地震荷重(kN/m)
- Sdv: 余震による鉛直地震荷重(kN/m)

b. 斜材に生じる曲げ応力度

 $\sigma_{b x 6} = (M_{x 6} \cdot 10^{6}) / Z_{x 6}$ $\sigma_{b y 6} = (M_{y 6} \cdot 10^{6}) / Z_{y 6}$ $M_{x 6} = w_{x 6} \cdot (L_{6} \cdot 10^{-3})^{2} / 8$ $M_{y 6} = w_{y 6} \cdot (L_{6} \cdot 10^{-3})^{2} / 8$

 σ_{bx6}, σ_{by6}
 : 斜材に生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)

 M_{x6}, M_{y6}
 : 斜材の強軸及び弱軸回りの曲げモーメント(kN・m)

 Z_{x6}, Z_{y6}
 : 斜材の強軸及び弱軸回りの断面係数(mm³)

 L₆
 : 斜材全長(mm)

c. 斜材に生じるせん断応力度

 $\tau_{x 6} = (Q_{x 6} \cdot 10^{3}) / A_{S x 6}$ $\tau_{y 6} = (Q_{y 6} \cdot 10^{3}) / A_{S y 6}$ $Q_{x 6} = w_{x 6} \cdot (L_{6} \cdot 10^{-3}) \cdot 5 / 8$ $Q_{y 6} = w_{y 6} \cdot (L_{6} \cdot 10^{-3}) \cdot 5 / 8$

τ_{x6}, τ_{y6} :斜材に生じる強軸及び弱軸方向のせん断応力度(N/mm²)

 Q_{x6}, Q_{y6}
 : 斜材の強軸及び弱軸方向のせん断力(kN)

 A_{Sx6}, A_{Sy6}
 : 斜材の強軸及び弱軸方向のせん断断面積(mm²)

 L₆
 : 斜材全長(mm)

d. 斜材に生じる軸応力度 σ_{c(t)6}=(N_{c(t)6}・10³)/A_{g6}

σ_{c(t)6}:斜材に生じる軸応力度(N/mm²)

N_{c(t)6}:斜材の圧縮又は引張軸力(kN)

A_{g6}: :斜材の断面積(mm²)

e. 斜材に生じる組合せ応力度

斜材に生じる曲げ応力度と軸応力度の組合せに対する検定比は,次式により 算出し,検定比 1.0 以下であることを確認する。

 $\sigma_{b x 6}/_{s} f_{b x 6} + \sigma_{b y 6}/_{s} f_{b y 6} + \sigma_{c (t) 6}/_{s} f_{c (t) 6} \le 1.0$

σ_{bx6}, σ_{by6}: 斜材に生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)
 s f_{bx6}, s f_{by6}: 斜材の強軸及び弱軸回りの短期許容曲げ応力度 (N/mm²)
 σ_{c(t)6}: 斜材に生じる軸応力度 (N/mm²)

sf_{c(t)6}:短期許容圧縮又は許容引張応力度(N/mm²)

斜材に生じる曲げ断応力度,軸応力度及びせん断応力度の組合せに対する応 力度は,次式により算出し,短期許容引張応力度以下であることを確認する。

 $\sqrt{\left(\sigma_{\text{bx6}} + \sigma_{\text{by6}} + \sigma_{\text{c(t)}6}\right)^2 + 3 \cdot \tau_6^2} \leq _{s} f_{t6}$

σ_{bx6}, **σ**_{by6} :斜材に生じる強軸及び弱軸回りの曲げ応力度 (N/mm²)

τ₆ :斜材に生じるせん断応力度 max (τ_{x6}, τ_{y6}) (N/mm²)

sf_{t6} : 短期許容引張応力度(N/mm²)

σ_{c(t)6}:斜材に生じる軸応力度(N/mm²)

図 6-8 斜材に作用する荷重の例

(7) アンカーボルト

アンカーボルト1本当たりに生じる引張力又はせん断力が,「各種合成構造設計指針」に基づき算定したアンカーボルトの短期許容荷重以下であることを確認する。アンカーボルトに生じる荷重の例を図 6-9 に示す。

 $(T_{d_{7}}/T_{a})^{2}+(Q_{d_{7}}/Q_{a})^{2} \leq 1$

 $T_{d_{7}} = T_{7} / n_{7}$

 $T_{d7}/T_{a} \leq 1.0$

- T₇ : 斜材に発生する引張力(kN)
- n₇ :斜材に取り付くアンカーボルトの本数(本)
- T_{d7}:アンカーボルト1本当たりに生じる引張力(kN)
- T。:アンカーボルト1本当たりの短期許容引張力(kN)

 $Q_{d_{7}} = Q_{7} / n_{7}$

 $Q_{d 67} \neq Q_a \leq 1.0$

- Q₇ : 斜材に発生するせん断力(kN)
- Q_{d7}:アンカーボルト1本当たりに生じるせん断力(kN)
- Qa : アンカーボルト1本当たりの短期許容せん断力(kN)

図 6-9 アンカーボルトに生じる荷重の例

6.1.6 評価条件

「6.1.4 評価方法」に用いる評価条件を表 6-8 に示す。

対象部位	記号	単位	定義	数値
	Н	mm	浸水深さ	5050
	lpha H		水平方向の余震震度	0.60
	lpha v		鉛直方向の余震震度	0.32
共通	ρο	t/m^3	水の密度	1.03
	g	m/s^2	重力加速度	9.80665
	β	_	浸水エリアの幅と水深の比 による補正係数	1.0
	h	mm	水圧作用高さ	1494
	$\rho_{\rm s}$	t/m^3	鋼板の密度	7.85
鋼板	t	mm	鋼板の厚さ	22
	Ζ1	mm ³	鋼板の断面係数	80. 67×10^3
	L ₁	mm	鋼板の短辺長さ	825
	h	mm	水圧作用高さ	1494
	b 2	mm	胴縁に作用する荷重の負担幅	713
	m_2	kg/m	胴縁の質量分布	122.4
阳绿	Z_{x^2}	mm ³	胴縁の強軸回りの断面係数	988×10^{3}
加四 形家	Z_{y2}	mm ³	胴縁の弱軸回りの断面係数	108. 2×10^3
	L ₂	mm	胴縁の全長	1150
	A s $_{x 2}$	mm^2	胴縁の強軸方向のせん断断面積	5380
	A_{Sy2}	mm^2	胴縁の弱軸方向のせん断断面積	5580
	h	mm	水圧作用高さ	1494
	b 3	mm	根太に作用する荷重の負担幅	488
根太	m_3	kg/m	根太の質量分布	122.4
	Z_{x^3}	mm^3	根太の強軸回りの断面係数	988×10^{3}
	Z_{y3}	mm ³	根太の弱軸回りの断面係数	108. 2×10^3
	L ₃	mm	根太の全長	2100
	A _{S x 3}	mm^2	根太の強軸方向のせん断断面積	5380
	A _{S y 3}	mm^2	根太の弱軸方向のせん断断面積	5580

表 6-8(1) 強度評価に用いる条件

対象部位	記号	単位	定義	数値
	h	mm	水圧作用高さ	1494
	b ₄	mm	柱に作用する荷重の負担幅	1094
	Z x 4	mm ³	柱の強軸回りの断面係数	1350×10^{3}
	Z y 4	mm	柱の弱軸回りの断面係数	450×10^{3}
1 杜	L ₄	mm	柱全長	1150
	A _{Sx4}	mm^2	柱の強軸方向のせん断断面積	2700
	A _{Sy4}	mm^2	柱の弱軸方向のせん断断面積	9000
	A $_{g 4}$	mm^2	柱の断面積	11800
	h	mm	水圧作用高さ	1494
	Z x 5	mm ³	はりの強軸回りの断面係数	1350×10^{3}
	Z y 5	mm ³	はりの弱軸回りの断面係数	450×10^{3}
	b 5	mm	はりに作用する荷重の負担幅	735
129	L ₅	mm	はり全長	2700
	A _{Sx5}	mm^2	はりの強軸方向のせん断断面積	2700
	Asy5	mm^2	はりの弱軸方向のせん断断面積	9000
	A g 5	mm^2	はりの断面積	11800
	h	mm	水圧作用高さ	3550
	Z _{x 6}	mm ³	斜材の強軸回りの断面係数	1350×10^{3}
	Z _{y 6}	mm ³	斜材の弱軸回りの断面係数	450×10^{3}
斜材	b 6	mm	斜材に作用する荷重の負担幅	300
	L ₆	mm	斜材全長	3000
	A s x 6	mm^2	斜材の強軸方向のせん断断面積	2700
	Asy6	mm^2	斜材の弱軸方向のせん断断面積	9000
	A g 6	mm^2	斜材の断面積	11800
アンカーボルト	n ₆	本	柱又ははりに取り付くアンカーボルト の本数	4

表 6-8(2) 強度評価に用いる入力値

- 7. 取水槽除じん機エリア防水壁
- 7.1 強度評価方法
 - 7.1.1 記号の説明

取水槽除じん機エリア防水壁の評価に用いる記号を表 7-1 に示す。

記号	単位	定義
ρ _o	t/m³	水の密度
g	m/s^2	重力加速度
h _p	mm	水圧作用高さ
W	kN/m^2	風圧力
h k	mm	風荷重作用高さ
P h 1	kN/m^2	鋼板に作用する静水圧荷重
b 1	mm	鋼板に作用する荷重の負担幅
P _k	kN/m	風荷重
σ 1	N/mm^2	鋼板に生じる曲げ応力度
M 1	kN • m	鋼板の曲げモーメント
Ζ ₁	mm ³	鋼板の断面係数
L ₁	mm	鋼板の短辺長さ
\mathbf{W} 2	kN/m	はりに作用する静水圧荷重及び風荷重を考慮した荷重
$\mathrm{P}_{\mathrm{h}2}$	kN/m^2	はりに作用する静水圧荷重
b ₂	mm	はりに作用する荷重の負担幅
σ2	N/mm^2	はりに生じる曲げ応力度
${ m M}_2$	kN • m	はりの曲げモーメント
Z_2	mm ³	はりの断面係数
L ₂	mm	はりの支持スパン
$ au$ $_2$	N/mm^2	はりに生じるせん断応力度
\mathbf{Q}_{2}	kN	はりのせん断力
A $_{S2}$	mm^2	はりのせん断断面積
P ₃	kN/m	柱に作用する静水圧荷重
P _h	kN/m^2	静水圧荷重
b ₃	mm	柱に作用する荷重の負担幅
P _{k 3}	kN/m	柱に作用する風荷重
σ 3	N/mm^2	柱に生じる曲げ応力度
M_{P3}	kN • m	柱の静水圧荷重による曲げモーメント

表 7-1(1) 取水槽除じん機エリア防水壁の強度評価に用いる記号

	- (-)	
記号	単位	定義
M_{k3}	kN • m	柱の風荷重による曲げモーメント
Z 3	mm^3	柱の断面係数
L ₃	mm	柱全長
L _{k1}	mm	風荷重作用高さ
L _{k2}	mm	風荷重を集中荷重にした時の作用位置
τ ₃	N/mm^2	柱に生じるせん断応力度
\mathbf{Q}_{P3}	kN	柱の静水圧荷重によるせん断力
$\mathbf{Q}_{\mathrm{k}3}$	kN	柱の風荷重によるせん断力
A _{S 3}	mm^2	柱のせん断断面積
f t	N/mm^2	短期許容曲げ応力度
Р	kN	アンカーボルト1本当たりの引張力
V	kN	最大鉛直荷重
Ν	本	アンカーボルト全本数
М	kN • m	最大曲げモーメント
X i	m	偏心距離
Σ n • X i ²	m^2	2次モーメントの合計値
Q	kN	アンカーボルト1本当たりのせん断力
Q_4	kN	柱に生じる最大せん断力
P _a	kN	アンカーボルトの許容引張力
Q _a	kN	アンカーボルトの許容せん断力

表 7-1(2) 取水槽除じん機エリア防水壁の強度評価に用いる記号

7.1.2 評価対象部位

当該防水壁の評価対象部位は「2.2 構造計画」に示す構造上の特性を踏まえ選 定する。

当該防水壁に生じる静水圧荷重及び風荷重は鋼板,はり及び柱に伝わり,柱を 固定するアンカーボルトを介して躯体に伝達されることから,評価対象部位を鋼 板,はり,柱及びアンカーボルトとする。

評価対象部位を図 7-1 に示す。

7.1.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは, Ⅵ-3-別添 3-1「津波への配慮が必要な施設の強度計算の基本方針」の「4.1 荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを踏まえて設定する。

(1) 荷重の組合せ

当該防水壁の強度評価に用いる荷重の組合せは, VI-3-別添 3-1「津波への配慮 が必要な施設の強度計算の基本方針」を踏まえて下記のとおりに設定する。

 $P_h + P_k$

P_h:静水圧荷重

- P k : 風荷重
- (2) 荷重の設定
 - a. 静水圧荷重(P_h)

浸水に伴う静水圧荷重を考慮する。静水圧荷重は,評価対象部位周辺の水の 密度に当該部分の浸水深さを考慮した水圧作用高さを乗じた次式により算出す る。この時,実際に作用する静水圧荷重は,台形分布若しくは三角形分布であ るが,柱においては,三角形分布に,鋼板及びはりにおいては,防水壁下端の 支配幅中心の静水圧が等分布に作用するものとして評価する。静水圧荷重の算 定に用いる水圧作用高さ及び水の密度を表 7-2 に示す。

 $P_{h} = \rho_{o} \cdot g \cdot h_{P} \cdot 10^{-3}$

- P_h :静水圧荷重(kN/m²)
- ρ。:水の密度(t/m³)
- g : 重力加速度(m/s²)
- h_P:水圧作用高さ(mm)
| 水圧作用高さ* | 水の密度 |
|--------------|--------------------------------------|
| h_{P} (mm) | $ ho$ $_{\rm o}$ (t/m ³) |
| 2500 | 1.03 |

表 7-2 水圧作用高さ及び水の密度

注記*:柱に作用する最大静水圧の作用高さ

b. 風荷重(P_k)

風速 30m/s 時の風荷重を考慮する。風荷重は,評価対象部位周辺の風圧力に 当該部分の風荷重作用高さを乗じた次式により算出する。当該防水壁は壁天端 まで浸水するため,風荷重を考慮しない。風荷重の算定に用いる風荷重作用高 さ及び風圧力を表 7-3 に示す。

 $P_k = w \cdot h_k \cdot 10^{-3}$

P_k:風荷重(kN/m)

w : 風圧力 (kN/m²)

h_k:風荷重作用高さ(mm)

風荷重作用高さ	風圧力
h_k (mm)	$w (kN/m^2)$
0	1.71

表 7-3 風荷重作用高さ及び風圧力

7.1.4 許容限界

許容限界は, VI-3-別添3-1「津波への配慮が必要な施設の強度計算の基本方針」 にて設定している許容限界を踏まえて設定する。

(1) 使用材料

当該防水壁を構成する鋼板,はり,柱及びアンカーボルトの使用材料を表 7-4 に示す。

評価対象部位	材質	仕様
鋼板	SS400	PL-9
はり	SS400	$L-65\times65\times8$
柱	SS400	$H-200\times200\times8\times12$
アンカーボルト	SUS304	M20

表 7-4 使用材料

(2) 許容限界

a. 鋼材

鋼材の許容応力度は、「S規準」を踏まえて表 7-5の値とする。

	×. •		91 H H / L / S		
1.1 FF	短期許容応力度(N/mm ²)				
材質	引張	圧縮*	曲げ*	せん断	
SS400	235	235	235	135	

表 7-5 鋼材の短期許容応力度

注記*:上限値であり,座屈長さ等を勘案して設定する。

b. アンカーボルト

アンカーボルトの許容荷重は「各種合成構造設計指針・同解説」を踏まえて 表 7-6 の値とする。

なお、アンカーボルトが引張力を受ける場合においては、アンカーボルトの 降伏により決まる耐力及び付着力により決まる耐力を比較して、いずれか小さ い値を採用する。また、評価部位のアンカーボルトがせん断力を受ける場合に おいては、アンカーボルトのせん断強度により決まる耐力、定着したコンクリ ート躯体の支圧強度により決まる耐力及びコーン状破壊により決まる耐力を比 較して、いずれか小さい値を採用する。

十十 成行	許容耐力(kN)			
	引張	せん断		
SUS304 (M20)	51	35		

表 7-6 アンカーボルトの基準強度

7.1.5 評価方法

当該防水壁を構成する鋼板,はり,柱及びアンカーボルトに発生する応力より 算定する応力度が,許容限界以下であることを確認する。

(1) 鋼板

鋼板に生じる応力は,鋼板を単純支持のはりとして次式により算出し,鋼板の 短期許容応力度以下であることを確認する。鋼板に作用する荷重の例を図 7-2 に 示す。

- a. 単位長さ当たりの等分布荷重 w₁=P_{h1}・b₁・10⁻³+P_k
 - w1 : 鋼板に作用する静水圧荷重及び風荷重を考慮した荷重(kN/m)
 - P_{h1}:鋼板に作用する静水圧荷重(kN/m²)
 - **b**₁ : 鋼板に作用する荷重の負担幅(mm)
 - P_k :風荷重(kN/m)

b. 鋼板に生じる曲げ応力度

 $\sigma_{1} = (M_{1} \cdot 10^{6}) / Z_{1}$ $M_{1} = w_{1} \cdot (L_{1} \cdot 10^{-3})^{2} / 8$

- σ₁ :鋼板に生じる曲げ応力度 (N/mm²)
- M_1 :鋼板の曲げモーメント ($kN \cdot m$)
- Z₁ : 鋼板の断面係数 (mm³)
- L₁ :鋼板の短辺長さ (mm)

(2) はり

はりに生じる応力は、はりを単純支持のはりとして次式により算出し、はりの 短期許容応力度以下であることを確認する。はりに作用する荷重の例を図 7-3 に 示す。

a. 単位長さ当たりの等分布荷重

 $w_2 = P_{h2} \cdot b_2 \cdot 10^{-3} + P_k$

w₂ : はりに作用する静水圧荷重及び風荷重を考慮した荷重(kN/m)

- P_{h2} : はりに作用する静水圧荷重(kN/m²)
- **b**₂ : はりに作用する荷重の負担幅(mm)
- P_k :風荷重(kN/m)
- b. はりに生じる曲げ応力度

 $\sigma_2 = (M_2 \cdot 10^6) / Z_2$ $M_2 = w_2 \cdot (L_2 \cdot 10^{-3})^2 / 8$

- σ₂ : はりに生じる曲げ応力度 (N/mm²)
- M₂ : はりの曲げモーメント (kN・m)
- Z₂ : はりの断面係数 (mm³)
- L₂ :はりの支持スパン (mm)

c. はりに生じるせん断応力度

$$\tau_{2} = (Q_{2} \cdot 10^{3}) / A_{S2}$$
$$Q_{2} = w_{2} \cdot (L_{2} \cdot 10^{-3}) / 2$$

- τ₂ :はりに生じるせん断応力度 (N/mm²)
- Q₂ : はりのせん断力 (kN)
- A_{S2} : はりのせん断断面積 (mm²)
- L₂ :はりの支持スパン(mm)

図 7-3 はりに作用する荷重の例

(3) 柱

柱に生じる応力は、床面を固定端とする片持ちはりとして次式により算出し、 柱の短期許容応力度以下であることを確認する。なお静水圧荷重は、柱の支配幅 (=間隔)を乗じた荷重が三角形分布に作用するものとし、風荷重は、柱の支配 幅(=間隔)を乗じた荷重が等分布に作用するものとして安全側に評価する。柱 に作用する荷重の例を図7-4に示す。

a. 柱に作用する荷重(静水圧荷重,風荷重) P₃=P_h・b₃・10⁻³ P_{k3}=w・b₃・10⁻³

- P₃ : 柱に作用する静水圧荷重(kN/m)
- P_h :静水圧荷重(kN/m²)
- **b**₃ : 柱に作用する荷重の負担幅(mm)
- P_{k3} : 柱に作用する風荷重(kN/m)
- w :風圧力 (kN/m²)

b. 柱に生じる曲げ応力度

 $\sigma_{3} = (M_{P3} + M_{k3}) \cdot 10^{6} / Z_{3}$ $M_{P3} = P_{3} \cdot L_{3}^{2} \cdot 10^{-3} / 6$ $M_{k3} = P_{k3} \cdot L_{k1} \cdot L_{k2} \cdot 10^{-3}$

- σ₃ : 柱に生じる曲げ応力度 (N/mm²)
- M_{P3} : 柱の静水圧荷重による曲げモーメント (kN・m)
- M_{k3} : 柱の風荷重による曲げモーメント (kN・m)
- Z₃ : 柱の断面係数 (mm³)
- P₃ : 柱に作用する静水圧荷重(kN/m²)
- L₃ : 柱全長 (mm)
- P_{k3} : 柱に作用する風荷重(kN/m)
- L_{k1} :風荷重作用高さ (mm)
- L_{k2} :風荷重を集中荷重にした時の作用位置 (mm)

c. 柱に生じるせん断応力度

$$\tau_{3} = (Q_{P3} + Q_{k3} \cdot 10^{3}) / A_{S3}$$
$$Q_{P3} = P_{3} \cdot (L_{3} \cdot 10^{-3}) / 2$$
$$Q_{k3} = P_{k3} \cdot L_{k1} \cdot 10^{-3}$$

- τ₃ : 柱に生じるせん断応力度 (N/mm²)
- Q_{P3} : 柱の静水圧荷重によるせん断力 (kN)
- Q_{k3} : 柱の風荷重によるせん断力 (kN)
- P₃ : 柱に作用する静水圧荷重(kN/m²)
- A_{s3} : 柱のせん断断面積 (mm²)
- L₃ : 柱全長 (mm)
- P_{k3} : 柱に作用する風荷重 (kN/m)
- L_{k1} :風荷重作用高さ (mm)

d. 柱に生じる組合せ応力度

柱に生じる曲げ応力度とせん断応力度から,組合せ応力度を「S規準」に基づく次式により算定し,短期許容応力度以下であることを確認する。

 $\sqrt{\sigma_3^2 + 3 \cdot \tau_3^2} \leq f_t$

- σ₃ : 柱に生じる曲げ応力度 (N/mm²)
- τ₃ : 柱に生じるせん断応力度 (N/mm²)
- f t : 短期許容曲げ応力度 (N/mm²)

(4) アンカーボルト

アンカーボルト1本当たりに生じる引張力又はせん断力を「各種合成構造設計 指針」に基づき算定し、アンカーボルトの許容荷重を下回ることを確認する。ア ンカーボルトに生じる荷重の例を図7-5に示す。

 $\mathbf{P} = \mathbf{V} / \mathbf{N} - \mathbf{M} \cdot \mathbf{X} \, \mathrm{i} / \boldsymbol{\Sigma} \mathbf{n} \cdot \mathbf{X} \, \mathrm{i}^2$

- P:アンカーボルト1本当たりの引張力(kN)
- V:最大鉛直荷重(kN)
- N:アンカーボルト全本数(本)
- M:最大曲げモーメント (kN・m)
- X_i:偏心距離(m)
- $\Sigma n \cdot X_{i^2}$: 2 次モーメントの合計値 (m²)

 $Q = Q_4/\,N$

Q:アンカーボルト1本当たりのせん断力(kN)
 Q4:柱に生じる最大せん断力(kN)
 N:アンカーボルト全本数(本)

さらに,照査においては以下を確認する。

(P/P_a)²+(Q/Q_a)²≤1
 P:アンカーボルト1本当たりの引張力(kN)
 Q:アンカーボルト1本当たりのせん断力(kN)
 P_a:アンカーボルトの許容引張力(kN)
 Q_a:アンカーボルトの許容せん断力(kN)

図 7-5 アンカーボルトに生じる荷重の例

7.1.6 評価条件

「7.1.5 評価方法」に用いる入力値を表 7-7 に示す。

対象部位	記号	単位	定義	数値
	ρ。	t/m^3	水の密度	1.03
	g	m/s^2	重力加速度	9.80665
共通	h _p	mm	水圧作用高さ	2500
	w	kN/m^2	風圧力	1.71
	h _k	mm	風荷重作用高さ	0
	P _{h1}	kN/m^2	鋼板に作用する静水圧荷重	18.43
	b 1	mm	鋼板に作用する荷重の負担幅	1000
鋼板	M 1	kN•m	鋼板の曲げモーメント	0.37
	Ζ 1	mm ³	鋼板の断面係数	1.35×10^{4}
	L 1	mm	鋼板の短辺長さ	400
	P_{h2}	kN/m^2	はりに作用する静水圧荷重	19.95
	b ₂	mm	はりに作用する荷重の負担幅	300
	M_2	kN•m	はりの曲げモーメント	1.26
はり	Z 2	mm ³	はりの断面係数	7.96 $\times 10^{3}$
	L ₂	mm	はりの支持スパン	1300
	\mathbf{Q}_2	kN	はりのせん断力	3.89
	A_{S2}	mm^2	はりのせん断断面積	2700
	P_{h}	kN/m^2	柱に作用する静水圧荷重	25.25
	b ₃	mm	柱に作用する荷重の負担幅	1500
	P k 3	kN/m	柱に作用する風荷重	2.57
	M_{P3}	kN•m	柱の静水圧荷重による曲げモーメント	39.46
	M_{k3}	kN•m	柱の風荷重による曲げモーメント	0
	Z 3	mm^3	柱の断面係数	4. 72×10^5
柱	L ₃	mm	柱全長	2500
	L _{k1}	mm	風荷重作用高さ	0
	L k2	mm	風荷重を集中荷重にした時の作用位置	2500
	\mathbf{Q}_{P3}	kN	柱の静水圧荷重によるせん断力	47.35
	\mathbf{Q}_{k3}	kN	柱の風荷重によるせん断力	0
	A s 3	mm^2	柱のせん断断面積	1408
	f t	N/mm^2	短期許容曲げ応力度	235

表 7-7(1) 強度評価に用いる入力値

対象部位	記号	単位	定義	数値
	Р	kN	アンカーボルト1本当たりの引張力	38.72
	V	kN	最大鉛直荷重	0
	Ν	本	アンカーボルト全本数	8
	М	kN•m	最大曲げモーメント	39.46
アンカー	X $_{\rm i}$	m	偏心距離	0.105
ボルト	Σ n • X i ²	m^2	2次モーメントの合計値	0.107
	Q	kN	アンカーボルト1本当たりのせん断力	5.92
	${f Q}_4$	kN	柱に生じる最大せん断力	47.35
	P _a	kN	アンカーボルトの許容引張力	51
	Q a	kN	アンカーボルトの許容せん断力	35

表 7-7(2) 強度評価に用いる入力値

8. 評価結果

防水壁の強度評価結果を表 8-1~表 8-5 に示す。防水壁の各部材の断面検定を行った結果,発生応力度又は荷重は許容限界以下であることから,防水壁が構造健全性を有することを確認した。

評価対象部位		発生値		<u></u>		発生値/
		(応力度又は荷重)		计谷内	区 3下 11旦	許容限界値
鋼板	曲げ	59	N/mm^2	235	N/mm^2	0.26
	曲げ	36	N/mm^2	229	N/mm^2	0.16
胴縁	せん断	18	N/mm^2	135	N/mm^2	0.14
	組合せ	48	N/mm^2	235	N/mm^2	0.21
	曲げ	59	N/mm^2	223	N/mm^2	0.27
柱	せん断	42	N/mm^2	135	N/mm^2	0.32
	組合せ	94	N/mm^2	235	N/mm^2	0.40
アンカー	计人断	10	le N	58	le N	0.33
ボルト	ビル別	19	KIN	00	KIN	0.33

表 8-1 強度評価結果(タービン建物地下1階復水系配管室防水壁)

評価対象部位		発生値		<u> </u>		発生値/
甲十二	[[[] 入] 刻 印 [] []	(応力度)	又は荷重)			許容限界値
鋼板	曲げ	115	N/mm^2	235	N/mm^2	0.49
	曲げ(強軸)	43	N/mm^2	178	N/mm^2	0.25
旧纪	曲げ(弱軸)	18	N/mm^2	235	N/mm^2	0.08
用吗 形象	せん断	16	N/mm^2	135	N/mm^2	0.12
	組合せ	67	N/mm^2	235	N/mm^2	0.29
	曲げ(強軸)	66	N/mm^2	304	N/mm^2	0.22
	曲げ(弱軸)	8	N/mm^2	325	N/mm^2	0.03
	せん断	47	N/mm^2	187	N/mm^2	0.26
	圧縮	2	N/mm^2	217	N/mm^2	0.01
柱	組合せ					0.26
	(曲げ+軸力)					0.20
	組合せ					
	(曲げ+せん断+	112	N/mm^2	325	N/mm^2	0.35
	軸力)					
	曲げ(強軸)	109	N/mm^2	310	N/mm^2	0.36
	曲げ(弱軸)	2	N/mm^2	325	N/mm^2	0.01
	せん断	34	N/mm^2	187	N/mm^2	0.19
	圧縮	6	N/mm^2	210	N/mm^2	0.03
はり	組合せ	_	_	_	_	0.40
	(曲げ+軸力)					0.40
	組合せ					
	(曲げ+せん断+	131	N/mm^2	325	N/mm^2	0.41
	軸力)					
	引張	31	kN	76	kN	0.41
アンカー	せん断	24	kN	58	kN	0.42
ボルト	組合せ					0.24
	(引張+せん断)		_		—	0.34

表 8-2 強度評価結果(タービン建物地下1階復水器室北西側防水壁)

評価対象部位		発生値 (応力度又は荷重)		許容限界値		発生値/ 許容限界値
鋼板	曲げ	89	N/mm^2	235	N/mm^2	0.38
	曲げ(強軸)	12	N/mm^2	202	N/mm^2	0.06
	曲げ(弱軸)	22	N/mm^2	235	N/mm^2	0.10
胴稼	せん断	6	N/mm^2	135	N/mm^2	0.05
	組合せ	36	N/mm^2	235	N/mm^2	0.16
	曲げ(強軸)	15	N/mm^2	318	N/mm^2	0.05
	曲げ(弱軸)	23	N/mm^2	325	N/mm^2	0.08
	せん断	16	N/mm^2	187	N/mm^2	0.09
	圧縮	2	N/mm^2	268	N/mm^2	0.01
柱	組合せ (曲げ+軸力)	_	_	_	_	0.14
	組合せ					
	(曲げ+せん断+	49	N/mm^2	325	N/mm^2	0.16
	軸力)					
	曲げ(強軸)	16	N/mm^2	322	N/mm^2	0.05
	曲げ (弱軸)	2	N/mm^2	325	N/mm^2	0.01
	せん断	11	N/mm^2	187	N/mm^2	0.06
	圧縮	11	N/mm^2	306	N/mm^2	0.04
はり	組合せ (曲げ+軸力)	_	_	_	_	0.10
	組合せ					
	(曲げ+せん断+	35	N/mm^2	325	N/mm^2	0.11
	軸力)					
水平ブレー ス	圧縮	22	N/mm^2	100	N/mm ²	0.22
	引張	11	kN	83	kN	0.14
アンカー	せん断	16	kN	58	kN	0.28
ボルト	組合せ (引張+せん断)	_	_	_	_	0.10

表 8-3 強度評価結果(タービン建物地下1階復水器室北側防水壁)

評価対象部位		発生値		許容限界値		発生値/
		(応力度)	又は荷重)			許容限界值
鋼板	曲げ	33	N/mm^2	235	N/mm ²	0.15
	曲げ(強軸)	4	N/mm^2	217	N/mm ²	0.02
	曲げ(弱軸)	1	N/mm^2	235	N/mm^2	0.01
	せん断	3	N/mm^2	135	N/mm^2	0.03
	圧縮	1	N/mm^2	143	N/mm^2	0.01
胴縁	組合せ					0.04
	(曲げ+軸力)	—	_	_		0.04
	組合せ					
	(曲げ+せん断+	8	N/mm^2	235	N/mm^2	0.04
	軸力)					
	曲げ(強軸)	7	N/mm^2	181	N/mm^2	0.04
+8 -1-	曲げ(弱軸)	10	N/mm^2	235	N/mm^2	0.05
根太	せん断	2	N/mm^2	135	N/mm^2	0.02
	組合せ	18	N/mm^2	235	N/mm^2	0.08
	曲げ(強軸)	3	N/mm^2	232	N/mm^2	0.02
	曲げ(弱軸)	6	N/mm^2	235	N/mm^2	0.03
	せん断	5	N/mm^2	135	N/mm^2	0.04
	圧縮	4	N/mm^2	222	N/mm^2	0.02
柱	組合せ					
	(曲げ+軸力)	_	_	_	_	0.07
	組合せ					
	(曲げ+せん断+	16	N/mm^2	235	N/mm^2	0.07
	軸力)					
	曲げ(強軸)	17	N/mm^2	225	N/mm^2	0.08
	曲げ(弱軸)	59	N/mm^2	235	N/mm^2	0.26
	せん断	13	N/mm^2	135	N/mm^2	0.10
		4	N/mm^2	172	N/mm^2	0.03
はり	組合せ					
	(曲げ+軸力)	—	—	-	-	0.37
	組合せ					
	(曲げ+せん断+	84	N/mm^2	235	N/mm ²	0.36
	軸力)					

表 8-4(1) 強度評価結果(タービン建物地下1階復水器室北東側防水壁)

秋 6 1	X · 1(4) 以及計圖相示 () · 2 · 足物起于于阳极示证主相不因的示主)						
評価対象部位		発	発生値		四田庙	発生値/	
百半 1	曲对家部位	(応力度)	又は荷重)	計谷限界個		許容限界値	
	曲げ(強軸)	12	N/mm^2	220	N/mm^2	0.06	
	曲げ(弱軸)	36	N/mm^2	235	N/mm^2	0.16	
	せん断	10	N/mm^2	135	N/mm^2	0.08	
	圧縮	6	N/mm^2	160	N/mm^2	0.04	
斜材	組合せ	- 57	_		_	0.96	
	(曲げ+軸力)			_		0.26	
	組合せ		N/mm ²	235	N/mm^2		
	(曲げ+せん断+					0.25	
	軸力)						
	引張	20	kN	71	kN	0.29	
アンカー	せん断	7	kN	49	kN	0.15	
ボルト	組合せ					0.10	
	(引張+せん断)		_		_	0.10	

表 8-4(2) 強度評価結果(タービン建物地下1階復水器室北東側防水壁)

評価対象部位		発生値 (応力度又は荷重)		許容限界値		発生値/ 許容限界値
鋼板	曲げ	28	N/mm^2	235	N/mm^2	0.12
	せん断	1	N/mm^2	135	N/mm^2	0.01
はり	曲げ	159	N/mm^2	235	N/mm^2	0.68
	せん断	2	N/mm^2	135	N/mm^2	0.02
柱	曲げ	84	N/mm^2	235	N/mm^2	0.36
	せん断	34	N/mm^2	135	N/mm^2	0.26
	組合せ (曲げ+せん断)	102	N/mm^2	235	N/mm^2	0.44
アンカーボルト	引張	39	kN	51	kN	0.77
	せん断	6	kN	35	kN	0.18
	組合せ (引張+せん断)	_	_	_	_	0.61

表 8-5 強度評価結果(取水槽除じん機エリア防水壁)